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Asian Options with Jumps
A Closed-Form Formula

In this article Marena, Roncoroni, and
Fusai derive a closed-form formula for
the fair value of call and put options
written on the arithmetic average of
security prices driven by jump diffu-
sion processes displaying (possibly pe-
riodical) trend, time varying volatility,
and mean reversion. The model al-
lows one for jointly fitting quoted fu-
tures curve and the time structure of
spot price volatility. These result ex-
tends the no-jump case put forward in
[Fusai, G., Marena, M., Roncoroni, A.
2008. Analytical Pricing of Discretely
Monitored Asian-Style Options: The-
ory and Application to Commodity Mar-
kets. Journal of Banking and Finance
32 (10), 2033-2045]. A few tests based
on commodity price data assess the im-
portance of introducing a jump com-
ponent on the resulting option prices.

Marina MARENA
Andrea RONCORONI
Gianluca FUSAI

I
n Fusai, Marena, and Roncoroni (2008), we put
forward a procedure for pricing Asian-style op-
tions under the following assumptions:

- Price average is arithmetically computed on
market quotes monitored over a finite num-
ber of points in time, say 0, ∆, 2∆, ..., n∆: this
method is referred to as “discrete monitor-
ing”.19

- Underlying spot price dynamics are driven by
continuous diffusion processes, say (St)t≥0,
possibly exhibiting mean reversion, time vary-
ing trend, and time varying volatility.

- Asian-style options are either puts or calls,
including the cases of fixed as well as floating
(i.e., depending on the underlying asset quote)
strike price.

Under these hypotheses, we devised a new method
to calculate the exact analytical expression for the
moment generating function of the joint pair con-
sisting of commodity spot price Sn∆ computed at
the option’s maturity T := n∆ and the weighed
arithmetic average ∑

n
j=0 αjSj∆ over the option life-

time. That result allowed us to derive analytical
expressions for the relevant transforms20 of option
prices with respect to the strike price. Finally, us-
ing the Fourier inversion method, we got to semi-
analytical expressions for a large class of Asian-
style derivatives.

To the best of our knowledge, the resulting
prices are the sole closed-form formulae for op-
tions written on arithmetic averages (up to inverse
transformation). This comes as opposed to the large
number of numerical approximations proposed in
the financial literature for those securities.

This article aims at extending our previous re-
sult to the case of spot price dynamics driven by
a 2-factor jump-diffusion process. We manage to
preserve the ability of the model to reproduce mean
reversion, time varying trend, as well as time vary-
ing volatility. However, we allow for the underlying
variable to exhibit discontinuous paths, as is often
the case in several financial markets, in particular
for energy sources and other commodities.

The rest of the article is organized as follows.
The first part states the problem; then there is the
setting of the model and the computation of the
relevant moment generating function. The result-

19Monitoring dates need not be evenly spaced.
20Laplace transform for fixed strike options; Fourier transform for floating strike options.

Autumn 2013
51



EXOTIC DERIVATIVES

Option Payoff

Fixed Strike max Avgn − k, 0

Floating Strike max Sn∆ − Avgn − k, 0

Option Underlying Variable

Standard Avgn := ∑
n
j=0

1
n+1 Sj∆

Volume weighed Avgn := ∑
n
j=0

Vj

∑i Vi
Sj∆

TABLE 1: Payoff functions of Asian-style options under continuous and discrete monitoring.

ing 3-step algorithm producing options prices is
illustrated in the section after and its followed by
a sensitivity analysis of our formulae; conclusions
provide with a few indication about directions for
future research work on the subject.

Statement of the Problem

We consider a time horizon [0, T] representing the
option’s lifetime: 0 is the valuation date, while T
is the time of expiration. At time T, the option
pays out an amount that is contingent upon the
realization of a price average Avgn := ∑

n
j=0 αjSj∆

(with ∑ αj = 1) of discretely monitored spot prices
S0, S∆, ..., Sn∆. Specifically, we consider pay-off
structures as reported in Table 1. As an example,
we may consider Asian-style options traded in gas
markets: at maturity, the position pays out the pos-
itive discrepancy, if any, between the last gas quote
and the average of daily monitored gas prices (i.e.,
∆ = 1 day, under the assumed day-count conven-
tion), each one being weighed by the proportion of
actual delivery Vj over the whole size of physically
traded volume ∑i Vi. This case nests our setting
provided that αj = Vj/ ∑

n
i=1 Vi, where Vi represents

delivered volume at time i∆, for i = 0, ..., n.

The option can be priced following a 3-step al-
gorithm devised in Fusai, Marena, and Roncoroni
(2008), which we now sketch for the reader’s con-
venience:

Step 1. Compute the moment generating
function (MGF) of the underlying spot price
S at maturity T = n∆ conditional to S0 = s0

at current time 0:

γ → v0,s0
(γ) := E0

[
e−(γSn∆)

]

Step 2. Using the main theorem in Fusai,
Marena, and Roncoroni (2008), calculate the

MGF of the pair
(

Sn∆, ∑
n
j=0 αjSj∆

)
by recur-

sion:

(γ,µ)→vn,∆
0,s0

(γ,µ):=E0


e

−
(

γSn∆+µ ∑n
j=0

αjSj∆

)


Notice that v0,· (γ) = νn,∆
0,· (γ, 0).

Step 3. Consider a contingent claim paying
off (YT − k)+ at time T, where k is the strike
and Y is a nonnegative Markovian stochastic
process. This form includes plain vanilla calls
(YT = Sn∆) and standard fixed strike Asian-

style options (YT =
n

∑
j=0

αjSj∆) struck at k. The

time 0 arbitrage-free option price seen as a
function of the strike price k reads as:

k→CT
0,y0

(k)=e−rT
∫ +∞

k (y−k) fYT
(y)dy

where fYT
denotes the risk-neutral probabil-

ity density of YT conditional to Y0 = y0.
Provided that the MGF of YT exists, define
the Laplace transform L of the option price
CT

0,y0
(k) with respect to the strike price k as:

λ→L[CT
0,x(·)](λ):=

∫ +∞

0 e−λkCT
0,x(k)dk

=e−rT

(
E0[e−λYT ]

λ2 +
E0(YT)

λ − 1
λ2

)

The option price can be written as:

CT
0,x(k)

=e−rT

(
L−1

[
E0[e−λYT ]

λ2

]
(k)+E0(YT)−k

)

where:

- Expected values E0

[
e−λYT

]
and E0 (YT)

can be computed based on the output at
step 2;

- Transform inversion can be executed us-
ing the Fourier inversion method (see
Fusai and Roncoroni (2008))

We refer to a table reported in Fusai, Marena,
and Roncoroni (2008) for exact expressions
across the variety of cases under concern.
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An appropriate selection of γ, µ, and αj allows
one to cover the cases of standard European, fixed
strike Asian-style, fixed strike volume weighed
Asian-style, and floating strike standard Asian-style
options.

The goal of this article is to tune this procedure
in a way to encompass the case of underlying prices
driven by a jump-diffusion process. The key point
here is that steps 1 to 3 above stated do occur in
automatic cascade, meaning that each step directly
follows from the previous one. Consequently, we
just need to show that step 1 delivers closed-form
output under jump dynamics for the spot price and
the rest follows with no particular change.

Model Setting

We consider price dynamics under a risk-neutral
probability P

∗. They are assumed to exhibit mean
reversion to (possibly) time varying trend, time
varying volatility, and a jump component of Pois-
son type, leading to a general expression:

dSt = β (ηt − St) dt + σt

√
StdWt + dJt, (8)

where:

- β is a mean reversion constant frequency ex-
pressed in 1/time units;

- (ηt)t≥0 is a deterministic time-varying price
trend which spot quotes revert to;

- (σt)t≥0 is a deterministic time-varying spot

price volatility parameters: squares σ2
t rep-

resents the time t variance of instantaneous
price variations per unit of price value St and
is expressed in 1/time units;

- (Wt)t≥0 is a standard Brownian motion;

- (Jt)t≥0 is a compound Poisson process ∑
Nt
i=1 Yi

with the following properties:

- Nt, Yi’s, and Wt are all mutually stochas-
tically independent;

- Jump intensity λt is deterministic, time
varying, and bounded by a constant
from above;

- Jump magnitudes Yi are i.i.d. copies
of an exponential variable Y with mean
ξ > 0;

-
(

Jt

)
t≥0

is the compensated martingale process

defined as: dJt := dJt − ξλtdt.

Notice that drift components β and η are meant
under (a) risk-neutral probability: in principle they
cannot be statistically estimated on time series of ob-
served spot prices, but they ought to be calibrated
on plain vanilla option quotes via pricing formulae
as those we have described in the previous section.
In particular, drift term ηt can be selected in a way
that model (8) fits an observed forward price curve

(F0,T , T ≥ 0) quoted in the market, i.e.,

E
∗
0 (ST) = F0,T , (9)

where the ∗ superscript indicate that expectation
is computed under P

∗. By inserting the integral
version of dynamics (8) into this formula, we come
up to identifying the risk-neutral trend function:

ηT = F0,T +
1

β
∂T F0,T (10)

ensuring the claimed fitting of observed forward
curve.

Spot Price MGF

We now compute an analytical expression for the
MGF of the underlying spot price St+∆, condi-
tional to the market information available at time t,
which is formally represented by the σ-algebra FS

t
generated by the price process (St)t≥0 up to time
t ∈ [0, T].

Under spot price dynamics (8), the MGF of the
spot price St+∆ given St = x is:

νt,x (γ) = e−[At(∆;γ)x+Bt(∆;γ)]

where:

At (∆; γ) =
γe−β∆

1 + γ
2

∫ t+∆

t σ2
ue−β(t+∆−u)du

, (11)

Bt (∆; γ) = γF0,t+∆ − F0,t At (∆; γ) +

− 1

2

∫ t+∆

t
F0,uσ2

u Au (∆; γ)2 du+

− ξ2
∫ t+∆

t
λu

Au (∆; γ)2

1 + ξAu (∆; γ)
du

(12)

Proof. Consider the MGF νt,x (γ) as a function
v (t, x) for fixed ∆ and γ. Similarly, define A (t)
and B (t) as At (∆; γ) and, respectively, Bt (∆; γ).
Function v solves the partial integro-differential
equation:




∂tv (u, x) + [β (ηu − x)− λuξ] ∂yv (u, x)

+
1

2
σ2

uy∂yyv (u, x) +

+ λuEu [v (u, x + Y)− v (u, x)] = 0

v(t+∆, x) = e−γx

on [t, t + ∆]× R.
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We consider a solution with exponential affine
structure:

v (t, x) = e−A(t)x−B(t)

which would lead to the following ODE system for
functions A (t) and B (t):

{
−A′ (t) + βA (t) + 1

2 σ2
t A (t)2 = 0

−B′ (t)− [βηt − ξλt] A (t)− λt
ξA(t)

1+ξA(t)
= 0

with boundary conditions A (t + ∆) = γ and
B (t + ∆) = 0.

Let C (t) be defined by:

A (t) = eβtC (t) (13)

Plugging this expression into the relevant equation,
we have:

−
(

βeβtC (t) + eβt∂tC (t)
)
+

+ βeβtC (t) +
1

2
σ2

t e2βtC (t)2 = 0

C (t + ∆) = γe−β(t+∆)

By separating variables, we get to:

C (t) =
γe−β(t+∆)

1 + γ
2

∫ T
t σ2

ue−β(T−u)du

which, combined with assumption (13) , leads to
expression (11) .

From the second ODE, we have

B (t) = β
∫ t+∆

t
ηu A (u) du+

+ ξ

(
−
∫ t+∆

t
λu A (u) du +

∫ t+∆

t
λu

A (u)

1 + ξ A (u)
du

)

By using (10), we get to expression (12).

Remark. In absence of jumps, the stated Propo-
sition matches Lemma 5 in Fusai, Marena, and
Roncoroni (2008).

Pricing Algorithm

Combining the result obtained in the previous sec-
tion with the procedure described earlier, we come
up to the following algorithm for pricing Asian-
style call options:

Algorithm

- Step 0: Assume:

- A time interval [0, T], which refines into
n monitoring lags of length ∆, and a
strike index k;

- A continuously compounded rate of in-
terest r;

- Risk-neutral spot dynamics:

mean reversion freq. β

fwd curve (F0,s)0≤s≤T

volatility (σt)0≤t≤T

jump freq. (λt)0≤t≤T

average size of jump ξ

starting price s0





→





dSt=β(ηt−St)dt+σt
√

StdWt+dJt

Jt=∑
Nt
i=1 Yi , with Yi

i.i.d.∼ Exp(ξ−1)
E(dNt)=λtdt

S(0)=s0

- Step 1. Compute the MGF of S(j+1)∆ condi-
tional to Sj∆ = x, for j = n − 1, n − 2, ..., 0,
using formula:

γ → vj∆,x (γ) = e−[Aj∆(∆;γ)x+Bj∆(∆;γ)]

with:

Aj∆(∆;γ)= γe−β∆

1+
γ
2

∫ (j+1)∆
j∆

σ2
s e−β(t+∆−s)ds

Bj∆(∆;γ) =γF0,(j+1)∆−F0,j∆ Aj∆(∆;γ)+

− 1
2

∫ (j+1)∆
j∆ F0,u σ2

u Au(∆;γ)2du

−ξ2
∫ (j+1)∆

j∆ λu
Au(∆;γ)2

1+ξ Au(∆;γ)
du

- Step 2. Compute the MGF of the pair(
Sn∆, ∑

n
j=0 αjSj∆

)
conditional to S (0) = s0:

(γ,µ)→vn,∆
0,s0

(γ,µ)=e
−Λ0(∆;γ,µ)s0−∑

n−1
j=0

Bj∆(∆;Λj+1(∆;γ,µ))

where the function Λj (∆; γ, µ) satisfies the
recursive equation:

Λj(∆;γ,µ)=Aj∆(∆;Λj+1(∆;γ,µ))+µαj

for j = n − 1, n − 2, ..., 0, starting with:

Λn(∆,γ,µ)=γ+µαn

Here, Aj∆ and Bj∆ are as in Step 1.

- Step 3. The fixed-strike Asian-style call op-
tion price can be represented as:

CT
0,s0

(k)=e−rT


L−1




vn,∆
0,s0

(0,µ)

µ2


(k)+

n
∑

j=0
αj F0,j∆−k




(14)
Whenever analytical inverse of transform L
is not available, numerical evaluation is re-
quired. For instance, the Fourier-Euler algo-
rithm proposed in Abate and Whitt (1992)
leads to pricing formula (14) with:

L−1




vn,∆
0,s0

(0,µ)

µ2


(k)≈∑

M
m=0 (

M
m)2−mdN+m(k)
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FIGURE 2: Heating Oil futures price curve fitting October 31, 2010, market quotes (panel 1); price jump frequency function (panel

2).
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EXOTIC DERIVATIVES

Maturity # of mon. dates Avgn Jump mean size

3m 3 3.0628 0.3063
6m 6 3.0396 0.3040
9m 9 3.0195 0.3019
12m 12 3.0045 0.3005

TABLE 2: Parametric settings across varying times-to-maturity.

with:

dP(k) =
eal/2

2k
Re

(
vn,∆

0,s0

(
0, al

2k

)

µ2

)
+

+ eal /2

k ∑
P
j=1(−1)jRe




vn,∆
0,s0

(
0,

al+2jπi
2k

)

µ2




N and M are suitable constants, and al is lo-
cated to the right-hand side of the real part
of the largest singularity of the Laplace trans-
form, i.e., al > 0. We suggest to adopt the
following parametric setting: al = 18.4, M =
25, N = 15 (see Fusai and Roncoroni (2008)
for details).

Pricing Analysis

We used our formula to evaluate Asian-style call
options written on Heating Oil price averages. Our
goal is to assess option price sensitivity to key in-
put parameters and data including time-to-maturity,
market forward curve, and jump frequency.

We begin by defining values for each of the in-
put quantities indicated on step 0 of the pricing
algorithm stated earlier. Our base case assume that:

- Current time is 0 := October 31, 2012.

- Options mature within T = 3, 6, 9, and 12
months.

- Averages are computed based on monthly
monitoring, i.e., ∆ = 1/12 years.

- Strike index k is assumed to match the ATM
level defined as:

Avg0,n := E
∗
0 (Avgn) =

1

n + 1

n

∑
j=0

F0,j∆,

where n = T/∆. Table 2 provides these values
for the cases under consideration.

- For each maturity, interest rate r is boot-
strapped from LIBOR quotes on spot date
0.

- Mean reversion frequency β = 0.1 per annum.

- Heating Oil standing forward curve is re-
ported in Table 4: a continuous curve F0,·
obtains through interpolation using using a
cubic spline over the set of quoted values;
this procedure results into the path shown in
Figure 2 (panel 1).

- Spot price volatility parameter is constant
σ = 0.7 per annum.

- Jump frequency is indicated in Table 3, where
February experiences the highest value of the
calendar year: a continuous curve λ· obtains
through linear interpolation over the set of
assigned values; this procedure results into
the path shown in Figure 2 (panel 2).

- Average size of jump ξ = 0.1 × Avg0,n, that is
10% of the average expected spot price. Table
2 provides these parameters across varying
maturities.

- Current spot price is set equal to s0 := F0,0.

Time Jump Intensity

1m 5.00
2m 5.50
3m 6.00
4m 5.50
5m 5.00
6m 4.50
7m 4.00
8m 3.50
9m 3.00
10m 3.50
11m 4.00
12m 4.50

TABLE 3: Time varying jump frequency.

We now build five alternative assessment of the
jump frequency:

- λ0 := 0, which corresponds to continuous
price paths;
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FIGURE 5: Asian-style options price against jump size mean and varying assumptions about the jump frequency function.
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FIGURE 6: Asian-style options price against moneyness and varying assumptions about the jump frequency function.
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EXOTIC DERIVATIVES

Delivery Maturity Settlement

heightMonth Price (USD)

December 30-Nov-2012 3.0682
January 31-Dec-2012 3.0623

February 31-Jan-2013 3.0519
March 28-Feb-2013 3.0400
April 29-Mar-2013 3.0100
May 30-Apr-2013 2.9800
June 31-May-2013 2.9900
July 28-Jun-2013 2.9687

August 31-Jul-2013 2.9607
September 30-Aug-2013 2.9570

October 30-Sep-2013 2.9537
November 31-Oct-2013 2.9535

TABLE 4: Heating Oil Futures prices quoted on October 31, 2012 at ICE.

3m 6m 9m 12m

Fwd min 0.155 0.226 0.278 0.320
Fwd mean 0.157 0.228 0.281 0.324
Fwd max 0.159 0.232 0.285 0.329
Fwd curve 0.159 0.231 0.283 0.325

TABLE 5: Asian-stype option prices across maturities and varying assumptions about standing forward curve. (Jump frequency is

assumed to be flat at level λmean.)

3m 6m 9m 12m

λ0 0.129 0.186 0.228 0.262
λmin 0.148 0.215 0.264 0.304
λmean 0.157 0.228 0.281 0.324
λmax 0.165 0.241 0.297 0.342
λ(t) 0.160 0.234 0.288 0.330

TABLE 6: Asian prices across maturities and varying assumptions about jump frequency functions. Forward curve is assumed to be

flat at the level “medium flat” defined as 1
12 ∑

12
i=1 F0,i∆ = 2.9962.
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- Time-varying intensity λ (t).

- Lowest bound flat: λmin := min1≤i≤12 λ (i∆) =
3.

- Medium level flat: λmean := 1
12 ∑

12
i=1 λ (i∆) =

4.5.

- Greatest bound flat: λmax :=
max1≤i≤12 λ (i∆) = 6.

For each of these assessments, we calculate option
prices and plot the corresponding values against:

- Mean reversion frequency β: Figure 3 shows
that option prices decrease with an increase
in the speed at which prices tend to revert
back to their long-term trend. In fact, higher
mean reversion leads to smoothing jumps, a
fact that reduces underlying price dispersions,
so reducing the likelihood of ending up ITM.

- Brownian volatility σ: Figure 4 shows that
option prices increase with an increase in the
spot index volatility.

- Jump size mean ξ: Figure 5 shows that option
prices increase with an increase in the jump
size mean.

- Option moneyness k/Avg0,n: Figure 6 shows
that option prices decrease with an increase
in the option moneyness.

- Time-to-maturity T: : Figure 7 shows that
option prices increase with an increase in the
option lifetime.

Clearly, the greater the jump frequency, the higher
the corresponding values for call options. Clearly,
a zero jump intensity makes option prices indepen-
dent of jump related parameters. This is the case
reported with a red path in Figure 5.

We finally build four alternative assessment of
the input forward curve:

- Market {F0,i∆}1≤i≤12, as we indicated earlier;

- Lowest flat: min1≤i≤12 F0,i∆ = 2.9535;

- Medium flat: 1
12 ∑

12
i=1 F0,i∆ = 2.9962;

- Greatest flat: max1≤i≤12 F0,i∆ = 3.0682.

For each case, we report option prices against pairs
of (maturity, input forward curve) and (maturity, in-
put jump frequency function). Results are indicated
in Tables 5 and 6, respectively.

Conclusions

We extend the semi-analytical price formula for
Asian-style options derived in Fusai, Marena, and
Roncoroni (2008) to the case of underlying spot
prices driven by jump-diffusion processes. The key
result is the calculation of the MGF for the spot
price under these assumptions. Experiments con-
ducted on market price data show that jumps may
have a serious impact on the assessment of option
prices despite the smoothing effect introduced by
arithmetic averaging.

Future investigation might focus of the follow-
ing spot price dynamics:

- Bivariate processes driven by a stochastic con-
venience yield;

- Multivariate processes with stochastic volatil-
ity;

- Jump-diffusions with random frequency of
jumps.

Further extensions might encompass:

- Asian-style options written on a basket of
prices;

- Convergence to continuous monitoring;

- Implied calibration on plain vanilla quotes.
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