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A nonparametric visual test of mixed

hazard models

Jaap Spreeuw1, Jens Perch Nielsen2 and Søren Fiig Jarner3

Abstract

We consider mixed hazard models and introduce a new visual inspection technique capable of

detecting the credibility of our model assumptions. Our technique is based on a transformed data

approach, where the density of the transformed data should be close to the uniform distribution

when our model assumptions are correct. To estimate the density on the transformed axis we take

advantage of a recently defined local linear density estimator based on filtered data. We apply the

method to national mortality data and show that it is capable of detecting signs of heterogeneity

even in small data sets with substantial variability in observed death rates.

MSC: 62F10, 62N01, 62N02, 62P05.
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1. Introduction

There is an increasing use of mortality models to answer a number of pension related

questions. Mortality tables and their estimation have always been of importance while

calculating appropriate prices of risk products depending on individuals’ survival. More

recently, mortality models are being used in more complex models assessing the value

of financial products incorporating survival in a variety of ways. Financial users of

mortality models are therefore not only actuaries nowadays, but also investors looking

for opportunities in survival bonds and other packages of survival risks. Different

purposes of mortality models lead to different measures of quality.
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In this paper we develop a visualization technique that seems useful for the individual

assessment of the quality of a mortality model. One application we are thinking of

is forecasting of mortalities that is a basic building block for the financial pricing of

survival, but also a useful tool in asset liability management of pension portfolios.

Typically, relatively simple parametric mortality models including calendar effects

are used as starting point for mortality forecasts. The calendar effect is the explicit

tool for the forecast and is often isolated and estimated through standard time series

methodology. A perfect historical fit of the past is therefore not always what the

mortality modeller is looking for. Often it is more important to have an overall good fit,

without too systematic deviations giving reliable and meaningful forecasts. These latter

objectives are not easy to generalize to some quantitative model that can be tested. Often

simple mortality models are rejected, simply because mortality data often is nationwide

and sufficiently abundant to inform relatively complex underlying parametric structures.

Therefore, a test rejecting our simple model is often not what we want. We do know that

our simple model is not accurate, we do not want an excessive fit, what we want is a

good, intuitive and reliable forecast.

When modelling mortality of a population, there is a variety of potentially suitable

lifetime data models available. Potential models differ in levels of complexity and they

try to capture different features of data. Specific parametric life tables combined with

time series forecasts are omnipresent in the actuarial and demographic literature.

The literature about parametric mortality projection has been developing rapidly in

the last few years. Recent reviews of mainstream mortality forecasting models can be

found in Cairns et al. (2009), Cairns et al. (2011), Dowd et al. (2010a,b) and Haberman

and Renshaw (2011). Cairns et al. (2009) compare eight models on the basis of several

desirable ex post qualitative properties (like model parsimony, transparency, possibility

to generate sample paths, presence (or absence) of cohort effects and ability to achieve a

nontrivial correlation structure) and quantitative criteria (consistency with historical data

and robustness of parameter estimates). Six of these models are subject of subsequent

investigation by Dowd et al. (2010a,b) and Cairns et al. (2011). These include the

original Lee-Carter model (Lee and Carter, 1992), the basic age-period-cohort model

by Renshaw and Haberman (2006), an alternative age-period-cohort model by Currie

(2006), the original Cairns-Blake-Dowd model as launched in Cairns et al. (2006), and

two extensions thereof. The six models are the subject of formal goodness-of-fit tests in

Dowd et al. (2010a) and backtesting in Dowd et al. (2010b). Cairns et al. (2011) judges

these models on the basis of ex ante qualitative aspects like biological reasonableness,

plausibility of forecast levels of uncertainty in projections at several ages, and robustness

of forecasts. In all these papers, the mortality data applied was confined to those of

individuals aged 60 or above. Haberman and Renshaw (2011), concentrating on the key

factors of life expectancy and annuity values, first conduct a detailed comparison of the

several models at pensioner ages. Apart from the models in the above papers, they also

consider special cases of the Renshaw and Haberman (2006) model in their study. Later on,

they extend the age range and involve the model by Plat (2009) and several variants thereof.
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The stability of the forecast depends crucially on the choice of the parametric

form. Generally, a complex model with many parameters is not a good choice even

though such models might be selected from classical mathematical statistical model

selection designed for in-sample prediction. Models with many parameters generally

fit data better than models with fewer parameters. On the other hand, a large number

of parameters are harder to forecast than fewer parameters. Forecasting uncertainty

increases dramatically with the number of parameters. Thus, to obtain reliable forecasts

we want models which describe the key features of data with as few parameters as

possible.

The purpose of this paper is to introduce a visual diagnostic tool which can be

used to guide us when choosing a parametric model. A good parametric model is a

simple model without obvious systematic errors. That model could be chosen by the

well informed statistician working with the particular mortality forecast application in

mind. Our visual diagnostic tool will be just one helpful tool in the overall mathematical

statistical toolbox. Our method is inspired from recent developments in extreme value

estimation, where transformations of data give visual information on the quality of the

distributional fit in the tail. This recent methodology has found its way into insurance

pricing and also the related field of operational risk. For a comprehensive overview of

this new transformation methodology in the latter context, see Bolancé et al. (2012a).

The transformation based method can for example compare the performance of

several candidate models for a data set at hand. Assume we were told by an oracle

what the exact true distribution is, then we would transform our data using this oracle

information such that our transformed data would exactly originate from a uniform

distribution. Now we do not have access to any oracles. However, if we take some

estimated parametrically fitted survival distribution as defining our transformation,

then any detectable deviance on the transformed scale from the uniform distribution

implies deviances of the parametric distribution used in the transformation step from

the underlying true distribution. Our methodology uses a nonparametric smooth kernel

estimator on the transformed scale. One difficulty we meet here is that our data is

classical survival data that is not independent identically distributed. We therefore

use a recent local linear kernel density estimator – specifically the one of Nielsen et

al. (2009) – that is adjusted for the truncation and censoring pattern we meet in our

data. Comparison between different underlying suggested parametric models are carried

out by first estimating these parametric models and then to investigate through visual

inspection, whether the density of the transformed data indeed looks uniform.

If the underlying parametric model under investigation would be true, the estimated

density should be close to one over the unit interval. Therefore different underlying para-

metric models can be visualized and compared on the transformed scale. In principle,

the densities could also be estimated and compared on the original scale. However, there

are several visual and estimational advantages to working on the transformed scale. One

of these is that our method makes maximal use of sparse and volatile data and is thus

particularly well suited to explore how potential models describe the mortality at ad-
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vanced ages where exposure is invariably limited. We test our method using data from

nations of different size: USA, United Kingdom, Denmark and Iceland.

Although the main focus of our paper is to model human mortality, it is worth-

while mentioning that our methodology is applicable to any probability density model,

whether it concerns human survival or not.

1.1. Mixed hazard models

Frailty theory offers a possible explanation to the presence of an old-age mortality

plateau. According to this theory populations are heterogeneous with some people being

more frail, i.e. having a higher hazard rate, than other people. Since persons with high

hazard rates tend to die sooner than persons with low hazard rates old age groups will

be dominated by low frailty persons and this effect reduces the rate of increase at the

population level.

Frailty models were introduced in the demographic literature by Vaupel et al. (1979).

In a multiplicative frailty model, an individual’s hazard rate consists of two parts, namely

a certain standard intensity and a certain nonnegative random variable, the frailty, acting

multiplicatively on the standard intensity. A Gompertz or Makeham specification is

usually taken for the standard intensity, although sometimes a Weibull model can be

seen. Frailty is usually assumed to follow a Gamma distribution, which is known to be

mathematically very tractable.

A few publications about frailty modelling appeared in the actuarial literature. Wang

and Brown (1998) use the Gompertz-Gamma or Perks model to graduate mortality

improvement factors in a Society of Actuaries’ Life Table. Butt and Haberman (2004)

employ Generalized Linear Models to graduate mortality of insured lives. They consider

three mixture models, namely i) Perks; ii) modified Perks, and iii) Gompertz-Inverse

Gaussian. The authors conclude that the Perks model fits the data best. An overview of

heterogeneity models in life insurance is given in Olivieri (2006), while Jones (1998)

develops a multiple state model to measure the impact of frailty on the propensity to

lapse a policy. Finally, Li et al. (2009) extend the Lee-Carter model by allowing for

unobserved heterogeneity within a cell, determined by age and time.

In this paper we illustrate our methodology in the one dimensional case. Most

forecasting models operate with a multiplicative relationship between age effect and

time effect. To visualize the fit of the age effect, one would then have to divide out the

estimated time effect and vice versa to visualize the time effect only.

We are happy to say that our paper – diffused in preliminary versions – already has

inspired a number of other works in mathematical and computational statistics. It has

for example been cited in the three recent papers Gámiz-Pérez et al. (2013a,b,c).
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1.2. Outline

The set-up of this paper is as follows. In Section 2 we present the visual inspection

technique in detail. Both the continuous-time framework with transformed counting

processes and the implementation with discrete data is discussed. Section 3 discusses

frailty models in general and introduces the class of models we will be using. Section

4 presents the numerical application. For four countries varying significantly in size

(United States, United Kingdom, Denmark and Iceland), one data set per country

(female period 2006 from the Human Mortality Database) and three different frailty

specifications, namely Gamma, Inverse Gaussian, and degenerate (no frailty), we show

the estimates as well as the visual inspection technique. In particular, we give a thorough

analysis of the mortality at advanced ages that can be extracted from the continuous

graphs. Section 5 sets out a conclusion.

2. Visual inspection technique

2.1. Sampling scheme of the survival data

Consider a data set with mortality statistics of n lives. Let for each of these n individuals

Yi be an exposure process with value one when the i’th individual is alive and under

observation and let Ni be a counting process taking the value one if the i’th individual

has died while under observation. Both Yi and Ni are functions of the age x. Formally, we

assume that Ni is a one-dimensional counting process with respect to an increasing right

continuous complete filtration Fx, x∈R+, i.e. one that obeys les conditions habituelles,

see Andersen et al. (1993, p. 60). We model the intensity as

λc
i (x) = µθ (x)Yi(x),

where θ belongs to the parameter space Θ of the parameters determining the exact

mortality and frailty. The estimator θ̂ of θ is derived from minimizing the log likelihood

of Borgan (1984):

l(θ ) =
n

∑
i=1

∫
log{µθ (x)}dNi(x)−

n

∑
i=1

∫
µθ (x)Yi(x)dx,

that is maximized over the parameter space Θ.

2.2. Visual inspection by transformations

Assume that some oracle has given us the true underlying c.d.f. Fθ . Then consider the

transformed counting processes Ni = Ni ◦F−1
θ defined on [0,1]. If our oracle really had
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told us the truth, then N i would have stochastic intensity

λi(y) = α(y)Y i(y),

where Y i(y) =
{

Yi

(
F−1
θ (y)

)}
with α(y) = 1/(1− y) corresponding to the hazard of the

uniform distribution with density

f (y) = α(y)exp

(∫ y

0
−α(s)ds

)
= 1,

for y ∈ [0,1].

Another more statistical term for oracle information is prior information. It is that

type of information that is external to the data set at hand. In our application below our

prior information will always be some parametric specification of the model and our

oracle candidate for the true c.d.f will be F
θ̂
, where θ̂ is the estimated parameter in the

specified parametric model. If F
θ̂

really is a good description of the true c.d.f. F , then

our data should be uniformly distributed after a transformation by F
θ̂
.

To be able to inspect the credibility of our oracle information or prior information or

parametric assumptions, we estimate the density f based on the filtered survival data(
N1,Y 1

)
, . . . ,

(
Nn,Y n

)
on [0,1] and see whether it looks flat. This density estimator

should have good boundary correction because it is defined on the transformed axis

[0,1]. We suggest to use the natural weighted local linear density estimator of Nielsen

et al. (2009):

f̂ (y) =
n

∑
i=1

∫
Ky,b(y− s)Y i(s)Ŝ(s)dNi(s),

where

Ky,b(y− s) =
a2(y)−a1(y)(y− s)

a0(y)a2(y)−{a1(y)}2
Kb(y− s),

with

Kb(y− s) =
1

b
K(

y− s

b
), (1)

and

a j(y) =
n

∑
i=1

∫
Kb(y− s)(y− s) jY i(s)ds,
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and

Ŝ(s) = ∏
t≤s

{
1−dΛ̂(t)

}
,

being the Kaplan-Meier estimate of the survival function, with

Λ̂(s) =
n

∑
i=1

s∫

0

{
Y (n) (t)

}−1

dNi (t) ,

where Y (n) (t) = ∑
n
i=1 Y i(s).

2.3. Implementing with discrete data

In most real life applications we only have discretized versions of the stochastic

processes Yi and Ni available. First we need to define the relevant discretized time points

H1, . . . ,HK and the corresponding differences hk = Hk −Hk−1 for k ∈ {1, . . . ,K}, with

H0 = 0. We define HK = inf
(
t;F
θ̂
(t) = 1

)
for any plausible survival function Fθ .

Discretized data are often defined as occurrences and exposures. Let respectively

Ok =
n

∑
i=1

∫ Hk

Hk−1

dNi(x)

and

Ek =
n

∑
i=1

∫ Hk

Hk−1

Yi(x)dx.

Now assume that we only observe these discrete occurrences – the Ok’s – and expo-

sures – the Ek’s. Then a natural approximation of the log likelihood function l(θ ) above

to our discrete observations would be

ld(θ ) = ∑
k

{logµθ (H
∗
k )}Ok −∑

k

µθ (H
∗
k )Ek,

where H∗
k = (Hk−1 +Hk)/2 .

Now consider discretized time points on the axis transformed by F
θ̂
. Let Hk =

F∗
θ̂
(Hk). hk = Hk − Hk−1 and H

∗
k =

(
Hk−1 +Hk

)
/2 for k ∈ {1, . . . ,K} . Note that

HK = 1. Also note that often the discrete time points are equidistant before the time

transformation but not thereafter.



160 A nonparametric visual test of mixed hazard models

On the transformed axis with time, the series H∗
1 , . . . ,H

∗
K is transformed into H

∗
1, . . . ,H

∗
K .

We will have occurrences

Ok = Ok

and exposures

Ek = Ek ∗hk/hk.

Assume that we were given the true c.d.f. with very large risk exposures Ek. Then on the

original axis Ok ∼µθ̂ (H∗
k )Ek hk while on the transformed axis Ok =Ok ∼αθ̂

(
H

∗
k

)
Ek hk.

If the model were the true one, the hazard rates Ok

/
Ek on the transformed axis would

be equal to 1
/(

1−H
∗
k

)
, and hence the density functions would be constant at 1.

The local linear density estimator on the transformed axis will in the discrete case be

defined as

f̂d(y) = ∑
k

Kd,y,b(y−H
∗
k)Ŝ

t
d(H

∗
k)Ok, (2)

where

Kd,y,b(y− s) =
a2,d(y)−a1,d(y)(y− s)

a0,d(y)a2,d(y)−{a1,d(y)}2
Kb (y− s) ,

a j,d(y) =
K

∑
k=1

Kb(y−H
∗
k)(y−H

∗
k)

jEk

and

Ŝt
d(H

∗
k) = 0.5

{
Ŝt

d(Hk−1)+ Ŝt
d(Hk)

}
= 0.5

[
exp

{
−

k−1

∑
i=1

hi

Oi

E i

}
+ exp

{
−

k

∑
i=1

hi

Oi

E i

}]
.

The choice of the bandwidth b depends on the availability of data. Large countries have

a large risk exposure; then most of the deviation between the density estimate and 1 can

be attributed to model uncertainty. In such cases, no or hardly any smoothing is required

and b can be small. For not so densely populated countries with small risk exposure, on

the other hand, proper smoothing – with a larger bandwidth – is needed to compensate

for parameter uncertainty.
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3. Mixed hazard models

In an individual frailty model the individual effect for a life’s mortality acts multiplica-

tively. Assume that a cohort consists of n individuals. Then for the ith person of the

cohort, the individual effect is represented by the random variable Zi and the conditional

force of mortality at age x, given Zi = zi, is given by

µ(x,zi) = ziµ(x) , i ∈ {1, . . . ,n} ,

with µ(x) denoting the standard force of mortality at age x – which is the force of

mortality of a life with frailty level 1 – and all Zi independent and identically distributed,

with a mean equal to 1.

In this paper we will assume that the individual hazard is of the form

µ(x) = exp(a0 +a1x+a2x2). (3)

In the notation of Forfar et al. (1988) this model is labelled GM(0,3). Note that the

special case a2 = 0 leads to the Gompertz model (GM(0,2)). The structure in (3) forms

the basis for national and international mortality modelling in Jarner and Kryger (2011).

We have dµ(x)/dx = µ(x)(a1 +2a2x). It is reasonable to assume that mortality

is increasing as a function of age. This would imply a1 ≥ 0 and a2 ≥ 0. Nonnegative

estimates of a1 and a2 are also obtained in Jarner and Kryger (2011). The relative

change of mortality as a function of age x – defined in Horiuchi and Coale (1990) as

k (x) = d lnµ(x)
/

dx – is a linear function of age: k (x) = a1 +2a2x.

The cohort mortality at age x is given as µθ (x) = E [Z |x ] · µ(x), where E [Z |x ]
denotes the mean frailty of lives surviving to age x. Let LZ denote the Laplace transform

of frailty at birth, i.e. LZ(s) = E [exp(−sZ)]. It can then be shown, see e.g. Hougaard

(1984), that

E [Z |x ] =−L′
Z [M (x)]

LZ [M (x)]

with

M (x) =

x∫

0

µ(s)ds.

Hence the cohort mortality can be easily calculated for all frailty specifications with

known Laplace transform. In the literature, the Gamma distribution has been by far

the most popular specification in the frailty model. This is partly due to its mathemat-

ical tractability. Abbring and Van den Berg (2007) show that, under mild conditions
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regarding regular variation, for several frailty distributions, Gamma is the limiting frailty

distribution of survivors. Therefore, Gamma frailty is in some sense a natural choice. We

will also be using Gamma frailty as one of the bases of our numerical illustrations in the

next section.

Since the model (3) contains a scaling parameter, a0, we will assume, without loss of

generality, that the distribution of frailty at birth has mean 1 and variance σ2. If frailty

is Gamma, then LZ (s) =
(
1+σ2s

)−1/σ2

, while E [Z |x ] =
(
1+σ2M (x)

)−1
.

Another common choice for frailty in the literature on survival models is the

Inverse Gaussian distribution. This specification has also been discussed by Butt and

Haberman (2004). Under the above assumption, LZ (s) = exp
[
σ−2

(
1−

√
1+2σ2s

)]

and E [Z |x ] =
{

1+2σ2M (x)
}− 1/2.

Disregarding heterogeneity implies LZ (s) = e−s and E [Z |x ] ≡ 1. This is a special

case of the Gamma distribution, obtained by taking the limit σ2 ↓ 0. Obviously, this

case of no frailty should give a worse fit than Gamma. In the numerical application we

will show how this transpires by comparing the resulting local linear density estimators

on the transformed scale.

4. Application to mortality data

We analyze the mortality data of four countries differing significantly in terms of

population size, namely United States (US), United Kingdom (UK), Denmark and

Iceland.

For each country, the data set consists of female period mortality data, obtained from

the Human Mortality Database, and concerning the calendar year 2006. Since we are

primarily interested in adult and old age mortality, only the ages from 40 to 110 are

included. The exposed to risk at age 40 (defined before as E1) are equal to 2,116,995.31

(US), 478,424.36 (UK), 43,463.83 (Denmark) and 2,193.00 (Iceland). So, roughly, the

largest country is about 1,000 times as large as the smallest country.

For Gamma frailty, Inverse Gaussian frailty and no frailty, we estimate the parame-

ters from maximum likelihood following Borgan (1984) and perform a visual inspection

of its fit based on the transformation approach. The parameter estimates are shown in

Table 1. As basic kernel function, we choose

K (x) =
3003

2048

(
1− x2

)6
I[−1,1] (x) . (4)

For further details about this specific kernel, consult Nielsen et al. (2009). We have

selected (4) for our example, but the actual choice of basic kernel function is not so

important.
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Table 1: Estimates of parameters.

Country/frailty model a0 a1 a2 σ2

United States

No frailty −9.0389 0.04975 0.0003014 −
Gamma −8.1373 0.02014 0.0005402 0.1193

Inverse Gaussian −9.0388 0.04975 0.0003014 2.3966e-11

United Kingdom

No frailty −10.1631 0.06766 0.0002594 −
Gamma −8.5070 0.01479 0.0006729 0.1632

Inverse Gaussian −8.5047 0.01374 0.0006914 0.2488

Denmark

No frailty −10.1153 0.07338 0.0001991 −
Gamma −9.7088 0.06034 0.0003021 0.04007

Inverse Gaussian −9.7390 0.06125 0.0002954 0.04062

Iceland

No frailty −10.1777 0.05911 0.0003532 −
Gamma −10.1136 0.05708 0.0003689 0.005556

Inverse Gaussian −10.1777 0.05911 0.0003532 4.2043e-08

0.0 0.2 0.4 0.6 0.8 1.0

0
.7

0
.8

0
.9

1
.0

1
.1

1
.2

Transformed axis

Figure 1: United Kingdom: Values of density function obtained from the transformed observations (points)

and local linear density estimator (curve) as in (2), with b= 1/9, all on the transformed scale, using Gamma

frailty.
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Now we assume that Gamma frailty is suitable for the data at hand, and we

want to test that assumption through our visual inspection technique. We use the

UK as an illustrative example. Figure 1 displays the values of the density functions

of the 71 transformed observations on the transformed scale, using Gamma frailty.

For observation k, with k ∈ {1, . . . ,K}, the x-coordinate is equal to H
∗
k , while the

corresponding y-coordinate is equal to
(
1−H

∗
k

)
∗ Ok

/
Ek.

As explained before, if the model assumed were the true one and risk exposure

were infinite, these y-coordinates would all be equal to unity. Deviations from unity

essentially arise from two sources: the extent to which the assumed/estimated model

deviates from the true underlying model, and the noise in data caused by the stochastic

nature of death. We are interested in assessing the first kind of (systematic) deviations,

and for this purpose we want to reduce the second kind of (unsystematic) deviations.

Assume for a moment that all deviations could be taken at face value, i.e. that

there were no unsystematic deviations. How would model deviations then manifest

themselves on the transformed scale? Assume the model has density f with cdf F ,

while the true density is g. Then the density of transformed data is
(
g
/

f
)(

F−1 (u)
)

for 0 < u < 1. We are particularly interested in the behaviour in the right tail of the

distribution. There are three possibilities:

• If the model overestimates the density of dying old then the density of transformed

data will be below 1 in the right tail.

• If the model estimates the density of dying old correctly then the density of

transformed data will be close to 1 in the right tail.

• If the model underestimates the density of dying old then the density of trans-

formed data will be above 1 in the right tail.

Small risk exposure and consequently noisy data is a well known problem for very

high ages, even for large countries like the US. This is why the observed density points

start to deviate significantly from 1 when the x-coordinate approaches 1, bearing in

mind that the probability of death before attaining a very advanced age is close to 1. The

purpose of the density estimator is to reduce the noise in data to get a clearer picture of

the performance of the model. The reason for working on the transformed scale is that

the density can be more effectively estimated and with smaller bias on the unit interval

than on the original scale.

4.1. Effect of bandwidth

A non-smoothed density estimate is obtained by simply connecting these points, but this

will lead to an irregular pattern in all cases. The points are displayed together with the

local linear density estimator based on kernel smoothing as in equation (2). In Figu-

re 1, the value for the bandwidth b of 1/9 has been selected by eye-ball, according to

whatever looks best for this particular data set.
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Figure 2: United Kingdom: Values of density function obtained from the transformed observations (points)

and local linear density estimator (curve) as in (2), with b = 1/24, all on the transformed scale, using

Gamma frailty.

The importance of choosing an appropriate value for the bandwidth is illustrated in

the next two diagrams. Figure 2 shows the same points alongside the density estimator

with smaller bandwidth b = 1/24. The lack of smoothness is evident: the estimator

seems to be a set of line segments connecting several points.

Figure 3, on the other hand, gives the density estimator with larger bandwidth

b = 1/3. This is an example of over-smoothing: features are displayed that do not reflect

the characteristics of the data.

However, regardless of the chosen bandwidth the estimated density is close to unity

in all three cases, and hence we would judge the model to provide a good description of

old age mortality for the UK data.

The bandwidth choices for the other countries are 1/12 (US), 1/6 (Denmark) and

1/2 (Iceland). Note that the bandwidths go up with decreasing population size for

reasons as stated above. Observe that the set of observed density points for Iceland

contains a lot of outliers, whence the choice of a large bandwidth.

While these bandwidths have been selected by eye-ball, we also reproduced au-

tomatic bandwidth selectors. The cross-validation procedure of Nielsen et al. (2009)

breaks down and undersmooths way too much in our case. However, we adapted the Do-

validation bandwidth selection procedure of Mammen et al. (2011) to our case. Except
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Figure 3: United Kingdom: Values of density function obtained from the transformed observations (points)

and local linear density estimator (curve) as in (2), with b= 1/3, all on the transformed scale, using Gamma

frailty.

for Iceland, we got almost exactly the same bandwidths as our eye-ball bandwidths.

The automatic bandwidth selector for Iceland was somewhat higher than our eye-ball

bandwidth selector. We did, however, in the end like our eye-ball selector for Iceland

more and we therefore present that one here along with our other eye-ball selected

bandwidths.

4.2. Old age mortality

In Figures 4 to 7, the local linear density estimate for Gamma frailty is compared with

the one obtained in case of Inverse Gaussian and no frailty (with the same bandwidth,

of course). Note that for the US the curves of Inverse Gaussian and no frailty practically

coincide. Obviously this is due to the parameter estimates of a0, a1 and a2 which are

virtually the same for both models, while the estimate of the additional parameter σ2 in

Inverse Gaussian is very close to zero.

The overall impression regarding the four countries is best when it comes to the

Gamma frailty survival model. In the USA case, the Gamma frailty parametric density

is never more than two percent away from one on the transformed scale. This is not

bad at all and most forecasters could accept deviances at this scale. Also, the USA data

is quite abundant and we can allow ourself to work with a relatively small bandwidth.
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Figure 4: United States: Local linear density estimator as in (2), with b = 1/12, on the transformed scale:

Gamma frailty (solid) compared with Inverse Gaussian (dotted) and no frailty (dashed).
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Figure 5: United Kingdom: Local linear density estimator as in (2), with b = 1/9, on the transformed

scale: Gamma frailty (solid) compared with Inverse Gaussian (dotted) and no frailty (dashed).
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Figure 6: Denmark: Local linear density estimator as in (2), with b = 1/6, on the transformed scale:

Gamma frailty (solid) compared with Inverse Gaussian (dotted) and no frailty (dashed).
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Figure 7: Iceland: Local linear density estimator as in (2), with b= 1/2, on the transformed scale: Gamma

frailty (solid) compared with Inverse Gaussian (dotted) and no frailty (dashed).
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Therefore, there is no reason to fear that we have smoothed too much and that should

be the reason for the small deviance. This USA study gives us some confidence that the

Gamma frailty survival model is working well also for smaller data sets, where bigger

fluctuations are to be expected. For the United Kingdom the Gamma frailty survival

model also fits relatively well, but now with deviances up to five percent. Surprisingly

the Danish Gamma frailty survival density has very small deviances with the biggest

being less than three percent. Iceland is another case, deviances up to 20% are found

and the two frailty models do not seem to improve the fit compared to having no frailty

at all. Overall the conclusion from the graphs is that the Gamma frailty makes the best

fit, the Inverse Gaussian less so, but with both frailty models being superior to having no

frailty at all. If we take a closer look at the tail of the three fitted Danish survival models

at the transformed scale, we can get some further insight into the question posed in the

introduction. It is indeed very clear that the flattening out of the Gamma frailty density

in the tail helps the fit. The Gamma frailty version is much closer to one around the

tail with about half the deviance from one compared to the no-frailty density version. In

general, the performance of Inverse Gaussian is somewhat between that of Gamma and

no frailty. For Iceland, the curves are almost identical, due to the small estimate of σ2

and very similar estimates of the other parameters. In other words, for Iceland, the cases

of Gamma frailty, Inverse Gaussian frailty and no frailty are nearly the same.

For US and UK the Gamma specification clearly provides the best description of

data of the candidates considered. Both the Inverse Gaussian and no frailty alternative

deviate substantially more in the right tail than Gamma frailty. These two specifications

both overestimate old age mortality substantially, while the Gamma frailty seems to

capture the old age mortality plateau evident in data. Moreover, the right tail deviations

of Gamma frailty is of the same magnitude as deviations for younger age segments,

while the right tail deviations for Inverse Gaussian and no frailty seems to diverge.

While the picture is less clear for Denmark, the frailty densities also here improve the

description of old age mortality. It also seems that without frailty the deviation diverges

in the right tail, but the magnitude of deviation is much smaller than for US and UK. In

contrast to US and UK, the Gamma and Inverse Gaussian essentially perform equally

well. Thus we conclude that there is enough information in data to indicate the presence

of heterogeneity, but not enough information to distinguish between the different kinds

of heterogeneity.

Lastly, Iceland has so little exposure and so much uncertainty in data that even with

the method derived in this paper we cannot distinguish between the models.

A critical part of the study concerns the performance of the estimator for advanced

ages. To this end, for each country we calculate the second largest and largest points

of intersection of the estimator with the horizontal line (i.e. the two largest roots

of the equation f̂d(y) = 1) and translate this back into the corresponding ages. For

comparability, we have left out in this investigation the late spike of no frailty and the

Inverse Gaussian in the USA case. The results are given in Table 2 below. It is quite clear

that Gamma frailty densities in all case are having the last crossing point. This indicates



170 A nonparametric visual test of mixed hazard models

that the Gamma frailty density provides the best description of old age mortality among

the considered models. In the USA case, we get almost to the age of 100 before our

transformed density drops below one. The lowest last crossing for the gamma frailty is

still quite high, namely 93 years. Above this last crossing point on the transformed scale,

all the fitted parametric models seem to have too low densities. Thus, above the last

crossing point our parametric models are overstating the possibility of dying. In other

words, above the last crossing point all models seem to be on the safe side. In particular

the Gamma frailty seems well behaved for annuity purposes. The density of very old are

a bit too high, but rarely more than two percent, and these two percent are on the safe

side when calculating for example annuities. Most of the extra old age mass is taken

from the interval between the next last crossing point and the last crossing point, where

the underlying parametric densities are overestimated in all cases. Therefore, while none

of the densities are making a perfect fit, the Gamma frailty density is very close and with

good properties for the annuity forecaster. It is on the safe side for the very old ages, with

an overall annuity that seems to be close to the truth, overestimating the density in the

very old ages, but compensating for that overestimation in an interval leading up to those

old ages. Without frailty the deviations for old ages are substantially larger than with

(gamma) frailty. The transformed density is below 1 which indicates that the probability

of dying old is overestimated. At first glance this appears to be at odds with the fact

that without frailty the old-age hazard is overestimated, cf. Figure 1. The explanation is

that while the old-age hazard is overestimated the hazard is underestimated in the age

groups below and therefore too many attain the (high) age of 90, say, after which they

die too quickly. The model without frailty is on the safe when setting aside reserves for

annuities for 40 year-olds, but if we were to use the same model for older age groups it

would only be conservative up to a certain point. This clearly is not a desirable feature,

and it illustrates the point that overstating the probability of dying old for one cohort is

not necessarily a conservative assumption for other cohorts.

Notice that it would be hard to get this kind of detailed information from testing

the underlying densities or even from graphical visualization techniques on the original

scale. Therefore, our simple transformation technique has enabled us to comfort the

statistician forecasting mortality models based on simple underlying parametric survival

distributions.

Table 2: Second largest and largest crossing point of density estimator with horizontal line at 1.

Country Gamma Inverse Gaussian No frailty

Second largest Largest Second largest Largest Second largest Largest

crossing crossing crossing crossing crossing crossing

point point point point point point

US 92.37 98.68 92.14 95.21 92.14 95.21

UK 89.51 96.85 89.15 95.34 87.61 92.10

Denmark 85.53 94.77 85.47 94.67 84.91 93.63

Iceland 84.38 93.02 84.34 93.01 84.34 93.01
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5. Conclusions

We have developed a new visual inspection technique of survival models. It generalizes

developments of transformation techniques of i.i.d. data, see for example Bolancé

et al. (2008, 2012a, 2012b, 2013). The method seems useful in many versions of

follow-up studies, see for example Guillén et al. (2012) and Pinquet et al. (2011).

We imagine it to be useful when the applied statistician wants the data to guide

his intuition. The working methodology could be through running the knowledge

loop cycle: Data→Visualization→New Assumption a number of times until the final

assumptions seem intuitively reasonable and well behaved also according to more

standard statistical techniques.

All the mortality projection models discussed in the Introduction involve both an

age and a time dimension. As mentioned in the Introduction one can use our one-

dimensional visualization technique for the age effect after having adjusted for the time

effect and vice versa when visualizing the time effect. A full multidimensional version

of our methodology is also possible. One could use multidimensional density estimation

of filtered data to introduce a similar visual inspection technique to assessing the quality

of mortality depending on both age and time. See for example Buch-Kromann and

Nielsen (2012) for a recent multivariate density estimator that could be used in our

visual diagnostic step after having transformed our data with our favourite forecasting

mortality model.

Transformations and visual fitting as developed in this paper would also seem

relevant in other areas of actuarial science as, for example, reserving, see the recent

papers Martı́nez-Miranda et al. (2012) and Kuang et al. (2011).
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