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Highlights

• Constructive definition of electricity forward price curve with arbitrary granularity

• Forward curve level is jointly consistent to risk-neutral and historical market information

• Curve shape embeds periodical patterns unveiled by past quotes

• Curve level is jointly consistent to baseload and peak-load futures quotations

• Curve path is smooth, monotonicity preserving, cross-sectionally stable, time local
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Electricity Forward Curves with Thin Granularity

Theory and Empirical Evidence in the Hourly EPEX Spot Market

Ruggero Caldana, Gianluca Fusai, Andrea Roncoroni∗

Abstract

We propose a constructive definition of electricity forward price curve with cross-

sectional timescales featuring hourly frequency on. The curve is jointly consistent

with both risk-neutral market information represented by baseload and peakload fu-

tures quotes, and historical market information, as mirrored by periodical patterns

exhibited by the time series of day-ahead prices. From a methodological standpoint,

we combine nonparametric filtering with monotone convex interpolation such that

the resulting forward curve is pathwise smooth and monotonic, cross-sectionally sta-

ble, and time local. From an empirical standpoint, we exhibit these features in the

context of EPEX Spot and EEX Derivative markets. We perform a backtesting

analysis to assess the relative quality of our forward curve estimate compared to the

benchmark market model of Benth et al. (2007).1

∗Ruggero Caldana is with Accenture S.p.A, Via Maurizio Quadrio, 17, 20154 Milan (Italy); Gianluca Fusai
(Corresponding Author) is with Department of Economics and Business Studies (DiSEI), Università del Piemonte
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1 Introduction

The electricity forward curve is a key piece of information subsuming future views of power

market participants. This quantity is a function mapping each element in a set of future time

intervals into the corresponding fair price for forward delivery of one megawatt-hour of electri-

cal power.2 A standard setting assumes evenly spaced and continuous time periods spanning

the tradable maturity spectrum. Their length defines the curve granularity, which we refer to

as “thin” for hourly frequency on. We consider the problem of building an electricity forward

curve with hourly granularity. This is customarily referred to as the hourly price forward curve

(HPFC).3 The driving principle underlying our approach is market representativeness. In par-

ticular, curve construction ought to use available market prices at best. The proposed analysis

considers two major strands of market data.

Risk-neutral information stems from futures price quotations. Forward prices with hourly gran-

ularity cannot directly be recovered from these figures: the inverse problem of getting hourly

prices out of futures market quotes with longer maturities is by and large undetermined. Market

practice tackles the issue to a limited extent by adopting the curve fitting toolkit borrowed from

fixed income analysis.4 Unfortunately, a direct application of these methods leads to forward

curves lacking most of the stylized features required by power market operators. Historical in-

formation emerges from the past evolution of quoted spot prices. Power quotations stem from

the interaction between supply and demand of electricity. This interaction exhibits sharp pe-

riodical patterns at frequencies ranging from intra-day up to a season. It turns out that the

implied averaging process leading to forward quotes over periods of varying length smoothes

these patterns, making them undetectable upon recovering hourly forward prices from futures

quotations. In addition, quoted delivery periods usually exhibit varying durations. This fact

often entails observing quotations referring to intersecting delivery periods, what leads to an

ambiguous forward price assessment over certain time intervals. A further complication is pre-

sented by a possible lack of futures quote records for some segments in the maturity domain, a

fact which leaves the forward curve undetermined for those portions of time.

In summary, while risk neutral data represented by standing futures prices allows us to partially

determine forward curve level, it provides little clue about the actual shape of the curve. This

effect is noticeably exacerbated with increasing time granularity, a phenomenon which reaches its

2Forward price is defined as the fair tariff the market quotes for a zero-cost commitment to future delivery over
an entire period of time. For the purpose of this study, we interchangeably use terms “forward” and “futures”
based on the assumption of a predictable cost of carry.

3Three major considerations underpin focusing on hourly granularity. First, hourly quotation is a standard
for the vast majority of power markets across the world; note, however, that instances of half-hourly granularity
exist as well, e.g., UK and New Zealand. Second, published literature on hourly forward prices is particularly
scant in contrast to the increasing number of contracts prescribing hourly delivery. Finally, and perhaps most
importantly, disposing of hourly forward quotes allows one to price most physical and financially settled power
contracts (Burger et al. (2014)).

4Term structures of interest rates are primarily inferred from bond price data. Existing techniques ultimately
combine appropriate bond price stripping methods coping with overlapping payment schedules and interpolation
methods allowing for filling in gaps appearing across the maturity dimension (Anderson et al. (1996)).
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acme in hourly resolution. We argue that historical data offers the missing piece of information.

A major contribution of this study is to unveil this finding and devise a way to use historical spot

price data to sharpen the assessment of an HPFC compatible to market quotes in a rationally

consistent manner.

The paper is organized as follows. Section 2 summarizes existing literature on the subject and

points out a direction for this study. Section 3 develops the underlying rationale by inspecting

the nature of market information and by introducing the notion of forward kernel. Section 4

proposes a metadefinition of rational forward curve and offers a corresponding algorithm. Section

5 describes preparatory steps, notably spot data outlier filtering and futures price segmentation.

Section 6 implements the model into an algorithm leading to a constructive definition of HPFC.

Section 7 empirically investigates the case of the EPEX power market and tests the quality of

this proposal against a benchmark market model. Section 8 concludes with a few comments and

suggestions for future research work.

2 Review of Literature

Some of the issues described so far have been partially addressed by the existing literature.

To the best of our knowledge, Fleten and Lemming (2003) first apply curve fitting methods

to electricity markets. Using the proprietary Multiarea Power Scheduling (MPS) model, these

authors obtain weekly equilibrium prices and production quantities. They derive electricity

forward curves through nonparametric estimates of daily forward prices obtained by minimizing

the least-squares distance between target values and MPS equilibrium prices. The problem is

solved under price constraints related to bid-ask spreads and curve smoothness properties.

Koekebakker and Os Adland (2004) and Benth et al. (2007) propose a model whose terms

are made fully available to the user. They assume that forward curves combine seasonal paths

with fourth order polynomial splines. Using the maximum smoothness interpolation (MSI)

method developed by Adams and van Deventer (1994), these authors derive a daily forward

curve fitting a set of market quotes and minimizing a convexity measure of the curve shape.

The construction algorithm is effectively applied to Panamax Time Charter freight and Nordpool

electricity markets.

Borak and Weron (2008) observe that the two methods described above are sensibly prone to

model risk. These authors focus on the tight dependence between seasonal component assign-

ment and the output curve. They propose a dynamic semi-parametric factor model with no

explicit representation of periodical terms. As a result, they deliver a parsimonious, smooth,

and seasonal forward curve estimate with daily granularity. However, their algorithm may suffer

from underfitting market prices and may fail to account for short-term periodical patterns.

The problem of building electricity forward curves with finer granularity than a single day has

rarely been addressed by the existing literature. Hildmann et al. (2012) propose a framework to

4
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calculate an HPFC by combining parametric estimation and future price prediction on an hourly

basis. They estimate a linear model through suitable norm minimization under constraints.

These constraints actually ensure model consistency to quoted forward price. They also prevent

from arbitrage opportunities in agreements with arbitrage pricing theory. However, this study

neither reports any quality assessments, nor does it investigate empirical performance.

Paraschiv et al. (2015) further refine the method offered by Benth et al. (2007) to account for

hourly granularity. They obtain an HPFC by additively superposing an exogenously estimated

hourly pattern to a seasonal component, which in turn combines daily and monthly dummies

with weather-linked derivatives, in light of their ability to capture temperature related effects.

Although peakload price fitting is out of their model scope and temperature forecasting is known

to offer significant estimates primarily over a short time horizon, the proposed algorithm is shown

to provide reasonable hourly forward prices.

The main contribution of this paper is to put forward a rational definition of HPFC with thin

granularity that complies with desirable features unaccounted for by the existing literature. The

attribute “rational” refers to the following five properties:

• Raw price series undergo a filtering procedure to finely detect and single out data outliers;

• Curve shape incorporates a comprehensive bundle of periodical patterns unveiled by past

quotes;

• Curve level is jointly consistent to standing baseload and peakload futures quotations;

• Curve path satisfies regularity properties, including trajectorial smoothness, monotonicity

preservation, cross-sectional stability, and time localness (Hagan and West (2006));

• Forward estimate quality is assessed through dedicated empirical tests.

We remark that the proposed definition is fully constructive and self-contained: we make no use

of data (e.g., temperature records in Paraschiv et al. (2015)5) other than electricity spot and

futures prices, nor do we adopt any exogenous model (e.g., the MPS in Fleten and Lemming

(2003)) to benchmark the proposed construction. As a result, we come up to a flexible algorithm

covering virtually all electricity market instances.

5Appendix B.1 discusses the role of temperature records in the construction of forward curves.
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Market prices Delivery period

Day-ahead Each of twenty-four hours in a day

Baseload futures All hours in a weekend, week, month, quarter, or calendar year

Peakload futures On-peak hours (8:00 AM → 8:00 PM) in a week, weekend, month, quarter, calendar year

Off-peak futures Off-peak hours (8:00 PM → 8:00 AM) in a week, weekend, month, quarter, calendar year

Table 3.1: Primitive market data. Day-ahead prices quote for delivery over each hour on the following day;

baseload futures prices quote for delivery over all hours on forthcoming weekends, weeks, quarters, and calendar

years; peakload futures prices quote on the same delivery periods as those of baseload futures, while for a restricted

number of hours, usually spanning the twelve hours comprised between 8:00 AM and 8:00 PM; off-peak futures

prices refer to hours complementary to those of peakload futures, that is from 8:00 PM to 8:00 AM.

3 Market Prices and Patterns

Constructively combining risk-neutral and historical price information into a term structure of

forward prices requires that one defines the notion of forward kernel, a theoretical quantity

generating forward curves with arbitrarily assigned granularity.

3.1 The Forward Kernel

Electrical power is useful for practical purposes provided it is continuously dispatched over a

time frame. Deregulated power markets allow for trading contracts entailing physical delivery

or financial settlement over a variety of time intervals in the future. As an example, we may

consider the general structure of most electricity spot markets. Each day contracts are traded

for physical dispatching power on each hour in the following day. By combining agents’ bid and

offer quotes, the market exchange posts a day-ahead price for each contract. Day-ahead prices

play the additional role of indices underlying power contracts tariffs, including most financial

derivatives written on electricity.

We also consider cash-settled claims written on average day-ahead quotes, of which futures con-

tracts represent the most actively traded instances. These are financial assets whereby the holder

receives continuous delivery of electricity over a time period for a fixed price negotiated at in-

ception. Futures exchanges provide traders with quotes for delivery over entire weekends, weeks,

months, quarters, and calendar years. Baseload futures refer to dispatch periods comprising all

the hours on a given day, while peakload futures refer to delivery on on-peak hours, namely over

a time frame comprising the highest daily consumption figures.6 Table 3.1 summarizes all major

price data available at these power markets.

The notion of forward kernel arises as a tool to conveniently link an arbitrary number of futures

quotes. In broad terms, the time t quoted continuous forward kernel ft(u) is a function recovering

6The exact definition of on-peak and off-peak hours depends on the market under consideration. Most market-
places define on-peak hours as weekday hours comprised between the ninth hourly block of the day, dispatching
power from 8:00 to 9:00 AM, and the twentieth hourly block of the day, dispatching power from 7:00 to 8:00 PM
(Burger et al. (2014)).
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futures prices as arithmetic averages over a period of delivery.7 Given an evaluation date t, a

day-count convention “−” : (t, T ) → T − t specifying time duration, and a futures (baseload)

quote FB covering the period comprised between τ b and τ e, we stipulate:

FB =
1

τ e − τ b
ˆ τe

τb
ft(u)du. (3.1)

The existence of forward kernel is traditionally granted by assuming an underlying arbitrage-free

pricing model. The argument is as follows. In addition to the quantities introduced above, let

(Ω,F , (Fu)u≥0,P) be a complete stochastic basis and r be a continuously compounded constant

rate of interest representing the time value of money. We consider a stochastic process (S(u), u ≥
0) for spot price dynamics of electricity and assume the resulting market model is free of arbitrage

opportunities. In particular, we assume the existence of a risk-neutral probability measure P∗

allowing for pricing financial claims written on S. The fair value of a baseload forward contract

delivering power over a period [τ b, τ e] for a time τ e cash-settled amount FB is obtained using

the standard risk-neutral expectation formula (Duffie (2001)):

V (t) = e−r(τ
e−t)E∗t

[
ˆ τe

τb
(S(u)− FB)du

]
. (3.2)

As long as a forward contract is issued for free, i.e., V (t) = 0, the corresponding forward price

reads as:8

FB =
1

τ e − τ b
ˆ τe

τb
E∗t [S(u)] du. (3.3)

Hence, (continuous) forward kernel may be defined by:

ft(u) := E∗t [S(u)], u ≥ t. (3.4)

Building a forward curve through formula (3.4) amounts to identifying and calibrating an

arbitrage-free spot price model for electricity. We instead follow a model-free pathway whereby

a forward kernel is inferred from market prices by using a suitable inversion of formula (3.1).9

Then, day-ahead and forward prices with thin granularity may easily be obtained by straight-

forward integration over the appropriate time period.

Example (Day-Ahead Price). Consider the Actual/365 day-count convention. Let ∆ := 1

day = 1/365, δ := 1 hour= ∆/24,
[
0, T̄

]
be the time horizon under analysis, and D be the set of

all midnight points comprised in that interval, i.e., D :=
{
k∆ ∧ T̄ , k ≥ 0

}
, where “∧” stands for

the minimum function.10 With a slight abuse of notation, we indicate by “t” both an element in

7A symbol like f (x) is assumed to denote either a function f of variable x or the value assumed by that function
at point x, the exact interpretation given by the context. This notational convention allows us to disentangle
expressions sharing a common label for two distinct functions, such as f (x) and f (x, y).

8A similar relation is obtained for peakload forward prices by integrating over on-peak hours only.
9In this framework existence and unicity of a forward kernel is guaranteed by construction. Details are reported

in Appendix B.2.
10A minor amendment allows us to account for either 23 or 25-hour days related to daylight saving standards.
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D and the day beginning that point in time, the exact interpretation of the symbol being clear

from the context. For each day t ∈ D and hour h ∈ {1, 2, . . . , 23, 24}, the day-ahead hourly price

Sh(t, h) is defined as the forward price quoted at time 12:00 PM on day t− 1 for delivering one

megawatt-hour over the h-th hour on day t, i.e.,

Sh(t, h) =
1

δ

ˆ t+hδ

t+(h−1)δ
ft−12δ(u)du. (3.5)

Example (Hourly Price Forward Curve). In the setting of previous example, the hourly

price forward curve quoted at time t is the function of maturity variables “day T” and “hour h”

defined as:

fht : (T, h)→ fht (T, h) :=
1

δ

ˆ T+hδ

T+(h−1)δ
ft(u)du, (3.6)

for {T > t}∩ D and h ∈ {1, 2, . . . , 23, 24}.

3.2 Predictable Patterns

Time series of electricity day-ahead prices exhibit a number of stylized patterns. These are

primarily driven by the time evolution of balance between supply and demand of power. Corre-

spondingly, they feature periodical recurrence on a variety of frequencies. According to Hildmann

et al. (2013), any reasonable model for electricity forward curves should include seasonal, weekly,

and intraday harmonics. Seasonality is mainly due to the evolution of temperature over the cal-

endar year. This effect is exacerbated at on-peak hours, while off-peak prices exhibit smoother

seasonal patterns. Weekly periodicity refers to systematic price discrepancies between weekdays

and weekends. Nowotarski et al. (2013) detect and filter weekly patterns out of time series of

electricity prices. We additionally disentangle working weekdays from non-working days, which

include weekends, long weekends, standard holidays, and bank holidays. Daily recurrence refers

to asynchronies between supply and demand sides over the course of a day. These paths are

affected by a number of factors, which include human activity leading to on-peak hour prices

higher than off-peak hour quotes, national supply policy, generating portfolio composition, and

feed-in tariffs designed to accelerate investment in renewable energy technologies, among others.

Table 3.2 reports a list of periodical patterns exhibited by time series of day-ahead prices and

their major determinants.

4 Main Issue

The previous analysis shows that a rational definition of “electricity forward curve” ought to

build on two pieces of market information. The first is the time series of day-ahead quotes

available at the evaluation point in time. This term seeks to endow the curve with periodical

patterns exhibited by these data, a feature that power traders take into account when posting

8
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Period Major determinants

Season Temperature and daylight variation during the year

Week Energy consumption surplus on working weekdays

Day Human activity pathway (e.g., meal effect)

National tariff policy and generating portfolio composition

Feed-in tariffs related to investment in renewable energy technology

Table 3.2: Periodical patterns and major determinants. Seasonal component is driven by temperature

and daylight variations over the year. Weekly frequency stem from a systematic excess of working-day energy

consumption over weekends. Daily recurrence depends on factors like human activity pathway, national tariff

policy, generating portfolio mix, and renewables-linked feed-in tariffs.

futures price bids. The second set of market information is an array of baseload and peakload

futures prices corresponding to tradable delivery periods. These elements make the output curve

compatible with the standing market view, an approach in keeping with the nature of forward

prices intended as estimators of future quotes based on currently available information.

Our task boils down to combining the two aforementioned kinds of market data into a single for-

ward kernel, and then deriving forward curves with arbitrary time granularity using appropriate

instances of formula (3.1).11 We propose a definition of forward kernel which entails specifying

market data, structural components, and exact constraints to comply with. We model the time t

continuous-time forward kernel f(u) := ft(u) as the sum of a backward periodical pattern Λ (u),

a baseload adjustment term ε (u), and a peakload adjustment component ϕ (u), i.e.,

f(u) = Λ(u) + ε(u) + ϕ (u) , (4.1)

where the three functions are all integrable over a finite time horizon of interest, say
[
t, T̄
]
. At

time t, we dispose of two pieces of price information: one is the 24-dimensional time series of day-

ahead hourly prices recorded by time t; the other is an array of baseload and peakload futures

prices, whose delivery periods must span the whole time horizon. A forward kernel estimate is

“rational” provided it complies with the five properties put forward in Section 2.

We may constructively specify forward kernel components by using market data according to

the following algorithm:

1. Market data preparation. Raw spot price data undergo a nonparametric filtering

procedure leading to time series of outlier-free day-ahead figures; in addition, market

futures quotes are segmented over non-overlapping delivery periods.

2. Historical estimation of day-ahead predictable patterns. Backward predictable

patterns are derived by filtering a macroeconomic trend and periodical components out of

day-ahead series using methods borrowed from the theory of signal processing.

11From the perspective of arbitrage pricing theory, this pathway goes in tandem with a similar approach
developed in other areas of finance, e.g., Garcia et al. (2011), although the explicit adoption is less common in
the area of energy markets.
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3. Risk-neutral calibration of quoted futures prices in the sense of relation (3.1). A

first adjustment term combines with the estimated predictable path so as to fit baseload

futures quotes.

Given an estimated forward kernel, forward prices with thin granularity may be derived by

using formula (3.6) and the corresponding forward curve follows. Figure 4.1 reports a synoptical

diagram representing the constructive pathway described so far.
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Figure 4.1: Constructive definition of rational forward curve with thin granularity. Data preparation

consists of filtering out day-ahead data outliers and segmenting market baseload and peakload futures quotes over

a sequence of non-overlapping delivery periods. Historical estimation of day-ahead predictable patterns entails

unveiling a macroeconomic trend and combined seasonal, weekly, and daily periodical components. Risk-neutral

calibration of segmented futures prices delivers a continuous-time forward kernel that is jointly consistent with

baseload and peakload quotes. Forward curves with thin granularity are obtained by integrating the estimated

forward kernel over the interval defining the selected time refinement.

11
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5 Data Preparation

Raw spot and forward data must undergo suitable processing to properly feed our model. First,

input time series of day-ahead prices with thin granularity are required to be outlier-free. Second,

quoted futures prices must span a sequence of non-overlapping delivery periods covering the

whole time horizon under analysis. We provide algorithms to process raw data and obtain

market information in keeping with these two requirements.

5.1 Outlier Detection and Filtering

Historical spot price data exhibit a number of undesirable features which may hinder an ap-

propriate estimation of backward pattern Λ and adjustment functions ε and ϕ. As noted by

Truck et al. (2007) and Janczura et al. (2013), filtering data outliers may sensibly improve

the statistical estimation of both weekly and long-term periodical components. To this end, we

adopt a nonparametric high-pass filter developed by Hodrick and Prescott (1997) (HP), which

we now briefly sketch.12

Given a time series X = (xt)1≤t≤T , HP filtering aims at building a new time series H = (ht)1≤t≤T
exhibiting smoothing features according to an assigned parameter λ. Specifically, the HP λ-filter

is defined as follows:

Hλ := arg min
{(ht)1≤t≤T}

T∑

t=1

(xt − ht)2 + λ
T∑

t=1

[(ht+1 − ht)− (ht − ht−1)]2 ,

where the first sum is the variance of the residual time series representing a “business cycle

path”,13 while the second sum is an acceleration component playing the role of “penalty term”.

Clearly, parameter λ tunes the smoothness of filter Hλ by controlling the extent to which its

time-related curvature enters the target functional. In particular, the greater parameter λ, the

smoother the output filter Hλ.

For the purpose of selecting a rational value of input λ, we adopt a method put forward by

Pedersen (2001). Starting point is the “ideal business cycle filter” associated to an assigned

period τ .14 Following Baxter and King (1999), this is the high-pass filter singling out components

at frequencies lower than ωc = 2π/τ , namely:

H∗ωc
(ω) = 1(ω ≥ ωc). (5.1)

It turns out that no HP filter is high-pass in that it cannot precisely disentangle frequencies

above and below an assigned threshold. Hence, one may wish to consider the HP λ-filter coming

12Weron and Zator (2015) show that HP filtering is simpler than and equally powerful to wavelets-based methods
for the purpose of identifying seasonal components of electricity spot prices.

13In economics literature, “business cycle” refers to the fundamental noise term as opposed to predictable
patterns in a time series of values.

14Period is expressed in time units according to the Actual/365 day-count convention.

12



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

as close as possible to the ideal business cycle filter. This amounts to selecting coefficient λ

in a way to minimize the weighed discrepancy between the power transfer function, or Fourier

transform, of HP λ-filter (King and Rebelo (1993)):

Hλ(ω) =

∣∣∣∣
4λ(1− cos(ω))2

4λ(1− cos(ω)) + 1

∣∣∣∣
2

and the ideal business cycle filter H∗ωc
in expression (5.1). Let us introduce ∆ω-spaced refinement

W of the interval [0, π]. The power spectral density v(ω) of the input time series X computed

over W is defined as:

v(ω) = 2S(ω)∆ω

(∑

ω∈W
2S(ω)∆ω

)
,

where S(ω) represents the power spectrum of the root series X .15 Then, for an assigned cut-off

frequency ωc, the Pedersen (2001) optimal parameter reads as follows:

λ∗ = arg min
λ

∑

ω∈W

∣∣Hλ(ω)−H∗ωc
(ω)
∣∣ v(ω), (5.2)

where variable ω is expressed in frequency units and v(ω) plays the role of weighting func-

tion.

Our data filtering procedure is as follows. We begin by recording hourly day-ahead prices up to

the selected time of evaluation. Next, we build up a time series of daily quotes, each figure being

computed as the average hourly price on a single day.16 We compute the HP filter that selects

frequencies lower than a threshold ωc equal to one month (Truck et al. (2007)).17 Following

Cartea and Figueroa (2005), we mark as an “outlier” any data point exceeding three times the

standard deviation of the sample distribution of discrepancies between market price and the

corresponding point on the HP filter. Last, we collect the entire sequence of twenty-four hourly

prices corresponding to each outlier and remove the entire array from the price series. This

procedure leads to an outlier-free spot price series.

5.2 Futures Quote Segmentation

Futures prices observed at any point in time may refer to partially overlapping delivery periods.

We can transform them into corresponding prices for delivery over a partition of the time

horizon. Let us consider a set of baseload and peakload futures prices FB(τ bk , τ
e
k) and FP (τ bk , τ

e
k)

(k = 1, . . . , n) quoted on a common date. We assume that delivery intervals span the whole

15Given time series X = (xt)1≤t≤T , the corresponding power spectrum is defined as: S(ω) := g (exp (−iω)),

where g is the generating function g(z) =
∑

k∈R c(k)zk of the autocovariance function of X , i.e., c(k) =
Cov(x(t), x(t− k)).

16Huisman et al. (2007) noticed that day-ahead hourly prices exhibit the statistical behavior of a daily cross-
section of 24 hourly data, as opposed to a single one-dimensional time series with hourly granularity.

17Appendix B.3 analyzes the effect of varying levels of ωc on the corresponding filtered path.
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time horizon [0,maxk {τ ek}]. We define #B (resp. #P ) as the counting measure of baseload

(resp. peakload) delivery days. Next, we sort the 2n time points τ b1 , τ
e
1 , . . . , τ

b
n, τ

e
n in ascending

order, delete possible duplicates, and relabel the resulting dates as t0 < t1 < ... < tm−1 < tm,

where m ≤ 2n.

We may compute segmented baseload and peakload forward prices FB(ti, ti+1) and FP (ti, ti+1)

for each segment [ti, ti+1] (i = 0,m − 1) by solving a linear system ensuring compliance with

observed futures prices FB(τ bk , τ
e
k) and FP (τ bk , τ

e
k) (k = 1, . . . , n). Specifically, if a period [τ bk , τ

e
k ]

is covered by intervals [ti, ti+1] (i = j(k), j(k) + 1, ..., J(k)), then the corresponding market

forward price is the arithmetic average of segmented forward prices for delivery on these intervals,

i.e.,

FX(τ bk , τ
e
k) =

J(k)∑

i=j(k)

#X(ti, ti+1)

#X(τ bk , τ
e
k)
FX(ti, ti+1), (5.3)

where k = 1, ..., n denotes a market delivery period and X = B,P identifies baseload and

peakload quotation type, respectively.

Formula (5.3) defines a linear system of equations AXyX = zX , where X = B or P , AX ∈ Rn×m,

yX ∈ Rm, and zX ∈ Rn. Under the assumption that sets [τ bk , τ
e
k ] cover the whole time horizon

comprised between t0 and the farthest quoted maturity, existence of a unique vector of non-

overlapping futures prices yX is granted by assuming that AX be a squared and non-singular

matrix. Should rank(AX) 6= rank(AX |zX), then one may progressively exclude contract covering

common periods of time, starting with the least liquid quotations (Jarrow (2014)). The case

of infinitely many solutions (i.e., rank(AX) = rank(AX |zX) ≤ m) may arise when weekly

quotations are used. It can be addressed either by excluding some illiquid quotations or by

considering additional market products such as “balance of month”, that is a contract delivering

energy time until the end of current month, or even by introducing additional constraints on

variables. A lack of solutions corresponding to rank(AX) < rank(AX |zX) signals arbitrage

opportunities.
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6 Model

6.1 Historical Estimation of Day-Ahead Predictable Patterns

Market data preparation leads to outlier-free day-ahead prices Ŝh (t, h) for each hour of the day.

We assume the resulting time series additively combines as many as two predictable compo-

nents:

Ŝh (t, h) ' Ĥ(t)︸︷︷︸
macro trend

+ Λ̂h(t, h)︸ ︷︷ ︸
periodical trend

, (6.1)

up to a residual term, which we assume to be negligible. Here t ∈ Tt0 = {s : s ∈ D, s ≤ t0}, h =

1, . . . , 24, and D :=
{
k∆ ∧ T̄ , k ≥ 0

}
. Component Ĥ(t) denotes a predictable macroeconomic

trend uniformly applying to all hours of day t, while function Λ̂h(t, h) indicates a periodical

pattern whose time behavior is idiosyncratic to each single hour h. We first estimate functions

Ĥ(t) and Λ̂h(t, h) using the historical time series of filtered spot prices; then, we use these

estimates to infer an optimal continuous-time backward pattern Λ̂∗ (u) entering forward kernel

decomposition (4.1).

Trend Ĥ (t) can be estimated using a nonparametric filter. Hourly sampled day-ahead prices

Ŝh (t, h) are averaged to deliver daily sampled day-ahead quotes Ŝ(t) := 1
24

∑24
h=1 Ŝ

h (t, h). The

resulting daily series Ŝ =
(
Ŝ(t), t ∈ Tt0

)
enters a Hodrick-Prescott algorithm filtering periods

exceeding one year and a half, which corresponds to the period for seasonal pattern (i.e., one

year), plus a six-month buffer introduced to avoid distortions near cutoff frequency. Estima-

tion leads to macro trend Ĥ(t) as well as hourly and daily sampled estimated periodical trend

functions Λ̂h(t, h) := Ŝh (t, h)− Ĥ(t) and Λ̂(t) := Ŝ (t)− Ĥ(t), respectively.

According to the analysis reported in Section 3.2, periodical trend Λ̂ features seasonal, weekly,

and daily patterns. We thus assume a parametric form combining the following terms:

• A seasonal pattern with annual recurrence:

a cos

(
2π

365
t+ b

)
, (6.2)

where 0 ≤ b ≤ 2π defines the corresponding point of maximum and minimum.

• A weekly pattern represented by seven dummy variables, one for each day of the week:

7∑

j=1

cj1(t ∈ dayj), (6.3)

where “dayj” is the j-th daily time interval and “1” stand for “Sunday”.18

• A daily pattern modeled through a (4× 24)-array, each term representing the deviation of

18Any day in a public holiday period or a long weekend is treated as a Sunday.
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hourly price from the corresponding daily average:

24∑

h=1

4∑

l=1

dh,l1(t ∈ hourh ∩ Cl), (6.4)

where “hourh” is the h-th hourly time interval and Cl is defined as follows: for the purpose

of capturing daily effects related to temperature and sunlight exposure upon warm and

cold seasons, we segment all hours in a calendar year into four disjoint time sets, which

we define as:

C1/2 := working/nonworking days in the cold season (i.e., from October to March),

C3/4 := working/nonworking days in the warm season (i.e., from April to September).

The resulting continuous-time periodical component reads as:

Λ(t) = a cos

(
2π

365
t+ b

)

︸ ︷︷ ︸
Seasonal

+
7∑

j=1

cj1(t ∈ dayj)
︸ ︷︷ ︸

Weekly

+
24∑

h=1

4∑

l=1

dh,l1(t ∈ hourh ∩ Cl)
︸ ︷︷ ︸

Daily

, (6.5)

where coefficient a allows us to tune the seasonal macroeconomic trend, term cj assigns a weight

to a dummy variable related to the j-th day in the week, and parameter dh,l measures the

discrepancy between the price of hour h and the corresponding daily average, provided that t

belongs to time cluster Cl. As an additional condition we require a balance constraint whereby

the twenty-four hourly deviations from daily mean price sum up to zero on each time cluster,

i.e.,
24∑

h=1

dh,l = 0, l = 1, . . . , 4. (6.6)

Parametric function Λ defined in formula (6.5) can be estimated using hourly and daily sampled

trend patterns Λ̂h(t, h) and Λ̂(t). For the sake of clarity, we write Λ (t) = Λθ,D (t), with:

θ = [a, b, c1, c2, c3, c4, c5, c6, c7], (seasonal + weekly)

D = {dh,l, h = 1, ..., 24; l = 1, ..., 4} , (daily)

and pursue a two-step estimation exercise.

First, we jointly estimate the combined seasonal-weekly parametric set θ. Let Λdθ(t) be the

daily-sampled parametric periodical trend corresponding to the continuous-time periodical trend

Λθ,D(t):

Λdθ (t) :=
1

∆

ˆ t+∆

t
Λθ,D(u)du, (6.7)

where ∆= 1 day under the assumed time unit and t ∈ Tt0 . Note that in light of assumption (6.6),

integrating over a full day amounts to eliminating dependence on the parametric set D, hence
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the left-hand side in expression (6.7) depends on θ only. We fit the daily sampled parametric

periodical trend Λdθ(t) to the daily sampled estimated periodical trend Λ̂(t) by solving a least-

squares minimization problem:

θ∗ = arg min
θ

∑

s∈Tt0

e−α(t0−s)
(

Λdθ (s)− Λ̂(s)
)2
, (6.8)

where parameter α allows us to tune the fitting quality over the time-to-maturity dimen-

sion.

We are now in a position to estimate the daily parametric set D. Let Λhθ,D (t, h) denote the

hourly sampled parametric periodical trend corresponding to the continuous-time periodical

trend Λθ,D (t), i.e.,

Λhθ,D (t, h) :=
1

∆

ˆ t+hδ

t+(h−1)δ
Λθ,D(u)du,

where time lag δ := 1 hour under the assumed time unit, variable t ∈ Tt0 , and hour h = 1, . . . , 24.

We fit hourly sampled parametric periodical trend Λhθ,D(t, h) to the hourly sampled estimated

periodical trend Λ̂h(t, h) by solving the following constrained least-squares minimization prob-

lem: 


D∗ = arg minD

∑
(s,h)∈Tt0×{1,...,24} e

−α(t0−s)
(

Λhθ∗,D (s, h)− Λ̂h(s, h)
)2
,

∑24
h=1 dh,l = 0, l=1,...,4.

(6.9)

The optimal parametric setting (θ∗, D∗) leads to a historical estimation of day-ahead predictable

pattern Λ̂∗ (t) := Λθ∗,D∗ (t) entering the forward kernel definition (4.1).

6.2 Risk-Neutral Calibration of Quoted Futures Prices

Model calibration aims at devising adjustment terms ε (t) and ϕ (t) which additively combine

with the historically estimated day-ahead predictable pattern Λ̂∗ (t) and deliver a market forward

kernel through formula (4.1). In what follows, all statements involving i-indexed quantities apply

for all i = 0, . . . , n−1. Data preparation offers an array of time segmented futures prices FBi and

FPi quoted at the evaluation point in time. Curve form (4.1) combined with baseload consistency

condition (3.3) leads to:

FBi+1 =
1

ti+1 − ti

ˆ ti+1

ti

(Λ(u) + ε(u) + ϕ(u))du.

Our plan consists of fitting term ε (t) to baseload prices FBi and then calibrating term ϕ (t) to

peakload quotes FPi .

A key point in our development is the ability to select term ϕ such that it matches peakload

prices FP , while leaving fitting properties of term ε unaffected. We split the period ranging from

Monday to Friday into a set P comprising twelve daily on-peak hours and a set O gathering as
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many daily off-peak hours. Next, we define a piecewise constant function as follows:

ϕ(t) := ci+1

[
1P (t)− 1O(t)

]
, (6.10)

over each time interval [ti, ti+1].19 As long as weekend hours are all off-peak, we may agree

on identifying them as on-peak and off-peak at the same time. Hence, function ϕ(t) vanishes

on weekends, while the integral does so on each weekday. Consequently, it shows the required

property:20

FBi+1 =
1

ti+1 − ti

ˆ ti+1

ti

(Λ(u) + ε(u))du.

We now calibrate term ε (t) to segmented baseload futures prices. Given estimated backward

pattern Λ̂∗ (t), let us define adjusted baseload futures quotes as:

εAi+1 := FBi −
1

ti+1 − ti

ˆ ti+1

ti

Λ̂∗(u)du =
1

ti+1 − ti

ˆ ti+1

ti

ε(u)du. (6.11)

These quantities can easily be computed by numerically integrating the optimal backward pat-

tern Λ̂∗ (t). Searching for a function ε (t) that matches the risk-neutral baseload fitting condition

(6.11) amounts to solving an inverse problem, which possibly admits infinitely many solutions.

We adopt one based on the monotone convex interpolator put forward by Hagan and West

(2006) in light of desirable regularity properties it brings with. Specifically, we set:

ε̂∗(t) =




gi

(
t−ti−1

ti−ti−1

)
+ εAi , t ∈ [ti−1, ti), i = 1, . . . , n,

gn

(
tn−tn−1

tn−tn−1

)
+ εAn , t ≥ tn,

(6.12)

where gi is the monotone convex interpolator corresponding to points εAi+1 over the interval [0, 1]

as defined in Appendix A. Peakload calibration reads as:

FPi+1 =
1

´ ti+1

ti
1P (u)du

ˆ ti+1

ti

[Λ(u) + ε(u) + ϕ(u)]1P (u)du,

where indicator function 1P within the integral operator restricts integration over on-peak

19Term 1A denotes the indicator function of a set A, i.e., 1A = 1 on A and zero otherwise.
20Another function admissible to our framework is:

ϕ(t) := ai+11P (t) + bi+11Õ
(t),

where set Õ comprises all off-peak hours over the week, including all weekend hours as well. This selection would
lead to a system of algebraic equations:





ai+1

´ ti+1

ti
1P (u)du+ bi+1

´ ti+1

ti
1
Õ

(u)du = 0

ai+1 = FP
i+1 −

´ ti+1
ti

[Λ(u)+ε(u)]1P (u)du

´ ti+1
ti

1P (u)du

for each time step i = 0, ..., n− 1. In general, selecting a kind of “optimal” peakload adjustment function meeting
the requirement:

´ ti+1

ti
ϕ(u)du = 0, for i = 0, ..., n − 1, is a subject beyond the scope of the present study. We

thank one of the referees for pointing out this alternative solution.

18



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

hours only. By plugging definition (6.10) into this expression and rearranging terms, we obtain

coefficients:

ci+1 =
12δ#P (ti, ti+1)FPi −

´ ti+1

ti
(Λ(u) + ε(u))1P (u)du

12δ#P (ti, ti+1)
,

which in turn define peakload adjustment component ϕ̂∗ (t) via formula (6.10). This concludes

the risk-neutral calibration step.

Once equipped with historical backward pattern Λ̂∗ (t) and risk-neutral baseload and peakload

adjustment terms ε̂∗ and ϕ̂∗, respectively, we finally arrive at an optimally estimated forward

price kernel as:

f̂∗t (u) = Λ∗(u) + ε∗(u) + ϕ∗ (u) . (6.13)

The corresponding HPFC estimate f̂h∗ (T, h) is obtained by inserting kernel (6.13) into HPFC

formula (3.6).

The curve we obtain exhibits all of the desirable features laid out in Section 2. First, it stems from

outlier-filtered market data, so that forward estimates are free from spurious effects unrelated

to actual market views. Second, the curve shape embeds a full bundle of periodical patterns

shown by the time series of spot prices with thin granularity. Third, the curve values jointly fit

an arbitrary number of baseload and peakload quotes. Finally, the estimated curve exhibits a

number of regularity properties, including trajectorial smoothness, continuity over the maturity

spectrum, monotonicity preservation,21 and cross-sectional localness. This latter implies that

any change affecting a baseload futures price FBi entails the sole modification of output forward

kernel on the corresponding interval [ti−1, ti], as well as on the two adjacent segments [ti−2, ti−1]

and [ti+1, ti+2].22 We now turn to the empirical assessment of these, as well as other properties

of the forward curves resulting from our constructive definition.

7 Empirical Evidence

The most liquid electricity market in continental Europe is operated by EPEX Spot SE and

EEX Power Derivatives. EPEX Spot SE is the short-term power exchange resulting from the

2008 merger of German EEX and French Powernext. It is a daily spot market covering the ge-

ographical areas of France, Germany, Austria, and Switzerland. EEX Power Derivatives is the

related power derivative marketplace. It runs trading and quotation services for electricity fu-

tures and options, including those written on EPEX Spot prices. These markets offer time series

of day-ahead prices, as well as arrays of baseload and peakload futures quotes. Consequently,

21As many as three consecutively increasing (resp. decreasing) seasonal adjusted futures prices always come
with a monotonically increasing (resp. decreasing) forward kernel over the corresponding portion of the time-to-
maturity horizon (Hyman (1983)).

22In the case of peakload futures prices, which turn out to exhibit a relatively more pronounced variation over
observational time, cross-sectional localness is even tighter than for baseload quotes: a change in peakload futures
price FP

i entails the sole modification of output forward kernel on the corresponding interval [ti−1, ti].
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Contract Delivery Delivery Baseload price Peakload price

type begin end (EUR/MWh) (EUR/MWh)

Day November 27, 2015 November 27, 2015 36.77 41.83

Day November 28, 2015 November 28, 2015 27.87 32.75

Day November 29, 2015 November 29, 2015 11.25 16.99

Day November 30, 2015 November 30, 2015 24.50 34.75

Week November 30, 2015 December 6, 2015 28.76 37.32

Week December 7, 2015 December 13, 2015 34.34 45.00

Week December 14, 2015 December 20, 2015 32.13 41.88

Week December 21, 2015 December 27, 2015 22.22 29.38

Month December 1, 2015 December 31, 2015 28.93 36.75

Month January 1, 2016 January 31, 2016 29.87 38.72

Month February 1, 2016 February 29, 2016 32.62 40.70

Quarter January 1, 2016 March 31, 2016 30.37 37.61

Quarter April 1, 2016 June 30, 2016 27.75 33.06

Quarter July 1, 2016 September 30, 2016 28.74 34.73

Calendar January 1, 2016 December 31, 2016 29.38 36.25

Table 7.1: EEX forward market prices. On November 27, 2015, as many as fifteen forward-looking prices

are quoted for delivery periods including four days, four weeks, three months, three quarters, and one calendar

year. For each contract, first and last day of delivery, baseload price, and peakload price are reported. Prices are

expressed in Euros per megawatt-hour (EUR/MWh). Bold character highlights (partially) overlapping periods

whose futures prices require passing through quote segmentation.

they represent an appropriate market context to apply and test our constructive definition of

electricity forward price curve we propose.

7.1 Curve Construction

We consider 2,522 daily spot price arrays, each containing 24 day-ahead hourly quotes. They

span the time period from January 1, 2009 to November 27, 2015, which we take as the evaluation

date t0. We also record an array of baseload and peakload futures quotes collected at that point

in time. Table 7.1 reports market data including as many as fifteen quotes: they encompass four

day-ahead, four week, three month, three quarter contracts, and one calendar. For each item,

we indicate delivery period, baseload, and peakload prices. Time unit is assumed equal to one

day, which corresponds to setting ∆ := 1 and thus δ := 1/24. We highlight partially overlapping

periods whose futures prices require passing through quote segmentation. In contrast to most

commodities, no clear pathwise feature (e.g., backwardation, contango, periodical or mixed

patterns) seems to emerge from visual inspection of these data, which seems to merit a deeper

analysis based on time series.

The filtering method detailed in Section 5.1 allows us to identify and single out as many as

twenty-seven data outliers. They result from points in time featuring sharp discrepancies be-

tween price path and the Hodrick-Prescott filter corresponding to the optimal parametric as-
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Figure 7.1: Spot price outlier detection and filtering. For the period comprised between January 1, 2009,

and November 27, 2015, processed data are plotted for the time series of Hodrick-Prescott filter (red plain line)

corresponding to the optimal parametric assessment λ∗ = 1, 128.7; price outlier flags (magenta colored stars),

defined as any datum exceeding three times the standard deviation of filtered price sample distribution; and, the

resulting time series of outlier-free day-ahead prices (blue plain line).

sessment λ∗ = 1, 128.7 computed using formula (5.2).23 Figure 7.1 depicts the time series of

Hodrick-Prescott filter, price outliers, and the resulting outlier-free day-ahead prices. Outliers

turn out to account for about 1.07% of the overall sample. More interestingly, an exhibit of flags

for removed outliers qualitatively shows that their frequency of occurrence fades away along

with price level. This last point represents a signal of EPEX Spot market maturity going in

pair with an increasing level of competitiveness. Our analysis leads to an outlier-free price series

Ŝ =
(
Ŝ (t, h) , t ∈ Tt0 , h = 1, ..., 24

)
.

We disentangle futures market quotes in keeping with the method laid out in Section 5.2. This

process leads to segmented baseload and peakload quotes spanning a series of non-overlapping

time intervals, which represent prices FBi and FPi feeding the model. As an example, Table

7.1 shows that the frontline quarter covers the period ranging from January 1 to March 31,

which overlaps with both January and February monthly contracts. Price segmentation provides

implied segmented baseload and peakload quotes for March. They amount to 28.76 EUR/MWh

23Optimal parameter λ∗ stems from assuming an ideal business cycle filter at a benchmark frequency ωc = 30
days. An experiment not reported here derives sixteen forward curves over as many filtering frequencies ranging
from one week up to a year. Mean absolute deviations of each of these curves from the one corresponding to
the benchmark frequency show negligible discrepancies. They range from 0.0238 to 0.0471 for frequencies greater
than 30 days and from 0.0429 to 0.0817 for frequencies lower than 30 days. In monetary terms, the most relevant
difference results from setting ωc = 7 days and accounts for as many as 8 Euro cents per megawatt-hour.
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Contract Begin delivery End delivery Baseload price Peakload price

type date date (EUR/MWh) (EUR/MWh)

Week November 30, 2015 December 6, 2015 28.76 37.32

Segmented December 1, 2015 December 6, 2015 29.47 37.96

Month December 1, 2015 December 31, 2015 28.93 36.75

Segmented December 28, 2015 December 31, 2015 24.79 28.67

Quarter January 1, 2016 March 31, 2016 30.37 37.61

Segmented March 1, 2016 March 31, 2016 28.76 33.77

Calendar January 1, 2016 December 31, 2016 29.38 36.25

Segmented October 1, 2016 December 31, 2016 30.65 38.27

Table 7.2: Segmented forward market prices. On November 27, 2015, four futures contracts show overlap-

ping intervals of delivery. These correspond to contract series switching from one type to the following. That is

from last week to first month, from last month to first quarter, and from last quarter to calendar. Their quota-

tions undertake a maturity segmentation procedure leading to baseload and peakload prices spanning a series of

non-overlapping time intervals filling in the whole time-to-maturity spectrum.

and 33.77 EUR/MWh, respectively. A full array of segmented forward quotes coupled with the

market prices they replace is reported in Table 7.2. We use outlier-free spot quotes to estimate

a macroeconomic trend component Ĥ(t). According to the proposed definition, this quantity

is obtained as the Hodrick-Prescott filter with an optimal parameter λ∗ = 8.322 ∗ 107, a value

allowing for filtering frequencies lower than one and a half years. Figure 7.2 shows the outlier-

free price path together with the corresponding macroeconomic trend with daily granularity.

We clearly see that filtered trend exhibits a time behavior combining a variety of periodical

cycles with long-term frequencies, each exceeding the selected 1.5-year threshold. The two-step

algorithm for estimating periodical patterns leads to parametric values for seasonal, weekly, and

daily periods gathered into expression (6.5). Throughout the analysis, we assume a constrained

optimization weighting parameter α = 0.4.24

Table 7.3 reports numerical values for seasonal and weekly components, together with corre-

sponding standard deviations. Coefficients c2 and c6 are smaller than coefficients c3, c4, and c5

because they refer to working days where hourly prices tend to be lower than elsewhere. As

noted in Ziel et al. (2015), day-ahead prices quoted in the EPEX market exhibit lower quotes

near the weekend than during other periods in the working segment of the week. That is on

Friday afternoon and evening as well as on Monday morning. Specifically, Friday afternoon

prices show a declining path towards the level attained early on Saturday. This feature reflects

a relatively low level of power demand near the early closing of offices and factories at the end

of the week. A similar behavior occurs on Monday morning, mirroring the inertia of power

demand transition from the lowest level reached during weekend to the highest level on working

days.

24Appendix B.4 discusses the choice of smoothing parameter α in great detail.
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Parameter a b c1 c2 c3 c4 c5 c6 c7

Value -2.1856 3.8235 -9.8507 1.8837 3.6655 3.6856 3.9474 2.8900 -4.7847

St Dev. (0.0347) (0.0078) (0.1074) (0.1286) (0.1237) (0.1242) (0.1281) (0.1329) (0.1262)

Table 7.3: Seasonal and weekly parameters. Coefficients a and b assign seasonal macroeconomic trend

component, while each term cj defines a weighting parameter for the dummy variable corresponding to the j-

th day in the week. These latter jointly define the weekly pattern. Numbers within round brackets represent

standard deviation estimates for the selected terms.
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Figure 7.2: Estimated macroeconomic trend Ĥ(t). For a time series of outlier-free prices Ŝ(t) (blue line), a

macroeconomic trend component Ĥ(t) is estimated as the Hodrick-Prescott filter with coefficient λ∗ = 8.322∗107.

According to Pedersen (2001), this figure entails to(-cut) filtering frequencies lower than one year and a half, a

number corresponding to the period of seasonal patterns plus a six-month distortion smoothing window.
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dh,l l = 1 l = 2 l = 3 l = 4

h = 1 -12.3310 -3.2827 -7.7044 2.1429

h = 2 -13.7391 -5.8830 -9.8285 -1.2566

h = 3 -15.3356 -7.0224 -11.6334 -2.9295

h = 4 -15.8044 -8.0886 -13.0099 -4.2086

h = 5 -14.8031 -8.0257 -12.4374 -4.7724

h = 6 -11.7646 -7.2103 -9.1018 -4.8059

h = 7 -1.4978 -7.7414 0.4200 -4.1806

h = 8 9.7413 -4.9989 8.5658 -2.1025

h = 9 11.0394 -1.1507 10.7903 0.3571

h = 10 8.2239 1.9200 7.9841 1.3708

h = 11 5.7082 2.3385 5.5551 0.2843

h = 12 4.7328 3.0086 4.7980 0.1970

dh,l l = 1 l = 2 l = 3 l = 4

h = 13 2.1028 1.2196 1.4131 -1.4627

h = 14 1.7368 -1.2723 -0.3860 -4.4729

h = 15 1.6981 -1.9584 -1.7240 -6.4422

h = 16 3.2985 -0.9233 -1.7391 -6.4117

h = 17 5.0629 1.9364 -1.2453 -5.0588

h = 18 12.5352 9.3095 2.4956 -0.6392

h = 19 16.5081 14.7238 6.0516 5.1848

h = 20 14.2991 13.6426 9.0492 8.9070

h = 21 5.1588 7.1647 8.1074 9.6660

h = 22 -1.6372 2.5741 5.1669 8.5080

h = 23 -4.5236 2.7480 2.5351 8.5621

h = 24 -10.4094 -3.0281 -4.1224 3.5637

Table 7.4: Daily parameters. Coefficients dh,l assess the discrepancy between hour h price and the corre-

sponding daily average, assuming that day belongs to time cluster Cl. These numbers jointly define the daily

pattern.

Figure 7.3 depicts the estimated seasonality function for sample year 2014 on a daily basis.

As expected, average prices follow seasonal paths, showing their highest values in wintertime

and lowest during mild seasons. In addition, we detect a significant discrepancy between values

quoted on nonworking days and expected figures on weekdays. Table 7.4 indicates estimated

parameters for daily terms, while Figure 7.4 exhibits the hourly profile over a full day for each of

the four combinations of working vs. nonworking days and cold vs. warm seasons. A number of

stylized facts featuring hourly profiles emerge: on-peak hours show higher prices than off-peak

hours during weekdays throughout the year, whereas a similar property only holds for weekends

during cold season. Indeed, the warm season exhibits smoother intraday price dispersion than

cold seasons, with a marked effect at weekends. A change in season affects on-peak hours

more sharply than off-peak hours. The same effect is more pronounced during weekdays than

weekends. Wintertime shows a spike in the evening across the whole week.
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Figure 7.3: Estimated periodical trend Λ̂∗(t) resulting from additively combining seasonal, weekly, and

daily patterns under the corresponding estimated parametric set. Values are shown on a daily granularity in the

period comprised between January 1, 2014 and December 31, 2014.
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Figure 7.4: Hourly dummy profiles. Dummy variable coefficients dh,l are shown against daily hours h =

1, ..., 24. Upper panels depict series for time clusters corresponding to working and nonworking days during the

cold season (October to March). Lower panels report series for analogous clusters during the warm season (April

to September).
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Figure 7.5: Day-ahead predictable pattern, peakload and baseload adjustment terms. Left panel:

estimated day-ahead predictable pattern Λ̂∗ (t) as of November 27, 2015 (blue line) over a maturity spectrum

ranging up to December 31, 2016; calibrated baseload adjustment term ε (t) (red line); and calibrated peakload

adjustment term ϕ (t) (black line). Right panel: short-term components up to January 31, 2016.

Figure 7.5 superposes historically estimated day-ahead predictable pattern Λ̂∗ (t), baseload and

peakload adjustment terms ε (t) and ϕ (t) computed as of November 27, 2015. The former

exhibits a mixture of daily, weekly, and seasonal recurrence features, while adjustment com-

ponent ε (t) shows a continuous, smooth, and positive-valued path, and adjustment term ϕ (t)

unveils a piecewise constant trajectory featuring a symmetrical behavior around the zero-level

abscissa.

By combining estimated pattern Λ̂∗ (t) with risk-neutral components ε̂∗ (t) and ϕ̂∗ (t), we come

up to an estimate for the forward kernel implied by the spot price series and forward quotes

on the evaluation date t0. By using formula (3.6), we finally arrive at time t0 HPFC spanning

the time horizon up to December 31, 2016. Figure 7.6 reports two exhibits of the resulting

forward curve with hourly granularity. The left panel draws the full curve path, while the right

panel zooms in over the first two months of delivery. Hourly forward prices range from 2.49

EUR/MWh to 55.11 EUR/MWh. As expected, price variability is larger during the cold season

than the warm season. The full path shows that the long-term curve is primarily determined

through the estimated annual periodical components, while forward quotes indicate long-period

average values exhibiting no specific shape. The short-term detail reported in the right panel of

the exhibit highlights the relevance of weekly and daily patterns for shaping the curve. We may

qualitatively assess curve consistency to baseload and peakload quotes by visually inspecting

their level depicted as red and magenta colored segments.

7.2 Property Assessment

The curve we derived for the German power market shows a number of interesting features. By

construction, it perfectly fits input baseload and peakload quotes reported in the futures segment
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Figure 7.6: Hourly price forward curve vs. quoted forward quotes. Left panel: estimated hourly price

forward curve as of November 27, 2015 (blue line) over a maturity spectrum ranging up to December 31, 2016.

Right panel: short-term forward curve up to January 31, 2016. Red segments represent segmented baseload

forward prices, while pink segments refer to peakload quotes.

of the market and embeds periodical patterns shown by spot quotes with hourly granularity.

From a functional perspective, it preserves monotonicity properties displayed by market prices

while showing trajectorial smoothness in agreement with traders’ expectations. In addition, the

curve is cross-sectionally local: changes occurring on any segmented baseload quote exclusively

affect the curve estimate on the corresponding delivery interval as well as on the two adjacent

ones. This property becomes particularly relevant when evaluating physical and financial assets

and analyzing their sensitivity. For instance, a power plant’s revenue over a calendar year is

expected to be largely insensitive to any reasonable variation of a single baseload segment, a

property ensured by cross-sectional localness.

We may further appreciate this property by considering quotations as of February 28, 2013,

which we report on the last column of Table 7.5, and assess the effect on the forward curve

generated by a sudden drop in the spot price by 20 EUR/MWh. We analyze relative fitting

Type Delivery begin Delivery end February 26 February 27 February 28

Day February 26, 2013 February 26, 2013 55.49 - -

Day February 27, 2013 February 27, 2013 59.67 59.67 -

Day February 28, 2013 February 28, 2013 - 53.96 53.96

Month March 1, 2013 March 31, 2013 38.88 39.38 40.83

Month April 1, 2013 April 30, 2013 37.94 37.98 38.60

Quarter April 1, 2013 June 30, 2013 37.17 37.21 37.68

Quarter July 1,2013 September 30, 2013 38.80 38.94 39.35

Quarter October 1, 2013 December 31, 2013 44.21 44.15 44.45

Quarter January 1,2014 March 31, 2014 44.96 44.89 45.40

Year January 1,2014 December 31, 2014 41.87 41.75 42.12

Table 7.5: Time stability assessment. EEX baseload futures quotes as of February 26, 27, and 28, 2013.

Data comprise three spot prices, two month contracts, four frontline quarters, and the next calendar quotation.

Settlement prices are expressed in EUR/MWh.
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Figure 7.7: Cross-sectional localness assessment. Left panel: Electricity forward curves computed using

MSI method adopted in Benth et al . (2007): the blue curve refers to market data as of February 28, 2013; the

red curve stems from an artificial downward drop by 20 EUR/MWh at the shortest end in the time-to-maturity

spectrum. We clearly see that a local drop propagates over the entire cross-sectional dimension. Right panel:

Electricity forward curves computed using the proposed method: the two curves shows a slight discrepancy right

on and next to the spot date affected by the price drop; all the remaining portions of the time-to-maturity

spectrum exhibit a common path of forward prices.

quality compared to the Maximum Smoothness Interpolation (MSI) method adopted by Benth

et al. (2007), which we take as a benchmark. Figure 7.7 shows the daily forward curve produced

with the perturbed data setting using either construction methodologies. The left panel

exhibits forward curves derived using MSI. The blue curve stems from market data quoted on

February 28, 2013. A drop in the spot price generates forward estimate variations over the entire

maturity spectrum as the red curve shows. However, Poletti Laurini and Ohashi (2015) show

that non-local interpolation behavior in forward curve construction may hinder the significance

of statistical assessments, such as a Principal Component Analysis, based on the resulting data

arrays. In addition, Andersen and Piterbarg (2010) underline the importance that the curve

construction exclusively produces a local perturbation upon shifting benchmark values. Finally,

time localness complies with the fact that electricity long-term contracts cannot be hedged using

short term forwards. These considerations reinforce the appropriateness of this feature. Indeed,

the right panel of Figure 7.7 shows forward curves computed on the same date and scenarios using

the model we propose. Cross-sectional localness is reflected into a negligible price discrepancy

throughout the following delivery period; more importantly, the remaining portions of the curve

are left unaffected by the local drop. As an example, forward price estimates derived using the

benchmark MSI applied to market perturbed input data for delivery on December 31, 2014, are

44.68 EUR/MWh and 46.90 EUR/MWh, respectively. In contrast, our model offers a single

quote at 45.83 EUR/MWh, therefore showing no drop propagation effect beyond a limited and

well-defined neighborhood of the spot date.

Time stability refers to the property of slight curve variation following small perturbations in the

input data. A lack of stability may result from the adopted interpolation method. Time unstable

fitting entails unreliable forward prices and biased forward volatility estimates based on historical
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Figure 7.8: Time stability assessment. Left panel: Electricity forward curves are computed on February

26, 27, and 28, 2013, using MSI method adopted in Benth et al . (2007): curves across the three-day period show

pronounced variation along with maturity, a fact featuring a particularly marked last of time stability on the

shortest term segment. (Right panel) Electricity forward curves are obtained on the same time frame using the

proposed method: curves across the three days are virtually indistinguishable, a fact mirroring a similar property

owned by futures quotes.

series of extrapolated forward curves, a fact that may introduce spurious risk terms upon asset

pricing and risk assessment. We may appreciate time stability from an empirical standpoint.

Consider futures prices quoted on February 26, 27, and 28, 2013 (values are reported in Table

7.5). We note that data vary slightly from one evaluation date to the next. The largest variation

refers to futures contracts delivering on March 2013, which shift from 38.88 EUR/MWh to 39.38

EUR/MWh, up to 40.83 EUR/MWh on the last quotation day. Overall, this move amounts

to an almost 5% variation over the period. Each day, we compute a market HPFC using the

proposed method and MSI, then we exhibit the resulting curves on a combined graph. Left panel

of Figure 7.8 shows that MSI leads to a time unstable triplet of forward curves. This is reflected

by important fluctuations of estimated forward prices corresponding to certain maturities. For

instance, the forward price for delivery on March 31, 2013, varies from 7.42 EUR/MWh, up to

34.63 EUR/MWh, and then down to 25.41 EUR/MWh. The right panel reports the three curves

obtained using the methodology developed in this study. It shows a negligible perturbation

which corresponds with the way input market forwards vary over the three days under exam.

The forward price for delivery on March 31, 2013, now varies from 26.71 EUR/MWh to 26.97

EUR/MWh, then up to 28.00 EUR/MWh on the last day of quotation.

A last test aims at measuring the quality of forward price estimates derived using the proposed

model. Electricity forward prices are known to be biased estimates of expected spot prices

(Longstaff and Wang (2004)). An absolute quality check would require a reliable valuation

model of the underlying market price of risk. Although this approach is undoubtedly rigorous

from a financial theory perspective, it would necessarily introduce an additional source of model

risk. Our goal here is to evaluate the relative quality of the proposed model compared to

the benchmark MSI. Hence, we propose a test quantifying the goodness of fit in a fictitious

framework featuring no market price of risk. This method allows us to assess the estimated
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curve as well as each of the three components Λ̂∗ (t), ε̂∗ (t), and ϕ̂∗ (t), each taken separately

from the others. We consider as many as sixteen evaluation dates, each corresponding to the

first day of January, April, July, and October of years ranging from 2010 to 2013, respectively.

Historical spot prices preceding an evaluation date are used to estimate periodical patterns at

that point in time. In addition to the standard form put forward in formula (6.5), we consider

two alternative specifications. One is obtained from the former, by replacing the seasonal term

with a monthly component, namely:

Λ(u) =

12∑

i=1

gi1(u ∈ monthi) +

7∑

j=1

cj1(u ∈ dayj) +

24∑

h=1

4∑

l=1

dh,l1(u ∈ hourh ∩ u ∈ Cl). (7.1)

The other functional forms combine seasonal and daily terms only, that is:

Λ(u) = a cos

(
2π

365
u+ b

)
+

24∑

h=1

4∑

l=1

dh,l1(u ∈ hourh ∩ u ∈ Cl). (7.2)

We denote these three curves as SWD (seasonal, weekly, daily), MWD (monthly, weekly, daily),

SD (seasonal, daily), respectively. Historical spot prices following each evaluation date are

arithmetically averaged over a number of settlement periods to generate fictitious baseload and

peakload futures quotations. They represent fictitious forward prices under the historical prob-

ability, hence based on the assumption of vanishing market price of risk. Specifically, we build

up risk-neutral forward prices for day-ahead, the first three consecutive months, and the follow-

ing three consecutive quarters. Seasonality functions (7.1) and (7.2), combined with fictitious

risk-free forward prices enter the proposed curve model. Corresponding to each combination of

the aforementioned sixteen evaluation dates, three periodical patterns, and two computational

methods, we derive a forward curve with hourly granularity spanning the following one-year

baseload delivery period. This curve is compared to the time series Ŝ of hourly spot prices actu-

ally realized in the period following the corresponding evaluation date. Comparison is performed

using a median absolute deviation defined as:

MAD =
1

24]S
∑

T∈S

∑

h=1,...,24

∣∣∣f̂(T, h)− Ŝ(T, h)
∣∣∣ ,

over the time frame S = {t0, t0 +1day, ..., 1year}. Here ]S denotes the number of days comprised

in the set S. As long as backtesting is run using either benchmark MSI or our model, we obtain

as many as ninety-six MAD figures, which we report in Table 7.6. The new model outperforms

benchmark MSI on 34 out of 48 scenarios, or 70.83% of the sample. Last, periodical patterns

are best captured by the functional form (6.5).
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Periodical trend SWD SWD MWD MWD SD SD

Model New MSI New MSI New MSI

1-Jan-2011 4.6042 5.0555 5.0313 5.5224 5.3240 5.9655

1-Apr-2011 4.8767 4.8303 5.4364 5.2706 5.5582 5.4705

1-Jul-2011 5.0922 4.9534 5.5507 5.4632 6.0746 5.9421

1-Oct-2011 4.8753 5.0682 4.9590 5.5031 6.2292 6.3474

1-Jan-2012 5.5590 6.5753 5.6216 6.4068 7.1990 7.6437

1-Apr-2012 5.3410 5.5142 5.4939 5.6720 7.3011 7.7397

1-Jul-2012 5.4710 5.5494 5.5975 5.6378 7.1937 7.6346

1-Oct-2012 5.8395 5.7809 5.9352 5.9276 7.6463 7.5514

1-Jan-2013 5.8953 5.9180 5.8241 6.0907 7.8100 7.8299

1-Apr-2013 6.1887 6.3537 6.2484 6.3643 8.0009 8.3227

1-Jul-2013 5.5793 5.6755 5.7439 5.7600 7.5643 7.5830

1-Oct-2013 5.5776 5.5472 5.7322 5.6595 6.8063 6.8080

1-Jan-2014 5.3186 5.3206 5.3515 5.4954 6.5844 6.4773

1-Apr-2014 5.4140 5.4028 5.3760 5.4036 6.5418 6.5450

1-Jul-2014 4.9721 5.0259 5.0257 5.0965 6.2374 6.2063

1-Oct-2014 5.4118 5.4859 5.4465 5.5648 6.5062 6.6435

Average 5.3760 5.5035 5.5234 5.6774 6.7861 6.9194

Table 7.6: Fitting quality assessment. On each evaluation date corresponding to the first day in a month,

ranging from January 1, 2011, to October 1, 2014 at a quarterly pace, we compute the median absolute deviation

(MAD) between hourly spot price series which occurred during the front year (verify 2nd instance) and hourly

forward quotes computed by(-cut) using fictitious figures obtained through future spot price averaging. The

forward curve is built using either our model or the MSI adopted in Benth et al. (2007), each one implemented

using a periodical pattern of functional form SWD (seasonal, weekly, daily), MWD (monthly, weekly, daily), or

SD (seasonal, daily).

8 Conclusion

A reliable electricity forward curve is vital for a number of precious uses. These include marking

energy portfolios to market quotes and accounting for their fair values (e.g., Teixeira Lopes

(2007)); calibrating arbitrage models for pricing electricity positions and assessing their expo-

sure (e.g., Islyaev and Date (2015)); analyzing risk premia and volatility of swap price returns

(e.g., Frestad et al. (2010)); conceiving and testing proprietary trading rules involving futures

contracts (e.g., Furio and Lucia (2009)); planning optimized long-term consumption strategies

for energy-intensive processes (e.g., Lima et al. (2015)); and performing physical asset valuation

using the theory of real options (e.g., Näsäkkäläa and Fleten (2005)), among others.

We propose a constructive definition for an electricity price forward curve with thin granularity

and develop the corresponding algorithm for the case of hourly frequency. By using filtered spot

price data, we identify and assess periodical price patterns, which in turn combine with futures

quotes, leading to our estimate of the underlying forward kernel. The resulting curve is jointly

consistent to baseload and peakload prices. It also features regularity properties which include

trajectorial smoothness, monotonicity preservation, cross-sectional localness, and time stability.

From an empirical standpoint, we build forward curve estimates for the EPEX Spot - EEX
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marketplace and evaluate their relative performance against the benchmark model of Benth et

al. (2007).

Future research may envisage assessing the interplay between cross-sectional granularity and

the underlying market price of risk; building and analyzing forward curves for other commodity

markets exhibiting periodical patterns, e.g., natural gas and most agriculturals; and, addressing

the traditional issue of expectation hypothesis under price quotation with thin granularity.
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A Monotone Convex Interpolator

Given scalars εAi (i = 1, . . . , n), let us define constants:

εi =





bound
(
0, εA1 − (ε1 − εA1 )/2, 2εA1

)
, i = 0

bound
(

0, ti−ti−1

ti+1−ti−1
εAi+1 + ti+1−ti

ti+1−ti−1
εAi , 2 min(εAi , ε

A
i+1)

)
, i = 1, . . . , n− 1,

bound
(
0, εAn − (εn−1 − εAn )/2, 2εAn

)
, i = n,

(A.1)

where operator bound(a, x, b) := min(max(a, x), b). Set gi(0) := εi−1 − εAi and gi(1) := εi − εAi .

Hagan and West (2006) define convex linear interpolators as functions gi : [0, 1]→ R (i = 1, ..., n)

with analytical expressions given by:

case 1: [gi(0) > 0 and −0.5gi(0) ≥ gi(1) ≥ −2gi(0)] or [gi(0) < 0 and −0.5gi(0) ≤ gi(1) ≤
−2gi(0)]:

gi(x) := gi(0)(1− 4x+ 3x2) + gi(1)(2x+ 3x2),

case 2: [gi(0) < 0 and gi(1) > −2gi(0)] or [gi(0) > 0 and g(1) < −2gi(0)]:

gi(x) :=





gi(0) for 0 < x ≤ η

gi(0) + (gi(1)− gi(0))
(
x−η
1−η

)2
for η < x < 1

, η =
gi(1) + 2gi(0)

gi(1)− gi(0)
,

case 3: [gi(0) > 0 and 0 > gi(1) > −0.5gi(0)] or [gi(0) < 0 and 0 < gi(1) < −0.5gi(0)]:

gi(x) :=





gi(1) + (gi(0)− gi(1))
(
η−x
η

)2
for 0 < x ≤ η

gi(1) for η < x < 1

, η =
3gi(1)

gi(1)− gi(0)
,

case 4: [gi(0) ≥ 0 and gi(1) ≥ 0] or [gi(0) ≤ 0 and gi(1) ≤ 0]

gi(x) :=





A+ (gi(0)−A)
(
η−x
η

)2
for 0 < x ≤ η

A+ (gi(1)−A)
(
x−η
1−η

)2
for η < x < 1

,

η = gi(1)
gi(1)−gi(0)

A = − gi(0)gi(1)
gi(0)+gi(1)

.
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B Model and Implementation Details

B.1 On the role of temperature time series.

In their role of predictors within time series models, temperature records are undoubtedly useful

at forecasting energy prices and their periodical patterns. In particular, accurate predictions

of forward temperatures may represent significant factors in forecasting models. However, tem-

perature predictions are accurate for time horizons up to a few days, say from one to ten at

best. If we focus on longer time frames, temperature estimates experience a sharp drop in their

forecasting quality (Taylor and Buizza (2004)). Our definition of forward curve spans a time

period typically covering one or two years from the date of assessment. Correspondingly, it

seems that temperature series do not offer a relevant piece of information for estimating price

patterns. Fortunately, seasonal effects are by definition long-term phenomena grounded on price

averages. Which in turn are fully captured and shown by spot price series. In addition, using

time series of temperature records would require having estimates with hourly granularity, which

may prove difficult or excessively costly to obtain. Finally, one would also have to consider a

reasonable way to combine temperatures related to a large number of regions in a way that the

resulting average mimics the same periodical patterns as those of the gas market covering those

areas. These considerations underpin our endogenous approach, whereby long-term pathways

are estimated by using prices only. We would hasten to note that our method undergoes a

number of tests, all showing significant performance at pricing.

B.2 On the unicity of the forward kernel.

The forward kernel is a mathematically convenient object to build forward curves of arbitrary

granularity. It basically conveys market information into a channel leading to the desired term

structure of forward prices. Theoretically, an infinite number of forward kernels, and thus curves

with thin granularity, can generate any finite set of observed prices. This is a well-known issue

in the finance literature dealing with curve extrapolation and model calibration. See, e.g.,

Anderson et al. (1996). There are essentially two ways to overcome this challenge. One consists

of putting forward an arbitrage-free model for the commodity price in question; then, a model-

based forward curve is analytically derived and fit to market observables (Björk (2009)). The

other strategy is model-free. It uses optimization techniques to fit suitable functional forms

of the curve to actual market quotes. We adopt the second approach in light of a number of

advantages. First, the output curve kernel is optimized with respect to rational criteria drawn

from considerations about properties required by the typical final user. This comes as opposed to

abstract fitting of arbitrage-free models to market prices. Second, the existence and uniqueness

of the forward kernel are ensured by the corresponding properties of the underlying optimization

problems. As long as they entail optimizing continuous and concave target functions on compact

domains, both properties are guaranteed. Third, any resulting forward kernel is compatible to
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whatever arbitrage-free pricing model is sufficiently flexible to host the output curve. Finally,

forward prices with arbitrary granularity may easily be obtained by straightforward integration

over the appropriate period of time. These considerations show that forward kernel unicity is

not an issue to the extent that we do not need to rely on any previously selected arbitrage model

of commodity prices.

B.3 On the selection of the Hodrick-Prescott parameterλ (or ωc).

We tested the stability of the procedure within the numerical example developed in Section 7.1.

Specifically, we computed sixteen forward curves over as many threshold periods in the outlier

identification step (See pictures reported below). Cutoff periods vary from a single week to a

full year along with increasing steps. The optimal Hodrick-Prescott parameter λ is computed

on a daily basis according to Pedersen’s procedure, as described in the paper. We calculated

deviations from the benchmark curve with period ωc set equal to thirty days as a mean absolute

deviation between the resulting hourly price forward curves. Resulting figures are reported in

the following Table.

We observe that the discrepancies between the benchmark curve and all other curves computed

using alternative values for λ∗’s are rather small. The greatest difference stems from ωc equal

to one week and accounts for as many as 8 Euro cents per megawatt-hour.

B.4 On the selection of the smoothing parameter α.

Smoothing parameter α appearing in equations 6.8 and 6.9 represents an exponentially decaying

factor in the target functional. This number allows the modeler to tune the relative importance

attributed to data recorded on varying periods of time in the past. We provide insight on the

relevance of setting α = 0.4 related to the typical time scale involved in the underlying price
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dynamics. Following is a graph showing the cumulated percentage of information weight seen

as a function of the recording period expressed in days. Vertical lines mark yearly periods. For

instance, by considering the 2, 521 days under analysis and by using α = 0.4, data in the most

recent year receive a weight equal to 35% of the total information.

We originally performed a number of empirical experiments across several European markets,

assuming a variety of seasonal shapes. Retained selection α = 0.4 worked quite well in all cases.

However, we made no assessment for these parameters based on criteria of optimality. We

performed a test on the stability of the procedure under the setting of Section 7.1. Specifically,

we computed twenty forward curves under as many parameter “alpha” adopted upon model

calibration. We considered values between 0.1 to 2.0, lagged by a step equal to 0.1. Deviations

from our curve (i.e., α = 0.4 days) taken as a benchmark are computed in terms of mean absolute

deviation and reported in the following table.
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Differences between each curve and the benchmark are rather modest across varying values for

parameter α. The greatest discrepancy occurs at α = 2.0, showing an approximate deviation of

1 Euro and 11 cents. By combining the aforementioned qualitative and quantitative consider-

ations, we may reasonably retain the selected value for alpha as a rational assessment for this

parameter.
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Additional Figures.

Days: 7 and 15

Days: 30 and 45
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Days: 60 and 75

Days: 90 and 120
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Days: 150 and 180

Days: 210 and 240
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Days: 270 and 300

Days: 330 and 365
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