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ABSTRACT

This thesis contributes to the econometric literature on structural
breaks analysis and outliers detection in parametric linear models.
The focus is on the development of new econometric tools as well
as on the analysis of novel but largely unexplored approaches. The
econometric methods under analysis are illustrated using macroe-
conomic and financial relationships. The thesis is organised in three
main chapters. In Chapter 2, we consider two novel methods to de-
tect multiple structural breaks affecting the deterministic compon-
ent of a linear system. The first is an extension of the dummy sat-
uration method whereas the second method deals with a sequential
bootstrapping procedure based on the sup-F statistic. Through an
extensive Monte Carlo exercise, we explore the ability of the two
approaches to detect the correct number and the correct location
of the breaks. Additionally, we illustrate how to apply empirically
the two procedures by investigating the stability of the Fisher re-
lationship in the United States. In Chapter 3, we consider testing
for multiple structural breaks in the vector error correction frame-
work. First, we study the role of weak exogeneity when testing
for structural breaks in the cointegrating matrix. Second, we ex-
tend the existing likelihood ratio test of Hansen (2003) to the case
of unknown break dates through the specification of a minimum p-
value statistic with critical values approximated by bootstrapping.
Monte Carlo simulations show that the proposed statistic has good
finite sample properties whilst three small empirical applications il-
lustrate how the minimum p-value statistic can be used in practice.
In Chapter 4, we tackle the purchasing power parity puzzle develop-
ing a robust estimator for the half-life of the real exchange rate. Spe-
cifically, we propose to identify outlying observations by means of
a dummy saturation type algorithm designed for ARMA processes
which enables to detect additional and innovative outliers as well
as level shifts. An empirical application involving US dollar real
exchange rates shows that the estimated half-lives are considerably
shorter when outlying observations are correctly modelled, there-
fore shedding some light on the purchasing power parity puzzle.

xv





Chapter 1

Introduction

Structural stability raises enduring concerns when investigating economic

and financial relationships. The main reason lies in the fact that there is

plenty of evidence that macroeconomic and financial time series exhibit

changes in their tendency. In a very comprehensive study, Stock and Watson

(1996) analyse 76 U.S. post-war economic time-series including, amongst

the others, price indexes, interest rates, exchange rates, and showing that

the series experience widespread instability. The issue gained popularity

amongst the econometric community in the eighties, following the article

by Perron [Perron, P., 1989. “The Great Crash, the Oil Price Shock and the

Unit Root Hypothesis”. Econometrica 57, 1361–1401], and since it became a

central theme in time-series econometrics.

In practice, together with the fact that we want to accommodate empir-

ical evidence, the main reason why we take into account structural breaks

is because ignoring their presence leads to severe inferential distortions. As

largely documented in the literature (see e.g. Pesaran, Pettenuzzo, and Tim-

merman, 2006), these distortions have striking implications for forecasting
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Introduction

as well as for policy analysis. Similar consequences arise when the infer-

ential process disregards the presence of outlying observations which con-

taminate the available data. These occur when an economic/financial shock

has a short-lived effect in contrast with the long-lasting effects of structural

breaks. In light of these considerations, a joint treatment of structural breaks

and outliers seems to be advisable. This is the path followed throughout the

thesis, where we focus on the analysis and development of new econometric

methods to deal with the presence of structural breaks and outlying obser-

vations.

1.1 Unstable Relationships and Outlying Obser-

vations

In this section, we overview the frameworks adopted to model relationships

that change over time and/or are affected by outliers. The aim is neither to

provide a detailed nor a comprehensive literature review of all the available

methods, but rather try to settle the approaches later developed in the con-

text of the existing econometric and statistical literature. At the beginning

of each chapter, a detailed review of the relevant literature specific to the

issues analysed is provided.

1.1.1 Modelling Unstable Relationships

From a modelling perspective, there are two ways to incorporate in a statist-

ical/econometric model the changing behaviour of a time series: either by

assuming that shifts happen at discrete times or by using time-varying para-

2



Unstable Relationships and Outlying Observations

meter (TVP) models (see e.g. Harvey, 1989), which constitute a limiting case

where a change occurs at all the periods. Discrete changes may be captured

either in a deterministic or in a stochastic way. In the deterministic case, the

discrete shifts are usually referred as “structural breaks” or “change points”

and can be incorporated in the model through dummy variables. Structural

breaks analysis has a long tradition in the statistical and econometric liter-

ature1 dating back to the seminal works by Chow (1960), Quandt (1960),

Gardner (1969) and Brown, Durbin, and Evans (1975). On the other hand,

stochastic discrete shifts are usually captured by specifying a finite number

of regimes with an associated matrix of transition probabilities. This implies

that the model moves from one regime to the other in a stochastic fashion.

In the econometric literature, a model class incorporating stochastic discrete

shifts which gained considerable popularity is the Markov-switching class

of models, following the work of Hamilton (1989). In practice, however,

there is no uniform evidence of the superiority of one class of model with

respect to the other. Despite their generality, TVP models do not necessarily

over-perform a discrete structural change model as shown in Stock and Wat-

son (1996). The choice between deterministic breaks and stochastic regime-

switching models depends instead on how likely a series moves between

a predetermined number of regimes. Regime-switching models implicitly

assume that a relationship breaks in the same way it happened in the past

which is clearly not always reasonable. On the other hand, discrete determ-

inistic changes might be easier to justify and to link to particular shocks

(policy intervention, financial crisis, etc.) that might have affected an eco-

1Stock (1994), Banerjee and Urga (2005), Perron (2006), Andreou and Ghysels (2009), and
Aue and Horváth (2013) provide extensive surveys discussing a wide range of problems
related to structural breaks analysis.
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nomic relationship. In this dissertation, we deal with deterministic struc-

tural breaks and the word deterministic will be omitted from here onward.

1.1.2 Outlying Observations

An outlying observation is a data point which is distant from the other ob-

servations. Extreme observations can arise either because there are meas-

urement errors in the data or because the data come from fat-tailed distri-

butions. In the former case, we normally discard the outlying observations

whereas in the latter case, we like to take them into account by using a mod-

elling framework which allows us to incorporate them in the model. There

are essentially two approaches to deal with outliers in regression analysis.

The first relies on outliers detection procedures – see for instance the time

series procedure described by Tsay (1988) – and it is aimed at identifying

outliers based on test statistics or regression diagnostics. Statistically sig-

nificant outliers can then be corrected or removed by the modeller and the

model parameters re-estimated. The second approach relies instead on ro-

bust statistics in the sense of Rosseauw and Leroy (1986). In this case, the

model is fitted directly to the “well” behaved data whilst outlying obser-

vations are identified as a by-product. This literature was initiated by the

seminal contribution of Huber (1964) where the author introduced the class

of M -estimators. Recently, a new outlier-robust method has been proposed

in the econometric literature by Hendry (1999), known as Dummy Saturation.

The resulting estimator has been classified by Johansen and Nielsen (2009)

as a member of the class of M -estimators. The method is quite powerful

although its statistical properties are largely unexplored. Its main peculiar-

4
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ity is that it allows a joint treatment of outlying observations and structural

breaks by saturating the initial model with different kind of dummies. Next

section summarises the contribution of each chapter.

1.2 Contribution of the thesis

In this thesis, we contribute to the econometric literature concerned with

the problem of detecting and locating structural breaks and outlying obser-

vations affecting parametric linear models. Special emphasis is put on the

analysis and extension of existing approaches with unknown finite sample

properties as well as the development of completely new techniques to

make inference on the presence of structural breaks and outliers. The empir-

ical relevance of the proposed econometric methods is illustrated through

the empirical analysis of macroeconomic and financial relationships. The

next sections describe the specific contributions of each of the three chapters.

1.2.1 Chapter 2: Detecting Breaks by Dummy Saturation and

Sequential Bootstrapping

Chapter 2 consists of a simulation based comparison and extension of two

largely unexplored procedures to detect multiple structural breaks in uni-

variate systems involving stationary, non-stationary and cointegrated vari-

ables. Through an extensive Monte Carlo simulation study, we investigate

the ability of the Dummy Saturation (Hendry, 1999; Hendry et al., 2008; Jo-

hansen and Nielsen, 2009) and the sequential bootstrapping procedure (Baner-

jee, Lazarova, and Urga, 1998; De Peretti and Urga, 2005) of the sup-F test
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of Andrews (1993) in detecting the correct number of breaks and correctly

locate them. In particular, we consider structural breaks affecting the de-

terministic component of linear models (level and linear trend). We explore

for the first time the behaviour of the Dummy Saturation in capturing breaks

in trend by means of trend dummies. Finally, we illustrate the practical

relevance of the two procedures through an application to investigate the

validity of the Fisherian hypothesis in the US economy.

There are two motivations behind the decision to analyse the above men-

tioned procedures. First, in the existing literature, there is scarce and incom-

plete evidence on how they behave in finite-sample and especially when

considering non-stationary variables and cointegrated relationships. This

is due to the fact that both procedures are relatively recent and the under-

lying theory is still under development. The extensive simulation study

in this thesis fills this gap by providing evidence of their performance for a

large class of models usually adopted in applied economic research. Second,

the two procedures under analysis constitute alternative frameworks to the

methodology of Bai and Perron (1998, 2003) and its extension to include

non-stationary variables by Kejriwal and Perron (2008, 2010). These meth-

ods are theoretically well established though they rely on non-pivotal stat-

istics to decide on the number of breaks which require extensive simulations

to generate the appropriate critical values. Conversely, both the dummy

saturation and the sequential bootstrapping procedure do not rely on non-

pivotal statistics to ascertain the number of structural breaks.

6
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1.2.2 Chapter 3: Testing for Multiple Breaks in the VECM

In Chapter 3, we deal with the issue of testing for multiple structural breaks

in the vector error correction modelling (VECM) framework. In particular,

being the VECM a heavily parametrised model, it is crucial to correctly spe-

cify the subset of parameters of which we want to test the stability. This

is the underlying motivation of the results in Chapter 3. Specifically, we

contribute to the existing literature in two main directions. First, we show

that breaks in the long run matrix β imply breaks in the short run impact

matrix α, unless weak exogeneity is imposed, and breaks in β imply also

breaks in the covariance matrix of the error term. Hence, this result im-

plies the presence of restrictions on the way the parameters to be tested for

breaks are selected. Second, we extend the likelihood ratio test proposed in

Hansen (2003) to the case of unknown break dates through the specification

of several scenarios regarding the number and the location of the breaks.

We define a minimum p-value statistic with critical values approximated by

bootstrapping methods. Monte Carlo simulations show that the proposed

statistic has optimal finite sample properties when imposing and relaxing

weak exogeneity as well as when exploring the impact of weak identifica-

tion of the cointegrating relationship. Finally, the chapter reports three em-

pirical applications which illustrate how the minimum p-value statistic can

be used in practice as well as the relevance of the presence of weak exogen-

eity on break testing. In particular, we use the minimum p-value statistic

to study the dividend-price ratio for the S&P500 and the money demand

in the US. To investigate the role of weak exogeneity, we study instead the

relationship between three exchange rates.

7
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1.2.3 Chapter 4: Robust Estimation of Real Exchange Rate

Process Half-life

Chapter 4 tackles the puzzling behaviour of the real exchange rate (see Ro-

goff, 1996) developing an estimation framework for ARMA processes which

is robust to the presence of outliers and level shifts. Specifically, we argue

that the data generating process of the real exchange rate is likely to include

outliers that, if not accounted for, lead to unreliable half-lives estimates. In

order to obtain robust estimates of the half-life, we propose to identify outly-

ing observations by means of a dummy saturation type algorithm designed

for ARMA processes. The proposed procedure allows us to detect addi-

tional and innovative outliers as well as level shifts in the real exchange rate

process. An empirical application involving US dollar real exchange rates

shows that the estimated half-lives are consistently shorter when outlying

observations are correctly modelled, thus shedding some light on the pur-

chasing power parity puzzle.

8



Chapter 2

Detecting Structural Breaks by

Dummy Saturation and Sequential

Bootstrapping?

2.1 Introduction

Since the seminal contributions by Perron (1989) and Rappoport and Reich-

lin (1989), the literature has produced a comprehensive set of results on the

break-point problem in a time series framework. Useful surveys are Stock

(1994), Banerjee and Urga (2005), Perron (2006) and Aue and Horváth (2013),

while Andreou and Ghysels (2009) consider structural breaks involving not

only the mean process but also higher order moments as well as changes

affecting the whole distribution of financial time series.

?A research paper joint with my PhD supervisor, Prof. Giovanni Urga, entitled “De-
tecting Structural Breaks by Dummy Saturation and Sequential Bootstrapping” is based on the
results in this chapter and it has been submitted for publication. The paper has been presen-
ted at the 12th OxMetrics User Conference (Cass Business School, September 3-4 2012) and
at the 1st IAAE Annual Conference (Queen Mary, University of London, June 26-28 2014).
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Focusing on the problem of estimating and testing for the presence of

structural breaks, Andrews (1993) derives the asymptotic distribution of a

class of “sup” type statistics based on the Quandt (1960) statistic to test for

the null of stability against the alternative of an unknown structural break.

For the multiple unknown structural breaks case, Bai and Perron (1998,

2003) propose to estimate break dates by a minimum least squares approach

and to test the significance of the resulting break date estimates by means

of three different tests all based on the sup-F statistic derived in Andrews

(1993). In a cointegrated framework, Hansen (1992) is the first to consider

tests for intercept and slope stability. In the context of cointegrated VAR

processes, Seo (1998) provides a testing framework for an unknown single

break case while Hansen (2003) provides a modelling framework to analyse

multiple structural changes though occurring at known dates. For the un-

known multiple breaks case, the large sample theory of the Bai and Perron

(1998, 2003) framework has been recently generalized to the case of non-

stationary models by Kejriwal and Perron (2008, 2010). However, despite

the sounding theoretical framework, the Kejriwal and Perron (2008, 2010)

procedure presents a series of critical practical limitations. First, the asymp-

totic distributions of the tests to asses the statistical significance of the break

dates are not pivotal, thus requiring a derivation of the critical values case

by case via numerical simulation. Second, the three complementary tests

(sup-F , UDMax and Sequential sup-F ) proposed often provide contradict-

ory results about the number of breaks to include in the model, making the

inference difficult.

In this chapter, we consider two novel approaches to detect multiple

structural breaks in a wide range of linear models including the cointegra-

10



Introduction

tion set up. The first procedure is an extension of the so called Dummy Sat-

uration (DS) introduced by Hendry (1999) and further developed by Hendry

et al. (2008) and Johansen and Nielsen (2009), which involves not only im-

pulse dummies but also step and trend dummies, as originally mentioned

by Banerjee et al. (1998), De Peretti and Urga (2005) and Ericsson (2011). The

DS procedure consists in detecting structural breaks affecting a linear sys-

tem by saturating a regression with dummies and then removing the non-

significant ones through a general-to-specific approach. The second meth-

odology consists in a Sequential Bootstrapping (SB) procedure based on the

sup-F statistic of Andrews (1993). We evaluate the performance of both

the extended DS and SB procedures under several DGPs including station-

ary, nonstationary and cointegrated models. In particular, we assess the

two procedures according to the following two criteria: first, the ability to

pick up the correct number of structural breaks, and second, the ability to

correctly locate them. To this extent, we set up an extensive Monte Carlo

exercise in order to compute the empirical retention frequencies of the DS

dummies and the empirical rejection frequencies of the SB sup-F tests as

well as to measure the goodness of the resulting break date estimates. More

precisely, evaluation criteria include empirical size and power as well as

the gauge and potency criteria as described in Castle et al. (2012); the latter

assess the considered method from the model selection perspective rather

than as formal statistical break tests. For the DS method, evaluation criteria

yield mixed results confirming the model selection nature of the procedure.

In contrast, the empirical size and power of the SB suggest that the method

hold clear and definitive promise. Finally, in order to study the performance

of the two novel procedures with a real dataset, we empirically investigate

11
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the stability of the Fisher equation in the United States.

The remainder of the chapter is organised as follows. Section 2.2 presents

the extended DS and the SB procedures. Section 2.3 reports the criteria

used to assess the Monte Carlo exercise, while the results of the simulations

are reported and discussed in Section 2.4, where we also offer some use-

ful guidelines about the implementation of the two procedures. Section 2.5

reports the empirical application involving the analysis of the Fisher rela-

tionship in the United States. Section 2.6 concludes

2.2 Two Novel Approaches to Detect Multiple Struc-

tural Breaks

In this section, we describe the ideas underlying the DS and the SB proced-

ures to detect breaks in the deterministic component of linear regressions.

Specifically, let

yt = γ>t xt + εt =

[
α>t β>

]wt

zt

+ εt, t = 1, . . . , T

where wt collects the deterministic components, zt is a k×1 vector collecting

lags of the endogenous variable as well as exogeneous regressors and εt
i.i.d.∼

(0, σ2
ε) satisfies E(ztεt) = 0. Given that a linear trend usually suffices for

most economic applications, we can restrict wt to consist of a constant and

a linear trend without losing too much generality. Hereafter, we consider

models that are nested in the following specification

yt = α0
t + α1

t t+ β>zt + εt t = 1, . . . , T. (2.1)

12
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Conditionally on m unknown break dates {T1, T2, . . . , Tm}, we have a

piecewise constant model of the form

yt = α0
0 + α1

0t+ β>zt + εt T0 = 0 ≤ t < T1

yt = α0
1 + α1

1t+ β>zt + εt T1 ≤ t < T2

...

yt = α0
m + α1

mt+ β>zt + εt Tm ≤ t ≤ Tm+1 = T.

In the following, we want study the performance of DS and SB in making

inference about the vector of break dates {T1, T2, . . . , Tm}.

2.2.1 Dummy Saturation (DS)

The DS approach – as originally proposed by Hendry (1999) and Hendry, Jo-

hansen, and Santos (2008) – is a technique to test model constancy by means

of a set of dummy variables. The underlying idea is to saturate a linear

model involving T observations with T dummy variables (one for each ob-

servations) to capture outliers and structural breaks. Following the “general-

to-specific” approach, the technique starts with an initial model where an

outlier/break may happen at all times and then removes the statistically in-

significant dummies. The framework is very general allowing to test for the

presence of multiple structural breaks in a wide range of systems.

In particular, the original approach as outlined in Hendry (1999) and

Hendry, Johansen, and Santos (2008) involves a saturation with 0-1 impulse

dummies (impulse indicator saturation, IIS). Recently, Doornik, Hendry, and

Pretis (2013) develop the theoretical properties of the step indicator satur-

ation, where impulse dummies are replaced by partial sums of impulse
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dummies (step dummies). In this chapter, we propose to extend the ori-

ginal IIS approach to include also step dummies and double partial sums

of impulse dummies (sums of step dummies or simply trend dummies) to

capture structural breaks in the level or in the trend. Following the termino-

logy in Ericsson (2011), we define super saturation (SS) the version with also

step dummies, and ultra saturation (US) the regression saturation involving

also trend dummies.

According to the DS principle, inference about the vector of break dates

is based on the selection of the parsimonious representation from one of the

following saturated regressions

DS



IIS: yt = α0
0 + α1

0t+ β>zt +
T∑
i=1

γiIi,t + εt

SS: yt = α0
0 + α1

0t+ β>zt +
T∑
i=1

(γiIi,t + ψiSi,t) + εt

US: yt = α0
0 + α1

0t+ β>zt +
T∑
i=1

(γiIi,t + ψiSi,t + ωiLi,t) + εt

where Ii,t = 1(t = i), Si,t = 1(t ≥ i) and Li,t = (t − i + 1)1(t ≥ i)

for i = 1, . . . , T . After dropping the statistically insignificant dummies

from the saturated regression, one is left with a set of dummies which can

be interpreted as outliers (impulse dummies) and/or structural breaks af-

fecting the deterministic component of the process (step and trend dum-

mies)1.Additionally, it is important to note that the coefficients of the dum-

mies capture the magnitude of the changes in the coefficients of (2.1), i.e.

ψi = α0
i − α0

i−1 and ωi = α1
i − α1

i−1.

1It is possible to use the IIS to capture breaks in the level component. Retained consec-
utive dummies with same sign and similar magnitude may be grouped according and can
be interpreted as capturing a break in the level.
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There are two problems with the specifications just introduced. For all

cases, though especially in SS and US, multicollinearity between some of

the dummies themselves and between the dummies and the deterministic

component of the process clearly arises. Second, the estimation of the sat-

urated regressions is infeasible because of lack of degrees of freedom, given

that N , the total number of regressors, is larger than the number of obser-

vations T . In principle, the multicollinearity problem within dummies can

be solved quite easily by excluding some dummies (last step dummy or last

trend dummy for instance). Typically, one sets i = `y + 1, . . . , T − 1, where

`y is the highest order of lagged dependent variables entering the process,

and excludes the first step dummy, which is exactly collinear with the set

of impulse dummies, and the last trend dummy. As far as the dimensional-

ity problem is concerned, a possible solution is to split the set of dummies

in J blocks such that the number of dummies in each block (Nj) plus the

number of elements in the deterministic components, the number of lagged

dependent variables and exogenous regressors (k) is less than the sample

size (Nj + 2 + k < T , for j = 1, . . . , J), following the strategy introduced in

Hendry, Johansen, and Santos (2008). More explicitly, in the general case

of US, assume to form J blocks of about the same size2 such that I1 =

{Ii, Si, Li : i = 1, . . . , dT/Je}, I2 = {Ii, Si, Li : i = dT/Je+1, . . . , d2T/Je},. . . ,

IJ = {Ii, Si, Li : i = dT (J − 1)/Je + 1, . . . , T}. The procedure then runs as

follows:

• for j = 1, . . . , J include the Ij subset of dummies in the equation of

interest (e.g. (2.1)) and estimate the partially saturated regression re-

2For the US case, we set J > d 3T
T−2−k e in order to have enough degrees of freedom.
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cording the significant dummies from each regression.

• Combine all relevant dummies from the previous iterations and re-

estimate the model, assuming that the total number of the retained

dummies from each subset Ij is less than the sample size.

• Retain the significant dummies.

This is the standard way to carry out a structural break analysis using

the DS approach. As explained in Castle et al. (2012), under the null of no

outliers or breaks, αT impulse indicators are retained on average (α being

the level of significance). For this reason, if we fix α ≤ r/T we control the

false null retention at r dummies. This is rather satisfactory if we think that

we are testing the potential relevance of a big number of dummies which is a

multiple of the sample size T . This point is investigated in the Monte Carlo

exercise where we show that the procedure delivers the correct retention

rates only for some specific choice of the target size α.

An alternative and more convenient route to implement the DS is through

the algorithm for automated model selection Autometrics (see Doornik, 2009a).

This is accessible through the software OxMetrics c© which can handle N >

T as well as non-orthogonal candidate regressors. Using Autometrics , it

is possible to specify a general unrestricted model (GUM), in this case a re-

gression saturated with dummies, and a tree search algorithm is able to

eliminate statistically insignificant regressors. The entire procedure of block

creation is carried out by the algorithm as well as the management of non-

orthogonal regressors. An important aspect is that Autometrics provides

different ways to create blocks in case of N > T (i.e. sequential blocks, ran-

dom blocks, cross blocks, etc.). Despite in theory, different ways of selecting
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the candidate regressors which enter in each block should not affect the out-

come radically, Doornik (2009b) reports that the ordering of the variables as

they enter the GUM may influence the final results. We investigate also this

issue through simulations in the Monte Carlo exercise.

Finally, a theoretical investigation of the properties of the IIS framework

only is developed by Hendry et al. (2008) and generalized under less re-

strictive conditions in Johansen and Nielsen (2009). On the empirical side

instead, Castle et al. (2012) reports a comprehensive simulation study of

the IIS approach to detect outliers and level shifts in several specifications

including deterministic trends, unit roots, autoregressive processes as well

as autoregressions with exogenous regressors. Ericsson (2011) also report

a small empirical application of the SS only. In this chapter, we extend the

application of the DS approach to detect breaks in the deterministic trend

(US) as well as in a cointegrated set up. Similarly, the SS and the US size

and power properties are still unexplored. In the section dedicated to the

Monte Carlo analysis we try to fill this gap.

2.2.2 Sequential Bootstrapping (SB) Procedure

The second methodology we consider is based on the sequential bootstrap-

ping of the sup-F test for breaks (SB). This method is specifically developed

to estimate multiple structural breaks in systems with a conditional process
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and several marginal (the regressors) processes of the form:

yt = α0 + δ0t+

q∑
`y=1

ρy,`yyt−`y +
K∑
i=1

(ψiSi,t + ωiLi,t)+

+
N∑
n=1

(ρ̃nxn,t−1 +
Kn∑
j=1

(υ̃n,jSn,j,t + φ̃n,jLn,j,t)) + ut (2.2)

xn,t = γn,0 + ζn,0t+

pn∑
`=1

ρx,`xxn,t−`x +
Kn∑
j=1

(υn,jSn,j,t + φn,jLn,j,t) + en,t (2.3)

where (2.2) is the conditional process, (2.3) is a set of n = 1, . . . , N marginal

processes experiencing their own independent breaks, Si,t = 1(t ≥ Ti) and

Li,t = (t − Ti + 1)1(t ≥ Ti) indicate the dummies capturing breaks in the

level and the trend respectively and Ti, i = 1, . . . , K denotes the ith break

date of the conditional process; Sn,j,t and Ln,j,t indicate dummies capturing

breaks in the level and the trend respectively in the marginal process and

Tj , j = 1, . . . , Kn are not in general equal to Ti.

In a first instance, the algorithm estimates breaks in the marginal pro-

cesses then these enter into the conditional process before the search for

breaks in the conditional process starts. The estimation of the breaks is

sequential in that break dates are added one by one until a stopping cri-

terion is reached3. Thus, contrary to the DS approach, here the philosophy

is from “specific-to-general”. Both stationary and nonstationary processes can

be handled.

Conceptually, the sequential procedure has two building blocks: the first

deals with the estimation of the break dates, whereas the second with the

statistical testing framework required for stopping the sequential search.
3This approach was originally proposed by Banerjee et al. (1998) and De Peretti and

Urga (2005).
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The next two sections summarise the main features of the SB procedure.

2.2.2.1 Structural Breaks Estimation

Consider the case of a marginal process as in (2.3) and assume we are inter-

ested in estimating possible breaks affecting this process at unknown times.

The procedure starts by searching for break which may occur at each date

t = 3, . . . , T − 1 by means of a Wald type test. Thus, for each t, compute

the F -statistic, Ft, for testing the null hypothesis of no more breaks at Tj=t,

H0 : υj = φj = 0|Tj = t. When looking for the second break and so on

for the others apart from the first one, the statistics is not computed for the

already estimated break dates (more precisely for a small neighbourhood

around them). In particular, Ft takes the usual form:

Ft =
T − k − 2(j + 1)

2

RSSTj−1
−RSSTj=t

RSSTj=t
(2.4)

where RSSTj−1
is the residual sum of squares for the restricted model (im-

posing υj = φj = 0) while RSSTj=t is the residual sum of squares of the un-

restricted model (with the additional j-th break occurring at Tj=t, j = 1, ..,m

the number of breaks). The degrees of freedom are given by k+ 2(j+ 1), the

number of parameters including those corresponding to the coefficients as-

sociated to the step and trend dummies (2(j + 1)) in the unrestricted model,

and 2 = 2(j + 1) − 2j, the number of additional parameters resulting from

adding one break date.

The estimator T̂j of the break date Tj is given by

T̂j = argmax{Ft} for all admissable t (2.5)
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This amounts to define the break date estimator as the argument which

maximises the usual sup-F statistic introduced initially by Quandt (1960)

4 with non-standard asymptotic distribution derived in Andrews (1993) for

the stationary case. Bai (1994) proved that the estimation of the break date

Tj obtained by least squares in a linear model leads to asymptotically biased

– and hence inconsistent – estimates. However, the bias is small when the

magnitude of the break is big and in particular T̂j−Tj = Op(λ
−2), with λ the

magnitude of the break. It is evident from (2.4) that

T̂j = argmax{Ft} ≡ argmin{RSSTj=t}

hence, the proposed estimator is equivalent to the least squares estimator.

Finally, as noted in De Peretti and Urga (2005), the sequential estimation

of structural breaks is biased when there is more than one break. In other

words, the dating of the first break is biased when a second break is neg-

lected and so on for the following ones. As a solution, the authors suggest

to implement a backward revision of the break dates where after estimat-

ing the jth break, the previous j − 1 breaks are re-estimated. Alternatively,

after a break date is found to be significant, one could also re-estimate all the

breaks simultaneously but this second option is computationally expensive.

Additionally, the re-estimation procedure allows also to check the stability

of the break dates identified.
4Quandt (1960) considers the supremum of a set of LR statistics which boils down to the

sup-F test in case of i.i.d. and normally distributed errors.
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2.2.2.2 Stopping Rule for the Sequential Search

Once a break date Tj is estimated, it is important to test whether it is statist-

ically significant. This translates in testing for the null hypothesis of j − 1

breaks against the alternative of j breaks using an F -test. Nevertheless, here

the problem is that the conventional critical values of the F -distribution can-

not be employed since the break is endogenously determined (see Andrews,

1993) and this implies non standard asymptotic distributions depending on

the break fraction. Andrews (1993) derived the correct distribution when

the break is endogenous for the “sup” versions of the Wald, LR and LM tests

but only when the series is stationary and moreover, as it has been showed

in Hansen (2000), this is also incorrect when the regressors experience their

own breaks. The proposed solution is to bootstrap the critical values of the

test statistics:

τ̂ = max{Ft}. (2.6)

The bootstrap procedure to test for the significance of the jth break runs as

follows:

1. Estimate the regression under the null of j − 1 breaks, i.e. (for a mar-

ginal model)

xt = γ0 + ζ0t+

p∑
`=1

ρx,`xxt−`x +

j−1∑
k=1

(υkSk,t + φkLk,t) + et (2.7)

and store the residuals series {êt}Tt=1 together with the coefficients es-

timates.

2. For b = 1, . . . , B repeat
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(a) Draw with replacement T values from the centred residuals5

{
êt −

1

T

T∑
t=1

êt

}T

t=1

to get {e∗t,b}Tt=1 (semi-parametric approach). Alternatively, com-

pute the sample variance σ̂2
c of the centred residuals and draw

{e∗t,b}Tt=1 from N (0, σ̂2
c ) (parametric approach).

(b) Build recursively the bootstrapped counterpart of xt denoted by

x∗b,t by

x∗b,t = γ̂0 + ζ̂0t+

p∑
`=1

ρ̂x,`xx
∗
b,t−`x +

j−1∑
k=1

(υ̂kSk,t + φ̂kLk,t) + e∗b,t. (2.8)

(c) Compute the bootstrapped counterpart of τ̂ , namely, τ̂ ∗b = max{F ∗b,t}

where F ∗b,t is computed as in (2.4) but using the bootstrapped

sample x∗b,t.

3. Decide on the significance of T̂j by computing the bootstrapped p-

value
1

B

B∑
b=1

1
(
(τ̂)2 < (τ ∗b )2

)
. (2.9)

The sequential search stops when two subsequent structural breaks are

not significant. De Peretti and Urga (2005) show that this stopping rule

is optimal and robust to biases of additional significant breaks being neg-

lected.
5We assume the residuals do not exhibit autocorrelation or heteroskedasticity. Con-

versely, the bootstrap procedure can easily be modified either using blocking techniques
or multiplying the centred residuals by a symmetric random variable with mean zero and
variance one (see e.g. Davidson and Flachaire, 2008).

22



Monte Carlo Design

2.3 Monte Carlo Design

We investigate the performances of the extended DS and SB procedures un-

dertaking an extensive Monte Carlo simulation exercise. The purpose of

the analysis is to assess the ability of the two procedures to detect the cor-

rect number of breaks as well as the precision of the break dates. In what

follows, we introduce the criteria used to evaluate the DS and the SB pro-

cedures and the several DGPs used in the Monte Carlo experiments.

2.3.1 Evaluating the Detection of the Correct Number of Breaks

A structural breaks analysis is valid if the adopted procedure is able to select

the correct number of structural breaks.

In general given a DGP affected byK∗ breaks, the power and the size are

approximated by computing the empirical rejection frequency with respect

to a null hypothesis stating that the number of breaks K is H0 : K = K0

versus an alternative H1 : K = K1 > K0. If the null hypothesis is such that

K0 = K∗, the empirical rejection frequency of the null hypothesis gives an

approximation of the size of the test on which each methodology is built,

otherwise if the number of breaks considered under the null is different

from the true number of breaks (K0 6= K∗) we are approximating its power.

The number of times that a procedure detects the correct number of breaks

is then given by one minus the empirical size, i.e. the number of times that

we do not reject a true hypothesis about the number of breaks.

As far as the DS is concerned, however, the computation of the empirical

rejection frequency it is not always straightforward. This is true in particular

to the case of the IIS. More specifically, it is difficult in the case of the IIS to
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test for instance the hypothesis of the form H0 : K = K0 versus H1 : K = K1

level breaks given the nature of the impulse dummies. When instead we

saturate the model with step and/or trend dummies, it is easier to cast the

procedure in terms of testing H0 : K = K0, given that a step or a trend

dummy is directly related to a break in the level or the trend component.

Alternatively, we may assess the performance of the procedure consider-

ing how frequently a dummy entering the saturated regression is retained

across the Monte Carlo replications, thus treating the DS as a model selec-

tion procedure rather than a test for breaks.

Following Castle et al. (2012), we now introduce the concept of retention

rate. Assume to specify a GUM saturated with N dummies of which only

n, n < N , enter in the DGP and denote with M the number of Monte Carlo

simulations. The retention rate, r, for each dummy can be defined as

r̂j =
1

M

M∑
m=1

1
(
β̂j,m 6= 0

)
, j = 1, . . . , N (2.10)

where 1(·) is the indicator function and β̂j,m is the coefficient of the jth

dummy computed at the mth iteration. If the dummy is statistically sig-

nificant (β̂j,m 6= 0)6, then the indicator function equals unity. Given (2.10), it

is possible to define the gauge and the potency the procedure as

gauge =
1

N − n

N∑
j=n+1

r̂j

potency =
1

n

n∑
j=1

r̂j

6Note that this is a short-hand for
∣∣∣tβ̂j,m∣∣∣ ≥ cα

2
, with tβ̂j,m denoting the t-ratio and cα

2

the associated critical value at a significance level α.
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where the gauge is the average retention rate of the non-significant dum-

mies (according to the DGP) and the potency is the average retention rate

of the significant dummies7. Note that, although gauge and potency are re-

lated to the concepts of size and power, they are actually distinct: while size

and power refer to a well specified null hypothesis in terms of K0 versus K1

breaks, the gauge and the potency are useful criteria for the assessment of

the procedure but are not clearly linked to any statistical hypothesis about

the number of the breaks. Finally, note that according to the definitions

above, a dummy contributes to the potency if it enters the DGP. This is

straightforward when saturating with impulse dummies. On the other side,

if saturating the GUM with step and/or trend dummies (SS and US models

respectively), we have to be less restrictive in that we have to define an in-

terval around the break date such that a step and/or trend dummies falling

in this interval contributes to the potency. Assume for instance that a break

occurs at T1 = 50, it would be unreasonable to count S52,t = 1 (t ≥ 52) as

contributing to the gauge of the SS. For this reason, when computing the

gauge and the potency of the SS or US, we consider a dummy as contrib-

uting to the potency if it captures a break occurring at Ti ± 3 observations.

If more then one dummy falling in that interval is retained, we choose the

one closest to the break date, while in the unlikely case that two dummies

are equally-distant from Ti we count randomly one as contributing to the

potency and one contributing to the gauge.

7For simulation purposes, especially when using the IIS variant, it is more convenient
to work with two aggregate retention rates: one for the dummies that contribute to the
gauge and one for those which contribute to the potency. The gauge is then obtained as

1
(N−n)M

∑M
m=1

∑N
j=n+1 1

(
β̂j,m 6= 0

)
and similarly the potency.
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Moreover, when saturating the regression with both step and trend dum-

mies, it is possible to compute the more common empirical rejection fre-

quency along with gauge and potency. This allows to assess the procedure

as a statistical test. As mentioned above, when working with other dum-

mies than impulse dummies, it is easier to see the retention of a step or

trend dummy as an acceptance/rejection of a null hypothesis of the form

H0 : K = K0 against an alternative H1 : K = K1 6= K0 where K1 is a

positive integer different from K0. To decide about the acceptance/rejection

of the null, it is possible to count how many step dummies are retained.

Consequently, the number of times that the procedure detects the correct

number of structural breaks is given by how frequently the dimension of

the vector containing the step dummies equals the number of step dummies

entering the DGP, i.e. the number of times we do not reject a true hypothesis

about K. Note that when evaluating the procedure using the gauge and the

potency these criteria already assess the detection of the correct number of

breaks.

As far as the SB is concerned, we obtain estimates of the break dates and

their associated p-values (parametric and non-parametric) for each iteration

m = 1, . . . ,M . In this case, it is straightforward to compute the empirical re-

jection frequency. The computation of the size and the power of the proced-

ure is based on the p-values of the bootstrapped sup-F test statistic. Under

the null hypothesis of no significance of the break, a p-value approaching

zero means that the break date under consideration is significant. Given

the sequential nature of the procedure, it makes sense to compute the size

and power counting how frequently we reject a null hypothesis of the form

H0 : K = K0 versus H1 : K = K1 = K0 + 1. In terms of the p-values of the
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sup-F statistic and given a significance level α, we then compute

1

M

M∑
m=1

1 (p-valuem,K1 < α) (2.11)

where p-valuem,K1 represents the p-value of the K th
1 break date computed

according to (2.9) at the mth iteration. If the null is true (K0 = K∗), (2.11)

gives the empirical size of the procedure since it computes the number of

significant breaks that do not enter the DGP. Then, for the procedure to have

the correct size, we expect that the number of times that the K th
1 break date

is significant (its p-value is small) and of course should not exceed α. On

the contrary, if the null is false, (2.11) represents the empirical power. To

summarise, assume that the DGP is formulated with K∗ = 1, then testing

H0 : K = 0 versus H1 : K = 1 gives the power of the procedure while a test

of H0 : K = 1 versus H1 : K = 2 gives the size. So, we have

size =
1

M

M∑
m=1

1 (p-valuem,T2 < α)

power =
1

M

M∑
m=1

1 (p-valuem,T1 < α) .

In practise, we fix the maximum number of breaks to be estimated in each

experiment according to the number of breaks under the alternative hypo-

thesis of the last sequential test for which the null is true.

2.3.2 Evaluating the Dating of Breaks

In addition to the desiderable property of selecting the correct number of

breaks, a structural breaks procedure has to able to pick up the correct tim-
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ing of when the breaks occur. This translates in assessing the goodness of

the resulting break date estimates.

Let T̂i be the estimated counterpart of the ith break date Ti. After run-

ning a Monte Carlo experiment, we obtain a set of estimators T̂i,m for m =

1, . . . ,M . The Monte Carlo estimator is then defined as the sample mean of

{T̂i,m}Mm=1, taken with respect to M . In order to assess the goodness of this

estimator, we compute its sample bias and sample root mean squared error

(RMSE) defined as:

b̂ias[T̂i] = EM [T̂i − Ti] =
1

M

M∑
m=1

(T̂i,m − Ti)

R̂MSE[T̂i] =

√
EM [(T̂i − Ti)2] =

√√√√ 1

M

M∑
m=1

(T̂i,m − Ti)2.

In the case of multiple structural breaks, we compute the sample bias with

respect to the closest estimated break date. In what follows, we discuss

some important issues related either to the specific procedure or to the shape

of the distribution of the break date estimator.

For sake of simplicity, assume we have a process with one break at T1.

The first issue concerns with the DS procedure. When working with the

IIS, we need to define a rule such that at each iteration of a Monte Carlo

experiment we can consider a spike dummy (Ii,t = 1(i = t)) as the reference

(i.e. T̂m,1) to compute the bias. In this case, we use the dummy belonging

to the relevant set of dummies which is closest to the break date8. If there

are multiple breaks, first we have to group the spike dummies according to

their magnitude and then select the first one from each set. To reduce the

8If there is a level break occurring at T1 = 90, we consider T̂m,1 being the index i of the
first retained dummy belonging to Im = {Ii,t : i = 91, . . . T}.
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complexity of our experiments, we consider the case of two breaks with the

same magnitude but opposite sign. On the other hand, when working with

either the SS or the US, we do not have to take into account this point since

there is no more a set of dummies to be associated with a single level break

but only one step or trend dummy. However, it may happen that in the final

model selected by Autometrics there are more step or trend dummies falling

in the relevant interval around Ti (gauge and potency) or more dummies

than those in the DGP (size and power). In both cases, in order to compute

the bias, we consider as T̂m,1 the index of the closest step dummy to the true

break point. The bias and the RMSE of the estimates related to the compu-

tation of the gauge and the potency are expected to be smaller than those

related to the size and the power. The main reason is that in computing the

gauge and the potency we are constraining the location of the breaks to the

dummies falling into Ti ± 3. As far as the SB is concerned, there is no need

to define such a rule since at each iteration we have only one estimate for a

given break date.

The second issue is valid to both procedures and relates to the skewness

of the break dates estimators. If the distribution is asymmetric, the estimator

computed as the sample mean is of course biased, and thus a more appro-

priate criterion to judge its goodness is to consider the median of estimator’s

distribution. Thus, we report both the sample mean and the sample median.

2.4 Simulation Results

In this section, we present the results from our simulations. In each exper-

iment, the number of simulations is set to M = 1, 000 and the sample size
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to T = 100. We fix the seed of the random number generator and we build

recursively T + n (where n depends on the characteristics of the process)

observations M times, starting from y−n = 0 and then discarding the first n

in order to create independence from the initial conditions.

2.4.1 Breaks in Level

We start by considering several univariate (marginal models) and bivariate

(conditional models) DGPs affected only by breaks in the mean component.

The general model can be formulated as

yt = α + δt+ βxt +
K∑
i=1

ψiSi,t + ut (2.12)

xt = γ + ζt+ ρxt−1 +
Kx∑
j=1

υjSj,t + et t = 1, . . . , T (2.13)

where Si,t ≡ 1(t > Ti) denotes a step dummy (the same applies to Sj,t).

Moving from this simple benchmark to the alternative more general model

including the breaks in trend allows us to understand the impact of the dif-

ferent ways to create blocks by Autometrics . It is reasonable to expect that,

if different mechanisms to create blocks have some impact on the selection

of the final model, this becomes even more relevant as we move from the

simplest IIS to the US.

Two parameters govern the detectability of the breaks: the magnitude of

the dummy coefficients ψi and υj and the variance of the error terms. In our

simulations, we allow the coefficients of the dummies to take different mag-

nitude while we fix the variance of the error term drawing from a standard

normal N(0, 1).
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For the DS, all the GUMs correspond to the DGPs saturated with dum-

mies and we fix all the variables that enter the DGP except the dummies.

This entails that the rejection frequencies are computed only with respect

to the dummies (i.e. we do not test the ability of Autometrics to reject non-

significant regressors apart from dummies). On the other hand, the SB size

and power properties are assessed by computing both parametric and non-

parametric p-values through 99 bootstrap replications. The nominal signi-

ficance levels used in the simulations are 1% and 5%. All DGPs are investig-

ated assuming that the number of breaks is K = {0, 1, 2}. When conditional

models with broken marginals are considered, the number of breaks in the

marginal model is fixed to one and the inference focuses then on the num-

ber of breaks in the conditional model. The break dates and the coefficients

of the related dummies (ψi and υj) are reported in the tables summarizing

the results of the simulations. For the IIS, we restrict the experiments to

the empirical retention frequency of the dummies entering the DGP, i.e. the

gauge and the potency. For the SS, we assess also the size and power by

computing the empirical rejection frequencies of the following hypothesis:

H0 : K = 0 for the DGP with no breaks (size only); H0 : K = 0 (power) and

H0 : K = 1 (size) for the DGP with one breaks; and H0 : K = 1 (power) and

H0 : K = 2 (size) for the DGP with two breaks. As far as the SB is concerned,

we set the maximum number of breaks, to be sequentially estimated in each

experiment, equal to the true number of breaks plus one. Specifically, we

have that for the case with no breaks a test of H0 : K = 0 vs H1 : K = 1 (size

only); for the case with one break a test ofH0 : K = 0 vsH1 : K = 1 (power),

and H0 : K = 1 vs H1 : K = 2 (size); and for the case with 2 breaks a test of

H0 : K = 1 vs H1 : K = 2 (power), and H0 : K = 2 vs H1 : K = 3 (size).
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2.4.1.1 Marginal Processes

The first set of experiments involves modelling the exogenous regressors

one at the time. These include location-scale models, stationary or non-

stationary autoregressive processes and autoregressive processes with or

without trends which are all nested in (2.13). Table 2.1 reports the model

specifications used in the Monte Carlo experiments for the DGPs.

[Table 2.1 about here.]

We denote with “LS” the location-scale model, “ARs” the stationary autore-

gressive process, “ARst” the stationary autoregressive process with trend,

and “ARns” the nonstationary autoregression.

Number of Breaks Detection

Table 2.2 reports gauge and potency as well as the empirical size and power

for the processes described in Table 2.1. In order, we consider the IIS, the

SS and the SB based on both parametric and nonparametric resampling

schemes. For the IIS and the SS, we set the block method creation in the

Autometrics options both standard (i.e. sequential) and random. Since both

gauge/potency and empirical size/power are practically identical either us-

ing standard block method or the random block method creation, we report

the results for the standard option only.

Table 2.2 reports the gauge/potency and the size/power of the two pro-

cedures.

[Table 2.2 about here.]
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Dummy Saturation. Focusing on the DS, it emerges that both the IIS and

the SS have a good gauge at 1% target size, meaning that the average reten-

tion rate of the insignificant dummies is satisfactorily under control. On the

opposite, when working with 5% target size the gauge is generally between

20% and 30%. Thus, in line with Castle et al. (2012), this suggest for the

DS to set a 1% target size in the Autometrics options. The average retention

rate of the non null dummies is instead mixed across the different DGPs

changing from the IIS to the SS. While the potency level for the SS are rarely

below 80%, the IIS is affected in the cases of the autoregressive processes

and the location of the breaks. In particular, when working with IIS and

the AR models, there is lower potency because Autometrics tends to select

just the dummies near the break dates, without retaining dummies within

the regimes. This is due probably to the fact that after the shocks have been

correctly captured by the impulse dummies, the subsequent (if 1 break) or

intermediate instability (if 2 breaks) is absorbed by the autoregressive com-

ponent. This may explain the loss in potency with respect to the LS model.

From Table 2.2, we can see that the loss in potency decreases if we restrict

the interval between the two break dates. Furthermore, the simulation ex-

ercise allows also to highlight that the location of the break(s) matter for

Autometrics when applying the IIS. If the level shift is close to the end of the

sample, in general is no problem. However, as we move the break in the

middle of the sample, the gauge increases in particular in the case of mul-

tiple level shifts as the distance between two break dates increases. The first

effect might be explained in that Autometrics selects the minimum number

of impulse dummies that provide a good approximation of the underlying

DGP. If the level shift is at the beginning of the sample, Autometrics selects
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the impulses from the first observation up to that point.

As far as the SS is concerned, Table 2.2 also reports the empirical size and

power about the number of structural breaks as described in Section 2.4.1.

There is evidence of very high oversize both at 1% and 5% nominal levels.

When considering the 1% nominal level, in almost 50% of the cases at least

one insignificant step dummy is retained. As a consequence, the number

of times that the procedure detects the correct number of breaks is around

50% as well. However, as already anticipated, this result is expected in that

when applying the DS we are testing the significance of a huge number of

dummies and this comes at the cost that some insignificant dummies are

retained. For this reason, the information given by the retention rates of the

“null” and “non-null” dummies is in general a better criterion to evaluate

the performances of the DS. For the DS, in the next sets of simulations, we

focus only on the computation of the gauge and potency, assessing the ap-

proach as a model selection procedure.

Sequential Bootstrapping. Table 2.2 show that the procedure has an em-

pirical size almost identical to the nominal level at both 1% and 5% nom-

inal levels when applied to stationary and trend-stationary models, while

is slightly oversized for the non-stationary autoregressive model. The most

dramatic oversize is for the multiple breaks case when we observe a 13%

with a nominal of 5% and a 3% for a nominal of 1%. This implies that the

SB detects the correct number of structural breaks in almost all cases. As far

as the power is concerned, the empirical rejection frequencies of false null

hypotheses are close to 100% for all DGPs considered in the simulations.
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Break Dates Estimates

To evaluate the goodness of the break estimates, in Table 2.3 we report the

sample mean, the mean bias, the root mean squared error and the median

for each estimate.

[Table 2.3 about here.]

The break date estimates obtained either by applying the IIS, or the SS

or the SB are very similar. For the SS, we report the estimates obtained

when computing the gauge/potency and those we obtained when comput-

ing size/power. In all cases, the mean bias is sufficiently small and the es-

timators are almost always median unbiased. Also the standard deviations

are satisfactorily small for all procedures the only exception being the case

of the estimates obtained when considering the size/power of the SS in the

case of stationary autoregressions. The best performances are shown by

the SS (when considering the gauge/potency related estimates) and the SB:

the SS provides slightly smaller standard deviations but the SB is the only

procedure which is median unbiased for all the cases considered in the sim-

ulation exercise.

The main conclusions from the Monte Carlo exercises can be summar-

ised as follows. First, as expected the SS outperforms the IIS when con-

sidering multiple breaks affecting the level component. The IIS seems to

work well for capturing outliers and single level shifts but when dealing

with multiple breaks in level, the SS and the SB prove to be more appropri-

ate. Second, using empirical rejection frequencies to assess the DS can be

misleading while it is more appropriate to work with the empirical reten-

tion rates of the dummies. Third, the SB provides empirical size close to the
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nominal one and very good power across all simulations with the exception

of the nonstationary autoregression model. Finally, both the IIS and SS as

well as the SB provide good estimates of the break dates when considering

structural breaks affecting the level component. A final important point is

about that to discriminate between alternative methodologies it is better to

use the gauge/potency and size/power properties rather than the goodness

of the break dates estimates.

2.4.1.2 Conditional Processes

We now turn to the case of conditional models with stationary and non-

stationary regressors. This setting allows us to explore how breaks in the

marginal processes (regressors) affect the conditional equation9. Table 2.4

reports the DGPs considered in this second set of Monte Carlo simulations.

[Table 2.4 about here.]

We denote with “Cs” the conditional model with stationary variables and

no breaks in the marginal equation (process for xt), “Cci” the conditional

model with non-stationary cointegrated variables and no breaks in the mar-

ginal equation, “CMs” and “CMci” the corresponding versions where also

the marginal equation experiences structural breaks in its level component.

In the case of broken marginal equations, we let the marginal process xt to

experience one structural break distinct from those in the conditional pro-

cess for yt.
9The first chapter to consider this case with stationary regressors is Hansen (2000). Hall

et al. (2012) propose an extension to the multiple breaks case in a stationary framework,
considering breaks in the regression coefficients.
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Number of Breaks Detection

Table 2.5 reports the gauge and the potency as well as the empirical size

and the power for the conditional processes introduced above. For the IIS

and the SS, as in the previous set of simulations involving location-scale and

autoregressive processes, we do not find significant differences among the

size and power recorded in changing the block method and thus we report

the results for the standard block method option only. Thus, the assessment

of the SS is undertaken on the basis of the gauge and potency.

[Table 2.5 about here.]

Dummy Saturation: Similarly to the case of location-scale and autoregress-

ive processes commented above, the IIS and the SS models have gauge close

to the target size only at 1% level. The potency is instead above 90% in al-

most all cases with a slightly lower performance of the IIS for the one break

“Cci” case.

Sequential Bootstrapping: As far as the SB is concerned, the procedure de-

livers empirical size close to nominal both at 1% and 5% nominal levels and

the power is close to 100% for all DGPs. Moving from stationary to non-

stationary processes does not seem to affect the performance of the IIS, the

SS and the SB, the only exception being the IIS with one break case (“Cci”

and “CMci”). This is of particular interest for the SB procedure in support

of the validity of the bootstrapping in a nonstationary cointegrating frame-

work. Another important result is that both the DS and the SB are robust to

the presence of a break in the marginal process. The gauge and the empir-

ical size of the procedures are not affected by letting the marginal process
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experience an independent break from the ones in the conditional. As far

as the DS is concerned, the Monte Carlo exercise extends the results of the

simulations contained in Castle et al. (2012) for the IIS and shows the good

performances of the SS. Turning to the SB, the robustness of the procedure to

broken marginal processes is even more important in light of that Hansen

(2000) shows that the distribution of the sup-F statistic to test for breaks

in the conditional process is affected when a break is observed in the mar-

ginal process. To avoid rejecting stability in conditional models in absence

of breaks, Hansen (2000) proposes a bootstrapping approach denoted fixed

regressor bootstrap. However, the author does not take into account the coin-

tegrating framework while presenting an autoregressive case with a mod-

erate level of persistence (0.5). Though the SB is based on a different boot-

strapping approach10, the results confirm once again that the adoption of

the bootstrap in cointegrating equations seem to perform well (see e.g. Li

and Maddala, 1997).

Break Dates Estimates

Table 2.6 reports the results of break date estimates. All the three procedures

perform quite well in terms of goodness of the resulting estimates. The

estimates of the break dates are median unbiased and the mean bias is very

controlled and less than one except for the IIS in some cases. Overall, the

best results in terms of unbiasedness and smaller RMSE are those obtained

applying the SB.

[Table 2.6 about here.]
10The procedure is very similar to that suggested by Diebold and Chen (1996), where

reasonable size is found even when the persistence in the process considered is high.
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2.4.2 Breaks in Trend

In this section, we consider processes with breaks also affecting the determ-

inistic linear time trend thus extending (2.12)-(2.13) as follows:

yt = α + δt+ βxt +
K∑
i=1

(ψiSi,t + ωiLi,t) + ut (2.14)

xt = γ + ζt+ ρxt−1 +
Kx∑
j=1

(υjSj,t + φjLj,t) + et t = 1, . . . , T (2.15)

where Li,t ≡ (t − Ti + 1)1(t > Ti) denotes a trend dummy. We consider

both autoregressive and conditional processes and we let also the marginal

process experience independent breaks. We restrict our analysis to the US

and the SB. In Table 2.7, we report the list of the DGPs considered.

[Table 2.7 about here.]

ARsTr” and “ARnsTr” denote the stationary and nonstationary autoregress-

ive processes respectively, “CsTr” and “CciTr” the conditional model with

stationary regressors and nonstationary cointegrated regressors respectively,

“CMsTr” and “CMciTr” the stationary and cointegrated conditional models

where the marginal processes experience independent breaks, respectively.

We assume that the structural break(s) affect contemporaneously both the

level and the trend components, though we let the shock to be not neces-

sarily of the same signs between the level and the trend. This implies that a

negative shock in the level might be present together with a positive shock

in the trend. Similarly as for the DGPs with just breaks in level, we carry

out a set of experiments for K = {0, 1, 2}. The null hypotheses are the same

as those reported in Section 2.4.1.
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Number of Breaks Detection

Table 2.8 reports the gauge/potency and the empirical size/power for Monte

Carlo simulations involving the processes described in Table 2.7. As far as

the US is concerned, we explore again the standard and the random meth-

ods to create blocks as also suggested in Johansen and Nielsen (2009) for the

trending and unit root cases. In particular, the GUM is specified alternating

step and trend dummies such that the standard block search algorithm of

Autometrics takes into account the dummies referring to the same poten-

tial break date in the same block11. As expected, when saturating with step

and trend dummies, the role of the different methods for creating blocks

impacts on the final selected model. Indeed, when moving from standard

to random blocks, although the variations in terms of potency are not dra-

matic, the gauge is affected. Thus, we also report the results for the random

block method. Again, the assessment of the US is based on the gauge and

the potency only since the saturation with further dummies would make

the empirical rejection frequency even less meaningful than before.

[Table 2.8 about here.]

Dummy Saturation: As far as the US is concerned, the gauge appears to be

under control setting the target size to be either 1% or 5% when working

with the standard block method. When using the random blocks instead,

the gauge of the US tends to increase above the nominal level while the gain

in potency is negligible. In particular, for the autoregressive processes, we

see high average retention rates of null dummies also when setting 1% as

11We also tried to insert the step and trend dummies sequentially (i.e. all the step dum-
mies first and then all the step trend dummies) but strategy did not change the outcome of
the experiments.
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target size. Thus, we may conclude that the use of the random blocks does

not improve the performance of the US. On the other side, when working

with standard blocks, the controlled gauge at both 1% and 5% is especially

surprising given that the number of dummies that enter the initial GUM is

T × 3. However, the controlled gauge comes with a considerable drop in

potency. The best potency level we find does not go above 70% with an

average around 50%. This results is expected since there are two dummies

which should be retained for each break date.

Sequential Bootstrapping. The performance of the SB is in line with the

results of the previous simulations reported above. In particular, the empir-

ical size is close to nominal at both 1% and 5% nominal levels. Moreover,

differently from the US case, the procedure does not suffer of any loss in

power, and even when considering structural breaks affecting the trend, we

register a power around 100%.

Break dates estimates

Table 2.9 reports the structural break estimates for the US and the SB pro-

cedures. For the US, we report separately the estimates of the break dates in

the level from those affecting the trend.

[Table 2.9 about here.]

Overall, both the US and the SB estimates have a controlled mean bias

and small standard deviations. In particular, as far as the US is concerned,

we have that the level break(s) estimates are all median unbiased while for

the trend break(s) estimates there is a small upward median bias and the

RMSEs tend to be slightly higher than the corresponding level break(s) es-
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timates. For the SB, the estimates are all median unbiased and the RMSEs

smaller than the US counterparts.

In conclusion, when considering structural breaks affecting both the level

and the trend component of a time series, Autometrics seems to suffer the

saturation with impulse, step and trend dummies. Although the break dates

estimates are still satisfying, the US loses in terms of potency. This implies

that there is a quite high number of times when relevant dummies are not

retained. Furthermore, changing the way in which Autometrics forms the

blocks from standard to random does not improve the overall performance

of the procedure, which on the contrary gets worse. On the other side, the

performance of the SB does not seem to be affected by the inclusion of break

in trend in the light that empirical sizes is close to the nominal one with the

power levels approaching 100%.

2.4.3 Some Useful Guidelines to Practitioners

On the basis of the results from the extensive simulation exercise, we now

offer some useful guidelines to applied economists on how to correctly im-

plement the DS and the SB procedures.

With respect to the DS, an important role is played by the target size. As

shown in the the Monte Carlo simulations, the DS works properly only if

the 1% target size is used. A higher target size would lead to the retention

of too many dummies. As far as the block method is concerned, the stand-

ard block method performs best. As also highlighted in Doornik (2009b),

we discourage the use of the random block scheme because it leads to the

retention of more insignificant dummies. As far as the choice between the IIS
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and the SS in systems affected only by breaks in mean, what emerges from

the simulations is that IIS and SS provide satisfactory performances both in

terms of gauge and potency as well as in terms of break date estimates. In

particular, the SS provides better results in terms of potency than the IIS, as

also highlighted by Doornik et al. (2013). Moreover, saturating with both

step and impulse dummies allows the step dummies to capture breaks in

level while the impulse dummies capture possible outliers. This helps also

to simplify the interpretation of the final output. When using the SS, there

is no need to group the impulse dummies according to their sign and mag-

nitude to identify a break in level, as it happens when using the IIS. The

procedure of grouping the impulse dummies may be difficult to implement

as the sample size grows. Note that when considering systems affected also

by breaks in trend, the potency of the US tends to be lower than the case of

only breaks in level. Despite the loss in potency, the performance of the

procedure is similar to that of the SB. In addition, since the ordering of the

variables matters as the number of dummies grows, we suggest to try al-

ternative ordering schemes for the step and trend dummies. What we learn

from the experiments reported in this chapter is that the best approach is

to alternate one step and one trend dummy in a chronological order. In this

way, Autometrics takes into account contemporaneously dummies capturing

the same break date when forming the blocks.

As far as the SB is concerned, the procedure works very well in detect-

ing breaks in both level and trend. There are only few cases when the SB

tends to be oversized occurring in the nonstationary autoregressions while

the procedure works quite well when dealing with cointegrating equations.

An additional point is about the stopping rule in the sequential search. As
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already reported in De Peretti and Urga (2005), the optimal rule is to stop

the sequential search when two consecutive break dates are statistically in-

significant. This procedure is robust to the the fact that the estimator of the

initial break dates is biased when further breaks are neglected.

2.5 Testing the Fisher Effect in the United States

Economy

In this section, we implement the DS and the SB procedure to evaluate the

Fisher effect in the United States which assumes that the nominal interest

rate and the expected inflation rate are linked via the following equation

rt+1
t = rrealt + Etπt+1

t (2.16)

where rt+1
t is the nominal interest rate paid for instance by a bond over the

period [t, t+1], rrealt is the real interest rate, and Etπt+1
t is the expected rate of

inflation over the period [t, t+1] given the information set available at t. In a

rational expectations framework, the expected inflation is equal to the actual

one plus a mean-zero Gaussian forecast error term, i.e. Et(πt+1
t ) = πt+1

t + et

with et
iid∼ N (0, σ2

e). The Fisher equation (2.16) holds if estimating the linear

equation

rt = α + δt+ βπt + εt. (2.17)

we find cointegration – assuming rt and πt are both I(1) – and β is statistic-

ally equal to one. The fact that many empirical studies (see Beyer et al., 2009)

conclude that β differs significantly from unity may be due to the presence
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of unmodelled level/trend shifts in the Fisher relationship. To this purpose,

in this chapter we implement both the US and the SB procedures to equation

(2.17).

We employ quarterly data running from 1985-Q1 to 2012-Q3 (111 obser-

vations) obtained from the Federal Reserve Bank of Saint Louis database

(FRED). We use the 3 months Treasury Bill rate as short term nominal in-

terest rate (rt) and we compute the inflation rate (πt) as the annual relative

change in the CPI
(
CPIt−CPIt−4

CPIt−4

)
. Figure 2.1 reports the plots of the two

series.

[Figure 2.1 about here.]

Both series are tested for the presence of unit roots and consistently with

other studies involving United States post-war data (see for instance Crowder

and Hoffman, 1996) we cannot reject the hypothesis that both series are

I(1). Following Beyer et al. (2009), in order to address potential endogen-

eity between interest rates and inflation rates, we estimate (2.17) by DOLS

including five leads and lags of the first differenced rate of inflation.

We first look for potential breaks in (2.17) by saturating with impulse,

step, and trend dummies, i.e. applying the US method. To this extent, we

set the target size at 1%, we fix all the variables entering the Fisher equation

except the dummies, and we explore different combinations in the order-

ing of the step and trend dummies as well as different block methods. In

particular, we specify GUMs where the step and trend dummies enter se-

quentially (i.e. all the step dummies and then all the trend dummies) versus

GUMs which alternate one step and one trend dummy. We also employ

both standard and random block methods. Consistently with what emerges
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in the Monte Carlo study, the final model that support the economic theory

and passes all misspecification tests is that obtained alternating the dum-

mies and using the standard block method. Table 2.10 reports the final

model selected by Autometrics when estimating (2.17) by DOLS (to control

for endogeneity) and applying the US:

[Table 2.10 about here.]

Nine breaks and one outlier are identified. All misspecification tests are

satisfied and the residuals have all the desirable properties as Figure 2.2

shows, where we report the residuals, the ACF up to 20 lags and the QQ-

plot against a N (0, 1). Moreover, the residuals are stationary implying the

presence of a cointegrated relationship as found by Crowder and Hoffman

(1996).

[Figure 2.2 about here.]

Table 2.10 shows that in the Fisher effect holds being β ∈ [0.857; 1.05] with

probability 95%.

Next, we repeat the analysis using the SB to search for potential breaks.

To this extent, we estimate the same model by DOLS stopping the sequential

search when two consecutive break dates are statistically insignificant. In

particular, the significance of the break dates is assessed through paramet-

ric and non-parametric bootstrapped p-values of the corresponding sup-F

statistics. Table 2.11 reports the statistically significant break dates identified

by the SB procedure.

[Table 2.11 about here.]
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On the basis of the break dates selected by the SB, we estimate the Fisher

equation by DOLS and adding the corresponding step and trend dummies.

Table 2.12 reports the final selected model after removing the insignificant

variables12.

[Table 2.12 about here.]

Via the implementation of the SB, we identify six significant structural breaks

captured by step and trend dummies. Similarly to what we find for the US,

the selected model provides a good fit of rt with no sign of misspecifica-

tion. Figure 2.3 reports a plot of the residuals together with their ACF and a

QQ-plot. Once more, after accounting for structural breaks, the relationship

between the short term interest rate and the inflation rate cointegrates and

the Fisher effect holds given that β ∈ [0.829; 1.187] with probability of 95%.

[Figure 2.3 about here.]

Finally, to give a visual representation of the similarity of the structural

breaks identified by the US and the SB procedures, in Figure 2.4 we report

the actual series of the interest rate with the structural breaks identified by

vertical solid lines to denote breaks affecting the level component and ver-

tical dashed lines to denote breaks affecting the trend component.

[Figure 2.4 about here.]

The dynamics which emerges from Figure 2.4 shows that there is almost a

one-to-one correspondence between the structural breaks identified by the

US and the SB. In particular, the differences in the breaks dates are all within

12We additionally run Autometrics over the final model with the “Large Residuals” op-
tion to control for large residuals. This is denominated “I:2000(3-4)” in Table 2.12.
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one quarter when comparing a break found by the US with the correspond-

ent closest break found by the SB. Hence, we have that the two procedures

validate each other and this is an important result given that they are based

on two completely different logics.

2.6 Conclusions

In this chapter, we studied two novel procedures, the Dummy Saturation

(DS) and the Sequential Bootstrapping (SB) of the sup-F statistic, to estim-

ate and date multiple structural breaks in the deterministic components of

a linear system. Through an extensive Monte Carlo simulation exercise,

we evaluated the performance of the two procedures considering several

data generating processes ranging from the simple location-scale model to

the case of cointegrating regressions, considering both conditional and mar-

ginal processes. We evaluated the performance of the DS involving not only

impulse indicators (IIS) but also step dummies (SS) and both step dummies

and trend dummies (US). We were able to select the significant regressors

from a very large set (T × 2 for the SS and T × 3 for the US) of candidate

regressors. For the DS, we found that the retention rate of the insignific-

ant dummies is close to the chosen target size at the 1% significant level,

while the SB provided empirical sizes close to the nominal ones both at 1%

and 5% significance levels. When considering structural breaks affecting

the level component, the DS showed good potency and similarly to the SB

good power. In particular, we found that the SS had desirable properties

in terms of potency and gauge, and it often outperformed the IIS when ap-

plied to processes with broken level. When considering also breaks in the
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linear time trend component (US model), the potency decreased although

the gauge remained well controlled. Furthermore, we evaluated the sensib-

ility of US model to the block method options provided by Autometrics: the

use of a random block method did not improve the overall performance of

the DS consistently with what reported in Doornik (2009b). On the other

hand, the SB proved to have empirical size close to nominal one both at 1%

and 5% levels for all the DGPs considered, the only exception being the case

of nonstationary autoregressive processes where it exhibited a small over-

size. Opposite to the US case, the SB was not affected by the inclusion of

trend dummies in terms of both size and power. Finally, both the DS and

the SB procedures showed good performance considering broken marginal

processes when regressors are nonstationary.

We implemented the DS and the SB procedures to study to which ex-

tent the Fisher effect holds in the United States economy. The application of

the US and the SB procedures leads us to two important findings. First, the

Fisherian hypothesis is valid only when structural breaks are properly de-

tected and modelled. Second, the two procedures detected almost the same

break dates affecting the deterministic components of the Fisher equation.

Finally, the findings in this chapter suggest some further developments.

First, it may be interesting to extend the framework considered in this chapter

to identify breaks affecting the slope coefficients. While this should not com-

plicate the inference for the SB procedure, the computational cost may in-

crease substantially for the DS procedure due to additional T dummies for

each regressor. Second, it will be useful to compare the performance of the

DS with breaks in mean and trend estimated using Autometrics with the ro-

bust dummy saturation estimator proposed in Johansen and Nielsen (2009),

49



Detecting Breaks by Dummy Saturation and Sequential Bootstrapping

based on an M -estimator with a bias-corrected variance term. Third, in the

light of our empirical results on the Fisher effect and considering the pro-

found instabilities experienced over the last decades, detecting and model-

ling structural breaks may also be important to validate other well estab-

lished economic relationships. The robust procedures considered in this

chapter certainly help to undertake correct inference. This is part of an on-

going research agenda.

Appendix 2.A Autometrics

The aim of this appendix is to give a sketch of the algorithm constituting

Autometrics . Very briefly, Autometrics allows the empirical modeller to eas-

ily apply the “general-to-specific” approach or “LSE approach” advocated by

David Hendry. As a software, Autometrics is included in OxMetricsTM and

is the evolution of PcGets a computer program developed by David Hendry

and Hans-Martin Krolzig (Hendry and Krozlig, 1999, 2005) which builds on

Hoover and Perez (1999). The main references used in this short overview

are Doornik (2009a,b).

The Algorithm

Starting from a general unrestricted model (GUM) including all the explanat-

ory variables that the modeller believes to potentially matter, Autometrics

is able to select a final model through a tree search algorithm and select-

ing the relevant variables according to a battery of misspecification tests

as well as individual significance tests (t-tests) on the candidate regressors.
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The selection of the final model is performed using a reduction p-value (pα)

that can be modified by the user. Moreover, Autometrics is able to deal with

more variables than observations N > T (unidentified GUM) as well as

with non-orthogonal candidate regressors. If N > T then a block search

algorithm kicks in. When working with the DS, this is the case of interest

and so here we analyse the general version of the algorithm incorporating

the block search. The standard case with N < T is a special case of the

algorithm with the block search.

Following Doornik (2009b), first we introduce the block-splitting com-

ponent of the algorithm, then we present the overall algorithm. In particu-

lar, inside the block-search algorithm all the N variables entering the GUM,

B̄, are split in two sets: the selected variables at iteration i, denoted Si, and

the excluded variables, denoted B0 = B̄ \ Si. The excluded set is partitioned

in blocks and two steps alternate in succession:

1. Expansion step: partition the excluded variables in blocks (B0
1, . . . ,B0

B)

and run all over the blocks B0
1 ∪ Si, . . . ,B0

B0 ∪ Si to look for omitted

variables (Oi). This is an iterative step and it stops when the number

of regressors selected from the initial set of excluded variables is small

enough.

2. Reduction step: find a new candidate set Si+1 from model selection on

Si ∪ Oi.

As explained above, the selection of the relevant variables is governed through-

out by a p-value that can be set by the user. However, a temporary increase

of the p-value in the reduction step is used to improve the sensitivity of Auto-

metrics at the cost of slightly increasing the risk of overfitting. For exposure
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clarity then define the following stages:

stage A: starts from an empty model, and is run only once.

stage B: is run until convergence, using pα for the expansion

step.

stage C: is run only once, using 2pα for the expansion step.

stage D: starts with 4pα for the expansion step, using pα there-

after. When stage D converges, the block search ter-

minates.

The Autometrics algorithm then runs as follows:

Set i = 0,Si−1 = ∅, stage = A.

1. Expansion step to find Oi;

2. Reduction step to find Si;

3. Change the stage:

3a. if stage is A set stage = B and go to Continuation;

3b. if stage is C set stage = D and go to Continuation;

3c. else go to Convergence step;

4. Convergence if S0 ∪ . . .Si = S0 ∪ . . .Si−1 then

4a. if stage is B increment it to C,

4b. else terminate block search.

5. Continuation increment i and return to Step 1.
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To improve on efficiency, the way in which the algorithm searches for signi-

ficant variables is a tree-search type procedure where redundant branches

are skipped. In the case there are multiple terminal models, Autometrics

forms the final GUM as the union of these. Finally, the overall final model

is chosen using the Schwarz criterion.

Additionally, there are different ways in which the blocks may be formed

in the Expansion step. This option, together with the block size, can be set

by the user. In particular, together with the standard block method where

the blocks are formed sequentially, other options are the random blocks and

two variants where the algorithms also searches more extensively crossing

the standard blocks. However, as also noted in Doornik (2009b), the overall

algorithm is sensible to the ordering of the variables so a different way to

constitute the blocks may lead to slightly different outputs as we observe in

our simulation exercise.

For further details on the performances and the options of Autometrics

, we invite the interested reader to refer to Doornik (2009a) and Doornik

(2009b).
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Appendix 2.B SB Algorithm

We report in the box below a pseudo-code version to better summarise each

step of the SB and we refer the interested reader to De Peretti and Urga

(2005) for further details on the procedure.

a. Set j = 1 and i = 0:

1. Estimate the jth-break date as:

T̂j = argmax {Ft} t = 3, . . . , T − 1

where Ft is the F -test statistic to test jointly the non-

significance of the coefficients of the dummies capturing a

potential break occurring at t.

2. Test the significance of T̂j (H0 : j − 1 breaks) computing the

bootstrapped p-value

1

B

B∑
b=1

1{(τ ∗b )2 > (τ̂j)
2}

where τ̂j = max{Ft} and τ ∗b is the bootstrapped counterpart.

3. If significant, re-estimate the previous j − 1 breaks otherwise

i = i+ 1.

b. Set j = j + 1 and repeat steps 1-3. Stop when two consecutive

break dates are not significant (i = 2).

c. Repeat for all the marginals and then impose the breaks in the con-

ditional process before looking for its own breaks.
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Table 2.1: Marginal DGPs.

DGP
LS: xt = 0.2 +

∑K
j=1 υjSj,t + ut

ARs: xt = 0.2 + 0.6xt−1 +
∑K

j=1 υjSj,t + ut
ARst: xt = 0.2 + 0.05t+ 0.6xt−1 +

∑K
j=1 υjSj,t + ut

ARns: xt = 0.2 + xt−1 +
∑K

j=1 υjSj,t + ut

Note: In order to achieve independence from the initial conditions, for the “ARs” and
“ARst” models we start the recursion to generate the xt series at x−50 = 0 for t =
−50, . . . , 100 and then we discard the first 50 observations. Similarly, for the “ARns”
model, we start from x−100 = 0, t = −100, . . . , 100, and then we discard the first 100
initial observations.
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Table 2.2: Correct Number of Breaks Detection for Marginal Processes.

IIS SS SS SB (param.) SB(nonparam)
DGP Ti Gauge Potency Gauge Potency Size Power NCB Size Power Size Power Dummies’ coeff.
LS - 1.6 - 1.6 - 48.5 - - 1.4 - 1.5 -

24.1 - 18.5 - 100.0 - - 4.5 - 5.2 -
70 1.6 98.7 1.2 100.0 41.4 100.0 58.6 1.2 100.0 1.0 100.0 υ1 = 5

19.1 99.9 17.6 100.0 99.5 100.0 0.5 5.3 100.0 5.4 100.0
20, 40 0.5 49.9 0.9 98.8 35.8 100.0 64.2 1.5 99.9 1.1 100.0 υ1 = 3, υ2 = −3

16.4 91.2 20.6 99.2 98.9 100.0 1.1 5.4 100.0 5.0 100.0
ARs - 1.6 - 3.4 - 65.3 - - 1.2 - 0.7 - -

25.7 - 24.6 - 100.0 - - 3.5 - 3.6 -
70 1.7 19.2 2.5 100.0 59.1 100.0 40.9 1.3 99.4 0.9 98.4 υ1 = 5

22.7 35.4 23.0 100.0 99.9 100.0 0.1 5.4 100.0 5.8 100.0
20, 40 2.1 14.7 1.1 83.1 39.1 99.4 60.9 1.6 99.7 0.9 99.1 υ1 = 5, υ2 = −5

24.3 44.0 19.7 96.7 99.2 100.0 0.8 6.0 99.9 5.3 99.9
20, 30 1.2 81.9 1.3 99.8 44.3 100.0 55.7 1.2 99.9 1.2 99.9 υ1 = 5, υ2 = −5

18.2 90.8 21.0 99.6 99.8 99.9 0.1 4.9 99.9 5.8 99.9
ARst - 1.6 - 3.4 - 68.9 - - 0.9 - 1.3 - -

27.7 - 21.3 - 100.0 - - 5.7 - 5.3 -
70 1.7 17.7 2.4 100.0 60.7 100.0 39.3 0.8 99.1 0.9 98.1 υ1 = 5

24.2 37.9 20.1 100.0 99.8 100.0 0.2 5.2 100.0 5.4 100.0
20, 40 2.0 14.6 1.2 75.1 40.5 98.2 59.5 1.3 96.8 0.8 95.8 υ1 = 5, υ2 = −5

26.2 45.3 17.1 95.4 99.3 99.9 0.7 5.5 99.3 5.2 99.2
20, 30 1.3 83.3 1.3 99.6 46.1 99.9 53.9 1.0 95.1 1.0 95.1 υ1 = 5, υ2 = −5

18.5 91.2 18.2 99.4 99.8 100.0 0.2 5.0 99.4 5.4 99.3
ARns - 1.6 - 3.4 - 74.2 - - 2.0 - 1.6 - -

26.1 - 23.8 - 100.0 - - 7.4 - 7.6 -
70 0.7 38.8 1.3 100.0 44.0 100.0 56.0 2.8 100.0 2.5 100.0 υ1 = 5

17.7 66.3 19.6 99.8 99.7 100.0 0.3 10.7 100.0 11.6 100.0
20, 40 13.4 73.1 0.9 98.6 37.0 100.0 63.0 3.0 99.2 3.4 99.3 υ1 = 3, υ2 = −5

28.5 82.7 17.7 99.1 98.6 100.0 1.4 13.0 99.9 12.6 100.0
20, 30 4.8 83.7 1.1 99.7 44.0 100.0 56.0 3.3 94.5 3.3 93.2 υ1 = 3, υ2 = −5

21.9 91.8 19.1 99.4 99.6 100.0 0.4 12.0 99.4 13.5 99.4

Notes: The specification of the processes is given in Table 2.1. The numbers under the columns “gauge” and “po-
tency” represent the empirical retention frequencies of the null and non-null dummies respectively according to
the DGP, while the numbers under the columns labelled “size” and “power” are the empirical rejection frequen-
cies of null hypothesis about the number of breaks. For a detail of the null hypotheses, see the end of Section 2.4.1.
Gauge and potency as well as size and power for the SS are computed only with reference to the step dummies.
“NCB” denotes the percentage of times a procedure detects the correct number of structural breaks according to
the DGP. Finally, “-” indicates the no break case and thus only gauge and size can be calculated.
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Table 2.3: Break Dates Estimates for Marginal Models.

IIS SS (gauge/potency) SS (size/power) SB
DGP Ti Mean Bias RMSE Median Mean Bias RMSE Median Mean Bias RMSE Median Mean Bias RMSE Median
LS 70 70.022 0.022 0.188 70.000 70.001 0.001 0.202 70.000 70.001 0.001 0.202 70.000 69.999 -0.001 0.051 70.000

20 21.059 1.059 1.352 21.000 19.998 -0.002 0.656 20.000 20.018 0.018 0.821 20.000 19.843 -0.157 1.833 20.000
40 38.606 -1.394 1.502 39.000 38.645 -1.355 1.107 38.000 38.614 -1.386 1.166 38.000 40.277 0.277 2.471 40.000

Ars 70 69.783 -0.217 5.161 70.000 69.978 -0.022 0.256 70.000 69.987 -0.013 0.247 70.000 69.932 -0.068 0.658 70.000
20 20.043 0.043 0.255 20.000 19.995 -0.005 0.306 20.000 21.759 1.759 8.016 20.000 19.983 -0.017 0.549 20.000
40 39.401 -0.599 3.108 40.000 38.688 -1.312 1.461 40.000 38.620 -1.380 5.420 38.000 40.013 0.013 0.553 40.000
20 20.008 0.008 0.089 20.000 19.991 -0.009 0.212 20.000 19.985 -0.015 0.270 20.000 19.951 -0.049 0.713 20.000
30 28.842 -1.158 1.200 29.000 29.900 -0.100 0.343 30.000 29.906 -0.094 0.345 30.000 30.087 0.087 1.167 30.000

ARst 70 70.110 0.110 0.847 70.000 69.980 -0.020 0.268 70.000 69.982 -0.018 0.264 70.000 69.949 -0.051 0.618 70.000
20 20.060 0.060 0.462 20.000 20.005 0.005 0.296 20.000 22.951 2.951 10.782 20.000 20.001 0.001 0.542 20.000
40 39.307 -0.693 3.343 40.000 38.977 -1.023 1.365 40.000 39.336 -0.664 7.149 39.000 40.005 0.005 0.491 40.000
20 20.010 0.010 0.109 20.000 20.006 0.006 0.261 20.000 20.011 0.011 0.368 20.000 20.009 0.009 0.870 20.000
30 28.838 -1.162 1.191 29.000 29.827 -0.173 0.451 30.000 29.805 -0.195 0.659 30.000 30.036 0.036 0.688 30.000

ARns 70 70.092 0.092 0.340 70.000 70.019 0.019 0.234 70.000 70.022 0.022 0.264 70.000 69.826 -0.174 1.728 70.000
20 20.160 0.160 0.537 20.000 20.089 0.089 0.797 20.000 20.183 0.183 1.492 20.000 19.006 -0.994 2.245 20.000
40 38.906 -1.094 1.150 39.000 39.980 -0.020 0.227 40.000 39.969 -0.031 0.276 40.000 39.882 -0.118 0.995 40.000
20 20.050 0.050 0.231 20.000 19.990 -0.010 0.642 20.000 19.998 -0.002 0.807 20.000 18.835 -1.165 2.484 20.000
30 28.878 -1.122 0.475 29.000 29.954 -0.046 0.282 30.000 29.958 -0.042 0.265 30.000 29.958 -0.042 0.786 30.000

Note: The break date estimates for the IIS and the SS refer to the results obtained when using 1% as target size in the Autometrics options (gauge and potency estimates) and
when considering 1% as nominal size (size and power estimates).
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Table 2.4: Conditional DGPs.

DGP
Cs: yt = 0.2 + 0.8xt +

∑K
i=1 ψiSi,t + ut

xt = 0.6xt−1 + et
Cci: yt = 0.2 + 0.8xt +

∑K
i=1 ψiSi,t + ut

xt = xt−1 + et
CMs: yt = 0.2 + 0.8xt +

∑K
i=1 ψiSi,t + ut

xt = 0.5 + 0.6xt−1 + υLxt + et
CMci: yt = 0.2 + 0.8xt +

∑K
i=1 ψiSi,t + ut

xt = 0.5 + xt−1 + υSxt + et

Note: For the “Cs” and “CMs” models, we start the recursion to generate the xt
series at x−50 = 0 for t = −50, . . . , 100 and then we discard the first 50 obser-
vations. Similarly, for the “Cci” and “CMci” models, we start from x−100 = 0,
t = −100, . . . , 100, and then we discard the first 100 initial observations.
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Table 2.5: Correct Number of Breaks Detection for Conditional Models.

IIS SS SB (param.) SB(nonparam)
DGP Ti Gauge Potency Gauge Potency Size Power Size Power Dummies’ coeff.
Cs - 1.5 - 1.9 - 1.6 - 1.5 - -

25.9 - 22.0 - 6.0 - 5.6 -
70 1.6 98.2 1.3 100.0 1.4 100.0 1.1 100.0 ψ1 = 5

19.4 99.9 20.7 100.0 5.9 100.0 5.6 100.0
20, 40 1.0 97.4 0.8 99.8 1.3 100.0 1.2 100.0 ψ1 = 5, ψ2 = −5

18.9 99.9 18.4 99.9 6.5 100.0 6.0 100.0
Cci - 1.6 - 1.8 - 1.3 - 1.2 - -

25.9 - 21.6 - 5.5 - 5.2 -
70 7.5 74.6 1.4 100.0 1.3 100.0 1.5 100.0 ψ1 = 5

24.6 79.5 20.5 100.0 5.0 100.0 5.7 100.0
20, 40 1.7 95.5 0.7 99.8 1.2 100.0 0.4 100.0 ψ1 = 5, ψ2 = −5

19.2 99.3 17.8 99.9 4.7 100.0 4.3 100.0
CMs - (90) 1.6 - 1.8 - 1.4 - 1.0 - υ = −2

26.0 - 22.0 - 6.4 - 6.0 -
70 (90) 1.5 92.1 1.3 100.0 1.5 100.0 1.2 100.0 ψ1 = 5, υ = −2

19.2 99.0 20.0 100.0 6.8 100.0 5.9 100.0
20, 40 (90) 1.1 97.7 0.8 99.6 1.4 100.0 1.3 100.0 ψ1 = 5, ψ2 = −5, υ = −2

19.0 100.0 18.3 99.8 5.9 100.0 6.0 100.0
CMci - (90) 1.6 - 1.8 - 1.1 - 1.0 - υ = −2

26.0 - 21.8 - 6.0 - 6.0 -
70 (90) 2.7 83.6 1.3 100.0 1.7 100.0 1.8 100.0 ψ1 = 5, υ = −2

20.0 93.3 19.7 100.0 4.5 100.0 5.6 100.0
20, 40 (90) 1.2 97.7 0.8 99.8 1.1 100.0 0.9 100.0 ψ1 = 5, ψ2 = −5, υ = −2

19.1 99.9 18.0 99.8 4.9 100.0 5.3 100.0

Notes: The specification of the processes is given in Table 2.4. The numbers in brackets in the column “Ti”
represent the break dates affecting the marginal process. The numbers under the columns “gauge” and “potency”
represent the empirical retention frequencies of the null and non-null dummies respectively according to the DGP,
while “size” and “power” represent the empirical rejection frequencies of null hypothesis about the number of
breaks. For a detail of the null hypotheses, see the end of Section 2.4.1. Gauge and potency for the SS are computed
only with reference to the step dummies. Finally, “-” indicates the no break case and thus only gauge and size can
be calculated.
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Table 2.6: Break Date Estimates for Conditional Models.

IIS SS SB
DGP Ti Mean Bias RMSE Median Mean Bias RMSE Median Mean Bias RMSE Median
Cs 70 70.027 0.027 0.190 70.000 69.996 -0.004 0.173 70.000 70.013 0.013 0.362 70.000

20 20.028 0.028 0.203 20.000 20.062 0.062 0.311 20.000 19.988 -0.012 0.418 20.000
40 39.947 -0.053 0.352 40.000 38.445 -1.555 0.859 38.000 40.015 0.015 0.450 40.000

Cci 70 71.312 1.312 4.061 70.000 69.994 -0.006 0.219 70.000 69.996 -0.004 0.528 70.000
20 20.135 0.135 1.002 20.000 20.087 0.087 0.351 20.000 20.003 0.003 0.437 20.000
40 39.883 -0.117 1.024 40.000 38.983 -1.017 1.071 40.000 40.008 0.008 0.440 40.000

CMs 70 70.070 0.070 0.383 70.000 70.029 0.029 0.237 70.000 70.014 0.014 0.332 70.000
20 20.022 0.022 0.178 20.000 20.029 0.029 0.311 20.000 19.981 -0.019 0.428 20.000
40 39.962 -0.038 0.266 40.000 38.319 -1.681 0.766 38.000 40.011 0.011 0.389 40.000

CMci 70 70.432 0.432 2.383 70.000 70.024 0.024 0.247 70.000 69.968 -0.032 0.543 70.000
20 20.032 0.032 0.192 20.000 20.072 0.072 0.342 20.000 19.996 -0.004 0.436 20.000
40 39.947 -0.053 0.684 40.000 38.570 -1.430 0.953 38.000 40.007 0.007 0.460 40.000

Note: The break date estimates for the IIS and the SS refer to the results obtained when using 1% as target size.
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Table 2.7: Marginal and Conditional DGPs with Broken Linear Trend.

DGP name
ARsTr: xt = 0.2 + 0.05t+ 0.6xt−1 +

∑K
i=1(υiSi,t + φiLi,t) + ut

ARnsTr: xt = 0.2 + 0.01t+ xt−1 +
∑K

i=1(υiSi,t + φiLi,t) + ut
CsTr: yt = 0.2 + 0.05t+ 0.5xt +

∑K
i=1(ψiSi,t + ωiLi,t) + ut

xt = 0.6xt−1 + et
CciTr: yt = 0.2 + 0.02t+ 0.5xt +

∑K
i=1(ψiSi,t + ωiLi,t) + ut

xt = xt−1 + et
CMsTr: yt = 0.2 + 0.05t+ 0.5xt +

∑K
i=1(ψiSi,t + ωiLi,t) + ut

xt = 0.5 + 0.02t+ 0.6xt−1 + υSxt + φLxt + et
CMciTr: yt = 0.2 + 0.01t+ 0.5xt +

∑K
i=1(ψiSi,t + ωiLi,t) + ut

xt = 0.5 + 0.001t+ xt−1 + υSxt + φLxt + et

Note: For the “ARsTr”, “CsTr” and “CMs” models, we start the recursion to generate the
xt (or yt) series at x−50 = 0 for t = −50, . . . , 100 and then we discard the first 50 observa-
tions. Similarly, for the “ARnsTr“CciTr” and “CMciTr” models, we start from x−100 = 0,
t = −100, . . . , 100, and then we discard the first 100 initial observations.
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Table 2.8: Correct Number of Breaks Detection for Marginal and Conditional Mod-
els with Broken Trend.

US SB (param.) SB(nonparam)
standard blocks random blocks

DGP Ti Gauge Potency Gauge Potency Size Power Size Power Dummies’ coeff.
ARsTr - 0.1 - 3.6 - 0.9 - 1.3 - -

2.8 - 13.5 - 5.7 - 5.3 -
30 0.6 56.0 4.0 58.2 1.1 99.2 1.2 98.5 υ1 = −5

2.2 57.8 14.4 75.0 5.1 100.0 4.7 99.9 φ1 = 0.1
50, 80 0.6 48.5 3.5 64.4 0.5 100.0 1.0 99.9 υ1 = −8, υ2 = −5

3.0 53.8 14.1 75.4 4.8 100.0 4.8 100.0 φ1 = 0.2, φ2 = 0.4
ARnsTr - 0.2 - 5.5 - 3.0 - 2.7 - -

3.5 - 13.9 - 8.7 - 8.6 -
30 0.7 49.3 5.8 68.5 0.7 100.0 1.1 100.0 υ1 = −3

3.8 59.2 15.8 80.8 6.8 100.0 6.6 100.0 φ1 = 0.05
50,80 1.1 49.6 5.2 64.8 0.8 95.1 1.1 95.7 υ1 = −3, υ2 = −5

3.8 57.1 15.6 79.9 5.0 99.3 6.1 99.5 φ1 = 0.1, φ2 = 0.4
CsTr - 0.4 - 0.8 - 1.1 - 1.6 - -

2.8 - 8.1 - 5.6 - 5.4 -
30 0.6 57.1 1.2 56.0 1.1 100.0 0.7 100.0 ψ1 = −5

2.1 54.6 9.6 67.4 4.8 100.0 4.7 100.0 ω1 = 0.1
50,80 0.8 67.7 1.5 65.8 0.8 100.0 0.7 100.0 ψ1 = −8, ψ2 = −5

2.7 61.5 9.9 70.5 3.8 100.0 4.5 100.0 ω1 = 0.2, ω2 = 0.4
CciTr - 0.5 - 0.7 - 1.4 - 1.0 - -

2.6 - 8.4 - 5.4 - 5.4 -
30 0.6 56.3 1.2 56.1 0.8 100.0 0.7 100.0 ψ1 = −5

2.0 56.7 9.9 67.6 3.5 100.0 4.7 100.0 ω1 = 0.1
50,80 0.8 64.1 1.5 64.5 1.0 100.0 0.5 100.0 ψ1 = −8, ψ2 = −5

2.7 58.6 10.4 72.0 4.6 100.0 5.0 100.0 ω1 = 0.1, ω2 = 0.4
CMsTr - (90) 0.3 - 0.7 - 0.8 - 1.3 - υ = −2, φ = −0.1

2.7 - 8.7 - 6.1 - 6.1 -
30 (90) 0.6 57.2 1.1 57.2 0.6 100.0 0.7 100.0 ψ1 = −5, ω1 = 0.1

2.1 56.0 10.0 69.6 4.9 100.0 5.0 100.0 υ = −2, φ = −0.1
50, 80 (90) 0.8 63.4 1.4 68.9 0.7 100.0 0.7 100.0 ψ1 = −8, ψ2 = −5, ω1 = 0.1, ω2 = 0.4

2.6 60.6 10.3 71.3 3.9 100.0 4.3 100.0 υ = −2, φ = −0.1
CMciTr - (90) 0.5 - 0.7 - 0.7 - 1.3 - υ = −2, φ = −0.1

2.4 - 9.2 - 3.9 - 4.7 -
30 (90) 0.5 63.3 1.1 63.4 1.1 100.0 0.8 100.0 ψ1 = −8, ω1 = 0.1

1.6 59.3 9.3 70.1 4.4 100.0 3.7 100.0 υ = −2, φ = −0.1
50, 80 (90) 0.8 55.9 1.5 64.1 0.9 99.7 0.7 99.5 ψ1 = −8, ψ2 = −5, ω1 = 0.1, ω2 = 0.4

2.5 58.6 10.0 71.8 4.4 100.0 4.3 99.9 υ = −2, φ = −0.1

Notes: The specification of the processes is given in Table 2.7. The numbers in brackets in the column “Ti”
represent the break dates affecting the marginal process. The numbers under the columns “gauge” and “potency”
represent the empirical retention frequencies of the null and non-null dummies respectively according to the DGP,
while the numbers under the columns denoted “size” and “power” are the empirical rejection frequencies of null
hypothesis about the number of breaks. For a detail of the null hypotheses, see the end of Section 2.4.1. Gauge
and potency for the US are computed only with reference to the step and trend dummies. Finally, “-” indicates
the no break case and thus only gauge and size can be calculated.
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Table 2.9: Break Dates Estimates for Marginal and Conditional Models with Broken Trend.

US SB
level trend

DGP Ti Mean Mean Bias RMSE Median Mean Mean Bias RMSE Median Mean Mean Bias RMSE Median
ARsTr 30 29.971 -0.029 0.632 30.000 30.724 0.724 1.470 31.000 29.977 -0.023 0.511 30.000

50 49.738 -0.262 0.793 50.000 50.838 0.838 0.961 51.000 49.990 -0.010 0.205 50.000
80 80.027 0.027 0.682 80.000 80.547 0.547 1.519 81.000 79.996 -0.004 0.578 80.000

ARnsTr 30 29.919 -0.081 1.092 30.000 30.572 0.572 1.379 31.000 30.245 0.245 2.458 30.000
50 50.002 0.002 0.829 50.000 50.298 0.298 1.405 51.000 50.020 0.020 1.815 50.000
80 80.056 0.056 0.765 80.000 80.718 0.718 1.247 81.000 80.007 0.007 1.111 80.000

CsTr 30 30.128 0.128 0.643 30.000 30.697 0.697 0.935 31.000 30.002 0.002 0.408 30.000
50 49.834 -0.166 0.412 50.000 50.748 0.748 0.871 51.000 49.998 -0.002 0.127 50.000
80 79.996 -0.004 0.764 80.000 80.722 0.722 1.179 81.000 80.028 0.028 0.471 80.000

CciTr 30 30.095 0.095 0.729 30.000 30.700 0.700 0.992 31.000 29.995 -0.005 0.640 30.000
50 49.842 -0.158 0.388 50.000 50.793 0.793 0.821 51.000 50.001 0.001 0.114 50.000
80 80.013 0.013 0.667 80.000 80.841 0.841 1.186 81.000 80.025 0.025 0.423 80.000

CMsTr 30 30.052 0.052 0.844 30.000 30.702 0.702 0.979 31.000 29.978 -0.022 0.464 30.000
50 49.932 -0.068 0.397 50.000 50.860 0.860 0.720 51.000 49.998 -0.002 0.127 50.000
80 79.951 -0.049 0.638 80.000 80.707 0.707 1.157 81.000 80.029 0.029 0.500 80.000

CMciTr 30 29.889 -0.111 0.617 30.000 30.660 0.660 0.905 31.000 29.996 -0.004 0.141 30.000
50 50.006 0.006 0.512 50.000 50.742 0.742 0.878 51.000 49.999 -0.001 0.095 50.000
80 80.062 0.062 0.562 80.000 80.650 0.650 1.196 81.000 80.039 0.039 0.605 80.000

Note: The break date estimates for the US refer to the results obtained when using 1% as target size and the standard blocks.
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Table 2.10: US Procedure: Final Selected Model for the Fisher Relationship.

Coefficient Std.Error t-value t-prob
Constant -0.5732 0.1053 -5.440 0.000

Trend 0.0253 0.0049 5.120 0.000
πt 0.9520 0.0488 19.500 0.000

∆πt−5 0.2351 0.0775 3.030 0.003
∆πt+1 0.7045 0.0993 7.100 0.000
∆πt+3 0.2638 0.0847 3.120 0.003
∆πt+4 0.6827 0.0843 8.100 0.000
∆πt+5 0.5917 0.0967 6.120 0.000

S:1990(4) -0.4132 0.1477 -2.800 0.006
S:1991(1) -0.4151 0.1526 -2.720 0.008
L:1994(2) 0.3244 0.0287 11.300 0.000
L:1995(1) -0.3178 0.0302 -10.500 0.000
S:1998(4) -0.3559 0.0966 -3.690 0.000
S:2000(3) 0.7176 0.1338 5.360 0.000
L:2000(3) -0.3866 0.0304 -12.700 0.000
L:2001(4) 0.3469 0.0334 10.400 0.000
S:2005(3) 0.9773 0.1000 9.770 0.000
S:2008(1) -0.9225 0.0901 -10.200 0.000
I:2005(3) -0.6259 0.1451 -4.310 0.000

Adj. R2 0.9817 AIC -3.976
HQ -3.776
SC -3.484

AR 1-5 test: F(5,77) = 2.316 [0.0515]
ARCH 1-4 test: F(4,93) = 1.646 [0.1693]
Normality test: χ2(2) = 0.623 [0.7325]

Hetero test: F(27,71) = 1.026 [0.4489]
RESET23 test: F(2,80) = 0.701 [0.4991]

Note: I:YYYY(Q) indicates an impulse dummy (Ii,t = 1(t = YYYY(Q))),
S:YYYY(Q) a step dummy (Si,t = 1(t ≥ YYYY(Q))) and L:YYYY(Q) a trend
dummy (Li,t = (t− YYYY(Q) + 1)1(t ≥ YYYY(Q))).
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Table 2.11: Break Dates Selected by the SB Procedure.

Date 1994Q2 2005Q4 2002Q1 2008Q1 1991Q1 1998Q4 1995Q2 2000Q4

P p-value 0.000** 0.000** 0.000** 0.000** 0.000** 0.010** 0.404 0.141
NP p-value 0.000** 0.000** 0.000** 0.010** 0.000** 0.020* 0.343 0.242

Notes: The bold dates represent the statistically significant structural breaks. ** indicates significance
at 1% while * significance at 5%. Both parametric (P) and nonparametric (NP) p-values are computed
according to 99 bootstrap replications. For each significant break date a step and trend dummies are
created in order to estimate the final model reported in Table 2.12.
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Table 2.12: SB Procedure: Final Selected Model for the Fisher Relationship.

Coefficient Std.Error t-value t-prob
Constant -0.6934 0.1749 -3.960 0.000

Trend 0.0238 0.0055 4.320 0.000
πt 1.0080 0.0895 11.300 0.000

∆πt−2 -0.3078 0.1380 -2.230 0.028
∆πt−4 0.3136 0.1191 2.630 0.010
∆πt+1 0.8419 0.1579 5.330 0.000
∆πt+3 0.6665 0.1296 5.140 0.000
∆πt+4 0.7949 0.1340 5.930 0.000
∆πt+5 0.5240 0.1517 3.450 0.001

S:1991(1) -0.6555 0.1411 -4.640 0.000
S:1994(2) 1.0446 0.1303 8.010 0.000
L:1998(4) -0.1076 0.0118 -9.100 0.000
L:2002(1) 0.0821 0.0170 4.830 0.000
S:2005(4) 0.9405 0.1496 6.290 0.000
L:2005(4) -0.0368 0.0169 -2.170 0.033
S:2008(1) -0.5456 0.1839 -2.970 0.004

I:2000(3-4) 0.7510 0.1581 4.750 0.000

Adj. R2 0.9511 AIC -3.008
HQ -2.830
SC -2.568

AR 1-5 test: F(5,79) = 2.006 [0.0868]
ARCH 1-4 test: F(4,93) = 0.606 [0.6594]
Normality test: χ2(2) = 3.103 [0.2119]

Hetero test: F(27,73) = 1.224 [0.2455]
RESET23 test: F(2,82) = 2.326 [0.1041]

Note: I:YYYY(Q) indicates an impulse dummy (Ii,t = 1(t = YYYY(Q))),
S:YYYY(Q) a step dummy (Si,t = 1(t ≥ YYYY(Q))) and L:YYYY(Q) a trend
dummy (Li,t = (t− YYYY(Q) + 1)1(t ≥ YYYY(Q))).
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Figure 2.1: Three months Treasury Bill rate (rt) and inflation rate (πt).
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Figure 2.2: US procedure final selected model plots. The first plot reports the resid-
uals êt time series. The second plot reports the autocorrelation function of êt up to
the 20th lag. The third plot reports the QQ-plot of êt against a standard normal.
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Figure 2.3: SB procedure final selected model plots. The first plot reports the resid-
uals êt time series. The second plot reports the autocorrelation function of êt up to
the 20th lag. The third plot reports the QQ-plot of êt against a standard normal.
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Figure 2.4: Structural Breaks found by the US and the SB in the rt time series. Solid
lines denote breaks in level while dashed lines denote breaks in trend.
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Chapter 3

Testing for Multiple Breaks in the

VECM Framework?

3.1 Introduction

In the analyses of long run relations, structural stability raises enduring

concerns. This chapter focuses on multiple structural breaks in the likeli-

hood based Vector Error Correction Model (VECM). To set focus, given a

p-dimensional vector Xt, consider the regression of ∆Xt on Xt−1, and e.g.

a constant and further lags of ∆Xt. Let Π refer to the coefficient of Xt−1 in

the latter regression. The long run relation is defined in this context via a

reduced rank restriction of the form Π = αβ>, where α and β are the (p×

r) matrices of short and long-run parameters and r refers to the cointegra-

tion rank. This chapter focuses on assessing breaks in both in the long-run
?A research paper joint with my PhD supervisor, Prof. Giovanni Urga, and with Prof.

Lynda Khalaf entitled “Multiple Testing and Stability in Reduced Rank Non-Stationary Regres-
sions” (2014) is based on the results in this chapter and it has been submitted for publication.
The paper has been presented at the 13th OxMetrics User Conference (CREATES, Århus, 5-
6 September 2013), at the IX New York Econometrics Camp (Watkins Glen, 3-4 April 2014),
and at the Oxford Econometrics Conference (Oxford University, 1-2 September, 2014).
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matrix β and the adjustment matrix α.

The literature on structural breaks in multivariate time series is relat-

ively scarse. Qu and Perron (2007) provide a fairly general quasi-maximum

likelihood (QML) framework to estimate and test for multiple unknown

structural breaks in systems with stationary regressors. In the multivariate

non-stationary setting, the existing literature deals mainly with one break.

Hansen (1992) studies the asymptotic properties of tests for a single shift

in a fully modified OLS (FM-OLS) framework while Bai et al. (1998) focus

on the QML break date estimate. Bernard et al. (2007) provide a finite-

sample corrected version of the tests in Bai et al. (1998). More recently

and within a non-stationary system of equations similar to Qu and Perron

(2007), Oka and Perron (2011) analyze the QML estimates of common (cross-

equation) multiple breaks overlooking questions concerning their number.

In a single cointegrating equation framework, Kejriwal and Perron (2008,

2010) provide a comprehensive treatment of multiple unknown changes.

Through an extensive simulation analysis, Bergamelli and Urga (2013) ex-

plore the ability of the “dummy saturation” and the sequential bootstrap-

ping of the sup-F test to detect the correct number of breaks and to correctly

locate them.

In the cointegrated vector autoregressive model (VECM) framework of

Johansen (1988), Quintos (1997) and Hansen and Johansen (1999) consider

fluctuation tests for parameter stability while Seo (1998) considers Lagrange

multipliers (LM) tests (Ave-LM, Exp-LM and Sup-LM as in Andrews and

Ploberger, 1994) for a single unknown shift in the cointegrating vector or/and

in the adjustment vector. Hansen (2003) proposes the so called generalised

reduced rank regression framework where the parameters of the VECM
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process are allowed to experience multiple structural changes. The Hansen

(2003) set-up is very general in that all the parameters (adjustment matrix,

cointegrating matrix, coefficients of the deterministic components, variance

terms) are allowed to change, though by imposing adequate restrictions it

is also possible to focus on specific components. The main limitation of

Hansen (2003) is that the break dates are assumed to be known, which re-

stricts the empirical relevance of this framework.

In this context, the contribution of this chapter is twofold. We first study

the interaction of weak exogeneity with assumptions on breaks in each of

the components of Π. We also discuss the implication of such breaks on

the stability of variance parameters. In particular, we show that structural

breaks in β entail, a fortiori, breaks in α, unless weak exogeneity is imposed

and maintained. If weak exogeneity is not acceptable a priori, we suggest to

test for breaks in α and β jointly to avoid size distortions arising from mis-

specifications. Non-separability of breaks in these parameters from breaks-

in-variance is also shown for specific parametrizations. The underlying in-

tuition for such interactions stems from the reduced rank restrictions which

validate the model under the null and alternative hypotheses. We provide

an analytical treatment of these problems, which seem to have escaped no-

tice in available related works. Further, we provide numerical evidence in

order to strengthen our theoretical conclusions.

Second, we propose a new test where the multiple breaks detection in the

VECM framework is conducted without the assumption of knowledge of

the break dates, thus generalising the Hansen (2003) testing procedure. We

propose to model instability by letting the researcher suggest a certain num-

ber of scenarios (say n) to describe multiple potential breaks. The scenarios
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in question allow one to specify several hypotheses about both the number

and the location of the breaks. For instance, if we define mn to be the num-

ber of regimes in each scenario (which implies mn − 1 breaks), it is possible

to build a set of n likelihood ratio (LR) tests, one for each scenario, to decide

on the number of potential regimes. The ensuing simultaneous hypotheses

are thus tested jointly via a minimum p-value approach corresponding to

the least favourable scenario under the null model. This translates into the

definition of a minimum p-value statistic with distribution approximated

through various bootstrapping procedures. The advantage of this approach

is that the minimum p-value statistic is derived from n LR tests which fol-

low standard limiting distributions while break dates are not restricted to be

known. In contrast, we presume that possible breaks can be broadly char-

acterized so that n plausible scenarios can adequately express uncertainties

about their number and location. In an economic environment, this seem a

realistic specification.

The finite-sample properties of the minimum p-value statistic are invest-

igated through an extensive Monte Carlo study under different combina-

tions of breaking times and sample lengths, imposing and relaxing weak

exogeneity and considering different degrees of identification of the coin-

tegrating relationship. Further, in assessing the finite sample properties of

the proposed combined statistic, we consider DGPs that experience breaks

in the covariance matrix (resulting from breaks in the components of Π) and

we provide bootstrapping procedures that allow to restore the correct size

nevertheless. The simulation study is conducted under the null hypothesis

of no breaks as well as under the more challenging scenario of multiple

breaks.
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The remainder of the chapter is organised as follows: Section 3.2.1 briefly

summarises the formulation and the estimation of the VECM in presence of

breaks based on Hansen (2003). Section 3.3 deals with the role of weak exo-

geneity in testing for structural breaks in the VECM framework and derives

the theoretical result. Section 3.4 introduces the new test, based on a min-

imum p-value approach, and the related bootstraps procedures. Section 3.5

reports the Monte Carlo simulations exercise whereas Section 3.6 reports

three empirical illustrations. Section 3.7 concludes.

3.2 Formulation and Estimation of the VECM in

Presence of Multiple Breaks

3.2.1 Model Formulation

The modelling framework is the error correction formulation of a cointeg-

rated VECM affected by multiple structural breaks as in Hansen (2003).

Let {Xt}Tt=1 be a p-dimensional process undergoing m regimes and thus

affected by m− 1 break dates, denoted T0 = 0 < T1 < · · · < Tm−1 < Tm = T .

A general VECM formulation where all parameters are allowed to change

may take the following form

∆Xt = α(t)β(t)>Ẍt−1 +
k−1∑
i=1

Γi(t)∆Xt−i + Φ(t)Dt + εt, t = 1, . . . , T (3.1)

where {εt} is a sequence of independent Gaussian random variables with

zero mean and variance matrix Ω(t), α(t) is the adjustment matrix, β(t) the

cointegrating matrix, Ẍt−1 consists of Xt−1 and restricted deterministic vari-
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ables while Dt is a q-dimensional vector of unrestricted deterministic vari-

ables. Defining rj , for j = 1, . . . ,m, the cointegrating rank of the jth re-

gime (implying that the cointegrating rank may vary across the different

regimes), the dimensions of the parameter matrices are the following: αj is

(p × rj), βj is (p1 × rj) where p1 is the dimension of Ẍt, Γi(t) is (p × p), Φ(t)

is (p × q), and Ω(t) is (p × p). The time-varying parameters are piecewise

constant given by

α(t)β(t)> = α1β
>
1 11t + · · ·+ αmβ

>
m1mt,

Γi(t) = Γ1,i11t + . . .Γm,i1mt, i = 1, . . . , k − 1,

Φ(t) = Φ111t + · · ·+ Φm1mt

Ω(t) = Ω111t + · · ·+ Ωm1mt

where for each of the m subsamples the corresponding indicator function is

defined as

1jt ≡ 1(Tj−1 + 1 ≤ t ≤ Tj), j = 1, . . . ,m. (3.2)

In the same spirit of Johansen (1991), it is possible to rewrite (3.1) in com-

pact form by defining the variablesZ0t = ∆Xt, Z1t = (11tẌ
>
t−1, . . . ,1mtẌ

>
t−1)>,

Z̃2t = (∆X>t−1, . . . ,∆X
>
t−k+1, D

>
t )>, and Z2t = (11tZ̃

>
2t, . . . ,1mtZ̃

>
2t)
>. Z1t is of

order (mp1 × 1) while, if we denote with p2 the number of variables in Z̃2t,

the dimension of Z2t is (mp2×1). We may group the parameters accordingly
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by defining

A = (α1, . . . , αm)

B = diag(β1, . . . , βm) =



β1 0 . . . 0 0

0 β2 0

... . . . ...

0 βm−1 0

0 0 . . . 0 βm


C = (Ψ1, . . . ,Ψm), where Ψj = (Γj,1, . . . ,Γj,k−1,Φj), j = 1, . . . ,m.

In this way, it is possible to cast (3.1) in a reduced rank regression framework

to obtain

Z0t = AB>Z1t + CZ2t + εt, t = 1, . . . , T (3.3)

which has constant parameters.

As explained in Hansen (2003), the required structure of the parameters,

their identification as well as hypotheses about the presence of structural

breaks can be obtained through restrictions of the form

vec(B) = Hφ+ h (3.4)

vec(A,C) = Gψ (3.5)

where vec(·) is the vectorization operator, H is a known [mp1(r1 + · · ·+rm)×

pφ] matrix, h is a known [mp1(r1 + · · · + rm) × 1] vector, φ is a vector with

pφ parameters and similarly G is a known [p(r1 + · · · + rm + mp2) × pψ]

matrix, while ψ is a vector with pψ parameters that for convenience can be

partitioned as ψ = (ψ>A , ψ
>
C )>. The combination of (3.3) with (3.4) and (3.5)
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gives rise to a constrained reduced rank problem.

Note that the above notation is very flexible in that it allows to formulate

changes in the parameters (adjustment vector, cointegrating vector, coef-

ficients of the deterministic components, variance terms) and at the same

time, by imposing the adequate restrictions, allows to explore changes af-

fecting only a specific component (partial structural changes). Furthermore,

the cointegrating rank is not restricted to be the same over the whole sample

but it can vary across the different regimes.

3.2.2 Estimation

For the purpose of estimation, Hansen (2003) introduces the so-called gener-

alized reduced rank regression (GRRR) technique. GRRR is a likelihood based

iterative method which aims at maximising the following log-likelihood

function

`(φ, ψ, ω) = −Tp
2

log2π − T

2

m∑
j=1

ρj log|Ωj(ω)|

−1

2

m∑
j=1

Tj∑
Tj−1+1

(Z0t−A(ψA)B(φ)>Z1t−C(ψC)Z2t)
>Ωj(ω)−1(Z0t−A(ψA)B(φ)>Z1t−C(ψC)Z2t)

(3.6)

where ω collects the parameters which characterise Ωj=1,...,m and ρj = (Tj −

Tj−1)/T . In practice, the methodology, based on Boswijk (1995), allows to

impose restrictions also on the C matrix and it consists in maximizing iter-

atively the following three equations, starting from φ(0), ψ(0) and ω(0):

1. φ̂(n) = arg max `(φ, ψ(n−1), ω(n−1))

2. ψ̂(n) = arg max `(φ(n−1), ψ, ω(n−1))
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3. ω̂(n) = arg max `(φ(n−1), ψ(n−1), ω)

for n ≥ 1. Thus, the algorithm allows to split the maximisation problem

in smaller ones which should be easier to solve. Algorithms of this kind

are usually referred as switching algorithms due to their nature of optimizing

with respect to a subset of the parameters and then moving to next subset

(see Johansen, 1995).

3.2.2.1 Concentrated Log-likelihood

It is possible to further simplify the maximisation problem concentrating

(3.6) with respect to Ωj . In particular, given that

Ω̂ML
j=1,...,m = (Tj − Tj−1)−1

Tj∑
t=Tj−1+1

ε̂tε̂
>
t

with ε̂t = Z0t − Â(ψ̂A)B̂(φ̂)>Z1t − Ĉ(ψ̂C)Z2t, we can find numerically the

maximum likelihood estimators of the remaining parameters choosing the

values of φ̂, and ψ̂ = (ψ̂>A , ψ̂
>
C )> which maximise

`c(φ̂, ψ̂) ∝ −T
2

m∑
j=1

ρjlog
∣∣∣Ω̂ML

j (φ̂, ψ̂)
∣∣∣ (3.7)

where the above concentrated log-likelihood function is obtained substitut-

ing the expression for Ω̂ML
j in (3.6) and leaving out the resulting constant

term. A derivation of (3.7) is reported in Appendix A. The estimator of the

possibly time-varying covariance matrix Ω̂(t) = Ω̂j=1,...,m is then computed

from the properly grouped residuals {ε̂t}
Tj
t=Tj−1+1. Notice that, in the case

we want to apply the iterative algorithm described above, it is sufficient to

iterate on the first two equations only.
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3.3 The Role of Weak Exogeneity in Testing for

Breaks

In this section, we explore the role of weak exogeneity in testing for breaks

in the cointegrating matrix Π. We also report numerical evidence showing

the size distortions that might arise in testing for breaks if ignoring the im-

plications of weak exogenity.

3.3.1 Hypotheses Specification with Known Break Dates

Consider the full set of parameters Θ = {α1, . . . , αm, β1, . . . , βm, Γ1,1, . . . ,Γ1,m,

. . . ,Φ1, . . . ,Φm, Ω1, . . . , Ωm|τm} = {Θ1, . . . ,Θm|τm} which defines the VECM

process (3.1) undergoing m regimes for a given set of break dates τm =

{T1, . . . , Tm−1}. Further, define Θ∗ ⊆ Θ the subset of parameters (partial

structural changes model) we test for structural breaks. This amounts to

split Θ into two components, the first one is Θ∗ = {Θ∗i ⊂ Θ : Θ∗i 6= Θ∗i+1|τm for i =

1, . . . ,m− 1}while the second Θ̃ ≡ Θ \Θ∗ = {Θ̃i ⊂ Θ : Θ̃i = Θ̃i+1|τm for i =

1, . . . ,m − 1 }. In Section 3.2.1, we explain how it is possible to impose the

necessary restrictions to select Θ∗ from Θ in order to estimate the VECM.

Generally, Θ∗ can differ under the null and the alternative hypotheses, i.e.

Θ∗H0
6= Θ∗H1

, thus defining another dimension, together with the number

and location of the breaks, along which one may be interested in testing for.

However, we now focus our attention on the case where Θ∗H0
≡ Θ∗H1

= Θ∗

to test for the presence of breaks. Then, to decide on the number of regimes,
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it is plausible to specify the hypotheses of the form

H0 : Θ∗1 6= · · · 6= Θ∗m0
|τm0

H1 : Θ∗1 6= · · · 6= Θ∗m1
|τm1

(3.8)

with m1 > m0 and τm0 ⊂ τm1 in order to ensure that the null model is a re-

stricted version of the alternative one. The notation adopted in (3.8) implies

that Θ∗i changes at discrete intervals conditional on the set of break dates τm.

This implies that for each t /∈ τm, Θ∗(t) = Θ∗(t− 1) for t = 1, . . . , T .

In order to accept or reject H0, the natural tool arising from the frame-

work introduced above consists of standard likelihood ratio (LR) tests. In

particular, denote M0 the restricted model under the null hypothesis of

m0 regimes andM1 the unrestricted model under the alternative of m1 re-

gimes, Theorem 10 in Hansen (2003) proves that if the dates of the structural

breaks are known and under suitable conditions on the rank of the restric-

tion matrices and assuming bothM0 andM1 have the same cointegrating

rank in each subsample, the stability of the subset of VECM parameters Θ∗

can be tested through

LR = −2log
LM0

max

LM1
max

= T

[
m0∑
j0=1

ρj0log|Ω̂j0| −
m1∑
j1=1

ρj1log|Ω̂j1|

]
∼ χ2(q) (3.9)

where Lmax denotes the maximum value of the likelihood function, Ω̂j0 and

Ω̂j1 are the sample covariance matrices of the null and the alternative model

respectively, and q is the difference between the number of parameters of

M1 and those ofM0. Hence, the requirement that the number of regimes

under the alternative, m1, must be bigger than the number of regimes under
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the null, m0, is necessary to build statistics with non-degenerate distribu-

tions.

3.3.2 Role of Weak Exogeneity in Specifying Hypotheses about

Structural Breaks

The framework introduced to test for multiple breaks is very general and

can accommodate structural breaks affecting either all components of the

VECM, Θ, or only a subset of them, Θ∗ ⊆ Θ. In particular, focusing on

Θ∗ = {Π1, . . . ,Πm|τm}, with Π = αβ>, Hansen (2003) deals with the case in

which the breaks affect either only α, Θ∗ = {α1, . . . , αm|τm}, or only β, Θ∗ =

{β1, . . . , βm|τm}, or both components, Θ∗ = {α1, . . . , αm, β1, . . . , βm|τm}, and

the discussion runs as if it is up to the modeller to choose the structure that

best fits the data, using for instance LR tests. A similar analysis is carried

out by Seo (1998).

However, using a weak exogeneity argument (see Engle et al., 1983), it

can be shown that the choice of which component of the Π matrix is to be

tested is indeed limited, due to the link between the short-run impact matrix

α and the long-run matrix β. Similarly, it can be shown that structural breaks

affecting β impact on the covariance matrix of the error term. These two

results are valid under the assumption that cointegration continues to hold

also after the break dates, i.e. we do not allow for situations where after the

break rank(Π) = 0. Theorem 1 formalises this point:

Theorem 1. Consider the VECM representation of a p-dimensional process

such thatXt = (X>1,t, X
>
2,t)
>, whereX1,t is of dimension p∗ andX2,t of dimen-

sion p− p∗. If the long-run matrix β experiences different regimes, then this
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implies:

a. structural breaks in the adjustment matrix α unless X2,t is weakly exo-

genous with respect to X1,t

b. structural breaks in the covariance matrix of the error term Ω.

Proof. Consider the standard cointegrating DGP adopted in Gonzalo (1994),

which follows very closely the DGP used in the seminal contribution of

Engle and Granger (1987), and write

X1,t − β̃>X2,t = Zt; Zt = ρZt−1 + u1t (3.10)

A1X1,t − A2X2,t = Wt; Wt = Wt−1 + u2,t (3.11)

whereX1,t is of dimension p∗×1 whileX2,t is of dimension (p−p∗)×1. Note

that after normalisation of the cointegrating matrix β as β = [Ip∗ − β̃>]>,

every cointegrating system can be rewritten as (3.10)-(3.11). The formula-

tion above is a direct application of the concept of cointegration. It simply

tells us that if Xt is a unit root vector process and it cointegrates then there

may be only one linear combination β>Xt = X1,t− β̃X2,t which is stationary

(assuming |ρ − λI| = 0 only for |λi| < 1, i = 1, . . . , p∗) while every other

combination β∗>Xt = A1X1,t − A2X2,t is not.

Using matrix notation, we can rewrite (3.10)-(3.11) as

Ip∗ −β̃
A1 A2


X1t

X2t

 =

ρ 0

0 Ip−p∗


Ip∗ −β̃
A1 A2


X1,t−1

X2,t−1

+

u1,t

u2,t
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and after some algebra, we get the VECM representation

∆X1,t

∆X2,t

 =

(Ip∗ − β̃>D−1A1)(ρ− Ip∗)

D−1A1(ρ− Ip∗)

[Ip∗ −β̃>]
X1,t−1

X2,t−1

+

+

u1t − β̃>D−1(A1u1t − u2t)

−D−1(A1u1t − u2t)

 (3.12)

with D = A1β̃
> − A2. The process in (3.12) can be reparametrised in the

usual way, and under the additional assumption of gaussian i.i.d. errors,

we have∆X1t

∆X2t

 =

 αp∗

αp−p∗

 β>Xt−1 +

ε1t

ε2t


ε1t

ε2t

 iid∼ N


0

0

 ,
Ω11 Ω12

Ω21 Ω22


 .

(3.13)

In this more general setting, we have that X2t is weakly exogenous if and

only if A1 is a zero matrix which clearly implies αp−p∗ = 0 in (3.13). The

proof of part a) follows by noting that if β changes across m regimes, i.e

β(t) = β>1 11t + · · ·+ β>m1mt then

α =

(Ip∗ − β̃(t)>D(t)−1A1)(ρ− Ip∗)

D(t)−1A1(ρ− Ip∗)

 = α(t) = α111t + · · ·+ αm1mt.

Thus a change in β implies a change in α. The only exception is when X2,t

is weak exogenous with respect to X1,t. As explained above, this happens

84



The Role of Weak Exogeneity in Testing for Breaks

when αp−p∗ = 0⇔ A1 = 0 and implies

α =

ρ− Ip∗

0


which is independent of β. In this case, a potential change in α would occur

only if the autoregressive structure of the error correction term Zt undergoes

more than one regime.

For part b), note that

Ω = E


u1t − ˜β(t)

>
D(t)−1(A1u1t − u2t)

−D(t)−1(A1u1t − u2t)


u1t − β̃(t)>D(t)−1(A1u1t − u2t)

−D(t)−1(A1u1t − u2t)


>

=

Ω11(t) Ω12(t)

Ω21(t) Ω22(t)


and hence, structural breaks in β imply structural breaks in the covariance

matrix of the VECM error term.

�

The results in Theorem 1 are very important for the correct identification

of structural breaks. The implications of such results are completely unex-

plored in the framework proposed in Hansen (2003), where a break in the

cointegrating matrix does not imply a break neither in the short term im-

pact matrix nor in the covariance matrix of the VECM. Moreover, we show

that ignoring the role of weak exogeneity leads to a misspecification of the

subset of parameters Θ∗ which is allowed to change and, as we show via the

simulation exercise reported in the next section, this has detrimental effects

on the size and power of the tests used to decide on the number of structural
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breaks affecting the cointegrating matrix β. When weak exogeneity cannot

be imposed, a joint test on the stability of both α and β must be performed.

3.3.3 Numerical Evidence

In order to stress the relevance for correct inference of Theorem 1, we un-

dertake a simulation exercise to show the effects of ignoring weak exogenity

on the size of a likelihood ratio statistic used for testing m0 vs m1 regimes in

the cointegrating matrix.

We simulate the following DGP affected by one break at T1 = bT/2c:

x1t − (β̃111t + β̃212t)x2t = zt zt = ρzt−1 + ezt

a1x1t − a2x2t = wt wt = wt−1 + ewtezt
ewt

 iid∼ N (0, σ2I2)

with 11t = 1(T0 + 1 ≤ t ≤ T1) and 12t = 1(T1 + 1 ≤ t ≤ T ). We consider the

following parameter space: β̃1 = 1, β̃2 = {1.5, 2, 3, 4, 5, 8, 10, 15, 20, 30, 40, 50},

ρ = {0, 0.8}, a1 = 1, a2 = −1, σ = 1 and T = {100, 300, 500}. Note that, by

setting a1 = 1, we rule out weak exogeneity. Alternatively, the above DGP

can be rewritten in VECM form leading to

∆x1t

∆x2t


︸ ︷︷ ︸

Z0t

=

 (1−ρ)a2
a1β̃1−a2

(1−ρ)a2
a1β̃2−a2

(1−ρ)a1
a1β̃1−a2

(1−ρ)a1
a1β̃2−a2


︸ ︷︷ ︸

A



1 0

−β̃1 0

0 1

0 −β̃2



>

︸ ︷︷ ︸
B>



11tx1,t−1

11tx2,t−1

12tx1,t−1

12tx2,t−1


︸ ︷︷ ︸

Z1t

+

−a2ezt+(11tβ̃1+12tβ̃2)ewt
a1(11tβ̃1+12tβ̃2)−a2
−a1ezt+ewt

a1(11tβ̃1+12tβ̃2)−a2
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⇒ Z0t =

[
α1 α2

]β1 0

0 β2


>

Z1t + εt.

We consider two different LR tests of m = 1 versus m = 2 regimes based on

the following two sets of hypotheses

Case A:

H
a
0 : β1 6= β2 = β3(∧α1 = α2 = α3) |T1

Ha
1 : β1 6= β2 6= β3(∧α1 = α2 = α3) |T1, T2

Case B:

H
b
0 : β1 6= β2 = β3 ∧ α1 6= α2 = α3 |T1

Hb
1 : β1 6= β2 6= β3 ∧ α1 6= α2 6= α3 |T1, T2

where “|” indicates conditional on the Ti, i = 1, 2 break date and we set

T1 = bT/2c while T2 = b2T/3c. Both cases involve to estimate under the

null hypothesis a model with one break and under the alternative hypo-

thesis a model with two breaks, though for Case A we do not consider pos-

sible effects of a break in β on α. This amounts to set Θ∗A,j = {βi for i =

1, . . . ,mj|τmj}, j = 0, 1 for Case A, and Θ∗B,j = {αi, βi for i = 1, . . . ,mj|τmj},

j = 0, 1 for Case B. The hypotheses formulated in Case A, where α is seen

as independent of β, can arise implicitly (testing for breaks in β disregard-

ing the effect that these breaks have on α) in the framework of Seo (1998) or

Hansen (2003).

[Figure 3.1 about here.]

Figure 3.1 reports the empirical rejection frequencies of the null hypo-

theses of the two LR tests – Case A and Case B – as function of an increasing

magnitude of the break measured as the ratio between the values of β̃ post

(β̃2) and pre (β̃1) break. The the results are clear-cut. The empirical rejec-
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tion frequency of the LR test based on Case B is well controlled and close

to the nominal level of 5% for the different sample sizes as well as values

of ρ, the parameter which controls the identification of the cointegrtaing re-

lationship. On the other side, the empirical rejection frequencies of the LR

test based on Case A increase with the magnitude of the break. This res-

ult deserves a careful interpretation. In the Seo (1998) and Hansen (2003)

frameworks, this is interpreted as size, thus we would over-reject a “true”

null hypothesis concluding that the LR test suffers from size distortions. In

empirical applications, this means that we would select a model with more

breaks than those actually affecting β. However, in our setting, the rejection

of the nullHa
0 has to be interpreted as power since in Case A we are indeed

testing a false null hypothesis where the α component is regarded as being

not affected by breaks in β while Theorem 1 states that this is not true unless

there is weak exogeneity. As often observed, the power is increasing with

the sample size and decreasing for higher values of ρ.

In conclusion, if weak exogeneity cannot be imposed, the appropriate

testing strategy for deciding on the number of breaks affecting Π = αβ> is

to jointly test for the presence of breaks in α and β. Focusing exclusively

on the long-run component β should be done only if we are sure that weak

exogeneity is a reasonable feature of the system. This is quite unlikely to be

known in advance especially in the VECM framework.

3.4 The Minimum p-value Statistic (Q-Statistic)

In this section, we extend (3.9) to the case of unknown break dates, given

that very rarely the exact number and location of structural breaks are known.
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3.4.1 Hypotheses Specification with Unknown Break Dates:

The Q−Statistic

The knowledge of the breaks under the alternative, τm1 , is usually uncer-

tain while the assumption of known breaks under the null, τm0 , is instead

reasonable. In order to define a more general testing strategy, we can think

of building a test where the alternative hypothesis incorporates the uncer-

tainty about the number and location of the break dates. An extended ver-

sion of the framework introduced in (3.8) can be written as follows

H0 : Θ∗1 6= · · · 6= Θ∗m0
|τm0

H1 :


Θ∗1,1 6= · · · 6= Θ∗m1,1

|τm1,1

...

Θ∗1,n 6= · · · 6= Θ∗m1,n
|τm1,n

(3.14)

where τm1,i
for i = 1, . . . , n, contains different breaking dates. The intuition

is that a priori knowledge of stylised facts and economic policies may sug-

gest a number of n plausible scenarios which may be described by a matrix

of the form

Σ = [τm1,1 , . . . , τm1,n ] =



T1,1 . . . T1,n

T2,1 . . . T2,n

... . . . ...

... Tmn−1,n

Tm1−1,1 . . . 0


where uncertainty about the number of regimes translates in scenarios char-

acterised by different mi while uncertainty about the dates of the breaks is
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expressed through different Ti,k for k = 1, . . . ,mi − 1. In order to accept

or reject the null hypothesis, we need to map (3.14) into a test statistic. By

noting that (3.14) can be decomposed in n LR tests of the form (3.9), we can

define the following statistic

Definition 1 (Q-statistic). Let M1,i denote the model estimated under the

ith scenario and LRi = −2log(LM0
max/L

M1,i
max ) for i = 1, . . . , n a LR test ofM0

against M1,i for a given set of break dates τm1,i
affecting the parameters

in Θ∗ ⊆ Θ. To test H0 versus H1 in (3.14), we can compute the following

minimum p-value statistic

Q = 1− min
1≤i≤n

[1− F (LRi)] (3.15)

where F (·) is the CDF of a χ2(qi) random variable with qi being the number

of more parameters inM1,i with respect toM0.

The expression (3.15) defines a new statistic that under the alternative

hypothesis allows us to specify different values of m as well as condition-

ing on different break dates. The Q-statistic we propose makes use of the

combination of n individual tests by taking the minimum p−value associ-

ated to each test. This approach has a long tradition in the statistical lit-

erature dating back to Tippett (1931) and recently reconsidered by Dufour

et al. (2014). Considering the lowest p-value implies that the decision is de-

termined by the least favourable scenario in terms of the null hypothesis.

In addition, (3.15) is based on a general framework in between the case of

the exact knowledge of the breaking date and that of a total unawareness

of it. For n = 1, the standard likelihood ratio test reported in (3.9) holds,

whereas by considering all possible combinations of break dates (for some

90



The Minimum p-value Statistic (Q-Statistic)

upper bound on the maximum number of regimes allowed) we can get a

test for multiple unknown breaks.

The computation of the Q-statistic is extremely convenient as we know

from Hansen (2003) that the individual LR test, being computed condition-

ally on a set of break dates specified in the ith scenario, is asymptotically dis-

tributed as a χ2. Finally, the asymptotic p-values in (3.15) can be replace by

bootstrapped p-values counterpart. For B bootstrap replications, we have

that

p̂(LRi) =

∑B
b=1 1(LR∗i ≥ LRi) + 1

B + 1
' 1

B

B∑
b=1

1(LR∗i ≥ LRi) = 1− F̂ ∗(LRi)

where we thus replace the CDF F (·) with the empirical distribution function

of the bootstrapped samples, F̂ ∗(·).

3.4.2 Bootstrapping the Distribution of the Q−Statistic

The distribution of (3.15) is easy to derive if the n underlying statistics are

independent, given that p(LRi) = 1 − F (LRi) ∼ U [0, 1] under H0 for all

i = 1, . . . , n. In our case, however, the individual likelihood ratios are far

from being independent and so to analytically derive the exact distribu-

tion of Q is not a trivial task. Thus, in order to generate the critical val-

ues of the distribution of Q−statistic under the null, we consider a boot-

strapping procedure based on resampling from the residuals of the VECM.

Given the autoregressive nature of the VECM, a sieve approach as in Chang

et al. (2006) to correct for autocorrelation is not needed if we assume a cor-

rectly specified lag structure of the VECM. However, our process might be

affected by heteroskedasticity induced by the presence of structural breaks,
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i.e. Ω = Ω(t). To control for heteroskedasticity, we propose to use both a

wild bootstrap approach and a ‘block-regime’ bootstrap procedure where

blocks from which the residuals are resampled coincide with the regimes.

Of course, it is interesting to evaluate the performance of the bootstrapping

procedures when weak exogeneity is either imposed or relaxed.

The procedure runs as follows

Step 1. Fit to the p-dimensional process Xt a VECM model under the null

hypothesis of m0 regimes (i.e., model M0) to obtain a matrix of re-

siduals E = (ε̂1, . . . , ε̂T )> where ε̂t = Z0t − Â0B̂
>
0 Z1t − Ĉ0Z2t. The

estimation of the model parameters can be carried out using the stand-

ard reduced rank regression technique with closed-form solution if no

breaks occur under the null.

Step 2. For b = 1, . . . , B repeat:

(a). Draw with replacement T values from the centred residuals

{
ε̂t −

1

T

T∑
t=1

ε̂t

}T

t=1

to get {ε∗t,b}Tt=1 (semi-parametric). Alternatively, compute the sample

covariance matrix Ω̂c of the centred residuals and draw {ε∗t,b}Tt=1

from N (0, Ω̂c) (parametric). For the wild bootstrap approach, we

proceed as in the semi-parametric case but we further multiply

each resampled residual with a realization from a Rademacher

variable ηt (see Davidson and Flachaire, 2008) which follows a
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two-point distribution defined as

F : ηt =

 1 with probability 0.5

−1 with probability 0.5.

For the block-regime bootstrap instead, we form m0 blocks, one

for each regime under the null hypothesis and we resample either

parametrically or non-parametrically from each block.

(b). Build recursively the bootstrapped counterpart of Xt, denoted

with X∗t,b, noting that Z∗0t,b = Â0B̂
>
0 Z
∗
1t,b + Ĉ0Z

∗
2t,b + ε∗t,b can be con-

veniently rewritten as

X∗t,b = (Â0B̂
>
0 Ξ1 + Ip1)X

∗
t−1,b + Ĉ0Ξ2Z̃

∗
2t,b + ε∗t,b t ≥ k,

where the first k observations are taken from Xt, the parameters

estimates come from Step 1 and the matrices Ξ1 of dimensions

(mp1)× p1 and Ξ2 of dimensions (mp2)× p2 are used to reconcile

the above expression with (3.3). In particular, Ξ1 is defined as

Ξ1 ≡



11,t . . . 0

... . . . ...

0 . . . 11,t

...
...

1m,t . . . 0

... . . . ...

0 . . . 1m,t



=


11,t

...

1m,t

⊗ Ip1
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such that ΞX∗t−1,b = Z∗1t,b and Ξ2 is similarly defined in order to

get ΞZ̃∗2t,b = Z∗2t,b.

(c). Use X∗t,b to estimate the null and the broken models under the

various scenarios and compute the associated likelihood ratio tests

LR∗b,i ofM∗
0,b againstM∗

1,i,b for i = 1, . . . , n.

(d). Compute the bootstrapped minimum p-value statistic

Q∗b = 1− min
1≤i≤n

[1− F (LR∗b,i)]

and record its value. If we bootstrap also the p-values by repeat-

ing Step 1 and Step 2(a)-2(c) using X∗t,b instead of Xt, then we

obtain the following double bootstrapped statistic

Q∗∗b = 1− min
1≤i≤n

[1− F̂ ∗(LR∗b,i)]

with the bootstrapped p-values defined as

p̂(LR∗b,i) = 1− F̂ ∗(LR∗b,i) =
1

Bp

Bp∑
bp=1

1(LR∗∗bp,b,i ≥ LR∗b,i)

and where Bp can be different from B.

Step 3. Decide on the acceptance/rejection of the null hypothesis by com-

paringQ either with the desired quantile of the bootstrapped distribu-

tion of Q∗ or Q∗∗ or by comparing the associated bootstrapped p-value

with the chosen level of significance.

According to Theorem 1 in Dufour et al. (2014), the minimum p-value

statistic has exactly the nominal size if there are no ties, i.e. P[Q∗i = Q∗j ] = 0
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for i 6= j, and α(B + 1) is an integer (α being the nominal level). Con-

sequently, at least 19 replications are needed if α is set to 5%1. However, as

again noted by Dufour et al. (2014), ties have non-zero probability in min-

imum p-value statistics and to solve this issue they suggest the tie-breaking

procedure developed in Dufour (2006). The procedure amounts in pairing

the set of statistics {Q ≡ Q0, Q
∗
1, . . . , Q

∗
B, } with B + 1 randomly drawn uni-

form random variables {Z0, Z1, . . . , ZB} and sorting the pairs according to

(Q∗i , Zi) ≥ (Q∗j , Zj)⇔
[
Q∗i > Q∗j ∨ (Q∗i = Q∗j ∧ Zi ≥ Zj)

]
.

The bootstrapped p-value can be then computed as

p̂(Q) =
B
[
1− 1

B

∑B
b=1 1(Q ≥ Q∗b) + 1

B

∑B
b=1 1(Q∗b = Q)1(Zb ≥ Z0)

]
+ 1

B + 1
.

The strength of using minimum p-value statistics combined with the

above approach is that the global level of the test is controlled even if the

p-values of the individual tests (in our case LRi, i = 1, . . . , n) are not ex-

act or based on asymptotic approximations, provided that the statistics are

nuisance-parameter free under H0 (see Dufour et al., 2014).

1See also Davidson and MacKinnon (2005) for a discussion on how to choose the correct
number of bootstrap replications
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3.5 Finite Sample Properties: Size and Power of

the Q-statistic

In this section, we investigate the small sample properties of the Q stat-

istic through a Monte Carlo simulation. We compute the empirical size and

power of the minimum p-value statistic in order to assess its ability in detect-

ing the correct number of breaks. Further, we study the effects of imposing

and relaxing weak exogeneity as well as the impact of weak identification

of the cointegrating relationship.

3.5.1 Monte Carlo Design

The Monte Carlo experiments are based on two alternative formulations

of a cointegrating system. The first is a standard VECM (DGP1) while the

second is based on the Engle and Granger (1987) representation as formu-

lated in Gonzalo (1994) (DGP2). In applying the test, DGP2 is mapped into

a VECM. By omitting breaks, the two DGPs take the following forms

DGP1:

∆x1t

∆x2t

 =

α1

α2

[1 −β̃
]
Xt−1 +

ε1t

ε2t

⇒ Xt = (I2 + αβ>)Xt−1 + εt.

(3.16)

with εt
iid∼ N (0, I2)

DGP2: x1t − β̃x2t = zt, zt = ρzt−1 + ezt (3.17)

a1x1t − a2x2t = wt, wt = wt−1 + ewt (3.18)

with [ezt , ewt ]
> iid∼ N (0, I2).
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Both formulations allow to control for weak exogeneity through α2 in

DGP1 and a1 in DGP2, as well as to study the impact of weak identification

of the cointegrating relationship through α1 (DGP1) and ρ (DGP2). DGP1

does not uncover the relationship between the VECM parameters (α, β, Ω)

allowed to be treated independently. When simulating instead from DGP2,

from Theorem 1 we have that when a1 6= 0 we need to test for breaks both

in α and β; in addition, breaks in β cause breaks in the covariance matrix of

the error term and this needs to be taken into account when bootstrapping

the distribution of the Q-statistic.

The number of Monte Carlo simulations is set to M = 1, 000 while the

number of bootstrap replications to B = 199. Each experiment is per-

formed initialising the random number generator with the same seed, and

for each simulated vector process Xt,m = [x1t,m, x2t,m]>, m = 1, . . . ,M and

t = 1, . . . , T , we estimate M0,m and M1,i,m for i = 1, . . . n and we com-

pute the corresponding likelihood ratios in order to get Qm. We then com-

pute the empirical rejection frequencies of hypotheses of the form (3.14) by

counting how many times Qm exceed the 95th percentile of the distribution

of Q∗b,m obtained through the bootstrapping procedure described before. In

particular, define Θ∗ = {Θ∗1, . . . ,Θ∗mD |τD} to be the set which contains the

time-varying parameters for a given set of break dates τD that actually char-

acterise the DGP. The time-varying parameters defining the DGP are such

that Θ∗mD = Θ∗mD−1 + h where h is a vector of known constants. We consider
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the empirical rejection frequencies of tests of the form

H0 : Θ∗1 6= · · · 6= Θ∗m0=mD−1|τm0

H1 :


Θ∗1,1 6= · · · 6= Θ∗m1,1≥mD |τm1,1

...

Θ∗1,n 6= · · · 6= Θ∗m1,n≥mD |τm1,n

such that τm0 ⊂ τD and τm0 ⊂ τm1,i
, i = 1, . . . , n. The two constraints on the

location of the breaks are needed to ensure that if the number of regimes un-

der the null hypothesism0 is different from 1, then we require that the model

under the null incorporates the correct location of the break dates and the

alternative scenarios contains the same breaks (plus additional ones) of the

null hypothesis to ensure that the null model is nested into the alternative.

This is to avoid situations where the unrestricted model has a smaller log-

likelihood than the restricted model. The empirical rejection frequencies of

H0 approximate the size of the Q statistic when h equals zero (we are sim-

ulating under the null) while for h different from zero (we are simulating

under the alternative), we approximate the power. In order to specify the

scenarios underH1, we input a matrix containing n columns corresponding

to n different scenarios. Consistently with the spirit of the Q statistic, we do

not require the number of the breaks in each scenario to be the same.

Finally, to estimate the models undergoing the various regimes, we max-

imise the concentrated log-likelihood function (3.7) using the BFGS algorithm2

and monitoring for convergence, in order to avoid spurious rejections. To

2The simple DGP considered here is characterised by few parameters and thus it is pos-
sible to maximise directly (3.7) without recurring to the switching algorithm. We notice that
if the optimisation over the full set of parameters reaches convergence, then the switching
algorithm gives the same estimates though requiring more computing time.
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select the correct subset of parameters, we define the appropriate restriction

matrices H , h and G according to (3.4) and (3.5). Note that since under the

alternative we have different scenarios, in practice we need to define Hi,1,

hi,1, and G1,i for each experiments plus the three restriction matrices to es-

timate the null model H0, h0, and G0. Details are reported in Appendix B.

3.5.2 Simulations Results

We evaluate the performance of the Q-statistic in detecting multiple struc-

tural breaks in the normalised cointegrating vector [1,−β̃]>. In our bivariate

setting, this means that we consider versions of DGP1 and DGP2 with struc-

tural breaks affecting the long-run coefficient β̃. Following the discussion in

Section 3.3.2, breaks in β̃ also implies breaks in the covariance matrix for

DGP2 and, depending on whether weak exogeneity holds, in the short-run

coefficients. Breaks in the covariance matrix cause heteroskedasticity in the

residuals time series which needs to be taken into account when bootstrap-

ping the distribution of Q. As a consequence, the residuals are resampled

using the wild and the regime-block approaches. On the other hand, the

structure of DGP1 is such that breaks in β do not affect the covariance mat-

rix of the errors or any other component, thus the standard parametric or

non-parametric bootstrap suffices.
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3.5.2.1 Results for DGP1

We simulate from the following version of DGP1 with breaks in β̃

∆x1t

∆x2t

 =

α1

α2

[1 −β̃(t)

]
Xt−1 +

ε1t

ε2t

 . (3.19)

We consider three sets of experiments where β̃ is affected by one, two and

three breaks respectively. In this way, we study the size and the power of Q

under the null of structural breaks which is more informative than studying

the statistic under the null of no breaks only. For explanation purposes,

consider the case with one break. In detail, we have that β̃(t) = β̃111t+ β̃212t

where 11t = 1(1 ≤ t ≤ T1), 12t = 1(T1 + 1 ≤ t ≤ T ) and β̃2 = β̃1 + h. The

simulated process (3.19) is therefore affected by one structural break at T1

when h 6= 0 or zero when h = 0.

To evaluate the size and the power of Q-statistic, we consider tests of

zero, one and two breaks against more than zero, one and two breaks re-

spectively, specifying different scenarios under the alternative hypothesis.

When h = 0, the null hypothesis is then specified consistently with the DGP

(size) whereas when h 6= 0 we count the rejection frequency of a false null

(power).

Table 3.1 reports the empirical size of the Q-statistic obtained using both

parametric and non-parametric bootstrap. For all three experiments, we

set h = 0 and we consider the following parameter space: β̃1 = 1 (first

experiment), β̃1 = 1, β̃2 = 2 (second experiment) and β̃1 = 1, β̃2 = 2, β̃3 = 1.5

(third experiment), α1 = {−1,−0.2,−0.01,−0.5}, α2 = {0, 0.5} (imposing

and relaxing weak exogeneity) and T = {100, 200, 300, 400, 500}. Further, we
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explore different locations of the break dates affecting the DGP by letting the

shifts to happen at the middle as well as towards the beginning or the end

of the sample. Details on the location of the breaks are given in Table 3.1.

[Table 3.1 about here.]

The size of the Q-statistic is close to the nominal one for all cases. As

expected, we observe some over-size when there is relevant weak identi-

fication (α1 = −0.01). The distortions however are not severe and tend to

disappear in samples as large as T = 500. The modest size distortion when

in presence of weak identification is also encouraging since it means that

the behaviour of the statistic is controlled even for extreme cases.

In order to study the power, we consider instead the same null hypo-

theses but letting the value of h to gradually increase. In particular, we con-

sider the coefficient of the last regime to be augmented with respect to the

one of the penultimate regime by h = {0.1, 0.3, 0.5, 1} for T1 = bT/2c (first

experiment) , T2 = b2T/3c (second experiment), and T3 = b5T/6c (third

experiment). The value of the other parameters which defines (3.19) is the

same as for the size experiments while the sample length is explored for

T = {100, 300, 500}.

Table 3.2 reports the power of the test. We observe that the power in-

creases with T and when gradually moving away from the null hypothesis,

i.e. for larger deviations of β̃mD with respect to β̃mD−1. Further, the test per-

forms well even for short samples such as T = 100 with the only exception

being, as expected, the case of relevant weak identification (α1 = −0.01).

[Table 3.2 about here.]
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3.5.2.2 Results for DGP2

We consider the same three sets of experiments as for DGP1, where β̃ is

affected by one, two and three breaks respectively, but simulating from the

following process instead

x1t − β̃(t)x2t = zt zt = ρzt−1 + ezt

∆x2t = ewt

which corresponds to (3.18) when weak exogeneity is imposed. For the case

with one break, we define β̃(t) = β̃111t + β̃212t where 11t = 1(1 ≤ t ≤ T1),

12t = 1(T1 + 1 ≤ t ≤ T ) and β̃2 = β̃1 + h. The DGPs with two and three

breaks are defined in a similar fashion.

Adopting a VECM representation, we can write

∆x1t

∆x2t

 =

ρ− 1

0

[1 −β̃(t)

]x1,t−1

x2,t−1

+

ezt + β̃(t)ewt

ewt

 (3.20)

which entails structural breaks in the variance term as well. For this reason,

the empirical rejection frequencies that follow are obtained using a wild and

a ‘block-regime’ bootstrap approach as discussed in Section 3.4.2.

In order to study the empirical size, we set h = 0 and we consider an ex-

tended testing framework with respect to the previous one where the para-

meters of the VECM that change across the regimes are both the long-run

coefficient and the covariance matrix of the error term, i.e. Θ∗ = {β̃1,Ω1, . . . , β̃m,Ωm|τm}.

The scenarios under the alternative are chosen such that they match exactly

those used for DGP1. Similarly, the time-varying β̃ is such that β1 = 1 (first
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experiment) , β1 = 1 and β2 = 2 (second experiment), β1 = 1, β2 = 2

and β3 = 1.5 (third experiment) while ρ = {0, 0.8, 0.99} in order to obtain

the same values of α1 as in DGP1. The location of the break dates and the

sample sizes explored are the same as well. Table 3.3a reports the results.

[Table 3.3 about here.]

The empirical rejection frequencies are generally very close to the nominal

level with a better performance of the ‘block-regime’ bootstrap. The wild

bootstrap works almost equally well for the case with no breaks and one

break under the null hypothesis while it seems to suffer as more breaks are

included in the model. Indeed, the bigger the number of breaks the more

important is the role played by heteroskedasticity. Since the block-regime

version of the bootstrap provides exact adjustment for regime-specific het-

eroskedasticity, it is not surprising that it performs as good as the standard

bootstrap for DGP1. Further, as already observed for DGP1, weak identific-

ation seems to generally worsen the results.

Table 3.3b summarises the results for the power. Just as in the case of

DGP1, the values reported are obtained by letting h to gradually increase.

The results show the statistic has good power also when adopting DGP2.

As commonly observed, the power increases with larger deviations from

the null and when increasing the sample length. There are no notable dif-

ferences when using either the wild or the ‘block-regime’ bootstrap.
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A final set of experiments refers to the case where we relax the assump-

tion of weak exogeneity according to the following process

x1t − β̃(t)x2t = zt, zt = ρzt−1 + ezt

x1t − a2x2t = wt, wt = wt−1 + ewt

which corresponds to the most general case with a1 = 1. From Section 4,

structural breaks in β cause structural breaks in α in the VECM represent-

ation. Therefore, we extend the set of broken parameters Θ∗ in order to

include also α, i.e. Θ∗ = {α1, β1,Ω1, . . . , αm, βm,Ωm|τm}, while all the re-

maining parameters are kept the same as for the case with weak exogeneity

imposed. Table 3.4 reports the empirical rejection frequencies.

[Table 3.4 about here.]

By relaxing weak exogeneity, the maximization of the likelihood function

becomes more demanding and thus this framework is the most challenging

consider so far. As long as the size is concerned, the results reported in

Table 3.4 allow us to conclude that the block-regime bootstrap provides re-

jection frequencies close to the nominal level in all the cases with a better

performance of the parametric version. Similarly to the case when weak

exogeneity is imposed, the wild bootstrap does not perform so satisfactor-

ily. As far as the power is concerned, the test shows power of about the same

magnitude than that observed in the previous experiments when weak exo-

geneity is imposed.

104



Empirical Illustrations

3.6 Empirical Illustrations

In this section, we want to illustrate the empirical relevance of taking into

account the role of weak exogeneity when selecting the subset of parameters

Θ∗ ⊂ Θ to be tested for breaks in the VECM framework as well as how to

practically implement the Q-statistic.

3.6.1 Dividend-Price Ratio

In this first application, we illustrate how multiple break testing can be con-

ducted using the Q-statistic by investigating the present value theory for

asset prices, which states that asset prices can be expressed as the sum of

the present discounted values of expected future dividends (see e.g. Camp-

bell and Shiller, 1987, 1989).

According to the present value theory, the relationship between the cur-

rent price Pt of an asset, the expected price at the next period Pt+1, and the

the expected dividend Dt+1 paid for owning the asset during the period

[t, t+ 1] can be then expressed as

Pt = Et
(
Pt+1 +Dt+1

Rt+1

)
(3.21)

where Rt+1 is the discount factor for the period [t, t+ 1] and Et(·) is a short-

hand for E(·|It), with It denoting the information set available at t. After

log-linearisation (see Campbell and Shiller, 1989 for details), (3.21) can be

rearranged as

pt = κ− Et(rt+1) + ρEt(pt+1) + (1− ρ)Et(dt+1)
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where ρ = 1/(1 + ed−p), κ = (ρ − 1)log(ρ−1 − 1) − log(ρ), and d− p is the

average log dividend-price ratio. Solving by recursive substitution leads to

pt =
κ

1− ρ
+(1−ρ)

∞∑
i=0

ρiEt(dt+i+1)−
∞∑
i=0

ρiEt(rt+i+1)+ lim
i→∞

ρiEt(pt+i). (3.22)

If we further assume that prices do not follow an explosive process, then

limi→∞ ρ
iEt(pt+i) in (3.22) converges to zero, and by rearranging the remain-

ing terms, the dividend-price ratio is given by3

dt − pt = − κ

1− ρ
+
∞∑
i=0

ρiEt(rt+i+1 −∆dt+1+i). (3.23)

The empirical validity of the present value relationship in (3.23) corresponds

to cointegration between the log-dividend process {dt} and the log-price

process {pt}. This is because the right-hand side of (3.23) is the sum of a

stationary process plus a constant term.

Our empirical analysis of the above is based on the S&P500 prices and

associated dividend series measured at quarterly frequency over the period

1960(1) - 2014(2). The dataset is taken from Robert Shiller’s web page4 while

the computations are executed using OxMetrics 7 (Doornik and Hendry,

2013). The dividend-price ratio for this sample is depicted in Figure 3.2.

[Figure 3.2 about here.]

In order to test (3.23), we fit an unrestricted VAR to the vector Xt = [dt, pt]
>

and assess cointegration using the eigenvalue based tests of Johansen (1991).

These tests lead to the rejection of cointegration, a result certainly not at

3Without loss of generality, we assume that the discount factor rt = rt+1 = · · · = r is
constant over time, such that (3.23) simplifies to dt − pt = −κ−r1−ρ −

∑∞
i=0 ρ

iEt(∆dt+1+i).
4http://www.econ.yale.edu/˜shiller/
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odds with the dynamics of the dividend-price ratio in Figure 3.2.

[Figure 3.3 about here.]

To investigate why cointegration fails, it is instructive to plot the one-step

ahead residuals. Figure 3.3 reports the one-step ahead residuals, obtained

by recursively estimating the VAR with an initial window of 50 observa-

tions, with reference to the stylized-fact shocks such as the Black Monday in

1987, the dot-com burst in early 2000, and the more recent sub-prime and

sovereign debt crises (global financial crises, GFC).

We consider the above stylized-fact dates as alternative scenarios and

estimate the underlying VECM from a VAR(4) with an unrestricted constant

term. We aim to assess stability without taking any ex-ante stand regarding

weak exogeneity, since there is no theoretical nor empirical guidance in this

regard. Table 3.5 reports the results. In the following discussion, rejection

refers to the 5% level.

[Table 3.5 about here.]

The individual LR tests show that the break dates that matter are 1999(3)

(dot-com boom) and 2007(4) (global financial crisis) while the 1987(3) (Black

Monday) it is not significant. This is in line with the conventional wisdom

regarding short-lived impact of the Black Monday.

From test A in Table 3.5, the null of no breaks is not rejected when we

consider Θ∗ = {β,Ω}. However, we strongly reject the null of stability when

we augment the vector of parameters to be tested for breaks with the short-

run impact matrix α (test B). This illustrates the importance of our results

in Section 3, as the formulation of a restrictive null may mask important

potential breaks. Test C assesses no breaks against two scenarios: (i) one
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break at 1987(3), 1999(3), and 2007(4); (ii) only two breaks at 1999(3) and

2007(4). In this case, the Q-statistic rejects the null of no breaks. Finally, test

D evaluates a restricted model with only the two last break dates, namely

1999(3) and 2007(4), against a model which incorporates all three breaks at

1987(3), 1999(3) and 2007(4). The restricted model which allows for breaks

in both the cointegrating parameters at the time of the dot-com boom and

the global financial crisis cannot be rejected.

Jointly interpreted, our analysis provides an alternative perspective to

the bubbles motivated approach as in Phillips et al. (2011). These authors

test for temporary explosiveness of the price process due to financial bubbles,

i.e. whether bt = limi→∞ ρ
iEt(pt+i) explodes. Instead, our results suggest a

breaking cointegrating relationship between the price and dividend time

series, as long as a multiple simulation-based adjustment is applied and the

specifications considered do not take a stand on exogeneity.

3.6.2 Money Demand Stability in the US

We turn now to another application where we test for the presence of breaks

by means of the minimum p-value statisticQ. Specifically, we consider mod-

elling the narrow money demand (M1) in the US in a VECM framework

and testing for its stability. For the US economy, the evidence on the sta-

bility of the long-run relationship between money demand, real output and

short-term interest rate is predominant in the literature. Some of the most

influential studies are Baba et al. (1992) and Hoffman et al. (1995) which

found indeed that the money demand is stable after accounting for omitted

variables and imposing unit long-run income elasticity, respectively. Non-
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etheless, the data-span considered by these studies does not cover for obvi-

ous reasons the recent financial crisis where the relationship is expected to

break down at some point around 2007-2008. In this section, we reconsider

the stability of the money demand in the US using an updated sample and

testing for breaks by means of the Q-statistic.

In particular, we specify the following vector process

Xt =


(m− p)t

yt

rt


where (m − p)t is the logarithm of the real money demand (where pt is the

GDP deflator), yt is the logarithm of the real GDP and rt is the three month

T-bill rate representing the external opportunity cost for holding real money.

The data are obtained from the FRED database at quarterly frequency over

the period 1980(1)-2014(2). If the money demand is theoretically updated

every three months, it makes sense to see as alternative investment oppor-

tunity on the same time horizon the T-Bill with maturity three months as

explained in Hoffman et al. (1995). Figure 3.4 plots the time series and al-

lows us to infer that the relationship between (m− p)t and yt is expected to

be positive while the relationship between (m− p)t and rt is expected to be

negative as predicted by theory.

[Figure 3.4 about here.]

We start by modelling the trivariate system using a VAR(4). However,

when testing for cointegration using the λtrace test we find no evidence of

any cointegrating relationship (see Table 3.6). To investigate the issue fur-

109



Testing for Multiple Breaks in the VECM Framework

ther, we analyse the stability of the individual equations as well as the whole

system over the sample period through the 1-step Chow test5 using an ini-

tial window of 40 observations. Figure 3.5 plots the 1-step Chow test out-

comes together with the critical value at 1% level. Evidence of instability is

intended as the red line crossing the blue one.

[Figure 3.5 about here.]

As we can see from Figure 3.5, both the real money demand equation and

the real GDP one show signs of instability corresponding to the period of the

recent financial crisis which transmit also to the system when considered as

a whole. To check whether the failure of finding cointegration is indeed due

to the 2007-2008 period, we repeat the cointegration analysis by cutting the

sample at the end of 2006.

[Table 3.6 about here.]

Table 3.6 clearly shows that when considering only the data before the re-

cent financial crisis, we find cointegration and the presence of instabilities

seems to disappear both at individual as well as global level as shown by

Figure 3.6. This result is consistent with the findings of the previous studies

(Baba et al., 1992; Hoffman et al., 1995).

[Figure 3.6 about here.]

In order to assess statistically the time of the break date, we apply the

minimum p-value statistic where the underlying VECM process is obtained
5Given a regression yt = β>xt + εt, t = 1, . . . , T , with k regressors, the 1-step Chow

test (see Nielsen and Whitby, 2008) tests for the stability of the regressors coefficients and
it is computed as (RSSt−RSSt−1)(t−k−1)

RSSt−1
where RSSt denotes the residuals sums of squares

of a regression involving t < T observations. Starting by selecting an initial window of
observations, the test is usually computed recursively to produce plots similar to those
reported in Figure 3.5.
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transforming a VAR(4) with an unrestricted constant term. Nevertheless,

as the system is not stable over the whole sample, it is not obvious how

to test for weak exogeneity although theoretically yt and rt are exogenous

with respect to the money demand. For this reason, all the tests are repeated

considering both the case Θ∗ = {β,Ω} and the case Θ∗ = {α, β,Ω}. In par-

ticular, we consider three tests where the alternative hypotheses incorporate

different scenarios. In the first one, we consider testing the null of no breaks

against three scenarios, where the break dates are selected on the basis of the

outcome of 1-step Chow test (Figure 3.5). The two break dates, i.e. 2008(3)

and 2011(4), are considered both individually and jointly to give rise to the

following test:

A :

H0 : Θ∗(t) = Θ∗(t− 1), ∀t = 1, . . . , T

H1 :


Θ∗1 6= Θ∗2 | τ1 = 2008(3)

Θ∗1 6= Θ∗2 | τ2 = 2011(4)

Θ∗1 6= Θ∗2 6= Θ∗3 | τ3 = [2008(3), 2011(4)]

Furthermore, we consider also a simplified version of test A, where the joint

scenario is dropped:

B :

H0 : Θ∗(t) = Θ∗(t− 1), ∀t = 1, . . . , T

H1 :

 Θ∗1 6= Θ∗2 | τ1 = 2008(3)

Θ∗1 6= Θ∗2 | τ2 = 2011(4)

.

Finally, we also check the robustness of the Q-statistic by contaminating the

scenarios with an apparently insignificant break date at 1992(2). The null
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and alternative hypotheses are given by

C :

H0 : Θ∗(t) = Θ∗(t− 1), ∀t = 1, . . . , T

H1 :

 Θ∗1 6= Θ∗2 | τ1 = 2008(3)

Θ∗1 6= Θ∗2 | τ2 = [1992(2), 2008(3)]

.

[Table 3.7 about here.]

The outcome of the three tests are reported in Table 3.7. The Q-statistic

p-values are obtained by semi-parametric block-regime bootstrap (see Sec-

tion 3.4.2) with B = 299 replications whereas the individual LR tests p-

values are based on standard asymptotics.

From an inspection of the results, we can infer that the three tests all lead

to the rejection of the null of no breaks – at a standard 5% significance level –

which is consistent with our initial finding of no cointegration over the full

sample. More in detail, in test A the Q-statistic leads to the rejection of the

null of no breaks whether the stability of α and β is tested jointly or not. This

is strong evidence against the null of stability as well as supportive of the

fact that yt and rt are exogenous variables. Further, from an inspection of the

individual LR tests p-values, it is evident that only 2008(3) is a significant

break date. A similar conclusion is drawn when considering the outcome of

test B. In particular, the test further confirms that a break in the relationship

between money demand, real output and short-term investment opportun-

ities occurred in the third quarter of 2008. Again, the same conclusion is

reached with test C, where we perturb the testing framework introducing a

scenario with an insignificant break date in 1992(2).
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To summarise, our analysis of the stability of the narrow money demand

in the US allows us to draw the following conclusions: first, consistently

with the existing literature, the money demand equation is stable up to the

end of 2006; second, the global financial crisis of 2008 causes a break down

in the relationship which manifests itself in the lack of cointegration when

extending the sample to present days. Through the minimum p-value stat-

istic derived in Section 3, we have been able to identify the third quarter of

2008 as the time of the break-down.

3.6.3 Exchange Rate Modelling

In this last application, we want to empirically investigate the role of weak

exogeneity in order to show the consequences that we might incur in if we

ignore the results in Theorem 1. In particular, we model the joint dynamics

of three US dollar denominated exchange rates, namely Euro, Swiss Franc

and Japanese Yen using a VECM. The data are at quarterly frequency over

the period 1999(1)-2014(1) and are obtained from the FRED database. Fig-

ure 3.7 reports the three time series for which we cannot reject the null hy-

pothesis of being unit root processes.

[Figure 3.7 about here.]

As Figure 3.7-(d) shows it seems plausible that the three series share some

common stochastic trends. In order to test for cointegration, we first model

the log-levels selecting a VAR(4) process with a constant and we then de-

cide on the number of cointegrating vectors (i.e. cointegarting rank) us-

ing sequentially the well known eigenvalue-based test for cointegration (Jo-
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hansen, 1991),

λtrace(H0(rank ≤ r)|H1(rank = p)) = −T
p∑

i=r+1

log(1− λ̂i) r = 0, . . . , p−1,

where in this specific case p = 3.

[Table 3.8 about here.]

Table 3.8 reports the outcome of the sequential testing procedure from which

we can conclude that there is one cointegrating vector and two common

stochastic trends. The estimated system of equations with a normalised

cointegrating vector and the p-values of the estimated coefficients in brack-

ets is given by


∆EURt

∆CHFt

∆Y ENt

 = µ+


−0.19302

((0.0293)

−0.11224
(0.0499)

−0.12340
(0.0256)


[
1.0000 −1.5605

(0.0000)
1.6967
(0.0000)

]
EURt−1

CHFt−1

Y ENt−1

+
3∑
i=1

Γ̂i∆Xt−i

from which we can exclude the presence of weak exogeneity, since all the

elements of the short-run impact matrix are statistically different from zero

at 5% significance level. Additionally, we check the stability of the cointeg-

rating relationship by means of a recursive graphical analysis of the eigen-

value corresponding to the cointegrating vector as reported in Figure 3.8.

[Figure 3.8 about here.]

The recursive plot of the estimated value of λ̂1 shows that the cointegrating

vector is stable across the sample period and thus when testing for no breaks

in α and β jointly – given the absence of weak exogeneity – against an al-
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ternative hypothesis where they are allowed to change, we should not reject

the null hypothesis. To investigate this claim statistically, we can compute

the following LR test

A :
H0 : Θ∗(t) = {α(t), β(t),Ω(t)} = Θ∗(t− 1), ∀t = 1, . . . , T

H1 : Θ∗1 6= Θ∗2 | τ1 = 2003(1)

where the break date under the alternative hypothesis corresponds to the

least favourable scenario in terms of stability, i.e. the date that minimises

the p-value corresponding to the null hypothesis of no breaks. Furthermore,

it also interesting to investigate what is the outcome of the test when incor-

rectly specifying the subset of parameters which we want to test for breaks.

This can be achieved changing the subset of parameters Θ∗ to exclude α, i.e.

ignoring the the role of weak exogeneity, leading to the following LR test

B :
H0 : Θ∗(t) = {β(t),Ω(t)} = Θ∗(t− 1), ∀t = 1, . . . , T

H1 : Θ∗1 6= Θ∗2 | τ1 = 2003(1)
.

Table 3.9 reports the outcomes of the the two LR tests. In particular, we com-

puted the p-values by parametric (assuming normality) and semi-parametric

block-regime bootstrap following the steps described in Section 3.4.2 and

using 299 replications to approximate the tests distributions.

[Table 3.9 about here.]

The interpretation of the outcome is straightforward: when wrongly spe-

cifying the subset of parameters to be tested (Test A), i.e. ignoring the role

of weak exogeneity and focusing only on breaks in β, we reject the null of

no breaks even if the standard VECM with no time-varying parameters ap-
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pears to be correctly specified; however, when testing jointly for breaks in α

and β (Test B), consistently with the absence of weak exogeneity, we cannot

reject the null of no breaks. The outcome of the testing procedure is thus

consistent with both Theorem 1 as well as the simulations results reported

in Section 3.5.2.

3.7 Conclusions

In this chapter, we investigate how to specify the subset of parameters when

testing for breaks in a VECM framework. First, we showed that the choice

of which parameters of the VECM can be tested for breaks is indeed con-

strained given that breaks in the long run matrix β implies breaks in the

short run impact matrix α, unless weak exogeneity can be imposed, and

breaks in β imply also breaks in the covariance matrix of the error term.

Second, we developed a new test for multiple structural breaks in a VECM

framework, by extending the likelihood ratio test proposed in Hansen (2003)

to the case of unknown break dates through the specification of several

scenarios regarding the number and the location of the breaks. We defined

a minimum p-value statistic and a bootstrap procedure to approximate its

critical values robust to the presence of breaks in the covariance matrix of

the error term.

The finite sample properties of the proposed statistic are analysed through

an extensive Monte Carlo simulation where under the null hypothesis we

allow for the presence of multiple breaks. The effects of imposing and re-

laxing weak exogeneity as well as weak identification of the cointegrating

matrix are also explored. The statistic we proposed has size close to the
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nominal level and good power when the data are simulated either using a

standard VECM (DGP1) or the data generating process adopted in Gonzalo

(1994) mapped into a VECM (DGP2). We showed that for DGP2, breaks in

the cointegrating parameters cause breaks in the covariance matrix as well

as in the short-term adjustment matrix if weak exogeneity is not imposed.

The breaks-induced heteroskedasticity is addressed in the simulations by

using the wild bootstrap and a block-regime specific bootstrap approach

which allow to restore the correct size. For both DGPs, relaxing weak exo-

geneity, if taken into account, does not affect the finite-sample properties of

the test statistic. As expected, the Q-statistic shows smaller size distortions

when the cointegrating relationship is weakly identified.

Finally, we illustrate how the Q-statistic can be used in applied work to

detect multiple structural breaks by means of three empirical applications:

the first involving the dividend-price ratio of the S&P 500; the second con-

cerning the money demand stability in the US; and the third considering a

vector of exchange rates.
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Appendix 3.A Concentrated Log-likelihood

We present the derivation of the concentrated log-likelihood function reported in

equation (3.7) used to estimate the parameters of (3.3).

First, a reminder of some standard results of matrix algebra will reveal useful

in the derivation. We have that:

• for the trace operator tr(·) and given two matrices X and Y , we have that

tr(XY ) = tr(Y X) =
∑
i,j

Xi,jYj,i , (3.24)

• for a square non-singular matrix X ,

∂log|X|
∂X

= (X−1)> = (X>)−1 , (3.25)

• for a square non-singular matrix X , and two conformable matrices, A and B

not function of X ,

∂tr(AX−1B)

∂X
= −(X−1BAX−1)>. (3.26)

The log-likelihood function of Z0t = AB>Z1t + CZ2t + εt with the error term

distributed as εt
iid∼ N (0,Ω(t)) and piecewise constant covariance matrix Ω(t) =

Ω111t + · · ·+ Ωm1mt is

`(A,B,C,Ωj=1,...,m) = −Tp
2

log2π − T

2

m∑
j=1

ρj log|Ωj | −
1

2

m∑
j=1

Tj∑
t=Tj−1+1

ε>t Ω−1
j εt.

On the basis of (3.24), note that

∑
tε
>
t Ω−1

j εt =
∑

t

∑
m,n(Ω−1

m,n,jεt,mεt,n) =
∑

ttr(Ω
−1
j εtε

>
t ) = tr(Ω−1

j

∑
tεtε

>
t )

and hence the log-likelihood function can be equivalently rewritten as

`(A,B,C,Ωj=1,...,m) = −Tp
2

log2π−T
2

m∑
j=1

ρj log|Ωj |−
1

2

m∑
j=1

tr

Ω−1
j

Tj∑
t=Tj−1+1

εtε
>
t

 .

(3.27)

We can now derive the maximum likelihood estimator Ω̂ML
j=1,...,m of Ωj=1,...,m by

setting the first derivative of the log-likelihood function (3.27) with respect to Ωj
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equal to zero. In particular, for each j = 1, . . . ,m and reminding that ρj =
Tj−Tj−1

T ,

we can apply (3.25)-(3.26) to get

∂`(A,B,C,Ωj=1,...,m)

∂Ωj
=− T

2
ρj
∂log|Ωj |
∂Ωj

− 1

2

∂tr(Ω−1
j

∑Tj
t=Tj−1+1εtε

>
t )

∂Ωj
= 0

⇒(Tj − Tj−1)Ω−1
j = (Ω−1

j

(∑Tj
t=Tj−1+1εtε

>
t

)
Ω−1
j )

⇒Ω̂ML
j =

1

Tj − Tj−1

Tj∑
t=Tj−1+1

εtε
>
t . (3.28)

Note that (3.28) is entirely determined by the other set of parameters since εt =

Z0t − AB>Z1t − CZ2t. Substituting back (3.28) in the log-likelihood function, we

can write

`(A,B,C, Ω̂j=1,...,m) = −Tp
2

log2π − T

2

m∑
j=1

ρj log|Ω̂j | −
1

2

m∑
j=1

tr

Ω̂−1
j

Tj∑
t=Tj−1+1

εtε
>
t


= −Tp

2
log2π − T

2

m∑
j=1

ρj log|Ω̂j |+ (3.29)

− 1

2

m∑
j=1

(Tj − Tj−1)tr

 Ω̂−1
j

Tj − Tj−1

Tj∑
t=Tj−1+1

εtε
>
t


= −Tp

2
log2π − T

2

m∑
j=1

ρj log|Ω̂j | −
1

2

m∑
j=1

(Tj − Tj−1)tr (Ip)

= −Tp
2

(log2π + 1)− T

2

m∑
j=1

ρj log|Ω̂j |. (3.30)

From (3.30), it is evident that the maximum likelihood estimates of the remaining

parameters (φ and ψ = (ψ>A , ψ
>
C )>) that defines the VECM can be found solving the

following

max
φ,ψ
− T

2

m∑
j=1

ρj log
∣∣∣Ω̂j(φ, ψ)

∣∣∣
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or more explicitly

max
φ,ψ
− T

2

m∑
j=1

ρj log

∣∣∣∣∣∣ 1

Tj − Tj−1

Tj∑
t=Tj−1

(Z0t −A(ψA)B(φ)>Z1t − C(ψC)Z2t)(Z0t −A(ψA)B(φ)>Z1t − C(ψC)Z2t)
>
∣∣∣ .

(3.31)
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Appendix 3.B Constructing the Restriction Matrices

In this appendix, we show how to construct the restriction matrices as in Hansen

(2003) in order to impose the adequate restrictions when estimating the broken

VECM.

Consider a simple LR test ofm0 = 1 regime againstm1 = 2 regimes where, sim-

ilarly to our simulation study in Section 5, the breaks affect the long-run coefficient

β̃. By defining 11t ≡ 1(0 ≤ t < T1), 12t ≡ 1(T1 ≤ t < T2), and 13t ≡ 1(T2 ≤ t ≤ T )

we can write the VECM form of the restricted and unrestricted models as

M0:

[
∆x1t

∆x2t

]
︸ ︷︷ ︸

Z0t

=

[
α1 α1 α1

α2 α2 α2

]
︸ ︷︷ ︸

A



1 0 0

−β1 0 0

0 1 0

0 −β2 0

0 0 1

0 0 −β2



>

︸ ︷︷ ︸
B>



11tx1,t−1

11tx2,t−1

12tx1,t−1

12tx2t−1

13tx1,t−1

13tx2,t−1


︸ ︷︷ ︸

Z1t

+

[
ε1t

ε2t

]
(3.32)

M1:

[
∆x1t

∆x2t

]
︸ ︷︷ ︸

Z0t

=

[
α1 α1 α1

α2 α2 α2

]
︸ ︷︷ ︸

A



1 0 0

−β1 0 0

0 1 0

0 −β2 0

0 0 1

0 0 −β3



>

︸ ︷︷ ︸
B>



11tx1,t−1

11tx2,t−1

12tx1,t−1

12tx2t−1

13tx1,t−1

13tx2,t−1


︸ ︷︷ ︸

Z1t

+

[
ε1t

ε2t

]
(3.33)

Therefore, the null modelM0 assumes the same specification asM1 with the

only difference that β3 = β2. So, given φ0 = (β1, β2)>, φ1 = (β1, β2, β3)> and
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ψ = (α1, α2)>, we can define the following restriction matrices

H1 =



0 0 0

−1 0 0

0
(6×1)

0
(6×1)

0
(6×1)

0 0 0

0 −1 0

0
(6×1)

0
(6×1)

0
(6×1)

0 0 0

0 0 −1



, H0 =



0 0

−1 0

0
(6×1)

0
(6×1)

0 0

0 −1

0
(6×1)

0
(6×1)

0 0

0 −1



, h =



1

0

0
(6×1)

1

0

0
(6×1)

1

0


, G =



1 0

0 1

1 0

0 1

1 0

0 1



such that vec(B0) = H0φ0 + h, vec(B1) = H1φ1 + h, and vec(A) = Gψ.
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Table 3.1: Empirical Size for DGP1.

α1 = −1 α2 = 0 α1 = −0.2 α2 = 0 α1 = −0.01 α2 = 0 α1 = −0.5 α2 = 0.5

T p sp p sp p sp p sp

0 breaks

100 6.1 6.1 6.4 6.9 8.6 8.2 4.7 5.2
200 5.4 5.9 5.4 5.2 8.8 8.6 4.4 4.4
300 4.4 5.2 4.0 4.2 6.5 6.7 5.9 5.8
400 5.8 5.4 7.1 6.8 6.1 6.0 4.9 5.1
500 4.8 5.3 4.8 4.6 6.0 6.5 5.6 5.1

1 break

T1 = T/2

100 4.8 4.4 5.4 6.0 6.1 6.3 4.7 4.9
200 6.0 6.3 5.5 5.5 6.9 6.6 5.4 5.4
300 5.0 4.8 5.2 5.1 6.1 5.1 5.1 4.9
400 7.0 6.1 6.5 5.8 7.2 7.3 5.7 6.2
500 4.9 4.7 4.7 4.6 5.4 4.6 5.5 5.9

T1 = 20

100 4.5 4.4 5.8 5.1 9.5 9.2 5.2 4.9
200 7.1 6.8 7.3 7.4 6.5 6.3 4.9 4.7
300 4.6 4.8 4.9 5.0 6.1 5.6 6.1 6.7
400 5.6 5.5 5.3 5.5 5.4 5.9 7.0 6.7
500 4.7 4.9 4.9 5.3 5.4 4.6 5.7 5.9

T1 = T − 20

100 6.0 5.3 4.4 4.6 8.2 7.3 5.2 4.3
200 5.7 5.7 5.6 5.3 6.5 6.5 4.3 4.7
300 5.3 5.2 5.0 5.0 6.4 6.6 6.4 6.1
400 6.0 5.5 5.0 5.3 7.0 7.3 5.1 4.9
500 5.0 4.8 4.3 4.9 6.4 6.7 6.0 6.3

2 breaks

T1 = T/2 T2 = 2T/3

100 4.7 4.5 5.2 5.6 6.7 6.7 5.3 4.7
200 5.7 6.2 5.7 5.6 6.3 6.5 4.5 4.3
300 5.0 4.8 5.3 5.5 5.6 6.4 5.7 4.9
400 6.0 5.6 5.7 5.7 6.6 7.3 6.0 5.9
500 4.6 4.9 5.4 4.8 4.4 4.4 4.9 5.1

T1 = 20 T2 = 2T/3

100 5.8 5.7 5.6 5.6 8.2 8.2 4.5 3.9
200 6.0 6.7 6.0 5.8 6.8 7.4 4.7 5.4
300 6.5 5.7 6.2 5.9 5.3 5.1 6.4 6.1
400 6.1 6.0 6.0 5.9 8.7 8.1 5.4 5.4
500 4.8 5.3 5.1 5.7 5.6 5.5 5.7 5.9

T1 = T − 20 T2 = T/2

100 4.8 5.1 5.2 5.4 7.0 6.7 6.0 5.5
200 5.7 5.4 5.3 5.1 5.6 6.1 4.3 4.4
300 5.7 5.1 4.9 4.9 5.5 5.4 6.3 5.7
400 5.3 5.4 5.7 5.3 6.3 6.8 6.3 6.6
500 5.4 5.8 5.0 5.7 4.5 4.8 5.7 5.7

Note: Nominal level used to compute the empirical rejection frequencies is 5%. “p” indic-
ates parametric bootstrap while “sp” semi-parametric bootstrap.
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Table 3.2: Empirical Power for DGP1

α1 = −1 α2 = 0 α1 = −0.2 α2 = 0 α1 = −0.01 α2 = 0 α1 = −0.5 α2 = 0.5

p sp p sp p sp p sp

T1 = T/2

β2 T = 100

1.1 58.0 58.1 10.0 8.9 8.5 8.1 27.4 28.1
1.3 96.7 96.9 29.0 28.5 9.0 8.2 77.8 77.5
1.5 99.9 100.0 52.1 50.9 9.3 8.3 94.6 94.5
2.0 99.9 100.0 84.0 84.4 9.4 9.1 99.5 99.3

β2 T = 300

1.1 94.5 94.5 26.4 25.9 6.4 6.5 71.2 70.4
1.3 98.3 98.5 73.5 73.4 6.7 6.6 99.6 99.6
1.5 100.0 100.0 93.3 93.7 7.3 6.8 100.0 100.0
2.0 100.0 100.0 96.4 96.3 10.2 9.5 100.0 100.0

β2 T = 500

1.1 99.6 99.8 44.3 43.8 6.3 6.6 91.4 91.5
1.3 100.0 100.0 95.1 94.8 7.0 7.3 100.0 100.0
1.5 100.0 100.0 99.4 99.4 7.9 9.3 100.0 99.8
2.0 100.0 100.0 99.6 99.6 14.6 14.8 100.0 100.0

T1 = T/2 T2 = 2T/3

β3 T = 100

2.1 55.0 54.6 9.4 9.7 7.2 7.1 18.1 17.6
2.3 88.9 88.9 27.6 27.5 7.5 7.8 56.3 56.1
2.5 96.7 96.5 49.3 47.8 8.4 7.9 76.4 76.5
3.0 99.9 99.9 71.2 69.9 9.5 9.2 96.3 96.5

β3 T = 300

2.1 88.2 88.0 19.5 19.7 6.5 6.3 51.3 51.8
2.3 98.2 98.3 55.7 55.9 7.5 6.7 90.6 90.7
2.5 98.3 98.2 67.9 67.4 8.5 8.1 98.4 98.8
3.0 97.2 97.3 80.6 79.8 10.8 10.4 100.0 100.0

β3 T = 500

2.1 96.1 96.0 36.1 36.4 6.1 6.0 73.0 72.8
2.3 99.2 99.2 67.0 66.7 8.3 8.0 97.6 97.8
2.5 99.2 99.2 79.4 79.0 8.5 8.1 99.8 99.8
3.0 99.7 99.7 85.9 85.4 9.3 9.3 100.0 100.0

T1 = T/2 T2 = 2T/3 T3 = 5T/6

β4 T = 100

1.6 50.2 49.6 7.3 7.0 6.0 6.3 19.0 19.2
1.8 84.0 83.7 26.2 26.4 6.4 6.8 56.9 56.2
2.0 94.4 94.1 45.3 45.4 6.7 6.7 74.5 74.3
2.5 99.7 99.7 69.0 69.0 7.3 7.6 92.3 92.1

β4 T = 300

1.6 81.8 81.4 21.9 21.8 7.0 6.2 52.9 52.8
1.8 99.4 99.3 58.7 57.6 6.8 6.6 88.5 88.4
2.0 100.0 100.0 65.0 64.3 7.0 7.2 97.1 97.0
2.5 100.0 100.0 78.3 77.5 11.0 11.8 100.0 100.0

β4 T = 500

1.6 92.6 92.8 43.9 43.4 4.8 4.5 71.0 71.4
1.8 100.0 99.9 77.6 76.6 5.3 5.0 97.2 97.2
2.0 100.0 100.0 82.3 82.1 6.1 5.5 99.5 99.5
2.5 100.0 100.0 88.2 87.4 12.5 12.7 100.0 100.0

Note: See notes below Table 3.1.
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Table 3.3: Empirical Rejection Frequencies for DGP2 with Weak Exogeneity Im-
posed

(a) Size
a1 = 0, ρ = 0 a1 = 0, ρ = 0.8 a1 = 0, ρ = 0.99

T w b-p b-sp w b-p b-sp w b-p b-sp

0 breaks

100 5.8 5.4 5.4 6.6 6.4 5.8 8.5 9.0 8.0
200 5.1 4.9 4.8 5.9 4.9 5.0 7.5 7.7 7.2
300 5.5 5.7 5.4 5.4 5.3 5.4 8.7 8.2 7.6
400 6.5 5.8 6.3 6.6 6.1 6.6 9.0 8.4 8.5
500 5.4 5.3 5.0 5.4 5.5 5.1 8.4 7.1 6.4

1 break

T1 = T/2

100 4.5 4.2 4.1 6.4 4.7 4.5 6.3 7.6 7.6
200 4.9 5.9 5.5 6.3 5.4 5.3 7.9 8.1 8.0
300 4.6 4.3 5.2 5.6 5.7 5.2 7.2 7.1 6.1
400 6.4 6.6 6.7 6.7 6.5 6.2 6.7 7.0 7.3
500 4.4 4.5 5.0 5.0 4.1 4.7 6.4 6.7 6.9

T1 = 20

100 3.2 4.2 4.3 4.8 5.0 4.7 7.3 8.6 8.1
200 5.6 6.2 6.4 7.1 6.7 7.1 6.6 6.1 5.1
300 4.5 4.5 4.7 4.9 5.9 5.6 6.3 5.0 4.8
400 5.7 4.7 5.1 5.0 4.9 4.5 7.5 6.3 5.8
500 4.8 4.6 3.8 4.8 4.1 4.3 6.6 5.2 5.1

T1 = T − 20

100 4.6 5.4 5.0 5.1 5.2 5.2 6.9 8.6 8.6
200 4.0 5.5 5.3 5.3 5.8 5.8 4.9 6.3 6.9
300 4.5 5.5 5.5 5.0 4.9 5.1 5.8 6.3 6.1
400 5.1 5.0 5.0 5.3 5.0 5.2 4.5 6.7 6.1
500 4.1 5.1 5.2 4.5 5.2 4.9 4.0 4.8 5.2

2 breaks

T1 = T/2 T2 = 2T/3

100 4.0 4.4 4.3 4.0 4.1 4.5 8.2 8.7 8.3
200 5.3 4.6 5.0 6.6 4.8 4.7 6.8 6.9 7.4
300 5.8 4.5 4.5 8.0 5.6 5.8 7.1 7.4 6.9
400 6.7 5.6 5.4 7.4 5.3 5.2 7.5 8.5 7.6
500 6.0 5.3 4.9 5.8 4.2 4.6 6.4 6.3 6.5

T1 = 20 T2 = 2T/3

100 5.3 5.8 5.6 6.4 5.6 5.7 10.1 9.5 9.6
200 6.0 6.7 5.8 7.6 6.5 6.3 7.3 7.4 7.2
300 5.1 5.7 5.4 5.4 5.3 5.3 8.3 8.0 7.3
400 5.2 5.7 5.1 6.7 5.6 5.8 6.5 7.5 6.7
500 3.6 4.3 4.8 5.0 4.5 4.4 6.5 5.9 6.0

T1 = T − 20 T2 = T/2

100 5.5 5.0 5.4 5.8 4.5 5.5 9.6 9.3 9.5
200 4.7 4.8 4.7 6.2 5.7 5.0 6.5 7.6 8.0
300 5.4 5.0 4.6 7.6 5.8 6.7 8.0 7.3 7.6
400 6.1 6.3 6.1 6.7 5.9 5.6 5.5 5.9 5.3
500 5.0 4.7 4.2 6.0 4.3 4.5 4.6 5.2 4.7

(b) Power
a1 = 0, ρ = 0 a1 = 0, ρ = 0.8 a1 = 0, ρ = 0.99

w b-p b-sp w b-p b-sp w b-p b-sp

T1 = T/2

β2 T = 100

1.1 56.0 57.3 56.2 10.3 9.9 8.7 10.5 8.9 8.4
1.3 94.6 94.6 94.4 25.2 23.7 24.2 10.3 8.0 8.4
1.5 99.0 99.1 99.0 40.7 38.4 38.3 10.8 8.3 9.2
2.0 99.1 99.6 99.7 56.1 56.0 55.8 14.1 11.0 11.4

β2 T = 300

1.1 95.7 95.8 95.7 25.9 25.2 24.1 8.7 8.2 7.5
1.3 100.0 100.0 100.0 73.2 72.4 72.3 9.3 7.4 7.3
1.5 100.0 100.0 100.0 89.0 88.7 88.8 10.7 8.8 8.9
2.0 100.0 100.0 100.0 96.0 96.0 95.9 13.6 11.6 11.2

β2 T = 500

1.1 100.0 99.9 99.8 47.3 46.1 47.1 9.6 6.7 5.9
1.3 100.0 100.0 100.0 91.6 91.2 91.0 11.2 8.4 8.0
1.5 100.0 100.0 100.0 98.9 98.8 98.8 11.1 9.3 8.6
2.0 99.9 99.9 99.9 99.5 99.6 99.8 17.1 14.3 13.1

T1 = T/2 T2 = 2T/3

β3 T = 100

2.1 46.0 43.2 41.9 7.8 6.7 6.7 7.5 8.7 7.9
2.3 83.7 81.1 79.8 18.0 15.4 15.6 8.2 8.8 8.5
2.5 93.6 91.7 91.6 30.2 25.4 26.7 8.0 8.4 9.4
3.0 98.5 97.9 97.9 49.1 44.2 45.1 10.0 10.5 9.9

β3 T = 300

2.1 86.6 86.3 85.1 22.0 20.8 21.2 8.8 7.5 7.6
2.3 99.8 99.8 99.6 62.3 60.7 59.8 8.6 7.4 7.6
2.5 99.9 99.9 99.9 76.5 75.8 76.6 9.6 7.5 7.5
3.0 99.5 99.5 99.5 87.1 86.6 86.0 12.8 9.3 9.6

β3 T = 500

2.1 95.2 95.6 95.0 40.0 38.2 37.6 8.0 6.9 7.6
2.3 100.0 100.0 100.0 80.7 80.4 80.3 9.7 7.0 7.8
2.5 99.9 99.9 99.9 91.9 91.4 91.1 10.3 7.7 8.7
3.0 99.9 99.9 99.9 97.8 97.9 97.3 13.1 11.1 11.1

T1 = T/2 T2 = 2T/3 T3 = 5T/6

β4 T = 100

1.6 45.9 46.1 45.9 7.1 6.2 6.7 7.2 9.0 8.3
1.8 80.1 80.4 79.9 24.9 24.2 24.5 7.9 8.8 8.5
2.0 91.0 90.3 90.1 42.6 40.2 39.8 8.8 8.8 8.6
2.5 98.4 98.4 98.3 61.1 59.5 58.8 10.5 9.1 9.7

β4 T = 300

1.6 78.9 80.1 78.9 21.5 21.3 20.4 5.6 7.0 7.6
1.8 98.1 98.5 98.2 61.0 61.2 60.6 6.4 7.6 8.1
2.0 99.8 99.7 99.7 75.2 74.5 74.3 7.4 7.8 8.6
2.5 100.0 100.0 100.0 87.6 87.5 86.9 10.7 9.9 9.9

β4 T = 500

1.6 91.3 91.5 91.0 40.0 40.9 40.6 4.8 5.7 6.1
1.8 99.9 99.9 99.9 77.5 78.1 77.0 5.4 6.6 6.4
2.0 99.9 99.9 99.9 88.8 88.6 88.1 6.8 8.0 7.8
2.5 100.0 100.0 100.0 96.3 96.2 96.3 16.2 15.2 14.9

Note: Nominal level used to compute the empirical rejection frequencies is 5%. “w” denotes wild bootstrap, “b-
p” block-regime bootstrap with parametric resampling and “b-sp” block-regime bootstrap with semi-parametric
resampling.
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Table 3.4: Empirical Rejection Frequencies for DGP2 with Weak Exogeneity Re-
laxed

(a) Size

a1 = 1, ρ = 0 a1 = 1, ρ = 0 a1 = 1, ρ = 0

T w b-p b-sp w b-p b-sp w b-p b-sp

0 breaks 1 break 2 breaks

T1 = T/2 T1 = T/2 T2 = 2T/3

100 5.8 5.0 6.2 6.9 4.8 5.4 9.0 6.6 4.8
200 4.4 4.4 4.1 7.8 6.8 6.1 6.7 5.2 3.8
300 5.7 5.6 4.9 6.1 5.0 4.7 7.8 5.8 4.0
400 5.8 5.3 5.9 7.3 5.3 5.9 9.7 7.0 4.8
500 5.2 5.5 5.2 5.7 4.2 4.3 7.9 5.5 3.2

T1 = 20 T1 = 20 T2 = 2T/3

100 . . . 2.8 3.7 3.3 2.7 4.0 3.2
200 . . . 4.4 4.5 4.9 5.5 5.3 4.8
300 . . . 3.3 3.3 3.4 4.2 4.9 4.0
400 . . . 5.3 4.6 4.8 4.3 3.9 3.3
500 . . . 3.9 3.3 2.9 4.7 4.8 3.8

T1 = T − 20 T1 = T − 20 T2 = T/2

100 . . . 8.9 6.6 5.7 9.5 5.8 4.8
200 . . . 6.3 5.5 5.0 9.5 5.6 5.0
300 . . . 6.5 5.9 6.3 7.0 4.1 2.7
400 . . . 6.1 5.2 5.3 9.9 5.7 4.7
500 . . . 5.8 5.9 5.5 9.6 6.1 5.3

(b) Power

a1 = 1, ρ = 0 a1 = 1, ρ = 0 a1 = 1, ρ = 0

w b-p b-sp w b-p b-sp w b-p b-sp
T1 = T/2 T1 = T/2 T2 = 2T/3 T1 = T/2 T2 = 2T/3 T3 = 5T/6

β2 T = 100 β3 T = 100 β4 T = 100

1.1 20.8 20.3 20.2 2.1 36.1 33.5 32.4 1.6 10.2 8.8 7.3
1.3 61.0 61.4 60.5 2.3 73.8 68.9 69.5 1.8 35.6 32.4 30.5
1.5 80.9 80.8 81.1 2.5 86.2 82.6 81.6 2.0 50.4 47.9 44.5
2.0 95.3 95.4 95.3 3.0 93.9 92.6 91.3 2.5 66.4 63.4 61.7

β2 T = 300 β3 T = 300 β4 T = 300

1.1 62.5 62.8 62.7 2.1 78.2 77.5 77.2 1.6 36.7 35.0 31.9
1.3 98.2 98.1 98.1 2.3 98.5 98.6 98.6 1.8 74.3 73.3 71.2
1.5 99.8 99.9 99.7 2.5 98.9 99.8 99.6 2.0 84.4 83.2 80.8
2.0 100.0 100.0 100.0 3.0 99.2 99.9 99.9 2.5 90.9 86.9 85.7

β2 T = 500 β4 T = 500 β4 T = 500

1.1 85.7 85.0 84.8 2.1 91.9 91.7 91.6 1.6 58.8 57.4 53.6
1.3 100.0 100.0 100.0 2.3 99.7 99.7 99.7 1.8 88.6 87.5 85.8
1.5 100.0 100.0 100.0 2.5 97.1 99.7 99.7 2.0 91.8 90.0 89.1
2.0 100.0 100.0 100.0 3.0 99.8 100.0 100.0 2.5 94.3 92.7 91.4

Note: See notes below Table 3.3.
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Table 3.5: Q-statistic Results

A. Θ∗ = {β,Ω}
# breaks Break1 Break2 Break 3 log-lik LR(H0|H1) DoF p-value

H0 0 1681.3 0 0 0
H11 1 1987(3) 1681.4 0.2319 1 0.6301
H12 1 1999(3) 1684.2 5.8025 1 0.0160
H13 1 2007(4) 1682.2 1.7152 1 0.1903

Q p-value = 0.21405

B. Θ∗ = {α, β,Ω}
# breaks Break1 Break2 Break 3 log-lik LR(H0|H1) DoF p-value

H0 0 1681.3 0 0 0
H11 1 1987(3) 1681.4 0.2988 3 0.9603
H12 1 1999(3) 1685.3 8.0054 3 0.0459
H13 1 2007(4) 1692.7 22.7650 3 0.0000

Q p-value = 0.07692∗

C. Θ∗ = {α, β,Ω}
# breaks Break1 Break2 log-lik LR(H0|H1) DoF p-value

H0 0 1681.3 0 0 0
H11 2 1999(3) 2007(4) 1698.5 34.4850 6 0.0000
H12 3 1987(3) 1999(3) 2007(4) 1699.5 36.4970 9 0.0000

Q p-value = 0.04013∗∗

D. Θ∗ = {α, β,Ω}
# breaks Break1 Break2 log-lik LR(H0|H1) DoF p-value

H0 2 1999(3) 2007(4) 1698.5 0 0 0
H11 3 1987(3) 1999(3) 2007(4) 1699.5 2.012 3 0.5699

Q p-value = 0.59532

Note: For each test the number of break dates under the null and the alternative hypotheses is reported
together with the location of the breaks. Under the column labelled “Log-lik” the value of the maxim-
ised log-likelihood function for the corresponding model is reported while LR(H0|H1) denotes the
value of the likelihood-ratio test of the null hypothesis against each scenario. “**” and “*” denotes
rejection of the null hypothesis at 5% and 10% level, respectively. TheQ-statistic p-values are obtained
by semi-parametric block-regime bootstrap (see Section 4.2) with 299 replications.
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Table 3.6: λtrace test for cointegration.

rank ≤ λtrace p-value
Full Sample: 1981(1)-2014(1)
0 29.012 [0.062]
1 6.3404 [0.660]
2 0.047966 [0.827]

Reduced Sample: 1981(1)-2006(4)
0 42.999 [0.001] **
1 13.185 [0.108]
2 0.49446 [0.482]
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Table 3.7: Q-statistic Results

Test A

Θ∗ = {β,Ω}
# breaks Break1 Break2 log-lik LR(H0|H1) DoF p-value

H0 0 1409.40 0.00000
H11 1 2008(3) 1419.20 19.561 2 0.00006
H12 1 2011(4) 1411.10 3.278 2 0.19417
H13 2 2008(3) 2011(4) 1420.00 21.143 4 0.00030

Q p-value = 0.0402∗

Θ∗ = {α, β,Ω}
# breaks Break1 Break2 log-lik LR(H0|H1) DoF p-value

H0 0 1409.40 0.00000
H11 1 2008(3) 1425.40 31.866 5 0.00001
H12 1 2011(4) 1412.00 5.055 5 0.40927
H13 2 2008(3) 2011(4) 1432.50 46.145 10 0.00000

Q p-value = 0.00000

Test B

Θ∗ = {β,Ω}
# breaks Break1 log-lik LR(H0|H1) DoF p-value

H0 0 1409.40 0.00000
H11 1 2008(3) 1419.20 19.561 2 0.00006
H12 1 2011(4) 1411.10 3.278 2 0.19417

Q p-value = 0.0302∗

Θ∗ = {α, β,Ω}
# breaks Break1 log-lik LR(H0|H1) DoF p-value

H0 0 1409.40 0.00000
H11 1 2008(3) 1425.40 31.866 5 0.00001
H12 1 2011(4) 1412.00 5.055 5 0.40927

Q p-value = 0.00502

Test C

Θ∗ = {β,Ω}
# breaks Break1 Break2 log-lik LR(H0|H1) DoF p-value

H0 0 1409.40 0.00000
H11 1 2008(3) 1419.20 19.561 2 0.00006
H12 2 1992(2) 2008(3) 1421.00 23.083 4 0.00012

Q p-value = 0.00503

Θ∗ = {α, β,Ω}
# breaks Break1 Break2 log-lik LR(H0|H1) DoF p-value

H0 0 1409.40 0.00000
H11 1 2008(3) 1425.40 31.866 5 0.00001
H12 2 1992(2) 2008(3) 1436.80 54.691 10 0.00000

Q p-value = 0.00000

Note: TheQ-statistic p-values are obtained by semi-parametric block-regime bootstrap (see
Section 3.4.2) with B = 299 replications. * denotes acceptance ofH0 at 1% level.
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Table 3.8: λtrace test for cointegration.

rank ≤ λtrace p-value
0 34.293 [0.013] *
1 6.6910 [0.619]
2 0.38880 [0.533]
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Table 3.9: Bootstrapped LR Tests for Breaks

Break Date(s) p-value
H0 H1 param non-param

Θ∗ = {β,Ω}

0 2003(1) 0.0635∗ 0.0435∗∗

Θ∗ = {α, β,Ω}

0 2003(1) 0.2609 0.2241

Note: The reported p-values are obtained by block-regime bootstrap
(see Section ) with B = 299 replications.
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(b) T = 100 ρ = 0.8
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(c) T = 300, ρ = 0

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

30

35

β̃2/β̃1

er
f
(%

)

(d) T = 300, ρ = 0.8
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(e) T = 500 ρ = 0
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Figure 3.1: The above graphs plot on the “x” axis the magnitude of the break, i.e.
the ratio between the long-run coefficient post-break (β̃2) and pre-break (β̃1), while
on the “y” axis the empirical rejection frequencies of H0 for Case“A” and for Case
“B”. Different sample sizes T and values of ρ are explored.
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Figure 3.2: Log Dividend-Price Ratio 1871-2014
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Figure 3.3: The graphs plot the one-step ahead residuals together with ±2σ̂res for
both the dividend (dt) and the price (pt) series. The residuals are obtained by recurs-
ive estimation of the VECM over the period 1960(1)-2014(2) with an initial window
of 50 observations.
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Figure 3.4: Money Demand Variables
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Figure 3.5: 1-step Chow stability test over the period 1981(1)-2014(2).
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Figure 3.6: 1-step Chow stability test over the period 1981(1)-2006(4).
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Figure 3.7: Log Exchange Rates
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Figure 3.8: Recursive Plot of λ̂1 (Eigenvalue associated with the cointegrating vec-
tor)
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Chapter 4

Robust Estimation of Real

Exchange Rate Process Half-life?

4.1 Introduction

The purchasing power parity (PPP) condition holds if the real exchange rate

process is stationary and it reverts to its mean in about one to two years, the

necessary time to absorb financial and monetary shocks which are thought

to affect the exchange rate. Over the last thirty years, the validity of the PPP

condition has been subject to several empirical tests by means of alternative

econometric techniques. Sarno and Taylor (2002) provide an extensive liter-

ature review from the early seventies to recent years (see also James et al.,

2012).
?A research paper based on this chapter has been submitted for publication. Preliminary

versions of this chapter have been presented at the 15th OxMetrics User Conference (Cass
Business School, September 4-5 2014), at the VII International conference of the ERCIM
WG (Pisa, 6-8 December 2014), at the XXXIX Spanish Economic Symposium (Palma de
Mallorca, 11-13 December 2014), and at the RES post-graduate meeting (University College
London, 9-10 January 2015).
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Robust Estimation of Real Exchange Rate Process Half-life

The main empirical evidence is that the PPP is valid in the long-run

while substantial deviations are usually observed in the short-run. In other

terms, the process followed by the real exchange rate is found to be station-

ary but with high persistence. To measure the degree of persistence of the

real exchange rate process, the concept of half-life is usually employed (see

Mark, 2001; Rossi, 2005; Chortareas and Kapetanios, 2013). This is defined

as the period of time necessary for the real exchange rate process to dissip-

ate by half a unitary shock (or its cumulative effect) and it is commonly used

as a measure to quantify to which extent the purchasing power parity con-

dition holds. Empirical findings seem to confirm that the half-life of the real

exchange rate ranges from about three to five years (see Frankel and Rose,

1996, for an extended study involving over a hundred of countries), giving

rise to the so called “PPP puzzle” as defined in Rogoff (1996). Taylor (2001)

explores possible sources of bias which might explain the puzzling half-

lives measures obtained in the literature and he suggests that the puzzle

might be mitigated by taking into account data aggregation issues and by

allowing for non-linear dynamics in the real exchange rate process. Not-

withstanding, together with the correct specification of the statistical frame-

work used to model the real exchange rate process, correct inference for the

model parameters is crucial for obtaining reliable half-life measures.

In this chapter, we argue that the data generating process of the real ex-

change rate is likely to include outliers that, if not accounted for, distort

the estimated half-lives since they alter the autocorrelation structure of the

observed time series (see for instance Tsay, 1986). Indeed, from a visual in-

spection of the USD/GBP real exchange rate time series in Figure 4.1, it is

evident that our conjecture is not completely at odds with empirical evid-
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ence.

[Figure 4.1 about here.]

This chapter contributes to the literature on the PPP puzzle in three direc-

tions.

First, we propose a new framework to model the real exchange rate pro-

cess. In particular, we allow the real exchange rate to follow an ARMA

process contaminated with additive and innovative outliers as well as level

shifts. Further, we devise a fast and accurate procedure to estimate the half-

life of the ARMA process in this framework.

Second, in order to estimate the outlier-contaminated model, we con-

sider an extension of the Dummy Saturation approach introduced by Hendry

(1999) and Hendry et al. (2008) which considers saturating in turn with ad-

ditive outliers, innovative outliers and level shifts in a maximum likelihood

framework. The performance of the procedure, in terms of retention rate of

the insignificant outliers, is explored using a Monte Carlo simulation.

Finally, in order to show the severity of the effect of unaccounted out-

liers on the estimation of the half-life, we carry out empirical application

involving US dollar real exchange rates for a group of developed countries.

The results we obtain are consistent with our claim. As a matter of fact, we

find that half-life estimates can indeed change dramatically when outlying

observations are accounted for. In particular, we find that estimated half-

lives are considerably shorter for the exchange rates which exhibit the most

puzzling behaviour than when computing the half-life disregarding the ef-

fect of outliers.
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The reminder of the chapter is organised as follows: Section 4.2 briefly

reviews the existing literature focusing on the existing approaches to model

the real exchange rate process and computing the half-life; Section 4.3 presents

our model and describes the estimation approach; Section 4.4 reports the

empirical application and Section 4.5 concludes.

4.2 Review of the Literature

The real exchange rate process is usually regarded as a measure of deviation

from the PPP relationship. In particular, if we denote with St the spot nom-

inal exchange rate while with P h
i,t and P f

i,t the domestic and foreign price of

the ith good respectively, the PPP condition can be formulated as a general-

isation of the law of one price to a basket of goods, such that

St =

∑N
i=1 wiP

h
i,t∑N

i=1 wiP
f
i,t

=
P̄ h
t

P̄ f
t

t = 1, . . . , T (4.1)

whereN denotes the number of goods in the basket andwi, such that
∑N

i=1wi =

1, denotes the weight assigned to the ith good. The logarithmic form of the

PPP is then given by

st = p̄ht − p̄
f
t , (4.2)

and from (4.2), the real exchange rate is defined as

qt ≡ st − p̄ht + p̄ft (4.3)

which should then be equal to 0 for all t = 1, . . . , T if PPP holds exactly. In

general, however, {qt} follows a stochastic process which properties can be
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used to study the deviations from PPP. Empirically, as reported in Rogoff

(1996), we usually proxy the price of the goods in one country by the corres-

ponding CPI (of traded goods), where CPIht = P̄ h
t /P̄

h
0 and CPIft = P̄ f

t /P̄
f
0

with the subscript “0” denoting some chosen base year 1. In practice, what

we are actually computing when using the CPI (or every other price index)

is then

st − (p̄ht − p̄h0) + (p̄ft − p̄
f
0) = qt + p̄h0 − p̄

f
0 = qt + const (4.4)

which implies that the real exchange rate obtained in this way has an ex-

pectation different from zero by construction.

In the economic literature, we can find two different ways to model

the process followed by {qt}. The vast majority of the empirical studies

models the real exchange rate process according to linear dynamic mod-

els assuming either an AR(1) (Abuaf and Jorion, 1990) or an AR(p) (Rossi,

2005; Chortareas and Kapetanios, 2013) structure. As noted in Chortareas

and Kapetanios (2013), assuming a simplistic AR(1) is however suboptimal

whenever the dynamics followed by the real exchange rate process can be

captured by higher order models although the computation of the half-life

complicates. Further, we think that the use of ARMA processes has been

largely overlooked in favour of simple AR processes. The reason is not

completely clear thus one explanation might lie in the fact that the com-

putation of the half-life is relatively less straightforward. To the best of our

knowledge, the only exceptions are Diebold et al. (1991) and Cheung and

Lai (2000) where the authors allow {qt} to follow a long-memory process of

1We are assuming to be in the ideal situation where the price index is computed from
the same basket of goods in the two countries. In practice, this is almost never satisfied
and together with the way in which the weights are formed is one of the main source of the
index problem.
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the ARFIMA class and a stationary ARMA process, respectively. All these

studies, with the exception of Chortareas and Kapetanios (2013) who adopt

a different half-life measure, find that PPP holds in the long-run whereas

substantial deviations occurs in the short-run. Another stream of literat-

ure, building on the “bands of inaction” argument raised in Taylor (2001),

considers instead non-linear dynamic models like self-exciting threshold

autoregression (SETAR) and smooth transition autoregression (STAR). Ac-

cording to Taylor (2001), bands of inaction due to transaction costs, where

the real exchange rate behaves like a random walk, would bias upward

the autoregressive coefficient giving rise to half-lives bigger than those that

would be observed if measuring the half-life outside these bands.

As mentioned in the introduction, testing the PPP condition involves

the computation of a measure of persistence of the process followed by {qt}.

Typically, this is done by computing the half-life of the process2. Accord-

ing to Mark (2001) and Rossi (2005), the half-life is formally defined as the

smallest h such that E(qt+h − q0|qt−s − q0, s ≤ 0) ≤ 1
2
(qt − q0) , i.e. the time

necessary for qt to revert back at half its initial post shock value. Denoting

with ψ(t) for t ≥ 0 the impulse response function (IRF) of {qt} and consider-

ing an initial unitary shock to give ψ(0) = 1, the above definition of half-life

corresponds to the instant h such that

ψ(h) =
1

2
. (4.5)

More in detail, Mark (2001) provides a formula to compute half-lives for

stationary AR(p) processes while Rossi (2005) derives an asymptotic approx-

2Alternative measures are given in Andrews and Chen (1994).
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imation and confidence intervals for the half-life of AR(p) processes when

one root of the characteristic polynomial is close to unity. Their results are

consistent with the puzzling behaviour of the PPP condition.

Recently, Chortareas and Kapetanios (2013) proposed an alternative defin-

ition of half-life based on the decline of the cumulative effect of a shock

rather than its point value. In particular, half-life is defined as the instant h

such that half of this cumulative effect has dissipated. In terms of the IRF

ψ(t), it can be expressed as

∫ h

0

f [ψ(i)]di =

∫ ∞
h

f [ψ(i)]di (4.6)

with f [ψ(i)] = |ψ(i)|, to accommodate negative values of the IRF, or f [ψ(i)] =

ψ(i)2 to take also into account the possibility of long-memory processes. The

authors apply this new definition of half-life using US dollar exchange rates

for a set of developed countries for the period 1957:Q1-1998:Q4 and find-

ing a reduction in the half-lives with respect to previous studies. Notwith-

standing, in this chapter, we adopt the standard definition of half-life for

ease of comparison with the previous results and given that the PPP puzzle

has been built around this definition. In general, however, it is clear that

whichever of the two definitions we decide to adopt, the computation of

the half-life depends on the estimated parameters of the underlying model

and thus, outliers robust methods are equally advised.

In what follows, we extend the current literature not restricting {qt} to

follow only AR(p) processes but considering more general stationary ARMA(p, q)

processes contaminated by outliers and level shifts (see Section 4.3). Fur-

ther, we describe a fast method to compute exact half-lives for ARMA(p, q)
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processes according to (4.5) (see Section 4.3.3).

4.3 Real Exchange Rate Process: an Outliers-based

Approach

We assume that the real exchange rate process {qt} is well represented by a

stationary ARMA(p, q) process contaminated by outliers and level shifts. In

particular, let the process followed by {qt} be described by

qt = q0 +
k∑
i=1

δiVi(L)1(t = Ti) + vt (4.7)

φ(L)vt = θ(L)εt t = 1, . . . , T (4.8)

where q0 can be thought as the long-run value of the real exchange rate, k

denotes the number of outlying events, δi is the outlier or level shift size,

Vi(L) (with L denoting the lag operator) defines the outlier type, 1(t = Ti) is

an impulse indicator assuming value 1 for t = Ti and 0 otherwise, φ(L) = 1−

φ1L−· · ·−φpLp and θ(L) = 1−θ1L−· · ·−θqLq are lag polynomials with roots

outside the unit circle, and εt
iid∼ N (0, σ2

ε). The specification of Vi(L) allows to

characterise different kinds of outlying observations (see Tsay, 1988). Three

specifications are particularly relevant to our analysis:

Vi(L) = 1 Additive Outlier (AO)

Vi(L) = φ−1(L)θ(L) Innovative Outlier (IO)

Vi(L) = (1− L)−1 Level Shift (LS) (Since (1− L)−11(t = Ti) = 1(t ≥ Ti)).
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The difference between AO and IO concerns with the way they affect the

time series. To better understand their impact, assume to be able to distin-

guish kA AOs, kI IOs and kL LSs, and rewrite (4.7)-(4.8) in terms of εt to

give

qt = q0+
kA∑
i=1

δAi 1(t = Ti)+
θ(L)

φ(L)

 kI∑
l=1

δIl 1(t = Tl) + εt

+
kL∑
j=1

δLj
1

(1− L)
1(t = Tk).

(4.9)

From equation (4.9), we can see that an IO affects directly the innovation

process and thus it propagates to future observations through the multi-

plier φ(L)−1θ(L) while an AO just affect the single observation at the time of

the shock. Finally, a LS produces a shift in the long-run value of the real ex-

change rate from the time of the shock onwards. Figure 4.2 gives an idea of

how the impact of the different outliers looks like using a simulated process.

[Figure 4.2 about here.]

As largely documented in the statistical and econometric literature (see

Chang et al., 1988; Tsay, 1988; Chen and Liu, 1993; Sánchez and Peña, 2003;

Cavaliere and Georgiev, 2009, and references therein), outlying observations

distort the autocorrelation structure of the time series under exam. This has

an impact on the identification of the appropriate ARMA order and most

importantly it causes biases in the estimated ARMA coefficients. The im-

plications for forecasting follow from the just mentioned problems.

Two major consequences for the PPP relationship can be identified. First,

strongly upward-biased autoregressive coefficients might lead to the con-

clusions that {qt} is nonstationary and thus rejecting the existence of PPP

149



Robust Estimation of Real Exchange Rate Process Half-life

in a first place3. Second, distorted ARMA coefficients such that {qt} ∼ I(0)

can still lead to distorted half-life measures either upwards or downwards,

being the half-life computed from these coefficients (see Section 4.3.3). As

noted in Tsay (1986), the exact effect (bias direction) of multiple outliers is

difficult to quantify and it depends also on the interaction between the out-

liers themselves (e.g. two outliers with magnitudes of opposite sign can

cancel out) and their location in the sample. Sparse results are only avail-

able in the literature for a maximum of two outliers and low order ARMA

processes which are of scarce interest for our purposes.

The conclusion is that to which extent the bias induced by unaccounted

outliers exacerbates or solves the PPP puzzle, it is worth to be investigated.

4.3.1 Estimation Strategy and Outliers Detection

In this section, we consider the problem of estimating equation (4.9). Us-

ing a compact matrix notation, the real exchange rate process contaminated

with outliers is given by

qt = q0 + x>t δ
A + y>t δ

L + φ−1(L)θ(L)(εt + z>t δ
I) t = 1, . . . , T (4.10)

= q0 + x>t δ
A + y>t δ

L + z̃>t δ
I + vt vt = φ−1(L)θ(L)εt, (4.11)

where xt, yt and zt are vectors containing impulse or step dummies of di-

mension kA, kI and kL, respectively and z̃t denote the filtered IOs vector.

3Consider for instance the low power of unit root tests when applied to a stationary
processes with level shifts.
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Finally, we can write

q = Wδ + v v = φ−1(L)θ(L)ε, (4.12)

where W is a matrix of size (1 + kA + kL + kI) × T mostly made up of 0-1

entries with the exception of the last kI columns (those corresponding to the

innovational outliers). Further, under the assumption that {εt} is a sequence

of IID normally distributed random variables, it follows that

v ∼ NT (0, σ2
εΩ) (4.13)

where Ω is a symmetric T × T Toeplitz matrix containing the autocovari-

ances of the ARMA process followed by {vt/σε}. The autocovariances are

functions of the ARMA parameters (φ = [φ1, . . . , φp]
> and θ = [θ1, . . . , θq]

>)

and need to be estimated along with the regression coefficients.

Given the form of (4.12), we are in the framework of a regression with

ARMA errors where the exogenous regressors are the outlying observa-

tions. Typical estimation methods for such regressions are GLS (in partic-

ular see Galbraith and Zinde-Walsh, 1992) or ML based on (4.13). If the

time-series parameters (φ, θ, σ2
ε ) are known and under normality, GLS and

ML yield the same estimator of the regression coefficients, which take on

the following form

δ̂GLS = δ̂ML = (W>Ω−1W)−1W>Ω−1q. (4.14)
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Assuming a single outlier at T1 < T , the estimators of the impact of the

different kind of outliers can be derived from (4.14) and are given by

AO : δ̂A(T1) = (Ω−1)T1,T1(Ω
−1)T1,·q (4.15)

LS : δ̂L(T1) =

(
T∑

i=T1

T∑
j=T1

(Ω−1)i,j

)−1( T∑
i=T1

(Ω−1)i,·

)
q (4.16)

IO : δ̂I(T1) = φ(L)θ−1(L)qT1 (4.17)

where Ωi,· denotes the ith row of Ω. Note that the impact of an IO equals the

residual at that time (Chang et al., 1988).

In general, however, φ, θ and σ2
ε are unknown and hence, Ω needs to be

replaced by a consistent estimator Ω̂. In this situation, (iterated feasible) GLS

and ML provide different estimators of Ω, thus yielding different estimates

of δ. Hereafter, we will focus exclusively on ML estimation which has the

advantage to allow simultaneous estimation of both the ARMA parameters

and the regression coefficients. In particular, the log-likelihood function of

model (4.12) under the normality assumption (4.13) is given by

`(δ,φ,θ, σ2
ε) = −T

2
log(2π)−T

2
logσ2

ε−
1

2
log|Ω|− 1

2σ2
ε

(q−Wδ)>Ω−1(q−Wδ).

In our setting, the main challenge is that the regressors matrix (W) is not

known as well. Determining W amounts to the problem of selecting the

outlying observations. In the next section, we describe in detail the proced-

ure adopted in the empirical study.
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4.3.2 Dummy Saturation in the Presence of AOs, IOs and

LSs

In order to locate outlying observations, we employ the Dummy Saturation

principle proposed by Hendry (1999) and theoretically explored by Hendry

et al. (2008) and Johansen and Nielsen (2009). The original contributions in-

volve saturation with AOs (referred as IIS, impulse indicator saturation) while

in a recent chapter Doornik et al. (2013) consider saturation with LSs (re-

ferred as SIS, step indicator saturation).

In this chapter, we consider a ML based procedure which looks for out-

liers in the real exchange rate process by saturating in turn with AOs, IOs

and LSs. The steps of the procedure can be summarised as follows:

Step 1. Start by selecting the ARMA process that best fits the real exchange

rate under the assumption of no outliers. To this extent, we estimate

via ML processes of the form

φ(L)(qt − q0) = θ(L)εt, (4.18)

increasing consecutively the order of the lag polynomials. Finally, we

select the model according to the Akaike information criteiron (AIC)

and denote the corresponding order with (p̃, q̃). The ARMA order is

kept fixed until Step 3.

Step 2. This step involves the first search for outliers. We look sequentially

for AOs, IOs and LSs and we store the selected outliers after each sat-

uration. The significance level adopted in selecting each outlying ob-

servations is denoted with α. We can identify three sub-steps:
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1. Saturate (4.18) with AOs4. Following Hendry et al. (2008)5:

(a) Add the first half of AOs, say xj,t, j = 1, . . . , bT/2c, and es-

timate by ML the following regression

qt = q0 +

bT/2c∑
j=1

δAj xj,t + φ−1(L)θ(L)εt. (4.19)

(b) Store all xj such that |tδ̂Aj | > cα/2. Denote the matrix of re-

tained AOs with Ẍ(1).

(c) Repeat by saturating with the second half of AOs, i.e. estim-

ating (4.19) with xj,t, j = bT/2c + 1, . . . , T , and again define

Ẍ(2) the matrix of the outliers for which |tδ̂Aj | > cα/2.

(d) Estimate (4.19) including only the AOs selected at the two

previous stages and denote Ẍ the matrix with the statistically

significant outliers.

2. Saturate (4.18) with LSs. Repeat all the procedure described in

steps (a)-(d) in order to get Ÿ, the matrix containing the retained

LSs.

3. Saturate (4.18) with IOs. Repeat all the procedure described in

steps (a)-(d) in order to get Z̈, the matrix containing the retained

IOs.
4The choice of starting the saturation with AOs is purely casual as there is no difference

in starting with either IOs or LSs in spite of AOs.
5Castle et al. (2012) and Bergamelli and Urga (2013) study by simulations the perform-

ance of the Dummy Saturation when applied through the model selection algorithm Auto-
metrics (see Doornik, 2009a). However, here we resort on a more traditional split algorithm
(see for instance Hendry et al., 2008) as estimation of ARMA processes is not currently
available through Autometrics.
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Step 3. In the last step, we select the final model whose time series para-

meters are then used to obtain a robust half-life estimate. In practice,

we start by estimating via ML the following regression with ARMA

errors6

qt = q0 + ẍ>t δ
A + ÿ>t δ

L + φ−1(L)θ(L)(εt + z̈>t δ
I) (4.20)

and drop the insignificant outliers. Estimation of (4.20) is then iterated

until the remaining outliers are all statistically significant. Once the se-

lection of the outliers is terminated, we check whether the coefficients

of the lag polynomials are all statistically significant as well and we

modify the ARMA order accordingly.

The procedure outlined above extends the existent applications of the Dummy

Saturation principle in two directions. First, it considers outliers detection

in ARMA models which puts the Dummy Saturation in the context of max-

imum likelihood estimation. Second, it generalises the search of outlying

observations considering also outliers of the innovative form. As noted

above, innovative outliers have a slowly decaying effect in contrast with

the instantaneous effect of additional outliers. This leads to the intuition

that saturating with innovative outliers might help to capture more parsi-

moniously what otherwise would be captured by a series of additive out-

liers with decreasing coefficients.

As long as the steps of the procedure are structured, they match rather

closely those of other procedures for outliers detection in time series model,

in particular the widely used iterative approach as presented in Chen and

6The implicit assumption is that the number of outliers at this point is such that there
are enough degrees of freedom. If this is not the case an easy solution is to strengthen the
significance level used in the saturation.
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Liu (1993). The main difference lies in the way the outliers are identified,

i.e. saturation with dummies instead of the inclusion of the outliers one-

by-one. In particular, we can identified three separate saturations: a first

one involving AOs, a second one involving IOs and a third involving LSs.

The retained outliers from each single saturation are then combined for the

selection of the final model to take place. Additionally, note that the first

and the last step are those where the ARMA order is determined.

Finally, when saturating a regression with dummies, an important as-

pect to keep under control is the retention rate of the outliers. We know

from Hendry et al. (2008), Castle et al. (2012) and Doornik et al. (2013) that,

given a significance level α and under normality, αT outliers are retained on

average under the null of no outliers. Since in our case we are working with

three separate saturations, we must set in each single saturation a signific-

ance level equal to approximately one third the desired retention rate before

the final selection in Step 3. We also stress the fact that though we presen-

ted the procedure with two splits of the set of dummies, splitting the set of

dummies in more than two parts does not alter the finite-sample properties

of the procedure (see Table 4.1).

To verify that the outlined procedure delivers controlled retention rates,

we carry out a small simulation study involving an ARMA(1, 1) process,

under the null of no outliers. In particular, we simulate 1, 000 paths from

the following process

yt = 0.6yt−1 + ηt + 0.3ηt−1 t = 1, . . . , T

156



Real Exchange Rate Process: an Outliers-based Approach

for T = {100, 200, 300} and ηt ∼ N (0, 1) for all t. We compute the reten-

tion rates7 of the three sets of dummies setting α = {0.01, 0.05}. Table 4.1

reports the results using in each experiment a different number of splits of

the dummies, i.e. n = {2, 5, 10, 20}.

[Table 4.1 about here.]

The results allow us to conclude that the retention rates under the null of

no outliers are very close to the nominal level α with different block splits

for AOs and LSs. For IOs, we observe instead deviations of the retention

rates from α when the number of splits is small. In particular, the proced-

ure retains too many IOs with the retention rates converging to the nominal

level as the number of splits increases. In particular, the simulations show

that the minimum number of splits that allows to reach the nominal level

is around 20 which implies that the ideal number of dummies to be con-

sidered in each split is about T/20. In the empirical application, we will

take into account this fact by setting the number of dummies splits to 20.

Further, as commonly observed, the results show that the retention rates

get closer to the nominal levels as the sample size T increases. As far as

the time-series parameters are concerned, Figure 4.3 shows that the distri-

butions of the ARMA coefficients estimates are correctly centred around the

coefficients true values.

[Figure 4.3 about here.]

7All the computations are carried out using OxMetrics 6.30. The ARFIMA (Doornik and
Ooms, 2012) package has been used for estimation purposes.
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4.3.3 Half-life Computation for ARMA(p, q) Models

After controlling for outlying observations as described in the previous sec-

tion, we use the robust ARMA parameters estimates in order to compute

the half-life. Starting from (4.10), the outlier-free series is given by

q̃t ≡ qt − q0 − x>t δ
A − y>t δ

L − φ(L)−1θ(L)z>t δ
I = φ−1(L)θ(L)εt = vt. (4.21)

Further, we can define ψ(L) = φ−1(L)θ(L) to give q̃t =
∑+∞

j=0 ψjεt−j , with∑+∞
j=0 ψ

2
j <∞ (under the assumption that the roots of φ(L) all lie outside the

unit circle), such that limj→∞ ψj = 0. As already mentioned, the value as-

sumed by the coefficients ψj as a function of time is regarded as the impulse

response function (IRF) and denoted ψ(j) = ψj with ψ(0) = 1. Following

the definition of half-life given in (4.5), we are interested in finding the first

instant h such that ψ(h) = 1
2
.

To compute the IRF of a general univariate ARMA(p, q) process, it is con-

venient to arrange its components in a VAR(1) form. Assuming {q̃t}Tt=1 ∼
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ARMA(p, q),



q̃t

q̃t−1

...

q̃t−p+1

εt

εt−1

...

εt−q+1


︸ ︷︷ ︸

ξt

=



φ1 φ2 . . . φp θ1 . . . θq

1 0 . . .

0
. . . 0 . . .

0 . . . 1 0 . . .

0 . . .

0 0 . . . 0 1 0 . . .

0 0 . . . 0 0
. . . 0

0 0 . . . 0 0 . . . 1


︸ ︷︷ ︸

F



q̃t−1

q̃t−2

...

q̃t−p

εt−1

εt−2

...

εt−q


︸ ︷︷ ︸

ξt−1

+



1

0

...

0

1

0

...

0


︸︷︷︸
G

εt

The IRF can be obtained as

ψ(j) = e(FjG) (4.22)

where e = [1 0 . . . 0]> is a selection vector to pick up the IRF for q̃t. Altern-

atively, it is possible to compute ψ(j) recursively. The half-life is thus given

by ψ(h) = e(FhG) = 0.5. For AR(1) processes, the solution is trivially given

by h = log(0.5)/log(ρ) while for higher order auto-regression we can use

the eigenvalues based formula given in Hamilton (1994, p. 12). However, if

we want to compute the exact half-life of a general ARMA(p, q) process, we

need to use some numerical procedure since no closed form solution exists.

Also, the fact that h might no be an integer rules out standard Newton-

Raphson methods.

In order to compute the half-life, we propose the following numerical

procedure that exploits spline function interpolation and it runs as follows:
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(a) Compute ψj for j = 1, . . . , J (typically 50 ≤ J ≤ 100), using (4.22).

(b) Interpolate the above values using a spline function to get

ψ = [ψ0, ψ0+1/∆, ψ0+(2/∆), . . . , ψ1, ψ1+(1/∆), ψ1+(2/∆), . . . , ψJ ]

where ∆ ∈ N denotes the number of values in between two impulse

responses. The size of ψ is then ∆(J − 1) + J . Define the associated

index vector λ of size ∆(J − 1) + J such that λj = j.

(c) Compute a new vector, ι, of the same size as ψ such that its jth element

is defined as

ιj =

 j ψj ≥ 1
2

0 otherwise

and denote ι̃ of size N < ∆(J − 1) + J a vector containing the same

elements as ι but with all null entries removed. Note that ι̃ is the vector

of the time periods (x-axis coordinates) for which the IRF is above or

equal 0.5.

(d) Define another index vector λ̃ such that λ̃i = i for i = 1, . . . , N and

compute δ where δi = I(λ̃i < ι̃i), I(·) denoting the indicator function.

The estimated half-life h is given by

h =

 λmax{ι̃} max{δ} < 1

λmin{ι̃}|δmin{ι̃} = 1 otherwise

where the condition is needed to ensure that if the IRF is equal to 0.5

for different time periods, we want the half-life to be the first of these

periods.
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The procedure described above is computationally very fast and it allows to

obtain precise half-life estimates.

4.4 Empirical Application

In order to illustrate the empirical relevance of the impact of unaccounted

outliers on the half-life estimation, we analyse US dollar bilateral exchange

rates. The data used are taken from the Federal Reserve Bank of Saint Louis

database (FRED). Following the literature, the nominal exchange rate is ex-

pressed as national currency units in terms of one US dollar (daily averages)

while the price indexes are consumer price indexes (CPI) not seasonally ad-

justed. We consider quarterly data for the following countries: United King-

dom, Germany, France, Italy, Switzerland, Japan, South Africa, Mexico and

the Euro Area. The data span the period 1971:1 to 2013:3 though the num-

ber of observations varies from a maximum of 171 to a minimum of 59 for

the Euro Area. The log real exchange rate for the ith country is computed as

qi,t = si,t − pi,t + pUS,t where si,t is the logarithm of the nominal exchange

rate, pi,t the logarithm of the CPI for that country and pUS,t the logarithm of

the CPI of the United States.

We start by computing the half-life for the above countries disregarding

the possibility of outlying observations. Hence, we fit an ARMA model to

each real exchange rate series and use the estimated coefficients to compute

the IRF response function and the corresponding half-life measure accord-

ing to the procedure described in Section 4.3.3. To estimate the ARMA mod-

els, we use maximum likelihood methods based on (4.13) which also avoids

problems related with the finite sample bias of the least squares estimator.
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Table 4.2 reports the annualised estimated half-life together with 95% boot-

strap confidence intervals, obtained by non-parametric bootstrapping with

299 replications, as well as the ARMA order, the AIC and the Jarque-Bera

normality test p-value.

[Table 4.2 about here.]

From a first inspection of the results, we can conclude that, over the timespan

considered, the PPP puzzle is more evident for Switzerland, South Africa,

Japan and Euro Area with half-lives between three and seven years whereas

is decisively less pronounced for UK, Germany, France, Italy and Mexico.

In Figure 4.4, we report the estimated IRFs with bootstrapped confidence

bands.

[Figure 4.4 about here.]

Next, we re-fit an ARMA model to each real exchange rate time-series

following the outlier detection procedure described in Section 4.3.2. In order

to select the significant dummies, we set a significance level of α = 0.01 in

each individual saturation and, based on the simulations results reported in

Table 4.1, we use 20 blocks of dummies throughout. This allows to control

the retention rate of AOs, IOs and LSs at 0.01×T individually. Hence, under

the null of no outliers we should expect 0.03 × T not significant outliers

on average before the combined selection to take place in Step 3 where a

significance level of α = 0.05 is used. The estimated ARMA coefficients

after dummy saturation are then used to obtain robust half-lives estimates.

Table 4.3 reports the results while Figure 4.5 the IRFs.

[Table 4.3 about here.]
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[Figure 4.5 about here.]

The results after outliers detection by dummy saturation are very interest-

ing. The main evidence is that for the countries where the real exchange rate

shows the most puzzling behaviour, modelling outliers seems to drastically

reduce the extent of this puzzle. In particular, for Switzerland, South Africa,

Japan and the Euro Area, we observe that their half-lives are reduced by

a factor of three or two, the most striking result being South Africa which

half-life passes from a point value of 5.27 to 1.95. For the countries where in-

stead the PPP puzzle is less evident or even absent, including outliers seem

not to change the half-lives estimates. However, the benefit in accounting

for outlying observations appears in the tighter confidence intervals and

in the restored normality. The only country whose half-life increases after

including outliers is Mexico with a point value of 2.05 after saturation com-

pared to 0.99 before saturation. As far as the outliers are concerned, we see

from Table 4.3 that the average number of outliers retained for each country

is around four while their location is pretty widespread along all the time

period considered. The most recurring outlier is the innovative outlier in the

fourth quarter of 2008 (“IO:2008(4)”) that is in the final model for UK, South

Africa, Japan and Mexico. It is straightforward to notice that the mentioned

outlier is capturing the effect on the exchange rates of the recent financial

crisis which apparently died out – at least for these series – following a de-

caying effect.

A further investigation of the dynamics followed by the exchange rates

is reported in the next section, where we also link our analysis with the

“bands of inaction” literature (Taylor, 2001).
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4.4.1 Testing for Non-linear Effects

In this section, we test whether the real exchange rate time series considered

in the empirical application exhibit non-linear effects or not. This is of in-

terest for at least two reasons. First, as mentioned above, part of the lit-

erature uses non-linear models to describe the real exchange rate process

based on the “bands of inaction” argument (Taylor, 2001). Testing for non-

linearities can thus be seen as an empirical test of this phenomenon. Second,

by testing for non-linear effects with and without outliers removal, we can

also explore the implications of removing outlying observations on non-

linearities. This is of particular interest as we want to explore whether non-

linearities might be due to unaccounted outliers or, conversely, outliers in-

clusion is masking non-linearities.

To this purpose, we consider the Brock-Dechert-Scheinkman test statistic

(hereafter, BDS) introduced by Brock et al. (1987, 1996). The statistic is based

on the concept of correlation integral which aims at measuring the frequency

with which temporal patterns are repeated in the data. Briefly, consider

the time series {xt}t=1,...,T which is embedded in the m-space by forming

m-histories xmt = (xt, xt−1, . . . , xt−m+1). Brock et al. (1996) shows that the

U -statistic

C(η,m, T ) =
2

(T −m+ 1)(T −m)

∑
m≤s<

∑
t≤T

1(|xt−i−xs−i| < η : i = 1, . . . ,m−1)

is a consistent estimator of the correlation integral under fairly general as-

sumptions on {xt}. If the process is i.i.d. then it is possible to show that

C(η,m, T ) = C(η, 1, T )m. Using this fact with the properties of theU -statistics,
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Brock et al. (1996) show that

BDS(η,m, T ) =
√
T
C(η,m, T )− C(η, 1, T )m

σ(η,m, T )

A∼ N (0, 1)

where σ(η,m, T ) is the standard deviation of
√
TC(η,m, T )−C(η, 1, T )m and

A∼ indicates “asymptotically distributed as”.

In particular, we apply the BDS test to the residuals of the fitted ARMA

models before and after outliers removal8. Rejection of the null indicates

that unaccounted dynamics is present in the residuals which can be in-

terpreted as unaccounted non-linearities since Brock et al. (1996) show by

simulations that the test has high power against non-linear alternatives.

Table 4.4 reports the p-values of the BDS test statistic at different embed-

ding dimensions.

[Table 4.4 about here.]

For each country, the first row indicates the p-value of the BDS statistic be-

fore outliers removal while the second row the p-value after robust estima-

tion. Empirical evidence of the presence of non-linear effects is not uniform

across our sample even before outliers detection. In fact, for only half of

the countries considered we fail to accept the null and the results are also

dependent on the embedding dimension adopted. Accounting for outliers

allows to reduce the number of rejections and in particular, for UK and EMU

there is no evidence of non-linear effects using dummy saturation while the

null hypothesis is rejected at all embedding dimensions without modelling

outliers. However, for countries like South Africa and Italy, where the evid-

8The value of the test statistic is obtained using the C code made available by Le Baron
at http://people.brandeis.edu/˜blebaron/software/bds/bdsccode/.
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ence of misspecified linear models is quite strong, the inclusion of outliers

has no effect on the test outcome.

To summarise, empirical evidence suggests that non-linear effects caused

by “bands of inaction” is not uniform across the countries considered, and

even before removing outliers this is observed only in half of the sample.

Moreover, the number of rejections of the null hypothesis drops further

when modelling outlying observations suggesting that model misspecifica-

tion – at least in some cases – can be reasonably thought to be due to unac-

counted outliers. The intuition behind this claim is further confirmed by

Figure 4.6 where we compute by simulations the empirical rejection fre-

quency of the BDS test when applied to the residuals of an ARMA model

contaminated by outliers and level shifts. Clearly, the test over-rejects the

null hypothesis if outlying observations are not taken into account during

the estimation process.

[Figure 4.6 about here.]

Nevertheless, in our empirical application there are cases where we fail to

reject the null hypothesis disregarding the fact that we take into account

the presence of outliers or not, thus suggesting that non-linearities might

indeed play a role in such situations.

4.5 Conclusions

In this chapter, we studied to which extent the half-life estimates and the

related PPP puzzle found by the existing literature are affected by unac-

counted outlying observations. In particular, we modelled the observed
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real exchange rate process as a linear ARMA process contaminated by addi-

tional and innovative outliers as well as level shifts. To estimates such mod-

els, we proposed a sequential Dummy Saturation approach combined with

ML estimation of the relevant parameters and we showed that the proposed

estimation procedure delivers the correct retention rates of the dummy vari-

ables included to capture the outliers.

We illustrate the impact of removing outliers on the half-lives estimates

through an empirical application involving a panel of US dollar denomin-

ated real exchange rates over a period spanning the last four decades. Our

findings can be summarised as follows. First, for countries where the real

exchange rate shows the most puzzling behaviour, including outliers seems

to drastically reduce the extent of the PPP puzzle. Second, for countries

where half-life estimates are contained even without including outliers, the

benefit of a robust estimation approach is reflected in tighter confidence in-

tervals for the half-life as well as in the restoration of normality. Therefore,

in light of the evidence emerging from the empirical study, the main con-

clusion is that robust estimation methods allow to reduce the impact of the

PPP puzzle and are anyhow beneficial for statistical inference even when

the half-life estimates are not affected when accounting for outlying obser-

vations. Additionally, motivated by the “bands of inaction” argument of

Taylor (2001), we test for the presence of non-linear effects in the real ex-

change rate process with and without the inclusion of outliers. We find

mixed evidence of the presence of non-linear effects across our sample even

before removing outlying observations. The evidence stabilises against the

presence of non-linearities when accounting for outliers.
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Finally, the results in this chapter suggest a number of stimulating aven-

ues for future research. First, from a methodological point of view, it would

be of interest to extend the results in Johansen and Nielsen (2009), which

relate the Dummy Saturation to robust M -estimation, to our ML-based set-

ting. Second, in light of the empirical application, it will be of some interest

to investigate the role of outlying observations in the presence of time series

which exhibit genuine non-linear dynamics (see Franses et al., 1996). Third,

given the generality of the proposed procedure for outliers detection in a

time-series setting, it will be of empirical interest to extend the application

to other areas of financial economics like for instance stock return predict-

ability. This is part of an ongoing research agenda.
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Table 4.1: Retention Rates of Not Significant Outliers

T = 100 T = 200 T = 300

AO IO LS AO IO LS AO IO LS

α = 0.01

n = 2

1.242 6.472 0.901 1.215 6.488 0.983 1.092 6.651 0.989

n = 5

1.189 2.125 0.989 1.079 2.088 0.973 1.062 2.105 1.000

n = 10

1.116 1.530 0.993 1.096 1.493 0.972 1.045 1.479 1.004

n = 20

1.116 1.462 1.041 1.054 1.273 1.005 1.040 1.233 1.002

α = 0.05

n = 2

5.260 15.880 4.655 5.223 16.085 4.818 5.103 16.265 4.899

n = 5

5.245 7.756 4.567 5.096 7.822 4.951 5.092 7.875 4.981

n = 10

5.206 6.346 4.894 5.188 6.235 4.965 5.038 6.271 5.010

n = 20

5.332 6.140 4.995 5.096 5.680 4.994 5.132 5.669 5.022

Notes: The reported values are the retention frequencies of the dummies computed acrossM = 1, 000

simulations as 1
T×M

∑M
m=1

∑T
j=1 1(|tδ̂j | > cα/2) where δ̂j , j = 1, . . . , T denotes the estimated

dummy coefficient associated with the jth dummy and T = {100, 200, 300} the sample size.
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Table 4.2: Half-life ML Estimates Without Outliers Detection

ĥ ĉlow ĉupp (p, q) AIC J-B

UK 1.78 0.85 2.26 4,3 -584.61 [0.0050]**
Germany 1.86 1.11 4.82 2,2 -400.49 [0.3885]

France 1.82 1.14 4.27 2,2 -419.27 [0.0456]*
Italy 1.87 1.13 4.74 2,2 -414.70 [0.0306]*

Switzerland 7.05 1.89 12.12 1,1 -541.48 [0.9039]
South Africa 5.27 1.40 7.62 2,1 -471.59 [0.0001]**

Japan 6.60 2.31 11.02 5,1 -545.81 [0.0503]
Mexico 0.99 0.31 1.13 3,3 -211.69 [0.0000]**

Euro Area 3.30 0.67 4.38 1,1 -208.00 [0.2370]

Notes: ĥ denotes the annualised half-life estimate, ĉlow and ĉupp are the lower and upper endpoint of the boot-
strapped confidence interval, (p, q) denotes the ARMA order, AIC the Akaike Information Criterion and J-B the
p-value of the Jarque-Bera test with ‘**’ and ‘*’ denoting rejection of the null of Normality at 1% and 5% signific-
ance level respectively.
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Table 4.3: Half-life ML Estimates With Outliers Detection

ĥ ĉlow ĉupp (p, q) AOs IOs LSs AIC J-B

UK 1.25 0.86 1.93 4,3
1981(3)
1985(1)
1988(2)

2008(4) 1990(3)
1992(4) -658.67 [0.4640]

Germany 1.89 1.27 3.72 2,2

1974(3)
1975(3)
1984(3)
1988(3)

-412.26 [0.7323]

France 1.85 1.24 3.88 2,2 1985(1) 1991(2) -425.33 [0.1589]

Italy 1.66 1.03 4.45 2,2 2000(4)
1976(1)
1984(3)
1992(3)

-425.99 [0.0117]*

Switzerland 2.85 1.15 4.82 1,1 1985(1) 1971(1)
1978(1) -558.30 [0.7162]

South Africa 1.95 0.96 2.42 3,2 2001(4)
2008(4)

1975(4)
1998(3) -516.03 [0.0000]**

Japan 3.59 1.85 5.07 5,1 1979(4)
1995(2)

1971(1)
1998(4)
2008(4)

1978(3)
2013(1) -593.94 [0.8416]

Mexico 2.05 0.38 3.26 2,3 1995(1)
2008(4) 1995(2) -306.87 [0.3196]

Euro Area 1.31 0.51 2.19 1,1 2000(4) 2003(4)
2004(1) -218.31 [0.2711]

Notes: See below Table 4.2. Further, under the columns tagged “AOs”, “IOs” and “LSs”, we report the dates of
the additive outliers, innovative outliers and level shifts, respectively.
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Table 4.4: BDS Test p-values with embedding dimensions m = {2, 3, 4, 5}.

η = 0.5 2 3 4 5

UK 0.003** 0.005** 0.002** 0.000**
0.484 0.313 0.313 0.004**

Germany 0.116 0.025* 0.960 0.097
0.002** 0.285 0.689 0.136

France 0.447 0.992 0.603 0.711
0.116 0.313 0.741 0.857

Italy 0.001** 0.000** 0.000** 0.000**
0.037* 0.006** 0.007** 0.000**

Switzerland 0.749 0.535 0.126 0.022*
0.772 0.294 0.562 0.352

South Africa 0.003** 0.001** 0.000** 0.000**
0.001** 0.000** 0.000** 0.000**

Japan 0.689 0.298 0.230 0.478
0.757 0.407 0.711 0.332

Mexico 0.000** 0.002** 0.052 0.099
0.000** 0.004** 0.067 0.072

EMU 0.215 0.002** 0.000** 0.000**
0.555 0.522 0.119 0.555

Notes: ** and * denote presence of non-linear effects at 1% and 5% significance level. For
each country, the first row reports p-values without outliers detection while the second row
p-values with robust estimation.
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Figure 4.1: USD/GBP Real Exchange Rate (log).
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Figures

Figure 4.2: Plot of AO, IO and LS at T1 = 50 for T = 100 and vt = 0.8vt−1 + εt.
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(b) θ = 0.3

Figure 4.3: Distribution of the ARMA Coefficients Estimates after Dummy Satura-
tion
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Figure 4.4: Estimated IRFs Without Outliers Detection

(a) UK (b) Germany (c) France

(d) Italy (e) Switzerland (f) South Africa

(g) Japan (h) Mexico (i) Euro Area

Notes: The black circles denotes point estimates of the IRFs, the red line is an interpolating spline and the grey
lines are bootstrapped confidence bands (lower band corresponds to the 2.5th percentile while the upper band to
the 97.5th percentile). Half-lives are the values (quarterly frequency) on the x-axis in correspondence to the black
vertical lines.
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Figure 4.5: Estimated IRFs With Outliers Detection

(a) UK (b) Germany (c) France

(d) Italy (e) Switzerland (f) South Africa

(g) Japan (h) Mexico (i) Euro Area

Notes: See below Figure 4.4.
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(a) No outliers (b) AOs

(c) LSs

Figure 4.6: Empirical rejection frequencies of the BDS test. The plots show how
often the BDS test rejects the null hypothesis of no non-linear effects (Z axis) for
different sample sizes (X axis) and different embedding dimensions (Y axis). The
DGP is an ARMA(1,1) process with no outliers (a), an ARMA(1,1) contaminated by
AOs (b), and an ARMA(1,1) contaminated by LSs (c).
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Chapter 5

Conclusions and Roadmap for

Future Research

In this thesis, we considered a series of unexplored issues faced by econo-

metricians when dealing with structural breaks and outlying observations.

The problem of dealing with breaks and outliers is one of the classic topics

in the econometric and statistical analysis of time-series, given the striking

inferential problems arising when neglecting their presence. Nonetheless,

this is still a very active and prolific avenue for research with substantial

room for the development of new econometric methods and the refinement

of the existing ones.

In Chapter 2, we considered two largely unexplored procedures, the

Dummy Saturation (DS) and the Sequential Bootstrapping (SB) of the sup-F

statistic to estimate and date multiple structural breaks in the deterministic

components of a linear system. Through an extensive Monte Carlo simula-

tion exercise, we evaluated the performance of the two procedures consider-

ing several data generating processes ranging from the simple location-scale
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model to the case of cointegrating regressions, considering both conditional

and marginal processes. Additionally, we study for the first time the finite-

sample properties of a new version of the DS procedure which includes also

trend dummies. The Monte Carlo exercise allowed us to reach important

conclusions. First, we found that the two procedures have good finite-

sample properties although the SB approach behaved better in our simu-

lations. Second, we provided useful guidelines for the applied researcher

on how to best apply the two procedures based on the simulation evidence.

We also illustrated the two approaches by studying empirically to which

extent the Fisher effect holds in the United States economy. The application

of the DS and the SB procedures led us to two important findings. First,

the Fisherian hypothesis is valid only when structural breaks are properly

detected and modelled, i.e. the coefficient of the expected inflation is statist-

ically equal to one only when breaks are taken into account. Second, the two

procedures detected almost the same break dates affecting the deterministic

components of the Fisher equation.

In Chapter 3, we moved from the univariate approach followed in Chapter 2

to consider the problem of multiple breaks testing in the vector error correc-

tion model (VECM) framework. In particular, we investigate how to specify

the subset of parameters when testing for breaks in that framework. First,

we showed that the choice of which parameters of the VECM can be tested

for breaks is indeed constrained given that breaks in the long run matrix β

imply breaks in the short run impact matrix α, unless weak exogeneity can

be imposed. In addition, breaks in β imply also breaks in the covariance

matrix of the error term. Monte Carlo simulations showed that ignoring

these links amongst the parameters can lead to severely over reject the null
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hypothesis (where the number of hypothesized breaks is smaller than un-

der the alternative), leading to the detection of spurious breaks. Second, we

developed a new test for multiple structural breaks, by extending the like-

lihood ratio test proposed in Hansen (2003) to the case of unknown break

dates through the specification of several scenarios regarding the number

and the location of the breaks. We defined a minimum p-value statistic

and a bootstrap procedure to approximate its critical values robust to the

presence of breaks in the covariance matrix of the error term. A Monte

Carlo study showed that the proposed statistic has the correct size and

good power against fixed alternatives where several scenarios concerning

the break dates are specified. Furthermore, we illustrated the relevance of

taking into account the role of weak exogeneity as well as how to apply the

minimum p-value statistic by means of three empirical applications.

Finally, in Chapter 4, we proposed a new procedure to detect outliers

and level shifts in ARMA models. The procedure is then applied to obtain

robust estimates of the real exchange rate process half-life. Specifically, we

studied to which extent the half-life estimates and the related PPP puzzle

are affected by unaccounted outlying observations. In particular, we mod-

elled the observed real exchange rate process as a linear ARMA process

contaminated by additional and innovative outliers as well as level shifts.

In order to estimate such models, we proposed a sequential Dummy Satur-

ation approach combined with ML estimation of the relevant parameters.

In a Monte Carlo simulation exercise, we showed that the proposed estim-

ation procedure delivers the correct retention rates of the dummy variables

included to capture the outliers. An empirical application involving US dol-

lar real exchange rates showed that the estimated half-lives are consistently
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shorter when outlying observations are correctly modelled, thus shedding

some light on the PPP puzzle.

Several directions for future research can be identified from each chapter.

The analysis of the two novel procedures studied in Chapter 2 still leaves

room for further investigation. In particular, for the Dummy Saturation ap-

proach the existing theory studies the properties of the resulting robust es-

timator when under the null hypothesis there are no breaks and outliers.

Hence, it would be of great interest to study the properties of the DS estim-

ator when the DGP is affected by breaks and/or outliers and to compare

the statistical properties of the resulting break/outlier date estimator with

more conventional estimators like the least squares estimator (see Bai, 1994).

Both the theoretical and empirical analysis of the DS could be extended fur-

ther to consider breaks in the slope coefficients. Additionally, it will be use-

ful to compare the performance of the DS with breaks in mean and trend

estimated using Autometrics with the robust dummy saturation estimator

proposed in Johansen and Nielsen (2009), defined as an M -estimator with

a bias corrected variance term. As far as the SB procedure is concerned, a

theoretical analysis of the rule to stop the sequential search is an interesting

area to be investigated.

Building on the results in Chapter 3, an interesting research direction

would be to generalise the minimum p-value statistic to allow for different

cointegrating ranks amongst the different regimes. This step will increase

the generality of our framework though it will complicate the inference

since the LR tests to assess the presence of breaks will not follow a χ2, even

when the break dates are known. Nonetheless, the bootstrapping approach

proposed for the minimum p-value statistic is still able in theory to provide
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rejection frequencies close to the nominal level (see Dufour et al., 2014). In

this more general case, however, the individual LR tests p-values have to

be computed either via bootstrap techniques or by using the non-standard

distributions which arise as a consequence of the changing cointegrating

rank.

Finally, the findings in Chapter 4 suggest several interesting develop-

ments. First, from a theoretical point of view, it would be interesting to

extend the results in Johansen and Nielsen (2009), which relate the Dummy

Saturation to robustM -estimation, to the maximum likelihood set-up. Second,

in light of the empirical application, it will be of great interest to investig-

ate the role of outlying observations in the presence of time series which

exhibit genuine non-linear dynamics (see Franses et al., 1996). This would

allow us to understand whether outlier detection masks non-linearities or

vice versa, non-linearities are detected when outliers observations are neg-

lected. Third, given the generality of the proposed procedure for outliers

detection in a time-series setting, it will be of empirical interest to extend

the application to other areas of financial economics like for instance stock

return predictability.

In addition to the research directions suggested above, the economet-

rics of structural breaks and outliers detection still offers several sparks for

future research. For instance, an interesting line of research builds on a

generalisation of the concept of structural breaks which allows for gradual

changes rather than abrupt ones. A statistical test to assess the presence of

gradual changes in linear models could be interesting to develop. Further-

more, the robust statistical literature offers interesting tools that can be used

to improve the forecasting performances of factor models. Specifically, the
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Conclusions and Roadmap for Future Research

use of principal components methods robust to outliers and missing data to

extract factors from high dimensional dataset is another interesting avenue

of research to explore.
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