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Abstract

Electrical Impedance Tomography or as referred to as EIT, is a typical inverse

problem of estimating the unknown interior material impedance properties inside a

conductive medium through measurements performed at the periphery of the

containing medium.  Due to its inverse nature, EIT’s poor spatial resolution is still

one of its biggest downfalls since meaningful images are hard to obtain without

incorporating some sort of prior information about the material distribution

characteristics.

Given the ill–posedness of the EIT problem coupled with the limited number of

collectable boundary voltage measurements, the resulted discrete system is heavily

underdetermined and ill–conditioned. Therefore, a sensible step to overcome this

problem is to collect as many measurements as the number of the finite elements

composing the medium. From one hand, this is not practically possible, on the other,

an increased number of measurements will contribute towards unrealistically high

computational overheads both for the assembly and the inversion of the resulted

dense system matrix.

For any given EIT configuration, the discrete Picard’s stability criterion can be

deployed as a practical measure of the system performance against noise

contaminated measurements. Herein, this study includes extensive use of this

measure to quantify the performance of impedance imaging systems for various

injection patterns. In effect, it is numerically demonstrated that by varying electrode

distributions and numbers, little improvement, if any, in the performance of the

impedance imaging system is recorded. In contrast, by using groups of electrodes in

the 3D current injection process, a step increase in performance is obtained.

Numerical results reveal that the performance measure of the imaging system is 29%

for a conventional combination of stimulation and prior information, 97% for groups

of electrodes and the same prior and 98% for groups of electrodes and a more

accurate prior. Finally, since a smaller number of electrodes are involved in the

measurement process, a smaller number of measurements are acquired. However, no

compromise in the quality of the reconstructed images is observed.
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Chapter 1

Introduction

Research is to see what everybody else has seen, and to think what nobody else has thought

Albert Szent–Gyorgyi

1.1 Electrical Impedance Tomography (EIT)

Electrical Impedance Tomography (EIT) has been a topic of increasing interest to the

Medical Imaging community in the last few decades. Since 1970s, EIT has been

actively researched where the number of published papers and journals has been

notably growing. As the name suggests, EIT is the process of producing 2D and 3D

images of the inside of a medium. This process takes place through injecting a given

medium with a sequence of electrical currents via an array of electrodes attached to

its periphery, and measuring the resulted voltages. These measurements are then used

to reconstruct visual images of the inside of that medium.

The non–invasive nature of the EIT technology, its practicality and portability in

producing images have shown promising results which may lead to adopting this

technology in medical or industrial applications.

One advantage that distinguishes EIT from other imaging modalities is the use of

low–amplitude AC currents in the injection process. Although for some, this is

considered a disadvantage during to the scattering effect [1], but for others, it is an

advantage due to low power (heat) injected into the medium especially when used for

medical purposes and the medium is the human body.

The set of electrodes, either current–injecting or voltage–measuring, can be arranged

in different ways to achieve the best rate of object detection or distinguishability.

Figure 1.1 shows a simple 2D 16–electrode EIT configuration illustrating how
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electrical currents are fired into the medium and voltages are measured across

various electrodes at the boundary. Figure 1.2 shows the ERT (Electrical Resistance

Tomography) system used in the Information Engineering and Medical Imaging

Centre at City University London.

Figure 1.1 A simple 16–electrodes 2D configuration containing a perturbation. The left–hand side picture
shows the single adjacent current injection protocol while on the right–hand side shows opposite multi–
injection one. The data collection strategy as shown in the figure is of adjacent nature. That is due to
measurements collected from adjacent electrode pairs.

Historically, the 2D EIT has suffered from producing limited spatial resolution due to

its  ability  to  only  produce  a  cross  sectional  image  of  a  3D  medium  let  alone  the

limitation in the electrodes configuration. Both make the 2D EIT modality less

resembling to real life problems. However, the application of 3D EIT through

employing two or more equally spaced electrodes sequence around a body in specific

planes has introduced enhancements in the reconstructed images as reported in [2]

and [3]. The use of EIT imaging modality in many applications such as biomedical,

industrial, geophysical, etc., is almost the same; that is due to the image

reconstruction process, which differs only in the use of the prior information and the

configuration of the electrodes.
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Figure 1.2 ITS, P2000 Electrical Resistance
Tomography System at City University London.

It is important to note at this stage that images produced from deploying the EIT

modality are of a differential nature i.e., imaging the impedance difference between

two states; the reference state which depicts our prior knowledge of the medium, and

object/phantom which lies/occurs within that medium. This narrows down the EIT

applications to moving objects or 2–state phantoms only, e.g., moving objects in a

medium or the inhale and exhale process of the lungs. Other EIT modalities have

been developed such as the Multi–frequency EIT which entails injecting the medium

with electrical currents of various frequencies, this is outside the scope of this thesis.

To achieve this, the medium is first injected with reference electrical currents and

voltage measurements are then taken from the boundary. Another set of

measurements are collected at a different state of medium (when the resistive change

takes place). Using the difference in voltages and currents, an image is then

reconstructed to represent the change in medium’s resistivity.  Therefore, EIT can be

widely used in many medical applications based on difference imaging such as, the

gastric imaging, detection of intrathoracic fluid volumes, detection of haemorrhage,

and monitoring of hyperthermia.

1.2 Inverse problems
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The  EIT  modality  along  with  many  imaging  applications  are  a  part  of  class  of

problems referred to as inverse problems.  These problems generally arise when one

wishes to compute information about internal or otherwise hidden data from the

external (or otherwise accessible) measurements. Inverse problems, in turn, belong to

the  class  of  ill–posed  problems.  The  term  was  coined  in  the  early  20th century  by

Hadamard who worked on problems in mathematical physics, and believed that ill–

posed problems did not model the real world, however, he proved to be wrong.

Hadamard defined a linear problem to be well–posed if it satisfied the following

three requirements [5]:

· Existence: the problem must have a solution

· Uniqueness: there must be only one solution to the problem

· Stability: the solution must depend continuously on the data

If a problem violates one or more of these requirements, it is said to be ill–posed.

The EIT problem involves estimating the unknown material conductivity distribution

s  from the collected boundary measurements y . Clearly, this problem is nonlinear;

therefore, one can introduce a forward operator L  as

( ) ysL = Eq.(1.1)

where s  is the medium’s conductivity distribution and y is the observable

boundary measurements vector. However, in order to solve this system, one opts to

discretise Eq.(1.1), using Taylor’s expansion for example, and yields the following

discrete linearised system

¶ = ¶J ys Eq.(1.2)

where J is the discrete form of the operator L  (Jacobian or sensitivity matrix), ¶s

is the finite number of conductivities across the faces of the simplices comprising the

model, and ¶y  is the finite number of collected boundary voltage measurements. (A

thorough discussion of the linearised EIT inverse problem is discussed in the

following chapters).

Generally speaking, the relatively poor spatial resolution of the reconstructed images

in EIT is often quoted as its major disadvantage, compared with already existing
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imaging techniques with good resolution. In this respect, it must be clarified that the

motivation of EIT is somewhat different from that of conventional imaging

techniques. Despite its limited resolution, the main ask is to provide a reliable, real–

time, portable and cost efficient imaging tool. However, the process of conductivity

estimation in EIT is a highly nonlinear, ill–conditioned1 and ill–posed problem. The

sensitivity matrix J , which relates interior conductivity difference to perturbations in

the boundary voltage data is heavily ill–conditioned with respect to inversion. So, it

requires special treatment in the form of regularisation or a truncation of a singular

value expansion [5]. When approaching an ill–posed problem, instead of attempting

to  solve  the  original  problem  one  often  opts  to  solve  a  similar  one  which  is  less

computational exhaustive. Therefore, effective EIT image reconstruction algorithms

are required.

1.3 The toilsome EIT

As mentioned earlier, the problem of recovering an unknown conductivity

(reciprocal of resistivity) from boundary data is severely ill–posed, and it is

Hadamard’s third criterion which is violated. In practice, for any given measurement

precision, there are randomly large changes in the conductivity distribution which are

untraceable by boundary voltage measurements at that precision. This is a direct

indication that low frequency electrical imaging does not provide an accurate

conductivity change and boundary voltage correlation. However, the ‘partial’

solution of this problem is to incorporate additional information about the

conductivity distribution. When sufficient prior information is known, it limits the

solution so that the huge variations causing the instability are eliminated.

Further, the first two Hadamard’s requirements can be overcome more easily than the

third; as the existence of a solution is not an arguable issue. That is due to the fact

that the body naturally does have conductivity on the inside. The catch here is that,

the data should be sufficiently accurate to be consistent with the conductivity

1 The condition number k is defined as the ratio between the highest and lowest singular values, and it gives an
indication of how numerically stable the system matrix A is, in the linearised system Ax=b.
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distribution. Minute errors in measurement can violate consistency conditions, such

as reciprocity. One of the ways to overcome this problem is to project this unviable

data onto the closest viable set. Finally, the problem of solution uniqueness is often

referred to by mathematicians as sufficiency of data [5].

Generally speaking, the conductivity inverse boundary value problem (or

Calderón problem) is to establish a complete knowledge of the relationship between

voltage and current at the boundary and to determine the conductivity in a unique

manner. This has been demonstrated under a variety of assumptions about the

smoothness  of  the  conductivity  [6].  However,  since  only  a  finite  number  of

measurements from the electrodes can be collected, and since the electrodes cover

only a portion of the surface of the body, and not all of them are involved in the

measurement process, the number of independent measurements made and the

accuracy of the measurements limit the number of degrees of freedom of a

parameterised conductivity that one can recover.

1.4 EIT hardware

Most of the factors limiting measurement accuracy in EIT systems lie with the data

acquisition system. In most practical systems, the measuring device applies a known,

current pattern on two or more electrodes, and measures the developed voltages

across the others.  As reported in [7],  a practical  EIT system will  normally have the

following components: waveform synthesiser, current source, differential amplifier,

and a demodulator or some combination of their components. A comprehensive

discussion on EIT hardware components can be found in [7] and [8]. Rigaud and

Morucci [8], [9] published a review on the hardware solutions developed for EIT and

outlined the progress which has taken place in recent years, in terms of measurement

strategy and development to overcome hardware error sources that have undesired

effects on image recovery [8]. In effect, it appears that there are significant

instrumentation problems, due to the interaction of finite current drive output

impedance, recording amplifier common mode rejection, and unequal skin–electrode

impedances. A number of different EIT systems were successfully constructed or are

presently under development to address these limitations ([10]–[12]). These systems
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employ varying strategies, such as additional electrodes, multiple electrode current

injection, or recording at multiple frequencies, to improve image accuracy with great

success.

1.5 EIT as an imaging modality

There are currently three ways to image the distribution of impedance within the

body [7], according to the nature of the application: static, multi–frequency or

dynamic corresponding to single frequency, multi–frequency and “real–time”

imaging types. The first two ways are normally concerned with producing images

that  show  how  the  different  types  of  tissue  are  distributed  in  the  body,  known  as

tissue characterisation or anatomical imaging. In such applications, EIT is used as an

alternative to X–rays, CT and MRI, with certain practical advantages. The third

technique produces images of physiological function, such as imaging short (e.g.,

millisecond) changes in the physiological state of the body.

In electrical impedance tomography, images are reconstructed from sets of electrical

measurements made on the surface of the body. To obtain high–quality images,

independent measurements with good accuracy, precision and repeatability are

needed from the data acquisition system. Noise, optimal current patterns, and

electrode–electrolyte impedance are among other factors that impose stringent

requirements on the accuracy of an EIT data acquisition system. Despite these

hurdles, useful images at relatively low resolution have been obtained. In [3], a

spatial resolution of about 10% of image background for a centrally located object in

the cross–sectional plane, using a 64–electrode data acquisition system is reported.

Using a 32–electrode system, Casas et al [12] obtained a spatial resolution of 14%

for a similar scenario. Although, the spatial resolution of EIT is limited, its temporal

resolution and sensitivity in dynamic imaging is rather good [13]. It appears that

better spatial resolution ought to be achievable by improving either the data

acquisition system and/or the performance of the reconstruction algorithm [14].

1.6 Thesis aim and objectives
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One  of  the  downfalls  of  EIT  is  its  limited  spatial  resolution  of  the  conductivity

distribution on the inside of a conductive continuum. However, the addition of a third

dimension, has added the flexibility needed to add more electrodes, and therefore,

more measurements to be incorporated in the reconstruction process. Indeed, that

helped to capture the conductivity distribution from different axes and angles, but

added an exhaustive process in acquiring the measurements resulted from increasing

the number of injecting electrodes.

Therefore, the aim of this thesis is to develop enhancements in EIT current injection

protocols, reducing the acquisition time, whilst maintaining the quality of the

produced EIT images. The aim of this thesis will be addressed in terms of the

following objectives:

1. Utilising the concept of multi–injection protocol over 2D shapes, and

comparing it against the existing opposite 2–electrode pair stimulation

protocol in terms of quality and acquisition time.

2. Extending the concept to cover 3D shapes, with different levels of electrode–

rings, and comparing the quality based on the gain of the selected stimulation

pattern quantifier, that is, the ratio of the generalised singular values that meet

Picard’s criterion [15] over the total number of available generalised singular

values.

3. Assessing the effect of deploying the multi–injection protocol on the quality

of the resulting reconstructed images.

In the EIT forward model simulations, high–resolution fine meshes generated by the

Netgen mesh generator [16] are developed. The numerical costs associated with this

can  be  dealt  with  quite  easily  due  to  the  use  of  Finite  Element  Analysis  (FEA)  to

solve the forward problem. On the other side, for the inverse problem, coarser

meshes are generated using the same platform, and that is for two reasons, the first is

to avoid the so–called inverse crime resulting from employing the same model to

generate, as well as invert, the given data [17], while the other reason is to ease off

the inverse calculations due to calculating the inverse of the Jacobian matrix whose

number of columns is proportional to the number of finite elements constituting the
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model. Finally, throughout the simulations carried out in this thesis, it is assumed

that the voltages are not measured on the current carrying electrodes, e.g., [18]–[19].

1.7 Thesis contribution

This work done has contributed to the Electrical Impedance Tomography imaging

technology by adding an adjustment to the current injection and voltage

measurement processes. The thesis scope is a follow up to the guidelines of the work

done in [20], in which the authors have made use of deploying multi–current

injection patterns over 2D mediums. This has produced a lesser number of collected

measurements and therefore reduced computational overheads when solving the

forward problem.

In addition, the thesis extends the scope to include 3D models, where a greater

number of electrodes and patterns is often available. The work develops the 3D

multi–current injection stimulation pattern; that is, injecting alternating electrical

currents through selected opposite groups of electrodes instead of injecting through

only a pair.

On the other hand, the contribution of this work differs from the one in [20]; in this

work, the groups of variable electrode numbers to apply the desired stimulation

protocol are accounted for. This implies a variable reduction in the number of

collected measurements (and thus data acquisition times) without compromising the

quality of the reconstructed images.

1.8 Thesis organisation
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A detailed overview of the EIT forward model including the various interpretations

of electrode–boundary interactions, the solution of the governing Laplacian equation,

and the formulation of the EIT forward and inverse problems and the derivation of

the Jacobian matrix are encapsulated in Chapter 2.

Afterwards, Chapter 3 proceeds with illustrating the inverse nature of the EIT

problem, and the various techniques and methods used to solve the linearised EIT

inverse problem. It also discusses the concept of regularisation, and different

methods, direct or iterative, to perform the regularisation process over the EIT

problem. A quantifier referred to as the Discrete Picard condition, to assess the

performance and robustness of an EIT system under the existence of noise is

discussed.

Chapter 4 sets out the simulation framework as it starts off with a demonstration of

the multi–injection protocol in 2D models, which is expanded to cover 3D ones.

Picard graphs and image reconstructions quantifying the performance of each

stimulation protocol including the gain calculations are also presented within. The

thesis finally concludes with Chapter 5 which contains the conclusions and any

potential future work.



Chapter 2

The EIT forward problem

Research is what I’m doing when I don’t know what I’m doing.

Wernher Von Braun

In this chapter, the formulation of the EIT forward problem is derived from the basic

principles of Maxwell’s equations. This is followed by a discussion of various

electrode configurations and current injection/voltage acquisition protocols used

throughout  the  history  of  EIT.  Afterwards,  the  study  expands  to  cover  the  use  of

some of the common analytical and numerical methods to solve such equations. The

emphasis  will  be  applied  on  the  use  of  the  Finite  Element  Method  (FEM)  which

benefits and downfalls will be highlighted. Finally the chapter concludes with the

derivation of the EIT inverse problem and the associated system which, along with

other factors, accounts for the image reconstruction problem discussed in the

following chapter.

2.1 Overview of the forward problem

In order to produce meaningful images of the interior of a given conductive medium

with an object/phantom lying/occurring within, two interconnected and subsequent

processes are considered; The forward problem; where one opts to estimate the

boundary voltages excited across the boundary electrodes as a result of injecting the

medium with a specific electrical current pattern. The second process, which is

referred to as the Inverse problem, is the process in which the mathematically

calculated voltages along with the experimentally are used to find an estimation of

the difference of the medium’s inner conductivity in a form of an image.

Mathematically speaking, assuming a uniform medium with homogenous

conductivity distribution, continuous boundary and a known current pattern driven at

its boundary. The forward problem is to compute the real boundary voltages
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fwd
mÎy ¡ , where m is the number of voltage measurements across boundary

electrode.

This includes solving the governing Laplacian equation,

( ) ( )( ). 0s fÑ Ñ =x x  Eq.(2.1)

where ( ) ( )1Hf Î Wx 2 [1] is a scalar function representing the electric potential

inside the continuum, ( ) ( )2Ls Î Wx 3 is the material conductivity (real material

conductivity is assumed throughout). Both the electric potential and conductivity are

functions of the spatial distribution ÎWx and the body nW Ì ¡  which is a closed

and bounded subset of a 2D (i.e., n = 2) or 3D (i.e., n = 3) space with a smooth (or

sufficiently smooth) boundary ¶W . Figure 2.1 illustrates a simple 2D medium

configuration.

For Eq.(2.1) to be solved uniquely, one ought to couple it with a set of boundary

conditions that represents restrictions imposed on the problem at hand, such as

smoothness of the boundary or confinement of energy. This can be achieved by

either deploying analytical [21], i.e., calculating the potentials at any points inside a

given medium, or numerical solutions [22], i.e., which find estimates of the

potentials at the nodes of the finite elements composing the model. Through the

course  of  EIT  history,  numerical  techniques  have  proved  to  be  superior  over  the

analytical ones, due to their adaptability to complex geometries, which the analytical

techniques have shown to be very computationally exhaustive in dealing with.

However, another important factor in solving Eq.(2.1) is the accurate modelling of

the phantom under study. This includes the geometry and boundary of the model.

2 Having the electrical potential ( )f x  to be in the Sobolev space i.e., ( ) ( )kHf Î Wx  for an integer
k indicates that the square of the kth derivative has a finite integral over the domain W . For non-
integer and negative powers, Sobolev spaces are defined by taking the Fourier transform, multiplying

by a power of frequency and demanding the result is square integrable i.e., ( )
2( )k df

W

W < ¥ò x .

3  Having the conductivity ( )s x  to be in the ( )2L W  indicates that the square of the function has a

finite integral over the domain W i.e., ( )
2

ds
W

W < ¥ò x
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The locations of the electrodes on the surface are also of prime importance; their

characteristics might affect their reliability and applicability in real life applications.

In the next section, Maxwell’s equations are used as mathematical links which tie the

conditions imposed over the medium’s boundary with the electrical fields inside the

medium.

Figure 2.1 2D domain, marking clearly the domain W , boundary ¶W ,

electrodes iG , and inter–electrodes gaps j¡

2.2 EIT problem formulation

In this section, Maxwell’s equations for electro–magnetics [23] are used to derive the

generic EIT governing Equation Eq.(2.1). Without loss of generality, the medium is

assumed to be uniform, conductive, isotropic, non–dispersive, and linear. The current

injection is confined within the electrodes’ areas and is normal to the boundary ¶W .

The electrodes are assumed as disjoint uniform boundary segments (as shown in

Figure 2.1). There is no current traffic on the inter–electrode areas (labelled as l¡  in

Figure 2.1).  Finally, the eddy (leakage) currents will be assumed zero, i.e., the

amount of currents injected into the medium is exactly equal to the amount exiting.

Ω
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Further, Maxwell’s equations state that the curl of the electrical field intensity E is

equal to the negative time–derivative of the magnetic flux density B,

t
¶

Ñ´ = -
¶
BE Eq.(2.2)

and that the curl of magnetic field intensity H is essentially the current density

flowing inside the medium plus the rate of change of the electric flux density D, as

t
¶

Ñ´ = +
¶
DH j Eq.(2.3)

where E, B, H, D, and j refer to the electric field intensity, magnetic flux density,

magnetic field intensity, electric flux density, and current density, respectively.

From Gauss’s law for magnetism, the divergence of B through a closed surface is

equal to zero i.e.,

.  0Ñ =B Eq.(2.4)

and according to Gauss law, the charge density r  can be given as the divergence of

D as,

. rÑ =D Eq.(2.5)

The conduction current density can be represented as

c s=j E Eq.(2.6)

However, the total current is then c s= +j j j ,  the sum of the conduction and source

currents. EIT assumes that the source current sj  is typically zero at frequency w .

EIT assumes that the injected electrical currents are of a low frequency nature, in

which a change in conductivity would have some effect on any measurement of

surface voltage [24]. This assumption makes it possible to neglect the magnetic field

effects or simply assuming a direct current case.

Hence, taking the divergence of Eq.(2.3) as,

( ).  .
t

¶æ öÑ Ñ ´ = Ñ +ç ÷¶è ø

DH j Eq.(2.7)

or simply,
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( ). . . 0
t

¶
Ñ Ñ´ = Ñ + Ñ =

¶
H D j Eq.(2.8)

Substituting Eq.(2.5) into Eq.(2.8) results in,

.  0
t
r¶

+ Ñ =
¶

j  Eq.(2.9)

Since  the  system  is  assumed  to  be  running  under  the  quasi–static  assumption,  the

term
t
r¶

¶
 therefore plunges to zero, resulting in,

.  0Ñ =j Eq.(2.10)

Eq.(2.10) is another way of looking at Kirchhoff’s current law; the amount of the

current going into the medium is the same as the amount of currents going out

(conservation of energy). Using relation c s=j E , Eq.(2.10) can be rewritten as

( ) ( )( ) ( ). 0 . 0 . 0s s f s fÑ = ÞÑ -Ñ = ÞÑ Ñ =E Eq.(2.11)

2.3 Electrode models

As previously mentioned, in order to solve Eq.(2.1) efficiently, a set of boundary

conditions ought to be incorporated. Through the history of EIT, several electrode

configurations demonstrating these conditions have been developed in order to

interpret the electrode interactions with the medium to which they are attached. A

detailed description can be found in [25].

Throughout the thesis, unless otherwise stated, the electrodes are considered as a set

of disjoint boundary segments lG  where

1

L

l
l=

G = GU  ; L is the total number of electrodes Eq.(2.12)

represents the total boundary segment occupied by the electrodes with each having a

length  (2D  shapes)  or  an  area  (3D  shapes)  of lG  units.  On  the  other  hand,  the

boundary segments denoted by l¡  where

1

\
L

l
l =

¡ = ¡ = ¶W GU Eq.(2.13)
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characterises the total inter–electrode boundary gaps.

2.3.1 Continuum Electrode Model

The continuum electrode model [26] is the simplest of the models used in electrical

impedance tomography. This model does not account for the attached electrodes, and

assumes that the injected current is a continuous function, that is,

( )( ) cosI t wtu= Eq.(2.14)

where u  and w are the constants corresponding to current amplitude and frequency,

respectively.

Hence, according to the continuum model, the injected current density can be

randomly set on the entire boundary of the medium

ˆ ˆ.  .int inj= -j n j n on ¶W Eq.(2.15)

where n̂ is the outward normal vector to ¶W , and injj  is the injected current density.

This configuration only considers the normal components of the injected current, as

electrodes (supposed to be perfect conductors) would shunt the tangential

components of the electric field. Using Ohm’s law and recalling that E is

conservative, Eq. (2.15) can be expressed as a Neumann boundary condition

ˆ.
ˆ inj
f

s
¶

= -
¶

j n
n

on ¶Ω Eq.(2.16)

Additionally, the conservation of charge must be preserved

( )ˆ.  .d 0inj
¶W

¶W =ò j n  Eq.(2.17)

and the condition

( ).d 0f
¶W

¶Wò =  Eq.(2.18)

to make the model complete by assigning a reference voltage. The continuum model

is a very rough approximation of the electrode/medium interface and hence, the

difference between the voltages resulting from the forward calculations and the

actual measurements can be quite high [24].



CHAPTER 2. THE EIT FORWARDPROBLEM

17

2.3.2  Gap Electrode Model

The Gap Electrode Model [24] is an enhancement of the previously described

continuum model. It is the first model to consider the electrodes as a set of discrete

subdomains (as shown in Figure 2.1), and it approximates the current density at each

electrode by a constant value

on   for  1,...,
ˆ

0 on   for  1,...,

l
l

ll

l

I l L
j

l L

fs
ì G =¶ ï G= = í¶ ï ¡ =î

n
Eq.(2.19)

where lI  is the injected current at l electrode

The conservation of charge is imposed as

0l
l

I =å Eq.(2.20)

Unfortunately, the assumption that the current density is constant on the interface of

each electrode is an oversimplification for many practical EIT applications.

Moreover, both the continuum and gap models ignore both the shunting effect of the

electrodes and their contact impedances.

2.3.3  Shunt Electrode Model

The Shunt Electrode Model [24] modifies the Gap Electrode Model by considering

that the current density characteristics underneath the electrodes are assumed to be

unknown. The model simply assumes that the total current density injection through

the electrodes should be equal to the injected current. This means replacing the

condition in Eq.(2.19) by

ˆ
j fs ¶

=
¶n

  on G Eq.(2.21)

The main difference from the gap model is that the shunt model accounts for the

shunting effect i.e., considering the potential at each electrode to be constant as

( )l lVf G = Eq.(2.22)

As mentioned earlier, lV  represents the electric potential value at the lth electrode.

Finally, the unique solution can be obtain by selecting a ground point as,
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0l
l

V =å Eq.(2.23)

However, this model underestimates the resistivities, since it ignores the contact

impedance of the electrodes.

2.3.4  Complete electrode model

The complete electrode model (CEM) [27], [28] is the most refined description of the

interface between the electrodes and the boundary of the medium. The model is an

update of the Shunt Electrode Model as it includes the effect of the contact

impedance with the boundary.

The alternating currents are fired from a set of electrodes fixed at the periphery in a

direction normal to the boundary surface. This gives arise to a current density j  of

ˆ
j fs ¶

=
¶n

  on G Eq.(2.24)

and since the injection is limited to the electrodes, the inter–electrode gaps exhibit no

flow of current through them. Also, the eddy currents escaping these areas are

assumed to be negligible,

 0
ˆ
fs ¶

=
¶n

 on ¡ Eq.(2.25)

Finally, what differentiates the complete electrode model from its predecessors is its

consideration of the voltage drop across the thin layer (resistance) connecting the

electrode to the medium. Mathematically speaking,

ˆl lz Vff s ¶
+ =

¶n
 on lG Eq.(2.26)

where 0lz ¹   is the electrode contact impedance which could vary over lG  but

assumed constant i.e., lz Î¡ . Another way of writing the expression in Eq.(2.26) is

ˆ.l lz Vf s f+ Ñ =n  on lG

It has been proven in [27] that this model produces a unique solution when the

conservation theorem hold, i.e.,

1

0 0
L

l
l

I
¶W

=

= Û =åò j Eq.(2.27)

and a selection for ground is considered,
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1

0 0
L

l
l

Vf
¶W

=

= Û =åò Eq.(2.28)

The Complete Electrode Mode is a well–posed problem and has a unique solution. It

is also the most refined electrode model in EIT so far.

2.4 Finite Element Methods in the solution of solving the EIT

forward problem

In order to solve for the electrical potentials and boundary voltages, the governing

equation in Eq.(2.1), along with a boundary condition selection (as described in

Section 2.3.4) are coupled together to construct an integrated system which, with the

aid of discretisation, turns into a linear system of equations that can be solved either

via direct or iterative methods.

The basic idea of Finite Element Methods (FEM) [29] is to approximate the domain

of interest W  as a union of a finite number of elements kW , which for simplicity can

be assumed to be simplices.  In a two dimensional scenario,  a simplex is a triangle,

and in a three dimensional one, it is a tetrahedron. A collection of such simplices is

called a finite element mesh.

Assuming a domain W  having K  simplices with n  vertices. The continuous

electric potential ( )f x  inside the mesh i.e., ÎWx  can be approximated using this

mesh by functions, which are linear on each simplex, and continuous across the

faces. These functions, also referred to as interpolation or basis functions, have the

appealing feature that they are completely determined by their values at the mesh

vertices. A natural basis is the set of functions ( )iN x  that are one on vertex i  and

zero at the other vertices, i.e.,

( )
1       on vertex ,
0      otherwise.i

i
N

ì
= í

î
x

Hence, the electrical potential can be approximated as,
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( ) ( )

( ) ( ) ( )
1

1 1 2 2

n

i i
i

n n

N

N N N

f f j

j j j
=

@ =

@ + + +

åx x

x x x

%

L

Eq.(2.29)

and the vector 1[ ,..., ]T n
nj j Î¡  represents the discrete approximations of the electric

potential.

However, it is not difficult to note that these basis functions have to be either

quadratic or at least twice differentiable in order satisfy equation Eq.(2.1) [1] due to

the second order derivative nature of the Laplacian operator. However, the resulting

complexity resulting from using such basis functions can be avoided by utilising a

method referred to as The Method of Weighted Residuals (MWR) [30], the latter will

be elaborated in more details in the following sections.

2.4.1 Continuous domain setting

The forward problem under consideration, in this context, is the one described by

Eq.(2.1), and the set of boundary conditions Eq.(2.24) – Eq.(2.28).  As mentioned

before, in order to apply the finite element concept and discretise the system, the

weak formulation of the problem should be derived first.

2.4.1.1 Weak formulation of the EIT Partial Differential Equation

(PDE)

Many authors refer to the PDE described by Eq.(2.1) as the strong formulation. This

is due to the fact that in order to solve this equation, one must be able to compute the

highest order derivative term in the PDE. In other words, the electric potential

function ( )f x  must be at least twice differentiable and should not disappear when its

second derivatives are taken. Hence, one way to weaken this requirement, integration

by parts can be applied to the strong formulation to derive the weak formulation of

the problem. The weak formulation, therefore, allows the use of the first–order linear

basis functions to solve the problem as they only have to be once differentiable.
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The Method of Weighted Residuals or MWR [30] is a family of methods mainly

used to obtain approximate solutions to differential equations. Mathematically

speaking, if one assumes a linear operator D acting on a potential function ( )f x  to

produce a function ( )p x ,

[ ]( ) ( )D pf =x x

and the function ( )f x  is to be approximated as in Eq.(2.29). Then, by substituting the

discretised value of ( )f x , i.e., f%  into the differential operator, D,  does  not,  in

general, result in ( )p x . Hence, an error or residual exists,

( ) ( ) 0R D pfé ù= - ¹ë ûx x%

The idea behind the method of weighted residuals is to essentially force the residual

function to zero in some average sense over the domain W , i.e.,

( ) ( ) 0,  1,2,...,w R d i n
W

W = =ò x x Eq.(2.30)

where ( )w x  is the weight function.

In this context, for the EIT forward problem governing equation, the function ( )p x

is zero, and denoting the Laplacian in Eq.(2.1) by D fé ùë û
%  and residual function ( )R x

in Eq.(2.30) is essentially

( ) ( )
( )
( )

        . 0

        .

R D pf

s f

s f

é ù= -ë û
= Ñ Ñ -

= Ñ Ñ

x x%

Eq.(2.31)

Therefore, inserting this result into Eq. (2.30), results in

( ).  ( ) 0w s f
W

Ñ Ñ =ò  on W Eq.(2.32)

Using Green’s second identity and the vector identity

( ) ( ).  . .w w ws f s f s fÑ Ñ = Ñ Ñ + Ñ Ñ Eq.(2.33)

Eq.(2.32) changes to

0 from equation (2.32)

. ( )  .  .( )w d w d w ds f s f s f
W W W

=

Ñ Ñ W = Ñ Ñ W + Ñ Ñ Wò ò ò
1442443

 Eq.(2.34)

Invoking the divergence theorem

( ) ( ) ˆ.   .w d w dSs f s f
W ¶W

Ñ Ñ W = Ñò ò n Eq.(2.35)
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and given that the current density is zero outside the electrodes, as in Eq.(2.25),

yields,

ˆ.  ( )  .

ˆ                          .

w d w dS

w dS

s f s f

s f
W ¶W

G
G

Ñ Ñ W = Ñ

= Ñ

ò ò

ò

n

n
Eq.(2.36)

Eq.(2.32) can be rewritten using the observation of  Eq.(2.36) as,

ˆ.   .w d w dSs f s f G
W G

Ñ Ñ W = Ñò ò n Eq.(2.37)

Rearranging the boundary condition in Eq.(2.26) gives,

( )1ˆ. l
l

V
z

s f fÑ = -n   on G Eq.(2.38)

where 0lz ¹  is the contact impedance between the electrode and medium boundary.

Therefore, incorporating Eq.(2.38) into Eq.(2.37) gives,

( )
1

1.
l

l

L

l
l l

w d V w dS
z

s f f G
=W G

Ñ Ñ W = -åò ò Eq.(2.39)

or more conveniently,

1 1

1 1.  0
l l

l l

L L

l
l ll l

wd wV dS w dS
z z

s f fG G
= =W G G

Ñ Ñ W - + =å åò ò ò  Eq.(2.40)

Finally, the injection current into the medium has the constraint

ˆ l

l

lI dSfs G
G

¶
=

¶ò n
Eq.(2.41)

which indicates that the amount of current injected into the medium can be kept at

certain values through controlling the voltages at the boundaries. This is beneficial

when using EIT in medical applications and excessive current values might lead to

tissues damage.

Eq.(2.40) is the weak formulation of the governing boundary value problem of

Eq.(2.1) with current density applied through the electrodes.

In addition, if the weight functions ( )w x  are chosen from the same set of functions

as the basis functions ( )iN x , i.e.,

( ) ( )     for     1,2,...,iw N i n= =x x Eq.(2.42)
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the featured weighted residual method is referred to as the Galerkin method [30].

The Galerkin method is discussed in the context of this thesis rather than the

variational approach due to its simplicity and its intuitive interpretation. The use of

variational methods in the solution of boundary value problems is discussed in [31]–

[33] and the references therein.

2.4.2 Discrete domain setting

Next, we discuss the process of discretising the weak formulation of Eq.(2.40). That

is, computing the solution over a given medium with smooth predefined boundaries.

This is done by discretising the domain into a collection of subdomains and

calculating the electrical potentials across the nodes (connectors) of these

subdomains.

In order to do so, we follow the Galerkin approach by choosing the weight and basis

functions to be from the same family. Hence, the weak formulation of Eq.(2.40) turns

into,

1 1 1

1 1 0
l l

l l

n L L

i j i i j i i l
i l ll l

N N d N N dS N dS V
z z

s j jG G
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å å åò ò ò Eq.(2.43)

and from Eq.(2.41), the current injected from each exciting electrode can be

represented as,

( )

1

1

1

1 1

1 1

l

l l

l l

l

l

l l
l

n

l i i
il l

n

l l i i
il l

I V dS
z

V dS N dS
z z

V N dS
z z

f

j

j

G

G G
=G G

G
= G

= -

ì üï ï= - í ý
ï ïî þ
ì üï ï= G - í ý
ï ïî þ

ò

åò ò

å ò

Eq.(2.44)

where lG  is the area (or in two dimensions, length) of the lth electrode.

If LÎI ¡  is the vector containing a current pattern, then another vector n L+Îb ¡  can

be set such as [ ], T=b 0 I , where nÎ0 ¡  is a zero vector. If A is the global
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conductance or stiffness matrix with entries indicated below, then using Eq.(2.43)

and Eq.(2.44) the EIT forward problem can take the form of a linear set of equations

as [1]

=Ax b  Eq.(2.45)

where M Z W n L n L
T
W D

+ ´ ++é ù
Îê ú

ë û

A A A
A =

A A
¡  having the entries:

MA  is an n n´  symmetric matrix, and has entries ,Mi jA ,

, .  for  , 1,...,Mi j i jN N d i j ns
W

= Ñ Ñ W =òA Eq.(2.46)

which represents the solution of Eq.(2.1) discarding all boundary conditions.

However, the conductivity distribution s  is to be approximated over the mesh. An

intuitive method is to choose s  to be constant on each simplex (e.g., piecewise

constant (PWC) [1]).

Assuming ic  to be the characteristic function which has the value of one on the jth

simplex and zero elsewhere, we have an approximation to s

1

K

j j
j

s c
=

» ås   Eq.(2.47)

where K is the total number of subdomains consisting the medium.

The constant js  can be taken outside the integral for each simplex. Therefore,

Eq.(2.46) can be rewritten as,

,
1

.
k

K

Mi j k i j k
k

N N ds
= W

= Ñ Ñ Wå òA Eq.(2.48)

The matrix ZA  is an n n´  matrix that has entries ,Z i jA

,
1

1  for , 1,...,  and  1,...
l

l

L

Z i j i j
l l

N N dS i j n l L
z G

= G

ì üï ï= = =í ý
ï ïî þ

å òA  Eq.(2.49)

Furthermore, the matrix WA  is an n L´  matrix having entries ,Wi jA ,

1   for 1,..., and  1,...
l

l

Wi i
l

N dS i n l L
z G

G

= - = =òA Eq.(2.50)
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and matrix DA  is an L L´  diagonal matrix, having entries

,

1 , for
     , 1,...,

0, otherwise
i j

l
lD j

i j
z i j L

ìæ ö
G =ïç ÷

= =íè ø
ï
î

A Eq.(2.51)

Hence, Eq.(2.45) can be rewritten including the previous components as,

M Z W
T
W D

+é ù é ù é ù
=ê ú ê ú ê ú

ë û ë ûë û

A A A 0
A A V I

F
Eq.(2.52)

and solved for the approximated potential distribution [ ]1, , T
nj j= KF . The vector

1n L+ ´Îx ¡ has the form [ ]T=x VF  where nÎ¡F  is the nodal potential

distribution in the interior of the medium and [ ]1, , T L
LV V ÎV = K ¡  are the potentials

on the boundary electrodes. The derivations of the matrix A and composing sub–

matrices for a simple 2D domain are shown in Appendix A.

The previous configuration is often referred to as the Neumann–to–Dirichlet

mapping [1]. That is, the injected current, governed by the Neumann boundary

condition, is the fixed known quantity, whilst the electric potentials at the surface,

governed by Dirichlet condition, are the primary unknown quantity. The Dirichlet–

to–Neumann mapping can also be considered for the solution of the forward

problem, however, it is intuitive that controlling the current injected into the body,

while fixing the voltages at the boundary is purely dictated by Ohm’s law, therefore,

increasing the risk of injecting excessive amounts of electrical current into the body

and threatening the validity of EIT in the medical/clinical context.

2.5 Current injection and data collection strategies in EIT

Once the forward problem, demonstrated in Eq.(2.45), has been constructed, and

prior to solving the system, the conditions expressed by Eq.(2.27) and Eq.(2.28)

should be imposed in order to preserve the existence and the uniqueness of the

forward problem solution [27]. If lI  is the current injected by the lth electrode, then

for a set of d  driving current patterns
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[ ] ( ) ( ) ( )( )1 2: , ,...,d d=I I I I Eq.(2.53)

where [ ]d L d´ÎI ¡ , the law of charge conservation theorem is imposed as,

( )

1
0

d
i

i
j

=¶W

= =åò I Eq.(2.54)

In other words, each of these currents should sum up to zero, which means that the

total amount of current entering the medium is equal to that exiting it.

Intuitively, varying the number of stimulation patterns directly affects the number of

required solutions for Eq.(2.52). Given that EIT is typically concerned with large

scale Finite Element systems, ‘short patterns’ (i.e., for small d) are favoured as they

would offer significant computational savings. Hence, it is not hard to infer that the

role of the stimulation pattern [ ]dI  is of great computational significance.

The different current stimulation strategies in EIT are mainly divided into two

categories: the pair drive or multi–electrode drive schemes. In the pair drive schemes

[34], electrical current is mainly injected into the medium through a pair of adjacent

or opposite electrodes. From one hand, it has been proven that their effectiveness

differs depending on the application. On the other, the multi–electrode injection

protocols [20] adopt the same strategy of injecting but on multi–electrode groups,

either opposite or adjacent. Multi–injection protocols have the advantage of

collecting a reduced number of measurements. In the fourth chapter injection

protocols are analysed and their performance studied.

The hardware of current EIT systems is mainly manufactured to serve pair–drive

schemes. However, although this study proves that the multi–electrode drive protocol

shows superiority in performance in terms of voltage measurements inquisition time

and number, the use of an EIT system that employs multi–electrode driving patterns

is still not available.

Further, whether a pair– or multi–electrode drive scheme is to be used, available data

acquisition strategies are essentially the same; as there are mainly two collection

methods referred to as, the two–electrode and the 4–electrode collection strategies. In
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the first approach voltages are measured through the same electrode from which the

current is fired, and in the second, according to a specific configuration, the current is

injected through some electrodes, and the voltage is measured across other

electrodes. The second method has the advantage of minimising the error in the

voltage measurements. For simplicity, the pair–electrode drive is used throughout.

2.5.1 Adjacent method

The adjacent data collection strategy [34] is the most commonly used 4–electrode

method. According to this injection criterion, the current is injected through an

adjacent pair of the electrodes, and the voltages are then measured across the rest of

the electrode pairs. Figure 2.2 shows the concept of the adjacent collection method in

a 2D medium [35].

The next stimulation pattern is then achieved when the injecting pair moves clock–

or counter clock– wise by one electrode, and the second set of data can be therefore

collected across the rest of the electrodes and so on.

It can also be seen from Figure 2.2, assuming L electrodes are available, that for each

stimulation pattern ( )3L -  voltage measurements can be collected, i.e., a total of

( )3L L -  measurements will be available, half of which are linearly independent.

Current flow lines

Figure 2.2 Adjacent method of data collection for a 16-electrode configuration system. For
each stimulation pattern, 13 voltage measurements are collected from non-injecting electrodes
(a) First set of injected current I(1) . (b)  Second set of injected current I(2).

a

Isopotential lines

b
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2.5.2 Opposite method

In the opposite method [36], the current is fired through opposite pairs of electrodes,

as shown in Figure 2.3 [35], and voltages are measured across the rest of the

electrodes. This configuration results in ( )4L- measurements for each stimulation

pattern, totalling ( )4L L- measurements. Again, half of these measurements are

linearly independent.

In contrast to the adjacent method, whose sensitivity (higher current density) is only

at its maximum near the area of the electrodes, the opposite method has a more

uniform current density throughout the medium and therefore, good sensitivity in the

central areas.

2.5.3 Adaptive method

In the adaptive method [37], currents are fired at once from all electrodes. Then, the

voltages are measured with respect to a single electrode.  This configuration requires

a  handful  of  current  sources  in  order  to  inject  this  amount  of  current.  An electrical

current between –5 to +5 mA is traditionally injected, allowing for different current

patterns. For a 16–electrode model, as shown in Figure 2.4, a total of 15–voltage

measurements are collected for each stimulation pattern. The current pattern rotates

Figure 2.3 Opposite method of data collection for a 16-electrode configuration system. For each
stimulation pattern, 12 voltage measurements are collected from non-injecting electrodes. (a):
First stimulation pattern I(1), (b): Second stimulation pattern I(2).

(a) (b)
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around one electrode by ( )0 022.5 360 /16 . Therefore, 8–distinct current patterns are

resulted, totalling 8 15 120´ = independent voltage measurements.

The problem of using a large number of current sources to operate this type of

stimulation strategy can be avoided by utilising a single current source that can be

switched, using a multiplexer, between the electrodes. The resulting measurements

can be collected by using a single voltage measurement circuit multiplexed over the

electrodes [38].

The choice of selecting an ‘optimum’ driving current pattern, which may contribute

in enhancing the spatial resolution of the reconstructed images, has captured the

interest of many researchers. However, it has been advocated in [37] that the pair–

drive protocols lose their ability to distinguish between different conductivities as the

size of the boundary reduces. In the same spirit, Gisser et al [37] proposed a

trigonometric current pattern to enhance the ‘distinguishability’ of several

admitivities within the volume of interest. Although the proposed protocol requires

complex hardware for implementation, a superiority in performance has been

advocated in [18], [39], and [40]. Similarly, another approach was suggested in [39],

which exploits the role of adaptive current pattern generator in increasing the density

of the current in areas where an inhomogeneity is expected to exist.

Figure 2.4 Adaptive method of data collection for a 16-electrode configuration system. For
each stimulation pattern, 15 voltage measurements are collected from non-injecting electrodes.
(a): First stimulation pattern I(1) , (b): Second stimulation pattern I(2).
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However, the appropriate choice for the injection protocol is directly related to the

surrounding conditions, and the imposed restrictions. From a biomedical application

point of view, if the electrical currents are to be injected into a living being, the

excitation  conditions  have  to  comply  with  the  IEEE  safety  regulations  [41],  [42].

These are mainly related to the ‘maximum current value’ injected into the body; this

specially provides a formula for the maximum allowable current amplitude as a

function of the frequency of the current signal.

2.6 Solving the linear system of the forward problem

In order to solve the system in Eq.(2.52) i.e., obtain a unique solution, some

modifications can be introduced into the systems due to its rank deficient nature that

is, the governing system matrix A is  not  full–rank  and   in  turn,  has  a  family  of

solutions that satisfy the system and therefore prior information is needed to achieve

this uniqueness.

One way to achieve this uniqueness in Eq.(2.52) is for the voltages to sum up to zero,

or as proposed in [40], a set of measurements that satisfy condition Eq.(2.28) can be

obtained by modifying the WA  and T
WA  blocks in Eq.(2.52) in such a way that when

they are multiplied by the current patterns the potentials on the electrodes sum up to

zero.

There are variety of methods to solve systems such as Eq.(2.52). However, there is

no single method that is best for systems. These methods are normally determined

according to speed and accuracy. In this case, speed is an important factor in solve

the resulted forward problem system due to its large scale nature and this includes

the amount of computations involved in solving such a system which is normally

huge.  Another issue is the accuracy for the solution rounding off error involved in

these computations. These methods are normally divided into

· Direct Methods

· Iterative methods
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Direct methods [43] are not appropriate for solving large number of equations in a

system, particularly when the system matrix is  sparse,  i.e.  when the majority of the

elements in a matrix are zeroes. However, Iterative methods are best suited for

solving systems with large number of equations. Iterative methods are very effective

concerning computer storage and time requirements.

One of the main advantages of using iterative methods is that they require lesser

multiplications for large systems. Another advantage is that they can be implemented

in smaller programmes than direct methods with fewer round-off errors.

In contrast, direct methods normally aim to calculate an exact solution in a finite

number of operations whereas iterative methods begin with an initial approximation

and reproduce usually improved approximations in an infinite sequence which limit

is the exact solution.

Direct methods work best for systems in which most of the entries are non–zero

whereas iterative methods are appropriate for large sparse systems which mostly

contain zeroes. Even when direct methods exist we should give priority to iterative

methods because they are fast and efficient.

2.6.1 Direct methods

The linear system demonstrated in Eq.(2.55), can be solved using direct methods

such as LU–factorisation [44]. However, the Cholesky method is considered better

suited than the LU–factorisation technique; due to its exploitation of the sparsity and

symmetry properties of the coefficient matrix A . In Cholesky factorisation, A can

be factored into TLL , where L  is a lower triangular matrix, thus equation Eq.(2.55)

becomes
T =LL x b Eq.(2.56)

Then by assuming that T= L XJ , one opts to solve the following linear system using

the forward and backward substitution

=L bJ Eq.(2.57)
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T= L xJ Eq.(2.58)

The numerical cost associated with this factorisation is of 3( )O n , while for the

backward and forward substitution have a cost of 2( )O n f  for f right hand sides.

2.6.2 Iterative methods

As mentioned previously, iterative methods are memory efficient and run quickly on

sparse matrices rather than dense ones. When the system matrix A is dense, then,

the best course of action is to factor A  and solve Eq.(2.55) by back substitution as

the time spent in factorising A  is roughly the same as when solving it iteratively.

The concept of iterative methods discussed in this context is based on the fact that if

A  is symmetric and positive–definite, which is a true assumption for the resulting

system matrix of the EIT forward problem, then the solution of Eq.(2.55) is the

minimum of the quadratic equation

( )' 1
2

T Tdf c
d

ì ü= - +í ý
î þ

x x Ax b x
x

Eq.(2.59)

where c is a constant.

or,

( )' 1 1
2 2

Tf = + -x A x Ax b Eq.(2.60)

and given the fact that A  is symmetric, Eq.(2.60) becomes

( )'f = -x Ax b Eq.(2.61)

Hence, by setting the gradient to zero, the linear equation in Eq.(2.55) is obtained. If

one desires to find a solution for the system in Eq.(2.55), when matrix A  is

nonsymmetric, iterative methods may be used to determine the solution of the system

1 ( )
2

T + =A A x b which is symmetric.
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2.7 The EIT inverse problem

Using conventional EIT modelling methods, the measured data y  is essentially the

result of the application of a measurement operator P  to the corresponding electrode

potentials V  as

( )V yP = Eq.(2.69)

As previously discussed, the forward problem is the process of mapping the change

in the material conductivity inside a medium to the boundary voltage measurements,

resulting from exciting a current pattern at its boundary. Mathematically speaking,

this process is summarised by the nonlinear operator ( ) ( )1/2
2: L HL W ® ¶W ,

( ) ysL = Eq.(2.70)

which links the interior material conductivity ( )2: ( ) ,Ls s= Î W ÎWx x  with the

observed data ( )
1

2y HÎ ¶W .

On the other hand, the inverse problem in EIT is formed as the problem of estimating

the unobserved material conductivity ( )s x from an observable .y  From  an

optimisation point of view, as the main aim is to find the model through which the

measured voltages ,y  the simplest way is to minimise the quadratic minimisation

functional, which is the minimum of the sum of squared errors,

2

2

1arg min ( )
2

y
s

sL - Eq.(2.71)

Therefore, a natural step will be the linearisation of operator L. This can be done

through linearising the forward problem around a reference conductivity distribution

0s . Further, using Taylor expansion as

( ) ( ) ( ) ( )

( ) ( )( ) ( )
0 0

2
2

0 0 02

2
0 0 0

HOT

O

s s s s

s s s s s s
s s

s s s s s

= =

¶L ¶ L
L = L + - + - +

¶ ¶

» L + ÑL - +

 Eq.(2.72)

and ignoring the higher–order terms (HOT), Eq.(2.72) can be rewritten as

( ) ( )2
0 0 0

0 for simplicity

( ) ( ) ( ) Os s s s s s
»

L - L = ÑL - +
123

Eq.(2.73)
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denoting 0( )sÑL  by (1)
0( )sL  results in

( )(1)
0 0 0( ) ( ) ( )

y Jd ds

s s s s sL - L = L -
1442443 1424314243

Eq.(2.74)

or simply,

y Jd ds= Eq.(2.75)

where yd represents the difference in measured voltages at the boundary for

difference conductivity distribution s  and the known 0s or at ds and (1)
0( )J s= L

is essentially the first–order Fréchet differentiation of the nonlinear operator L at 0s

:

0

(1)
0( ) j

i s s

s
s

=

¶L
L

¶
= Eq.(2.76)

Clearly, the dimensionality of the J is determined by the dimensionality of the

unobservable distribution s  and the measured data y.

 Eq.(2.75) represents the EIT linearised inverse problem for the perturbation of s

about 0s s= .

For the inverse problem to be solved, and for simplicity reasons, one can eliminate

the second–order derivative terms from the Taylor expansion of the forward problem

demonstrated in Eq.(2.75). This would construct a generalised inverse of the

Jacobian, and subsequently it would be possible to invert the well–posed problem

using the Newton–Raphson method. This approach is often referred to as the

Gaussian–Newton method [45], which is the approach followed in the simulation

studies in this thesis.

The Gauss–Newton method is one of a class of iterative methods used to calculate

the potential distribution for a given conductivity distribution and an injected current

pattern. It also iteratively calculates the conductivity until a predefined error between

the measured and computed potentials on the electrodes is obtained. Hence, we

define
[ ]( ) ( )( ) ( )( ) ( )( )1 2 ...d d m d´é ù= Îë ûy I y I y I y I ¡ Eq.(2.77)
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as the vector containing m  measured voltages for d current patterns, and the vector
( )
fwdy s  which contains the electrode voltages for the same stimulation patterns,

computed using FEM at conductivity s  ( s  is  a  vector  of  length K, the number of

finite elements in the mesh). Moreover, an objective function Q  [45] is defined,

projecting the error between the measured and calculated voltages as,

( )( ) ( )( )1
2

T

fwd fwdQ = - -y y y ys s Eq.(2.78)

which when minimised with respect to the conductivity gives

( )( ) ( )( )1 0
2

T

fwd fwd
¶Q ¢= - =
¶

y y ys s

s
Eq.(2.79)

where ( )
fwd¢y s   is the matrix containing the derivatives of the boundary voltages with

respect to the conductivity s  as,

( )
( )

( ),

; ,

d m

fwdd m K
¶é ù¢= =ë û ¶
yJ y s

s
Eq.(2.80)

and termed, the Jacobian matrix J, which is an Kmd ´  rectangular matrix.

The elements of this matrix, ( ); ,
dm

d m k
k

V
s

¶
=

¶
J  are the partial derivatives of the

electrode voltage dmV  with respect to the conductivity ks   of element kW  at the dth

current pattern.

By calculating the Taylor expansion of Eq.(2.79) and ignoring the higher order

terms, the correction to the conductivity at the cth iteration can be calculated using

the following iterative formula
( )( )1T T

c c c c fwd

- é ùé ùD = - -ë û ë ûJ J J y yss Eq.(2.81)

Further, the conductivity update, cDs , at each iteration c of the nonlinear algorithm

is calculated by solving the following linear system of equations

( ) ( )( )T T
c c c c fwdD = - -J J J y yss Eq.(2.82)

The updated conductivity distribution at iteration d is obtained by

1c c c+ = + Ds s s Eq.(2.83)
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Finally, when the change in conductivity values falls below a predetermined

tolerance, the solution is considered to have converged and the algorithm can be

stopped.

2.7.1 Calculating the Jacobian matrix

As has been shown before, the Jacobian matrix of Eq.(2.80) is essentially the first

order Fréchet differentiation of the nonlinear operator L at 0s . The Jacobian can be

obtained in many ways. The author in [40] was the first to complete the derivation of

the Jacobian matrix, this method is referred to as the standard model. It is mainly

based on the solution obtained from the forward model. Considering the system of

linear equations in Eq.(2.55)

=Ax b Eq.(2.84)

Then, the kth column of the Jacobian can be obtained by differentiating the solution x

of the system Eq.(2.84) with respect to the conductivity ks

( )1

k ks s

-¶¶
=

¶ ¶

A bx
Eq.(2.85)

Using the differentiation product role, the right hand side of Eq.(2.85) can be

expressed as

( )1
1 1 1

k k ks s s

-
- - -

¶ ¶ ¶
= - = -

¶ ¶ ¶

A b A AA A b A x Eq.(2.86)

where the derivative
ks

¶
¶

A has the elements, by using Eq.(2.46)

,

k

K i
K i k

k

N N d
s W

¶
= Ñ Ñ W

¶ ò
A

Eq.(2.87)

Given the fact that the matrix
ks

¶
¶

A  is  sparse,  as  it  only  contains  the  contributions

from the kth element, without being multiplied by ks . This matrix is then multiplied

by the solution x which holds the values of potential distributions at the nodes, which

in turn produces a column vector that has non–zero elements only in those rows

corresponding the node numbers of the kth element. The matrix 1-A which has been
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factored in the forward solution can be used again to solve a new system, whose

solution contains the derivatives of all potentials with respect to the conductivity of

the kth element. Since Eq.(2.85) produces the derivatives of all potentials, the part

which includes the electrodes’ potentials has to be excluded. The Jacobian matrix has

a size of md K´  block matrix (m is the number of measurements collected for each

stimulation pattern, d  is the number of stimulation patterns, and K is the number of

finite elements constituting the mesh).

2.8 Summary

In  this  chapter,  the  concept  of  the  EIT  forward  problem  has  been  discussed,  along

with the EIT’s main electrode configurations highlighting on their pros and cons with

regards to the real life resemblance. The Finite Element Methods has been used to

solve the EIT forward problem utilising the boundary conditions and current

stimulation patterns. The resulting weak formulation was produced and discretised

using the standard Galerkin method to produce a linear set of equations Ax=b, and

touching on how to solve such matrices either analytically or iteratively.

The chapter has also discussed techniques of current injection and data collection

strategies in EIT such as the adjacent, opposite and adaptive method. An introduction

to the multi–electrode injection pattern was briefly mentioned as compared against

the single–electrode method.

The EIT linearised inverse problem and Jacobian matrix have been formulated as a

result  of  a  conductivity  perturbation  inside  the  medium.  This  paves  the  way  for  a

discussion of the reconstruction problem in Chapter three.



Chapter 3

The EIT image reconstruction problem

As far as the propositions of mathematics refer to reality they are not certain, and so far as

they are certain, they do not refer to reality.

Albert Einstein

In this chapter, the linearised EIT inverse model, Jacobian Matrix and other

assumptions will be further discussed and incorporated to establish the setting of the

EIT Inverse Problem.  In which process, a differential conductivity image of a given

medium containing an object/phenomena is produced by solving the system

containing the Jacobian, current stimulation pattern and voltage difference at the

boundary of the medium.

 However, this is not a straightforward problem due to the system being

underdetermined; which means fewer measurements than unknowns since there is

only a finite set of measurements that can be collected at the medium’s periphery.

The resulting Jacobian matrix is also ill–conditioned with a high condition number;

this means a simple inverse of the Jacobian matrix would not simply do the trick.

Afterwards, a process referred to as Regularisation is deployed in order for the

linearised problem to produce meaningful and stable solutions. This chapter proceeds

to discuss various regularisation techniques, conditions and assumptions which help

in enhancing the image reconstruction process.
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3.1 Introduction

In terms of functional analysis [46], inverse problems are typically continuous, and

numerical instability may arise when solved with finite precision, or when errors

exist in the data.

However, in order for inverse problems to produce stable solutions, they must be

converted into well–posed ones. In order to do so, the problems need to be

reformulated for numerical treatment. Typically, this involves including additional

prior assumptions on the behaviour of the solution.

Various algorithms have been suggested to deal with the inverse problem that arises

in EIT and fall into the broad categories of single–step or direct and iterative

algorithms.

Figure 3.1 Groups of Reconstruction algorithms [47]

Figure 3.1 gives a categorisation of the types of already available reconstruction

algorithms for the EIT problem. These are generally divided in probabilistic–

statistical methods [40] and [48]–[50], deterministic methods based on linearisation

[40] and [51]–[59], and the deterministic nonlinear inversion methods [60]–[68].

Reconstruction Algorithms

Nonlinear InversionLinearised Inversion

Statistical Inversion

Direct IterativeDirect Iterative
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The algorithms suitable for solving the linearised inverse problem are subdivided

into the direct methods that use a single regularisation step, such as the Tikhonov

regularisation [46], and iterative methods which regularise iteratively such as the

Conjugate Gradients algorithm (CG) [69]. Nonlinear algorithms, on the other hand,

are capable of reconstructing high–contrast inhomogeneities, and are mostly

iterative, typically Newton–type approaches with a linear regularisation step.

Numerical algorithms suitable for the inverse conductivity problem are those

explicitly designed to treat the ill–conditioning and rank–deficiency of the Jacobian

matrix.

An indication of the degree of ill–conditioning of the Jacobian matrix can be

obtained by evaluating its condition number. The condition number is essentially a

measure  of  well–posedness  of  the  discrete  system and  is  defined  as  the  ratio  of  its

largest singular value to its smallest one, giving a measurable figure of the span of its

singular values [69]. Matrices with a relatively small condition number are said to be

well–conditioned with respect to inversion, and maintain their singular values

clustered together. In EIT, the Jacobian matrix tends to be heavily ill–conditioned. In

effect [5],

· the Jacobian matrix does not have a well–defined inverse

· the solution resulting from applying the least–squares approach to the inverse

problem, is a highly unstable function of the measurements, violating

Hadamard’s third criterion [5]

· the reconstruction problem is generally underdetermined, due to the clustering of

the Jacobian matrix extremely small singular values

· a meaningful and stable inverse solution can be computed with the help of

regularisation
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3.2 The linearised inverse problem

As discussed in Chapter 2, the EIT inverse problem is formed as the problem of

estimating the unobserved distribution s  from the observable measurements y as,

( ) ysL =  Eq.(3.1)

where L: ( ) ( )
1

2
2L HW ® ¶W  is the nonlinear operator mapping the real

conductivity of the medium onto the boundary voltage measurements, s  is the

conductivity distribution inside the medium, and y is the observed boundary data.

It was also shown that, by taking the Taylor expansion of the quadratic minimisation

functional 2

2

1min ( )
2

y
s

sL - , where .  is the 2l  norm, the following linear system

results

J yds d= Eq.(3.2)

where J  is essentially the first–order Fréchet differentiation of the nonlinear

operator L at a conductivity distribution 0s .  Clearly,  the  dimensionality  of J is

determined by the dimensionality of the unobservable distribution s  and the

measured data y. Therefore, Eq.(3.2) represents the EIT linearised inverse problem.

In the typical EIT fashion, the measured data vector is contaminated with some noise

originating from various physiological, modelling and discretisation errors. Without

loss of generality, the noise e  is assumed to be additive,

J yds d e= + Eq.(3.3)

In the discrete setting, where only a finite set of measurements fwdy can be collected,

the number of the corresponding discretised equations from of Eq.(3.3) is finite as

fwdd d e= +J ys Eq.(3.4)

 where m K´ÎJ ¡ is the discrete equivalent of J, m
fwdd Îy ¡  is a vector containing

the finite collected measurements, and Kd Î¡s  is the discretised conductivity

distribution across the medium, as it is assigned values over the faces of the K finite

elements.
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On the other hand, since the number of discretisation variables for s typically

outnumbers the dimensionality of the measurements, one encounters a heavily

underdetermined problem. From the least squares point of view, the solution of

Eq.(3.4), in its discrete form, comes as the following minimisation problem holds,

( ) 2

2
arg min fwdd d e+J y

s
s - Eq.(3.5)

Unfortunately, the above solution is of little practical/numerical use as matrix J is  a

dense, rectangular and ill–conditioned matrix, hence prone to numerical and

measurement  errors.  Thus,  matrix  (JTJ) is severely ill–conditioned. However, one

way of avoiding this problem is by applying a selection rule or additional constraints.

For instance, among all vectors minimising the norm of ( ) 2

2fwdd d e+J ys - , one

may seek the vector having minimum norm or the vector having maximum entropy.

This amounts to solving the following optimisation problem

{ }arg min ( ) T T
fwdx d d=J J J y

s
s s Eq.(3.6)

Here, ( )x s  is the norm of s  or  the  negative  of  the  entropy  of s  or  any  other

criteria leading to a unique solution.

3.3 Singular Value Decomposition

Singular Value Decomposition (SVD) [69] is the generalisation of orthogonal

diagonalisation of the Hermitian matrices. Its importance to the EIT applications

stems from its fast and guaranteed convergence.

Let us consider the linearised discrete system of Eq.(3.4), and drop the use of the d –

term in ds and fwdz y  for notational convenience, hence Eq.(3.4) becomes,

fwd e= +J ys Eq.(3.7)

which is an underdetermined system as ,m K m K´Î £J ¡  where m is  the number of

collected measurements and K  is  the  number  of  finite  elements  comprising  the

discretised medium. The SVD of matrix J  is,
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1

m
T T

i i i
i

z
=

= = åJ P Q p qX Eq.(3.8)

where ( )1 2, ,..., m=P p p p and ( )1 2, ,..., K=Q q q q  are matrices with orthonormal

columns, i.e., T T= =P P Q Q I , called the left and right singular vectors, respectively.

The non–negative entries of the diagonal matrix X  or iz  are typically sorted in a

non–increasing order as 1 2 0mz z z³ ³ ³ ³K  and are identified as the singular

values.

Using SVD, one may determine a generalised inverse †J  for ,J corresponding to the

different properties which can be imposed on J . In effect, one may obtain †J  as
†

† 1 1

1

n
T T

i i i
i

z- -

=

= X åJ Q P = q p Eq.(3.9)

where

†

,                if  is invertible,
:

( ), if  is - rank-deficient.r r

m
n

n rank n
ì

= í =î

J
J J

Eq.(3.10)

The first case assumes that J  is  of  full  rank  and  effectively  corresponds  to  the  so

called generalised Moore–Penroose pseudo inverse [15]. In the second case, which

reflects the EIT problem, J  is  assumed to be nr–rank deficient, which implies that

some of the smallest singular values are practically zero, i.e.

11 0
r rn n mz z z z

+
³ ³ » » »K K .  Based  on  SVD,  the  generalised  or  Moore–

Penroose solution can be written in the following form [15]
†

†
†

1

Tn
i fwd

fwd i
i iz=

= å
p y

= J y qs Eq.(3.11)

From Eq.(3.11), one may study the contribution of the singular values iz  and the

solution †s  and in fact, understand how SVD provides an insight into the ill–

posedness problem. Generally speaking, should one attempt to invert small singular

values 0iz » , the solution †s  would attract considerable high values, effectively

obscuring the desired solution. In this respect, even a small perturbation in fwdy can

cause a dramatically high perturbation in †s  as  the  tiny  values  of iz  would

eventually prevail, rendering the obtained solution meaningless.
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3.4 Regularisation

The previously mentioned attempts, as described in Eq.(3.5) and Eq.(3.6), to

reconstruct meaningful images, normally produce solutions that are unstable. In other

words, a small perturbation in the data leads to an arbitrary perturbation in the

solution. This is a direct violation of Hadamard’s third condition [1]. Therefore, one

must resort to the regularisation theory in order to determine a unique and stable

solution. Formally, a slight modification of Eq.(3.5) is ought to take place in order to

provide simultaneous adherence to uniqueness and stability. This can be achieved, as

one seeks the solution to the following optimisation problem,

( ) 2

2
argmin ( )fwd Rd d e+ +J y

s
s s- Eq.(3.14)

where ( )R s  is the artificially imposed prior information matrix.

From one hand, if ( )R s  is carefully selected, the corresponding solution will meet

the desired physical and mathematical requirements. On the other, it is not feasible

sometimes to find suitable prior information about the problem at hand, or restrict the

solution to behave in such way that does not serve the purpose of the problem.

Regularisation can be employed in a variety of ways. Its main objective is to impose

prior assumptions on the solution, and filter out the high frequency components of

the solution, i.e., those corresponding to the smallest singular values of the Jacobian

matrix.  Having  said  this,  one  can  reasonably  question  why,  in  a  problem  with  an

intrinsic lack of information, the sensitivity matrix is further truncated. Among the

singular values of the Jacobian, the smallest ones are the most susceptible to noise.

These are often very small and when perturbed by the noise signals and when

inverted to produce the regularised solution they grow into very large noise signals,

causing instability in the solution. To avoid this, their riddance is essential, a process

which reduces the degree of ill–conditioning of the matrix. Removing singular values

from the Jacobian causes the sensitivity to drop. However, this reduction becomes

apparent in the spatial resolution of the images, only when some of the larger

singular values are removed.
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The existing deterministic algorithms in image reconstruction are mainly divided into

two key categories; those suitable for the linearised problems and those solving the

nonlinearised ones which to some extent encompass the first. The former category

can be subdivided even further into the so–called direct methods, which calculate an

‘exact’ regularised solution in a single step such as Standard Tikhonov (ST) and

Truncated Singular Value Decomposition (TSVD). While in the iterative methods,

an approximation to the regularised inverse and solution is estimated in every

iteration. Generally, nonlinear inverse solvers are iterative, although the purpose for

iterating in the nonlinear schemes is defensible, their value in the linearised solvers is

less evident.

However, the accuracy level must be accounted for prior to conducting any

computations, either for the forward or the inverse problems. This is due to it being

prone to the level of noise in the data, or to the errors introduced from the data

acquisition system. Further, scientific complexity languages such as MATLAB have

a set tolerance value for the calculations that is higher than the noise level present in

real–life experimental conditions. This causes redundant refinements and pointless

delays with no impact on the solution. Direct methods require the calculation of a

regularised inverse, which is subsequently projected onto the measurements vector to

provide the reconstructed image. Most of the computational power and time is

consumed for the calculation of the regularised inverse to a high precision. This can

be avoided by calculating the regularised inverse, and indeed the solution, iteratively,

a process which can be monitored and terminated as soon as the measurement

precision is reached.

The main iterative schemes used to solve ill–posed linearised problems include the

Landweber iteration [70] and its regularised hybrids as well as the Conjugate

Gradients iteration, which possesses intrinsic regularisation properties. Iterative

solvers traditionally used for well–posed problems [69] may still be applied

(although not preferred) but it is essential that these are terminated before they finally

converge to the unstable LS solution. Iterations, linear and nonlinear, are often

controlled by Morozov’s stopping criterion or discrepancy principle as it is otherwise

known [71], according to which iterations should progress until,
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( ) ys eL - £

where e  is the estimated measurement error. In this way, regularisation is applied by

essentially avoiding the calculation of the high–frequency components of the

solution i.e., preventing the fitting of data which is likely to be contaminated by

noise.

3.4.1 Standard Regularisation

The role of regularisation is to penalise solutions that according to some prior

knowledge are unlikely. The general formulation of the regularised problem is given

below [40]:

( ){ }2 2
1 2 22

argmin fwdd d a d+L J y L
s

s - s Eq.(3.15)

where 1L  is  the  square  root  of  the  weighting  matrix 1 1 1
T=W L L , 2L  a

regularisation matrix, and 0a >  is the regularisation parameter.

Various kinds of regularisation schemes include different selection of regularisation

and weight matrices.

3.4.2 Truncated Singular Value Decompositions (TSVD)

As mentioned before, the basic idea of standard regularisation is to impose additional

requirements  on  the  characteristics  of  the  solution.  This  effectively  dampens  the

contributions from the errors introduced from the collected voltage measurements.

The TSVD method achieves this by neglecting the components of the solution

corresponding to the smallest singular values, as these contributions are mostly

contaminated with error components and render the solution unusably large.

 The least square solution of the linearised EIT inverse problem given in Eq.(3.4)

[47],

†
1

0 0
1

Tn
i fwdT

LS fwd i
i iz

-

=

= + = +å
p y

Q P y qs s X s Eq.(3.16)
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which is a reformulation of Eq. (3.11) by replacing †
0LS= -s s s   where 0s  is the

reference conductivity distribution and LSs  is the medium’s second state

conductivity.

It is worth to note that the column (:, )iQ  is the singular vector to the ith singular

value is  and

-1 1 1/ 0
( )

0
i i

i

if
diag

otherwise
z z

z - ¹ì
X = = í

î

However, since J is an ill–conditioned matrix, it is characterised by the presence of

extremely small singular values, and from Eq.(3.16) it is clear that any error in the

measurements y  will appear in the image components T
i fwdp y  drastically magnified.

To avoid this situation, a regularised solution is calculated in truncated singular value

decomposition  (TSVD)  [40]  and  [98],  by  setting  the  small  singular  values  to  zero

after some threshold i in order to obtain a unique and stable solution such as

†

TSVD 0
1

+
Tn
i fwd

i i
i i

t
z=

å
p y

qs = s Eq.(3.17)

with it  being a filter factor of the form

1,
0,i

i
i

i
t

i
£ì

= í >î
Eq.(3.18)

The TSVD method is widely used in the EIT imaging applications where the high

frequency components of the image i.e. image sharpness can be compromised, such

Lung Imaging and Gastric Emptying.

3.4.3 Direct algorithms: Standard Tikhonov Regularisation

The Standard Tikhonov (ST) method is one of the common direct regularisation

methods. They are naturally derived either from the probability theory or the trade–

off analysis. Just like TSVD, ST incorporate some filters to remove the impact of the

smallest singular values of the Jacobian and subsequently impose prior assumptions

on the solution. The Tikhonov regularisation parameter a  is analogous to the ‘level

of truncation’ parameter used in the truncated decomposition in section 3.4.2. The
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regularised solution STs  can be derived either from a probabilistic framework or

from the TSVD. The regularisation matrix ( )R s  in Eq.(3.14), in the Tikhonov

regime, is a constraint for a bounded solution 2
2

1( ) :
2

R a=s s  or,  more precisely,

for a bespoke penalisation of non–smooth solutions as 2
2

1( ) :
2

R a= Ds s , where D

is the differential operator. The selection of the optimal regularisation parameter and

matrix is beyond the scope of this thesis but can be found in [98] and the references

therein.

Due to its relevance to this work, the determination of the regularisation parameter

a  using the L–curve method is discussed in the next section.

Mathematically, the filter factor it  in Eq.(3.17) for the Tikhonov case becomes [98]

2

2
i

i
i

z
t

z a
=

+
, for 1,...,i m= Eq.(3.22)

Therefore, the standard Tikhonov solution is represented as
2

0 2
1

Tm
i fwdi

ST i
i i is

z
z a=

æ ö
= + ç ÷+è ø

å
p y

qs s Eq.(3.23)

3.4.3.1 The Regularisation parameter a

The choice of regularisation parameter is not a straightforward procedure and is

usually associated with the a priori assumptions about the solution. As it is not

reasonable to try to obtain a norm smaller than the error norm, the regularisation

parameter is chosen such that the norm equals the norm of noise e  (discrepancy

principle) [98]

( ) 2 2
22fwdd d e e+ =J ys - Eq.(3.25)

If the variance of noise is not known, more sophisticated methods are employed for

the optimal selection of a such as the Quasi optimality criterion [72].
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3.4.3.2  L–curve criterion

The L–Curve criterion [74] and [98] is a log–log plot of the norm of the regularised

solution versus the resulting residual norm for each set of regularisation parameter

values.  Figure 3.2 shows a typical L–curve for a given problem. This plot often is in

the shape of the letter L, from which it claims its name. The log–log scale

emphasises the appearance of the L shape.

Clearly, the optimal regularisation parameter is located at the corner of the L curve,

since for values higher than this, the residual increases rapidly and the norm of the

solution  decreases  only  slowly,  while  for  values  smaller  than  this,  the  norm  of  the

solution increases rapidly without significant decrease in the residual. Hence, the

solution is expected to be near the corner of the L shape to balance the regularisation

and perturbation errors.

Figure 3.2 The L–curve of a specific problem, the L–curve is a log–log plot of the solution norm
2

2
Rx  versus the residual norm

2

2
-Ax b

In practice, only a few points on the L–curve need to be computed, and the corner is

located by estimating the point of maximum curvature [73].

Choosing an appropriate regularisation parameter is very difficult. Every parameter

choice method has severe flaws; either they require more information than is usually

available, or they fail to converge to the true solution as the error norm goes to zero.
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For further discussion regarding parameter choice methods see [75], [76], [98] and

the references therein.

3.4.4 Iterative regularisation techniques

As an alternative to the direct regularisation methods, one can advocate the

possibility of applying regularisation iteratively. Indeed, many iterative algorithms

have been published in the open literature. Amongst the iterative techniques are

variants of the Newton–Raphson method [13] , [7] and variants of the error function

minimisation algorithm [56]. Error function minimisation algorithms minimise an

error function based on the differences of potential distribution solutions compared to

an initially assumed conductivity distribution. The conductivity distribution is

updated by minimising the error function with a least squares technique. Such

algorithms include the Wexler EIT algorithm and its variants [56], Fry and Neuman’s

double constraint algorithm [70],[78], a variant [77] and the popular Conjugate

Gradients (CG) method [79]],[[80]-[81]. There seem to be two particular limitations,

though highly disputable, to the iterative approach:

· the iterative process is thought of as being sensitive to noise and measurement

errors

· convergence to a solution is observed to be quite slow and thus the image

reconstruction process is computationally intensive

Iterative techniques are used to solve the 'static' reconstruction problem, i.e., finding

the actual resistivity in the body rather than a change in resistivity.  Various iterative

schemes are already in use for solving the linearised inverse problem. Among them

the Landweber and Kaczmarz algorithms are considered to be the more classical

options, which are particularly useful for problems with large data sets.
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3.4.4.1 The Landweber iteration

A good example of iterative regularisation methods is the Landweber iteration [70].

This algorithm was originally proposed for well–posed problems and takes the

following form,
2

2
min fwdJ y

s
s - Eq.(3.26)

The ( )1 thn +  Landweber iteration is expressed as the following iterative formula

( )1
T

n n n fwdw+ = + -J J ys s s Eq.(3.27)

where the relaxation parameter w Î¡ should satisfy the condition

( ) 12

2
2 0T w

-

> >J J

As long as the current approximation of the solution ns  is not too close to the true

solution, the residual n fwd-J ys  of the linear system is quite large and the data error

in the right–hand side is negligible as compared to the size of the residual. It follows

that the negative gradient of the LS functional, i.e. the Landweber step

( )T
n fwd-J J ys , essentially points to the right descent direction. As iterations

progress, the value of the residual reduces and on the other hand the data error

component gradually increases before it eventually dominates the objective function.

The regularisation parameter in this case is the index of the iteration, which itself is

ultimately controlled by Morozov’s discrepancy principle [82], so that the residual

and the error in the data are halted before they converge to an unstable LS solution.

The major disadvantage of the Landweber iteration is its very slow convergence rate,

especially when compared to the Conjugate Gradients method. In fact, the

Landweber  iteration  in  its  standard  form  is  too  slow  to  be  useful  in  practice.  In  a

hypothetical scenario, if the Jacobian was an orthogonal matrix, the algorithm could

have an optimum convergence rate. However as this is definitely not the case, the

approximation 1T -»J J  suggested by Kotre [83] in the 1990s is too crude, and the

computational efficiency of the algorithm is radically compromised. In practise,  the

corresponding Landweber iteration filters are functions of the iteration number n,
( ) 21 (1 ) , 1,...,n n
i i i mt wz= - - = Eq.(3.28)
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where iz  is  the ith singular value of J .  From  Eq.(3.28)  it  is  clear  that  the nth

Landweber iterative solution can be computed directly as

( )1
0

1

Tm
n i fwd

n i i
i i

t
z

-

=

= + å
p y

qs s Eq.(3.29)

where p, s, and q are the SVD components of J and fwdy  is the boundary voltage

measurement vector. A closer look at the iteration shows that the efficiency and

indeed the performance of the algorithm can be vastly improved by swapping the

scalar factor w   with a functional approximating the Hessian of the error residual.

Possible options include TJ J  effectively forming the Moore–Penrose generalised

inverse, or even better ( ) 1T a
-

J J + I   which leads to the so called iterative Tikhonov

regularisation.

( ) 1

1 0,1,...T T
n n fwd na

-

+ =J J I J ys s= + + Eq.(3.30)

3.4.4.2 The Kaczmarz iteration

The Kaczmarz method [47] has been originally derived to handle linear systems with

an excessive number of equations, similar to those emerging from the high resolution

imaging modalities, such as Positron Emission Tomography (PET) and single Photon

Emission Computerised Tomography (SPECT). This memory–efficient algorithm

calculates the LS solution of a linear system, by solving recursively parts (rows) of

the original system. In this section, a brief description of the ‘block–Kaczmarz’

method is presented, however this can be easily transformed to the standard form by

taking ‘blocks’  of single rows in each iteration. The ( )1n th+  iterative solution in

the block–Kaczmarz method is

( )
( )

1

1 ( : ,:) ( : ,:) ( : ,:) ( : ) ( : ,:)

1

( : ,:) ( : ,:) ( : ,:) ( : ) ( : ,:)

( )

( )

T T T
n n l m l m l m fwd l m l m n

T T T
n l m l m l m fwd l m l m n

-

+

-

= +

= +

J J J y - J

J J J y - J

s s s

s s
Eq.(3.31)

where

( : ) ( : ,:)

. ...   ... .

. ...   ... .
fwd l m l m

é ù é ù é ù
ê ú ê ú ê ú=ê ú ê ú ê ú
ê ú ê ú ê úë û ë û ë û

y J s Eq.(3.32)
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From the previous equation, the formation of the generalised inverse †
( : ,:)l mJ   is

obvious as indeed are the possibilities of stabilising the inverse at a minimum

computational cost by augmenting ( : ,:) ( : ,:)
T

l m l mJ J   by aI . Although the iteration clearly

exploits overdetermined systems (more measurements than unknowns) by

partitioning the Jacobian from the measurements side (rows), its computational

advances in solving underdetermined systems are less obvious.

3.5 The discrete Picard criterion

The images resulting from implementing the EIT modality are mainly dominated by

low–frequency spectral components that are needed to describe features of the

image.  However, high–frequency components are also needed to characterise the

fine details of the image, however these components are generally smaller in

magnitude than the low–frequency ones. This means that the expansion coefficients

in a spectral basis will need to decay in magnitude as the frequency increase.

In [15], the author popularised Picard’s criterion as an invaluable insight into the

stability of the regularisation problem. In effect, in Picard’s criterion the stability of

the regularised problem is oriented around the (decay of the) Fourier coefficients
T
i fwdp y , or more realistically ( )T

i fwd ep y + . These coefficients are frequently

encountered in the literature as Picard’s coefficients.

In the EIT image reconstruction process, one can only hope to compute an

approximate reconstruction if the spectral components of fwdy decay faster than the

generalised singular values of the Jacobian matrix. This requirement to the data, or

the right–hand side fwdy ,  is  known  as  the  discrete  Picard  condition  [15],  and

specifically for the truncated decompositions formulation this condition says that the

right–hand side coefficients T
i fwdp y   must decay (on average) faster than the

corresponding generalised singular values.
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Due to the presence of the noise in the collected voltage measurements, one cannot

expect all the coefficients T
i fwdp y to decay, rather, the coefficients T

i fwdp y  will

level off when they become dominated by the noise components. In order to

guarantee a reasonably sharp image in the reconstruction process, one should include

only the components that correspond to coefficients T
i fwdp y  that are above the noise

level.

3.6 Summary

In this chapter, the EIT inverse problem was discussed in conjunction with a variety

of techniques used throughout the history of EIT to deal with such a problem. The

discrete framework of the linearised EIT inverse problem is presented, various direct

and iterative reconstruction algorithms are applied in order to reconstruct meaningful

difference images out of a very ill–conditioned system.

The regularisation concept implemented in a variety of ways was discussed; all

variants are equipped with performance and regularisation selection measures to

optimise the image reconstruction process. The concepts discussed in this chapter

and the previous ones, will be combined to solve a variety of 2D and 3D examples,

illustrating the added contribution of this thesis in reducing the size of the Jacobian

matrix through lessening the number of required measurements, while keeping the

resolution of the reconstructed images the same, through utilising groups of opposite

electrodes, instead of pairs, in the current injection process. A further advantage of

the approach is that it reduces the acquisition time needed by a EIT system to collect

voltage measurements.



Chapter 4

Multi stimulation and measurement patterns for fast EIT

4.1 Introduction

In principle, EIT is simple and easy to operate and does not require experienced

personnel  to  perform  a  scan.  In  a  typical  experiment,  as  previously  mentioned,

currents are applied through electrodes attached to the periphery of a body and

voltage measurements are collected from some other surface electrodes. The

observed data vector, i.e., the voltage measurements, is then fed to a computer to

estimate the interior material distribution [47], [25], [90], [91] and [92].

Not  many  will  argue  that  most  of  the  numerical  effort  is  typically  allocated  to  the

image reconstruction aspects of the EIT problem. Unlike standard imaging methods,

as  for  instance  X–ray  CT,  in  EIT  one  could  model,  study  and  demonstrate  how  a

‘local’ perturbation affects not only nearby measurements but, crucially, all

measurements [47]. Despite the fact that the captured measurements are sensitive to

local perturbations, little is reported on how to optimise driving patterns that produce

more information–rich measurements and thus reconstructions. This is a crucial

matter given the fact that measurements are the only observable data in EIT.

It is worth mentioning the reports [18] and [93], where the authors derived patterns

that maximise the distinguishability between two corresponding materials or simply

the anticipated reconstruction contrast. Briefly, the idea is to maximise the difference

between the two Neuman–to–Dirichlet (NtD) maps.

In a circular domain, the optimal stimulation pattern accounts for the eigenvalues of

the corresponding NtD functional, i.e., firing on electrodes with Fourier bases.

Although this provides an excellent solution from a mathematical point of view,

there are some practical limitations. For instance, one needs to derive a pattern for all
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electrodes and then measure the resulting voltages on the same (current carrying)

electrodes. Hence, more practical patterns are sought.

In a 3D EIT setting, there is greater flexibility in stimulating the object. The authors

in [94], suggested some measures to assess available stimulation protocols. Amongst

many, their findings encouraged the use of non–adjacent electrode patterns. Further,

since  for  a  given  set  of  known  driving  patterns,  measurements  are  subject  to  a

reconstruction (and thus regularisation) algorithm, results could be significantly

enhanced or deteriorated. It is not clear therefore, how to best stimulate an object in

order to get the most out of a measurement data set. This simply means that the way

the object is stimulated could either enhance or obscure information content. A

detailed discussion on the implication of information content for EIT can be found in

[95].

When considering an application such as breast imaging, the reconstruction situation

could be much less trivial mainly due to practical limitations. For instance, a large

array of electrodes needs to be attached to the easily deformable female breast. Since

both the number of electrodes and hence measurements as well  as model misfits  of

the actual boundary surface are said to affect the quality of the reconstructed image

[96], one encounters a potential bottleneck on how to proceed. The latter could be

addressed by optical measurements that would result in accurate representations of

the female breast surface [97]. However, there is no straightforward way as to which

stimulation pattern would provide the best results for the breast imaging domain at

hand and, of course, under what constraints.

To alleviate this, the authors in [19] proposed plane–wise sinusoidal voltage patterns

with different phases per plane that provide improved images.

Assuming that a phase difference is the way forward for breast EIT screening, the

question on whether one takes the most out of the available EIT system, as some of

the measurements are (numerically) linearly dependant, is still open. In sort, this

implies that one would eventually need to compensate for this loss by means of

penalising higher frequency solutions, i.e., regularisation, to avoid numerical
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instability. Needless to say that determining the optimal number of electrodes is also

an additional open issue.

In  the  same  spirit,  the  authors  in  [20]  identified  the  stimulation  shortcomings  and

proposed a much promising strategy which was numerically demonstrated in a 2D

setting with 32 electrodes. Unlike most conventional methods reported in literature,

the novelty lies in engaging 4 electrodes to drive a current pattern. Next, a measure

was derived by means of GSVD to quantify the collected measurements against prior

information as well as measurement noise, in order to filter out problematic singular

values.

The work introduced in this Chapter is an extension to that in [20], as, in the author’s

view, this appears to be the only practical measure that factor in prior information

when devising a stimulation strategy. Further, the stimulation protocol is extended to

3D, where a greater number of electrodes and patterns is often available. To the best

of the author’s knowledge, this methodology has never been tested on a 3D domain

before. On the other hand, this contribution differs from the one in [20] as it accounts

for groups of variable electrode numbers to apply the desired stimulation protocol.

This implies a variable reduction in the number of collected measurements (and thus

data acquisition times) without compromising the quality of the reconstructed

images. Finally, there is no need to measure on current carrying electrodes [18], [19]

and [93] - [97].

4.2 Numerical stability of simulation studies

Unlike the conventional injection protocols, the proposed multi–injection protocol

aims at reducing computational complexity as well as acquisition time, whilst

maintaining reconstruction quality. This is achieved by injecting electrical currents

from opposite groups of electrodes rather than through single electrodes. Each

current pattern is formed by shifting those groups by a factor which is equal to half

the number of electrodes forming each group, this shift is often referred to as

‘scrolling’ [20].
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4.2.1 Conservation of Energy

In order to achieve comparable results with those obtained from conventional

injection protocols, and avoid injecting excessive amounts of electrical currents

(especially when considering medical applications), one opts to divide the magnitude

of the injected electrical current (in the conventional stimulation protocol) by the

number of electrodes forming a single group (in the multi–injection protocol), as

shown in Figure 4.1.

In  a  conventional  stimulation  scenario,  as  shown  in  the  top  part  of  Figure  4.1,  the

injected electrical current through a single electrode has an amplitude of x+ Amps

(top left), and x- Amps exit the medium through the opposite one (top right). Then,

an electrical current of _
x

n elec
+  , where _n elec is the total number of electrodes

per group, in this example _ 4n elec = ,  will  be  the  value  of  the  current  amplitude

injected through each electrode within the group (bottom left of Figure 4.1), and

_
x

n elec
-  for the one exiting the medium through each electrode within the opposite

group (bottom right of Fig 4.1).

Figure 4.1 Principle of energy conservation. The two top images show the conventional opposite 2–electrode pair
injection mechanism, whilst two bottom images show the multi–injection protocol with 4–electrodes per group.
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4.2.2 Boundary conformity

Following the same rationale, it should be emphasized that the total length (in the 2D

case) and area (in the 3D case) of the medium’s boundary occupied by the electrodes

should remain the same, and independent of the number of electrodes to be used. The

motivation for this work is to design efficient stimulation protocols while

maintaining the length/area occupied by the electrodes, and thus the area of current

injection.

In other words, if only 2–electrode groups are desired to be installed at the medium’s

periphery covering a total of A length/area units, then each of them will cover 2A

units. Along the same lines, using a 4–electrodes scheme should cover the same total

of A units, with each electrode covering 4A units.

4.3 Overview of simulations studies

In order to provide a clear comparison between the conventional and the proposed

stimulation protocols, numerical simulations will be presented, focusing on the use of

a specific metric. This metric is referred to as the gain of the stimulation protocol,

which is defined as the ratio of the generalised singular values that meet Picard’s

criterion over the total number of available generalised singular values [20].  This

can be interpreted as a measure of the practical efficiency of the system, i.e., the

percentage of reliable measurements spectrum over the spectrum of all available

measurements.  It  will  be  shown  later  on  that  the  use  of  a  multi–injection  protocol

eventually decreases the percentage of the unreliable (filtered out) measurements

spectrum over the full measurements spectrum solely by making adjustments on the

stimulation pattern. This is equivalent to collecting less measurements m.

On the other hand, in order to demonstrate that essentially no compromise in the

quality of the reconstructed images is reported, Section (4.7) shows some indicative

yet representative reconstruction results. The question of investigating regularisation

parameter selection strategies to decide on an optimum regularisation parameter
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value a  is not of prime interest as far as this study concerned. However, to

emphasize on the impact of an appropriate selection of a stimulation strategy, priors,

and regularisation parameter in order to obtain optimum reconstructions, the

previously discussed L–curve criterion [98] is deployed to support the choice of

regularisation parameter used in the simulations herein. For clarity, a linearised

problem is opted for, the solution of which is given by Eq. (3.21). Unless otherwise

specified, the identity matrix is employed as the regularisation prior, TR R I= . At

this stage, the selection of the regularisation matrix is of secondary importance when

compared to the selection of the stimulation pattern.

4.4 Computational efficiency

One of the main advantages of the multi–injection protocol is the substantial

reduction in acquisition time. That is, collecting a minimal number of boundary

measurements, whilst maintaining performance. Throughout this section, the

proposed multi–injection protocol is compared against the conventional opposite 2–

electrode pair stimulation protocol. However, although one could consider adjacent

stimulations, according to [94], little information is acquired with adjacent

stimulation patterns, hence a standard opposite 2–electrode pair stimulation pattern is

employed in this research.

When 8L =  electrodes, are available and the current is applied to a 2–electrode pair

of opposite electrodes, i.e., [ ]1 1,0,0,0, 1,0,0,0 TI = - , one could collect measurements

between electrodes {2, 3} , {3, 4} , {6, 7} , and {7,8}  i.e., 4L -  measurements for this

particular current pattern. By shifting the current pattern by one electrode, one

arrives at [ ]2 0,1,0,0,0, 1,0,0 TI = - . Repeating for L–electrodes, eventually one could

potentially collect ( 4) 32m L L= ´ - =  measurements, half of which are linearly

independent. Thus, one could practically collect a total of 1 ( 4) 16
2

m L L= ´ - =

independent measurements which will then form the measurements vector y .
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On the other hand, when employing the multi–injection protocol by assigning two

opposite groups of 2–electrodes per group ( _ 2n elec = ), i.e., having the first

stimulation pattern of [ ]1 1,1,0,0, 1, 1,0,0 TI = - - , where one could collect

measurements between electrodes {3, 4} and {7,8}   i.e., ( 2) _ 2L n elec- ´ -

measurements for this particular current pattern, and by shifting the current pattern

by the scrolling value of 2 (i.e., half the number of electrodes in the group or

_
2

n elec  ,  one  arrives  at [ ]2 0,1,1,0,0, 1, 1,0 TI = - - , and following the same

rationale for L electrodes, a total of
( )

( )
2 _ 21 8

2 _ 2
L L n elec

m
n elec

- ´ -
= =   independent

boundary measurements can be collected for vector y .

Figure 4.2 shows images of the potential distributions, which resulted at the first

stimulation pattern (upper images) inside a 2D medium with 24–electrodes, and plots

of the calculated (through the forward problem) boundary voltages when subjected to

a conventional 2–electrode pair opposite injection strategy (left–hand side of the

image) and also for the multi–injection protocol. In the conventional protocol, only

two opposite electrodes are involved in the current firing process, resulting in 20

adjacent measurements being collected at each stimulation pattern (i.e., a total of 480

measurements). However, in the multi–injection protocol, where 2 groups of 4–

electrodes each are involved in the firing process, only 14 measurements are being

taken at each stimulation pattern, totalling 84 measurements. This number is

significantly less than the 480 measurements that would have been otherwise needed.

Hence, the apparent advantage of the proposed stimulation pattern is that although

24L = electrodes were originally considered, the EIT system is essentially clocked

with just 84 measurements. In other words, 84 measurements translate to just 17.5%

of the overall time required to collect data with the conventional 2–electrode pair

opposite protocols.

Table 4.1 shows values of quantitative time–saving ratios obtained through running

the EIT system when utilising the multiple–injection scheme. The system is clocked
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to fire 6–stimulation patterns only. The percentage reduction is calculated as the ratio

between the number of measurements collected when utilising the multi–injection

protocol over the number of measurements collected when utilising the conventional

2–electrode pair opposite protocol.

 # of collected
measurements

# of electrodes

Conventional 2–electrode
pair opposite protocol

Multi–injection protocol (6–
stimulation patterns)

Percentage
reduction (%)

12 96 36 62.5
24 480 84 82.5
36 1152 132 88.54
48 2112 180 91.48

Table 4.1 Percentage reduction time when using the multi–injection protocol

Figure 4.2 The potential distribution and calculated boundary voltages. (a)  The field from the
first current pattern for the conventional opposite 2–electrode pair stimulation protocol, (b) the
field from the first current patter for the multi–injection protocol with 4 electrodes/group, (c) the
measured boundary voltages for the conventional opposite 2–electrode pair stimulation protocol,
and (d) the measured boundary voltages for the multi–injection protocol.

Another added advantage of the multi–injection protocol is that the current density

(left–hand side image) inside the medium, is substantially higher than that for the

conventional opposite 2–electrodes one (right–hand side image), as shown ina

b

Figure 4.3b. This directly results in higher detection chances of any perturbation

should it be missed due to its size or location by the conventional injection protocol.

Hence, the perturbation’s traceability is higher given the reduced number of collected

voltage measurements.
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a b

Figure 4.3 The current streamlines for (a) the conventional opposite 2–electrode pair and  (b)
multi–injection stimulation protocols.

4.5 A comparison between the conventional opposite 2–

electrode pair stimulation and multi– injection protocols

based on Picard’s stability and GSVD techniques

In this section, the gains resulting from the implementation of the conventional

opposite 2–electrode pair stimulation and multi–injection protocols are calculated for

2D and  3D scenarios.  The  2D model  used  in  this  context  is  a  circular  domain  of  a

uniform background distribution, whilst the 3D model is a cylinder having 3 rings

and 4 rings of electrodes, respectively. For each case, a single inhomogeneity whose

conductivity differs from its surrounding, is placed at a given location inside the

medium. The respective gains are then calculated for each stimulation protocol for

various numbers of electrodes (L=12, 24, 36, and 48 electrodes). The motivation for

choosing L (number of electrodes) and the directly related m number of

measurements is essentially to highlight the fact that, the greater the number of

electrodes, the more the measurements to be collected.

Throughout the experiments in this section, without loss of generality, 6–stimulation

patterns are employed. Therefore, opposite groups will have different sizes

depending on the total number of electrodes used, i.e., in order to achieve 6
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stimulation patterns, the respective electrode groups will have a number of electrodes

_n elec = 6, 12, 18, and 24 electrodes/group for the 12, 24, 36, and 48 electrodes

configuration schemes, respectively. Finally, in order to avoid the inverse crime, and

to  add  realistic  operating  conditions,  without  loss  of  generality,  in  all  simulation

results, 25dB additive Gaussian noise e  is added to the simulated measurements.

4.5.1 Conventional opposite 2–electrode pair stimulation protocol – 2D
and 3D scenarios

Figures.  4.4–4.9  show  plots  of  the  Picard  coefficients  along  with  the  generalised

singular values ig when  plotted  for  different  2D  and  3D  media.  Recalling  the

discrete Picard criterion in Section 3.4, one requires a faster decay of Picard’s

coefficients ( )T
i e+p y  than the decay of the generalised singular values ig . In [20],

the ratio of the generalised singular values that meet Picard’s criterion over the total

number of available generalised singular values is termed as gain of the selected

stimulation pattern.

Figure 4.4. illustrates that, for the 2D scenario, when running the system using the

conventional opposite 2–electrode pair stimulation strategy, the quality of the

gathered measurements is no better when additional electrodes are added. As the

gains tabulated in Table 4.2 show, the increase in the number of electrodes has led to

a relative reduction in the respective gain, Gain 1,  as  has  been  referred  to  in  this

context.  In the same Table, the ratio of the number of electrodes over the number of

measurements is also tabulated to demonstrate how disproportional the increase of

electrodes with respect to measurements could be.

Clearly, as it can be depicted from Figure 4.4(a), the majority of the singular values

(labelled in blue in the Figure) are below Picard’s threshold (labelled in green in the

Figure). This becomes profound as the number of electrodes increases in the same

Figure for the cases of (b) 24, (c) 36 and (d) 48 electrodes, where notably only a few

singular values ig survive filtration.

The same concept applies for the 3D scenario reported in Figure 4.6 when deploying

3–rings of electrodes. The actual gains recorded for each case are tabulated in Table
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4.3, and termed as, Gain  2.  In  the  same  spirit,  one  can  see  that  the  quality  of  the

obtained measurements does not improve when additional electrode rings are

deployed. In the new configuration, the number of electrodes remains fixed,

however,  an  additional  ring  of  electrodes  is  allowed.  As  such,  a  different  electrode

distribution is enabled as illustrated in Figure 4.8 and the corresponding gains for the

4  rings  systems are  now tabulated  in  Table  4.4  and  termed as  Gain  3.  By coupling

each of the sub–Figures in Figure 4.8 by their corresponding entries in Table 4.4, it is

evident that assuming a fixed number of electrodes for each case, essentially the

additional ring allowance offers very little improvements, if any at all.

Taking into account that the meshing algorithm [99], produces slightly more mesh

elements to accommodate the need for the additional ring, the gains obtained from

Gain 2 are in the same range as in Gain 3. It is not hard to see from Table 4.3 and

Table  4.4  that  an  additional  ring  of  electrodes  results  in  the  same  number  of

measurements and does not yield an overall system improvement in the sense

discussed herein.

In fact, one should focus on the fact that, for the given opposite 2–electrodes pair

stimulation pattern, as the total number of electrodes increase, both Gain 2 and Gain

3 plummet, as more regularisation would indeed be required for stability. In this

regard, less singular values would escape filtration. This should be approached as a

numerical acknowledgement of the fact that increasing the number of electrodes does

not (necessarily) increase the potential information content. Note that this

acknowledgement triggers again the easier question on whether one takes the most

out of an EIT system, which essentially paves the way for non–conventional

stimulation/collection protocols.

4.5.2 Proposed Multi–injection stimulation protocol – 2D and 3D

scenarios

Given the GSVD discussion of the previous sections, it remains to demonstrate that

the resulting gain for the multiple–electrodes pair is better than the conventional one.

Intuitively, since more electrodes are involved in the firing process whilst occupying
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a greater boundary surface, it is sensible to anticipate some gain improvement over

the conventional 2–electrodes pair stimulation scheme. In other words, one would

expect to observe a faster decay in Picard’s coefficients than the generalised singular

values of the matrix pair (J,I) for this particular case.

In the 2D scenario, as Figure 4.5 shows, the percentage of the number of generalised

singular values below the Picard’s coefficients are much less than for the

conventional 2–electrode pair stimulation protocol. This actually means that the new

generalised singular values, calculated for a smaller Jacobian, contain much more

information of the problem at hand, than those calculated from the Jacobian resulting

from the conventional protocol. In other words, according to Table 4.2 and Table 4.5,

it is quite clear that, the gains resulting from deploying the multi–injection protocol

are almost 60% higher than for the conventional one, i.e., containing 60% more

information.

On the other side, for the 3D scenario, Figure 4.7 reveals the generalised singular

spectrum against the Picard’s coefficients for the multi–injection protocol when

applied for the 3D model with 3–rings of electrodes. The superiority of this scheme

for this case materialises from the readings of Table 4.6, in particular when a large

number of electrodes is considered (Gain 5). The naïve interpretation of Table 4.6 is

that, for the same domain, with the same forward problem parameters and the same

regularisation matrix, one could essentially derive an improved system. As in the

derived EIT system m is significantly smaller than the original one, so is the

linearised problem. Hence, by definition, this is a lower dimension problem and thus

intuitively it should be a much faster problem to solve.

The advantages of the proposed scheme become more apparent as more electrodes

are engaged in the simulation process. For clarity, the number of electrode rings is

increased to 4 and the corresponding singular spectrum for the 4 rings of electrodes

case is illustrated in Figure 4.9. As anticipated, a significant gain improvement when

compared with Gain 3 is recorded and the results are tabulated in Table 4.7 (Gain 6).
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(b)

(c)

(a)

(d)

Figure 4.4  Conventional opposite 2-electrode pair stimulation protocol gains for a 2D circular
medium with a single inhomogeneity located at  and

of the background value.



CHAPTER 4. MULTI STIMULATION AND MEASUREMENT PROTOCOL FOR FAST EIT

68

(a)

(c)

(b)

(d)

Figure 4.5 Proposed multi-injection stimulation protocol gains, for a 2D circular test phantom where a single
inhomogeneity is located at  of of the background value.
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(c)

(d)

(b)

(a)

Figure 4.6  Conventional opposite 2-electrode pair stimulation protocol gains for a 3D cylindrical
medium, where a single inhomogeneity is located at  of

of the background value. A maximum of 3 rings of electrodes are allowed.
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(c)

(b)(a)

(d)
Figure 4.7 Multi-Injection stimulation protocol gains for a 3D cylindrical medium, where a single
inhomogeneity is located at of of the
background value. A maximum of 3 rings of electrodes are allowed.
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(b)

(c)

(d)

(a)

Figure 4.8 Conventional opposite 2-electrode pair stimulation protocol gains for a 3D cylindrical
medium, where a single inhomogeneity is located at  of

of the background value. A maximum of 4 rings of electrodes are allowed.
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(b)

(d)

(a)

(c)

Figure 4.9 Proposed multi-injection stimulation protocol gains, for a 3D cylindrical medium, where a
single inhomogeneity is located at  of of the
background value. A maximum of 4 rings of electrodes are allowed.
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Electrode L Measurements m L/m Gain 1
12 96 0.12500 0.364583
24 480 0.05000 0.312834
36 1152 0.03125 0.312210
48 2112 0.02273 0.291339

Table 4.2 Conventional opposite 2–electrode pair stimulation protocol gains for a 2D circular test phantom.

Electrode L Measurements m L/m Gain 2
12 96 0.12500 0.330126
24 480 0.05000 0.329167
36 1152 0.03125 0.292535
48 2112 0.02273 0.262311

Table 4.3 Conventional opposite 2–electrode pair stimulation protocol gains, when a maximum of 3–rings of
electrodes is allowed.

Electrodes L Measurements m L/m Gain 3
12 96 0.12500 0.349081
24 480 0.05000 0.330124
36 1152 0.03125 0.301563
48 2112 0.02273 0.269886

Table 4.4 Conventional opposite 2–electrode pair stimulation protocol gains, when a maximum of 4 rings of
electrodes is allowed.

Electrodes L Measurements m L/m Gain 4
12 36 0.12500 0.861111
24 84 0.05000 0.928571
36 132 0.03125 0.922222
48 180 0.02273 0.937818

Table 4.5 Multi–injection stimulation protocol gains for a 2D circular test phantom.

Electrodes L Measurements m L/m Gain 5
12 36 0.3333 0.916667
24 84 0.2857 0.964286
36 132 0.2727 0.977273
48 180 0.2667 0.983333

Table 4.6 Multi–injection stimulation protocol gains, when a maximum of 3 rings of electrodes is allowed.

Electrodes L Measurements m L/m Gain 6
12 36 0.3333 0.916667
24 84 0.2857 0.952381
36 132 0.2727 0.962121
48 180 0.2667 0.972222

Table 4.7 Multi–injection stimulation protocol gains, when a maximum of 4 rings of electrodes is allowed.
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4.6 Multi–injection versus prior information

It is evident from the previous sections that an increased number of electrodes is not

necessarily a computational bottleneck. Having demonstrated the effectiveness of the

proposed scheme, the next sensible task is to report on the performance of a non–

identity prior, and opt to nominate optimum operating conditions, in terms of

stimulation  patterns  and  the  prior  used  in  order  to  achieve  a  higher  gain,  which  in

turn indicates, making better use of the available ‘useful’ singular values. For this

purpose we employ the so called Newton’s One–Step Error Reconstructor prior [58]

or the NOSER prior, for short, which is essentially the diagonal of TJ J .

The number of electrodes used to illustrate this concept is fixed. Three rings of

electrodes as shown in Figure 4.6 (c) each containing 12 electrodes, i.e., totalling 36

electrodes. The performance of the original opposite 2–electrode pair stimulation

pattern is illustrated in Figure 4.10 (a) and the corresponding gains are tabulated in

Table 4.8. As anticipated, an increase in the gain measure is reported when, as

expected, the more efficient NOSER prior used (Gain 8) for the same case. Next, the

proposed configuration when 2 electrodes per group are used, is tested against the

conventional one. This action essentially supports the theme of this research which is

replacing the single electrode groups for more electrodes per group.

In Table 4.8 one may appreciate the performance of the suggested scheme for the

prior considered herein. Clearly, increasing the number of electrodes per firing–

group results in a more efficient system, up to a certain point, where any further

increase in the number of electrodes will not affect the gain (i.e., when the gain

reaches 1). However, the performance is clearly enhanced by the selection of the

NOSER prior.

In summary, by suitably ‘clocking’ an EIT with an appropriate stimulation pattern as

well as an appropriate prior, the performance of the same system could be drastically

improved from a gain of 0.292535 (Gain 7) to 0.980364 (Gain 8), not to mention the

benefits in data acquisition volumes and computational times. If more electrodes are
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considered, say  rather than 2112 measurements, only 180 measurements need

to be collected. This accounts for approximately 8.52% of the original measurement

vector or a saving in terms of data acquisition volume of approximately 91.48 %.

Thus, for this example, one could not only derive a faster system but could also get

away with a fraction of the conventional measurements.

48L =
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(a)

(b)

(c)

(d)

Figure 4.10  Conventional versus proposed opposite protocol for various numbers of electrodes per group per
stimulation group. (a)  (Conventional), (b) , (c) , (d)  electrodes per
group. The results shown in the left column assume a simple identity prior whilst in the right column, the NOSER prior
is used.
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electrodes/group Electrodes L Measurements m L/m Gain 7 Gain 8
1 (conventional) 36 1152 0.03125 0.292535 0.350694

2 36 540 0.06671 0.581481 0.781481
6 36 132 0.27274 0.977273 0.980364
8 36 72 0.50000 1.00000 1.00000

Table 4.8 Comparison between conventional and proposed (2, 6, and 8 electrodes per
group) opposite protocol gains for the 3D phantom with 3 rings of 12 electrodes. Priors
considered herein are the Identity (Gain 7) and the NOSER (Gain 8) one.

4.7 Image reconstruction

In order to demonstrate that essentially no compromise in the quality of the

reconstructed images is reported, some indicative yet representative reconstruction

results, are provided. The question of the optimum regularisation value is essentially

an active research area where various methods could be used [15]. This is beyond the

scope of this study as the answer lies with the problem at hand and the specifications

to be met. Therefore, images are reconstructed for various equidistant logarithmic

values for a , ranging from 110-  to 810- , i.e., a = {1.00000e–001, 1.33352e–002,

1.77828e–003, 2.37137e–004, 3.16228e–005, 4.21697e–006, 4.62341e–007,

7.49894e–008, 1.00000e–008}. In addition, the resulting reconstructed image for the

specific choice of the regularisation parameter produced by employing the L–curve

criterion is presented within.

For clarity, linear reconstruction for the various configurations reflecting the number

of electrodes per firing–group, is presented, i.e., the conventional stimulation

protocol i.e., 1 electrode per group in Figure 4.11, the proposed one for 2 electrodes

per group in Figure 4.12 for 6 electrodes per group in Figure 4.13, and for 8

electrodes per group in Figure 4.14. In each Figure, one depicts from the first column

2D coronal slices extracted from the original 3D simulated perturbation. Essentially,

we extract 2D reconstruction at levels h= [0.3334 0.5001 0.6668 0.8335]T, hence 4–

images per column. The columns next to the original 3D perturbation, i.e., columns

2–10 in each Figure, are reconstructions for the various values of a , and the last

column represents the slices resulted from slicing the reconstructed image when the

L–curve is deployed to choose the value of the regularisation parameter.

To avoid biased reconstructions and essentially an inverse crime, measurements and

reconstructions were computed on different meshes. In effect, measurements were
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collected from the fine mesh for a 20% perturbation.  As mentioned before, 25dB

noise was added to the measurements. All reconstructions were performed on a

coarser mesh. For all simulations the EIDORS toolbox was employed [100].

Another useful observation that can be seen from the previous figures is that, the

more  electrodes  per  group employed,  the  wider  the  range  that  one  can  pick  up  the

regularisation parameter from, to result in more meaningful images. That is due to

the better utilisation of the ‘useful’ singular values resulting from the appropriate

choice of the current stimulation strategy. Hence, this coupled with utilising the L–

curve criterion, as shown in the far right–hand side column, assuming it to be the

optimal regularisation selection criteria, will result in even clearer images. Appendix

(C) contains further simulations for 2D and 3D image reconstructions when

deploying the conventional opposite 2–electrode pair and multi–stimulation

protocols.
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Figure 4.11  Conventional opposite protocol. The first column is the original 3D perturbation presented as 2D coronal slices of the cylindrical phantom at levels h. The columns
(2–10) are the reconstructions for various values of the regularisation parameter l = {1.00000e–001, 1.33352e–002, 1.77828e–003, 2.37137e–004, 3.16228e–005, 4.21697e–006,
4.62341e–007, 7.49894e–008, 1.00000e–008}, and the last column represents the reconstructed image resulted from the regularisation parameter produced though the L–curve
criterion.
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Figure 4.12  Proposed opposite protocol (2–electrodes per group). The first column is the original 3D perturbation presented as 2D coronal slices of the cylindrical phantom at levels
h. The columns (2–10) are the reconstructions for various values of the regularisation parameter l = {1.00000e–001, 1.33352e–002, 1.77828e–003, 2.37137e–004, 3.16228e–005,
4.21697e–006, 4.62341e–007, 7.49894e–008, 1.00000e–008}, and the last column represents the reconstructed image resulted from the regularisation parameter produced though the
L–curve criterion.
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Figure 4.13 Proposed opposite protocol (6 electrodes per group). The first column is the original 3D perturbation presented as 2D coronal slices of the cylindrical phantom at levels h.
The columns (2–10) are the reconstructions for various values of the regularisation parameter l = {1.00000e–001, 1.33352e–002, 1.77828e–003, 2.37137e–004, 3.16228e–005,
4.21697e–006, 4.62341e–007, 7.49894e–008, 1.00000e–008}, and the last column represents the reconstructed image resulted from the regularisation parameter produced though the L–
curve criterion.
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Figure 4.14  Proposed opposite protocol (8 electrodes per group). The first column is the original 3D perturbation presented as 2D coronal slices of the cylindrical phantom at levels h. The
columns (2–10) are the reconstructions for various values of the regularisation parameter l = {1.00000e–001, 1.33352e–002, 1.77828e–003, 2.37137e–004, 3.16228e–005, 4.21697e–006,
4.62341e–007, 7.49894e–008, 1.00000e–008}, and the last column represents the reconstructed image resulted from the regularisation parameter produced though the L–curve criterion.
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4.8 Summary

This chapter discussed the numerical stability and efficiency of the proposed current

stimulation criterion when compared to the conventional opposite 2–electrodes pair

stimulation protocol. The results have shown superiority, demonstrated in a better

utilisation of the generalised singular values and therefore better performance,

projected in higher gains. Further, by including the coupling effect between the

regularisation R and Jacobian matrices J, it was numerically demonstrated that an

appropriate choice of the matrix R could essentially enhance the system

performance.

Furthermore, another substantial advantage is the reduced computational overheads,

due to the lesser amount of collected boundary voltage measurements m. In the same

spirit, this simulation study also confirms the fact that employing an appropriate

prior, the respective stimulation protocol gains increase indicating better utilisation

of the available information. Lastly, the reconstruction quality is not affected by this

caused reduction in the number of measurements, on the contrary, when a proper

stimulation strategy coupled with an optimal regularisation parameter selection

criterion and a proper prior are used, images with better resolution and wider

regularisation range can be obtained.
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Chapter 5

Conclusions and future work

Desire is the key to motivation, but it’s determination and commitment to an unrelenting

pursuit of your goal – a commitment to excellence – that will enable you to attain the success

you seek.

Mario Andretti

5.1 The problem and the solution

Electrical Impedance Tomography is an inverse problem, and thus in order to

achieve meaningful results, the regularisation process should couple the stimulation

and measurement strategies with prior information about the characteristics of the

conductivity distribution inside the medium. Further, as it was clearly demonstrated

in the previous numerical results the single electrode group (i.e., the conventional

stimulation strategy), simply put, performs poorly. This was manifested by the low

values of the respective gains, which directly indicated the involvement of redundant

singular values or those having extremely low values, which are no good for solving

the problem at hand.  Although an attempt to enhance performance through

increasing the number or configuration of the electrodes has taken place, a reduction

in the respective gains, and therefore the performance of the system, has otherwise

occurred. Therefore, the proposed compound–electrode pair strategy has

outperformed the conventional stimulation methods through a better utilisation of the

available singular values. This technique appears to ‘automatically’ filter out

‘useless’ singular values, i.e., those who lie below the level of Picard’s coefficients.

On  the  other  hand,  by  using  GSVD  analysis,  one  could  essentially  provide  a  good

indication of the amount of information that a specific coupling (J, R) could offer to

the inverse problem, before actually solving Equation (3.21). In this light, it is of

little surprise that the identity prior offered very little improvement in the
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performance of the system. Indeed, the poor performance indicated that major

amendments in the selection of the regularisation matrix were necessitated.

As mentioned in Chapter two, solving the forward problem assumes a piecewise

constant (per element) approximation for the real conductivity distribution,

1

K

i i
i

s s c
=

» å   (5.1)

where ic  is the characteristic function having the value 1 on element i  and  0

otherwise, and K  is the number of elements constituting the discrete model, the size

of the typically underdetermined version of the Jacobian is m K´ÎJ ¡ , where

practically m K= . Therefore, a sensible step is to establish a means of increasing

the number of measurements m until, ideally, m K» . This means a significant

increase in the number of measurements and, eventually, electrodes L .

Aside from impractical, an increased number of measurements m will contribute

towards unrealistically high computational overheads both for the assembly and the

inversion of the dense matrix J (not to mention possible ill–conditioning).

Therefore, should a classical 2–electrode pair stimulation and measurement strategy

be deployed, a practical upper bound in terms of available computational resources is

encountered.

On the other hand, taking into account that we are dealing with an inverse problem, it

is essential for stability to only utilise a subset of the available singular values

spectrum, as suggested by the singular value analysis of Section 3.3. Moreover, in

order to factor in the role of the regularisation matrix R as well as the presence of

the noise in the measurements, the GSVD analysis, in particular, is recalled.
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5.2 Thesis deliverables

As mentioned earlier, the EIT imaging modality suffers from poor spatial resolution

due to its sensitivity to noise and boundary voltage measurements [1],[101]. Also,

EIT images are often subtracted from a reference image so that errors caused from

electrode movement or unknown boundary shape are minimised. The EIT imaging

modality results in reconstructed images that are differential in nature rather than

static. The previous two reasons usually prevent the use of EIT in the diagnosis of a

number of diseases and make it less comparable to modalities such as the CT and

MRI [38].

Therefore, throughout this research, it was numerically demonstrated that by

engaging more than one electrodes in the stimulation pattern, significant

computational savings could be reported. Moreover, it was shown that unlike

conventional systems, in the proposed configuration, as the number of electrodes

increases so does the performance of the proposed system. Simulations on simple

domains with varying numbers of electrode rings and number of electrodes per ring

were presented. Representative reconstructions for a 3D cylindrical tank were

provided to emphasise that despite the reduction in the number of collected

measurements,  no  compromise  in  the  quality  of  the  reconstructed  images  was

reported.

5.3 Further Work

This study is part of our long term goal in the Information Engineering and Medical

Imaging Group at City University London to derive model reduction schemes in EIT

without compromising robustness and/or the quality of acquired EIT data/images. In

this regard, a reduction in the number of measurements m was achieved and

essentially reflected on the Jacobian matrix J.

It would be of great interest to verify the numerical findings herein with realistic

measurements. The current bottleneck however, is that most available EIT systems

are configured (hardware–wise) to fire on single–electrode groups and are typically
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manufactured with a small number of electrodes. As such, as long as a multiple–

electrode pair system becomes available, results can be confirmed in an experimental

setting.

A recent research initiative on the electrode configuration for EIT systems [104] has

demonstrated that by having the electrodes as small and as closely spaced as

possible, it was possible to have a better estimate of the conductivity of a surface

perturbation like colo-rectal cancer. However, depending on the depth to which the

perturbation had grown, different electrode spacings demonstrated varied levels of

sensitivity. This work is of great importance to tackle the various non-uniform

medium such as soft tissue imaging.

On the image reconstruction front, Polydorides et al [105] have shown promising

results in reducing numerical overheads when calculating the solution of the

nonlinear EIT reconstruction problem. This broadens the horizon for a potential

cooperation by utilising the multi-stimulation current patterns along with the reduced

mathematical complexity of solving the non-linear inverse problem to achieve the

EIT’s main goal of producing a better resolution images with less complexity.

It is also worth mentioning the efforts in [106] and [107] which broke new grounds

for achieving numerical efficiency in both forward and inverse problems.

In addition,  in [92], the author proposed multi–level basis functions (wavelets) as

basis functions for both the forward and inverse computations of the soft–field

imaging problem in order to reduce the dimensionality of J (by compression). This

automatically enables the ‘multi–level Jacobian’ and hence the multi–level version of

the forward version at no additional computational cost. Hence, it is sensible

therefore, to couple the ideas developed in the current research with the ideas

developed in [92] in order to offer a ‘possibly primitive’ model reduction scheme

that makes use of no additional transformation aside from the ones required for the

solution of the inverse problem. Needless to say that if appropriate, this could be

further combined with other generic model reduction methods, e.g., statistical ones

[102], to offer additional significant advantages in reconstruction times.
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On the other hand, there is no restriction on the use of nonlinear schemes to perform

the reconstruction task. In fact, the proposed method appears to best suit nonlinear

systems, where linearised steps are essential. Thus, the proposed method has the

potential to enable additional computational savings. Not to mention that although

real admittivities were considered herein, there is no obvious limitation for the

complex case. In this manner, higher frequency models or a multi–frequency EIT

system could also be studied.
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Appendix A

Deriving the stiffness matrix for a simple 2D medium using
the Finite Element Method

In this section, the individual integral components comprising the sub–matrices MA ,

ZA , WA , and DA , as appear in the system in Equation 2.45 are evaluated using the

finite element method. The medium is nominated to be a 2D shape, for simplicity

reasons, and segmented into triangular tetrahedral as Figure 1 roughly illustrates.

Figure A–1 A rough illustration of a 2D with L electrodes attached at its boundary. Right: Continuous domain,
and left is the discretised one.

Basis/Interpolation functions

The basis functions ( )iN x where ( ) 2Ì W Îx ¡  , used to interpolate the electric

potential over the vertices comprising the mesh, are chosen to be a piecewise linear,

and having a value of  “1” on vertex i  and “0” at the other vertices, i.e.,

1       on vertix ,
0      otherwise.i

i
N

ì
= í

î
(1)
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Therefore, the continuous electrical potential ( )f x  inside the mesh can be

approximated over the vertices using this interpolation functions as,

( ) ( )

( ) ( ) ( )
1

1 1 2 2

n

i i
i

n n

N

N N N

f j

j j j
=

@

@ + + +

åx x

x x xL

(2)

where the vector 1[ ,..., ]T n
nj j Î¡  represents the discrete approximations to the

potential.

Generally speaking, the basis (or interpolation functions, as many may refer to)

should possess the following characteristics. Firstly, they should preserve continuity

of the function f  across inter–element boundaries, and secondly, as highlighted in

Chapter 2, they must be at least once differentiable and, finally, they must be

complete polynomials in order to provide sufficient representation of the solution’s

behaviour in the finite element domain [103].

Having assumed a 2D domain, each linear triangular element composing the domain

in the xy–plane, as illustrated in Figure 2, consists of three vertices which correspond

to the three nodes of the elements. Conventionally, these nodes are locally numbered

in a counter–clockwise manner to avoid having a negative area using the Jacobian4

[103].

4 In this context, the Jacobian represents the matrix of derivatives deployed to transform a system
from one coordinate system to another.

y
η

x ξ
2

1

3

2

3

1

(1,0)(0,0)

(0,1)

(a) (b)
Figure A-2 (a) Linear triangular element in the xy-plane. (b) Linear triangular element in the ξη-plane.
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The sub–matrices of the linear system described in Equation 2.45 include integration

either over the domain of interest  Ω or the boundary of the domain ¶W . However,

one can perform the integral over individual elements eW and then map it onto the

global matrix A for the entire domain. On the other hand, using the xy–coordinates

might not be a good idea because the limits of the integration change every time a

new element is considered.

Therefore, by transferring the element from the regular domain onto another domain

(or as referred to as the natural or the master domain), the limits of integration

involved in the weak formulation do not change every time a new element is

considered. Hence, it is advisable that the interpolation functions should be derived

based on the master element rather than the local element.

Figure 2(b) shows that at  any point on the master element ( 0 1x£ £  and 0 1h£ £ )

the electric potential can be expressed as,

( ) ( )

( ) ( ) ( )

3

1

1 1 2 2 3 3

, ,

            , , ,

e e
i i

i
e e e

N

N N N

f x h j x h

j x h j x h j x h
=

@

@ + +

å (3)

where 1
ef , 2

ef , and 3
ef  are the values of the electric potential at the three vertices of

the triangle, and the functions ( )1 ,N x h , ( )2 ,N x h , and ( )3 ,N x h are the linear basis

function  corresponds  to  interpolating  the  potential  to  a  triangle  nodes  1,  2,  and  3,

respectively.

The linear representation of the interpolation function ( ),N x h  is of the form,

( ) 1 2 3,N c c cx h x h= + + (4)

hence, by employing the fact that ( )1 ,N x h  as the value of “1” at node “1” and “0” at

the other two nodes, the constants 1c , 2c , and 3c  can be calculated as,

At node “1”

( )1 1 2 30, 0 (0) (0) 1N c c c= + + =  hence, 1 1c =

At node ”2”

( )1 2 31, 0 1 (1) (0) 0N c c= + + = hence, 2 1c = -
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At node ”3”

( )1 30,1 1 1(0) (1) 0N c= + - + =  hence, 3 1c = -

Therefore, the interpolation function ( )1 ,N x h  can be expressed as,

( )1 , 1N x h x h= - - (5)

Next, the same concept applies for both ( )2 ,N x h  and ( )3 ,N x h  where ( )2 ,N x h  has

the value of “1” at node “2” and “0” at the other nodes i.e., “1” and “2”. And the

function ( )3 ,N x h  has the value of “1” at node “3” and “0” at the other two nodes.

Hence, using a simple substitution, one can simply get,

( )2 ,N x h x= (6)

( )3 ,N x h h= (7)

For isoparametric elements, the same interpolation functions used to interpolate the

electric potential inside an element are also used to interpolate the space coordinates

x and y. In other words,
3

1 1 2 2 3 3
1
3

1 1 2 2 3 3
1

e e e e
i i

i

e e e e
i i

i

x x N x N x N x N

y y N y N y N y N

=

=

= + + =

= + + =

å

å
(8)

and by substituting the values of 1N , 2N , and 3N calculated in (5), (6), and (7) and

into (8) yields

1 21 31

1 21 31

e

e

x x x x
y y y y

x h

x h

= + +

= + +
(9)

where

21 2 1

31 3 1

21 2 1

21 2 1

31 3 1

e e

e e

e e

e e

e e

x x x
x x x

x x x
y y y
y y y

= -

= -

= -

= -

= -

(10)
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Evaluation of element matrices

For each element kW  the respective sub–matrices k
MA , k

ZA , k
WA , and k

DA , are

solved with respect to previously derived linear basis functions. Then, for the matrix
k
MA  which can be written as,

, .
k

k
Mi j k i j kN N ds

W

= Ñ Ñ WòA (11)

or simply,

,
,

  , Ωk i j kM i j
x y

A N N dxdy x ys= Ñ Ñ " Îòò

Given the interpolation functions 1N , 2N  and 3N , the coordinate transformation

from the xy onto the xh  axes, and using the chain rule to obtain
N
x

¶
¶

 and
N
h

¶
¶

 as,

N N x N y
x y

N N x N y
x y

x x x

h h h

¶ ¶ ¶ ¶ ¶
= +

¶ ¶ ¶ ¶ ¶
¶ ¶ ¶ ¶ ¶

= +
¶ ¶ ¶ ¶ ¶

(12)

or in a matrix form,

N x y N
x
NN x y
y

x x x

h h h

¶ ¶ ¶é ù é ù ¶é ù
ê ú ê ú ê ú¶ ¶ ¶ ¶ê ú ê ú ê ú=

¶¶ ¶ ¶ê ú ê ú ê ú
ê ú ê ú ê ú¶¶ ¶ ¶ ë ûë û ë û

(13)

The 2 2´  square matrix is called the Jacobian matrix, denoted by àJ , and can be

evaluated using the expressions in (9) as,

21 21

31 31

x y
x y

à é ù
= ê ú

ë û
J (14)

The coordinate transformation in (13) can be rearranged by inverting the Jacobian

matrix and expressing the matrix system in the following form,

1

NN
x
N N
y

x

h

à-

¶é ù¶é ù
ê úê ú ¶¶ ê úê ú =

¶ ¶ê úê ú
ê úê ú¶ ¶ë û ë û

J (15)

where 1à-J  essentially denotes the inverse of the Jacobian matrix, and is given by,
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31 211

31 21

1 y y
x x

à-
à

-é ù
= ê ú-ë û

J
J

(16)

where àJ  is the determinant of the Jacobian matrix and calculated as,

21 31 31 21 2 ex y x y Aà = - =J (17)

and eA  denotes the area of the triangle. The determinant of the Jacobian matrix is

equal to twice the area of the triangular element provided that the local node numbers

of the triangle follow a counter–clockwise sense of the numbering. Thus, in forming

the connectivity information array of any finite element mesh, it is instructive that

the local nodes of each triangle be numbered in a counter–clockwise direction. Using

(15–17) and (5–7) would result in

31 21

31 21

31 21

31 21

21 31

31 21

23

32

1
2

11
12

1
2

1
2

e

e

e

e

N N
y y x

Nx xN A
y

y y
x xA

y y
x xA

y
xA

x

h

¶é ù ¶é ù
ê ú ê ú-¶ é ù ¶ê ú ê ú= ê ú ¶-¶ê ú ê úë û
ê ú ê ú¶¶ ë ûë û

- -é ù é ù
= ê ú ê ú- -ë ûë û

-é ù
= ê ú-ë û

é ù
= ê ú

ë û

(18)

In other words,

231

321

2

2

e

e

yN
x A

xN
y A

¶
=

¶

¶
=

¶

(19)

Similarly,

312

132

2

2

e

e

yN
x A

xN
y A

¶
=

¶

¶
=

¶

 (20)
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and

3 12

3 21

2

2

e

e

N y
x A

N x
y A

¶
=

¶
¶

=
¶

 (21)

One can rewrite integral
,kM i j

A  as,

,
j jk i i

Mi j k
xy

N NN N dxdy
x x y y

s
¶ ¶é ù¶ ¶

= +ê ú¶ ¶ ¶ ¶ë û
òòA  (22)

Performing the integration in (22) over the master element lying on the natural

coordinate system, and using the transformation of a double integral from the regular

coordinate system to the natural coordinate system is [31]

( ) ( )( )
11

0 0

( , ) , , ,
xy

f x y dxdy f x y d d
h

x h x h x h
-

à=òò ò ò J (23)

Using Equations (19–21) along with the Jacobian transformation in (23), the entries

of element matrix ,
k
Mi jA  can be evaluated in a straightforward manner. Specifically,

( ) ( )

11
23 23 32 32

1,1
0 0

2 2
23 32

2
2 2 2 2

4 4

k
M k e

e e e e

k
e e

y y x x A d d
A A A A

y x
A A

h

s x h

s

- æ öæ ö
= ç ÷ç ÷

è øè ø
æ öæ ö

= ç ÷ç ÷
ç ÷ç ÷
è øè ø

ò òA

(24)

Similarly,

23 31 32 13
1,2 2,1 4 4

k k
M M k

e e

y y x x
A A

s
æ öæ ö

= = ç ÷ç ÷
è øè ø

A A (25)

23 12 32 21
1,3 3,1 4 4

k k
M M k

e e

y y x x
A A

s
æ öæ ö

= = ç ÷ç ÷
è øè ø

A A (26)

( ) ( )2 2
31 13

2,2 4 4
k
M k

e e

y x
A A

s
æ öæ ö

= ç ÷ç ÷
ç ÷ç ÷
è øè ø

A (27)

31 12 13 21
2,3 3,2 4 4

k k
M M k

e e

y y x x
A A

s
æ öæ ö

= = ç ÷ç ÷
è øè ø

A A (28)

( ) ( )2 2
21 21

3,3 4 4
k
M k

e e

y x
A A

s
æ öæ ö

= ç ÷ç ÷
ç ÷ç ÷
è øè ø

A (29)
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The matrix is indeed symmetric, i.e.,

, ,
k k
Mi j Mj i=A A (30)

Thus, some of the entries do not have to be explicitly evaluated.

The other integral composing the system matrix A is the boundary integral,

,
1

l

l

Z i j i j
l

N N dS
z G

G

= òA  (31)

where 1

lz
such that 0lz ¹  is the reciprocal of the contact impedance of the lth

electrode, and
l

dSG  is the discriminant of integration either in the x or y direction in

the Cartesian coordinates, or x  or h  in the natural coordinates . However, having

assumed a 2D geometrical shape, the matrix ,Z i jA  eventually results from solving a

line integral, which is easy to evaluate either on the xy–coordinate or xh –coordinate.

However, solving this integral can be done through mapping the edge from the xy–

coordinate onto the natural coordinate system, as shown in Figure 3, where

integrating along the edge 1  2®  on the regular triangle is equivalent to integrating

from 0 1®  along the ξ–axis of the natural coordinate system multiplied by the

length of the edge. In other words,

12dl l dx= (32)

where 2 2
12 21 21l x y= +

Next, the integral can be rewritten as,

( ) ( )
1

, 12
0

1 ,0 ,0Z i j i j
l

N N l d
z

x x x= òA (33)

Therefore,
1 1

2 212 12
1,1 1 12

0 0

1 ( ,0). (1 )
3Z

l l l

l lN l d d
z z z

x x x x= = - =ò òA (34)

1 1
12 12

1,2 1 2 12
0 0

1 ( ,0) ( ,0). (1 )
6Z

l l l

l lN N l d d
z z z

x x x x x x= = - =ò òA (35)
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1

1,3 1 3 12
0

1 ( ,0) ( ,0). 0Z
l

N N l d
z

x x x= =òA (36)

2,1 1,2Z Z=A A (37)

1 1
2 212 12

2,2 2 12
0 0

1 ( ,0). .
3Z

l l l

l lN l d d
z z z

x x x x= = =ò òA (38)

1

2,3 2 3 12
0

1 ( ,0) ( ,0). 0Z
l

N N l d
z

x x x= =òA (39)

3,1 3,2 3,3 0Z Z Z= = =A A A (40)

Figure A–3. (a) A triangular element with an edge on boundary. (b) Master triangular element.

Further, for the boundary integral ,
1

l

l

Wi j i
l

N dS
z G

G

= -òA , the same concept applies as it

is basically a 1–dimensional line integral and can be solved simply over the x –axis

after rewriting the integral as,

( )1 ,0Wi i
l

N d
zx

x x= -òA (41)

which can be evaluated directly as
1

1
0

1 1(1 ).
2W

l l

d
z z

x x= - - = -òA (42)

1

2
0

1 1.
2W

l l

d
z z

x x= - = -òA (43)

3 0W =A (44)

1

32

x

y

12

3η

ξ
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Finally, this will conclude with the forth component,

,

1 for
     , 1,...,

0 otherwise
i j

l
lD j

i j
z i j L

ìæ ö
G =ïç ÷= =íè ø

ï
î

A (45)

which is essentially a diagonal matrix having the values l

l j
z

æ G ö
ç ÷
è ø

 across its diagonal,

and lG  is the length of the line segment underneath the electrode.
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Appendix B

The derivation of the Jacobian matrix based on the
Complete Electrode Model

In Chapter Two, it is described how the Jacobian matrix can be derived and

formulated using the standard model [40] is used to. However, in this section,

another method based on the complete electrode model CEM [47] is used to derive

the Jacobian matrix for the 2D case i.e., ( ) 2Ì W Îx ¡ .

Basically, starting from the weak form of governing EIT problem

( ) ( )( ). 0s fÑ Ñ =x x  (or Green identity), for any ( ) 2w LÎx

ˆ.( )  .w d w dSs f s f
W ¶W

Ñ Ñ W = Ñò ò n  (1)

Here dW and dS are discriminants indicating surface and line measures,

respectively. In particular, for w f=  we have the power conservation formula

2

\
\

0

\
\

0

1

ˆ.

ˆ ˆ                  . .

ˆ ˆ                  . .

ˆ                  .
ˆ l

l

l l
l

d dS

dS dS

dS dS

V z dS

s f fs f

fs f fs f

fs f fs f

fs s f

W ¶W

G ¶W G
G ¶W G

=

G ¶W G
G ¶W G

=

G
= G

Ñ W = Ñ

= Ñ + Ñ

= Ñ + Ñ

¶æ ö= - Ñç ÷¶è ø

ò ò

ò ò

ò ò

ò

n

n  n

n  n

n
n

144424443

144424443

L

å

 (2)

Therefore,

( )2 2

1

ˆ.
l

l

L

l l l
l l

d z dS V Is f s f G
=W G

Ñ W + Ñ =å åò ò n (3)

Equation (3) states that the input power is dissipated either in the domain W  or by

the contact impedance layer under the electrodes.
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Further, when for the inhomogeneous case when a perturbation takes place and

s s ds® + , f f df® +  and l l lV V Vd® +  with the current in each electrode lI

held constant. By Ignoring the higher order terms in Equation (3) gives

( ) ( )2

1

ˆ ˆ2 2 . .
l

l

L

l l l
l l

d d z dS V Ids s f df s f d s f G
=W W G

× ÑW W + Ñ ×Ñ W + Ñ Ñ =å åò ò ò n n

(4)

On the lth electrode,

( ) ( )1ˆ. lV
z

d s f d dfÑ = -n
l

(5)

Using this and the weak formulation with w df=  we get

2

1 1

ˆ ˆ ˆ2 . 2 . 2 .
l l

l l

L L

l l l l
l l ll

d z dS V dS I V
z
dfds f dfs f s f d s f dG G

= =W ¶W G G

Ñ W + Ñ - Ñ + Ñ =å å åò ò ò òn n n

 (6)

In Equation (6), the second and third terms on the left–hand side cancel, and the

fourth term is 2 l l
l

I Vdå  which results in,

2
l l

l
I V dd ds f

W

= Ñ Wå ò (7)

which is essentially the total change in power. In order to derive the total change on a

particular measuring electrode m when a current pattern [ ]dI  is driven at some or all

of the other electrodes, the resulted ‘measurement pattern potential’ [ ]( )mf I   should

be calculated. ( )f I  indicates the electric potential on a vector of electrode currents

1 , , LI Ié ù= ë ûI K and the potential for the dth drive pattern is [ ]( )df I . By applying

the power perturbation formula of Equation (7) to [ ]( ) [ ]( )d mf f+I I  and

[ ]( ) [ ]( )d mf f-I I  then subtracting gives

( ) [ ]( ) [ ]( ), d md m dd ds f f
W

= - Ñ ×Ñ Wòy I I (8)
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where ( ),d mdy  is the mth measurement under the dth current pattern.

To calculate the Jacobian one must choose the discretisation of the conductivity. The

simplest case is to take the conductivity to be piecewise constant on polyhedral

domains, such as voxels or tetrahedral elements. Taking ds  to be the characteristic

function of the kth element, then for a fixed pattern

( )( )

( )
[ ]( ) [ ]( )

,

; ,
k

d m
d m

kd m k
k

df f
s W

¶
= = - Ñ ×Ñ W

¶ ò
yJ I I (9)

Finally, the resulted Jacobian matrix will have the following format

( )( ) ( )( )

( )( ) ( )( )

( )( ) ( )( )

1 1

1

3 3

1

1

K

n

d d

K

s s

s s

s s

é ù¶ ¶
ê ú
ê ú¶ ¶
ê ú
ê ú
ê ú¶ ¶ê ú
ê ú¶ ¶
ê ú
ê ú
ê ú
¶ ¶ê ú

ê ú¶ ¶ë û

y I y I

y I y I
J =

y I y I

L L

M O O M

O M

M O O M

L L

(2.10)

where K is the total number of finite elements composing the medium,.

Some EIT and capacitance tomography systems use a constant voltage source and in

this case the change in power of an increase in admittivity will have the opposite sign

to the constant case. Under realistic conditions, it is recommended to formulate a fine

mesh for the forward problem and a coarser mesh for the inverse, since a perfect

model is not feasible.
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Appendix C

Image reconstructions for 2D and 3D shapes for various
electrode numbers and current injection protocols

In this section, various 2D and 3D images reconstructions are presented for both the

conventional opposite 2–electrode pair and the proposed multi–injection protocols.

That is to give representative and visual comparisons between these protocols when

it comes to the quality of the reconstructed images. The prime reason of the absence

of quality measures is that for different electrode numbers, and different

combinations of current–injecting electrodes, the generated meshes using Netgen

will have different topologies in terms of number of elements, and their respective

sizes and centroids.

Figures (1), (3), and (5) show various image reconstructions for a 2D, 3D with 3–

rings of electrodes, and 3D with 4 rings of electrodes, respectively. For the 3D cases,

reconstructed images are resulted through slicing the model at different fixed heights

described by vector h={0.1, 0.2, 0.3, 0.4, 0.5, 0.6}.
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(b)

(c)

(d)

Figure C-1 2D reconstructions when using conventional opposite 2-electrode pair protocol

(a)
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(b)

(c)

(d)

Figure C-2 2D reconstructions when deploying the proposed multi-injection protocol

(a)
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(b)

(d)

(a)

Figure C-3 3D reconstructions at different heights when using the conventional 2-electrode pair
protocol, a maximum of 3 electrode rings is allowed.

(c)
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b

c

(d)

(a)

(b)

Figure C-4 3D reconstruction at different heights when deploying the proposed multi-injection
protocol, a maximum of 3 electrode rings is allowed.

(c)
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(b)

(c)

(d)

(a)

Figure C-5 3D construction at different heights when using conventional 2-electrode pair
protocol, a maximum of 4 electrode rings is allowed.
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(b)

(c)

(d)

(a)

Figure C-6 3D reconstructions at different heights when deploying multi-injection protocol, a
maximum of 4 electrode rings is allowed.


