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Strong stability and the Cayley transform

G. Halikias1

Abstract: The general notion of “strong” stability for internal autonomous system descriptions has

been recently introduced for continuous and discrete-time systems. This is a stronger notion of stability

compared to alternative definitions (asymptotic, Lyapunov), which prohibits systems described by

natural coordinates to have overshooting responses, for arbitrary initial conditions in state-space. The

paper reviews three refined notions of strong stability, along with the necessary and sufficient conditions

corresponding to each notion. Using the Cayley transformation it is shown that the notions in the two

domains are essentially equivalent and that the strong stability conditions can be transformed from

one domain to the other in a straightforward way.

Keywords: Strong stability, Cayley (bilinear) transformation

1. Introduction

Stability is a crucial system property that has been extensively studied from many aspects [1], [2],

[5], [7]. The paper reviews a new definition of stability, defined as “strong stability”, which has been

studied independently for both continuous and discrete systems [3], [4], [8].

Essentially, strong stability prohibits “overshoots” in the autonomous trajectory of the system, defined

in state-space, for arbitrary initial conditions. Non-overshooting response is a desirable property in

many applications and can be considered as a special case of constrained control. The strong stability

property is also related to low degree of eigen-frame skewness (and hence low sensitivity of eigenvalues

to data uncertainty in stabilisation problems [3], [8]) and the transient response of a system, e.g. its

overshooting behaviour, initial exponential growth or its transient energy [6], [10], [11] and could prove

useful for analysing stability properties of systems under switching regimes [9].

The Cayley transform is and extension to matrices of the conformal mapping: f(z) = (z−1)(z+1)−1,

z ̸= −1. It has been used extensively in Control Systems as a tool for translating asymptotic/Lyapunov

notions of stability for state-space systems between the continuous and discrete domains. This can

also be extended to the notion of strong stability introduced earlier.

The paper reviews three refined notions of strong stability in the discrete and continuous domains,

along with sets of necessary and sufficient conditions corresponding to each notion in each domain.

Using the Cayley transformation it is shown that the two notions of strong stability are essentially

equivalent and that the strong stability conditions can be transformed from one domain to the other

in a straightforward way. Note that this applies to each of the three refined strong stability notions,

so that the correspondence between the two domains is complete. This result is important for control

synthesis problems, since intuition and strong stabilisation conditions (e.g. applying to state or output
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feedback problems) can be transferred from one domain to the other. In this way, numerically ill-

conditioned problems/algorithms in one domain may be solved more effectively when transformed to

the other domain.

The structure of the paper is as follows. Section 2 reviews the notions of strong stability in the

continuous and discrete domains, and the corresponding sets of necessary and sufficient conditions.

Section 3 shows that, using the Cayley transform, the strong stability conditions described in section

2 can be translated between the continuous and discrete domains in a straightforward way. In this

way, certain aspects of the definitions of strong stability in the two domains are illuminated.

The notation of the paper is standard and is summarized here for convenience. N , R and C denote

the sets of natural, real and complex numbers, respectively. The set of non-negative integers is

N0 = N ∪ {0}. The set of complex numbers with negative (non-positive) real part is denoted by C−
(C̄−). Rm×n denotes the space of allm×n real matrices. If A is a square matrix, then λ(A) denotes the

spectrum of A and ρ(A) is the spectral radius of A. ∥ · ∥ denotes the Euclidian norm of a vector or the

spectral norm of a matrix depending on context. A positive definite matrix A (positive semi-definite,

negative definite, negative semi-definite) is denoted as A > 0 (A ≥ 0, A < 0, A ≤ 0, respectively). The

(right) null-space of a matrix A is denoted by Nr(A), while the range (column-span) of A is denoted

as Range(A). The (right) nullity of A is null(A) = dim(Nr(A)). Finally, a matrix A ∈ Rn×n is called

Hurwitz if λ(A) ⊆ C− and Schur if ρ(A) < 1.

2. Strong Stability of Discrete and Continuous Systems

Consider the autonomous linear time-invariant (LTI) discrete-time system:

Σd(A) : xk+1 = Axk, k ∈ N0, x0 ∈ Rn

Σd(A) is said to be Lyapunov-stable if for every ϵ > 0 there exists δ = δ(ϵ) > 0 such that ∥xk∥ < ϵ

for all k ∈ No whenever ∥x0∥ < δ. Σd(A) is asymptotically stable, if it is Lyapunov-stable and there

exists η > 0 such that, if ∥x0∥ < η then limk→∞ ∥xk∥ = 0. For discrete LTI systems simple necessary

and sufficient conditions can be derived for these two fundamental notions of stability: Σd(A) is

asymptotically stable if and only if ρ(A) < 1 [1]. Σd(A) is Lyapunov-stable if and only if ρ(A) ≤ 1

and every eigenvalue that lies on the unit circle has equal algebraic and geometric multiplicity. The

equivalent conditions for continuous-time systems Σc(A) : ẋ = Ax(t), x(0) = x0 ∈ Rn, are: (i)

λ(A) ⊆ C− (asymptotic stability) and, (ii) λ(A) ⊆ C̄− and any eigenvalue which lies on the imaginary

axis has equal algebraic and geometric multiplicity (Lyapunov stability). In discrete-time strong

stability is defined as follows:

Definition 2.1: The system Σd(A) is:

(i) Strong Lyapunov stable (SLS) if and only if ∥xk+1∥ ≤ ∥xk∥ for all k ∈ No.

(ii) Strong asymptotically stable in the wide sense (SAS w.s.) if and only if it is asymptotically stable

and ∥xk+1∥ ≤ ∥xk∥ for all k ∈ No.

(iii) Strong asymptotically stable in the strict sense (SAS s.s.) if and only if ∥xk+1∥ < ∥xk∥ for all

k ∈ No : xk ̸= 0}.

2



The following Theorem gives simple necessary and sufficient conditions for the three notions of strong

stability in discrete-time:

Theorem 2.1: The system Σd(A) is:

(i) SLS if and only if ∥A∥ ≤ 1.

(ii) SAS w.s. if and only if either one of the following two equivalent contitions hold: (a) ∥A∥ ≤ 1

and ρ(A) < 1; (b) ∥A∥ ≤ 1 and the pair (A, In −AtA) is observable.

(iii) SAS s.s. if and only if ∥A∥ < 1.

The corresponding notions and conditions of strong stability in continuous time are as follows:

Definition 2.2: The system Σc(A) : ẋ(t) = Ax(t), x(0) = x0 ∈ Rn is:

1. Strong Lyapunov stable (SLS) if ∥x(t)∥ ≤ ∥x(t0)∥, ∀t > 0 and ∀x0 ∈ Rn.

2. Strong asymptotically stable in the wide sense (SAS w.s.) if ∥x(t)∥ < ∥x0∥ for all t > 0 and

x0) ̸= 0.

3. Strong asymptotically stable in the strict sense (SAS s.s.) if d∥x(t)∥
dt < 0 for all t ≥ 0 and x0 ̸= 0.

�

Strong Lyapunov stability does not allow state trajectories to exit (at any time t > 0) the (closed)

hyper-sphere with centre the origin and radius r0 = ∥x0∥ (although motion on the boundary of the

sphere ∥x(t)∥ = r0 is allowed, e.g. an oscillator’s trajectory). Strong asymptotic stability (s.s.)

requires that trajectories enter each hyper-sphere ∥x(t)∥ = r ≤ r0 from a non-tangential direction,

whereas for systems which are strong asymptotically stable (w.s.), tangential entry is allowed. For

examples of each type of strong stability see [8].

Theorem 4.2: The system Σc(A) is:

(i) SLS if and only if A+At ≤ 0.

(ii) SAS w.s. if and only if one of the following two equivalant conditions hold: (a) A+At ≤ 0 and

A is Hurwitz; (b) A+At ≤ 0 and the pair (A,A+At) is observable.

(iii) SAS s.s. if and only if A+At < 0.

Note also that, both for the discrete and continuous systems, SAS s.s. implies SAS w.s. which implies

SLS. Table 2.1 below summarizes the necessary and sufficient conditions for each strong stability

notion in the two domains, along with the standard conditions for Lyapunov and asymptotic stability.

Continuous-time: ẋ = Ax Discrete-time: xk+1 = Axk

Lyapunov stability Re(λi(A)) ≤ 0 for all i, ρ(A) ≤ 1,

simple Jordan structure simple Jordan structure

for any λi(A) on jω-axis for any λi(A) with |λi(A)| = 1

Asymptotic stability Re(λi(A)) < 0 for all i ρ(A) < 1

Strong Lyapunov stability A+At ≤ 0 ∥A∥ ≤ 1

Strong asymptotic stability (w.s.) A+At ≤ 0 and Re(λi(A)) < 0, or ∥A∥ ≤ 1 and ρ(A) < 1, or

A+At ≤ 0 and (A,A+At) obs. ∥A∥ ≤ 1 and (A, I −AtA) obs.

Strong asymptotic stability (s.s.) A+At < 0 ∥A∥ < 1
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Table 1: Summary of stability conditions

3. Strong Stability and Cayley transform

In this section the Cayley (bilinear) transformation is introduced. It is shown that, using the

transformation, the strong stability conditions described in section 2 can be can be translated from

the discrete to the continuous domain (and vive versa) in a straightforward way. If A ∈ Rn×n with

−1 /∈ λ(A) the Cayley transformation is defined by Â = (A − In)(A + In)
−1. The properties of the

transformation are summarized next:

Theorem 3.1: If (λ, ξ) is an eigenvalue/(right) eigenvector pair of A, then
(
λ−1
λ+1 , ξ

)
is the

corresponding eigenvalue/(right) eigenvector pair of Â. Conversely, if (λ, ξ) is an eigenvalue/(right)

eigenvector pair of Â, then
(
1+λ
1−λ , (A+ In)

−1ξ
)
is an eigenvalue/(right) eigenvector pair of A.

Proof: Follows by direct calculations. �

Theorem 3.2: Consider the systems discrete and continuous systems Σd(A) and Σc(Â), respectively,

where −1 /∈ λ(A) and Â = (A− I)(A+ I)−1. Then,

(i) Σd(A) is SAS (s.s.) if and only if Σc(Â) is SAS (s.s.).

(ii) Σd(A) is SAS (w.s.) if and only if Σc(Â) is SAS (w.s.); and

(iii) Σd(A) is SLS if and only if Σc(Â) is SLS.

Proof: Part (i) follows from Theorems 2.1(iii) and 2.2(iii) and the following sequence of equivalent

statements:

Σc(Â) is SAS (s.s.) ⇔ (I −A)(I +A)−1 + (I +At)−1(I −At) > 0

⇔ (I +At)−1{(I −At)(I +A) + (I +At)(I −A)}(I +A)−1 > 0

⇔ (I +At)−1{2I − 2AtA}(I +A)−1 > 0

⇔ AtA < I ⇔ ∥A∥ < 1 ⇔ Σd(A) is SAS (s.s.)

An almost identical sequence of arguments shows that Â + Ât ≤ 0 ⇔ ∥A∥ ≤ 1 proving part (iii),

using Theorems 2.1(i) and 2.2(i). Finally, part (ii) follows from part (iii), the first set of (equivalent)

conditions from Theorems 2.1(ii) and 2.2(ii) and the fact that under the Cayley transformations the

eigenvalues of A and Â are related as:

λi(Â) =
λi(A)− 1

λi(A) + 1
, i = 1, 2, . . . , n

(see Theorem 3.1). Thus, for each i = 1, 2, . . . , n, Re(λi(A)) < 0 ⇔ |λi(Â)| < 1 and hence A is

Hurwitz if and only if Â is Schur. �

Next we investigate in more detail the properties of the transformation when ∥A∥ = 1 and clarifies

the conditions under which the system is SAS (w.s.):

Theorem 3.3: Let A ∈ Rn×n with −1 /∈ λ(A). Define Â = (A− I)(A+ I)−1. Then:

(i) ∥A∥ = 1 if and only if Â+ Ât ≤ 0 and Â+ Ât is singular.
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(ii) Suppose that ∥A∥ = 1. Then null(I − AtA) = null(Â + Ât). Let A have a singular value

decomposition A = U1V
t
1 +U2Σ2V

t
2 with [U1 U2] and [V1 V2] orthogonal and Σ2 = diag(Σ2) such

that ∥Σ2∥ < 1. Then Nr(Â+ Ât) = Range(V1 + U1).

(iii) Suppose that ∥A∥ = 1. Then (A, I −AtA) is observable if and only if (Â, Â+ Ât) is observable.

Further, any unobservable mode of (A, I − AtA) has modulus one and corresponds to an

unobservable mode of (Â, Â+ Ât) which is imaginary.

Proof: Part (i) follows immediately from the proof of Theorem 3.1. (ii) Introduce the singular value

decomposition A = U1V
t
1 + U2Σ2V

t
2 with [U1 U2] and [V1 V2] orthogonal and Σ2 = diag(Σ2) such

that ∥Σ2∥ < 1. Then AV1 = U1, A
tU1 = V1 and I − AtA = V2(I − Σ2

2)V
t
2 which implies that

Nr(I −AtA) = Range(V1). A straightforward calculation also shows that:

Â+ Ât = 2(I +At)−1(I −AtA)(I +A)−1 = 2(I +At)−1V2(I − Σ2
2)V

t
2 (I +A)−1

Thus null(I −AtA) = null(Â+ Ât) and

Nr(Â+ Ât) = Range((A+ I)V1) = Range((At + I)U1) = Range(V1 + U1)

as required. (iii) If (A, I −AtA) is unobservable there exists λ ∈ C and ξ ̸= 0 such that

(λI −A)ξ = 0 (1)

and

(I −AtA)ξ = 0 (2)

Equation (2) implies that ξ ∈ Nr(I−AtA) and hence from the proof of part (ii) ξ = V1θ, θ ̸= 0. Then

equation (1) gives:

Aξ = λξ ⇒ (U1V
t
1 + U2Σ2V

t
2 )V1θ = λV1θ ⇒ U1θ = λV1θ

Note that:

∥θ∥ = ∥U1θ∥ = ∥V1θ∥ ⇒ |λ| = 1

Since from part (ii) Nr(Â+ Ât) = Range(U1 + V1),

(Â+ Ât)(V1 + U1)θ = 0 ⇒ (1 + λ)(Â+ Ât)V1θ = 0 ⇒ (Â+ Ât)ξ = 0 (3)

since λ ̸= −1. From Theorem 3.1 it also follows that

Âξ = σξ where σ =
λ− 1

λ+ 1
(4)

in which Re(σ) = 0. Equations (3) and (4) imply that the pair (Â, Â+Ât) is unobservable. Conversely

suppose that (Â, Â+ Ât) is unobservable and there exists a pair (λ, ξ), ξ ̸= 0 such that Âξ = λξ and

(Â + Ât)ξ = 0. Thus ξ ∈ Nr(Â + Ât) and hence from part (ii) ξ can be written as ξ = (A + I)V1ψ,

ψ ̸= 0. Thus, from part (ii):

(I −AtA)(A+ I)−1ξ = V2(I − Σ2
2)V

t
2 (A+ I)−1ξ = V2(I − Σ2

2)V
t
2V1ψ = 0
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Further, from Theorem 3.1:

A(A+ In)
−1ξ =

(
1 + λ

1− λ

)
(A+ In)

−1ξ

and hence (A, I −AtA) is unobservable. �

Remark: If ∥A∥ = 1 then A is necessarily a Lyapunov matrix (i.e. all eigenvalues have modulus less

than or equal to one, and any eigenvalue with modulus equal to one has equal algebraic and geometric

multiplicity) and hence Σd(A) is (at least) LSS. Since ρ(A) ≤ ∥A∥, in this case we have either ρ(A) < 1

(in which case Σd(A) is SAS (w.s.)) or ρ(A) = 1 (in which case Σd(A) is just LSS and not SAS (w.s.));

When ∥A∥ = 1 any eigenvalue of A with modulus one must be unobservable through I−AtA [4]; thus

when (A, I −AtA) is observable no eigenvalues with modulus one can exist. Theorem 3.3 shows that

the corresponding conclusions can be drawn for continuous-time systems.

4. Conclusions

It has been shown that the Cayley transformation can be applied to translate strong stability conditions

between the discrete and continuous domains, for all three refined notions of strong stability defined

in the literature. This can help to unify the presentation of the theory, simplify the results related to

the solution of strong stabilization problems in the two domains and improve the numerical properties

of an ill-conditioned problem/algorithm defined in one domain by transforming it to the other.
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