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Abstract

The optimal insurance problem represents a fast growing topic that explains the

most efficient contract that an insurance player may get. The classical problem

investigates the ideal contract under the assumption that the underlying risk

distribution is known, i.e. by ignoring the parameter and model risks. Taking

these sources of risk into account, the decision-maker aims to identify a robust

optimal contract that is not sensitive to the chosen risk distribution. We focus

on Value-at-Risk (VaR) and Conditional Value-at-Risk (CVaR)-based decisions,

but further extensions for other risk measures are easily possible. TheWorst-case

scenario and Worst-case regret robust models are discussed in this paper, which

have been already used in robust optimisation literature related to the investment

portfolio problem. Closed-form solutions are obtained for the VaR Worst-case

scenario case, while Linear Programming (LP) formulations are provided for all
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other cases. A caveat of robust optimisation is that the optimal solution may

not be unique, and therefore, it may not be economically acceptable, i.e. Pareto

optimal. This issue is numerically addressed and simple numerical methods are

found for constructing insurance contracts that are Pareto and robust optimal.

Our numerical illustrations show weak evidence in favour of our robust solutions

for VaR-decisions, while our robust methods are clearly preferred for CVaR-based

decisions.

Keywords and phrases: Uncertainty modelling, Linear programming, Robust/Pareto

optimal insurance, Risk measure, Robust optimisation.

1. Introduction

Finding the optimal insurance contract has represented a topic of interest in the actuarial

science and insurance literature for more than 50 years. The seminal papers of Borch (1960)

and Arrow (1963) had opened this field of research and since then, many papers discussed this

problem under various assumptions on the risk preferences of the insurance players involved in

the contract and how the cost of insurance (known as premium) is quantified. Specifically, the

optimal contracts in the context of Expected Utility Theory are investigated amongst others in

Kaluszka (2005), Kaluszka and Okolewski (2008), Cai and Wei (2012). Extensive research has

been made when the preferences are made via coherent risk measures (as defined in Artzner et

al., 1999; recall that CVaR is an element of this class) and VaR; for example, see Cai and Tan

(2007), Balbás et al. (2009 and 2011), Asimit et al. (2013b), Cheung et al. (2014), Cai and

Weng (2016) among others.

The choice of a risk measure is usually subjective, but VaR and CVaR represent the most

known risk measures used in the insurance industry. Solvency II and Swiss Solvency Test are the

regulatory regimes for all (re)insurance companies that operate within the European Union and

Switzerland, respectively, and their capital requirements are solely based on VaR and CVaR.

For these reasons and not only, these standard risk measures have received special attention

by academics, practitioners and regulators, and therefore, vivid discussions have risen among

them. VaR is criticised for its lack of sub-additivity and it may create regulatory arbitrage in an

insurance group (see Asimit et al., 2013a). A detailed discussion on possible regulatory arbitrages

in a CVaR-based regime is provided in Koch-Medina and Munari (2016). A desirable property for

a risk measure is the elicitability, which allows one to compare competitive forecasting methods,

a property that VaR does have (see Gneiting, 2011). The lack of elicitability for CVaR has been

adjusted via the joint elicitability, concept formalised in Fissler and Ziegel (2016), but earlier
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flagged out by Acerbi and Szekely (2014). Robustness properties of a risk measure are also of

great interest since they imply that the estimate is insensitive to data contamination. Parameter

risk (uncertainty with parameter estimation) and model risk (uncertainty with model selection)

are the two main sources of uncertainty in modelling. The robust statistic has its roots in the

papers of Huber (1964) and Hampel (1968), which has been shown to be less appropriate in the

context of risk management (see for example, Cont et al., 2010). A more informative discussion

is given in the next section due to its length. Finally, a summary of all properties exhibited by

the two risk measures is detailed in the comprehensive work of Emmer et al. (2015), but the

general conclusion is that there is no evidence for global advantage of one risk measure against

the other.

Whenever the model and parameter risks are present, it is prudent to consider insurance

contracts that are optimal under a set of plausible models and this is precisely what robust

optimisation does. It is a vast area of research with applications in various fields and a standard

reference is Ben-Tal et al. (2009), while comprehensive surveys can be found in Ben-Tal and

Nemirovski (2008), Bertsimas et al. (2011) and Gabrel et al. (2014).

The aim of the paper is to identify the optimal insurance contract under the model/parameter

risk in the robust optimisation sense and understand how robust these solutions are from the

practical point of view. That is, we aim to explain how large the uncertainty set should be for

relatively small or medium sized historical data sets as is expected in insurance practice. At

the same time, since the insurance contract is in fact a risk allocation, it is of great interest to

find whether or not our robust contracts are Pareto optimal. Robust optimisation may lead to

inefficient risk allocations, i.e. not Pareto optimal, which are clearly not acceptable, and special

attention is given to this issue by providing a simple methodology to overcome such caveats

of robust optimisation. Our numerical illustrations have shown weak evidence in favour of our

robust solutions for VaR-based decisions, which is not surprising due to the erratic behaviour of

VaR. On the contrary, CVaR-based decisions are more robust via robust optimisation than using

statistical methods, which can be explained by the fact that CVaR takes into account some part

of the tail risk as opposed to VaR. Either Worst-case scenario or regret robust optimisations

is preferred (comparing to the classical statistical methods) for less (statistically) robust risk

measures that are purely tail risk measures, where the estimation is based on a small portion

of the sample that explains only the tail risk. We also find that the Worst-case optimisation is

once again advantageous even for risk measures that are sensitive to the entire sample, i.e. are

not only based on the tail risk.
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The structure of the paper is as follows: the next section contains the necessary background

and the mathematical formulation of our problems, while Sections 3 and 4 investigate the VaR

and CVaR-based optimal insurance contracts, but also discuss simple extensions for distortion

risk measures when the moral hazard is removed; these robust solutions are further investigated

in Section 5 to becoming Pareto optimal as well; extensive numerical examples are elaborated

in Section 6, which help in justifying our conclusions summarised in Section 7.

2. Background and Problem Definition

2.1. Optimal insurance. An insurance contract represents a risk transfer between two parties,

insurance buyer (or simply buyer) and insurance seller (or simply seller). When the buyer is

also an insurance company, then the transfer becomes a reinsurance contract and the seller is

called reinsurer. Let X ≥ 0 be the total amount that the buyer is liable to pay in the absence of

any risk transfer. In addition, the seller agrees to pay R[X], the amount by which the entire loss

exceeds the buyer’s amount, I[X], and clearly we have I[X] + R[X] = X. The most common

risk transfers are the Proportional and Stop-loss contracts for which I[X] = cX (with 0 ≤ c ≤ 1)

and I[X] = min{X,M}, respectively. Note that in order to avoid moral hazard issues (both

players are incentivised to reduce the overall risk, i.e. I and R are non-decreasing functions),

I,R ∈ Cco, where

Cco = {f is non-decreasing | 0 ≤ f(x) ≤ x, |f(x)− f(y)| ≤ |x− y| for all x, y ∈ ℜ}.

The comonotonic risk transfers (as defined above) are omnipresent in practice, but it is not

always the case and the mathematical formulation of the feasibility set becomes

C =
{
f | 0 ≤ f(x) ≤ x for all x ∈ ℜ

}
.

Let P be the insurance premium, and it is further assumed that any feasible contract satisfies

0 ≤ P ≤ P , where P represents a maximal amount of premium that the buyer would accept to

pay. If the loss distribution is known, then the premium calculations are possible via certain rules,

known as premium principles. A concise review of premium principles can be found in Young

(2004). Specifically, if P is the probability measure for X, then P ≥ ω0+(1+θ)HP
(
R[X]

)
, where

ω0 ≥ 0 represents some fixed/administrative costs, θ ≥ 0 is the risk loading parameter/factor,

and H is a monotone functional on the space of non-negative random variables that depends on

the seller’s choice of premium principle. The monotonicity property is of practical importance

and it means that if two random losses satisfy Y ≤ Z, then HP(Y ) ≤ HP(Z). A commonly
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encountered premium principle is the distortion premium principle (see Wang et al., 1997),

HP(Y ) =

∫ ∞

0
g
(
P(Y > y)

)
dy (2.1)

for any non-negative loss random variable Y , where g : [0, 1] → [0, 1] is non-decreasing with

g(0) = 0 and g(1) = 1 known as distortion function. When the distortion function is taken to be

the identity function, we obtain the expected value premium principle, which is standard in the

insurance industry. The mathematical formulation of the optimal insurance problem becomes

min
(R,P )∈C×ℜ

{
ρP

(
X −R[X] + P

)}
, s.t. ω0 + (1 + θ)HP

(
R[X]

)
≤ P ≤ P , (2.2)

where ρP is a risk measure chosen by the buyer to order its preferences to risk. As explained in

Section 1, it is first assumed in this paper that ρP ∈ {VaR,CVaR}. Recall that the lower script P

indicates the probability measure under which the risk measurement is made. The VaR of a loss

variable Y at a confidence level α ∈ (0, 1), is given by VaRα(Y ;P) = inf
y∈ℜ

{
P(Y ≤ y) ≥ α

}
. Note

that VaRα is representable as in (2.1) with g(t) = I{t>1−p}, where IA represents the indicator

operator that assigns the value 1 if A is true and 0 otherwise. The CVaR risk measure is defined

in Rockafeller and Uryasev (2000) as follows

CVaRα(Y ;P) = inf
t∈ℜ

{
t+

1

1− α
EP

(
Y − t

)
+

}
, where (t)+ = max(t, 0). (2.3)

Alternative representations are known in the literature (see for example, Acerbi and Tasche,

2002) and one of them is as in (2.1) with g(t) = t
1−α ∧ 1.

Due to the monotonicity property of VaR, CVaR and the functional H, (2.2) becomes much

simpler when removing the economic constraint P ≤ P and it has been investigated under

various sets of assumptions. Recently, Cheung and Lo (2015) included the latter constraint and

analytically solved (2.2) for a large class of premium principles and risk measures, including the

class from (2.1).

The existing literature assumes that the loss distribution is certainly known, and as a result,

the parameter and model risks are removed. Small and medium sized samples (present in

non high frequency data, as is usually the case in insurance data) raises many questions when

estimating any parameter even if the model risk is completely removed, i.e. the chosen model

is correct. Large samples are more concerned with the model risk, which can be reduced if the

model is carefully selected. Thus, if we know what we need to estimate, for example the optimal

objective function value from (2.2), for which its closed-form solution is required, the elicitability

(see Gneiting, 2011) of this functional (induced by the optimal objective function value) is the

next step in order to compare various models and reduce the model risk. While VaR is elicitable,

VaR and CVaR are jointly elicitable, our functional may not be elicitable or impossible to assess
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the presence of this property, since one has to find a scoring function to measure the estimation

error under the plausible models. Therefore, the model selection for VaR/CVaR do not apply

for our problem, even though these two simple risk measures are well-accepted as “good” risk

measures. Now, even if we can select the “best” possible model that reduces the uncertainty

with the optimal objective function value, we in fact solve a secondary problem, since the main

purpose of this exercise is to obtain a robust decision (with respect to the insurance contract,

i.e. R).

Therefore, it would be interesting to identify a more robust optimal insurance contract that

would take into account the parameter and/or model error. Thus, we assume that the reference

probability measure P is unknown and could be one of the m possible probability measures

{P1,P2, . . . ,Pm}. Consequently, the premium feasibility constraint becomes

ω0 + (1 + θ) ·HPk

(
R[X]

)
≤ P ≤ P , for any k ∈ M = {1, 2, . . . ,m}.

A prudent and hopefully robust decision is obtained when investigating the worst-case scenario

optimisation problem
min

(R,P )∈C×ℜ
max
k∈M

{
ρPk

(
X −R[X] + P

)}
,

s.t. ω0 + (1 + θ)HPk

(
R[X]

)
≤ P ≤ P , for any k ∈ M.

(2.4)

An alternative prudent decision can be achieved via the worst-case regret optimisation problem
min

(R,P )∈C×ℜ
max
k∈M

{
ρPk

(
X −R[X] + P

)
− ρ∗k

}
,

s.t. ω0 + (1 + θ)HPk

(
R[X]

)
≤ P ≤ P , for any k ∈ M,

(2.5)

where the buyer’s “regret” is measured with respect to some m benchmark values ρ∗k. Naturally,

these values are the optimal objective values for the individual models and are variants of (2.2).

Specifically, 
ρ∗k = min

(R,P )∈C×ℜ

{
ρPk

(
X −R[X] + P

)}
,

s.t. ω0 + (1 + θ)HPk

(
R[X]

)
≤ P ≤ P , for any k ∈ M.

(2.6)

These robust representations have been seen before in various ways. The worst-case type de-

cisions were axiomatically investigated by Gilboa and Schmeidler (1989) in the expected utility

context. Not surprisingly, the robust optimisation within the Portfolio Theory has its coun-

terpart; among others, see El Ghaoui et al. (2003), Zhu and Fukushima (2009), Polak et al.

(2010), Zymler et al. (2013), Kakouris and Rustem (2014). The worst-case and worst-case regret

CVaR-based decisions in portfolio optimisation are discussed in Huang et al. (2010). According

to our knowledge, the optimal insurance contract problem under parameter/model uncertainty

has been investigated only by Balbás et al. (2015), where only the worst-case is investigated for
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a large class of risk measures that includes CVaR, but not VaR, and a particular choice of the

uncertainty set of probability measures.

We now discuss the choice of the feasibility set, i.e. C or Cco. Note that whenever the risk

transfer is made between two large insurance companies, the moral hazard may not be an issue,

due to the presence of rating agencies; rating downgrading has a huge negative commercial

impact for such insurance companies and thus, moral hazard is less likely to occur. One may

also argue that a risk transfer within an insurance group does not necessarily have to exclude

the moral hazard due to the common ownership of the buyer and seller. Nevertheless, the

insurance regulator requires the insurer buyer to justify the commercial purpose of such a risk

transfer. In the absence of distributional uncertainty, there is a huge literature that discusses

whether or not the indemnity of an insurance contract should be comonotone, but in general,

the conclusion depends on the nature of the underwritten risk. On the other hand, the classical

Pareto optimality problem explains the shape of an “optimal” contract and the extensive existing

literature discusses how viable the comonotonic property is; an interesting discussion appears in

Huberman et al. (1983). Optimal transfers are shown to be comonotone (for a large class of risk

preferences) in Landsberger and Meilljson (1994) if the total risk is finite, while Ludkovski and

Rüschendorf (2008) extends this results to unbounded risks. In summary, choosing between a

set of feasible contracts given by C or Cco is related to the specific nature of the total risk that is

shared and the insurance players’ risk preferences whenever the total risk distribution is known.

In the presence of distributional uncertainty, the choice of feasibility set is sensitive to the nature

of the total risk. Therefore, solutions to Problems 2.4–2.6 are given to non-comonotone contracts

set, C, whenever possible, otherwise the comonotone contracts set Cco is chosen. Recall that we

do not intend to characterise the optimal contract, but instead we examine when our proposed

robust methods reduce the effect of distributional uncertainty.

Note that the feasible sets of Problems 2.4–2.6 are empty if ω0 > P . We now gather the set

of assumptions, stated as Assumption 2.1, under which the results of the paper hold.

Assumption 2.1. We consider m possible probability models {P1, . . . ,Pm} and the reference

probability model P may or may not belong to this set. Denote M = {1, . . . ,m}. Let X ≥ 0

be a loss random variable and denote Fk(·) = Pk(X ≤ ·), k ∈ M, its cumulative distribution

function (cdf) under Pk, we write X ∼ Pk, and F k(·) = 1 − Fk(·) its corresponding survival

function. Moreover, ω0 ≤ P . The premium principle is based on a monotonic functional H.

2.2. Robustness of risk measures. In the last few years there has been a wide and open de-

bate on the robustness properties of VaR and CVaR, with relevant contributions from regulators,

practitioners and academics. These risk measures, that we denote for brevity ρ depend on the
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probability model P used. The key question is whether a small perturbation of the probability

model P would result in a small perturbation of ρP , which is detailed in the next definition.

Definition 2.1. Let Xn, n ≥ 1 be a sequence of random variables with distribution Pn, n ≥ 1

and X a random variable with distribution P. A risk measure ρP(X) is (statistically) robust at

P, if limn→∞ d(Pn,P) = 0 implies limn→∞ |ρPn(Xn)−ρP(X)| = 0 for some distance d between

probability measures.

Different specifications of the metric d correspond to different notions of robustness. For

instance, Kiesel et al. (2016) consider the Wasserstein distance

dW (P, Q) := inf
{
E[|X − Y |] : X ∼ P, Y ∼ Q

}
under which both VaR and CVaR are robust. Cont et al. (2010) use the Lévy distance and show

that there is a partial conflict between coherent risk measures (including CVaR) and Hampel’s

classical notion of robustness, Krätschmer et al. (2014) and Delbaen et al. (2016) consider

continuity with respect to the φ-weak topology. We refer the interested reader to Emmer et

al. (2015) for a brief summary on the topic. Statistical robustness is particularly relevant when

the probability measure is estimated from available data; indeed if the estimated probability

measure Pn is sufficiently close to the real one (that is d(Pn,P) → 0) and the risk measure is

robust, than ρPn can be considered as a good approximation of ρP .

Due to data scarcity, as it is often the case in practice, the estimates based on the empirical

measure exhibit weak statistical evidence and alternative methods are necessary to consider.

For example, a more conservative approach is to consider a robustified risk measure ρ̄ defined

as follows:

ρ̄(X) = sup
P∈S

ρP(X), (2.7)

where ρP(X) represents the risk measure for the random loss X with probability distribution

P and S is a set of candidates models. This approach is not new in the literature, it is at the

basis of decision making under ambiguity (that is when there is uncertainty about the probability

distribution). The simple idea of this approach is that when there is ambiguity between different

models, a conservative and therefore robust approach is to select the one that represents the

worst scenario. In Assumption 2.1, we assume that the real probability model P may not belong

to the set S. Indeed, since P is unknown, we cannot guarantee that it belongs to the set of

models considered. Note that taking the supremum over a set of models reduces the impact of

model risk, but it cannot eliminate it completely.

The specification of the set S plays a crucial role in the worst-case approach and, in general,

is a difficult task. Clearly selecting a wide set, increases the chances of including the real model
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P and makes the risk measure more conservative; on the other hand if S is too large ρ̄ might

become unrealistic. Several choices have been considered in the literature and present different

interpretations. In this contribution we assume S = {P1, . . . ,Pm}, that is we consider a finite

set of probability measures. This choice is rather frequent in a context of model ambiguity and

it has also the benefit of making the problem mathematically tractable. A finite set of models

is typical in situations where there is not enough evidence from data to select a model and

the specification of S is left to experts opinion. In the context of measuring market risk, the

Standard portfolio Analysis of Risk (SPAN1995) proposed by the Chicago Mercantile Exchange

provides an example of finite S consisting of 16 probability measures obtained combining up and

down movement of the volatility with up, down or no move of the future prices (see Artzner et

al. (1999), Section 3.2 for a detailed description of how these scenarios are built). To reduce

the impact of model risk in option pricing, Cont (2006) presents a worst-case approach over

two probability measures: one providing a jump-diffusion model and the other one a simpler

diffusion model, see Example 4.4 in his paper. In the insurance framework, an example of finite

set S is obtained considering the set of different Catastrophe Models provided by Cat modelling

agencies; the insurer then has to take a robust decision with respect to these models, see for

instance Calder et al. (2012).

A valid alternative for S is to consider the convex hull of {P1, . . . ,Pm}

S ′
:=

{
P : λ ≥ 0,1Tλ = 1 and P(·) =

∑
k∈M

λkPk(·)

}
,

which is precisely what Zhu and Fukushima (2009) consider when ρ ≡ CVaR. It is shown that

WCV aRα(X) := sup
P∈S′

ρ(X;P) = min
t∈ℜ

max
k∈M

{
t+

1

1− α
EPk

(
X − t

)
+

}
, (2.8)

where EPk
(·) is the expectation with respect to Pk. Clearly,

max
k∈M

ρPk
(X) ≤ sup

P∈S′
ρ(X;P) (2.9)

holds for any risk measure. Proposition 2.1 shows that the “worst-case” definitions are identical

if ρ ≡ VaR and it is followed by an example showing that the above inequality may hold strictly

if ρ ≡ CVaR.

Proposition 2.1. Let {P1, . . . ,Pm} be a set of candidate models. Then,

max
k∈M

VaRα(X;Pk) = sup
P∈S′

VaRα(X;P)

Proof. Without loss of generality, we may assume thatm = 2. It is well-known that VaR has con-

vex level sets, i.e. if two probability models P1,P2 are such that VaRα

(
X;P1

)
= VaRα

(
X;P2

)
,
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then VaRα

(
X,λP1 + (1 − λ)P2

)
= VaRα

(
X;P1

)
for any λ ∈ [0, 1] (see Gneiting, 2011). Fur-

ther, VaR is monotone and translation invariant (see properties (a) and (b) from Section 2.3)

and therefore, we can apply Lemma 2.2 in Bellini and Bignozzi (2015) to obtain that VaR is

quasilinear. That is,

min
k∈{1,2}

VaRα

(
X;Pk

)
≤ VaRα

(
X;λP1 + (1− λ)P2

)
≤ max

k∈{1,2}
VaRα

(
X,P

)
.

which in turn implies that

sup
P∈S

VaRα(X,P) ≤ max
k∈{1,2}

VaRα(X,P).

The latter and (2.9) conclude the proof. �

As it has been anticipated, the same result does not hold for CVaR. Indeed, the following

example shows that max
k∈M

CVaRα

(
X;Pk

)
< sup

P∈S
CVaRα

(
X;P

)
may hold.

Example 2.1. Consider a discrete random variable X which takes only four values, i.e. {1, 2, 3, 4}.

We only consider two possible probability models, P1 and P2, such that

P1(X = 1) = 0, P1(X = 2) = 1
2 , P1(X = 3) = 1

6 , P1(X = 4) = 1
2 ,

P2(X = 1) = 1
2 , P2(X = 2) = 0, P2(X = 3) = 0, P2(X = 4) = 1

2 .

It is not difficult to find that CVaR2/3

(
X;P1

)
=CVaR2/3

(
X;P2

)
= 13

4 . Let P0=
1
2P1 +

1
2P2, i.e.

P0(X = 1) =
1

4
, P0(X = 2) =

1

4
, P0(X = 3) =

1

12
, P0(X = 4) =

5

12
,

which is an element of ∈ S ′
. Clearly, CVaR2/3

(
X;P0

)
= 27

8 , which justifies our claim as follows:

13

4
= max

k∈{1,2}
CVaRα

(
X;Pk

)
< CVaRα

(
X;P0

)
≤ sup

P∈S′
CVaRα

(
X;P

)
.

2.3. Properties of the worst-case risk measure. Some properties of the worst-case risk

measures have been briefly discussed in Zhu and Fukushima (2009) and therefore, we further

outline the main traits of this class. We now restate some of the properties often satisfied by a

risk measure and examine if its worst-case counterpart preserves these properties. Thus,

(a) Monotonicity : ρP(X) ≤ ρP(Y ) holds if P(X ≤ Y ) = 1;

(b) Translation Invariance: ρP(X −m) = ρP(X)−m holds for any m ∈ R;

(c) Positive homogeneity : ρP(λX) = λρP(X) holds for any λ > 0;

(d) Subadditivity : ρP(X + Y ) ≤ ρP(X) + ρP(Y );

(e) Convexity : ρP
(
βX + (1− β)Y

)
≤ βρP(X) + (1− β)ρP(Y ) holds for any β ∈ (0, 1);

(f) Comonotonic additivity : If X,Y are comonotone, then ρP(X+Y )=ρP(X)+ρP(Y );

(g) Comonotonic subadditivity : If X,Y are comonotone, then ρP(X + Y )≤ρP(X)+ρP(Y ),
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where X,Y ∈ X . By definition, X and Y are comonotone if(
X(ω)−X(ω′)

)(
Y (ω)− Y (ω′)

)
≥ 0 for any ω × ω′ ∈ Ω× Ω.

It is well-known that VaR satisfies properties (a)–(c) and (f)–(g), while CVaR fulfils all the prop-

erties (a)–(g). Proposition 1 in Zhu and Fukushima (2009) also shows that ρ̄(X) = sup
k∈M

ρPk
(X)

satisfies (a)–(e) if ρ satisfies (a)-(e). Properties (f) and (g) are detailed in Proposition 2.2 .

Proposition 2.2. Let {P1, . . . ,Pm} be a set of candidate models and ρ be a risk measure that

satisfies properties (f) (or (g)). Then, ρ̄(X) = sup
k∈M

ρPk
(X) satisfies (g).

Proof. Let X and Y be comonotone and assume ρ is comonotonic additive, then

ρ̄(X + Y ) = sup
k∈M

ρ(X + Y ;Pk) = sup
k∈M

{
ρ(X;Pk) + ρ(Y ;Pk)

}
≤ ρ(X) + ρ(Y ).

If ρ is comonotonic subadditive then it is sufficient to replace the second equality from above

with a less than or equal to inequality. �

Relaxing the assumption of property (f) to (g) is rather common in a model uncertainty

setting, where no pre-specified reference probability measure is available (for example, see Song

and Yan, 2009). The next example illustrates that CVaRα(X) := sup
k∈M

CVaRα

(
X;Pk

)
may be

strictly comonotonic subadditive, i.e.

CVaRα(X + Y ) < CVaRα(X) + CVaRα(Y ).

Example 2.2. Consider a discrete random variable X which takes only three values, i.e.

{2, 3, 4}. Let there be two comonotone random variables, X and X2, and only two possible

probability models {P1,P2} such that

P1(X = 2) =
3

4
, P1(X = 3) =

1

6
, P2(X = 2) = 0.8, P2(X = 3) = 0.08.

We compute CVaR at level α = 2
3 . It is not difficult to find that

CVaR2/3

(
X;P1

)
= 3, CVaR2/3

(
X2;P1

)
= 9.5, CVaR2/3

(
X +X2;P1

)
= 12.5

CVaR2/3

(
X;P2

)
= 2.96, CVaR2/3

(
X2;P2

)
= 9.52, CVaR2/3

(
X +X2;P2

)
= 12.48,

and thus, CVaR2/3

(
X +X2

)
< CVaR2/3(X) + CVaR2/3

(
X2

)
, as previously claimed.

3. VaR Robust Optimisation

In this section, we solve the worst-case scenario optimisation problem (2.4) and worst-case

regret optimisation problem (2.5) under the Cco × ℜ feasibility set, when the risk measure ρ is

VaR. Note that

VaRα(X −R[X];P) = VaRα(X;P)−R
(
VaRα(X;P)

)
, (3.1)
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for any I ∈ Cco. For brevity, we denote ak = VaRα

(
X;Pk

)
.

3.1. Worst-case scenario VaR optimisation problem. We first observe that the objective

function is increasing and continuous in P and any feasible premium P is bounded below by

ω0 + (1 + θ)max
k∈M

HPk

(
R[X]

)
for any fixed R ∈ Cco. The latter leads us to define the following

subset of Cco, which essentially puts an upper bound on the set of feasible contracts:

C′ =
{
R ∈ Cco | ω0 + (1 + θ)max

k∈M
HPk

(
R[X]

)
≤ P

}
.

Equation (3.1) helps in justifying the next lemma.

Lemma 3.1. If Assumption 2.1 holds with ρ ≡ VaRα, then any contract R ∈ Cco is feasible for

Problem 2.4 with a feasibility set Cco×ℜ if and only if R ∈ C′. Further, for any fixed R ∈ C′, the

optimal premium is given by P ∗
R = ω0 + (1 + θ)max

k∈M
HPk

(
R[X]

)
and the optimisation problem

from (2.4) is equivalent to

min
R∈C′

{
P ∗
R +max

k∈M

(
ak −R[ak]

)}
. (3.2)

Define now a∗ = max
k∈M

ak. Since R ∈ Cco, the map x 7→ x−R[x] is non-decreasing, and thus

max
k∈M

(
ak −R[ak]

)
= a∗ −R[a∗] for all R ∈ C.

Hence, Problem 3.2 becomes min
R∈C′

{
P ∗
R+a∗−R[a∗]

}
. By stratifying the set C′ of feasible contracts

according to the values ξ = R[a∗], this optimisation problem can be decomposed into a two-step

minimisation problem:

min
0≤ξ≤a∗

{
a∗ − ξ + min

R∈C′
ξ

P ∗
R

}
, where C′

ξ = {R ∈ C′ | R[a∗] = ξ} for any 0 ≤ ξ ≤ a∗. (3.3)

Due to the presence of the premium constraint P ∗
R ≤ P , the set C′

ξ could be empty if ξ is too

large. The next result explains the effective range of ξ of the outer minimisation of Problem 3.3.

The proof relies on the simple observation that the insurance layer contract

R∗
ξ [X] = (X − a∗ + ξ)+ − (X − a∗)+

belongs to Cco with R∗
ξ [a

∗] = ξ and the fact that this contract is minimal in the following sense:

R∗
ξ [X] ≤ R[X] for all R ∈ Cco with R[a∗] = ξ.

Lemma 3.2. If Assumption 2.1 holds with ρ ≡ VaRα, then for any ξ ∈ [0, a∗], the set C′
ξ is

non-empty if and only if

0 ≤ ξ ≤ ∆ = max
{
ξ ≤ a∗ | ω0 + (1 + θ)max

k∈M
HPk

(
R∗

ξ [X]
)
≤ P

}
.
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Proof. If 0 ≤ ξ ≤ ∆, the contract R∗
ξ belongs to C′

ξ by construction. To prove the converse,

suppose that there exists a contract R ∈ C′
ξ with ξ > ∆. Since R[X] ≥ R∗

ξ [X], we have

ω0 + (1 + θ)max
k∈M

HPk

(
R[X]

)
≥ ω0 + (1 + θ)max

k∈M
HPk

(
R∗

ξ [X]
)
> P,

which contradicts the definition of C′. �
Recall that the premium principle H is monotone. By Lemma 3.2 and the minimality of the

insurance layer contract R∗
ξ in the set C′

ξ for 0 ≤ ξ ≤ ∆, the inner minimisation of Problem 3.3 is

solved by the contractR∗
ξ , whenever 0 ≤ ξ ≤ ∆. Therefore, it remains to obtain the optimal value

of ξ for the outer minimisation, which is essentially a one-dimensional problem. We summarise

our findings for the worst-case scenario VaR optimisation problem in the next theorem.

Theorem 3.1. If Assumption 2.1 holds with ρ ≡ VaRα, then the solution (R∗, P ∗) of Prob-

lem 2.4, assumed to be solved over the set Cco ×ℜ, is given by

R∗[X] = R∗
ξ∗ [X] = (X − a∗ + ξ∗)+ − (X − a∗)+ and P ∗ = ω0 + (1 + θ)max

k∈M
HPk

(
R∗[X]

)
,

where ξ∗ is a solution of

min
0≤ξ≤∆

{
a∗ − ξ + ω0 + (1 + θ)max

k∈M
HPk

(
R∗

ξ [X]
)}

. (3.4)

Moreover, the optimal objective value is a∗ − ξ∗ + P ∗.

Remark 3.1. The solution of (3.4) is unique as long as g and all Fi are strictly increasing

functions.

In the rest of this section, we demonstrate how Problem 3.4 can be solved rather explicitly,

whenever H is a distortion premium principle as given in (2.1). Note that g is non-decreasing,

and thus, H holds the comonotonic additivity property (for details, see Dhaene et al., 2012).

Consequently,

HPk

(
R∗

ξ [X]
)

= HPk

(
(X − a∗ + ξ)+

)
−HPk

(
(X − a∗)+

)
=

∫ a∗

a∗−ξ
g
(
F k(t)

)
dt.

Also, the above function is convex in ξ ∈
[
0, a∗

]
for any k ∈ M, since g is non-decreasing. Thus,

G(ξ) = a∗ − ξ + ω0 + (1 + θ)max
k∈M

HPk

(
R∗

ξ [X]
)

is convex in ξ ∈ [0,∆]. Therefore, Problem 3.4 can be solved by finding the directional derivatives

of G. To this end, we define the directional derivative of an arbitrary convex function H at ξ

along the direction d ∈ ℜ, if exists, as

H ′(ξ; d) = lim
t↘0

H(ξ + td)−H(ξ)

t
,
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which is positively homogeneous in d ∈ ℜ. The right-hand and left-hand derivatives of H can

be expressed as H ′
+(ξ) = H ′(ξ; 1) and H ′

−(ξ) = −H ′(ξ;−1), respectively. A point ξ∗ ∈ [0,∆] is

optimal for Problem 3.4 if and only if it satisfies the first order condition G′(ξ∗; ξ − ξ∗) ≥ 0 for

all ξ ∈ [0,∆]. The next lemma provides a simplified expression for the directional derivative of

G.

Lemma 3.3. Assume that H satisfies (2.1) and denote

A(ξ) =

{
i ∈ M

∣∣∣∣HPi

(
R∗

ξ [X]
)
= max

k∈M
HPk

(
R∗

ξ [X]
)}

,

for any 0 ≤ ξ ≤ ∆. The directional derivative of G at ξ along the direction d ∈ ℜ is given by

G′(ξ; d) =


d
{
− 1 + (1 + θ) max

i∈A(ξ)
g
(
F i

(
(a∗ − ξ)−

))}
, d ≥ 0,

d
{
− 1 + (1 + θ) min

i∈A(ξ)
g
(
F i

(
a∗ − ξ

))}
, d < 0.

Proof. For each k ∈ M, let

gk(ξ) =

∫ ∞

a∗−ξ
g
(
F k(t)

)
dt−HPk

(
(X − a∗)+

)
, ξ ∈ [0,∆].

Its right-hand and left-hand derivatives at ξ are given by

g′k(ξ, 1) = g
(
F k

(
(a∗ − ξ)−

))
and − g′k(ξ,−1) = g

(
F k

(
a∗ − ξ

))
,

respectively. Therefore, the directional derivative of gk at ξ ∈ [0,∆] along the direction d ∈ ℜ

equals to

g′k(ξ; d) =

d g
(
F k

(
(a∗ − ξ)−

))
, d ≥ 0,

d g
(
F k

(
a∗ − ξ

))
, d < 0.

Our claim follows from the classical Danskin’s Theorem (see for example, Corollary 1.30 of

Güler, 2010), which asserts that(
max
k∈M

gk

)′
(ξ; d) = max

i∈A(ξ)
g′i(ξ; d), d ∈ ℜ.

The proof is now complete. �

3.2. Worst-case regret VaR optimisation problem. We turn our attention to the worst-

case regret VaR optimisation from (2.5). Since we are no longer able to use similar argumentation

as in the previous subsection, the usual approach in the existing literature is to assume a discrete

distributed X. That is, X =
{
x1, . . . , xn

}
, where without loss of generality, it can be assumed

that x1 ≤ . . . ≤ xn. Let us denote pik = Pk(X = xi). Clearly, pk ≥ 0 and 1Tpk = 1 for all

k ∈ M, where 0 and 1 are the n-dimensional column vector of zeroes and ones, respectively.
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By convention, the inequality and equality between two vectors is understood componentwise.

Denote R[xi] = yi and if R ∈ Cco, then we should have

0 ≤ yi ≤ xi and 0 ≤ yi − yi−1 ≤ xi − xi−1, for all i ∈ M,

where by convention y0 = x0 = 0. The above can be rewritten as 0 ≤ y ≤ x and 0 ≤ Ay ≤ Ax

with the (n− 1)× n matrix A given by

A =


−1 1 · · · 0 0

. . .
. . .

0 0 · · · −1 1

 .

Since x− y is increasingly ordered, then

VaRα

(
X −R[X]

)
= xp(k) − yp(k), where p(k) = min

j

{
j∑

i=1

pik ≥ α

}
.

In order to make our optimisation problems tractable, we assume that H satisfies (2.1). Thus,

HPk
[X] = πT

k x (3.5)

as a result of Dhaene et al. (2012). Specifically, If g is a left continuous function, then

πik = g

1−
i−1∑
j=1

pjk

− g

1−
i∑

j=1

pjk

 , 1 ≤ i ≤ n, k ∈ M.

Consequently, Problem 2.5 is an LP and we state this result as Proposition 3.1.

Proposition 3.1. Let Assumption 2.1 hold with ρ ≡ VaRα. If X is a discrete random variable

that takes the values
{
x1, . . . , xn

}
such that x1 ≤ . . . ≤ xn and H satisfies (2.1), then solving

Problem (2.5) over the set Cco ×ℜ is equivalent to solving

min(
y,P,r

)
∈ℜn×ℜ×ℜ

r,

s.t. xπ(k) − yπ(k) + P − ρ∗k ≤ r, k ∈ M,

ω0 + (1 + θ)πT
k y ≤ P ≤ P , k ∈ M,

0 ≤ y ≤ x,

0 ≤ Ay ≤ Ax,

where ρ∗k is the optimal objective value of Problem 2.6. That is,

ρ∗k = min
(y,P )∈ℜn×ℜ

{
xp(k) − yp(k) + P

}
,

s.t. ω0 + (1 + θ)πT
k y ≤ P ≤ P , k ∈ M,

0 ≤ y ≤ x,

0 ≤ Ay ≤ Ax.
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Remark 3.2. Keeping the same set of assumptions as given in Proposition 3.1, solving Prob-

lem 2.4 over the set Cco ×ℜ is equivalent to solving

min(
y,P,r

)
∈ℜn×ℜ×ℜ

r,

s.t. xπ(k) − yπ(k) + P ≤ r, k ∈ M,

ω0 + (1 + θ)πT
k y ≤ P ≤ P , k ∈ M,

0 ≤ y ≤ x,

0 ≤ Ay ≤ Ax.

Remark 3.3. Due to relation (3.5), a variant of the LP reformulations from Proposition 3.1 and

Remark 3.2 can be written for any case in which the risk measure ρ is a distortion risk measure.

The key assumption is that R ∈ Cco and the fact that distortion risk measures are comonotonic

and thus, Problems 2.4–2.6 can be reformulated as LPs for any comonotone additive risk measure

ρ. For example, any risk measure that satisfies (2.1) is comonotone additive (see Dhaene et al.,

2012). Note that y and x − y are increasingly ordered (as x is increasingly ordered), which

make the optimisation problems under the set Cco × ℜ tractable. The lack of ordering could be

overcome only if ρ ≡ CVaRα, as it can be seen in Section 4, where the comonotonic assumption

is removed. Finally, if the cost of insurance follows a different premium calculation, i.e. does

not satisfy (2.1), then the corresponding constraints may not be linear, but are Second-order

cone programming (SOCP) representable for any well-known premium calculations (for details,

see Asimit et al., 2017), case in which, we only require I ∈ Cco, i.e. x−y is increasingly ordered,

in order to preserve the linearity of the objective functions. Thus, if H does not satisfy (2.1),

the optimisation problems are of SOCP-type.

4. CVaR Robust Optimisation

The current section provides numerical solutions to the CVaR-type of Problems 2.4 and 2.5

under similar assumptions to the ones made in Section 3.2. The crucial change is made by the fact

that the set of feasible solutions, namely C ×ℜ, is larger and moral hazard is permitted. Recall

that if moral hazard is excluded, then the optimisation problems could have been solved as in

Section 3.2 (for details, see Remark 3.3). Moreover, the rationality constraints, 0 ≤ R[X] ≤ X,

are still required. With the help of equation (2.3), Problem 2.4 can be rewritten as follows:


min

(y,P )∈ℜn×ℜ
max
k∈M

min
t∈ℜm

{
tk +

1
1−α pT

k

(
x− y− 1tk

)
+
+ P

}
,

s.t. ω0 + (1 + θ)pT
k y ≤ P ≤ P , k ∈ M,

0 ≤ y ≤ x.

(4.1)
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where without loss of generality HPk
= EPk

with k ∈ M could be assumed (see Remark 3.3).

In addition, Problem 2.5 is given by
min

(y,P )∈ℜn×ℜ
max
k∈M

min
t∈ℜm

{
tk +

1
1−α pT

k

(
x− y− 1tk

)
+
+ P − ρ∗k

}
,

s.t. ω0 + (1 + θ)pT
k y ≤ P ≤ P , k ∈ M,

0 ≤ y ≤ x.

(4.2)

Recall that ρ∗k represents the optimal value of the objective function from Problem 2.6 with

ρ ≡ CVaRα and is given by
ρ∗k = min

(t,y,P )∈ℜ×ℜn×ℜ

{
t+ 1

1−α pT
k

(
x− y− 1t

)
+
+ P

}
,

s.t. ω0 + (1 + θ)πT
k y ≤ Pk ≤ P , k ∈ M,

0 ≤ y ≤ x.

(4.3)

In the remaining part of this section, we show that Problems 4.1–4.3 can be reduced to LP

reformulations. The next theorem deals with Problem 4.1.

Theorem 4.1. Let Assumption 2.1 hold with ρ ≡ CVaRα. If X is a discrete random variable

that takes the values
{
x1, . . . , xn

}
and HPk

= EPk
for all k ∈ M, then solving Problem 4.1 over

the set C × ℜ is equivalent to

min
(t,y,ξ,P,z)∈ℜm×ℜn×ℜn×m×ℜ×ℜ

z,

s.t. tk +
1

1−αp
T
k ξk + P ≤ z, k ∈ M,

x− y− 1tk ≤ ξk, k ∈ M,

0 ≤ ξk, k ∈ M,

ω0 + (1 + θ)pT
k y ≤ P ≤ P , k ∈ M,

0 ≤ y ≤ x.

(4.4)

Proof. Let ξk =
(
ξ1k, . . . , ξnk

)T
for all k ∈ M. Then, (4.1) may be equivalently formulated as:

min
(y,ξ,P)∈ℜn×ℜn×m×ℜ

max
k∈M

min
t∈ℜm

{
tk +

1
1−α pT

k ξk + P
}
,

s.t. x− y− 1tk ≤ ξk, k ∈ M,

0 ≤ ξk, k ∈ M,

ω0 + (1 + θ)pT
k y ≤ P ≤ P , k ∈ M,

0 ≤ y ≤ x.

(4.5)

Note that the objective function in (4.5) is increasing in ξik for all 1 ≤ i ≤ n and k ∈ M. Thus,

the first two constraints from the latter optimisation problem ensure that ξk =
(
x− y− 1tk

)
+
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for k ∈ M. Thus, (4.5) can be rewritten as follows:



min
(y,ξ,P,z)∈ℜn×ℜn×m×ℜ×ℜ

z,

s.t. min
t∈ℜm

{
tk +

1

1− α
pT
k ξk + P

}
≤ z, k ∈ M,

x− y− 1tk ≤ ξk, k ∈ M,

0 ≤ ξk, k ∈ M,

ω0 + (1 + θ)pT
k y ≤ P ≤ P , k ∈ M,

0 ≤ y ≤ x.

(4.6)

We now show that
(
y∗, ξ∗, P ∗, z∗

)
solves Problem 4.6 if and only if

(
t∗,y∗, ξ∗, P ∗, z∗

)
solves

Problem 4.4, where

t∗ = argmin
t∈ℜm

{
tk +

1

1− α
pT
k ξ

∗
k + P ∗

}
for all k ∈ M. (4.7)

Suppose that
(
y∗, ξ∗, P ∗, z∗

)
solves Problem 4.6, which implies that

(
t∗,y∗, ξ∗, P ∗, z∗

)
is a fea-

sible solution to Problem 4.4. If
(
t∗,y∗, ξ∗, P ∗, z∗

)
does not solve Problem 4.4, then there exists

a feasible solution
(
t′,y′, ξ′, P ′, z′

)
such that z′ < z∗. Now, for all k ∈ M we have that

min
t∈ℜm

{
tk +

1

1− α
pT
k ξk + P

}
≤ t′k +

1

1− α
pT
k ξ

′
k + P ′ ≤ z′. (4.8)

Thus,
(
y′, ξ′, P ′, z′

)
is feasible to Problem 4.6, which contradicts that

(
y∗, ξ∗, P ∗, z∗) is an opti-

mal solution to Problem 4.6.

Conversely, suppose that
(
t′,y′, ξ′, P ′, z′

)
solves Problem 4.4. Equation (4.8) implies that(

y′, ξ′, P ′, z′
)
is feasible to Problem 4.6. If

(
y′, ξ′, P ′, z′

)
does not solve Problem (4.6), then

there exists a feasible solution
(
y∗, ξ∗, P ∗, z∗

)
such that z∗ < z′. Then,

(
t∗,y∗, ξ∗, P ∗, z∗

)
solves

Problem 4.4, where t∗ is defined as in (4.7). The latter contradicts our initial assumption that(
t′,y′, ξ′, P ′, z′

)
is an optimal solution to Problem 4.4. The proof is now complete. �

Finally, we solve Problems 4.2 and 4.3. By following the same arguments as provided in the

proof of Theorem 4.1, one may show our claims from Proposition 4.1, and therefore, the proofs

are left to the reader.

Proposition 4.1. Let Assumption 2.1 hold with ρ ≡ CVaRα. If X is a discrete random variable

that takes the values
{
x1, . . . , xn

}
and HPk

= EPk
for all k ∈ M, then solving Problem 4.3 over
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the set C × ℜ is equivalent to

ρ∗k = min(
t,y,ξ,P

)
∈ℜ×ℜn×ℜn×ℜ

{
t+ 1

1−αp
T
k ξ + P

}
,

s.t. x− y− 1t ≤ ξ,

0 ≤ ξ,

ω0 + (1 + θ)pT
k y ≤ P ≤ P , k ∈ M,

0 ≤ y ≤ x.

Moreover, Problem 4.2 is equivalent to

min(
t,y,ξ,P,z

)
∈ℜm×ℜn×ℜn×m×ℜ×ℜ

z,

s.t. tk +
1

1−αp
T
k ξk + P − ρ∗k ≤ z, k ∈ M,

x− y− 1tk ≤ ξk, k ∈ M,

0 ≤ ξk, k ∈ M,

ω0 + (1 + θ)pT
k y ≤ P ≤ P , k ∈ M,

0 ≤ y ≤ x.

5. Pareto Robust Optimisation

Robust optimal contracts have been found in Sections 3 and 4 without discussing the draw-

backs and possible remedies of our proposed robust solutions. One major issue is when there

are multiple robust solutions and we explain our point by considering the following general

worst-case optimisation problem:

min
x∈X

max
k∈M

fk(x), with fk : ℜn → ℜ, (5.1)

where X ∈ ℜn is a non-empty feasibility set. Denote XRo = argmin
x∈X

max
k∈M

fk(x) the Robust

solution set corresponding to (5.1). Identifying the Pareto solutions is a classical problem in

economics, since those solutions make the allocation amongst various players as fair as possible,

in the sense that no improvement could be made for one or more players without affecting

the allocation of at least one player. The mathematical formulation of the Pareto solution set

corresponding to (5.1) is given by:

XPa =
{
x ∈ X | @x̃ ∈ X s.t. fk(x) ≥ fk

(
x̃
)

for all k ∈ M and at least one inequality is strict
}
.

It is not surprising that a Pareto solution may not be an element of XRo, since worst-case type

solutions are concerned only with extreme scenarios. Further, x∗ ∈ XRo does not always imply

that x∗ ∈ XPa, when (5.1) admits multiple solutions. It is not difficult to show that if x∗ is

the unique solution of (5.1) then, x∗ ∈ XPa. Therefore, it is possible to solve (5.1) and produce

a robust solution that is suboptimal for all concurrent objectives, which plays havoc with the
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entire decision process. Recall that Remark 3.1 explains when the closed-form solution is unique

and one may show in that case that the unique solution is Pareto optimal as well.

Appa (2002) and Mangasarian (1979) provide methodologies to check the uniqueness property

of an LP and therefore, there is no issue with linear-type (5.1) optimisation problems with a

unique solution. It is still not clear how to verify if a solution of (5.1) is an element of XPa. In

addition, it would be interesting to provide a constructive method to generate solutions from

XRo
∩

XPa. These are the aims of this section. Specifically, we first note that the discrete

versions of (2.4) and (2.5) have the following linear representation:

min
x∈ℜn

max
k∈M

cTk x+ dk, s.t. Akx ≤ bk, k ∈ M, (5.2)

with known Ak, bk, ck, dk matrices and column vectors of appropriate dimensions and known

scalars dk. The main result of this section, stated as Theorem 5.1, simply says how to always

find a Pareto and robust optimal solution for (5.2) by solving at most one additional LP. These

results are inspired by Theorem 1 of Iancu and Trichakis (2014) that solves a similar linear

problem, where the decision-maker perceives the uncertainty in a very different way.

Theorem 5.1. Let x∗ be any optimal solution of (5.2), where the latter problem is assumed to

be non-trivial, i.e. ck with k ∈ M are not all null vectors. Consider the following optimisation

problem:

min
y

∑
k∈M

cTk y, s.t. Ak(x
∗ + y) ≤ bk, c

T
k y ≤ 0, k ∈ M. (5.3)

If the optimal value in (5.3) is zero, then x∗ ∈ XRo
∩
XPa in (5.2). If the optimal value in (5.3)

is negative, then x∗ + y∗ ∈ XRo
∩
XPa in (5.2), where y∗ is an optimal solution of (5.3).

Proof. It is not difficult to find that the objective function of (5.3) is always non-positive. Assume

now that the objective function is zero such that x∗ is not Pareto solution, but is a robust optimal

solution of (5.2). Therefore, there exists a feasible solution x̂ of (5.2) such that

cTk x
∗ + dk ≥ cTk x̂+ dk, for all k ∈ M (5.4)

and at least one inequality holds strictly. Denote ŷ = x̂ − x∗ and since x̂ is a feasible solution

of (5.2), we get that

Ak(x
∗ + ŷ) = Akx̂ ≤ bk, for all k ∈ M.

Recall that equation (5.4) tells us that cTk x̂ ≤ cTk x
∗ for all k ∈ M, and in turn we get that

cTk ŷ = cTk x̂− cTk x
∗ ≤ 0, for all k ∈ M.
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Thus, ŷ is a feasible solution of (5.3). Moreover, equation (5.4) suggests that cTk x̂ < cTk x
∗

for some k ∈ M, and therefore, cTk ŷ is negative for some k ∈ M. Consequently, the optimal

objective value in (5.3) is negative, which contradicts our assumption of a null optimal objective

value.

Assume now that the optimal objective value in (5.3) is negative. Note first that x∗ + y∗ is

feasible in (5.2), since it is feasible in (5.3). Assume that x∗ + y∗ is not a Pareto solution, but

is a robust optimal solution of (5.2). Thus, there exists a feasible solution, x̃, of (5.2) such that

x∗ + y∗ is Pareto dominated by x̃. The mathematical formulation of the former is that

cTk
(
x∗ + y∗)+ dk ≥ cTk x̃+ dk, for all k ∈ M (5.5)

and at least one inequality holds strictly. Denote ỹ = x̃ − x∗ and since x̃ is a feasible solution

of (5.2), one may find that x∗ + ỹ is a feasible solution to (5.2) as follows:

Ak

(
x∗ + ỹ

)
= Akx̃ ≤ bk, for all k ∈ M.

Now, equation (5.5) and the fact that y∗ is feasible solution for (5.3) imply that

cTk ỹ = cTk x̃− cTk x
∗ ≤ cTk y

∗ ≤ 0,

which shows that ỹ is feasible in (5.3). We also know that at least one inequality from equa-

tion (5.5) is a strict inequality and as a result, one of the above inequality holds strictly, which

results in
∑
k∈M

cTk ỹ <
∑
k∈M

cTk y
∗. The latter contradicts that y∗ is an optimal solution of (5.3).

The proof is now complete. �

6. Numerical analysis

This section provides numerical illustrations to our worst-case scenario and regret optimisation

problems from (2.4) and (2.5), respectively. Recall that in order to empirically solve these

problems, a sample x = (x1, x2, . . . , xn)
T , is drawn from the underlying distribution of X, and

in turn, we find the optimal insurance contract y∗ = (y∗1, y
∗
2, . . . , y

∗
n)

T and the optimal premium

P ∗. Let (y∗
wc, P

∗
wc) and (y∗

wr, P
∗
wr) denote the empirical optimal solutions to our robust models

(2.4) and (2.5), respectively. Our main aim is to give a quality comparison between (y∗
w, P

∗
w),

w ∈ {wc,wr}, and a best possible choice (y∗, P ∗). Essentially, the latter is the “best solution”

based on estimating a particular model chosen via two well-known standard statistical goodness-

of-fit methods, namely Akaike Information Criterion (AIC) and Corrected Akaike Information

Criterion (AICc), which are denoted as (y∗
AIC , P

∗
AIC) and (y∗

AICC , P
∗
AICC), respectively. We

believe that those comparisons are fair and explain the advantages and disadvantages of robust

optimisation over a standard optimisation after choosing the most significant model (in the
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statistical sense). Finally, recall that all optimisations are implemented on a desktop with 6

core Intel i7-5820K at 3.30GHz, 16GB RAM, running Linux x64, MATLAB R2014b, CVX 2.1.

The parametrisation employed in our empirical optimisation assumes that the loss variable

X is LogNormal distributed with mean E(X) = 5, 000 and standard deviation
√
3×E(X). An

expected value premium principle with a risk loading factor θ = 0.25 and no fixed/administrative

costs, i.e. ω0 = 0, is assumed. In addition, P = (1+θ)E(X)
2 . Since the underlying loss distribution

of X is unknown, five candidate models are further assumed by the decision-maker:

(i) Model 1: Exponential distribution with mean 1/ν;

(ii) Model 2: LogNormal distribution with parameters
(
µ, σ2

)
;

(iii) Model 3: Pareto distribution with parameters (α, λ) and cdf F (z) = 1−
(

λ
λ+z

)α
, z > 0;

(iv) Model 4: Weibull distribution with parameters (c, γ) and cdf F (z) = 1− e−czγ , z > 0;

(v) Model 5: Empirical distribution.

Recall that p5 = 1
n1. For all other models, pk’s are obtained by discritising the Maximum

Likelihood fitted model. For example,

pik = Fk

(
xi+1 + xi

2
; ν̂

)
− Fk

(
xi + xi−1

2
; ν̂

)
, for all i = 1, . . . , n, k ∈ {1, 2, 3, 4},

where by convention x0 = −∞ and xn+1 = ∞. Moreover, ν̂ is the Maximum Likelihood estimate

of the unknown parameters.

The next step is to understand whether or not robust optimisation reduces the variability

of the optimal decision. Thus, (y∗
wc, P

∗
wc), (y

∗
wr, P

∗
wr), (y

∗
AIC , P

∗
AIC) and (y∗

AICC , P
∗
AICC) are

compared under three collections of candidate models denoted asMj , j ∈ {2, 4, 5}. In particular,

M2 := {1, 5}, M4 := {1, 3, 4, 5} and M5 := {1, 2, 3, 4, 5}. Recall that our sample is drawn from

a LogNormal distribution model and for this reason the “true model”, i.e. Model 2, is purposely

ruled out from M2 and M4. Therefore, it would be interesting to understand the effect of

reducing the model risk and analyse the robust optimal solutions under M∗
2 := {2, 5} and

M∗
4 := {2, 3, 4, 5}. That is, Model 1 (that exhibits the lightest tail amongst all considered

parametric models) is replaced by the “true model” (with a moderated light tail). For each of

the model collection Mj and M∗
l , j ∈ {2, 4, 5} and l ∈ {2, 4}, (y∗

wc, P
∗
wc) and (y∗

wr, P
∗
wr) are

obtained by empirically solving the robust models (2.4) and (2.5) with M = Mj and M = M∗
l .

Before we explain the procedure of finding (y∗
AIC , P

∗
AIC) and (y∗

AICC , P
∗
AICC), we briefly

explain the AIC and AICc model selection. Given that a sample x and a set of candidate

probability models, the AIC value of Model k is calculated as AICk = 2qk − 2Ln
(
L̂k

)
, where qk

is the number of parameters estimated and L̂k is the maximum value of the likelihood function of

Model k. Under the AIC model selection criterion, the preferred Model k∗ is the one that gives
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the smallest AIC value, i.e. k∗ = argmin
k∈M

AICk. On the other hand, the AICc value of Model

k penalises the utility of each model for its complexity when the sample size n is not large, i.e.

AICck = 2qk × n
n−1−qk

− 2Ln
(
L̂k

)
. Similarly, the preferred Model k∗∗ under the AICc criterion

is chosen to have the smallest AICc value, i.e. k∗∗ = argmin
k∈M

AICck. Finally, (y∗
AIC , P

∗
AIC) and

(y∗
AICC , P

∗
AICC) are obtained by solving (2.4) with M = {k∗} and M = {k∗∗}, respectively.

Denote the underlying distribution of X as Model 0 that is equipped with its discritised

probability vector p∗
0 obtainable as before:

pi0 = F0

(
xi+1 + xi

2

)
− F0

(
xi + xi−1

2

)
, for all i = 1, . . . , n,

where F0 is the cdf of X, i.e. a LogNormal distribution with parameters defined earlier. Let

(y∗
T , P

∗
T ) be the optimal solution obtained by solving a non-robust version of Problem 2.4 with

M = {0} as given by p∗
0. This optimal solution mimics the ideal optimal decision, since the

“true” distribution is assumed to be known and thus, all possible robust methods are compared

with the decision under Model 0. Clearly, the model risk induces uncertainty with the model

choice and this issue is numerically experimented in the remaining part of this section. In order to

compare various decisions, we need to measure the distance between the robust methods and the

one obtained via Model 0. That is, each optimal contract y∗
ξ , where ξ ∈ {wc,wr,AIC,AICC},

is compared to the benchmark optimal contract y∗
T as follows:

∆ξ =

n∑
i=1

|y∗iξ − y∗iT | × pi0 for all ξ ∈ {wc,wr,AIC,AICC}.

Clearly, the smaller the value for ∆ξ is, the more robust of a decision is achieved. This crite-

rion, further called simple criterion, assesses the choice of the optimal contract and it would

be interesting to understand the possible drawbacks of those robust contracts, which may re-

quire increased premiums. A composite criterion would be needed when comparing (y∗
w, P

∗
w) to

(y∗
c , P

∗
c ) and is given by:

a) (y∗
w, P

∗
w) is preferred and called “good scenario” if ∆w < ∆c and P ∗

w − P ∗
c < 10−2;

b) (y∗
c , P

∗
c ) is preferred and called “bad scenario” if ∆w > ∆c and P ∗

w − P ∗
c > −10−2.

for any given w ∈ {wc,wr} and c ∈ {AIC,AICC}. Our numerical illustrations generate samples

of size n ∈ {25, 50, 100, 250} for N = 500 times and compare the robust optimal decisions to

the AIC non-robust optimal decisions under the two criteria (simple and composite). Extensive

numerical experiments (for various parametric models and sample sizes) have shown that the

AIC and AICc-based optimal decisions lead to similar results and for this reason, only AIC

results are further reported. That is, we display the number of “good” and “bad” scenarios,

namely Gw,AIC and Bw,AIC , respectively, where w ∈ {wc,wr}.
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We first examine the VaR0.75-based optimal solutions for the simple test, where only the

robustness of the risk transfer is analysed. Table 6.1 shows those results when the “true model”

is removed from two of the three candidate models, while Table 6.2 displays similar results when

the LogNormal is always present amongst all potential parametric distributions.

n = 25 n = 50 n = 100 n = 250

M5 M4 M2 M5 M4 M2 M5 M4 M2 M5 M4 M2

Gwc,AIC 222 217 225 196 195 195 143 143 143 67 67 68

Bwc,AIC 278 283 275 304 305 305 357 357 357 433 433 432

Gwr,AIC 258 257 250 255 246 236 200 185 182 125 110 109

Bwr,AIC 242 243 250 245 254 264 300 315 318 375 390 391

Table 6.1. Number of good and bad scenarios for VaR0.75-based scenarios

within 500 samples of various sample sizes n and collection of candidate models

{M2,M4,M5} under the simple criterion.

n = 25 n = 50 n = 100 n = 250

M5 M∗
4 M∗

2 M5 M∗
4 M∗

2 M5 M∗
4 M∗

2 M5 M∗
4 M∗

2

Gwc,AIC 222 225 279 196 179 291 143 134 310 67 47 278

Bwc,AIC 278 275 221 304 321 209 357 366 189 433 453 222

Gwr,AIC 258 260 304 255 247 318 200 210 345 125 95 345

Bwr,AIC 242 240 196 245 253 182 300 290 155 375 405 155

Table 6.2. Number of good and bad scenarios for VaR0.75-based scenarios

within 500 samples of various sample sizes n and collection of candidate models

{M∗
2,M∗

4,M5} under the simple criterion.

Clearly, introducing the “true model” amongst the potential models, our robust methods are

more efficient, but not sufficiently enough for various sample sizes; there is a marginal incentive to

use our methods for small and medium sized samples. The results under the composite criterion

(not reported) lead to a similar conclusion. This is not surprising, since the VaR risk measure is

quite robust (see Cont, 2010) in the sense that the whole sample could be contaminated, but not

a single value, and still have the same estimate. This peculiar beviour of this tail risk measure

explains why our methods are not recommended for VaR-based decisions.

Next, we turn our attention to another tail risk measure, namely CVaR0.75. Our results for

various sample sizes n and model collections are presented in Tables 6.3 and 6.4 for the simple
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criterion, while Tables 6.5 and 6.6 replicate similar results for the composite criterion. The first

two rows of Tables 6.3–6.6 are computed via the LP formulation from Theorem 4.1, while the

results of the third and fourth rows are based on the LP reformulation from Proposition 4.1.

The last two rows are obtained by optimising the WCV aR risk measure, as defined in (2.8).

n = 25 n = 50 n = 100 n = 250

M5 M4 M2 M5 M4 M2 M5 M4 M2 M5 M4 M2

Gwc,AIC 337 349 353 307 331 338 328 331 329 307 308 291

Bwc,AIC 163 151 147 193 169 162 172 169 171 193 192 209

Gwr,AIC 336 339 339 292 304 305 287 302 268 222 240 204

Bwr,AIC 164 161 161 208 196 195 213 198 232 278 260 296

Gwcvar,AIC 322 323 323 305 327 336 305 326 324 305 304 313

Bwcvar,AIC 178 177 177 195 172 164 195 174 176 195 196 187

Table 6.3. Number of good and bad scenarios for non-comonotonic CVaR0.75-

based scenarios within 500 samples of various sample sizes n and collection of

candidate models {M2,M4,M5} under the simple criterion.

n = 25 n = 50 n = 100 n = 250

M5 M∗
4 M∗

2 M5 M∗
4 M∗

2 M5 M∗
4 M∗

2 M5 M∗
4 M∗

2

Gwc,AIC 337 340 354 307 308 306 328 328 315 307 309 305

Bwc,AIC 163 160 146 193 192 194 172 172 185 193 191 195

Gwr,AIC 336 340 330 292 299 270 287 295 292 222 234 265

Bwr,AIC 164 160 170 208 201 230 213 205 208 278 266 235

Gwcvar,AIC 322 312 306 305 301 289 305 324 302 305 300 321

Bwcvar,AIC 178 187 194 195 199 211 195 176 198 195 200 179

Table 6.4. Number of good and bad scenarios for non-comonotonic CVaR0.75-

based scenarios within 500 samples of various sample sizes n and collection of

candidate models {M∗
2,M∗

4,M5} under the simple criterion.

There is an overwhelming empirical evidence that our worst-case scenario method performs

uniformly better that the WCV aR robust method from Zhu and Fukushima (2009) under both

criteria, simple and composite, for any sample size. This could be explained by the fact WCV aR

is a more conservative risk measure than our proposed robust risk measures. It is interesting to
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note that the worst-case regret method tends to under-perform both worst-case methods, but

we believe that this due to the fact CV aR is a tail risk measure.

n = 25 n = 50 n = 100 n = 250

M5 M4 M2 M5 M4 M2 M5 M4 M2 M5 M4 M2

Gwc,AIC 333 345 351 307 331 338 328 331 329 307 308 291

Bwc,AIC 158 146 140 193 169 162 172 169 171 193 192 209

Gwr,AIC 332 335 336 292 304 305 287 302 268 222 240 204

Bwr,AIC 157 154 152 208 196 194 213 198 231 278 259 296

Gwcvar,AIC 316 317 316 305 327 336 305 326 324 305 304 313

Bwcvar,AIC 176 174 177 195 172 164 195 174 176 195 196 187

Table 6.5. Number of good and bad scenarios for non-comonotonic CVaR0.75-

based scenarios within 500 samples of various sample sizes n and collection of

candidate models {M2,M4,M5} under the composite criterion.

n = 25 n = 50 n = 100 n = 250

M5 M∗
4 M∗

2 M5 M∗
4 M∗

2 M5 M∗
4 M∗

2 M5 M∗
4 M∗

2

Gwc,AIC 333 336 354 307 308 306 328 328 315 307 309 305

Bwc,AIC 158 155 137 193 192 194 172 172 185 193 191 195

Gwr,AIC 332 336 330 292 299 270 287 295 292 222 234 265

Bwr,AIC 157 152 155 208 201 227 213 205 208 278 266 235

Gwcvar,AIC 316 306 299 305 301 289 305 324 302 305 300 321

Bwcvar,AIC 176 185 192 195 199 211 195 176 198 195 200 179

Table 6.6. Number of good and bad scenarios for non-comonotonic CVaR0.75-

based scenarios within 500 samples of various sample sizes n and collection of

candidate models {M∗
2,M∗

4,M5} under the composite criterion.

Tables 6.7–6.10 are the replica of Tables 6.3–6.6, where the set of feasible solutions is reduced

such that the insurance contracts are assumed to be comonotone. That is, the first two rows

of Tables 6.7–6.10 are computed as explained in Remark 3.2, while the results of the third and

fourth rows are based on an LP formulation similar to the one from Proposition 3.1. As before,

the last two rows are obtained by optimising the WCV aR risk measure, as defined in (2.8), but

adding the comonotonicity constraint. Restricting our optimisation to comonotone contracts
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does not change our results, but we observe a loss of power amongst all three robust methods,

which could be explained by the fact that an additional constraint increases the complexity of

the problem. The general conclusions do not change and there is clear evidence to recommend

our worst-case scenario method that outperforms the WCV aR robust method from Zhu and

Fukushima (2009) and our worst-case regret method under both criteria.

n = 25 n = 50 n = 100 n = 250

M5 M4 M2 M5 M4 M2 M5 M4 M2 M5 M4 M2

Gwc,AIC 259 247 264 277 282 270 315 333 307 301 313 284

Bwc,AIC 241 253 236 223 217 230 185 167 193 199 187 216

Gwr,AIC 307 307 318 304 305 302 283 278 263 221 223 206

Bwr,AIC 193 193 182 196 195 198 217 222 237 279 277 294

Gwcvar,AIC 259 271 234 264 277 256 277 296 265 282 297 267

Bwcvar,AIC 241 229 265 236 223 244 223 204 235 218 203 233

Table 6.7. Number of good and bad scenarios for comonotonic CVaR0.75-based

scenarios within 500 samples of various sample sizes n and collection of candidate

models {M2,M4,M5} under the simple criterion.

n = 25 n = 50 n = 100 n = 250

M5 M∗
4 M∗

2 M5 M∗
4 M∗

2 M5 M∗
4 M∗

2 M5 M∗
4 M∗

2

Gwc,AIC 259 250 230 277 274 252 315 311 290 301 306 298

Bwc,AIC 241 250 270 223 226 248 185 189 210 199 194 202

Gwr,AIC 307 311 308 304 313 305 283 286 319 221 231 299

Bwr,AIC 193 189 192 196 187 195 217 214 181 279 269 201

Gwcvar,AIC 259 249 215 264 250 202 277 273 239 282 285 233

Bwcvar,AIC 241 251 285 236 250 298 223 227 261 218 215 267

Table 6.8. Number of good and bad scenarios for comonotonic CVaR0.75-based

scenarios within 500 samples of various sample sizes n and collection of candidate

models {M∗
2,M∗

4,M5} under the simple criterion.

As a final remark, it is worth mentioning that applying Theorem 5.1 to our robust methods, all

numerical results remain unchange. Therefore, the power of results are similar to those displayed

in the section, which suggests that one should use our worst-case method in conjunction with
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n = 25 n = 50 n = 100 n = 250

M5 M4 M2 M5 M4 M2 M5 M4 M2 M5 M4 M2

Gwc,AIC 253 240 258 276 281 269 315 333 307 301 313 284

Bwc,AIC 239 252 235 223 217 230 185 167 193 199 187 216

Gwr,AIC 299 299 312 302 303 301 283 278 263 221 223 206

Bwr,AIC 191 191 180 196 195 198 217 222 237 279 277 294

Gwcvar,AIC 255 267 233 263 276 255 277 296 265 282 297 267

Bwcvar,AIC 237 225 259 236 223 244 223 204 235 218 203 233

Table 6.9. Number of good and bad scenarios for comonotonic CVaR0.75-based

scenarios within 500 samples of various sample sizes n and collection of candidate

models {M2,M4,M5} under the composite criterion.

n = 25 n = 50 n = 100 n = 250

M5 M∗
4 M∗

2 M5 M∗
4 M∗

2 M5 M∗
4 M∗

2 M5 M∗
4 M∗

2

Gwc,AIC 253 243 227 276 273 252 315 311 290 301 306 298

Bwc,AIC 239 249 266 223 226 248 185 189 210 199 194 202

Gwr,AIC 299 304 304 302 311 305 283 286 319 221 231 299

Bwr,AIC 191 188 189 196 187 195 217 214 181 279 269 201

Gwcvar,AIC 255 245 215 263 249 202 277 273 239 282 285 233

Bwcvar,AIC 237 247 278 236 250 298 223 227 261 218 215 267

Table 6.10. Number of good and bad scenarios for comonotonic CVaR0.75-

based scenarios within 500 samples of various sample sizes n and collection of

candidate models {M∗
2,M∗

4,M5} under the composite criterion.

Theorem 5.1 in order to obtain a robust insurance contract that economically is viable to both

insurance players.

7. Conclusions

The VaR and CVaR-based optimal insurance contractve has been investigated under uncer-

tainty, where the model risk is taken into account. This source of uncertainty is considered by

incorporating multiple plausible models that the decision-maker would have available via esti-

mation, proxy models or expert opinion consultation. Model risk always represents an important

source of uncertainty in risk modelling and it is more pronounced when data scarcity is present.
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Our aim has been to provide a robust decision and not to produce a distribution robust method

of the underlying insurance risk. Two robust methods are proposed, namely the Worst-case and

Worst-regret. Our numerical results have shown that our Worst-case method outperforms the

Worst-regret method for CVaR-based decisions. Moreover, our Worst-case method proved to be

more robust than the Worst-case CVaR method proposed by Zhu and Fukushima (2009). Un-

fortunately, the VaR-based decisions are not efficiently robustified for all sample sizes by neither

methods proposed in this paper, though encouraging results are obtained for small samples. An-

other achievement of this paper is related to the well-known caveat in robust optimisation that

optimal decision may be economically unacceptable. That is, the optimal contract may be not

efficient in the Pareto optimality sense. We resolve this issue by providing a simple numerical

method that allows one to identify an optimal Pareto and robust decision that is (numerically)

shown to be efficient for reducing the model risk.
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Ludkovski, M. and Rüschendorf, L. (2008). On comonotonicity of Pareto optimal allocations.

Statistics and Probability Letters, 78(10), 1181–1188, 2008.

Mangasarian, O.L. (1979). Uniqueness of solution in linear programming. Linear Algebra and

Its Applications, 25, 151–162.

Pflug, G.Ch., Pichler, A. and Wozabal, D. (2012). The 1/N investment strategy is optimal

under high model ambiguity. Journal of Banking & Finance 36(2), 410–417.

Polak, G.G., Rogers, D.F. and Sweeney, D.J. (2010). Risk management strategies via minimax

portfolio optimization. European Journal of Operational Research, 207(1), 409-419.

Rockafeller, R.T. and Uryasev, S. (2000). Optimization of Conditional Value-at-Risk. Journal

of Risk, 2, 21–41.

Song, Y. and Yan, J.-A. (2009). Risk measures with comonotonic subadditivity or convexity

and respecting stochastic orders. Insurance: Mathematics and Economics, 45(3), 459–465.

SPAN (1995). Standard Portfolio Analisys of Risk. Chicago Mercantile Exchange, Chicago.

Wang, S., Young, V. R. and Panjer, H. H. (1997). Axiomatic characterization of insurance

prices. Insurance: Mathematics and Economics, 21(2), 173–183.

Young, V.R. (2004). Premium principles. Encyclopedia of Actuarial Science, Wiley, New York.

Zhu, S. and Fukushima, M. (2009). Worst-case Conditional Value-at-Risk with application to

robust portfolio management. Operations Research, 57(5), 1155–1168.

Zymler, S., Kuhn, D. and Rustem, B. (2013). Worst-case Value-at-Risk of nonlinear portfolios.

Management Science, 59(1), 172–188.


