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Abstract: The paper aims at formulating an integrated approach for the selection of decen-
tralized control structures using a number of structural criteria aiming at facilitating the design
of decentralised control schemes. This requires the selection of decentralisation structure that
will allow the generic solvability of a variety of decentralised control problems, such as pole
assignment by decentralised output feedback. The approach is based on the use of necessary
and sufficient conditions for generic solvability and exact solvability of decentralised control
problems. The generic solvability conditions lead to characterisations of inputs and outputs
channel partitions. The exact solvability conditions use criteria on avoiding the presence of fixed
modes, as well as necessary conditions for pole assignment, expressed in terms of properties of
Plücker invariants and Markov type matrices. The structural approach provides a classification
of desirable input and output partitions based on structural criteria and it is embedded in an
overall framework that may involve aspects related to large scale design.

Keywords: Linear multivariable systems; output feedback control; structural methods;
decentralised control; algebraic methods; geometric methods.

1. INTRODUCTION

The selection of a decentralisation scheme is a problem
that has not been properly addressed as a design issue
and has been handled mostly using process dependent
heuristics, conditions derived from the nature and spa-
tial arrangement of sub-process units and the criteria,
diagnostics of the interaction analysis. This problem is
within the area of control structure selection, or Systems
Instrumentation (Karcanias, 1996) and involves steps such
as: classification of variables of the model into inputs, out-
puts and internal variables (Karcanias, 1996); definition of
effective sets of inputs, outputs (Karcanias and Vafiadis,
2002); and finally the selection of the feedback coupling
of the Control Scheme (Morari and Stephanopoulos, 1980)
(Siljak, 1991) etc). These families of problems may be con-
sidered within the framework of structural methodologies
for linear systems and each one of them involves concrete
sub-problems. The design of decentralisation schemes is
a problem which may be studied using criteria based on
the nature of the process (Morari and Stephanopoulos,
1980), geographical location of subsystems, graph based
structural analysis (Siljak, 1991), interaction indicators
(Grosdidier and Morari, 1986), (Manousiouthakis et al.,
1986) and general coupling diagnostics based on generic
properties and invariant based criteria (Leventides and
Karcanias, 1996).

We address the problem of design of decentralisation
schemes in order to guarantee, or well condition the solv-
ability of families of control problems. As such the overall
approach is based on the philosophy of defining schemes
which exclude undesirable characteristics, such as fixed
modes. Deriving a systematic methodology for synthesis of
decentralisation schemes (Karcanias et al., 1997) requires
an approach that involves: (a) Classification of variables,
definition of system progenitor models and definition of
effective sets of inputs, outputs (Karcanias and Vafiadis,
2002) (b) Handling large scale issues using decomposi-
tion methodologies (Morari and Stephanopoulos, 1980)
and graph methodologies (Siljak, 1991); (c) Developing
structural methodologies preconditioning the solvability
of control theoretic problems (Karcanias and Leventides,
2005), (Lampakis and Karcanias, 1995); (e) Design in-
dicators and optimization based methodologies enabling
the solvability of a number of decentralized control prob-
lems (Manousiouthakis et al., 1986). Such an integrated
methodology is currently missing and an early form has
been introduced in (Karcanias et al., 1997).

The emphasis in our approach is the screening of the bad
choices and then leave the final selection to performance
dependent criteria. The overall framework developed aims
to contribute in answering questions such as selecting
between centralised versus decentralised, and if decen-
tralised, then specify the exact nature of decentralisation



that involves the partitioning and pairing for the particular
channels. This paper focuses on the development of the
structural methods for the selection of decentralization.
An integral part of the structural methodologies is the
distinction between generic solvability conditions (Lev-
entides and Karcanias, 1996) and parametric invariant
dependent conditions, where the model parameter play an
important role. We use existing results for generic solv-
ability of decentralized control problems (Wang and Davi-
son, 1973), (Anderson and Clements, 1981), (Karcanias
et al., 1988), (Siljak, 1991), (Wang, 1994), (Leventides and
Karcanias, 1995), as well as criteria and diagnostics that
well condition the solvability of decentralized problems
for parameter dependent models. Clearly, these structural
results and criteria will have to be used in addition to
all other available tools, that are parts of the overall
integrated methodology, mentioned above, which will is
also summarised in the paper.

The structural approach is based on existing generic solv-
ability conditions and on the Exterior Algebra model based
diagnostics (Karcanias and Giannakopoulos, 1984), (Kar-
canias et al., 1988), (Leventides and Karcanias, 1998b)
involving Plücker matrices, decentralized Markov param-
eters and criteria for avoiding fixed modes depending on
parameter model based properties. Such criteria provide
the means to characterise the different features of system
structure that permit, or prohibit the acceptance of solu-
tions to control problems.

We will use the generic solvability conditions to develop
partitions of the input and output sets characterising de-
centralization, which have good potential and then exam-
ine the criteria based on parametric invariants for more
detailed evaluation of alternative decentralized control
structures. For systems with a given number of inputs,
outputs and states but otherwise unstructured models,
the problem of selection of decentralisation has to do with
the partitioning of inputs outputs into channels, each one
characterised by its cardinality and then decide about
their coupling, whether feedback control is to be used.
Deciding about the nature of cardinality of the particular
channel, as well as the number of desirable channels is
one of the problem we are concerned with here and it
is based on generic properties (Leventides and Karcanias,
1996). The results of this investigation are used prior to
the deployment of parameter dependent diagnostics and
thus form part of the first screening of the options for
selection of decentralisation. We will then consider the
significance of the system model parameters and selected
decentralization using the results of the exterior algebra
framework for the study of Decentralized Determinantal
Assignment Problems (Karcanias and Giannakopoulos,
1984; Karcanias et al., 1988).

We aim to eliminate the existence of fixed modes and
guarantee full rank properties to the decentralised Plcker
matrices (Leventides and Karcanias, 1998b). The paper
presents aspects of structural methodologies for design
of decentralisation schemes, which are part of an overall
integrated philosophy for design of such schemes.

2. OVERALL APPROACH FOR THE SELECTION OF
THE DECENTRALISATION STRUCTURE

The selection of the decentralisation structure involves
answering questions on whether we have to use centralised,
or decentralised schemes; if decentralisation is needed,
then we need to decide on the partitioning of the input,
output channels, as well as the way we have to couple them
in a feedback configuration. An integral part of the design
is also the specification of the required order of dynamics
of the selected decentralised scheme. Here, however, we
will focus on constant feedback design. Our approach for
the selection of the decentralisation involves a number of
general steps which will be considered in this section.

Step 1. Use knowledge on the process, geographical loca-
tion of process units and operational requirements, such
as the nature of optimisation problem, to define a first
appraisal of options as for centralisation versus decentral-
isation. If decentralisation is needed, then the physical ar-
guments lead to the first structuring of the decentralisation
scheme, referred to as feasible decentralisation.

This step aims to take into account the particulars of
the application area and nature of the problem. This
knowledge is essential and it is part of the overall prob-
lem specification. What is expected at this stage is the
development of the first structuring of the schemes in
terms of super-blocks, which themselves may require some
further structuring subsequently. This area of work may
be considered as a part of the control structure selection
on the entire plant.

Step 2. Use of graph analysis methodology to develop
system decompositions (Siljak, 1991), which may indicate
structuring of the decentralisation and also use of the
concept of structural fixed modes for evaluation of alter-
natives.

For systems which have an explicit graph structure, a
procedure leading to overall system decomposition, may be
used in developing further the possible structures specified
in step (1) and then evaluating alternatives based on the
exclusion of structural fixed modes based on properties of
the system graph.

Step 3. Use results on the generic solvability of decen-
tralised control problems to produce a parameterisation of
alternatives based on generic solvability of decentralised
control problems.

The study of decentralised control problems has pro-
duced some results characterising generic solvability of
control problems (Wang and Davison, 1973), (Anderson
and Clements, 1981), (Karcanias et al., 1988), (Siljak,
1991), (Wang, 1994), (Leventides and Karcanias, 1995),
(Leventides and Karcanias, 1996) which can lead to pa-
rameterisation of possible partitions of input, output chan-
nels which permit solvability of control problems. These
results depend on structural characteristics such as the
McMillan degree and the numbers of inputs, outputs.

Step 4. Use results on the solvability of decentralised
control problems based on parameter dependent structural
invariants to produce a parameterisation of alternatives
based on diagnostics for solvability of decentralised control
problems.



At this stage we proceed with the evaluation of the avail-
able options using linear models and parameter dependent
properties such as fixed modes, almost fixed modes (Kar-
canias et al., 1988), properties of the rank of decentralised
Plücker matrices, strong instability and minimum phase
phenomena. Tests based on exterior algebra diagnostics
include rank of decentralised Markov parameters (Leven-
tides and Karcanias, 1998a). These tests are used to pre-
dict formation of undesirable characteristics (fixed, almost
fixed modes, loss of rank of Plücker matrices).

Step 5. Use of interaction analysis diagnostics based on
steady state models, or simple dynamic models to evaluate
the alternatives produced at the previous stage.

Progressing from graph models to steady state, or simple
dynamic models, we may use the large number of diag-
nostics of the RGA, BRGA type (Manousiouthakis et al.,
1986), to evaluate further the options specified in the last
step. There is a variety of tests for interaction analysis
based on simple models that can be used.

Step 6. On a full dynamics linear model, use diagnostics
based on performance indicators to evaluate the alterna-
tive decentralisation schemes, which have been specified
by the previous stage.

Having exhausted all structural methodologies and tests
to reduce the set of options we now use computationally
intensive methodologies on smaller dimension systems for
the further screening of alternatives. This involves indi-
cators such as singular values, structural singular values,
properties of cost balanced realisations, energy require-
ments for coupling, etc. In this paper we focus on issues
related to steps (3) and (4).

3. PRELIMINARIES TO THE STRUCTURAL
APPROACH

Consider a k−channel linear system S(A,B,C) described
by

ẋ = Ax+
k∑
i=1

Biui yi = Cix (1)

where x, ui, yi are n,mi, pi vectors, respectively, and ui, yi
are the input and output of the i−th channel in a decen-
tralisation scheme. We use a right coprime MFD for the
transfer function G(s) = N(s)D(s)−1. If local feedback
laws of the type

ui = Kiyi + u′i, Ki ∈ Rpi×mi , i = 1, 2, . . . , k

are applied to each of the k−channels, the closed-loop pole
polynomial is expressed as

p(s) = det(sI −A−
k∑
i=1

BiKiCi)

p(s) = det

(
[Ip,Kdec]

[
D(s)
N(s)

])
(2)

where Kdec = bl.diag {K1, . . .Kk}. The above problem
belongs to a more general category of pole placement
problems where the multivariable feedback controller is
structured. More specifically if we denote the set of all
possible pairs i, j corresponding to closing the loop by
Ω = {(i, j) : 1 6 i 6 p and 1 6 j 6 m} where the output
j is connected to the input i, then any subset Ωs of Ω

defines a structured feedback scheme where the permissible
loop closures are described by the pairs in Ωs. In the
special case of static decentralised control we have that:

Ωd = [1, p1]× [1,m1] ∪ [p1 + 1, p1 + p2]× [m1 + 1,m1 +m2]

· · · ∪

[
k−1∑
i=1

pi + 1, p

]
×

[
k−1∑
i=1

mi + 1,m

]
The structured pole placement map Xs is the function
that maps every structured feedback Kdec to the n closed
loop poles: Xs : =µ → =n where µ = |Ωs| denotes
the number of free parameters in Ωs. The decentralised
pole placement map, Xd, is defined this way to be: Xd :

=
∑

mipi → =n. The pole placement map (Leventides
and Karcanias, 1992) carries all the information as far
as the pole placement and for the decentralised case
can be considered as a restriction of the general pole
placement map of the centralised output feedback case and
contains a subset of the Markov parameters (Leventides
and Karcanias, 1998a). The latter property allows the
linking of decentralised Plücker invariants to the state
space parameters and thus to system design issues.

We examine next issues linked to the selection of decentral-
isation schemes: (a) Generic conditions for solvability of
decentralisation problems and selection of decentralisation
partitioning. (b) Well conditioning of Plücker invariants
by selection/redesign of decentralised Markov parameters.
These problems are linked to necessary conditions and thus
introduce possible solutions for design of decentralisation
using the results of the decentralised pole assignment by
constant output feedback. The framework can be extended
by considering similar decentralised control problems.

4. BACKGROUND TO THE DECENTRALISED
DETERMINANTAL ASSIGNMENT PROBLEM

The study of the pole placement map is central in the
investigation of solvability conditions of the decentralised
pole assignment and provides the required necessary con-
ditions for addressing the design of the decentralisation
schemes. In the following, we review two approaches. The
first is based on the decentralised Plücker matrix and the
second on the differential of the map Xd, which leads to
the definition of the decentralised Markov parameters.

Decentralised Plücker Matrices: Using the Binet
Cauchy Theorem on 2, we have:

p(s) = Cp ([Ip, Kdec]) · Cp
([

D(s)
N(s)

])
= ktdecg(s)

where, Cp (·) denotes p−th compound, ktdec the exterior
product of the rows of [Ip, Kdec] and g(s) the exte-

rior product of the columns of
[
D(s)

t
, N(s)

t
]t

. We may

write g(s) = P · en(s), en(s) = [sn, · · · , s, 1], en(s) =
[sn, · · · , s, 1] is the right Grassmann-representative, the
right Plücker matrix and they are complete invariants for
the S(A,B,C) system (Karcanias and Giannakopoulos,
1984). The vector ktdec has zeros at certain positions due
to the block diagonal structure. If now we cut from g(s)
those entries corresponding to the fixed zero locations of
ktdec we get a new vector g′(s) = P ′ ·en(s) called the decen-
tralised Grassmann representative and P ′ the decentralised



Plücker matrix (Karcanias et al., 1988). g′(s) and P ′ are
invariants under the given decentralisation scheme and
their significance in the characterisation of fixed modes
(Anderson and Clements, 1981) and solvability of decen-
tralised assignment is summarised by the following result
(Karcanias et al., 1988):

Theorem 1. For a given decentralisation scheme defined
on S(A,B,C) by Kdec, the following hold true:

(i) A necessary and sufficient condition for λ ∈ C to be a
decentralised fixed mode is that λ is a zero of g′(s), i.e.
g′(λ) = 0.

(ii) A necessary condition for decentralised assignment is
that rank(P ′) = n+ 1.

(iii) If rank(P ′) = n+ 1, then the system S(A,B,C) has
no decentralised fixed modes under Kdec schemes.

�
Remark 2. The presence of fixed modes is the result of
the structure of the decentralisation scheme and it is
independent of dynamics of decentralisation scheme. The
test for the decentralised constant compensation case is
thus valid for all decentralised dynamic compensations
having a given decentralisation characteristic.

Such results may be extended to dynamic compensation
schemes and can be used to test the properties of the given
decentralisation scheme. However, they provide no insight
in how we can modify a decentralisation scheme, since
the links to the state space parameters are not explicit.
Such links are established by examining the differential of
the pole assignment map, which leads to the decentralised
Markov parameters (Leventides and Karcanias, 1998a).

5. GENERIC SOLVABILITY CONDITIONS AND
PARAMETERISATION ISSUES

The existing results on the generic solvability of the de-
centralised pole assignment may be used to provide pa-
rameterisations of the decentralised structures with good
pole assignment potential. The results below indicate de-

sirable partitions
k∑
i=1

pi = p,
k∑
i=1

mi = m for the p−inputs,

m−outputs and n states generic system. The fundamental
question is under what conditions the Decentralized DAP
can be solved for any or almost any p(s) of degree n. Some
of these results are stated below:

Theorem 3. (Wang (1994)). The condition
k∑
i=1

mipi > n

implies generic pole assignability, when either the number
of all inputs, or the number of all outputs are equal.

�

More general sufficient conditions avoiding the equality
of dimensions, of input-output channels have been also
derived and are summarised below.

Theorem 4. (Leventides and Karcanias (1995)). i) A nec-
essary condition for arbitrary, pole placement via a
k−channel static decentralised output feedback con-
troller is:

k∑
i=1

mipi > n, rank (P ′) = n+ 1

ii) A sufficient condition for arbitrary, pole placement is

min(mi)p > n, rank (P ′) = n+ 1

�

Theorem 4 gives a simpler test when compared to testing
the results in (Wang, 1994) and it is directly related to
the decentralisation parameters (mi, pi). A similar family
of results is based on the notion of partition of integers
and on the evaluation of height function.

Definition 5. A binary partition t of the number n of
length k is a sequence of non-negative integers t(1), t(2),
. . ., t(k), such that n = t (1) + t (2) + · · · + t (k) and for
every j, there is at most one 1 in all the j−th digits of the
binary representations of t(1), t(2), . . . , t(k).

�
Theorem 6. A sufficient condition for arbitrary pole place-
ment by a real static decentralised output feedback for
a proper system with n states and k(mi, pi) channels, is
that there exists a k−length binary partition of n say
{t(1), t(2), . . . , t(k)} such that t (i) 6 h (pi,mi) for every
i = 1, . . . , k.

�

The computation of h (pi,mi) may be achieved as shown
in (Leventides and Karcanias, 1995):

Lemma 7. If 1 < p 6 m and ν is such that 2ν 6 m+ p−
1 < 2ν−1, then the height function h (p,m) is given as

h(p,m) =

{
2ν+1 − 2
2ν+1 − 1

if p = 2, 3 and m+ p = 2ν + 1
otherwise

�

6. EXACT SOLVABILITY CONDITIONS AND THE
DECENTALISED MARKOV PARAMETERS

The development of links between structural invariants,
the properties of the pole assignment, and the evaluation of
decentralisation is through the notion of the decentralised
Markov parameters (Leventides and Karcanias, 1998a)
linked to the properties of the differential of the pole
assignment map.

Decentralised Markov Parameters: We consider the
decentralised pole placement map Xd that can be fac-
torised as

Xd : =
∑

mipi E−→ =m×p Xc

−−→ =n

where Xc is the centralised pole placement map and
E(row(K1), . . . row(Kk)) = bl.diag(K1, . . . ,Kk). The cal-
culation of the differential of Xd involves the decomposi-
tion Xd = Xc ◦ E and this implies

D(Xd)k = D(Xc)E(k) ◦D(E)k

The sets Ω and Ωd, specify the lower indices of the
entries of centralised and decentralised feedback matrices
respectively. We consider a basis for T (=mp)k the set of

all (ϑ/ϑka), a ∈ Ω and for T (=
∑

mipi)k the set of all
(ϑ/ϑkb), b ∈ Ωd, where all the indices are lexicographically
ordered. Using these bases we have a representation for the
differentials (Leventides and Karcanias, 1998a):

Theorem 8. For a given decentralised feedback gain K and
a system S(A,B,C), a matrix representation of the differ-
ential of the decentralised pole placement map D(Xd)k,



with respect to the bases previously defined is denoted by
R(Xd)k and it is given by

R(Xd)k = R(Xc)E(k) ◦R(E)k

R(Xc)k = Qt
[
colCB, colCHB, . . . , colCHn−1B

]t
which is an n × mp matrix, col maps an m × p matrix
to mp × 1 matrix formed by superimposing its columns,
H = A+BKC and Q is associated with the coefficients of
the closed loop polynomial and R(E) is an mp ×

∑
mipi

matrix such that for ∀α, β ∈ Ω

Q =


1 pn · · · p2
0 1 · · · p3
...

. . .
...

0 · · · · · · 1

R(E)αβ =

{
1 if α = β
0 otherwise

�

Remark 9. Note that R(Xd)k is obtained by R(Xc)E(k) by
keeping only those rows of R(Xc)E(k) which correspond to
Ωd set of indices. The column representation of the Markov
parameters of S(A,B,C) is obtained by computing the
differential of Xc at k = 0. Similarly, we may define the
decentralised Markov parameters by using the differential
of Xd at Kdec = 0. In fact, if Hi = CAiB, then for
Kdec = 0 we have

R(Xd)0 = Qt
[
colĤ0, colĤ1, . . . colĤn−1

]t
= QtMd

where colĤi denotes the reduced column obtained from
colHi after eliminating all the entries that do not corre-
spond to the indices Ωd.

�

The matrix Md is known as decentralised Markov matrix
and its properties are summarised below (Karcanias et al.,
1988):

Theorem 10. For a system S(A,B,C) and a decentralisa-
tion scheme defined by Ωd set the following properties hold
true:

i) rank(Md) 6 dim( ImXd) 6 n.
ii) For a generic system S(A,B,C) such that

∑
mipi > n,

then rank(Md) = dim(ImXd) = n. Furthermore,
under these conditions the arbitrary pole assignment via
complex output feedback is solvable.

�

The link between the decentralised Plücker and the de-
centralised Markov matrices is expressed as follows (Lev-
entides and Karcanias, 1998a):

Proposition 11. For the system described by S(A,B,C),
let Ps =

[
e1, Ps

′] be its Plücker matrix. We may compute

M =
[
colCB, . . . , colCAn−1B

]
from Ps

′ as follows:

(a) Select the rows of Ps
′ that correspond to the set of

indices (1, 2, . . . , i− 1, i+ 1, . . . , p, p+ j) for i : 1 6
i 6 p and j : 1 6 j 6 m. This set of rows is multiplied
by (−1)i−1.

(b) Repeat step (a) for all i and j and form the pm × n
matrix, which is then post-multiplied by Q−1, where
Q is the n × n matrix defined above and which
corresponds to the open loop pole polynomial.

�

The above indicates that the Markov matrix M is modulo-
Q ∈ Rn×n, det(Q) 6= 0, a sub-matrix of Ps and thus the
full rank of M implies full rank of Ps, but not vice versa.
This explicit relationship can thus be used as an indicator
for designing systems (by selection of C, or B) such that
the corresponding Plücker matrix has full rank.

Remark 12. If M =
[
colCB, . . . , colCAn−1B

]
has full

rank, then the Plücker matrix has also full rank. Fur-
thermore, the matrix MdQ is a full row submatrix of the
decentralised Plücker matrix Ps.

�
Corollary 13. If

∑
mipi 6 n and rank(Md) = n, then

the system has no fixed modes. The latter condition is
necessary for solvability of the Static Decentralised Output
Feedback problem.

�

7. A STRUCTURAL PROCEDURE FOR THE
SELECTION OF THE DECENTRALISATION

SCHEME

The design of the decentralisation scheme has as starting
point the physical decentralisation set produced by the
analysis in Steps (1) and (2). This set corresponds to
pairs of indices i, j, i ∈ {1, 2, . . . , p}, j ∈ {1, 2, . . . ,m}
expressing permissible loop closures from the j−th output
to the i−th input. The feasible sets are subsets of the
physical decentralisation set with cardinality greater or
equal to n. The main steps of the procedure are:

Procedure for selection of decentralisation based on con-
stant output feedback :
Step (1): Define the physical decentralisation set and
from this all feasible sets corresponding to all possible
cardinalities of the partition k.

Step (2): Test whether the necessary conditions for
centralised output feedback mp > n and rank(P ) = n+ 1
are satisfied. If yes, then proceed to next step; otherwise,
alternative schemes based on dynamic compensation have
to be used.

Step (3): For every element of the feasible set pro-
duced in (1) and for all possible cardinality partitions
{(mi, pi) , i = 1, ....k} select those partitions for which the

condition
k∑
i=1

mipi > n is satisfied.

Step (4): Compute the Markov parameters set H0, H1,
. . ., Hn−1 and the corresponding matrix

M = [colH0, colH1, . . . , colHn−1]

If rank(M) = n then proceed to next step; otherwise, al-
ternative schemes based on dynamic compensation have to
be used, or work with the corresponding Plücker matrices.

Step (5): For every partition produced by (3) define
the corresponding decentralised Markov matrix Md =[
colĤ0, colĤ1, . . . , colĤn−1

]
and test rank(Md) = n. If

the condition is not satisfied, then test the condition on
the decentralised Plücker matrix; otherwise, use dynamic
schemes.

Step (6): For every element of the feasible set coming
from the previous step, use sufficient conditions for generic



assignability. If such conditions are not valid, then use
alternative means based on dynamics.

The procedure produces schemes with no fixed modes
and which satisfy the necessary conditions. If the generic
sufficient conditions are not satisfied, then tests based on
non-generic cases, or dynamic schemes have to be used.
The selection of the decentralisation involves the selection
of full rank Markov matrices for both centralised and
decentralised as elaborated in (Karcanias and Leventides,
2005).

8. CONCLUSION

A structural approach for designing the decentralisation
scheme for a system has been introduced using as crite-
ria the conditions for solvability of the constant output
feedback problem. The overall philosophy has been based
on satisfying the necessary conditions which guarantee
absence of fixed modes and existence of at least complex
solutions for the generic solvability of the decentralised
pole assignment. Further screening of candidate partitions
may be achieved using sufficient conditions guaranteeing
solvability of the generic problem. Results linking the
parameterisation of decentralisation schemes with the ex-
istence of degenerate solutions of the dynamic assignment
problem (Karcanias et al., 2014) may be also used to
extend the set of criteria on which selection of decentrali-
sation is made. The advantage of the latter schemes is that
they also provide means for computing the decentralised
solutions, using the notion of Global Linearization Lev-
entides and Karcanias (2007). The decentralised Markov
matrices provides an explicit link between the necessary
conditions and the state space parameters and this enables
system redesign by modification of matrices. The condi-
tions characterising the desirable partitions are a mixed
set of equalities and inequalities and their solution may
lead to parameterisations of desirable sets and it is a topic
under investigation. Additional structural results have to
be integrated that will enable the emergence of a powerful
methodology for selection of the decentralisation.
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