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Exact results for one-dimensional disordered bosons with strong repulsion
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We study one-dimensional disordered bosons with strong repulsive interactions. A Bose-Fermi
mapping expresses this problem in terms of non-interacting Anderson-localized fermions, whereby
known results for the distribution function of the local density of states, the spectral statistics, and
density-density correlations can be transferred to this new domain of applicability. We show that
disorder destroys bosonic quasi-long-range order by calculating the momentum distribution, and
comment on the experimental observability of these predictions in ultracold atomic gases.

PACS numbers: 03.75.-b, 05.30.Jp

The properties of interacting bosons have recently at-
tracted considerable attention due to the unprecedented
control and tunability achieved in ultracold atomic gases.
For instance, by using optical lattices, the predicted
quantum phase transition from a superfluid state to a
Mott insulator [1, 2] has been experimentally observed
[3]. Current interest is also directed towards disordered
systems, where disorder can be generated by using laser
speckle patterns [4], additional incommensurate optical
lattice potentials [5, 6], or via atom-surface interactions
in micro-chip confined atomic gases [7]. It thus appears
feasible to experimentally study dirty bosons under con-
trolled conditions, in contrast to earlier realizations us-
ing granular superconductors or Helium-4 in porous me-
dia. Unfortunately, the theory of disordered interacting
bosons is difficult, and no exact solutions are known apart
from numerical or approximate results [1, 8, 9, 10, 11, 12],
even in the one-dimensional (1D) limit [13, 14].

In this paper, we show that for strong repulsive inter-
actions, the dirty boson problem in 1D is exactly solvable
via a Bose-Fermi mapping discussed before in the clean
limit of a Tonks-Girardeau gas [15, 16, 17, 18, 19, 20].
The mapping establishes a connection to non-interacting
disordered fermions, allowing to directly apply many re-
sults previously obtained on Anderson localization in 1D,
and greatly simplifying the computation of other quan-
tities like the momentum distribution. Our predictions
can be checked using state-of-the-art experiments. De-
tailed conditions for the 1D regime have been specified
in Refs. [21, 22], and the 1D Tonks-Girardeau regime has
recently been achieved [23, 24], see also Refs. [25, 26].

The Bose-Fermi mapping can be established most di-
rectly by starting from a lattice description of hard-core
bosons, the Bose-Hubbard model [1], which applies im-
mediately to optical-lattice experiments upon expanding
the Bose field operator in the Wannier state basis [2].
Considering spinless bosons on a 1D lattice with spac-
ing a, with Bose annihilation operator bl at site l, the
Hamiltonian is

H =
∑

l

(

−Jl

[

b†l+1bl + b†l bl+1

]

+ ǫlnl +
U

2
nl(nl − 1)

)

,

(1)

where nl = b†l bl. Here ǫl = hl + bl2 includes a random
on-site energy hl and an axially confining harmonic po-
tential, and Jl is a random hopping amplitude between
neighboring sites. In optical lattices, hopping disorder
is suppressed against on-site disorder [6], and we thus
take Jl ≡ J , but hl distributed according to a Gaussian
ensemble [27] with

hl = 0, hlhl′ = ∆δll′ , (2)

where the overbar denotes the disorder average and ∆ the
disorder strength. Using the spatial diffusion constant
Ds, for a given disorder mechanism, ∆ = ~

2v3
F /(aDs)

can be expressed in terms of microscopic parameters; vF

is defined after Eq. (7) below. Detailed theoretical esti-
mates for Ds (and hence ∆) are available for laser speckle
fields [4] and quasiperiodic optical lattices [5, 6], where
also the Gaussian distribution of the disorder field hl is
justified. We show below that the neglect of disorder in
the Jl is no fundamental restriction.

In the hard-core boson limit, U → ∞, only the oc-
cupation numbers nl = 0 or 1 are allowed, and then
Eq. (1) can be mapped to a non-interacting lattice
fermion model by means of a Jordan-Wigner transfor-

mation, bl = eiπ
∑

j<l c†jcjcl, where the cl denote lattice
fermion operators. This transformation results in the
fermionic Hamiltonian

H =
∑

l

(

−Jl

[

c†l+1cl + c†l cl+1

]

+ ǫlc
†
l cl

)

. (3)

It provides a one-to-one mapping, preserving the Hilbert
space structure of the bosonic problem, with the N -
particle bosonic wavefunction expressed in terms of the
fermionic one as [16]

ΦB
ν (l1, . . . , lN) =

∣

∣ΦF
ν (l1, . . . , lN )

∣

∣ . (4)

The energy level Eν for an N -boson eigenstate ΦB
ν can

thereby be computed in terms of the non-interacting
fermionic Hamiltonian (3). In particular, with the single-

particle energy ǫ
(j)
i for the jth fermion residing in a

single-particle solution Ψi to Eq. (3), and taking into

account the exclusion principle, Eν =
∑N

j=1 ǫ
(j)
i . The
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many-body fermionic wavefunction ΦF
ν (l1, . . . , lN), and

hence also the bosonic one (up to a sign), is then a

Slater determinant, det [Ψi(lj)] /
√
N !. Since the mod-

ulus square does not change under the mapping (4), all
bosonic quantities given solely in terms of |ΦB

ν |2 coincide
with the fermionic ones. This includes all correlation
functions of the particle density and the local density of
states (LDoS),

ρ(ǫ, l) =
∑

ν

∑

l2,...,lN

δ(ǫ− Eν)|ΦB
ν (l, l2, . . . , lN )|2.

The density of states (DoS) per site in a lattice with

L sites is then ρ(ǫ) =
∑L

l=1 ρ(ǫ, l)/L, and also remains
invariant. The same reasoning applies to the continuum
limit studied later. In particular, the compressibility κ,
and thus also the sound velocity, is simply

κ−1 =
π2

m

(

N

La

)3

, (5)

where m is the atomic mass. We set ~ = 1 and temper-
ature to zero from now on.

The equality of fermionic and bosonic results does not

apply to the momentum distribution,

n̂(p) =
1

N

∑

ll′

e−ip(l−l′)a〈b†l bl′〉. (6)

Nevertheless, the Bose-Fermi mapping allows for a rather
simple exact calculation of the disorder-averaged boson
momentum distribution. Using the Jordan-Wigner trans-
formation and Wick’s theorem, Eq. (6) for a given dis-
order realization can be written as a Töplitz determi-

nant. For l > l′, we find 〈b†l bl′〉 = 2l−l′−1det[G(l,l′)],

where the (l− l′)× (l− l′) matrix has the entries G
(l,l′)
i,j =

〈c†l′+icl′+j−1〉−δi,j−1/2, see also Ref. [23]. For fixed disor-

der {hl} and arbitrary trap potential, we compute Eq. (6)
numerically and subsequently average over different dis-
order realizations. This is a much faster and more reliable
procedure than directly studying interacting dirty bosons
[12, 14], since we have to deal with a single-particle prob-
lem only. Let us first consider 87Rb atoms in a harmonic
axial trap with b = 0.01J , see Eq. (1). The overall energy
scale is set by J , which can be tuned in optical lattices
over a wide range [23]. We show results for N = 50 atoms
in Figure 1. Clearly, disorder has a significant effect on
the momentum distribution. In particular, some weight
is transferred to large momenta, and the zero-momentum
peak decreases, see inset in Fig. 1. The momentum dis-
tribution has already been measured for bosonic atoms
in the clean 1D limit using Bragg spectroscopy [28], and
through imaging of the atom cloud after sudden removal
of the trap potential [23]. Applying these techniques to
the disordered case would allow to test our predictions.
Note that these changes in the momentum distribution
reflect Anderson localization physics, and should differ
even qualitatively in the small-U limit.
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FIG. 1: (Color online) Momentum distribution (6) for several
∆ and N = 50 rubidium atoms in a harmonic axial trap. For
the disorder average, at most 300 disorder realizations were
sufficient for convergence, and L was chosen large enough to
ensure L-independence. Note the linear-logarithmic scale. In-
set: Zero-momentum peak as a function of disorder strength.

For a clean homogeneous (b = 0) system, the bo-
son momentum distribution is well-known to possess a
n̂(p→ 0) ∝ |p|−1/2 singularity [18, 19], corresponding to
the one-particle density matrix ρ(x, x′) ∝ |x−x′|−1/2 for
|x−x′| → ∞. In the thermodynamic limit, Bose-Einstein
condensation is absent, but there is quasi-long-range or-
der characterized by the p−1/2 law. Remarkably, disorder
has a fundamental effect on this singular behavior. The
reasoning of Ref. [29] allows to prove that n̂(0) now must

remain finite. The full momentum distribution n̂(p) is
obtained numerically and shown for a ring with periodic
boundary conditions in Fig. 2. The complete destruction
of quasi-long-range order by disorder is clearly visible,
and the momentum distribution becomes remarkably flat
for sufficiently strong disorder.

The Bose-Fermi mapping can also be established via
the low-energy theory [13], which is a perhaps more nat-
ural description for magnetically trapped or micro-chip
confined atoms, where no underlying lattice is present
[7]. Focussing on circular or hard-wall axial trap poten-
tials (b = 0), corresponding to periodic or open bound-
ary conditions, the resulting fermionic theory coincides
with the continuum limit (a → 0) of Eq. (3). For a
generic incommensurate filling N/L, we decompose the
operator cl into right- and left-moving (ψR, ψL) compo-
nents with momenta k ≈ ±kF ≡ ±πN/La according
to cl ≃ √

a
[

eikF xψR(x) + e−ikF xψL(x)
]

, where x = la.
Correspondingly, the random on-site energies hl can be
decomposed into a slow part and a term varying on
a microscopic scale, hl ≈ µ(x) + (ξ(x)e−i2kF x + h.c.).
For hl = 0, we have a 1D massless Dirac Hamiltonian,
ξ(x) produces a complex-valued random mass term, and
µ(x) a random chemical potential. Additional disor-
der in the Jl can be included in µ(x) and ξ(x), and
with bispinor ψ = (ψR, ψL), the continuum model reads
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FIG. 2: (Color online) Momentum distribution on a ring for
various ∆, N/L = 1/2, with L = 600. The ∆ = 0 result is

analytical [18, 19] and shows the p−1/2 scaling at p → 0. Note
the double-logarithmic scale. The inset shows that for finite
∆ and L ≥ 200, finite-size effects are negligible.

H =
∫

dxψ†ĥψ with

ĥ = −ivFσ
z∂x + µ(x) + ξ(x)σ+ + ξ∗(x)σ−, (7)

where vF = 2aJ sin(kF a) is the Fermi velocity. Here the
2× 2 matrices σ± = (σx ± iσy)/2 are defined in terms of
Pauli matrices σi acting in spinor space. Equation (7) is
the standard non-interacting Hamiltonian used to study
Anderson localization in 1D conductors [27, 30, 31, 32].
The forward scattering term µ(x) can be eliminated by a
gauge transformation and does not affect the quantities
of interest below. (This is not possible on half-filling,
where ξ(x) is real-valued and important differences arise
[27].) Equation (2) then implies

ξ(x) = ξ∗(x) = 0, ξ∗(x)ξ(x′) =
vF

2τ
δ(x− x′), (8)

with τ = ℓ/vF for mean free path ℓ, which also gives
the localization length. We only discuss weak disorder,
kF ℓ ≫ 1, where the bosonic system is in the Bose glass
phase [1, 13]. The average DoS is simply ρ̄(ǫ) = 1/(πvF )
[27], and we turn to the LDoS probability distribution.

The bosonic LDoS (from now on normalized to the
average DoS) can be expressed in terms of eigenstates
Ψi(x) with energy ǫi of the Hamiltonian (7), ρ(ǫ, x) =
πvF

∑

i |Ψi(x)|2δ(ǫ − ǫi). In a finite and closed sample,
these levels are discrete and sharp, and it is necessary
to regularize the δ-functions. A natural way [31] is to
smear out the δ-peaks, ρf (ǫ, x) =

∫

dǫ′ρ(ǫ′, x)f(ǫ−ǫ′), for
instance by using a Lorentzian weight function, fη(ǫ) =
η/(π[ǫ2 + η2]). Physically, the width η is determined
by inelastic processes, finite sample lifetimes, and escape
rates of the trap. For an infinite sample, ρf then follows
the inverse Gaussian probability distribution [31]

W (ρf ) =

√

4ητ

πρ3
f

e−4ητ(ρf−1)2/ρf , (9)

which decreases exponentially both as a function of ρf

for ρf → ∞, and as a function of 1/ρf for ρf → 0. The
anomalously small probability to find small ρf implies a
Poisson distribution of the energy levels, indicating the
absence of correlations among close-by levels. This is
obvious in the fermionic picture, where energy levels of
localized non-overlapping states cannot repel each other.
In the strongly interacting bosonic picture, where well-
defined single-particle states need not exist, this is a much
less obvious result. Let us average ρf (ǫ, x) also over a
spatial range δ determined by the spatial resolution, e.g.,
the wavelength of a probe laser. For 1/kF ≪ δ ≪ ℓ and
4ητ ≪ 1, the resulting LDoS ρ̃(ǫ, x) is independent of δ
and follows the distribution [31]

W̃ (ρ̃) =
ητ

π

∫ ∞

4

dt t sin(πητt)

(

t+ 4

t− 4

)ητt

e−
1

2
ητρ̃t2 ,

(10)
which is a somewhat narrower distribution than W (ρf ).
Both Eqs. (9) and (10) remain valid also in a finite closed
sample, as long as the distance to any boundary is large
compared to ℓ. The LDoS can be measured using imaging
methods or two-photon Bragg spectroscopy [33, 34], thus
allowing for experimental checks.

We then briefly discuss the bosonic LDoS correlations
R(ω, x) at different energies and locations,

R(ω, x− x′) = ρ̃(ǫ, x)ρ̃(ǫ+ ω, x′) − 1, (11)

which equal the fermionic ones computed in Ref. [30].
The correlator (11) describes fluctuations in the spec-
tral statistics related to energy level repulsion or at-
traction. It is translationally invariant and independent
of the energy ǫ after the disorder average [32]. Since
R(ω, x = x′) = 0 [30, 31, 35], we consider kF |x− x′| ≫ 1
and ωτ ≪ 1, where the correlator (11) is finite, with the
limiting values R = −1/3 for small x and R = 0 for
x → ∞. In addition, there is a deep dip for ℓ ≪ x ≪
z0(ω) = 2ℓ ln(8/ωτ), where

R(ω, ℓ≪ x≪ z0) = −1 +
π7/2e−x/4ℓ

16(x/ℓ)3/2
. (12)

Here z0(ω) is the distance two nearly degenerate local-
ized states must have to generate the energy splitting ω.
The dip (12) implies that two states with nearly equal
energies occupy with high probability locations far away
from each other. Nevertheless, the wavefunctions of these
states must have an appreciable overlap for short dis-
tances, x . ℓ. For x & z0, the LDoS correlations ap-
proach the uncorrelated limit,

R(ω, x & z0) =
1

2

[

erf

(

x− z0

2
√
z0ℓ

)

− 1

]

, (13)

where erf(x) denotes the error function. These features
illustrate that the localized states are centered on many
defects, leading to a complicated quantum interference
phenomenon. As a consequence, close-lying levels do not
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obey the usual Wigner-Dyson spectral correlations found
in granular metals [32], but instead follow the Poisson
statistics of uncorrelated energy levels. It would obvi-
ously be quite exciting to probe (11) experimentally. For
ultracold bosonic atoms, this is possible using stimulated
two-photon Bragg scattering spectroscopy [33]. Simi-
larly, one can compute the (Fourier-transformed) bosonic
density-density correlations K(x− x′, ω),

ReK(x, ω+i0) = π

∫

dǫ nF (ǫ)[1−nF (ǫ+ω)] p(x; ǫ+ω, ǫ),

(14)
where nF (ǫ) is the Fermi function, and the fermionic
spectral function

p(x− x′; ǫ+ ω, ǫ) =
∑

ij

δ(ǫ+ ω − ǫi)δ(ǫ− ǫj)Ψi(x)Ψ∗
i (x

′)Ψ∗
j (x

′)Ψj(x)

is a phase-sensitive quantity without a direct bosonic im-
age. This nicely illustrates that the Bose-Fermi mapping
opens otherwise unavailable routes for calculation. For
x & z0 [30],

p(x; ǫ+ ω, ǫ) = −
exp

[

− (x−z0)
2

4z0ℓ

]

2(πvF )2
√

πz0/ℓ
, (15)

while for x . z0, to very good approximation [30], p(x; ǫ+
ω, ǫ) = (πvF )−2(R(ω, x) + 1).

To conclude, we have provided exact results for
strongly repulsive dirty bosons in 1D, which can be ob-
tained from a Bose-Fermi mapping to non-interacting dis-
ordered fermions. A Bose-glass phase is thereby mapped
to an Anderson-localized fermionic phase. A similar map-
ping is also available for arbitrary interaction strength,
but involves interacting fermions with a non-standard
contact interaction [36]. For strong (but finite) repulsive
bosonic interactions, the weak fermionic interactions can
safely be treated on a perturbative level [13] and cause no
substantial differences to our predictions. Finally, other
quantities not discussed here can also be inferred, e.g.,
the crossover from short-time diffusive wave-packet ex-
pansion to localized behavior at long times [35].
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