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Abstract

Length-biased data are a particular case of weighted data, which arise in many
situations: biomedicine, quality control or epidemiology among others. In this paper
we study the theoretical properties of kernel density estimation in the context of
length-biased data, proposing two consistent bootstrap methods that we use for
bandwidth selection. Apart from the bootstrap bandwidth selectors we suggest a
rule-of-thumb. These bandwidth selection proposals are compared with a least-
squares cross-validation method. A simulation study is accomplished to understand
the behaviour of the procedures in finite samples.

Keywords: Bootstrap, Rule-of-thumb, Cross-validation, Non-parametric, Weighted data.
AMS Subject Classification: 62G07; 62G09; 62G20.

1 Introduction

In general a sample is supposed to have the same basic characteristics as the population
it represents. However, in practice it is usual that the sample may not be completely
representative of the population, and bias is introduced in the sampling scheme, we known
them as weighted data. This type of samples is produced when the probability of choosing
an observation depends on its value and/or other covariates of interest. Weighted data
arise in many sampling processes, see Patil and Rao (1977), and also in a wide variety
of fields such as biomedicine, Chakraborty and Rao (2000), epidemiology, Simon (1980),
textile fibres, Cox (2005), as well as social sciences, economics, Heckman (1990), or quality
control.
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Some specific examples are the visibility bias problem that arises when using aerial
survey techniques to estimate, for instance, wildlife population density; or a damage
model where an observation may be damaged by a process depending on the variable and
then the observed data are clearly biased. Also the textile fibres problem is a classical
motivating example.

Let us denote by f the density function of an unobserved random variable X, and
sassume that the available information refers to a closely related random variable Y with
weighted or biased distribution determined by the density function:

fY,ω(y) =
ω(y)f(y)

µω
y > 0,

where ω is a known function and µω =
∫
ω(x)f(x)dx <∞.

A particular case of weighted data is the length-biased data, where the probability of
an observation to be sampled is directly proportional to its value in a simple linear way.
In this case the weight function that determines the bias is the identity function, i.e.,
ω(y) = y. This sort of data are quite common in problems related to renewal processes,
epidemiological cohort studies or screening programs for the study of chronic diseases, see
Zelen and Feinleib (1969).

Cox (2005) proposed an estimator for the mean and another for the distribution func-
tion in the context of weighted data. Vardi (1982, 1985) showed that this last estimator
was the maximum likelihood estimator of the distribution function under weighted sam-
pling and that the estimation of the mean is

√
n−consistent. Density estimation for this

type of data started in the 80’s when Bhattacharyya and Richardson (1988) defined the
first density estimator for length-biased data based on the problem of fibres, which was
continued with theoretical developments in Richardson et al. (1991). Furthermore, Jones
(1991) proposed a modification of the common kernel density estimator adapted to length-
biased data which is widely used. In the same paper he showed that this proposal has
some advantages over the previous one, and better asymptotic properties. Ahmad (1995)
extended to the multivariate case these two kernel density estimators. Another extensions
using Fourier series have been proposed in Jones and Karunamuni (1997). Later a third
non-parametric estimator has been considered in Guillamón et al. (1998).

Density estimation for weighted data has also been studied from other points of view,
Barmi and Simonoff (2000) proposed a simple transformation-based approach motivated
by the form of the non-parametric maximun likelihood estimator of the density. Efro-
movich (2004) presented asymptotic results on sharp minimax density estimation. Pro-
jection methods are developed in Brunel et al. (2009). Asgharian et al. (2002) and de Uña-
Álvarez (2004) studied the problem under the common settings of surviva analysis. Also
wavelet theory has been used in this context, see Chesneau (2010) which constructed an
adaptative estimator based on the BlockShrink algorithm and Ramı́rez and Vidakovic
(2010) which applied dyadic wavelet density estimation. Cutillo et al. (2014) proposed
linear and non linear wavelet density estimators and recently Comte and Rebafka (2016)
defined the estimation through out the distribution function and using a known link
function.
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The use of non-parametric methods implies to choose a bandwidth parameter, which
determines the degree of smoothness to be considered in the estimation. The choice of
the bandwidth parameter is crucial and it has motivated several papers in the literature
in the recent decades. Marron (1988), Scott (1992) and Silverman (1986) provide a full
description of the problem as well as a review of several bandwidth selection methods.
Later methods such as plug-in or bootstrap methods, have been defined in Hall and
Marron (1987), Sheather and Jones (1991) and Marron (1992). Fourier transforms have
also been used in this context, see Chiu (1992). To explore the most relevant bandwidth
selection methods in density estimation for complete data see the reviews of Turlach
(1993), Cao et al. (1994), Jones et al. (1996) or Heidenreich et al. (2013), and the recent
work on local linear density estimation by Mammen et al. (2011, 2014).

This paper is organised as follows. In Section 2 we develop asymptotic theory for
the kernel density estimator of Jones (1991) for length-biased data, and we also define
two different consistent bootstrap procedures. In Section 3 we propose new data-driven
bandwidth selection methods: a rule-of-thumb based on the Normal distribution and two
bootstrap bandwidth selectors based on the procedures presented in the previous section.
These proposals are competitors of a cross-validation method which, to the extent of
our knowledge, is the only existent data-driven bandwidth selector in this context. In
Section 4, we carry out an extensive simulation study to evaluate the performance of the
presented bandwidth selectors for finite samples. We draw some conclusions in Section
5. Final remarks are given in Section 6 as well as a discussion of how the methodology
developed in this paper can be generalised to a widespread weight function. Finally we
add in the appendix the proofs of the theoretical results.

2 Theoretical developments

Hereafter we will work under the scenario of the length-biased data even though all the
results can be generalised to the weighted data case under appropriate assumptions, see
final remarks in Section 6.

Hence, let us write the density function of the observed variable Y as

fY (y) =
yf(y)

µ
, y > 0,

with µ =
∫
yf(y)dy.

Let Y1, . . . , Yn be an i.i.d. (independent identically distributed) sample from fY , Jones
(1991) defined the following kernel density estimator based on the structure of the one
proposed in Parzen (1962) and Rosenblatt (1956):

f̂h(y) =
1

n
µ̂

n∑
i=1

1

Yi
Kh(y − Yi), (1)

where µ̂ =
(

1
n

∑n
i=n

1
Yi

)−1
, see Cox (2005) to find out this estimation, and Kh(·) = 1

h
K( ·

h
),

with K being a symmetric kernel function.
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In the following result we obtain the value of the pointwise mean and variance of f̂h
with the corresponding error rates, as well as its mean squared error (MSE), which is
defined as:

MSE(h, y) = E
[
(f̂h(y)− f(y))2

]
.

We need to introduce the following hypotheses:

(A.1) E
[
1
X

]
< +∞, E

[
1
Y 2ν

]
< +∞ where ν ∈ N, ν ≥ 3,

(A.2)
∫
K(u)du = 1,

∫
uK(u)du = 0 and µ2(K) < +∞,

(A.3) limn→∞ nh = +∞,

(A.4) y a continuity point of f ,

(A.5) f has two continuous derivates,

(A.6) K is twice differentiable.

Theorem 2.1. Under conditions (A.1) to (A.4) we have:

E
[
f̂h(y)

]
= (Kh ◦ f) (y) +O

(
1

n

)
and

V ar
[
f̂h(y)

]
= n−1

[(
K2
h ◦ γ

)
(y)− (Kh ◦ f)2 (y)

]
+O

(
1

n

)
,

where ◦ denotes the convolution between two functions and γ(y) = µf(y)/y. Moreover,
adding condition (A.5), we have:

MSE (h, y) =
1

4
h4
(
f
′′
(y)
)2
µ2
2(K) +

γ(y)

nh
R(K) + o

(
h4 +

1

nh

)
, (2)

where µ2(K) =
∫
u2K(u)du and R(K) =

∫
K2(u)du.

Now, defining the mean integrated squared error (MISE) as

MISE(h) = E

∫ (
f̂h(y)− f(y)

)2
dy, (3)

and denoting by AMISE its asymptotic version, the following result is a consequence of
Theorem 2.1.

Corollary 2.2. Under conditions (A.1), (A.2), (A.3) and (A.5),

MISE (h) =
1

4
h4µ2

2(K)R(f
′′
) +

R(K)µc

nh
+ o

(
h4 +

1

nh

)
,

AMISE (h) =
1

4
h4µ2

2(K)R(f
′′
) +

R(K)µc

nh
, with c =

∫
1

y
f(y)dy.

As a consequence, the optimal bandwidth value which minimises AMISE(h) is:

hAMISE =

(
R(K)µc

nµ2
2(K)R(f ′′)

)1/5

. (4)
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2.1 Resampling bootstrap methods

In this section we develop two different bootstrap procedures that can be applied in the
context of length-biased data. Both of them are consistent in the way it is shown below
and they conform the basis to define different data-driven bandwidth selection methods.

2.1.1 Bootstrapping using Jones’ estimator

In this first mehtod we follow the work by Cao (1990, 1993) using the so-called smooth
bootstrap to develop a bandwidth selector for the kernel density estimator of Jones (1991),
given in (1). It is remarkable that one bootstrap bandwidth selector can be implemented
in practice without requiring resampling and any Monte Carlo approximation.

Given an i.i.d. sample, Y1, . . . , Yn from fY , and f̂g the density estimator introduced
in (1) with pilot bandwidth g, the smooth bootstrap samples, Y ∗1 , . . . , Y

∗
n , are generated

by sampling randomly with replacement n times from the estimated density f̂Y,g(y) =

yf̂g(y)/µ̂.
Let Y ∗ denote the random variable generated by the bootstrap method presented

above. From the bootstrap sample let define the bootstrap density estimator of Y ∗ as

f̂ ∗h(y) =
1

n
µ̂∗

n∑
i=1

1

Y ∗i
Lh (y − Y ∗i ) , (5)

where µ̂∗ =
(

1
n

∑n
i=1

1
Y ∗i

)−1
, and Lh(·) = 1

h
L( ·

h
), with L being a symmetric kernel function

like K.
The following result provides the expression of the mean, the variance and the mean

squared error of f̂ ∗h(y) under the bootstrap distribution. We use the notation E∗, V ar∗

and MSE∗ to refer to the bootstrap distribution.

Theorem 2.3. Under conditions (A.1) to (A.4)

E∗
[
f̂ ∗h(y)

]
=
(
Lh ◦ f̂g

)
(y) +OP

(
1

n

)
and

V ar∗
[
f̂ ∗h(y)

]
= n−1

[(
L2
h ◦ γ̂g

)
(y)−

(
Lh ◦ f̂g

)2
(y)

]
+OP

(
1

n

)
.

Moreover, adding condition (A.6), we obtain

MSE∗ (h, y) =
1

4
h4
(
f̂
′′

g (y)
)2
µ2
2(L) +

γ̂g(y)

nh
R(L) + oP

(
h4 +

1

nh

)
,

where γ̂g(y) = µ̂f̂g(y)/y, µ2(L) =
∫
u2L(u)du and R(L) =

∫
L2(u)du.

The same way we have done in Corollary 2.2, the integrated versions of the MSE∗,
MISE∗ and its asymptotic version are easily deduced from the theorem above.
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Corollary 2.4. Under hypothesis (A.2), (A.3), (A.4) and (A.6)

MISE∗ (h) =
1

4
h4µ2

2(L)R(f̂
′′

g ) +
R(L)µ̂ĉ

nh
+ oP

(
h4 +

1

nh

)
,

AMISE∗(h) =
1

4
h4µ2

2(L)R(f̂
′′

g ) +
R(L)µ̂ĉ

nh
, with ĉ = µ̂

1

n

n∑
i=1

1

Y 2
i

.

Therefore, the asymptotic expression of the optimal bootstrap bandwidth is:

hAMISE∗ =

(
R(L)µ̂ĉ

nµ2
2(L)R(f̂ ′′g )

)1/5

,

which is a plug-in version of (4).

The following corollary is a consequence of the previous results.

Corollary 2.5. Under assumptions (A.1) to (A.4), MISE∗ and AMISE∗ are consistent
estimators of MISE and AMISE, respectively.

2.1.2 Bootstrapping using a common kernel density estimator

In this second method, we are also using a smooth bootstrap procedure in which we will
use a common kernel density estimator instead of Jones’. The idea of defining this second
procedure is to be able to use the methodology developed in Bose and Dutta (2013) for
bandwidth selection in kernel density estimation.

Given an i.i.d. sample, Y1, . . . , Yn from fY , and denote by f̃K,g the common kernel
density estimator with pilot bandwidth g and a kernel function K, the smooth bootstrap
samples, Y ∗1 , . . . , Y

∗
n , are generated by sampling randomly with replacement n times from

f̃K,g. Let Y ∗ denote again the random variable generated by the bootstrap method pre-
sented above. From the bootstrap sample let us define the bootstrap density estimator of
Y ∗ as the one presented in (5), taking into account that the bootstrap sample is generated
differently.

Now we provide the expression for the point wise mean and variance of f̂ ∗h(y) under
this bootstrap distribution.

Theorem 2.6. Under conditions (A.1) to (A.4)

E∗
[
f̂ ∗h(y)

]
=

1∫
1
z
f̃K,g(z)dz

∫
1

z
Lh(y − z)f̃K,g(z)dz +OP

(
1

n

)
and

V ar∗
[
f̂ ∗h(y)

]
=

1

n
(∫

1
z
f̃K,g(z)dz

)2 [∫ 1

z2
L2
h(y − z)f̃K,g(z)dz −

∫
1

z
Lh(y − z)f̃K,g(z)dz

2
]

+

+OP

(
1

n

)
.
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Moreover,

MSE∗ (h, y) =

(∫
1
z
Lh(y − z)f̃K,g(z)dz∫

1
z
f̃K,g(z)dz

− f̂h(y)

)2

+

+
1

n
(∫

1
z
f̃K,g(z)dz

)2 [∫ 1

z2
L2
h(y − z)f̃K,g(z)dz −

∫
1

z
Lh(y − z)f̃K,g(z)dz

2
]

+

+OP

(
1

n

)
.

Remark that for this bootstrap method we do not get manageable explicit expressions of the
error criteria as we got in the previous one; and the way to obtain MISE∗(h) is integrating
the expression above, but we neither obtain an explicit expression.

3 Bandwidth selection

In this section we describe bandwidth selection methods for the density estimator defined
in (1). These methods consist of adaptations of common automatic selectors for kernel
density estimation with complete data to the context of length-biased data. We propose
a Normal scale rule and two bootstrap selectors derived from the consistent resampling
procedures given in the previous section. These proposals are defined as competitors of
the cross-validation method proposed in Guillamón et al. (1998).

Two new methods are based on estimating the infeasible optimal expression (4), in
which the unknown elements are R(f

′′
), c and µ. However, we have previously shown

that these last two terms can be easily estimated, and then the only term that still needs
to be estimated is R(f

′′
). The last bootstrap bandwidth selection procedure is based on

the minimisation of the MISE∗(h) and does not require those estimations.

3.1 Rule-of-thumb for bandwidth selection

This method is based on the rule-of-thumb, Silverman (1986), for complete data. The idea
is to assume that the underlying distribution is Normal, N(µ, σ), and in this situation

R(f
′′
) =

3

8
π−1/2σ−5.

To get a suitable estimator of σ in the context of length-biased data is not trivial.

We suggest to estimate it as follows. Cox (2005) states that EY [Xr] =
µr+1

µ
, where µr+1

denotes the (r+1)-th order moment of the original and not observable variable X. So,

µ2 = µEY [X]⇒ µ̂2 = µ̂ÊY [X] =

(
1

n

n∑
i=1

1

Yi

)−1(
1

n

n∑
j=1

Yj

)
,
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thus,

σ̂2 = µ̂2 − µ̂2 =

(
1

n

n∑
i=1

1

Yi

)−1 ( 1

n

n∑
i=1

Yi

)
−

(
1

n

n∑
i=1

1

Yi

)−1 ,
and finally

ĥRT =

(
R(K)µ̂ĉ8

√
π

nµ2
2(K)3

)1/5

σ̂.

Another possible estimator for σ could be obtained using a robust method such as the
interquartile range (IQR)

σ̂IQR =
IQR

Φ−1(0.75)− Φ−1(0.25)
,

where Φ is the Normal distribution function.

3.2 Cross-validation

The method previously defined is based on minimising estimations of the MISE, more
precisely of the AMISE. This procedure relies on the minimisation of the ISE (integrated
squared error), the methodology is the same as in Rudemo (1982) and Bowman (1984)
applied to (1), and it was developed in Guillamón et al. (1998).

Let write:

ISE(h) =

∫ (
f̂h(z)− f(z)

)2
dz =

∫
f̂ 2
h(z)dz − 2

∫
f̂h(z)f(z)dz +

∫
f 2(z)dz. (6)

Note that
∫
f 2(z)dz does not depend on h, so the minimisation of the ISE is equivalent

to minimise the following function:∫
f̂ 2
h(z)dz − 2

∫
f̂h(z)f(z)dz =

∫
f̂ 2
h(z)dz − 2E[f̂h],

which can be estimated by

CV(h) =

∫
f̂ 2
h(z)dz − 2Ê[f̂h].

The addends of this estimation may be expressed as follows:∫
f̂ 2
h(z)dz =

∫ (
1

nh
µ̂

n∑
i=1

1

Yi
K

(
z − Yi
h

))(
1

nh
µ̂

n∑
j=1

1

Yj
K

(
z − Yj
h

))

= n−2h−1µ̂2

n∑
i=1

n∑
j=1

1

Yi

1

Yj
(K ◦K)

(
Yi − Yj
h

)
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Ê[f̂h] = µ̂n−1
n∑
i=1

f̂−i(Yi)

Yi
= µ̂n−1

n∑
i=1

Y −1i

(∑
j 6=i

1

Yj

)−1(∑
j 6=i

1

Yj
Kh(Yi − Yj)

)
,

realising that E[f̂h] =
∫
f̂h(z)f(z)dz =

∫
f̂h(z)µfY (z)

z
dz, and define f̂−i as the estimator in

(1) calculated with all the data points except Yi.
The cross-validation bandwidth is obtained following the proposal in Dutta (2016),

where the CV function is minimized in a compact interval of the form
[c1IQRn−1/5, c2IQR(log(n)/n)1/5], where IQR is the inter-quartile range and c1 and c2
are positive constants (see Dutta (2016) for the choice of these values). We will be de-
noted hereafter this bandwidth value as ĥCV.

3.3 Bootstrap for bandwidth selection

3.3.1 Using Jones’ estimator

The asymptotic expression of the optimal bootstrap bandwidth can be considered to
derive a consistent bandwidth estimate. Cao (1993) suggested such approach for kernel
density estimation with complete data. Since all the quantities involved in the expression
are known, the result will be a bandwidth estimate which can be computed in practice
without involving any resampling and Monte Carlo approximations. The only issue is to
determine the pilot bandwidth g involved in the estimation of R(f

′′
). To this goal we

first obtain the asymptotical (infeasible) optimal pilot bandwidth and then we propose
two feasible estimations.

We define the optimal pilot bandwidth by optimising the MSE of R(f̂
′′
g ) =

1
n
µ̂
∑n

i=1
1
Yi

1
h3
L
′′ (y−Yi

h

)
as an estimator of R(f

′′
). Let f̂g be the estimator in (1) with

L a symmetric kernel function and assume the following conditions:

(A.7)
∫
|u|3L(u)du <∞,

(A.8) L is twice differentiable, with bounded second derivative and verifies that

limu→±∞ u
3L(u) = 0, limu→±∞ u

4L
′
(u)du = 0;

∫
|u|4|L′′(u)|du <∞,

∫
L
′′2

(u)du <
∞,

(A.9)
∫
u4L(u)du <∞,

(A.10) f is six times differentiable with f , f
′′
, f
′′′
, f (4) ∈ L2(R) and verifies the limit con-

dition limy→±∞ f
′′
(y)f

′′′
(y) = 0.

The result below provides us with the exact value of the optimal pilot bandwidth, in
terms of the AMSE (asymptotic mean squared error) of the curvature of Jones’ estimator.
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Theorem 3.1. Under hypothesis (A.7) to (A.10) we have that:

AMSE

(∫
(f̂ ′′g (y))2dy

)
= n−2g−10

(∫
L
′′
(y)2dy

)
c2µ2 + g4µ2

2(L)

(∫
f
′′′

(y)2dy

)2

+

+ 2n−1g−3µ2(L)cµ

∫
L
′′
(y)2dy

and

g0 = arg min
g

AMSE
(
R(f̂

′′

g (y))
)

= d0n
−1/7,

with

d0 =

[
5

2
µ2(L)−1cµ

∫
(L
′′
(y))2dy

(∫
(f
′′′

(y))2dy

)−1]1/7
.

From the expression of the optimal pilot bandwidth we can get an estimator, ĝ0, just by
plugging-in estimates of the unknown quantities. A simpler proposal could be to estimate
the pilot by rescaling the rule-of-thumb for bandwidth selection with the corresponding
order of the pilot, this is multiplying that value by the factor n−1/7

n−1/5 .
Hence, we define two possibilities for the bootstrap bandwidth estimate:

ĥBopt =

(
R(L)µ̂ĉ

nµ2
2(L)R(f̂

′′
ĝ0

)

)1/5

and

ĥBRT
=

(
R(L)µ̂ĉ

nµ2
2(L)R(f̂

′′
ĝ1

)

)1/5

, with ĝ1 =
n−1/7

n−1/5
ĥRT.

Remark. The asymptotic expression of the MSE in (2) given by

AMSE
(
f̂h(y)

)
=

1

4
h4
(
f
′′
(y)
)2
µ2
2(K) +

γ(y)

nh
R(K),

can be used to obtain the expression of an optimal local bandwidth, following similar steps
as for the global one, but from the expression:

hAMSE(y) =

(
γ(y)R(K)

n(f ′′(y))2µ2
2(K)

)1/5

.

Then, a similar method as the described by González-Manteiga et al. (2004) for local linear
regression, could be proposed in the context of density estimation with length-biased data.
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3.3.2 Using a common kernel density estimator

Bose and Dutta (2013) proposed a new bootstrap bandwidth selector for complete data
arguing that they do not need to assume a shape for the unknown density at any stage,
and moreover they only require f to be four times differentiable instead of the six times
needed in the method presented above.

Following their methodology we propose to obtain a smooth bootstrap bandwidth
minimising the MISE∗(h) in a compact interval I, and assuming that the pilot bandwidth
g can be set as 1

8
n−1/(2p+2s+1), where p and s are the orders of the kernels K and L

respectively. This fixed value for the pilot has been set in Bose and Dutta (2013) after
extensive simulation studies using different mixtures of normals on f .

Hence, we define this bootstrap bandwidth as follows:

ĥB = argmin
h∈I

MISE∗(h).

4 Finite sample study

In this section we evaluate the performance of the bandwidth selection procedures pre-
sented in Section 3. To this goal we have carried out a simulation study including rule-
of-thumb (ĥRT), cross-validation bandwidth (ĥCV),the bootstrap bandwidths (ĥBopt) and

(ĥBRT
) with the two possible pilots and (ĥB). We have considered as benchmarks the

infeasible optimal bandwidth values hMISE and hISE which correspond, respectively, to the
optimal bandwidths obtained from MISE and ISE criterion defined in (3) and (6).

We have simulated six models with densities shown in Figure 1, some of them have been
taken from Mammen et al. (2011) and others from Marron and Wand (1992) but rescaled
to the interval [0, 1]. We have chosen these models to cover a wide range of densities with
different complexity levels, including different number of modes and asymmetry.
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Figure 1: The six simulated densities in the finite sample study.

These six models are:

• Model 1: a Normal distribution N(0.5, 0.22).

• Model 2: a trimodal mixture of three Normal distributions, N(0.25, 0.0752), N(0.5, 0.0752)
and N(0.75, 0.0752) with coefficients 1

3
.

• Model 3: a gamma distribution, Gamma(a, b), with a = b2 and b = 1.5 applied on
5x with x ∈ R+.

• Model 4: a mixture of three gamma distributions, Gamma(ai, bi), i = 1, . . . , 3 with
ai = b2i , b1 = 1.5, b2 = 3 and b3 = 6 applied on 8x and x ∈ R+, with coefficients 1

3
.

• Model 5: a mixture of three Normal distributions, N(0.3, 3
40

2
), N(0.7, 3

40

2
) and

N(0.5, 1
32

2
) with coefficients 9

20
, 9

20
and 1

10
respectively.

• Model 6: a mixture of six Normal distributions, N(µi, σ
2
i ), i = 1, . . . , 6 with µ1 = 0.5,

µ2 = 1
3
, µ3 = 5

12
, µ4 = 1

2
, µ5 = 7

12
, µ6 = 2

3
, σ1 = 1

8
and σi = 1

80
, i = 2, . . . , 6 with

coefficients c1 = 1
2

and ci = 1
10

, i = 2, . . . , 6.

We have simulated 1000 length-biased samples from each model considering sample
sizes n = 50, 100, 200 and 500, using the Epanechnikov kernel. From these samples
we have evaluated the performance of the bandwidth selectors through the following
measures:

m1 = mean(ISE(ĥ)), m2 = std(ISE(ĥ)),

m3 = mean(ĥ− hISE), m4 = std(ĥ− hISE).

The first two measures, m1 and m2 are referred to the error of the estimation, so they
provide us with information about the overall performance and variability of the different
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methods. Meanwhile, m3 and m4 measure respectively, the bias and variability of the
difference between the theoretical benchmark and the value selected by the proposals. This
provides information about the way the methods are choosing the bandwidth parameter.

Table 1: Mean and standard deviations of the ISE and of the difference between the
benchmark and the bandwidths selectors(criteria m1 to m4) for Model 1 multiplied by
102.

Model 1

hISE ĥRT ĥCV ĥBopt ĥBRT
ĥB hMISE

n=50

m1 4.61 7.95 7.52 8.72 8.93 9.05 5.20

m2 5.31 14.39 7.38 8.82 11.23 8.33 8.41

m3 — -8.19 3.51 -9.65 -9.86 -9.27 1.15

m4 — 6.25 10.75 5.83 6.03 5.78 5.32

n=100

m1 3.11 4.92 4.52 5.65 5.79 5.64 3.55

m2 4.21 10.83 4.83 6.14 8.12 5.06 7.85

m3 — -6.62 2.25 -8.63 -8.82 -8.02 0.45

m4 — 5.48 8.22 5.06 5.23 4.67 4.70

n=200

m1 1.94 2.98 2.73 3.61 3.70 3.29 2.23

m2 2.98 7.45 3.29 4.08 5.49 3.25 6.15

m3 — -5.77 1.28 -8.19 -8.33 -7.16 0.37

m4 — 4.53 6.87 4.11 4.34 3.79 4.00

n=500

m1 1.00 1.51 1.35 1.95 1.99 1.16 1.53

m2 1.95 3.99 2.09 2.45 3.02 3.79 2.07

m3 — -5.01 0.80 -7.53 -7.60 0.49 -5.56

m4 — 3.78 5.14 3.32 3.55 3.52 3.14
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Table 2: Mean and standard deviations of the ISE and of the difference between the
benchmark and the bandwidths selectors(criteria m1 to m4) for Model 2 multiplied by
102.

Model 2

hISE ĥRT ĥCV ĥBopt ĥBRT
ĥB hMISE

n=50

m1 11.91 15.15 17.99 14.27 14.27 14.28 13.42

m2 5.24 5.70 6.82 6.33 6.39 7.57 7.21

m3 — 1.59 14.13 -0.24 -0.31 -3.95 -3.18

m4 — 10.14 19.332 10.01 10.07 9.02 9.39

n=100

m1 7.89 10.60 12.25 9.01 9.00 8.80 8.23

m2 3.89 3.17 5.90 3.77 3.77 4.32 4.27

m3 — 4.83 8.94 2.26 2.22 0.23 -0.54

m4 — 4.50 14.16 4.41 4.43 4.55 4.15

n=200

m1 4.90 7.30 6.85 5.50 5.51 5.78 5.06

m2 2.49 2.14 4.55 2.46 2.45 2.48 2.57

m3 — 5.11 2.99 2.14 2.18 2.23 0.33

m4 — 1.35 8.68 1.34 1.32 1.98 1.20

n=500

m1 2.47 4.21 3.06 2.74 2.74 4.28 2.55

m2 1.45 1.45 2.45 1.52 1.55 1.44 1.68

m3 — 4.52 0.68 1.52 1.50 4.48 0.03

m4 — 1.25 4.29 0.98 1.07 1.31 1.27
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Table 3: Mean and standard deviations of the ISE and of the difference between the
benchmark and the bandwidths selectors(criteria m1 to m4) for Model 3 multiplied by
102.

Model 3

hISE ĥRT ĥCV ĥBopt ĥBRT
ĥB hMISE

n=50

m1 7.66 9.14 25.01 9.51 9.47 15.24 8.75

m2 5.99 7.65 10.41 8.41 8.34 11.40 6.95

m3 — -0.12 24.39 -1.62 -1.55 -6.87 0.53

m4 — 4.84 11.82 4.83 4.82 9.24 4.27

n=100

m1 5.18 6.00 22.71 6.32 6.29 8.13 5.86

m2 3.67 4.33 7.37 4.79 4.80 6.25 4.16

m3 — 0.43 25.88 -1.80 -1.78 -5.08 0.50

m4 — 3.83 8.52 3.78 3.76 4.39 3.49

n=200

m1 3.52 4.00 21.60 4.27 4.25 4.39 3.94

m2 2.54 2.81 5.56 3.20 3.19 3.41 2.77

m3 — 0.75 27.58 -1.90 -1.87 -2.16 0.70

m4 — 3.09 6.41 3.07 3.05 3.30 2.89

n=500

m1 1.99 2.21 21.24 2.35 2.35 2.39 2.17

m2 1.35 1.42 3.45 1.59 1.61 1.44 1.47

m3 — 1.13 30.01 -1.76 -1.75 2.10 0.54

m4 — 2.15 3.80 2.10 2.11 2.69 2.06
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Table 4: Mean and standard deviations of the ISE and of the difference between the
benchmark and the bandwidths selectors(criteria m1 to m4) for Model 4 multiplied by
102.

Model 4

hISE ĥRT ĥCV ĥBopt ĥBRT
ĥB hMISE

n=50

m1 7.75 9.27 17.23 9.61 9.57 17.69 8.92

m2 4.93 7.20 4.65 7.58 7.59 9.13 6.29

m3 — -4.12 37.86 -5.33 -5.44 -15.51 -1.42

m4 — 13.53 26.01 13.71 13.66 12.12 12.47

n=100

m1 5.47 6.12 15.71 6.39 6.35 10.32 6.03

m2 3.56 4.07 2.96 4.44 4.44 5.81 3.87

m3 — -0.06 43.64 -2.32 -2.41 -10.33 0.49

m4 — 7.63 18.89 7.72 7.65 7.38 7.22

n=200

m1 3.68 4.13 15.22 4.16 4.16 5.63 4.09

m2 2.29 2.75 2.48 2.67 2.76 3.46 2.93

m3 — 1.65 48.79 -1.20 -1.33 -6.50 0.57

m4 — 4.61 13.04 4.53 4.50 5.08 4.54

n=500

m1 2.10 2.40 14.83 2.30 2.30 2.53 2.30

m2 1.24 1.27 2.62 1.42 1.43 1.70 1.46

m3 — 2.56 52.42 -0.62 -0.70 -2.32 0.27

m4 — 3.06 11.46 2.99 3.00 3.74 3.08
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Table 5: Mean and standard deviations of the ISE and of the difference between the
benchmark and the bandwidths selectors(criteria m1 to m4) for Model 5 multiplied by
102.

Model 5

hISE ĥRT ĥCV ĥBopt ĥBRT
ĥB hMISE

n=50

m1 5.05 20.39 25.64 18.38 18.28 18.84 15.89

m2 8.12 6.82 15.53 7.41 7.44 8.17 8.64

m3 — 5.86 10.47 4.03 3.92 3.60 -0.36

m4 — 3.58 18.54 3.53 3.56 4.31 3.21

n=100

m1 9.26 14.44 13.91 11.59 11.51 13.76 9.70

m2 4.63 4.16 10.80 4.47 4.48 4.79 4.89

m3 — 6.05 3.39 3.55 3.47 5.12 -0.16

m4 — 1.67 11.47 1.63 1.64 2.86 1.50

n=200

m1 5.73 10.21 11.27 7.19 7.26 11.52 5.92

m2 2.69 2.71 13.25 2.73 2.72 3.26 2.74

m3 — 5.65 5.36 2.83 2.91 6.44 -0.08

m4 — 1.16 14.83 1.13 1.15 2.13 1.02

n=500

m1 2.9 6.25 3.44 3.67 3.68 11.21 2.99

m2 1.2 1.44 2.48 1.28 1.29 1.93 1.22

m3 — 5.03 0.12 2.15 2.17 8.58 0.07

m4 — 0.87 2.66 0.83 0.84 1.36 0.77
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Table 6: Mean and standard deviations of the ISE and of the difference between the
benchmark and the bandwidths selectors(criteria m1 to m4) for Model 6 multiplied by
102.

Model 6

hISE ĥRT ĥCV ĥBopt ĥBRT
ĥB hMISE

n=50

m1 46.43 67.75 63.66 70.76 71.31 68.98 49.66

m2 13.19 8.09 11.56 8.14 8.25 4.84 18.32

m3 — 3.84 8.73 2.86 2.56 17.72 -2.58

m4 — 5.37 8.08 5.34 5.35 6.35 5.09

n=100

m1 30.11 65.97 55.52 64.74 64.50 66.83 30.99

m2 10.14 4.25 8.73 5.08 5.22 4.35 10.99

m3 — 5.56 8.69 4.22 4.15 19.51 -0.38

m4 — 1.51 4.54 1.47 1.47 4.62 1.32

n=200

m1 18.27 62.74 47.91 52.12 51.45 65.21 18.49

m2 5.58 2.47 14.92 4.51 4.03 4.17 5.58

m3 — 5.07 7.57 3.51 3.44 19.12 0.14

m4 — 0.52 4.17 0.46 0.42 4.39 0.30

n=500

m1 9.2 53.41 41.59 32.98 32.71 64.64 9.21

m2 2.7 3.37 20.43 3.58 3.24 3.17 2.71

m3 — 4.38 7.12 2.70 2.68 19.81 -0.03

m4 — 0.36 4.60 0.24 0.22 3.07 0.14

An overview of these numbers indicates that the performance of the methods depends
on the complexity of the underlying model. Let classify the models in “easy” (Model 1,
Model 3 and Model 4), “intermediate” (Model 2 and Model 5) and “hard” (Model 6)
estimation problems.

Regarding to the measure m1, the rule-of-thumb performs better in smoother densities,
such as Model 1, Model 3 and Model 4, however the bootstrap bandwidths are also really
competitive for these models, while cross-validation has in general a poorer performance.
We have to remark that in Model 4, the bootstrap bandwidth ĥB needs a large sample
size in order to be competitive. Increasing the complexity of the densities, Model 2 and
Model 5, the performance of the rule-of-thumb decreases considerably and the bootstrap
procedures ĥBRT

and ĥBNS
seems to be more accurate; however ĥB has a worse performance

and the gain with the increasing of the sample size is slower. Note also that depending
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on the design and the sample size, cross-validation can also produce competitive results.
In hard estimation problems as Model 6, bootstrap bandwidths ĥBRT

and ĥBNS
are still

valuable competitors.
In terms of variability, which is measured by criterion m2 and m4, the cross-validation

method exhibits the highest values. The variability of the rule-of-thumb and the bootstrap
bandwidths is in general moderate, with the only exception of ĥB in Model 6 where it
exhibits higher values than the other bootstrap rules and the rule-of-thumb.

The bias in bandwidth selection is measured through m3. Rule-of-thumb and boot-
strap bandwidths with pilots generally show bias in the same direction and amount,
except for Model 3 where they do not follow this pattern, even though the overall result
is good. In smoother models both, tend to oversmooth and the opposite happens with
cross-validation. The bias of the other bootstrap bandwidth selector, ĥB, tends to be
higher except for very large sample sizes of Model 1.

Moreover, the performance of all the methods proposed may also be compared graph-
ically through the box plots of the errors (ISE’s) computed in the 1000 Monte Carlo
samples (see Figures 2 - 7). These plots confirm that the behaviour of the selectors de-
pends on the complexity of the underlying model. The bootstrap proposals seems to have
in general a good behaviour outperformed only by cross-validation in Model 6, due to its
complexity.
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Figure 2: The plot of log(ISE) for the density estimation using the different bandwidth
selectors for Model 1 and sizes n=50, 500 (from left to right).
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Figure 3: The plot of log(ISE) for the density estimation using the different bandwidth
selectors for Model 2 and sizes n=50, 500 (from left to right).
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Figure 4: The plot of log(ISE) for the density estimation using the different bandwidth
selectors for Model 3 and sizes n=50, 500 (from left to right).
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Figure 5: The plot of log(ISE) for the density estimation using the different bandwidth
selectors for Model 4 and sizes n=50, 500 (from left to right).
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Figure 6: The plot of log(ISE) for the density estimation using the different bandwidth
selectors for Model 5 and sizes n=50, 500 (from left to right).
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Figure 7: The plot of log(ISE) for the density estimation using the different bandwidth
selectors for Model 6 and sizes n=50, 500 (from left to right).

5 Conclusions

We have considered density estimation in the context of length-biased data, specifically
we have focused on the kernel estimator introduced by Jones (1991). We have developed
with great detail asymptotic expansions of the MSE, MISE and AMISE of this estimator.
Furthermore, we have proposed new bandwidth selection methods and we have studied
their behaviour in finite samples through an extensive simulation study. As a general
comment, some methods outperforms the others depending on the complexity of the
underlying model. Nevertheless, our bandwidth selection proposals have shown to perform
quite well and in general, better than the current available cross-validation method. The
only exception is the case of very complex densities, with several features and peaks,
where cross-validation exhibits the best results, but even in this case our proposals are
still competitive.
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6 Further extensions

As we have remarked in Section 2, the methods presented in this paper can be easily
generalised for a general known weight function ω, where the particular case of length-
biased data is that of ω(y) = y. First, an appropriate modification of the estimator in (1)
must be defined, as it has already been presented in Jones (1991):

f̂h,ω(y) =
1

n
µ̂ω

n∑
i=1

ω(Yi)
−1Kh(y − Yi),

with µ̂ω =

(
1

n

n∑
i=1

ω(Yi)
−1

)−1
.

Theorem 2.1 and Corollary 2.2 can be generalised assuming the following conditions:

(B.1) E

[
1

ω(X)

]
<∞, E

[
1

ω(Y )l

]
<∞ l = 1, . . . , 2ν,

(B.2)
∫
K(u)du = 1,

∫
uK(u)du = 0 and µ2(K) < +∞

(B.3) limn→∞ nh = +∞,

(B.4) y a continuity point of f ,

(B.5) f and ω are two times differentiable in y.

We immediately get the error measures as and their optimal bandwidth parameters
for the length-biased data:

MSE(f̂h,ω(y)) =
1

4
h4
(
f
′′
(y)
)2
µ2
2(K) +

γω(y)

nh
R(K) + o

(
h4 +

1

nh

)
,

with γω(y) =
f(y)µω
ω(y)

and

hAMSE,ω(y) =

(
γω(y)R(K)

n(f ′′(y))2µ2
2(K)

)1/5

.

We also obtain:

MISE(f̂h,ω) =
1

4
h4µ2

2(K)R(f
′′
) +

R(K)µωcω
nh

+ o

(
h4 +

1

nh

)
where cω =

∫
1

ω(y)
f(y)dy and then

hAMISE,ω =

(
R(K)µωcω

nµ2
2(K)R(f ′′)

)1/5

.
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The bootstrap methods can be also modified in the same way. Then, the smooth
bootstrap samples, Y ∗1 , . . . , Y

∗
n , can be generated by sampling randomly with replacement

n times from the estimated density f̂Y,g,ω(y) = ω(y)f̂g,ω(y)/µ̂ω. Here g is again a pilot
bandwidth.

For the extension of the bandwidth selectors we need to take into account not only
the above modification of the density estimator but also

σ̂2
ω =

(
1

n

n∑
i=1

1

ω(Yi)

)−1 ( 1

n

n∑
i=1

ω(Yi)

)
−

(
1

n

n∑
i=1

1

ω(Yi)

)−1 .
Apart from these considerations the procedures can be obtained in the same way as

the length-biased case.
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Appendices

A Proof of Theorem 2.1

First of all we rewrite the estimator in (1) as follows:

f̂h(y) =
1

n

1
1
n

∑n
i=n

1
Yi

n∑
i=1

1

Yi
Kh(y − Yi) =

1
n

∑n
i=1

1
Yi
Kh(y − Yi)

1
n

∑n
i=n

1
Yi

=
φn(y)

ξn
. (7)

We start by calculating the punctual mean of (1) for which we need the mean of the
numerator and denominator in (7), so:

φn(y) := E[φn(y)] = E

[
1

n

n∑
i=1

1

Yi
Kh(y − Yi)

]
=

∫
1

z
Kh(y − z)fY (z)dz =

1

µ
(Kh ◦ f)(y).

ξn := E[ξn] = E

[
1

n

n∑
j=1

1

Yj

]
=

∫
1

z
fY (z)dz =

1

µ
.

We divide this proof in two separated but linked paragraphs, detailing all the results
involving mean and variance calculations respectively.

Mean
Applying the linearisation technique used in Collomb (1976) with ν ≥ 2 and taking into
account that ξn 6= 0 ∀n, we can write down

f̂h(y) =
φn(y)

ξn
=
φn(y)

ξn
· ξn
ξn

=
φn(y)

ξn

[
1 +

ν−1∑
k=1

(−1)k
(
ξn − ξn
ξn

)k
+ (−1)ν

ξn
ξn

(
ξn − ξn
ξn

)ν]

=
φn(y)

ξn

[
1 +

ν−1∑
k=1

(−1)k
(
ξn − ξn
ξn

)k]
+ (−1)ν f̂h(y)

(
ξn − ξn
ξn

)ν
.

Using the notation Sa,bn (y) := E[φan(y)(ξn−ξn)b], sa,bn (y) := E[(φn(y)−φn(y))a(ξn−ξn)b],
σa,bn (y) = E[f̂h(y)a(ξn− ξn)b] and knowing that φnS

0,k
n (y) + s1,kn (y) = S1,k

n (y) we can write:
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E[f̂h(y)] = E

[
φn(y)

ξn
+
φn(y)

ξn

v−1∑
k=1

(−1)k
(
ξn − ξn
ξn

)k
+ (−1)ν f̂h(y)

(
ξn − ξn
ξn

)ν]

=
φn(y)

ξn
+

ν−1∑
k=1

(−1)k
E[φn(y)(ξn − ξn)k]

ξn
k+1

+
(−1)ν

ξn
ν E[f̂h(y)(ξn − ξn)ν ]

=
φn(y)

ξn
+

ν−1∑
k=1

(−1)k
S1,k
n (y)

ξn
k+1

+ (−1)ν
σ1,ν
n (y)

ξn
ν

=
φn(y)

ξn
+
φn(y)S0,2

n (y)− ξns1,2n (y)− ξnS1,1
n (y)

ξn
3 +

ν−1∑
k=1

(−1)k
S1,k
n (y)

ξn
k+1

+ (−1)ν
σ1,ν
n (y)

ξn
ν

Then, we have proved that

E[f̂h(y)] =
φn(y)

ξn
+ cn(y) + c(ν)n (y) +

(−1)νσ1,ν
n (y)

ξn
ν ,

where

cn(y) =
φn(y)S0,2

n (y)− ξnS1,1
n (y)

ξn
3 =

φn(y)E[(ξn − ξn)2]− ξnE[φn(y)(ξn − ξn)]

ξn
3 and

c(ν)n (y) =
s1,2n (y)

ξn
3 +

ν−1∑
k=1

(−1)k
S1,k
n (y)

ξn
k+1

=
E[(φn(y)− φn(y))(ξn − ξn)2]

ξ3n
+

+
∑ν−1

k=1(−1)k E[φn(y)(ξn−ξn)k]
ξn
k+1 .

The first addend corresponds to the asymptotic expression of the mean obtained by
Jones (1991). We want now to expand each of the other terms and study the rate of
convergence. To this aim we use some basic statistical properties and we proceed as
follows:

E
[
(ξn − ξn)2

]
= V ar [ξn] = E

[
ξ2n
]
− ξn

2

= E

 1

n

n∑
j=1

1

Yj

2− 1

µ2
=

1

n2
E

 n∑
i=1

1

Y 2
j

+
∑
i 6=j

1

Yi

1

Yj

− 1

µ2

=
1

n2
nE

[
1

Y 2
1

]
+

(n2 − n)

n2
E

[
1

Y1

1

Y2
−
]

1

µ2
=

1

n

∫
1

z2
g(z)dz +

n− 1

n
E

[
1

Y1

]2
− 1

µ2

=
1

n
E

[
1

X

]
+
n− 1

nµ2
− 1

µ2
=

1

nµ

(
E

[
1

X

]
− 1

µ

)
.
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E
[
φn(y)(ξn − ξn)

]
= E [φn(y)ξn]− ξn φn(y)

= E

( 1

n

n∑
i=1

1

Yi
Kh(y − Yi)

) 1

n

n∑
j=1

1

Yj

− 1

µ2
(Kh ◦ f) (y)

=
1

n2
E

 n∑
i=1

1

Y 2
i

Kh(y − Yi) +
∑
i 6=j

1

Yi

1

Yj
Kh(y − Yi)

− 1

µ2
(Kh ∗ f) (y)

=
n

n2
E

[
1

Y 2
1

Kh(y − Y1)
]

+
n(n− 1)

n2
E

[
1

Y1

1

Y2
Kh(y − Y1)

]
− 1

µ2
(Kh ◦ f) (y)

=
1

nµ2
(Kh ◦ γ) (y)− 1

nµ2
(Kh ◦ f) (y).

Hence,

cn(y) = µ3
[

1

µ
(Kh ◦ f) (y)

1

nµ

(
E

[
1

X

]
− 1

µ

)
− 1

µ

(
1

nµ2
(Kh ◦ γ) (y)− 1

nµ2
(Kh ◦ f) (y)

)]
=
µ

n
(Kh ◦ f) (y)

(
E

[
1

X

]
− 1

µ

)
︸ ︷︷ ︸

(a)

− 1

n
(Kh ◦ γ) (y)︸ ︷︷ ︸

(b)

+
1

n
(Kh ◦ f) (y)︸ ︷︷ ︸

(c)

.

Applying Theorem 2.1 of Cacoullos (1966) with g(z) = f(z) for (a) and (c), and g(z) = f(z)
z

for (b), we easily obtain that every of these addends is O(1/n). Therefore, cn(y) = O(1/n).
To expand the next two terms we use the Hölder inequality and, taking into account that

K is bounded, we only require the finiteness of the second order moment of 1
Y .

E
[
φn(y)

(
ξn − ξn

)2] ≤ E [φ2n(y)
]1/2

E
[(
ξn − ξn

)4]1/2
= O(1/n)1/2O(1/n2)1/2 = O(1/n3/2)

E
[(
ξn − ξn

)2]
= O(1/n).

Therefore,
c(ν)n (y) = O(1/n).

Finally,

σ1,νn (y) = E
[
f̂h(y)

(
ξn − ξn

)ν] ≤ E [f̂h2(y)
]1/2

E
[(
ξn − ξn

)2ν]1/2
= O(1)O(1/nν)1/2 = O(1/nν/2).

Variance
To get the variance, we compute the expected value of the squared estimator. We follow the

same techniques as in the previous operations replacing f̂h(y) by f̂h
2
(y). Applying again the

linearisation method of Collomb (1976) with ν ≥ 2,
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f̂h
2
(y) =

φ2n(y)

ξ2n
=
φ2n(y)

ξ
2
n

· ξ
2
n

ξ2n(y)

=
φ2n(y)

ξ
2
n

1 +
ν−1∑
k=1

(−1)k

(
ξ2n(y)− ξ2n

ξ
2
n

)k+ (−1)ν f̂h
2
(y)

(
ξ2n(y)− ξ2n

ξ
2
n

)ν

=
φ2n(y)

ξ
2
n

1 +

ν−1∑
k=1

(−1)k
k∑
j=0

k!

j!(k − j)!
2k−j

(
ξn − ξn
ξn

)k+j+

+ (−1)ν f̂h
2
(y)

ν∑
j=0

ν!

j!(ν − j)!
2ν−j

(
ξn − ξn
ξn

)ν+j
.

To obtain the mean of f̂h
2
(y) we need to work on

S2,l
n (y)

ξ
2
n

=
φ
2
ns

0,l
n (y) + 2φ

2
ns

1,l
n (y) + s2,ln (y)

ξ
2
n

as follows:

E
[
f̂h

2
(y)
]

=
1

ξ
2
n

E
[
φn(y)2

]
+ E

φn(y)2(y)

ξ
2
n

ν−1∑
k=1

(−1)k
k∑
j=0

k!

j!(k − j)!
2k−j

(
ξn − ξn
ξn

)k+j+

+ (−1)ν
ν∑
j=0

ν!2ν−j

j!(ν − j)!

E
[
f̂h

2
(y)
(
ξn − ξn

)ν+j]
ξ
ν+j
n

=
E
[
φ2n(y)

]
ξ
2
n

+
ν−1∑
k=1

(−1)k
k∑
j=0

k!

j!(k − j)!
2k−j

S2,k+j
n (y)

ξ
k+j+2
n

+ (−1)ν
k∑
j=0

ν!

j!(ν − j)!
2ν−j

σ2,ν+jn (y)

ξ
ν+j
n

=
φ
2
n

ξ
2
n

+
s0,2n (y)

ξ
2
n

+
ν−1∑
k=1

(−1)k
k∑
j=0

k!

j!(k − j)!
2k−j

φ
2
ns

0,k+j
n (y) + 2φns

1,k+j
n (y) + s2,k+jn (y)

ξ
k+j+2
n

+
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+ (−1)ν
ν∑
j=0

ν!

j!(ν − j)!
2ν+j

σ2,ν+jn (y)

ξ
ν+j
n

=
φ
2
n

ξ
2
n

+
s2,0n (y)

ξ
2
n

− 2
2φns

1,1
n (y) + s2,1n (y)

ξ
3
n

− φ
2
ns

0,2
n (y) + 2φns

1,2
n (y) + s2,2n (y)

ξ
4
n

+

+ 4
φ
2
ns

0,2
n (y) + 2φns

1,2
m (y) + s2,2n (y)

ξ
4
n

+ 4
S2,3
n (y)

ξ
5
n

+
S2,4
n (y)

ξ
6
n

+

+
ν−1∑
k=3

(−1)k
k∑
j=0

k!

j!(k − j)!
2k−j

S2,k+j
n (y)

ξ
k+j+2
n

+ (−1)ν
ν∑
j=0

ν!

j!(ν − j)!
2ν+j

σ2,ν+jn (y)

ξ
ν+j
n

=
φ
2
n

ξ
2
n

+
s0,2n (y)

ξ
2
n

+ 3
φns

0,2
n (y)

ξ
4
n

− 4
φns

1,1
n (y)

ξ
3
n

− 2
s2,1n (y)

ξ
3
n

+

+ 3

(
s2,2n (y)

ξ
4
n

+
2φns

1,2
n (y)

ξ
4
n

)
+ 4

S2,3
n (y)

ξ
5
n

+
S2,4
n (y)

ξ
6
n

+

+

ν−1∑
k=3

(−1)k
k∑
j=0

k!

j!(k − j)!
2k−j

S2,k+j
n (y)

ξ
k+j+2
n

+ (−1)ν
ν∑
j=0

ν!

j!(ν − j)!
2ν+j

σ2,ν+jn (y)

ξ
ν+j
n

.

Hence,

E
[
f̂h

2
(y)
]

=
φ
2
n(y)

ξ
2
n

+ ϕn(y) + Γ(ν)
n (y) + (−1)ν∆(ν)(y),

where

ϕn(y) =
s0,2n (y)

ξ
2
n

+ 3
φns

0,2
n (y)

ξ
4
n

− 4
φns

1,1
n (y)

ξ
3
n

,

Γ(ν)
n (y) = −2

s2,1n (y)

ξ
3
n

+ 3

(
s2,2n (y)

ξ
4
n

+
2φns

1,2
n (y)

ξ
4
n

)
+ 4

S2,3
n (y)

ξ
5
n

+
S2,4
n (y)

ξ
6
n

+

+

ν−1∑
k=3

(−1)k
k∑
j=0

k!

j!(k − j)!
2k−j

S2,k+j
n (y)

ξ
k+j+2
n

,

∆(ν)(y) =

ν∑
j=0

ν!

j!(ν − j)!
2ν+j

σ2,ν+jn (y)

ξ
ν+j
n

.

As we have done before for the mean, we must study the convergence order of these terms.

s2,0n (y) = E
[(
φn(y)− φn(y)

)2]
= V ar [φn(y)] = E

[
φn(y)2

]
− φn(y)2

=
1

nµ2
(
K2
h ◦ γ

)
(y) +

n− 1

nµ2
(Kh ◦ f)2 (y)− 1

µ2
(Kh ◦ f)2 (y)

=
1

nµ2
(
K2
h ◦ γ

)
(y)− 1

nµ2
(Kh ◦ f)2 (y),
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φ
2
n(y)s0,2n (y) = φ

2
n(y)E

[(
ξn − ξn

)2]
= φ

2
n(y)

1

nµ

(
E

[
1

X

]
− 1

µ

)
=

1

nµ3
(Kh ◦ f)2 (y)

(
E

[
1

X

]
− 1

µ

)
,

φn(y)s1,1n (y) = φn(y)E
[(
φn(y)− φn(y)

) (
ξn − ξn

)]
= φn(y)E

[
φn(y)

(
ξn − ξn

)]
− φ2n(y)E

[(
ξn − ξn

)]
=

1

µ
(Kh ◦ f) (y)

[
1

nµ2
(Kh ◦ γ) (y)− 1

nµ2
(Kh ◦ f) (y)

]
=

1

nµ3
(Kh ◦ f) (y) (Kh ◦ γ) (y)− 1

nµ3
(Kh ◦ f)2 (y),

s2,1n (y) = E
[(
φn(y)− φn(y)

)2 (
ξn − ξn

)]
= O(1/n)− 1

nµ3
(Kh ◦ γ) (y)− 1

nµ3
(Kh ◦ f)2 (y),

s2,2n (y) = E
[(
φn(y)− φn(y)

)2 (
ξn − ξn

)2] ≤ E [(φn(y)− φn(y)
)4]1/2

E
[(
ξn − ξn

)2]1/2
= O(1/n)O(1/n1/2) = O(1/n3/2).

In the same way as with this last term and assuming that the l-th order centred moment of
the variable 1

Y < +∞ with l = 1, . . . , 2ν, we obtain

φn(y)s1,2n (y) = O(1/n3/2), S2,3
n (y) = O(1/n5/2), S2,4

n (y) = O(1/n3), S2,k+j
n (y) = O(1/n

k+j
2

+1)

and σ2,ν+jn (y) = O(1/nν+j).

Finally, gathering all the addends properly, we get

E
[
f̂h

2
(y)
]

=
φ
2
n(y)

ξ
2
n

+ ϕn(y) + Γ(ν)
n (y) + (−1)ν∆(ν)(y)

= (Kh ◦ f)2 (y) +
1

n

(
K2
h ◦ γ

)
(y)− 1

n
(Kh ◦ f)2 (y).

Then,

V ar
[
f̂h(y)

]
= (Kh ◦ f)2 (y) +

1

n

(
K2
h ◦ γ

)
(y)− 1

n
(Kh ◦ f)2 (y)− (Kh ◦ f)2 (y) +O(1/n)

=
1

n

[(
K2
h ◦ γ

)
(y)− (Kh ◦ f)2 (y)

]
+O(1/n)

To get the MSE it is enough to realise that

MSE
(
f̂h(y)

)
= Bias2

(
f̂h(y)

)
+ Var

(
f̂h(y)

)
,

and apply a Taylor expansion as it is done with the kernel density estimator with complete data,
then:

MSE
(
f̂h(y)

)
=

1

4
h4
(
f
′′
(y)
)2
µ22(K) +

γ(y)

nh
R(K) + o

(
h4 +

1

nh

)
.
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B Proof of Theorem 2.3

We now obtain the MSE of the bootstrap estimator under the bootstrap distribution. To this
aim we follow similar steps as in Appendix A. Remind that now, the estimator is given by (5),
and it can be rewritten as follows:

f̂h
∗
(y) =

1
n

∑n
i=1

1
Y ∗i
Lh (y − Y ∗i )

1
n

∑n
j=1

1
Y ∗j

=
φ∗n(y)

ξ∗n
.

From the expression above we compute the mean of the numerator and the denominator as
follows:

φ
∗
n(y) := E∗ [φ∗n(y)] = E∗

[
1

n

n∑
i=1

1

Y ∗i
Lh (y − Y ∗i )

]
=

∫
1

z
Lh(y − z)f̂Y,g(z)dz =

1

µ̂

(
Lh ◦ f̂g

)
(z).

ξ
∗
n := E∗[ξ∗n] = E∗

 1

n

n∑
j=1

1

Y ∗j

 =

∫
1

z
f̂Y,g(z)dz =

1

µ̂
.

Using the linearisation procedure in Collomb (1976) with ν ≥ 2 we have that

E∗[f̂h
∗
(y)] =

φ
∗
n(y)

ξ
∗
n

+ c∗n(y) + c∗
(ν)

n (y) +
(−1)νσ∗

1,ν

n (y)

ξ
ν
n

where

c∗n(y) =
φ
∗
n(y)S∗

0,2

n − ξ∗nS∗
1,1

n

ξ
∗
n
3 =

φ
∗
n(y)E∗

[(
ξ∗n − ξ

∗
n

)2]
− ξ∗nE∗

[
φ∗n(y)

(
ξ∗n − ξ

∗
n

)]
ξ
∗
n
3 ,

c∗
(ν)

n (y) =
s∗

1,2

n (y)

ξ
∗
n
3 +

ν−1∑
k=3

(−1)k
S∗

1,k

n (y)

ξ
∗
n
k+1

=

E∗
[(
φ∗n(y)− φ∗n(y)

)(
ξ∗n − ξ

∗
n

)2]
ξ
∗
n
3 +

+
∑ν−1

k=3(−1)k
E∗
[
φ∗n(y)(ξ∗n−ξ

∗
n)
k
]

ξ
∗
n
k+1 and

σ∗
1,ν

n (y) = E∗
[
f̂h
∗
(y)
(
ξ∗n − ξ

∗
n

)ν]
To obtain the variance of the bootstrap estimator we compute

E∗[f̂h
∗2

(y)] =
φ
∗2
n (y)

ξ
∗
n
2 + ϕ∗n(y) + Γ∗

(ν)

n (y) + (−1)ν∆∗
(ν)

(y),

with

ϕ∗n(y) =
s∗

2,0

n (y)

ξ
∗
n
2 + 3

φn
∗2

(y)s∗
0,2

n

ξ
∗
n
4 − 4

φ
∗
n(y)s∗

1,1

n

ξ
∗
n
3 ,
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Γ∗
(ν)

n (y) = −2
s∗

2,1

n (y)

ξ
∗
n
3 + 3

(
s∗

2,2

n (y)

ξ
∗
n
4 +

2φ
∗
n(y)s∗

1,2

n

ξ
∗
n
4

)
+ 4

S∗
2,3

n (y)

ξ
∗
n
5 +

S∗
2,4

n (y)

ξ
∗
n
6 +

+
∑ν−1

k=3(−1)k
∑k

j=0
k!2k−j

j!(k−j)!
S∗

2,k+j
n (y)

ξ
∗
n
k+j+2 and

∆∗
(ν)

(y) =

ν∑
j=0

ν!

j!(ν − j)!
2ν−j

σ∗
2,ν+j

n (y)

ξ
∗
n
ν+j

.

Here the dominant terms are
φ
∗2
n (y)

ξ
∗
n
2 +

s∗
2,0

n (y)

ξ
∗
n
2 , which are the ones we need to study.

φ
∗2
n (y)

ξ
∗
n
2 =

(
1
µ̂(Lh ◦ f̂g)(y)

)2
(

1
µ̂

)2
s∗

2,0

n (y) = E∗
[(
φ∗n(y)− φ∗n(y)

)2]
= V ar∗ [φ∗n(y)] = E∗

[
φ∗

2

n (y)
]
− E∗ [φ∗n(y)]2

= E∗
[
φ∗

2

n (y)
]
− φ∗

2

n (y) =
1

nµ̂2
(L2

h ◦ γ̂g)(y) +
n− 1

nµ̂2
(Lh ◦ f̂g)2(y)− 1

µ̂2
(Lh ◦ f̂g)2(y)

=
1

nµ̂2
(L2

h ◦ γ̂g)(y)− 1

nµ̂2
(Lh ◦ f̂g)2(y)

⇒ s∗
2,0

n (y)

ξ
∗
n
2 = µ̂2s∗

2,0

n (y) =
1

n
(L2

h ◦ γ̂g)(y)− 1

n
(Lh ◦ f̂g)2(y),

taking into account that E∗[φ∗2n (y)] =
1

nµ̂
(L2

h ◦ γ̂g)(y) +
n− 1

nµ̂2
(Lh ◦ f̂g)2(y).

Then, as the other terms are negligible, we get

V ar∗
[
f̂h
∗
(y)
]

=
1

n

[
(L2

h ◦ γ̂g)(y)− (Lh ◦ f̂h)2(y)
]
.

Under the regularity conditions previously established we get that

MSE∗(f̂h
∗
(y)) =

1

4
h4
(
f̂g
′′
(y)
)2
µ22(K) +

γ̂g(y)

nh
R(L) + oP

(
h4 +

1

nh

)
.

C Proof of Theorem 2.6

This proof has basically the same aim as the one of Theorem 2.3 (Appendix B), with the
particularity that the generation of the bootstrap sample is made differently.

Let us remind the expression of the bootstrap estimator

f̂h
∗
(y) =

1
n

∑n
i=1

1
Y ∗i
Lh (y − Y ∗i )

1
n

∑n
j=1

1
Y ∗j

=
φ∗n(y)

ξ∗n
.

Firstly we will obtain the mean of the bootstrap estimator. Following again the linearisation
procedure in Collomb (1976) and the previous proof, we only need the mean of the numerator
and the denominator, so:

34



φ
∗
n(y) := E∗ [φ∗n(y)] = E∗

[
1

n

n∑
i=1

1

Y ∗i
Lh (y − Y ∗i )

]
=

∫
1

z
Lh(y − z)f̃K,g(z)dz.

ξ
∗
n := E∗[ξ∗n] = E∗

 1

n

n∑
j=1

1

Y ∗j

 =

∫
1

z
f̃K,g(z)dz.

Remind that in this context, f̃K,g denote the common kernel density estimator with kernel K
and bandwidth g.

Hence,

E∗
[
f̂∗h(y)

]
=
φ
∗
n(y)

ξ
∗
n

+OP (1/n) =

∫
1
zLh(y − z)f̃K,g(z)dz∫

1
z f̃K,g(z)dz

+OP (1/n) .

To compute the variance we follow again the previous proof, and taking only into account
the dominant terms we get

E∗[f̂h
∗2

(y)] =
φ
∗2
n (y)

ξ
∗
n
2 +

s∗
2,0

n (y)

ξ
∗
n
2 +OP (1/n), where

φ
∗2
n (y)

ξ
∗
n
2 =

(∫
1
zLh(y − z)f̃K,g(z)dz

)2
(∫

1
z f̃K,g(z)dz

)2 and

s∗
2,0

n (y) = E∗
[(
φ∗n(y)− φ∗n(y)

)2]
= V ar∗ [φ∗n(y)] = E∗

[
φ∗

2

n (y)
]
− E∗ [φ∗n(y)]2

= E∗
[
φ∗

2

n (y)
]
− φ∗

2

n (y) =
1

n

∫
1

z2
L2
h(y − z)f̃K,g(z)dz −

1

n

(∫
1

z
Lh(y − z)f̃K,g(z)dz

)2

,

considering that E∗[φ∗2n (y)] =
1

n

∫
1

z2
L2
h(y − z)f̃K,g(z)dz −

n− 1

n

(∫
1

z
Lh(y − z)f̃K,g(z)dz

)2

.

Then we get

V ar∗
[
f̂h
∗
(y)
]

=
1

n

∫
1

z2
L2
h(y − z)f̃K,g(z)dz −

1

n

(∫
1

z
Lh(y − z)f̃K,g(z)dz

)2

.

Finally, just noting that MSE∗ can be computed as the sum of the squared bias and the
variance we obtain the final equation.
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D Proof of Theorem 3.1

Along this proof we will calculate the mean and the variance of R(f̂
′′
g ) as an estimator of R(f

′′
)in

order to determine its MSE and an expression of the pilot bandwidth g. To this purpose we use
the U-statistics theory and its projections, as it has been done for complete data in Cao (1990),
as well as some common statistical results.

We will start by calculating its mean. First of all rewrite

R(f̂
′′
g ) =

∫ (
f̂
′′
g (y)

)2
dy = n−1g−5

∫ (
L
′′
(u)
)2
du

(
1

n

n∑
i=1

1

Y 2
i

)
µ̂2+

+ n−2g−6µ̂2
∑
i 6=j

1

Yi

1

Yj

∫
L
′′
(
y − Yi
g

)
L
′′
(
y − Yj
g

)
dy.

Hence,

E

[∫
f̂
′′2
g (y)dy

]

= n−1g−5
∫ (

L
′′
(u)
)2
duE


(

1
n

∑n
i=1

1
Y 2
i

)
(

1
n

∑n
i=1

1
Yi

)2
+ n−2g−6E


∑

i 6=j
1
Yi

1
Yj

∫
L
′′
(
y−Yi
g

)
L
′′
(
y−Yj
g

)
dy(

1
n

∑n
i=1

1
Yi

)2


= n−1g−5
∫ (

L
′′
(u)
)2
ducµ+ n−1(n− 1)g−6µ2

∫
µ2g(y)dy + o(n−2g−5), (8)

where µg(y) := E
[
1
Y L

′′
(
y−Y
g

)]
and we use that

E

( 1

n

n∑
i=1

1

Yi

)2
 =

1

µ2
+O(n−1) and E

[
1

n

n∑
i=1

1

Y 2
i

]
= E

[
1

Y 2

]
=
c

µ
,

that have been obtained using Taylor expansions.
Moreover, using again Taylor expansion and the regularity conditions imposed on L and f ,

we can rewrite

µg(y) =
1

µ

(
g3f

′′
(y) +

1

6
g5
∫
u4L

′′
(u)

∫
(1− t)3f (iv(y − gut)dtdu

)
,

and applying Fubini’s theorem and Cauchy-Schwarz inequality, we obtain∫
µ2g(y)dy =

1

µ2

(
g6
∫
f
′′2

(y)dy + g8µ2(L)

∫
(f
′′′

(y))2dy + o(g9)

)
. (9)

Then, replacing this value in (8), we get the mean of the estimator as follows:

E

[∫
f̂
′′2
g (y)dy

]
= n−1g−5cµ

∫ (
L
′′
(u)
)2
du+

+ n−1(n− 1)

∫
(f
′′
(y))2dy + n−1(n− 1)g2µ2(L)

∫
(f
′′′

(y))2dy + o(g3). (10)
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Once having the mean, the bias can be immediately obtained:

Bias
[
R
(
f̂
′′
h

)]
= n−1g−5cµ

∫ (
L
′′
(u)
)2
du+ g2µ2(L)

∫
(f
′′′

(y))2dy + o(n−1) + o(g3). (11)

Next step is calculating the variance. For this aim we need to rewrite the expression of the
estimator in an appropriate and different way.

R
(
f̂
′′
g

)
= n−1g−5

∫
(L

′′
(u))2duµ̂2

(
1

n

∑
i=1

1

Y 2
i

)
+ n−2g−6µ̂2

∑
i6=j

1

Yi

1

Yj

∫
L

′′
(
y − Y1
g

)
L

′′
(
y − Yj
g

)
dy,

= n−1g−5

∫
(L

′′
(u))2duµ̂2

(
1

n

∑
i=1

1

Y 2
i

)
+ n−2g−6µ̂2

∑
i 6=j

[
Hn(Yi, Yj) +

∫ (
1

Yi
L

′′
(
y − Yi
g

)
− µg(y)

)
µg(y)+

+

∫ (
1

Yj
L

′′
(
y − Yj
g

)
− µg(y)

)
µg(y) +

∫
µ2g(y)

= n−1g−5

∫
(L

′′
(u))2duµ̂2

(
1

n

∑
i=1

1

Y 2
i

)
+ n−1(n− 1)g−6µ̂2

∫
µ2g(y)dy+

+ n−2g−6µ̂2
∑
i6=j

Hn(Yi, Yj) + n−2g−6µ̂22(n− 1)

n∑
i=1

Wi, (12)

where Wi =
∫ (

1
Yi
L
′′
(
y−Yi
g

)
− µg(y)

)
µg(y)dy i = 1, . . . , n,

Hn(Yi, Yj) :=
∫ (

1
Yi
L
′′
(
y−Yi
g

)
− µg(y)

)(
1
Yj
L
′′
(
y−Yj
g

)
− µg(y)

)
, and we use that∫

L
′′
(
y − Y1
g

)
L
′′
(
y − Yj
g

)
dy = Hn(Yi, Yj) +

∫ (
1

Yi
L
′′
(
y − Yi
g
− µg(y)

)
µg(y)dy

)
+

+

∫ (
1

Yj
L
′′
(
y − Yj
g
− µg(y)

)
µg(y)dy

)
+

∫
µ2g(y)dy and∫

1

Yi
L
′′
(
y − Yi
g

)
1

Yj
L
′′
(
y − Yj
g

)
= Hn(Yi, Yj) +

∫ (
1

Yi
L
′′
(
y − Yi
g

)
− µg(y)

)
µg(y)dy+

+

∫ (
1

Yj
L
′′
(
y − Yj
g

)
− µg(y)

)
µg(y)dy +

∫
µ”g(y)dy

Now we calculate the variance of each term; for the first two we need to use common
statistical techniques while for the others we will need to do a more complex expansion.

V ar

[
n−1g−5

∫
(L
′′
(u))2duµ̂2

(
1

n

∑
i=1

1

Y 2
i

)]
= n−2g−10

(∫
(L
′′
(u))2du

)2

V ar

 1
n

∑n
i=1

1
Y 2
i(

1
n

∑n
i=1

1
Yi

)


= o(n−3g−10).

V ar

[
n−1(n− 1)g−6µ̂2

∫
µ2g(y)dy

]
= n−2(n− 1)2g−12

∫
µg(y)dyV ar

 1(
1
n

∑n
i=1

1
Yi

)2


= o(n−1g−12).
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Before getting involved in the variance of the third term we need some previous developments
related to Hn(Yi, Yj).

Firstly, we obtain the expression of
∫ ∫

µg(x)µg(y)
∫
L
′′
(
x−z
g

)
L
′′
(
y−z
g

)
γ(z)dzdxdy using

Taylor expansions on f and γ:

∫ ∫
µg(x)µg(y)

∫
L

′′
(
x− z
g

)
L

′′
(
y − z
g

)
γ(z)dzdxdy =

g8

µ2

∫ ∫ ∫ ∫ ∫ ∫ 1

0

∫ 1

0
u21L

′′
(u1)u

2
2L

′′
(u2)

(1− t1)(1− t2)f
′′
(x− gu1t1)f

′′
(x+ gw − gu2t2)L

′′
(v)L

′′
(v + w)γ(x− gv)dt1dt2du1du2dvdwdx

= I0 − I1 + I2 − I3 + I4, (13)

with

Ij =
1

µ2
g8+j

j!

∫
u21L

′′
(u1)

∫
u22L

′′
(u2)

∫ 1

0
(1− t1)

∫ 1

0
(1− t2)

∫
f
′′
(x− gu1t1)γ(j)(x)·

·
∫
f
′′
(x+ gw − gu2t2)Nj(w)dxdwdt1dt2du1du2 j = 0, . . . , 3

I4 =
1

µ2
g12

6

∫
u21L

′′
(u1)

∫
u22L

′′
(u2)

∫ 1

0
(1− t1)

∫ 1

0
(1− t2)

∫
f
′′
(x− gu1t1)·

·
∫
f
′′
(x+ gw − gu2t2)

∫
v4L

′′
(v)L

′′
(v + w)

∫ 1

0
(1− z3)γ(iv(x− gvz)dzdvdwdxdt2dt1du2du1.

From these expressions, we obtain:

I0 =
g12

µ2

∫
γ(y)f

′′
(y)f (vi(y)dy + o(g12),

I1 =
−2g12

µ2

∫
γ
′
(y)f

′′
(y)f (v(y)dy + o(g12),

I2 =
g12

µ2

∫ (
γ
′′
(y)
)2
f (iv(y)dy + o(g12),

I3 = o(g12) and I4 = o(g12).

Hence, getting back on (13), we have∫ ∫
µg(x)µg(y)

∫
L
′′
(
x− z
g

)
L
′′
(
y − z
g

)
γ(z)dzdxdy =

g12

µ2

∫
γ(y)

(
f (iv(y)

)2
dy + o(g12).

Secondly, we need to remark that∫ ∫ [∫
L
′′
(
x− z
g

)
L
′′
(
y − z
g

)
dz

]2
dxdy = g3

(∫
γ2(z)dz

)(∫
(L
′′ ◦ L′′)2(v)dv

)
+ o(g3).

And now, we are in a position to obtain the expression of E
[
Hn(Yi, Yj)

2
]
:
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E
[
Hn(Yi, Yj)

2
]

=

∫ ∫ (
1

µ2

∫
L
′′
(
x− z
g

)
L
′′
(
y − z
g

)
γ(z)dz − µg(x)µg(y)

)2

dxdy

=
1

µ4

∫ ∫ (∫
L
′′
(
x− z
g

)
L
′′
(
y − z
g

)
γ(z)dz

)2

dxdy−

− 2

µ4

∫ ∫
µg(x)µg(y)

∫
L
′′
(
x− z
g

)
L
′′
(
y − z
g

)
γ(z)dzdxdy +

1

µ4

(∫
µ2g(y)dy

)2

=
1

µ4

(
g3
(∫

γ2(z)dz

)(∫
(L
′′ ◦ L′′)2(v)dv

))
− 2g12

µ6

∫
γ(y)(f (iv(y))2dy+

+
g12

µ8

∫
f(y)(f (iv(y))2dy − g12

µ8

(∫
f(y)f (iv(y)dy

)2

+ o(g12). (14)

Remember, that we were doing all these calculations in order to be able to obtain the variance
of the third term of (12), so

V ar

n−2g−6µ̂2∑
i 6=j

Hn(Yi, Yj)

 = 2n−3g−12µ4E
[
H2
n(Yi, Yj)

]
+ o(n−5g−12)

= 2n−2g−9
∫
γ2(z)dz

∫
(L
′′ ◦ L′′)2(v)dv + o(n−3g−9).

The variance of the fourth term of (12) is calculated as follows:

V ar

[
n−2g−6µ̂22(n− 1)

n∑
i=1

Wi

]
= 4n−4(n− 1)2g−12

(
V ar

[
n∑
i=1

Wi

]
µ4 + o(n−1)

)

= 4n−3(n− 1)2g−12µ4

[
g12

µ4

∫
γ(y)

(
f (iv(y)

)2
dy − g−12

µ4

((∫
(f
′′′

(y))2dy

)2

+ o(g12)

)]
,

where we have used that Wi are centred and independent variables, as well as the expression of
its second order moment.

Lastly, it can be seen, using Cauchy-Schwarz inequality, that the covariate terms between
the addends of (12) are negligible.

Then, we finally obtain

V ar
[
R
(
f̂
′′
f

)]
= 2n−2g−9

∫
γ2(y)dy

∫
(L
′′ ◦ L′′)2(v)dv + o(n−2g−9)+

+O(n−1) +O(n−3/2n−9/2). (15)

Gathering (11) and (15), we have

MSE
(
R(f̂

′′
g )
)

= 2n−2g−9
∫
γ2(y)dy

∫
(L
′′ ◦ L′′)2(v)dv + n−2g−10

(∫
(L
′′
(y))2dy

)2

c2µ2+

+ g4µ22(L)

(∫
(f
′′′

(y))2dy

)2

+ 2n−1g−3µ2(L)cµ

∫
(L
′′
(y))2dy

∫
(f
′′′

(y))2dy+

+ o(n−3g−9) + o(n−2g−9) +O(n−1) +O(n−3/2g−9/2)

= A2n−2g−10 +B2g4 + 2ABn−1g−3 + o(n−2g−9) +O(n−1)+

+O(n−3/2g−9/2),
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where A := cµ
∫

(L
′′
(u))2du and B := µ2(L)

∫
(f
′′′

(y))2dy.
Then, its asymptotic version is

AMSE
(
R(f̂

′′
h )
)

= (An−1g−5 +Bg2)2,

and the value of the bandwidth g minimising the quantity above is

g0 = arg min
g

AMSE = don
−1/7,

with d0 =
(
5
2AB

)1/7
.
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