

City, University of London Institutional Repository

Citation: Mahbub, K. & Spanoudakis, G. (2011). Proactive SLA negotiation for service

based systems: Initial implementation and evaluation experience. Proceedings - 2011 IEEE
International Conference on Services Computing, SCC 2011, pp. 16-23. doi:
10.1109/SCC.2011.34

This is the unspecified version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/1636/

Link to published version: https://doi.org/10.1109/SCC.2011.34

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Proactive SLA Negotiation for Service Based Systems:Initial Implementation and
Evaluation Experience

Khaled Mahbub
Department of Computing

City University London
United Kingdom

K.Mahbub@soi.city.ac.uk

George Spanoudakis
Department of Computing

City University London
United Kingdom

G.Spanoudakis@soi.city.ac.uk

Abstract—This paper describes a framework that we have
developed to integrate proactive SLA negotiation with dynamic
service discovery to provide cohesive runtime support for both
these activities. The proactive negotiation of SLAs as part of
service discovery is necessary for reducing the extent of
interruptions during the operation of a service based system
when the need for replacing services in it arises. The developed
framework discovers alternative candidate constituent services
for a service client applications, and negotiates/agrees but does
not activate SLAs with these services until the need for using a
service becomes necessary. A prototype tool has been
implemented to realize the framework. This prototype is
discussed in the paper along with the results of the initial
evaluation of the framework.

Keywords-Service discovery, Service level agreements;
Proactive SLA negotiation; service monitoring

I. INTRODUCTION
A trustworthy use of software services often requires as a

prerequisite the existence of a service level agreement (SLA)
between the provider and the consumer of a service. SLAs
define quality of service (QoS) and functional properties,
which should be guaranteed during the provision of a
software service, as well as the penalties that should be
applied in cases where the properties are not fulfilled
[7][10][11]. An SLA is set through a negotiation between the
provider and the consumer of a service [4][12]. SLA
negotiation can be particularly complex depending on the
requirements and affordances of the two parties.
Furthermore, it may need to be carried out at runtime, if a
constituent service of a service based client application
(SCA) becomes unavailable whilst SCA is in operation, or it
fails to perform according to its established SLA. In such
cases, SCA should be able to discover alternative
replacement services for the failed service, and negotiate
SLAs with them at runtime.

To minimize the runtime interruption of the SCA in such
circumstances, the discovery of back up replacement
services for SCA constituent services should be performed
proactively before any of these constituent services becomes
unavailable or fails to perform according to its established
SLAs [15]. This is important since service discovery and
SLA negotiation are time consuming processes that would
delay significantly the responsiveness of SCA if they were

executed every time that it becomes necessary to identify and
use a new service at runtime.

Existing work on service level agreements has focused
on SLA specification [13][14], negotiation [5] and
monitoring [9]. The need for runtime SLA negotiation or re-
negotiation has been acknowledged in [2][3][5][10]. Existing
approaches, however, are reactive supporting corrective
actions only after SLA violations and, thus, they cannot
ensure uninterrupted runtime SCA operations when services
fail.

To address the above shortcoming, we have developed a
proactive runtime SLA negotiation tool, and integrated it
with a tool supporting proactive runtime service discovery,
which has been previously described in [15]. The integrated
tools constitute a framework called PROSDIN (PROactive
Service DIscovery and Negotiation). In PROSDIN, SLA
negotiation has been developed as an integrated part of the
service discovery process enabling the execution of both
activities in a coordinated manner. More specifically,
proactive SLA negotiation is performed immediately after
the execution of service discovery queries to ensure that
adequate SLAs are provisionally agreed for given periods of
time with the providers of the discovered services if possible.
Also when a pre-agreed SLA expires and it is proactively re-
negotiated.

The initial design of our approach to proactive SLA
negotiation has been discussed in [24]. The contributions of
this paper with respect to [24] are that: (a) it describes the
implemented version of RROSDIN, which realises a new
version of the SLA negotiation process and the use of a rule-
based approach to negotiation using the Jess rule engine [21],
and (b) it presents the results of an initial experimental
evaluation of the framework.

The rest of this paper is structured as follows. In Sect. II,
we discuss the architecture of the service discovery and SLA
negotiation framework. In Sect. III, we describe the
negotiation process. In Section IV, we provide an overview
of the language for specifying SLAs. In Sect. V, we discuss
the representation of negotiation rules and the realisation of
the negotiation process by the Jess rule engine. In Sect. VI,
we describe the results ofan initial evaluation the framework.
Finally, in Sect. VII and VIII, we review related work and
provide concluding remarks and directions for future work,
respectively.

II. FRAMEWORK OVERVIEW
The architecture of PROSDIN is shown in Fig. 1. More

specifically, PROSDIN consists of a (runtime) service
discovery tool, a service listener, and a negotiation broker. It
also interacts with external service registries and is available
itself to external service client applications as a service.

Figure 1. PROSDIN architecture

The service discovery tool in PROSDIN is used to
identify candidate services that could potentially be used by
the service client application (SCA). Service discovery is
based on queries that express conditions about the interface,
behaviour, contextual and quality characteristics of services.
To use PROSDIN, each of the constituent services Sc of
SCA that could be replaced at runtime should be associated
with a discovery query specifying the conditions for
discovering services that could potentially replace it. These
queries should be specified by the developers of SCAs
during the development of SCA, and passed to PROSDIN by
SCA at runtime in order to be executed when service failures
occur and enable discovery.

Following the subscription of such queries for a
constituent service Sc of SCA, PROSDIN executes them
proactively and in parallel with the execution of SCA, and
uses the services that match with then in an external registry
to maintain an up-to-date set of candidate replacement
services for Sc (referred to as replacement service set RS in
the following). Furthermore, after the initial creation of the
RS set for a service, the query associated with it is also
executed when the description of some service in RS has
been changed or a new service that could be a candidate for
inclusion in RS has emerged in the external service registry.
Notifications of such changes are generated by the service
listener of PROSDIN, which polls the external service
registry periodically to identify service changes relevant to a
query and the services in RS.

The negotiation broker in PROSDIN manages the
negotiation process on behalf of service client applications.
More specifically, it provides access to different negotiation
engines that may be plugged into the framework by
translating negotiation rules expressed in the common
language of the framework into the different negotiation
specifications accepted by these engines (see Sect. V) and
realizes the interface for interacting with brokers carrying out
the negotiation process on behalf of services (aka service
negotiation brokers). The latter may be the same as the
broker used by PROSDIN or other brokers that realize the
same SLA negotiation interaction interface with it. The
interface of the negotiation broker provides operations for:
(i) initializing the broker, (ii) starting the negotiation process,
and (iii) notifying a broker that an SLA offer (or counter-
offer) that has been generated/rejected/accepted by the other
party in the negotiation process.

The negotiation process is carried out according to a two-
phase protocol that may result in a pre-agreed but not
activated SLA or fail. Pre-agreed SLAs have an expiry
period within which they can become active, if the service
client application decides to activate them. The SLA
negotiation process is described in Sect. III.

III. SERVICE DISCOVERY/SLA NEGOTIATION PROCESS
The activity of service discovery and SLA negotiation

realized in PROSDIN is shown in Fig. 2.
According to the UML activity diagram in the figure, the

process starts with the submission of a service discovery
query by an SCA. The initial execution of the query (see
Execute Query in Fig. 2) is followed by the build of the set
RS. RS includes the best N candidate services, ranked in
ascending order of their distance to the query. RS is updated
by executing the service discovery query when the
framework is informed by the service listener that a new
service has become available in the service registry or the
description of an existing service has been modified (see the
New/Amended Service Description signal in Fig. 2). Hence,
the process considers new and updated services.

After RS is initially built or updated, the framework
selects the first service in it that does not have a negotiated
SLA, and starts a proactive negotiation of an SLA with it
(see Select Service in RS for Negotiation and Negotiate SLA
activities in Fig. 2, respectively). In this phase, the QoS
characteristics of the candidate service are negotiated in
order to achieve the best possible SLA given the boundary
constraints of the two parties.

If the negotiation with a service S fails, S is removed
from RS and discovery is re-triggered to find another service
to replace it. If negotiation succeeds, a provisional SLA is
established and the candidate service in RS is updated to flag
the existence of a pre-agreed SLA with it. Subsequently, the
process continues by attempting to negotiate SLAs with all
the services in RS, which do not have a pre-agreed SLA,
until all of them have pre-negotiated SLAs or it is known
(through unsuccessful earlier negotiation attempts) that an
SLA cannot be established with them.

The negotiated SLAs of services in RS do not come into
force immediately. For each pre-agreed SLA, the negotiation

Service Discovery Tool

Service
Client

Application
(SCA)

Service Listener

SLA Offers

Service
Discovery Query

Active
SLA

Service Registry

SLA
Templates

WSDL

Service Behaviour
(BPEL)

Quality Ranges

Service Negotiation Broker (Provider)

Pre-agreed SLA

Specification/Document Functional Component

SLACounter-offers
Offers

Negotiation Broker (Consumer)

Negotiation Rule
Translator

Negotiation
Engine

PROSDIN
(Client
Side)

process establishes a time period over which the pre-agreed
SLA can be automatically brought into force without further
negotiation. This happens when a service with a pre-agreed
SLA in RS is selected for binding to SCA. If the validity
period of a pre-agreed SLA expires without the candidate
service being bound to SCA, the SLA between the service
and SCA will be re-negotiated.

Figure 2. Service discovery and SLA negotiation process

Following the selection of a service S in RS for binding
to SCA at runtime, its SLA is automatically activated (see
Activate SLA in Fig. 2), the service is removed from RS (see
Remove Service from RS) and the discovery query is re-
executed to identify if there is a new service that could be
included in the RS set.

IV. SPECIFICATION OF SLAS
The operation of PROSDIN is driven by specifications

of: (a) discovery queries, (b) SLAs and SLA templates, and
(c) SLA negotiation rules. In this section we give an
overview of the languages for specifying (b) and in Sect. V
we overview the language for specifying (c) (the language
that is used to specify service discovery queries is beyond the
scope of this paper and can be found in [15]).

A. Specification of Service Level Agreements
In PROSDIN, SLA templates, offers, agreed and

activated SLAs are specified using an XML schema whose
high level structure is shown in Fig. 3. According to this
schema, an SLA is specified by an SLA contract element,
containing one or more SLA terms. An SLA term specifies
one or more guaranteed quality constraints (i.e., constraints
over values of QoS attributes). It also refers to the actor(s)
who have proposed it in the negotiation process (see Actor
element in SLATermsType). An actor may take different
roles in the negotiation process (e.g., service requester or
service provider) and have a negotiation strategy, i.e., a set of
rules governing the negotiation process and the
communication (e.g. multiphase, multi issue negotiation)
with other negotiating parties.

Figure 3. High Level Schema for SLA Specification

An SLA contract may also describe the penalties that will
apply in case that any of the parties who have agreed the
contract (contractors) fail to fulfill the SLA terms (see the
sub-element Penalty). Furthermore, SLA contracts have: (i) a
contractID attribute, (ii) an attribute, called status, signifying
the status of the contract (i.e., under negotiation, pre-agreed
or active), and (iii) a time validity attribute signifying the
period for which the contract is valid.

Figure 4. SLA Specification – Constraint element

<sla:SLAContractxmlns:sla="http://scube.eu/.."
xmlns:slac="http://scube.eu/schema/Constraint"
contractID="SLA-No-2"timeValidity="1Y"
status="PRE_AGREED">
 <sla:SLATerms>
 <sla:Actor>
 <sla:Role>PROVIDER</sla:Role>
 <sla:Type><sla:Companyname="XYZ"… /></sla:Type>
 <sla:NegotiationStrategy>
 MULTI-PHASE_MULTI-ISSUE
 </sla:NegotiationStrategy>
 </sla:Actor>
 <sla:Actor>.. ..</sla:Actor>
 <slac:Constraint>
 <slac:LogicalExpression>
 <slac:Conditionrelation="GREATER-THAN">
 <slac:Arg1><slac:QualityAttribute
 name="AVAILABILITY"/></slac:Arg1>
 <slac:Arg2><slac:Constanttype="NUMERICAL"
 unit="PC">80</slac:Constant></slac:Arg2>
 </slac:Condition>
 </slac:LogicalExpression>
 <slac:LogicalOperator>AND</slac:LogicalOperator>
 <slac:LogicalExpression>
 <slac:Conditionrelation="LESS-THAN">
 <slac:Arg1><slac:QualityAttribute
 name="RESPONSE_TIME"/></slac:Arg1>
 <slac:Arg2><slac:Constanttype="NUMERICAL"
 unit="MS">9</slac:Constant></slac:Arg2>
 </slac:Condition>
 </slac:LogicalExpression>
 </slac:Constraint>
 </sla:SLATerms>
 <sla:Penalty>...</sla:Penalty>
</sla:SLAContract>

Figure 5. Example SLA

Fig. 4 shows the part of the SLA schema that is used to
specify constraints for SLA terms. A constraint is defined as
an atomic logical expression or a conjunction/disjunction of
two or more logical expressions. Atomic logical expressions
are conditions over quality attributes of services. These
conditions are defined as a relation between two
arguments(e.g., equalTo, lessThan, greaterThan) and can be
negated. The arguments of a relation can be a quality
attribute of a service, constant, or an arithmetic expression
over quality attributes and constants.

Fig. 5 shows an example of a pre-agreed SLA for service
X between a company XYZ that provides X and the service
consumer C. The SLA sets a conjunction of two conditions.
The first of these conditions states that the availability of the
service should be greater than 80%, and the second
condition states that the response time of the service should
be less than 9 milliseconds.

V. NEGOTIATION RULES AND BROKER
The SLA negotiation process in PROSDIN is executed

by the negotiation broker according to negotiation rules.
These rules are specified using the XML schema that is
partly shown in Fig. 6. This schema allows the expression of
negotiation rules as condition-action rules of the form: IF
(condition) THEN (action) ELSE (action).

Figure 6. High Level Schema for Negotiation Rule Specification

The conditions in the negotiation rules are either atomic
conditions or logical combinations of atomic conditions
over QoS attributes of services having the same structure as
the SLA term conditions discussed in Sect. IV. Rule actions
can be of three types: (i) accept actions that are used to
accept the value of one or more QoS attributes in a given
SLA offer, (ii) reject actions that are used to reject the value
of one or more QoS attributes in a given SLA offer, and(iii)
set actions that are used to propose a new value or range of
values for one or more QoS attributes as part of an SLA
offer.

An example of a negotiation rule is shown in Fig.7. The
rule is used by the negotiation broker of a service provider
and states that if the consumer of a service has made an
offer (or counter-offer) where the response time of the
service must be less than 10 milliseconds (ms) and the price
to be paid per service use is 0.5 pounds, the offered values
will be accepted.

The negotiation rules expressed in the common XML
language of PROSDIN are translated into the negotiation
specification of the particular negotiation engine plugged

into the broker. The negotiation engine used in the current
implementation of the framework is a rule-driven
negotiation engine that we have developed based on Jess
[17].

A rule in Jess has the form
(defrule rule-name
 (logical-operator (cond-1 …cond-n))
 ⇒action)

where cond-i is defined as an atomic condition of the form
(<fact-pattern-i><cond-i>) or a complex logical condition
over such atomic conditions. The fact patterns in a rule
define logical conditions over facts known to the Jess
engine. Jess uses a form of the algorithm Rete [6] to match
rules against facts and when a match is found the actions
specified in a rule are taken. Such actions can assert or
modify the values of facts.

Negotiation
Rule

<tnsr:NegotiationRule name="rule1">
 <tnsr:If>
 <tnsr:LogicalExpression>
 <slac:Condition relation="LESS-THAN">
 <slac:Arg1><slac:QualityAttribute
 name="RESPONSE_TIME" party="CONSUMER"/>
 </slac:Arg1>
 <slac:Arg2><slac:Constant
 type="NUMERICAL" unit=”ms”> 10
 </slac:Constant></slac:Arg2>
 </slac:Condition>
 <slac:LogicalOperator>AND
 </slac:LogicalOperator>
 <slac:Condition relation="EQUAL-TO">
 <slac:Arg1><slac:QualityAttribute
 name="PRICE" party="CONSUMER"
 unit=”GBP”/></slac:Arg1>
 <slac:Arg2><slac:Constant
 type="NUMERICAL">0.5</slac:Constant>
 </slac:Arg2>
 </slac:Condition>
 </tnsr:LogicalExpression>
 </tnsr:If>
<tnsr:Then>
<tnsr:Action>
 <tnsr:Accept>
 <tnsr:QualityAttribute name="PRICE"
 party="CONSUMER" />
 <tnsr:QualityAttribute
 name="RESPONSE_TIME" party="CONSUMER"/>
 </tnsr:Accept>
 </tnsr:Action>
 </tnsr:Then>
</tnsr:NegotiationRule>

Figure 7. Example negotiation rule.

The translator inside the negotiation broker translates the
negotiation rules into Jess rule. The basic transformations
used are show in Figure 8. The first two rows in Figure 8
show the transformation of quality attribute and constants
into Jess. The third row shows transformation of a condition
in negotiation rule into Jess. The fourth row shows the
transformation of a PROSDIN negotiation rule action into
Jess. It should be noted that, in our implementation, we
assume that Jess uses the same working memory for
different phases of the negotiation process. Thus, we use the
same identifier (i.e. 0) for the working memory in Jess
representation (see the Jess expression (fact-slot-value
0 Jess-Rep(Arg2)) in the example patterns).

Negotiation Rule Element Jess Representation
<slac:Arg>
 <slac:QualityAttribute name="A"
 party="P"/></slac:Arg>

A-P

<slac:Arg>
 <slac:Constanttype="NUMERICAL">C
 </slac:Constant></slac:Arg>

C

<slac:Condition relation="REL">
 <slac:Arg1>...</slac:Arg1>
 <slac:Arg2>...</slac:Arg2>
</slac:Condition>

{Jess-Rep(Arg1) REL
Jess-Rep(Arg2)}

<tnsr:Action>
 <tnsr:Set>
 <tnsr:LogicalExpression>
 <slac:Condition
 relation="EQUAL-TO">
 <slac:Arg1>...</slac:Arg1>
 <slac:Arg2>...</slac:Arg2>
 </slac:Condition>
 </tnsr:LogicalExpression>
 </tnsr:Set>
</tnsr:Action>

(modify 0 (Jess-
Rep(Arg1) (fact-slot-
value 0 Jess-
Rep(Arg2))))

Figure 8. Negotiation to Jess rule Transformation Patterns

Based on the transformations listed in Fig. 8, the Jess
rule generated for rule1 is:

(defrule rule1
(SLA {RESPONSE_TIME-CONSUMER < 10}{PRICE-
 CONSUMER = 0.5}) =>
(modify 0
 (PRICE-PROVIDER
 (fact-slot-value 0 PRICE-CONSUMER)))
(modify 0 (RESPONSE_TIME-PROVIDER
(fact-slot-value 0 RESPONSE_TIME-CONSUMER))))

VI. IMPLEMENTATION &EVALUATION
All the major components of PROSDIN (i.e., the

negotiation broker, service discovery tool, and service
listeners) have been implemented in Java and are available as
a web service. This service can be deployed by service client
applications programmed in a way that can notify service
discovery queries and SLA negotiation rules to PROSDIN,
and receive endpoints of discovered services with negotiated
SLAs from it. The external service registry used in the
current implementation is a faceted registry as the one
developed by the SECSE project [22]. This registry has been
implemented using eXist [18] database and is accessed by
PROSDIN through Java remote method invocation (RMI).

To evaluate the implementation of PROSDIN, we
performed a series of experiments. The purpose of these
experiments was to: (a) measure the overhead of SLA
negotiation (whether reactive or proactive) on the execution
time of the runtime service discovery process, and (b) assess
the effectiveness of proactive SLA negotiation over reactive
SLA negotiation during runtime service discovery process.

A. Experimental Setup
In the experiments, we have used an SCA, called Route-

Planner, as a case study. Implemented by a BPEL service
orchestration process, this system allows a user to find an
optimal route from his/her current location to another
location by using a Global Positioning Service (GPS), and
displays electronic maps of the area where the user is located

and the identified route between two points. The latter
functionality is supported by the use of an electronic map
service (eMapS). The service discovery query used in the
experiments was specified in order to identify candidate
replacement services for the GPS service of Route-Planner.
The query expressed structural discovery criteria and a soft
quality constraint. The structural criteria referred to the
required (WSDL) interface for possible alternative services
that could be used in the place of the GPS service should this
service fail at runtime, and the quality constraint expressed a
condition about service availability.

In the experiments, we also used an SLA template with
four QoS terms for negotiation. These QoS terms were
related to the service price, availability and response time,
and the mean number of service requests per hour. For
negotiation, we specified a set of 15 service consumer
negotiation rules (CNR set), and 20 different sets of provider
negotiation rules (PNR sets). Each of the PNR sets contained
between 5 and 20 negotiation rules. During negotiation with
each of the candidate services identified by the discovery
process, the negotiation broker of the service provider side
picked up randomly one of the PNR sets and carried out the
negotiation based on it. In this way, we simulated the
different behaviour that different service providers who
participate in the negotiation process might have. The
specifications of the SLA template, CNR and PNR sets and
discovery query used in the experiments cannot be listed
here due to space restrictions but can be found in [19].

To assess whether the number of considered services
affects the performance of the service discovery and SLA
negotiation processes, we performed the experiments with
three different service sets (registries). These sets contained
100, 300 and 500 services, respectively and were populated
by geographic location related services taken from the
SEEKDA [20] and the SECSE service registry [22]. Each
service that was used in the experiments had a WSDL (i.e., a
structural) description and a quality of service description.
These descriptions were used during the service discovery
process.

All experiments were carried out using a Pentium 2.33
GHz with 3.23 GB RAM machine.

B. Results
In the experiments we measured the time needed to:

(a) Build the initial RS set (see Sect. II);
(b) Maintain the RS set at runtime due to the arrival of new

services (type_1 events) or change in the description of
an existing service in the registry (type_2 events); and

(c) Select a service for replacing a service S in the service
based application due to unavailability of S (type_3
events).
The times required for (a), (b) and (c) were measured, for

executions of the service discovery process without SLA
negotiation (SD Only), with proactive SLA negotiation (SD
with Proactive SLA), and with reactive SLA negotiation (SD
with Reactive SLA). Table I presents the formulas used to
measure execution times in cases (a), (b) and (c).

TABLE I. BASIC TIME MEASURES

Time Definition/Calculation

tnmatch

This is the time needed to execute a service discovery
query against n services from the registry. This is
calculated as,
tnmatch = tnreg + tnstruct + tnnon-context, where
− tnreg is the time needed to retrieve n services from

theregistry.
− tnstruct is the time needed to evaluate the structural

constraints of a query against n services.
− tnnon-context is the time needed to evaluate non contextual

constraints of a query against n services.

tnSLA-Neg
This is the time needed to perform SLA negotiation with n
services.

tnSLA-Act This is the time needed to activate a pre-agreed SLA.

tRS-Del

This is the time needed to delete a service from the
candidate service set (RS) and pick up the best service
from RS.

tRS-Add

This is the time needed to add a new service to RS and/or
sort the services within RS according to their total distance
to the query used to build RS

trep-*

This is the time needed to select an alternative service for
replacement due to unavailability of a service. This time is
calculated as follows,
− SD Only case: trep-sd = tRS-Del
− SD with Proactive SLA case: trep-sd-pro-sla = tRS-Del + tSLA-Act
− SD with Reactive SLA case:

trep-sd-rea-sla = tRS-Del + t1SLA-Neg + tSLA-Act

trsm-*

This is the time needed for runtime maintenance of the
candidate service set (RS) due to arrival of a new service or
change in the specification of an existing service. This time
is calculated as follows,
− SD Only case: trsm-sd = tRS-Add + t1match
− SD with Proactive SLA case:

trsm-sd-pro-sla = tRS-Add + t1match+ t1SLA-Neg
− SD with Reactive SLA case: trsm-sd-rea-sla = tRS-Add + t1match

AGpro

This is the average time gain per service replacement in
case of SD with Proactive SLA over SD with Reactive SLA.
This is calculated as,AGpro = avg(trep-sd-rea-sla)−avg(trep-sd-pro-

sla)

RGpro

This is the ratio of the service replacement time with
reactive negotiation over the service replacement time with
proactive SLA negotiation, i.e.: RGpro=avg(trep-sd-rea-

sla)/avg(trep-sd-pro-sla)

BEpro

The ratio of the overhead of maintaining the replacement
service set (RS) in case of SD with Proactive SLAover the
gain in the time for service replacement withSD with
Proactive SLA over SD with Reactive SLA, measured as:
BEpro= (∑trsm-sd-pro-sla – ∑trsm-sd-rea-sla)/(∑trep-sd-pro-sla – ∑trep-sd-

rea-sla)

Table II presents the time needed to build the initial
replacement services set RS. As expected, the total time
required for building the RS set for a given service in the
case of service discovery with proactive SLA negotiation is
longer than the time required for building the same set in the
cases of service discovery without SLA negotiation and

service discovery with reactive SLA negotiation. This
difference was observed across all the different sizes of
service registries and occurred because when service
discovery with proactive SLA negotiation is used, an SLA
should be negotiated and (possibly) pre-agreed with each
candidate service, whilst when the initial construction of the
RS set is based on service discovery only or on service
discovery with reactive negotiation, no SLA negotiation is
required.

Overall, during the initial phase of building the RS set,
the use of proactive negotiation has an overhead between 8%
(500 services) and 7% (100 services) of the time required for
pure service discovery. However, it should be noted that the
initial phase for building RS is performed only once for each
subscribed query, and in parallel to the execution of the
service client application.

The time needed for maintaining the replacement service
set (RS) and selecting a replacement service due to events of
type_1, type_2, and type_3 is shown in Table III. The time
measures shown in the table are averages (and total sums
where applicable) taken across five different executions of
the discovery query for each of the three event types.

As shown in Table III, the time required to select a
replacement service in case of service discovery with
proactive SLA negotiation is slightly larger than the time
required to identify a replacement service if service
discovery without any SLA negotiation is used. This is
because in the former case, the pre-agreed SLA needs to be
activated before the replacement service is returned. It
should be noted, however, that the main benefit shown in the
table is that the time required to select and bind a
replacement service at runtime in the case of service
discovery with reactive SLA negotiation is significantly
larger than the service selection and binding time in the case
of service discovery with proactive SLA negotiation: 53.2
vs. 453 milliseconds for the registry with 100 services, 45.8
vs. 459.4 milliseconds for the registry with 300 services, and
50.2 vs. 443.8 milliseconds for the registry with 500
services.

Table IV shows the aggregate effectiveness of proactive
SLA negotiation in absolute and relative terms by presenting
the AGpro, RGpro, and BEpro measures. More specifically, as
shown in the table, the average gain in service replacement
time of service discovery with proactive SLA negotiation
over service discovery with reactive SLA negotiation is
between 187 ms and 230 ms per service replacement (see the
AGpro column in the table).

TABLE II. TIME MEASURES FOR BUILDING CANDIDATE SERVICE SET (TIMES IN SECONDS)

 SD Only SD with Proactive SLA SD with Reactive SLA
100 300 500 100 300 500 100 300 500

tn
reg 152.062 383.29 642.464 138.152 378.995 620.312 151.447 382.888 643.858

tn
struct 8.39 24.326 43.561 8.046 24.058 40.78 8.17 24.712 43.687

tn
non-context 0.172 0.422 0.657 0.172 0.422 0.657 0.172 0.421 0.672

tn
SLA-Neg – – – 11.029 32.495 53.936 – – –

Total 160.624 408.054 686.697 157.399 435.985 715.685 159.804 408.037 688.232

TABLE III. PERFORMANCE MEASURES FOR MAINTAINING CANDIDATE SERVCIE SET AND SERVICE REPLACEMENT (TIMES IN MILLI-SECONDS)

 SD Only SD with Proactive SLA SD with Reactive SLA
100 300 500 100 300 500 100 300 500

Replacement Service
Set (RS)

Maintenance

avg(trsm-*) 690.5 698.3 673.5 837.2 881.2 892 637.4 668.5 677.6

∑trsm-* 6905 6983 6735 8372 8812 8920 6374 6685 6776
Selection of

Replacement Service
from RS

avg(trep-*) 22 28 21.8 53.2 45.8 50.2 453 459.4 443.8

∑trep-* 110 140 109 266 229 251 2265 2297 2219

Also, in relative terms, the service replacement time

with reactive SLA negotiation presents an 8.5 to 10-fold
increase over the service replacement time when proactive
SLA negotiation is applied (see the RGpro column of the
table). This relative increase is anything but negligible
when considering that the need for service replacement
arises whilst an SCA is in operation. Also, the cost of
maintaining the replacement service set (RS) does not
exceed the gain achieved by service discovery with
proactive SLA negotiation (see the BEpro column in Table
IV).

Overall, albeit preliminary, our experiments have
shown that proactive SLA negotiation can provide a
substantial improvement of the time that will be required
for dynamic replacement of services when agreed SLAs
must be in place before using a service.

TABLE IV. EFFECTIVENESS OF PROACTIVE SLA NEGOTIATION

Service Registry AGpro RGpro BEpro

100 187 8.51 0.999
300 230.4 10.03 1.028
500 192.8 8.84 1.089

It should also be noted that although proactive service

discovery and SLA negotiation are essential for achieving
efficient service replacement at runtime, they also create
the possibility of inefficient resource utilization. More
specifically, the efficiency of resource utilization with
proactive SLA discovery/negotiation over a period of time
T can be measured by the formula:

U =
T!SRRR ! (tmatch + tSLA-Neg)

T!SRUR ! (tmatch + tSLA-Neg) +tinit-RS

In this formula, SRRR is the service request
replacement rate; SRUR is the service registry update rate;
tmatch is the average time required to match a query with a
service, tSLA-Neg is the average time required to negotiate an
SLA with a service; and tinit-RS is the time needed to build
the initial copy of RS (tinit-RS=Rinit× (tmatch + tSLA-Neg where
Rinit is the number of services in the service registry at the
time of the initial build of RS).

Hence, to have efficient resource utilization when
deploying proactive service discovery and negotiation, it
should be that SRRR ≥ SRUR + Rinit/T or that SRRR ≥
SRUR since the factor Rinit/T becomes arbitrarily close to
zero as T increases. This means that the service
replacement request rate must be higher or at least equal to
the service registry update rate. Establishing the validity of
this condition would require a long-term study. However,

it is not unreasonable to expect that the condition SRRR ≥
SRUR holds in the long term.

VII. RELATED WORK
Proactive approaches to dynamic adaptation of

service-based applications are increasingly appearing in
the literature [16][23]. Most of the work in this area,
however, focuses on mechanisms for forecasting
operational problems that may require adaptation (see
[16][23] for example) rather than focusing on proactive
SLA negotiation. Also, existing work on SLA negotiation
tends to focus on the mechanics of the negotiation process
itself (e.g. [4][10]) rather than wider procedural issues as
to when and under what conditions the negotiation
process may be triggered.

An agent based framework for SLA management is
presented in [9]. In this framework, an initiator agent
from the service consumer’s side and a responder agent
from the service provider’s side take part in the
negotiation process. The responder agent advertises the
service level capabilities and the initiator agent fetches
these advertisements and initializes the SLA negotiation
process. Different stages of SLA life cycle e.g. formation,
enforcement and recovery is performed through the
autonomous interactions among these agents. In the case
of an SLA violation, the initiator agent may either claim
compensation and renegotiate with the service provider or
select a new service provider. The provision of
compensation in case of violation of SLA is also the focus
of [1]; an approach focusing on several aspects of
compensations such as the legislation that is applicable in
cases a conflict between the provider and the consumer of
a service, and the impact of the penalty clauses on the
choice of service level objectives.

Runtime SLA re-negotiation has been suggested in
[2][3][4][7][5] to manage SLA violations. In [2] service
level objectives are revised and renegotiated at runtime
and deployed services are adjusted to dynamically agreed
service level objectives. A similar approach allowing the
change of service level objectives whilst keeping the
existing SLA is described in [5]. In [3] a renegotiation
protocol is described that allows the service consumer or
service provider to initiate renegotiation while the
existing SLA is still in force when this becomes necessary
for service providers or consumers for different reasons
(e.g., changes in the business requirements of a party).

Note, however, that all the above approaches are
reactive, i.e., renegotiation starts only after an existing
SLA is violated. Hence, they do not address the main

problem that is the focus of our work, i.e., the
development of a proactive SLA negotiation approach that
can increase the chances of uninterrupted service provision
when SLA negotiation is required at runtime. Furthermore,
our framework integrates SLA negotiation with dynamic
service discovery and it can, therefore, provide integrated
runtime support for both these key activities, which is
necessary for achieving runtime service based application
with minimized interruptions.

VIII. CONLUSIONS AND FUTURE WORK
In this paper, we have presented a framework that

integrates service discovery with proactive SLA
negotiation, called PROSDIN.

The identification of alternative services in PROSDIN
is based on various characteristics of published services
including structural, behavioural and QoS characteristics.
PROSDIN also negotiates a service level agreement over
QoS levels with each alternative service identified by the
discovery process. The negotiation process is carried out
according to a two-phase protocol and may result in a
provisionally agreed but not activated SLA or negotiation
failure. A provisional SLA has an expiry date by which it
should either be activated or cease to exist.

The objective of proactive SLA negotiation in
PROSDIN is to ensure that a service, which could be
potentially used by a service client application, will have
an agreed set of guaranteed provision terms if the need to
deploy it arises at runtime. Hence, when this need arises it
won’t be necessary to engage in a lengthy negotiation
process interrupting the operation of the service client
application.

Our approach has been evaluated through an initial set
of experiments showing that proactive SLA negotiation
leads to significant reduction of the time required to
perform service replacement at runtime if the existence of
agreed SLAs is a prerequisite for service use.

PROSDIN opens a spectrum of possible lines for
future investigation. These include support for proactive
negotiation of hierarchical SLAs, i.e., SLAs of complex
composite services deploying other composite services
with their own sub-SLAs which will need to be negotiated
separately and before coming to an higher level service
level agreement. Other aspects for further investigation
include the use of heuristics for tuning the triggering the
proactive SLA negotiation process so as to reduce the
number of cases where pre-agreed SLAs never get used,
and the study of the performance of the framework when
the negotiation rules used by different participants might
change dynamically.

ACKNOWLEDGMENT
The research leading to these results has received

funding from the European Community’s 7th Framework
Programme under Grant Agreement 215483 (S-Cube).

REFERENCES
[1] O. Rana, et al, "Managing Violations in Service Level

Agreements", Work.on the Usage of Service Level Agreements in
Grids, 2007

[2] G.Di Modica,O. Tomarhio and V.Lorenzo, "A framework for the
management of dynamic SLAs in composite service scenarios",
Service-Oriented Computing - ICSOC 2007 Workshops.

[3] M. Parkin, P. Hasselmeyer, B. Koller, and P. Wieder."An SLA Re-
negotiation Protocol", 2nd Work. on Non Functional Properties and
SLA in Service Oriented Computing at ECOWS 2008.

[4] O.Waeldrich,and W.Ziegler. "A WS-Agreement based Negotiation
Protocol", Technical Report, Fraunhofer Institute SCAI, VIOLA -
in DFN. 2006

[5] R. Sakellariou and V. Yarmolenko, "On the Flexibility of WS-
Agreement for Job Submission", 3rd Int. Work. on Middleware for
Grid Computing, 2005

[6] R. B. Doorenbos, "Production Matching for Large Learning
Systems", January 31, 1995, CMU-CS-95-113

[7] P. Wieder, J. Seidel, O. Wäldrich, W. Ziegler, and R. Yahyapour,
"Using SLA for Resource Management and Scheduling - A
Survey", In Grid Middleware and Services Challenges and
Solutions, Springer, 2008

[8] F. Raimondi, J. Skene, L. Chen, and W.Emmerich, "Efficient
monitoring of web service SLAs", Research Notes (RN/07/01).
UCL, London, UK. 2007

[9] Q. He, J. Yan, R. Kowalczyk, H. Jin, and Y. Yang, "Lifetime
Service Level Agreement Management with Autonomous Agents
for Services Provision", Information Sciences, Elsevier, 2009

[10] P. Hasselmeyer, et al. "Towards Autonomous Brokered SLA
Negotiation". eChallenges 2006

[11] P. Karaenke and S.N Kirn. "Service Level Agreements: Evaluation
from a Business Application Perspective", eChallenges 2007

[12] A.Pichot, P. Wieder, W. Ziegler, and O.Wäldrich, "Dynamic SLA-
negotiation based on WS-Agreement", CoreGRIDTechnical
Report, TR-0082, 2007

[13] V. Robu, D.J.A. Somefun, and J. A. La Poutre. "Modeling
complex multi-issue negotiations using utility graphs", 4th Int.
Conf. on Autonomous Agents & Multi Agent Systems, 2005

[14] K. Kritikos and B. Pernici, "Initial Concepts for Specifying End-
to-End Quality Characteristics and Negotiating SLAs". S-Cube
Project Deliverable CD-JRA-1.3.3, June 2009.

[15] A. Zisman, G. Spanoudakis, and J. Dooley. "A Framework for
Dynamic Service Discovery", 23rd Int. IEEE/ACM Conf. on
Automated Software Engineering, 2008.

[16] J.Hielscher, R.Kazhamiakin, A.Metzger,and M.Pistore, "A
Framework for Proactive Self-Adaptation of Service-based
Applications Based on Online Testing", ServiceWave 2008

[17] E. Friedman Hill, "Jess in Action: Rule Based Systems in Java",
Manning Publications Co, ISBN 1-930110-89-8

[18] eXist. http://exist.sourceforge.net.
[19] Experiment Specifications, http://www.soi.city.ac.uk/~am697/sla/

Case-Study-Specification.zip
[20] SEEKDA Web Services, http://seekda.com/en
[21] JESS: Java Expert System Shell. See

http://herzberg.ca.sandia.gov/jess/.
[22] SECSE Project. http://secse.eng.it
[23] P.Leitner, A.Michlmayr,and S. Dustdar, "Monitoring, Prediction

and Prevention of SLA Violations in Composite Services", IEEE
Int. Conf. on Web Services 2010

[24] Mahbub K. and Spanoudakis G., "Proactive SLA Negotiation for
Service Based Systems," 6th World Congress on Services, pp.519-
526, 2010

