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ABSTRACT. 

The time-averaged Navier-Stokes' partial differential 

equations have been used in the mathematical modelling of fluid flow 

for steady,incompressible non-cavitating,high Reynolds number 

turbulence through an orifice plate. The model developed for orifice 

plates was based on a particular closed form turbulent model:the k-£ 

two equation model developed at Imperial College,London and embodied in 

the TEACH-T finite difference computer code. A basic model for 

axisymmetric flov through an orifice meter was developed by appropriate 

modification of the TEACH-T program to incorporate orifice plate 

geometry,upstream/downstream distances,Reynolds number,inlet velocity 

profile and the calculation of output quantities of interest such as 

discharge and pressure loss coefficients.The model vas tested for 

convergence and general adequacy on an orifice of diameter ratio ~ • 

.7 in a 4 inch pipe line and at a Reynolds number of 1d'.Quantitative 

tests were then conducted on thin orifice plates in the range ., ~ p ~ 
.7.Results vere compared with those from BSI 1042 for discharge 

coefficients (flange,D-D/2 and corner tappings) and published results 

for pressure loss coefficients. 

The results show that the discharge coefficients predictions 

are vithin !)" of experiment vith very close agreement in the 

mid-range (~= .45). The pressure loss coefficients predictions are 

vithin 15" of experiment. 

Sensitivity tests were then conducted to see ahow these 

coefficients varied vith such quantities as inlet velocity 
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profile, turbulence levels and orifice plate thickness.These results 

indicated that the orifice is relatively insensitive to velocity 

profiles (1/12 power law and uniform) and. turbulence levels.Also below 

a certain orifice plate thickness ratio the discharge coefficient is 

almost constant. 

It is concluded that such modelling can be a most valuable 

aid in understanding the behaviour of the orifice meter and similar 

devices.In particular this would aid in the design of novel flow meters 

based on the differential pressure principle. 

Extensive mathematical and computaional details incluiing the 

deriv~on of the k-t model equations from first principles are 

relegated to appendices. A source listing of the developed model is 

also provided in appendix G. 
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PREFACE 

A large nu.'nber of flowrneters are available on the market 

employing a variety of principles.In the past theoretical techniques 

have been of limited use in the design of the geometry of such meters 

because of the complexity of the (usually turbulent) flow.The modern 

processing power of the digital computer is likely to change this state 

of affairs. This work is concerned with exploring the feasibil ity of 

developing such computer models for an important flo'!IlIleter,na:nely the 

orifice meter. 

The thin circular orifice plate is the most widely used flow 

rate measuring element with applications in industry and elsewhere.In 

operation it 1.S characterised by two parameters:the discharge 

coeff1.cient and the pressure loss introduced by its insertion.In the 

past a vast amount of experimentation has been undertaken to determine 

these parameters (particularly the discharge coefficient). 

The objectives of this theoretical study weret (i) To 

develop a valid computer model to incorporate the orifice geometry, the 

inlet flow conditions and the output quantities of interest such the 

various orifice discharge coefficients and the pressure loss 

coefficient. (ii) To apply this model to a range of orifice geometries 

and compare the resul ts wi th those published in BSI1042 and elsewhere. 

(iii) To investigate the sensitivity of the discharge and pressure loss 

coefficients to some changes ir.. orifice geometry and inlet flow 

conditions. 
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CHAPTER 1 • 

INTRODUCTION. 

Orifice meters are extensively used in engineering 

applications in industry. The orifice plate is one of the oldest known 

devices for measuring fluid flow (NEL,1960).Records show it was used by 

the Romans for regulating water flow to householders. 

About sixty to seventy years ago,the importance of the 

orifice plate was realised.This'was largely based on the extensive and 

pioneering work of Judd (who presented the original discharge 

coefficients for concentric, eccentric and segmental type orifices in 

1916,NEL(1960».The simplicity of manufacture of the orifice plate 

gradually led to its very widespread use. So mueh so it is now the 

most common flow rate measuring device being used for measuring large 

volumes of gases and liquids for sale and for the control of flow rates 

in continuous processes. 

As the use of orifice meters became widespread a huge amount 

of experimental work was carried out to investigate the properties of 

orifice meters. This eventually led to the establishment of various 

national (BSI,ANSI,DIN) and international (ISO) standards for flow 

metering using thin orifice plates. 

The working equations for orifice metering are derived from 

Bernoulli's equation which describes inviscid high Reynolds number 

turbulent floy (see Appendix B for their derivation).For real fluids 

1 • 



Bernoulli's equation is only approximate and this is reflected in the 

fact that the discharge coefficient in the working equation needs to be 

determined experimentally. The more fundamental equations are the 

Navier-Stokes' (Appendix A) from which Bernoulli's equation can be 

formulated (see Appendix B). 

Up to recent times the possibility of solving the general 

Navier-Stokes' equations for turbulent flows was considered 

impracticable because of the vast range of length an1 time scales 

encountered in such flows.Recently however,advances in the procassing 

power of digital computers coupled with the development.{ °tpproximate 

'closed' models of turbulence based on the time average Navier-Stokes' 

equations enable one to solve the Navier-Stokes equ.'itions for a class 

of flows of engineering interest.Among these are those ,.,here 

recirculation occurs such as that encountered downstream of an 

orifice.A highly successful turbulent model that has been tested 

extensively is the so-ca11e1 'k-£' 'two' equation turbulent model 

developed at Imperial College,London (Gosman,1979).Such a model has 

been seccessfully tested against recirculating flo~fs similar to those 

enco~~tered downstream of an orifice plate.Infact the model has been 

applied successfully to a sudden expansion flow (Gosman,1979) including 

the prediction of reattachment lengths. This flow forms the example flow 

in the prograIn TEACH-T (for leaching !lliptic !,xisymmetrical 

Characteristics Heuristically for Turbulent flow) available from 

Imperial College. 

The flow in an orifice meter is more complex because in 

addition to a downstream expansion region there is an upstream region 

2. 



where the flow is forced to contract by the presence of the orifice 

plate.The importance of the orifice in flowmetering led to author to 

investigate the possibility of modifying the TEACH-T progra~ to model 

the thin orifice plate.This then fomed the basis for the present 

study. The main objectives were to develop a model for orifice 

metering,to test this model with available data for discharge and 

pressure loss coefficients and to perform some sensitivity tests using 

the model for both geometric and flow parameters. 

The layout of the thesis is such that in chapter 2 the 

mathematical formulations and numerical procedures for the computer 

solution adopted in TEACH-T program are outlined.Details are provided 

in Appendix~. Although this is not original work it has been 

presented here for the sake of completeness.The basic derivation of the 

k- E. models are also mentioned. The derivation is from first 

principles including that of the Uavier-Stokes equations. 

3. 

In chapter 3 the development of orifice plate model is 

described.This includes the modifications necessary to the TEACH-T 

computer program to incorporate geometry, boundary 

conditions,upstrea~/downstream modelling regions ,choice of number of 

grids and their distributions etc based on a J5 c 0.7 orifice plate. 

The bulk of the results are presented and discussed in more 

detail in chapter 4 for such quantities as discharge and pressure loss 

coefficients and sensitivity cf the orifice plate to variations of 

parameters such as velocity prcfile,turbulence levels,orifice thickness 

and Reynolds number. Chapter 5 concludes the resul ts and gives su:nmary 



4. 

and recommendations for future studies. 

The thesis contains a large number of Appendices (A-G) ,.,he!'e 

much of the mathematical detail is described.Appendix A shows the 

derivation of the Navier-Stokes' equation for general flows.The 

vorticity form of the equation is also presennted since this forms the 

basis for deriving the f -equation (discussed in Appenndix D). 

The reduction of the Navier-Stokes' equation to Bernoulli 

equation which in turn applies to orifice plate is given in Appendix B. 

The time-dependent and time-averaged Navier-Stokes' equations 

were given in Appendix C under ~~athematical Formulations of 

Turbulence.The basic concept of the k-£ effective viscocity model is 

also mentioned.Appendix D gives the derivations of the k-6 turbulent 

mathematical model from first principles. 

The incorporation of ,.,all boundary conditions and ~".'lll 

functions under the title '~ear Wall Remedies' is discussed in Appendix 

F.The formulations of finite difference equations for the variables of 

interest and the Sn~PLE (for Semi-Implicit Method for Pressure Linked 

Equation)and LBL (for kine ]y Line) solution procedures were presented 

in Appendix i.Finally Appendix G gives the program flowchar~ 

subroutines and FORTRAN progra~ listing for the model developed in this 

study. 



5. 

CHAPTER 2. 

MATHE~~TICAL FOR~JLATIONS A~D SOLUTION PROCEDUR~S. 

2.1:IUTRODUCTION. 

In attempting to model fluid flow processes,it is necessary 

to derive some mathematical formulations which adequately describe the 

"flow. 

For Newtonian fluids(ie those fluids where shear stresses are 

directly proportional to velocity gradients) such equations have been 

formulated. These are the well known Navier-Stokes' differential 

equations which are derived on the assumption that the fluid may be 

treated as continulli~ (for derivation of the equations see Appendix A). 

In this chapter,the various differential equations describing 

turbulent flow are stated beginning with the Navier-Stokes' 

equations,leadint~ to the time-averaged Reynolds equations anrl finally 

the derived (k-a ) turbulent model for axi-symmetric pipe flow. Details 

of the derivation of these equations are provided in the Appendices. 

Section 2.4 deals with the problems of solving the transport 

equations of the (k-S) model and includes the assessment of 

difficulties and main features of n~~erical solutions.Brief outline of 

the solution procedure \.,ill be given in section 2. 5(for details see 

Appendix E). 



2. 2:l'IME-DEPE~mENT NAVIER-STOKES' ~QUATIONS. 

2.21:The Equations. 

The basic conservation equations governing fluid flows are 

those of mass and momentum which expresses the ~avier-Stokes' 

equ~tions.For steady and compressible flow, they may be expressed in 

Cartesian tensor as, 

Mass Conservation. 

o 

Momentum Conservation. 

" where 6"(j = .. p &':i of" J, p i'if - ., ,...1.f..;.1 
~L· instantaneous velocity in direction-1(i-1 ,2,3), 
,. 
p • instantaneous local pressure, 

B~= body force per unit mass in direction-i 
A " 

~J= .!.( ~At~ i' ~) 
D.~. ,. 

• instantaneous rate of strain tensor, 

~J = kronecker delta(=1 if i=j;~ if i~j) 

~ • fluid density, 

l' = fluid viscocity, and 
~ ,. ,; 
d (~slt"" +a.J.t )= dilation. 

(2.1 ) 

(2.2) 
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Equ~tions (2.2)(which is actually three equations for 

i~l ,2,3) is derive1 from Newton's Second law of motion and is commonly 

called the !lavier-Stokes' equations.Equation (2.1) is the continuity 

equation which expresses the conservation of mass in a given control 

volume. 

2.3:THE TIZm-AVERAGED NAVIER-STOKES' EQUATIONS. 

These equations are formed basically by decomposing 

instantaneous quantities (which depend on space and time) into their 

means,denoted by capital letters (which depend only on space) and 

fluctuating quantities,denoted by small letters.The time-mean of the 

latter quantities are zero(see Appendix C). 

By introducing these mean and fluctuating components into 

equattons (2.1) and (2.2),the following equations are obtained for 

steady incompressibl~:~th body forces neglected), 

Continuity. 

o (2.5) 

Momentum. 

-- (2.6) 

where (2.7) 

7. 
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and (2.8) 

are mean and fluctuating stress tensor ,due to pressure and viscous 

forces, 

S~~· .!.(~ OUt ) - + !:..:J.. - :t ol:,' aXe: (2.9) :J 

is mean strain rate tensor, 

b~' ~ kronecker delta, 

t ~ fluid density, 

p.~ fluid viscocity, 

A 

cf'LJ ~ L , . .,. 6'", • 6,' CIo (), U ~ ) ~ -A 
a U, ~ 'tiL 0, U· + ui. ... 

~ t. -
It- a p + P • =- 0, p , p 

AI\.r ". 
=- s-. +8tj - :. o. S~J' ':J 

, Btl 

Equations (2.6) are called the Reynolds equations. It is 

interesting to note that this equation has the same form as equation 

(2.2)(for a steady incompressible flo~ and body forces neglected) if 
,., 
u l s are replaced and 

CLeJ' -,Ut Uj ) • 

,.. 
stresses ~''i are replaced by 

Thus the equations of mean flow are the same as the ordinary 

equations of motion except that there are 

stresses,called the Reynolds stresses given by, 

t: ,t C 
Ad 

-- f~~j 

additional virtual 

(2.10) 
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which represent the mean rate of transfer of mean ~omentum across a 

surface due to velocity fluctuations(Lin(ed),1959).The turbulence model 

-prescribes how these correlations and other correlations'-f~'Uj arise 

from scalar convective non-linear terms,are to be found.This problem is 

called the closure problem which is discussed in Appendix C. 

2.4:The k- £ Model. 

2.41 Introduction. 

In Appendix D the (k-£) model has been derived.Here the 

transport equations for the mean velocities and for the turbulent 

quantities k and E are stated together with the continuity equation.As 

we are interested in axi-symmetric pipe flow,these equations are 

represented in cylindrical polar coordinates (X,r) where X and rare 

the axial and radial directions respectively. 

2.42:General Conservation Equations. 

For steady turbulent flows,the governing equations of motion 

with body forces neglected may be written as follows,(see Appendices A 

and D for derivations). 

(i) HydrodynamiC Equations. 

Continuity. 

-- o 
(2.11 ) 



U-Momentum(direction-X). 

V-r·'1omentum(direction-r or -y). 

(ii)Non-hydrodynamic Rquations. 

Turbulence Energy,k. 

Turbulence Dissipation Rate,£ • 

where sV and sV are source terms for U and V respectively and, 

(2.16 ) 

6l and CS£ appearin,~ in equ'l tions (2.14) and (2.15) are the 

effective prandtv'SChmidt n~~bers for turbulence energy and dissipation 

rate respectively. 

10. 



Auxiliary. 

u V 
Sand S are given by (Gosman,197'), 

(2.17) 

SV = Ix (~~) T vI; (rXf§¥-) -Iyf;. (2.18) -
where 11 -- JA -to p.t, (2.19 ) -

and ft = ~ It:- (2.20 ) f-f, 

Eq ua tiona (2.11) ~+ (2.15) have been written for the 

cylindrical polar coordinates system(X,r). 

It may be of interest to note that for cartesian coordinates 

the transport equations are the same if r is taken to be identical 

wi th y and r is set to except the ffl o/r2. term in the V-momentum 

equation.This term is set to zero.Such equations would then apply to 

plane two dimensional flows but they are not of interest to us in this 

study. 

'tr.utl-'-o" (2. .... ) 
~~ given in the auxiliary~is the effective viscocity which 

represents the summation of both laminar and turbulent transport 

effects.At high Reynolds number ie for a fully turbulent flow (to 

which the (k-£) model is restricted) the molecular transport effects 

f,is comparatively small,hence (2.19) gives, 

11 • 



(2.21 ) 

u V 
The source terms Sand S cover additional terms associated 

with non-uniform viscocity ft 
generally small except where 

in the flow domain. Their influence is 

changes in fluid property have 

considerable effects,particularly near to a wall.These effects will be 

discussed in Appendix F under wall treatment. 

G represents the generation or production of turbulence 

energy,k from the mean flow by the action of turbulent shear stress and 

£ is the rate of viscous dissipation of k to heat by the smallest 

turbulent eddies. 

12. 

The~ls and C's are generally empirical functions ,but for 

high Reynolds number flows, they are assumed to be constants having 

values given by the following table 2.1 

CIA- C, C, C2 o-~ O£ Jc. E 

.0, 1·0 /'IJ.!I. /·92 /·0 I·~ · fll7 '''793 

Table 2.1:Constants of Computation. 

where the value of ~ was obtained from equ~tion (D.75)(see Appendix 

D) wi th k. so. 41 87. 



It may be noted that equations (2.14) and (2.15) for 

turbulent transport, have similar pattern. as those of the mean flow 

equations (see equations (2.12) and (2.13) ) if the following 

substitutions have been m~de, 

-- (2.22) 

(2.23) 

k I: 
Here,S and S are respectively called the source terms for turbulence 

energy,k and its dissipation rate, £ • 

It is therefore,in general the set of equations (2.11) 

through (2.15) may be written into a single elliptic equation of the 

form, 

13. 

where r=1 converts the equation from the cylindrical to rectangular 

cartesian form. 

The description of turbulent flows as indicated by equation 

(2.24) presumes that the mean values of the dependent variables may 

be represented by this form of equation together ,'lith the appropriate 

boundary conditions. 

Equation(2.24) represents a 2-D time-averaged form of the 

Navier-Stokes' equations. This implies that the flow must be 2-D and the 



time-dependence of the flow may be characterised by a turbulence model 

and the model assures isotropic diffusion with the effective exchange 

coeffic ien t, ~ 'It is given by, 

which represents the summation of both the laminar r~~t 

turbulent ~t exchange coefficient effects. 

(2.25 ) 

and the 

The term sqin equation(2.24) is the source term of the 

respective flow variables.The expressions of ~''ff and sf depend on 

physical meaning given to 4> and on the contents of its governing 

equations. The definitions of cP , rfJt/r 
following table 2.2(Gosman,1979). 

and are given in the 

G,ftif and ~ are given in equations (2.16),(2.19) and (2.20) 

respectively. From table 2.2 it can be seen that the units of If.l'/l are 

those of viscocity; in fact ~i- is often obtained by dividing the 

effective viscocity ~~ by the appropriate Prandtl/Schmidt number. 

2.5:PROBLEMS OF SOLVING EQUATIONS. 

2.51 Assessment of Difficulties. 

The set of equations given by (2.24) seem to be complex in 

the sense that they are interlinked, furthermore, 

14. 
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(i) they are non-linear,this may arise from convection and 

source terms. 

(ii) for each variable (U,V,k ann e ) to be solved,its 

transport equation contains velocity components which appear 

simultaneously. 

(iii) complexity-second-order partial differential equations. 

direct 

All these features render the equations not suitable for 

analytical calculations. It is therefore necessary to use 

numerical methods of solutions. 

2.52:Hain Veatures of rlunerical Solution. 

The equations already stated use the 'primitive' variables 

namely the velocities and pressures.These are formulated as finite 

difference equations and solved iteratively using the SI!~PLE(for 

~emi-Implicit !ethod for Pressure Linked Equations)algorithms procedure 

to obtain the pressure .AII other transport equations are solved by 

LBL(for Line ]7 line) method of TDMA(for Tri-Diagonal ~atrix 

.!.1gori thms) • 

2.53:Brief Method of Deriving Algebraic Eguations. 

The main features of n~~erical method is to reduce the 

governing partial differential equations into an equivalent set of 

algebraic equations which involve approxi~ation. 



There are methods of tranforming the partial differential 

equations into the finite difference form-this includes Taylor series 

expansion and the micro-integration of Gosman(1976).In this study, the 

latter method is used (for more detail see Appendix E). 

(a):Finite Difference Equations for Scalar Variables. 

When the partial differential equations of (2.24) is 

integrated over the control volume (see fig.2.1) and by using Gauss 

theorem to replace the volume integrals into surface ones,the following 

expressions will be obtained(see Appendix E for details), 

• 
~ = (2.27) 

where q's are combined convection and diffusion terms,s. being the 

source term for scalar variables,' and V is the control volume over 

which the integra~ion was performed.e,w,n and s are points on the 

boundaries of the control volume (cell) situated mid-way between nodes 

E,W,N and S from point P as shown in fig.2.1. 

N 

w e 

I 

1It--~ .. ,1 ....... __ --.. 
, I 

1 
1"1' 

I 
• 
I 
I 

I I 

Fig.2.1:A Typical Scalar Cell (Control Volume). 
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Each of the q' s are then related to the values of f at node 

points in the calculation domain,which has the form,for example,for the 

west boundary, ( Stc. 4lso JiS· Ii ·2, A,,..lId/x , ) 

(2.28) 

for small local Peclet number,(-2 <Pew <+2) lfhere, 

-- (2.29) 

For large I Pe I ie for Pe 7 +2 • or Pe ~-2,1w has the 

following forms, 

• 1", 
(2.30 ) 

• 

In equations (2.28) and (2.30),subscripts P and '.1 refer to 

the central and west nodes respectively and w denotes the intermediary 

cell boundary mid-way between nodes P and W. 

~ employing the 'hybrid scheme' (ie the combination of 

central and upwind differencing),equations (2.28) and (2.30) may be 

rewritten as, 

18. 
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• ,.., --

Similar treatments apply for other boundaries of the control 

volume to obtain the fluxes ~,q~ and ~.BY assemblying these flux 

expressions and by linearising the source terms,Sf,the complete finite 

difference, equations for sca.lar variables has the forme see Appendix E 

for its derivation), 

= 

where a." 

~ !! summation over neighbours (N, S, E, 'I) , 

th. 

and f~ etc. are given by equa.tion (E.18)(see Appen~ix E).S~ and st ~ay . . ' 

be deduced from S for each scalar variables( k and £ j and see table 

2.2). 

(b):Finite Difference Equations for t-tomentum Equations. 

The finite difference momentum equations have similar form as 

equation (2.32) for scalar variables,except with additional terms due 



to pressure gra~ients. The control volumes of velocity components are 

displaced since their locations themselves are displaced as can be seen 

in fig.2.2. 

The finite difference equations for momentum have the form, 

CIIt) 

"-p 

I 
I 
I • . 

, 
I 
I 
I 

N 

I . I - -- - -, - - - - - - - - .. - - - - -
I 
I 
I W , 

Fig.2.2:A Typical J- and V- cells(control volumes). 

w!1ere ap,aWetc. are similar to equations (2.33) and (2.34) but f", nOi.,. 

is a hybrid difference function of local Reynolds nu.'l1ber,Rew \fhere, 

The remaining unknown pressures are obtained from pressure 

20. 



correction(p')- equation which is obtained by combining continuity and 

momentum equations( see Appendix E for p'-equation derivation).This 

equation has the form, 

I 

o.pfp --

2- :; sum~ation over neighbours 

'" 

~W - f., DI\I A.~ .c.te. (2.39) -

~ - A&fAJ/4 p (2.40 ) -

(2.41 ) 

Here s~ is now represents the local continuity imbalance in 

the prevailing velocity fields and denoted by !-ip.and st =0. 

2.6:S0LUTIon PROCEDURE OF FINITE DIFFERENCE EQUATIO~S •. 

2.61:Brief Outline of Procedure. 

Having constructed algebraic equations for all nodes in the 

calculation domain,next job will be to solve those set of equations 

21. 
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simultaneously with appropriate boundary conditions. 

Since the equations are non-linear and inter-linked,to solve 

the finite difference equations is by iterative method,~hich employs 

inner and outer iteration sequences.The inner iteration sequence is 

employed to solve the finite difference equations for the individual 

variables,while the outer iteration sequence involves the cyclic 

application of the following steps, 

Assemble coefficients of momentum equations and estimat~ 

values of axial and radial velocities (denoted by u* and ~) are 

obtained from the momentum equations using the prevailing pre3sures,~. 

The coefficients of the p' -equa tion( for the pressure 

correction) are· next assembled and this equation is solved by the LBL 

method(see Appendix E). 

The velocities and pressures are then adjusted(corrected) 

from the relations like, 

Ow ct\v 
, 

U~ = fp) (2.42 ) 

U = u* -to U' (2.43 ) 

pt I 

r '0 + r (2.44 ) 

The equations for the remaining variables (k and e ) are then 

solved in turn, first by assemblying the coefficients of the transport 



finite difference equations to obtain k and' • 

Regard the new values of the variables as L~proved estimates 

and the whole process is repeated until satisfactory solution is 

obtained-this will 

I convergence t • 

be 

2.7:CONCLUDING REIVlRKKS. 

discussed later in Appendix B,under 

Mathematical formulations and solution procedure of solving 

the governing finite difference equations have been discussed 

briefly(details will be obtained in Appendix E).The main pOints of the 

chapter may be s~marised as follows: 

The basic conservation differential equations which govern 

the transport of mass and moment~~ have been presented for 

time-dependent and time-averaged form. 

The general form of the closed k- £ model equations for mean 

flow variables and turbulence quantities (k and l ) have been stated 

and their manner of solution using a finite difference formulation has 

been discussed (details are discussed in Appendices D and E). 

Much of the work presented in this chapter has been derived 

by researchers at Imperial College,London.This work has been presented 

here for the sake of completeness. 
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C~APT3R 3. 

DEVELOPME:'IT OF A MODEL FOR THI~ ORIFICE PLATES. 

3.1:I~TRODUCTION. 

This chapter sho«s how a mathematical model is developed for 

thin orifice plates.The model is tested on an orifice plate with 

orifice to pipe diameter ratio of O.7.The model is based on the 

solution of the set of coupled differential equations described in the 

previous chapter.~le variables to be solved for are 

velocities:U(axial),V(radial) and turbulent quantities:k ( kinetic 

energy), E (dissipation rate).The pressure,p being a derived quantity 

may be obtained from pressure correction equation (described in 

Appendix E). 

The development of a model for orifice metering requires: 

(i) The modification of the TEACH-T progra~,developed at 

Imperial College, London to incorporate the geometry of the orifice 

meter and output quantities of interest. 

(ii) Choice of upstream/downstream distances. 

(iii) Selection of number of finite difference grid points in 

region of interest. 

(iv) Determination of a~ adequate convergence criteria to the 

24. 



iterative solution procedure for solving the equ~tions. 

Steps (ii),(iii) and (iv) are approached iteratively to 

obtain the final model described in section 3.4. 

3.2:MODIFICATIONS TO TEACH-T PROGRAM. 

3.21 Geometry. 

Figure 3.1 shows a cross-sectional diagram of location of a 

thin orifice plate which is co-axial with the pipe axis denoted by 

OX. The diameter of the pipe is 4 inches.The y-axis passes through the 

orifice plate and perpendicular to OX.The orifice plate is assumed to 

be very thin similar to the one shown in figure 3.2(b) which is an 

idealised form of the plate shown in fig.3.2(a).The practical reason 

25. 

why orifice plates are always thin will become clear when plate 

thickness dependence on discharge coefficients is discussed later in 

section 3.45(iii). 

There are three basic dimensions for orifice meter to be 

considered namely the plate thickness t,the orifice dia~eter DS and the 

pipe diameter DJ. 

Non-dimensional geometrical parameters which are so important 

in orifice metering are the orifice to pipe dia~eter ratio,;.3 and the 

thickness to plate dia~eter ratio'~I.These two parameters may be 

formed from the basic parameters quite easily.The square of the former 

parameter m= JI~ being the ratio of the total cross-sectional area,is a 
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measure of the extent to which the constriction obstructs the flow. The 

latter parameter is a convenient specification of the orifice geometry • 

(ct) 

DI - pipe diameter, 

DJ - orifice diameter, 

t - plate thickness, 

and T ~ overall plate thickness. 

. 
d~: : 

•. , t ... 

Fig.3.2:(a) A Standard Orifice ?late,BSI1042 (1964). 

(b) An Idealised Form of Orifice Plate,Ward Smith (1971). 

The variable quantities that must be chosen in a model are 

the distances of inlet and outlet boundaries from the y-axis denoted by 

DXU and DXD respectively, the number of grids upstream and downstream 

regions and orifice area ratio,m. The selection of the number of grids 

in both regions and the distances of upstrear:l and do\mstream boundaries 

will be discussed in section 3.4. 



3.22 Grid Distributions. 

For the purpose of solution,the flow domain is overlaid with 

a rectangular meshes(grids) when viewed in the y- or r-X plane.This 

divides the domain of interest completely into a set of non-overlapping 

subdomains as shown in fig.3.3. 

The grid lines are shown in solid lines.The intersections of these grid 

lines where spacing are in general arbitrary, are called the node 

pOints.Control volumes are shown in dotted lines which are drawn 

mid-way between those grid lines. The arrangement of the grid lines are 

such that the bounding surfaces coincide with those control volumes.In 

this figure also one can define the thickness of the orifice plate t by 

the bounding faces of the orifice plate(which consists of front or 

upstream face,rear or downstream face and bottom face of the orifice 

plate) coincident with the control vol~~es. 

In this particular study,the author has chosen a uniform 

spacing in the radial direction,while in the axial direction,the grids 

are contracting and expanding following a geometrical progression(with 

a constant factor EPSX which is defined as the expansion/compression 

factor) between successive intervals.The grid lines are intended to be 

crowded just upstream of the orifice plate as expected,because the flow 

streamlines become crowded as the flow advances from left to right(see 

figure 3.4).After leaving the orifice,the grids are expanded. 

A typical cluster of U-,V- and scalar-cells is shown in 

28. 
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fig.3.3 whereas fig. 3.5 shows the individiual control volumes of the 

velocity components and scalar quantities (eg.k,the turbulence energy 

and E the dissipation rate) • Each cells surround the point of 

location of the relevant variables.The variables are stored in 

different locations of the grids.The values of the flow variables are 

represented by averages over the respective control volumes.Refering to 

fig.3.5(c),all the scalar variables p,k,e are stored at grid nodes.The 

velocities are stored at locations mid-way between the nodes where 

pressure which drives them are stored.The nodes of a typical grid 

cluster are labelled as P,N,S,E and W (as shown in fig.3.5). 

The location of the variables in the manner described above 

forms a staggered grid system ~hich has the advantage that the 

variables U,V and p are stored in such a way that pressure gradients 

are easy to evaluate.Furthermore,the velocities are located where they 

are needed for the calculation of convective fluxes. 

Figure 3.6 shows the computational domain of calculation 

which is actu~lly the upper half of fig.3.3 (this is taken because of 

the consequence of the symmetry situation).Again the grid lines are 

arranged in such a way that the bounding surfaces(wall boundaries,which 

include top walls of pipe, front face, bottom face and rear face of the 

orifice plate,symmetry axis and inlet/outlet bo~~daries),coincide with 

the boundaries of the control volumes(shown as dotted lines). This is 

advantageous for ensuring conservation and for flux calculations.In the 

finally chosen model the n~~ber of grid lines in axial direction,NI is 

taken to be 32 ~fith (16/16) grid distributions upstrea.ll/do·,ofnstrea:n 
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regions.In radial-direction, the number of grids,NJ is taken to be 

22.The reason for the choice of these parameters will be discussed in 

sec tion 3.4. Other com pu ta tional detail s \i11l be found in sec tion 3.3. 

3. 23:Boundaries. 

The boundaries of 

fig.3.6.They con¢sist of 

the computational domain 

eight boundaries 

are ShOtffi in 

al together; 

inlet,outlet,symmetry axis and wall boundaries. The wall boundaries 

themsel ves are made up of five solid boundaries( two of tothich are top 

wall boundaries in regions 1 and 3, two boundaries being front face and 

rear face of the orifice plate denoted by numbers 4 and 5 and the last 

boundary is the bottom wall of the orifice plate in region 2).As has 

been mentioned earlier, these boundaries as well as inlet and outlet 

boundaries coincide with the control vol~~es.The inlet and outlet 

boundaries are specified by distances D~J and DXD respectively from 

OY-axis.Top pipe walls and bottom face of the orifice plate are at 

distances R(s::RLARGE) and r (s::R~.rALL) respectively from the axis of 

symmetry (R and r stand for pipe and orifice radius respectively). 

3.24:Boundary Conditions. 

Since the working equations of motion in this study is of an 

elliptic type, it is necessary to supply conditions for each variables 

at the boundaries of the flow domain.In this particular study, the 

variables for which boundary conditions to be supplied are those for 

velocity components in axial and radial directions,U and V and 

turbulent quanti ties k and £ • The pressures may not be modified on 

boundary,since they are inter-dependent 'fl th velocity cOinponents 

34. 



through momentum transport equations-where velocities are 

prescribed,pressures need not be. 

(i)A t Inlet. 

At the inlet all velocity components and turbulent quantities 

must be prescribed.The radial velocity V is set to zero.For the axial 

velocity,U two velocity profiles were used, one is of uniform (or flat) 

profile and the other is of power law which has the form, 

where Rand r are respectively the pipe and orifice ralius,p is a 

function of pipe Reynolds number Re given by(Blake (et al),1976) 

and U is given by, 
mIl"-

where U. is the averaged inlet axial velocity.Equation (3.3) was 

obtained by integrating equation (3.1) to obtain the average flow 

veloci ty U~. 

For uniform profile, the mean axial velocity U is set to, 

u = lI~ 
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where the average inlet axial velocity U~ is given by, 

which is a known value if fluid Viscocity!',pipe Reynolds number Rei' 

fluid density I' and pipe diameter D, are given values. 

\ihile the mean axial velocity U has kno7n inlet value,the 

radial velocity V is assumed to be of zero value on the axis of 

symmetry throughout the domain of calculation. 

The inlet profiles of turbulence energy k and its dissipation 

rate f are given by specifying turbulence intensity i and length scale 

factor ~ through the following relationship, 

= 

e :. E~ --

where t .. length scale, 

A .. length scale factor, 

R s:: pipe radius, 

i s:: intensity of turbulence, 

k s:: turbulence (kinetic) energy, 

£ .. dissipation rate 
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and the subscript 'in' stands for 'inlet'. 

The dissipation rate has been assumed to follo~ a mixing 

length hypothesis. 

Inially the values of i,~,U~ and R are given from ~here the 

inlet values of k~ and e~are obtained from relations (3.6) through 

(3.8). 

(ii) At Outlet. 

~~t 

The flow at~outlet is assumed to be outwardly directed and 

independent of x, (the axial direction). This would be the case far 

downstre~ of the orifice.This implies a zero gradient at the flow 

outlet,i.e. 

-.... o 

Since overall mass balance is applied to the entire domain of flow this 

automatically ensures mass balance(continuity) at the outlet.The 

application of upwind difference (see Appendix E) demands that ~~ is 

immaterial for all variables except for velocities which are needed for 

mass conservation in the pressure-correction (p')- equation (see 

Appendix E ,also for the derivation of p'-equation). 

(iii) At the Symmetry Axis. 

At the axis of symmetry r=O,the total normal flux is set to 
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zero,ie 

:. 0 (3.10) 

for all variables except radial velocity V since it has zero value at 

the axis of symmetry. This may be achieved by setting to zero the 

appropriate coefficients in the finite difference equations. 

(iv) At l,falls. 

The division of wall boundaries into five regions in 

modelling the orifice plate has been mentioned earlier (see section 

3.23).Here the insertion of wall boundary conditions are briefly 

presented(more detail will be discussei in Appendix F). 

Basically the wall 

modifying the source term 

boundary 

s4' of 

conditions are 

the individual 

expressing the source term as a linear relation, 

--

introduced by 

variables tfJ • By 

(3.11 ) 

the terms st and s: may be deduced from integrated and linearised 

fortn of the source. 

(a) For nenn Tangential Velocities. 

A tangential velocity,say Up for a node P nearest to a wall 

boundary (see fig.F.2,Appendix F) is obtained from usual momentum 
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balance.A boundary con1ition on Up can be introduced by modifying the 
U 

source term S for axial velocity U. 

~S: 
The modification is made in such a way that the values~ are 

decreased to bring the velocity zero on the walls.The modification on 

S U is to decrease its value to p 

s~ : (Sr)o/i - ~~. bXpW 

SU 
u -- o 

where bXfW is the distance of point ~of from? and (5p
U).,.u is the 

value of s~ at previous iteration. 

If the point P falls in the inertial sublayer(ie. when y+ 

>11.63),tn\(see Appendix F) takes value given by, 

--
+ 

whereas when P is within viscous sublayer (y ~11.63), 

t-p 

where f' :: fluid density, 

fl = fluid viscocity, 

~p K normal distance of point P from the wall, 

~fW = "i (kp + kW ), 

39. 



and ~, ~ and E are empirical constants ~ith 
3<. :r: Von Karman constant so .4137 

3 s:: Integration constant =9.793 

Cf.:: Constant of turbulence == .09. 

~iall shear stress l'1Al is given by, 

OT tctl"l. (loll) c:I.,&" .. ~ on ,.j~ oJ P 
where trnhas the value as in equation (3.14),(and Up is the tangential 

axial velocity at the node point PC sa£ Q~O f9·.2.'It). 

Similar treatments may be carried out for radial velocity V 

having east/west walls of the control vol~~e coincident with front face 

or rear face of orifice plate (see Appendix F,fig F.2(b) or (c». 

(b) Turbulence Energy. 

The source term for turbulence kinetic. energy S~ consists of 

two terms; the generationn term G and the dissipation tem c,tE 
according to, 

--

where 
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k '" turbulence energy, 

E ~ dissipation rate, 

f '" fluid densi ty, 

(3.20) 

Co ,cfLare constants at high Reynolds number given by table 2. 

1 . 

By linearising the source term in the 

(3. 11) wi th 4> !!k, the fo llowing expressions 

deduced as, 

-- t;eb'V 

manner like equ.~ tion 

~ for S 
p 

4 
and Su may be 

~3. 21 ) 

where bV is the control volume which encloses the point P ,,,here 

turbulence energy is stored.dt (see Appendix F) can take either from, 

or from 

depending on ,,,hether yt > or ~ 11.63, \ihere 

(3.25 ) 

* kp is the value of the turbulence energy at the node point P and kp is 
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the value of kpof previous iteration. 

The modification of the generation term G appearing in 

equation (3.22) may be obtained as described in appendix F. 

(c) Energy Dissipation Rate, £ . 

£ 
The source term ~ as usual is incorporated through the 

source treatment,from where the expression S~ and S~ are obtained. 

Since in the wall flows,unlike k uhich falls to zero at the 

wall, £ reaches its maximum value there.This makes E-balance for a cell 

extending to the wall difficult.This difficulty is overcome by adopting 
... 

a fixed value for fp (irrespective of y)based on 'equilibrium' 

relation (see Appendix F for more detail). The value of e at node 

point P is taken to be, 

In the progra:n this fixed value of e. is achieved by settin;~ the 
£ t. 

linearisation constant Sp ,sU to be 

30 
where ~ is a large number of the order 10 

(3.28) 
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(d) Corner Treatments. 

The treatments at the corners of the orifice plate ~ill be 

discussed in Appendix F.Here the essential points of the treatments ~re 

given.The velocity cells(axial,U or radial,V cells) at the two corners 

of the orifice plate are shown in figure 3.7(see also fig.F.3 of 

Appendix F).Consider the V-cell at the corner A,it can be seen that 

half of the east wall of the cell(control volume) coincides with front 

face of the orifice plate and half of its face is 'exposed' to the flow 

domain. 

The contribution of flux from the east wall of the • V-cell,1.o. 

is then given by, 

• ~ . Up. tAe.,.,.. ,. - (3.29) -

fc - i.(fw T fp) (3.30 ) where -

~IT ~ r lr• b~rs (3.31 ) 

and c is a point mid-way between ~'I and P enclosed by the U-cell( see 

By replacing equations (3.30) and (3.31) into equ'ition 

(3.29) ,and linearising the resul t in the same \'1ay as in eq'la tion 

(F.36)(see Appendix F) ,then the 'linearisation constants' s~ and s~ 
are given as, 
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where the negative sign has been introduced to promote stability. 

The treatments at the corner B are similar to those at the 

corner A. 

3.25 Calculation of Output Quantities. 

(A):Pressure Variations. 

Figure 3.8 shows the variations of pressure along pipe wall 

which may be illustrated as follows. 

As fluid flmfs from upstreal'll side of the orifice plate 

towards the device, (from left to right) ,the pressure on the pipe wall 

decreases very slowly. This is because of the dissipation of energy as 

heat due to frictions at the wal1.In the absence of the orifice plate 

device,the pressure would continue to fall down slowly as can be seen 

in figure 3.8 indicated by a straight line ABC. 

Immediately infront of the orifice plate,there is a small 

increase in pressure on the pipe -..,al1. This is because part of the 

impact pressure on the front face of the plate is conveyed to the 

wall.In the immediate neighbourhood of the contriction,there is a rapid 
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variation of pressure because of the presence of the orifice 

con~riction in the metering.This pressure decreases to a minimum at the 

vena contracta,where the corresponding velocity is a maximum. 

Downstre~~ of the vena contracta,the pressure increases.This 

is because the flowing stream area increases and the fluid velocity 

falls to its initial value.At this zone,tne pressure distribution 

recovers although the level of pressure is 10ifer than tha.t at the 

upstrea~.The pressure does not reach quite the value that it would have 

had in the-absence of the orifice plate. 

The total pressure drop ( due to wall friction~l forces and 

constriction),(Pa-P+) is known as the net pressure loss and is due to 

the dissipation of energy as heat in the damping of turbulent- eddies by 

internal friction(both wall friction and friction induced by the 

orifice plate). 

Pressure drops across an orifice plate A p are usu~lly 

expressed in non- dimensional form, leading to the' discharge and 

pressure loss coefficients which will be discussed now. 

(a) The Discharge Coefficient,C,. 

The discharge coefficient, C I) is related to {!J -ratio ,inlet 

velocity U"" and pressure difference Ap across the orifice plate by 

the following relationship, 

Co - U~ 
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For each values of )S ,which is obtained from 

-- d - I 

N-.2. 

48. 

where j D the index of horizontal plane next to botto~ wall of the 

orifice plate (or JSTEP,see figure 3.6),. 

and N· maximum value of j-index(or NJ,see fig.3.6), 

the cO'I'~sponding value of Uin is. 

Vi., = e Re2. p 
• f>DI 

where p = fluid viscocity, 

I' ... fluid density, 

Re~ D orifice Reynolds nlli~ber, 

D, ... pipe diameter,and 

ogtai.neg 

P D orifice to pipe diameter ratio 

are supposed to be given values. 

frolq, . 

Now,for each values of tID~(""hiCh is obtllined from proB-ra:n 

calculation) there are corresponding values of Ap . Therefore ...,i th a 

given value of p and known quanti ties of P and U ~ (from equation.5 

(3.3.5) and (3.36»,the discharge coefficient Cbcan be computed from 

equation (3.34). 

In this particular study,the discharge coefficients for 



flange,(D-D/2) and corner tappings will be considered.As defined in the 

orifice metering literature flange pressure tappings are located at one 

inch upstream and one inch downstream of the orifice plate,corner 

tappings are located at the orifice plate and (D-D/2) tappings are 

located one diameter upstrea~ and half a diameter downstream of the 

plate. Invariably the grid locations do not coincide exactly with these 

positions.In the p~ogram code was added to locate the position of a 

particular tapping and the pressure at this p!uticular tapping was 

obtained by linear interpolation between the pressures at the 

neighbouring grid nodes. 

(b) Pressure Loss Coefficient,K. 

The theoretical pressure loss coefficient,K~ is defined as 

(Ward Smith,1971), 

-- (pi - P+) 
J.. U·2. 
0. P '-' 

where P, = static pressure upstre~n of orifice 

prescribed) , 

plate (where 

p 2 pressure downstream of of orifice plate (where pressure is 
+ 

1"eCOV ered) , 

f ... fluid densi ty, and 

u~ ... inlet velocity. 

The corrected pressure drop,~ (see fig.3.8) due 

is 

to 

constriction is less than the overall total pressure drop(due to both 



the constriction-and wall frictional forces),(~-p4).The corrections of 

pressure loss coefficient may be obtained as follows. 

(c) Corrected Pressure Loss coefficienttcorrected l{ffv.oll. 

As remarked earlier,the static pressure increases downstream 

of vena contracta region,but does not however quite reach the value 

that it would have had in the absence of the orifice-the difference 

being the pressure loss denoted by pc.This pressure loss is thus the 

extra resistence due to the orfice plate in the pipe line. 

From figure 3.8 it can be seen that, 

Pc .- (pt- p+) - Ap:J. 

From two similar triangles ABE and ACD, A p. is related to 

known values of x,'x 2. and API by, 

where XI = the distance of the point of smallest pressure just upstream 

of orifice plate to a point on the ,V'~ll on the second grid line of the 

computational domain (sea figure 3.3), 

x~ = the distance from the point on the pipe w,~ll of minimum pres 

sure just upstream of the orifice plate to the point on the pipe wall 

at the last grid of the computational domain (in the downstrea~ region, 

see figure 3.8), 
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~r' • the pressure drop just upstream of the orifice plate. 

By combining equations (3.38) and (3.39) will result, 

Pc :: (pI -p.,.) - .API 1 ~l-t :r~r 
IXII 

from where the corrected pressure loss coefficient is given by, 

'" " corrected K ~ 
ihfO 

Pc: 

where p and U rA are respectively fluid density and inlet velocity. 

3.3 OTHER PROGRAMMING DETAILS. 

The SIr~PLE algorithm (discussed in Appendix E) 

51. 

is 

incorpo ra ted into the modified TEACH-T (for Teaching Elliptic 

Axi-symmetrical Characteristics Heuristically for Turbulent flow) - -
computer program. For the algorithms, the stability is secured by the 

choice of appropriate relaxation factors defined by equation (E. 51 )(sea 

Appendix E) with values of .5 for velocity components,U ·1.nd. V, 1.0 for 

pressure correction,p' and .7 for turbulent quanti ties k and E as ,.,ell 

as for turbulent viscocity ~. 

In applying the L3L procedure ~Ii thout updating the 

coefficients for any particular variable + ,the n~~ber of sweeps is 

employed-as many 'sweeps' as necessary may be employed until the 

desired solution is obtained. A number of sweeps of 3 is adequlte for 



velocity components and turbulent quantities.The value of 5 is needed 

for p' in such a way that continuity will be satisfied. 

In the computations,a converged solution is achieved ,,,hen the 

source (denoted by SORCE) which is the largest value of residu~l 

sources for U,Vand p' is less than a specified proset value' called 

the maximum source (denoted by SOR~AX)-the sensitivity of convergence 

criteria is discussed later. 

The p'-equation can be satisfied by several pressure 

fields,so the pressure needs to be specified and it is specified at 

location IPREF~2,JPREF·2(where IPREF and JPlEF are the I-and J-indices 

of location where pressure is fixed) and the value is kept fixed at 

that position.All other pressures are measured relative to it. 

For iteration monitoring,the eummu1ative number of iterations 

performed is calculated and stored as NIT8~.The absolute s~~ of the 

resid ual sO urces is s to red as RESORct ( cf- iiiU , V, k and t ), fo r p' - equ'i tion 

the absolute mass sources are stored as RESO::t~l.The field values at each 

i tera tion sequence is specified at loea tion pm~I·1 2, J~ON~8. The variable 

arrays are printed out before and after the iteration sequence values 

during the sequence are printed out at intervals of I~DPRI·250.The 

constants of turbulence necessary for the progra~ming are given in 

table 2.1(see Chapter 2).For more complete picture of the program,see 

program listing provided at the end of Appendix G. 
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3.4 TEST 0:1 A p .... 7 THIN ORIFICE PLATE. 

3.41 Introduction. 

The following subsections discuss the actual model 

development of the orifice plate.As a starting point the author used 

upstream distance from orifice plate ,D~J to be 2D,(where D/ is the 

pipe diameter) and downstream distance,DXD is varied from 5 to 35 pipe 

diameters.Power law velocity profile, (see equation 3.1) has been used 

to run the progra~.Also as a starting point a convergence criteria 

5 .... 01 (1~) Wt;lS chosen. 

As has been noted earlier that the distances D~J and DAD were 

measured from inlet/outlet boundaries to the OY-a~is and not to the 

faces of the orifice plate at upstream/ dOil!llstream region (see 

fig.3.1) .Ho·o'lever,since the orifice plate used has been assumed to be 

very thin, %~~ O(where t is the plate thickness and Dl being the 

orifice di~eter),this gives negligible error. 

Basically a correct model can be said to have been obtained 

when: (i) sufficiently high upstream and downstream distances have 

been chosen,(ii)the grid distribution is sufficiently fine and (iii)the 

convergence criteria 6 is sufficiently small. The criteria of 

sufficiency being that quantities of interest such as discharge and 

pressure loss coefficients become asymptotically constant with respect 

to changes in these variables.This will become clearer as model results 

are presented later. 



3.42 Choice of Upstream/Downstream Distances. 

(i) Upstream Choice. 

Computer tests have been made for different grid 

distributions upstream and downstream of orifice plate for a given 

value of ~ (= .7) .The author has been using equal nu.lJlber of grid 

I" +he. 
distributionskupstream and downstream regions. Initially (11/11) grid 

distributions (meaning that 11 grid lines are used in 

upstream/downstream regions,in such a way that the total number of 

these grid lines give the total nwnber, NI) have been used. The discharge 

coefficients( for flange,(D-D/2) and the corner tappings) and pressure 

loss coefficients are then noted on a table.Similar tests were carried 

out for (12/12) ,(13/13) ,(14/14) ,(15/15) and (16/16) grid 

distributions.Graphs of discharge' and pressure loss coefficients are 

then plotted against downstream distance DXD(measured in pipe 

diameters) as shown in figures 3.9 and 3.10.In these results an initial 

choice for the upstream distance was taken as D~J=2 diameters. 

From figure 3.9 it can be seen that (11/11),(12/12),(13/13) 

and (14/14) grid distributions are all too coarse as the discharge 

coefficient does not become asymptotically constant as the do,~stre3m 

distance is increased.The other distributions (15/15 and 16/16) are 

reasonably constant at large DXD with the (16/16) distribution being 

the best.In this latter distribution the value of discharge coefficient 

appears to level off at DXD-S diameters and then rise very slowly and 

slightly. 

54. 
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Results for the pressure loss coefficients (figure 3.10) give 

a similar though not so pronounced trend.Again the (16/16) distribution 

is the best but here the approxinately asymptotically constant region 

begins from DXD=10.?he asymptotic results for both ~ischarge and 

pressure loss coefficients are encouragingly resonably close to 

experiment with discharge coefficient (flange) in the range .59-.60(BSI 

1042 result being .6122) and the pressure loss coefficient in the range 

4.6-5.0(experimental result being 4. 19B-Ward Smith,1971). 

To determine the upstream distance DXU, the d01fflstream 

distance DXD was fixed at 25 dia.l1eters and DXfJ was varied for a (16/16) 

distribution.Results for discharge and pressure loss coefficients are 

presented graphically in figure 3.11.These indicate an asymptotic 

region for DIU > 4. It was there fore decided to fix DXU"'5 dia:neters •. 

/' 

t 
• 

t 
J 

K ..... 
.... "'9. .... ....... -e .......... 

·n~--+---+---+---~--~------~ o 2. 4 S 

~~ b1A~c..&a ,OICU ~ 

... 
Fig.3.11: To Find Upstream Distance,DX1J for the nodel. I . 
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(ii) Downstream Choice. 

Having obtained the upstream distance DID to be 5 

diameters, trials have been made to vary downstre~ distances in order 

to obtain a suitable distance for the model.Computer tests have been 

carried out as before with a (16/16) grid distribution but with varying 

DXD and keeping DXU=5 dia~eters fixed.Curves of discharge 

coefficients(forf1ange tap) and pressure loss coefficients are then 

plotted versus DXD(figure 3.12).It can be noted that when downstrea~ 

distance DXD is greater than 10 diameters,the curves of discharge 

coefficients and pressure loss coefficient are both approximately 

asynptotically constant. 

A reasonable choice for DXD was then taken to be 15 1eaiing 

to a fin!!l choice of DXlJ-5 and DXD-15.Interestingly,F.Durst and 

A.K.Rastogi in analysing a plane turbulent flow problem with separation 

used distances of 5.5 and 12.5 channel widths upstrea~ and downstream 

of an obstructing device (see Durst et al,197g).These choices are 

similar to the ones arrived at in this study. 

3.43 Grid Distribution Selection. 

Having selected that 5 diameters upstream and 15 diameters 

downstream are the best distances for the model, the next sta,ge is to 

confirm that (16/16) grid distributions would be the best choice for 

the model.For this,computer tests for 

(11/11),(12/12),(13/13),(14/14),(15/15) and (16/16) grid distributions 

have been carried out using S~le conditions as previous tests but now 
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using 5 and 15 diameters for the upstream and downstream distances from 

the orifice plate.Curves of discharge coefficient( for flancse tap) a.nd 

pressure loss coefficient were plotted versus those grid distributions 

as shown in fig.3.13.Both curves begin to level up AThen grid 

distributions are increased until after the (15/15) grid 

dis~ribution,the result are essentially constant. Interestingly the 

curve for discharge coefficient tends to have a value approximately 

.596(compared \dth experimental data .6122),1i'hereas the corresponding 

pressure loss coefficient curve has a value about 4.76(compared with 

experimental data 4.198). 

From above arguments it can be concluded that the best model 

for orifice metering is chosen to be 5 diameters upstream 'ind 15 

diameters downstream for the distances from the OY-axis and with 

(16/16) grid distribution. The total number of grids UI'" 32 in the axiAl 

direction and NJD 22 grids in the radial direction ha.ve been used.From 

now onwards,this model will be used as basis for computer tests of 

other parameter dependences that will be discussed later. 

3.44 Sensitivity of Convergence Criteria. 

The number of iterations to obtain a solution depend stron~ly 

on the convergence criteria b chosen.The convergence criteria should 

therefore not too stringent.The value chosen in the previous runs w~s 

~ D .01 (1%). The value of ~ was varied and the results 'Ire 

presented in table 3.1 for Ii fA = .7 orifice meter with fixed levels of 

turbulence intensity,i and length scale factor A .In obtaining those 

values of pressure loss coefficient and dish~rge coefficient ,a power 
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law velocity profile has been used.The table also includes the number 

of iterations(~ITER) required to obtain a solution. 

From the table 3.1,it can be seen that the values of 

discharge and pressure loss coefficients are constant when b changes 

from .001 to .1 (see also figure 3.14). 

It can be concluded therefore that the value of 1% for J is 

to be the right choice,since this value is in the range .001 < ~ <.1. 

3.45 Results for fA • .7 Orifice Plate Tests. 

In this section some results are presented for the" ... .7 

orifice plate with the developed model.These results are presented 

again together with results for other ts ratio orifice plates in 

Chapter 4 where also some conclusions are drawn. 

(i) Velocity Profile Dependence. 

Table 3.2 presents the dependence of velocity profile on the 

discharge and pressure loss coefficients.Three commonly used pressure 

tappings; namely the flange,(D-D/2) and corner tappings were 

considered.The velocity profiles used were of power law type(see 

equa tion 3.1) and flat (or uniform) type (see equation 3.4). The 

corresponding experimental values of discharge obtained fro~ ESI 1042 

are also presented and should be compared -..,i th the power law resul ts. 
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(u) Turbulence Intensi 4.:y, i and Length Scale Factor ~ Dependence. 

The variations of discharge coefficients CD and pressure loss 

coefficients, K with turbulence intensity i and length scale factor ~ 

may be found in table 3.3.Power law velocity profile has been used in 

obtaining those coefficients. 

(iii) Orifice Plate Thickness Dependence. 

Table 3. 4 shot~s the dependence of discharge and pressure loss 

coefficients on the orifice plate thickness which is specified by 

tIC! • However the values of the reciprocal of t/Ds are presented in the 

table.The variation in orifice plate thickness is achieved in the 

program by varying the grid expansion/contraction factor EPSX which is 

also tabulated.Again, a power law velocity profile has been used. 

These results indicate why thin orifice plates are generally 

used in orifice metering.This is essentially because above some value 

of p~~ the value of the discharge coefficient(flange) is practically 

constant (see figure 3.15). 

A thick orifice plate would be uniesirable in a practical 

situation because as it wore(became thinner) the value of the discharge 

coefficient would change. 
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(iv) Pressure Distributions along Pipe Wall. 

Figure 3.16 presents a computer result of pressure variations 

along pipe wall for a ~ a .7 orifice meter.The velocity profile used 

to get the result '"las again a power law type defined e9rlier. The curve 

obtained is very similar to the one presented in BSI 1042 (pg.21). 

3.5 CONCLUDI~TG REMA.RKS. 

The development of the model for orifice metering· has been 

presented in this chapter.The essential features of the model 

development may be summarised as follows, 

The geometry of the orifice metering has been shown with the 

locations of inlet and outlet boun~aries from the orifice 

plate.Variable number of grid distributions upstream and downstream of~~t 

orifice plate were also noted. 

In the interest of the computations and the modifications 

required to the TEACH-T program, the domain of calculations has been 

shown which includes the wall boundaries,inlet/outlet boun~aries and 

also symmetry axis. Incorporation of boundary conditions and inlet 

velocity profiles were also presented. 

The calculation of discharge coefficients and pressure loss 

coefficients have been presented briefly including the correction 

required for computing the pressure loss coefficient. 
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The developed computer program '~as then run extensi"ely 'd th 

P ~ .7 orifice plate to investigate upstream/dowmstream distances,grid 

distributions and convergence criteria.This hai to be done in the 

somewhat iterative fashion as explained.The finally chosen model was 

one with a (16/16) grid distribution upstream/do~stream of the orifice 

plate and with upstream and downstream distances of 5 and 15 diameters 

respectively.The resulting model was one with a (32x22) grid 

distribution (22 in the radial direction) which gave a grid independent 

converged solution. 

Lastly,some detailed results for a t3 ~ .7 orifice meter were 

presented for the discharge and pressure loss coefficients.These 

indicated encouraging agreement with experiments.These 'results are 

presented again and discussed more fully in the next chapter where 

additional 

presented. 

resul ts for other f3 ratio orifice pl.ates are also 

It is of interest to state the run times and storage 

requirements for the developed model.The program was run on the ULCC 

CDC7600 machine and the departmental Pa~E550 mini computer.For the CDC 

machine the typical run time is 40 seconds and for the PRD~E it was 150 

minutes.lii th regard to program size the program required 33 K '.tords of 

60 memory on the CDC 7600 machine. As nay be realised the 

development of the basic 

program(approximately 250). 

model required many runs of the 



CHAPTER 4,. 

APPLIC,~TIo~rs OF I{ODSL AND QUA~rTITATIVE VALIDATIONS. 

4.1:INTRODUCTION. 

Having discussed the developments of a model based on a ~ .. 

• 7 diameter ratio thin orifice plate in the last chapter,it remains to 

present more detailed validations for a range of fJ values. 

In this chapter,such results are presented for .3" ~" .7 

for orifice discharge and pressure loss coefficients. 

First we present the results for direct comparison ~ith those 

from BSI1042 (1964) for discharge coefficients and Hard Smith (1971) 

for pressure loss coefficient. For these results, the follo'.dng W'iS 

assumed, 

(i) a power law inlet velocity profile, 

(ii) a low level of turbulence at the inlet, 

(iii) a thin orifice plate,and 

s 
(iv) a Reynolds number of 1x10 • 

72. 

~fe then proceed in section 4.3 omlards to present results for 

variations in the above quantities.These results are not comp~red with 
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experimental results as generally corresponding experimental data do 

not exist.The results however do indicate the sensitivity of the 

orifice meter coefficients to such changes. 

4.2: DISCHARGE AND PRESSURE LOSS C03FFICIENTS FOR DIFFERE'tr::' P . 

Table 4.1 presents the discharge and pressure loss 

coefficients for the different values of orifice to pipe diameter ratio 

~. It can be seen that the values of the computed discharge 

coefficients for flange and corner tappings are decreasing very slowly 

as p ratio increases,while the corresponding experimental coefficients 

show the reverse behaviour(ie increases with increasing /.3). For D-D/2 

tapping,the compute4 discharge coefficient decreases with increasing j.S 

in the range • 3 ~ p., ~ .5 and s tarts to rise again beyon:i /J -

.55.However the corresponding values of experimental discharge 

coefficient increases slowly with increasing values of ~ • 

From the table also,it can be seen that the computed values 

of discharge coefficients at the extreme ranges of ,s are not ~s 

reliable as those values which lie between the extremeties of t5 .This 

is in agreement with the proposal of Stearn et al(1951).The computed 

values at the 'central' region of the J' range agree very well with the 

data.As an example the predicted dischar~e coefficient for flange tap 

for ~ = .45 was found to be .6059 compared with data .6050 frein 

BSI1042.It is only about .1" in error. Similarly the predicted values 

of the coefficients l-ri th 'O-D/2 and corner tappings are respectively 

within about .4~and .1~(see fig.4.1). 
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Figure 4.1 shows the percentage variations of the compute1 

discharge coefficients for the whole range, .3~ ~ ~ .7 for all three 

pressure tappings considered.It can be said that the variations of the 

'coefficients for the tappings with the available data are wi thin 

Table 4.1 also shows that the theoretical and corrected 

theoretical pressure loss coefficients decrease with increasing,s 

ratio, this is in accordance wi th the experimental data. K ""Ie is the 

theoretical value of pressure loss coefficient when the effects of 

frictional resistances due to pipe wall and due to orifice plate are 

included,whereas 'corrected K ' fltu is the pressure loss coefficient 

corrected for the pipe wall loss and therefore represents the loss due 

only to the orifice plate. These latter values must be compared with 

the experimental data,K~. 

Figure 4.2 presents the percentage variations of the 

corrected pressure loss coefficients with the availabe data for .3~ ~ 

~ .7.It can be seen that the variations increase with increasing fo .The 

error is minimal for ~ .35 but increases with ~ to a maximum of 

14% at ~ ... 7. 

4.3:VELOCITY PROFILE DEPENDE~CE. 

Two types of velocity profiles have been used in the present 

study,namely the power-law and flat velocity profiles.The latter 

profile has been used to show a typical profile sensitivity for the 

computed orifice coefficients. 

76. 
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4.31:Power-law Profile. 

The power-law velocity profile is defined by the curves which 

obey a simple-law curve (Blake,1976) given by, 

uet') --

where U is the maximum fluid velocity at the central region of the 
~" 

flow distributions,r is the radial distance from axis of symmetry where 

fluid velocity is the highest,R is the pipe radius.The power-law index 

P is given by 

where Re, is the pipe Reynolds number ~hich is related to orifice 

Reynolds nUluber Re~ by 

where )3 is the orifice to pipe diameter ratio.It is clear that from 

equations (4.2) and (4.3) the index p depends on both ;.s and the 

orifice Reynolds number Re2 · 

78. 

It is this velocity profile that has been used in the 

developed model for orifice metering and the ~uantitative results 

presented in Table 4.1. 



4.32:Flat Profile. 

For a particular pipe cross-sectional area,if the fluid flow 

across the section is always uniform(ie the flow does not depend on 

radial distance, r from axis of symmetry), the flO~t profile is said to be 

flat(or uniform) and is given by 

U,,;... e- ~e, 
(4.4) 

I'D, 

where f .. fluid viscocity, 

I' '" fluid density, 

D. ... pipe diameter 

and Rei .. pipe Reynolds number. 
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The variations of discharge and pressure loss coefficients 

wi th velocity profiles are obtained from table 4.2 for p in the range 

• 3 ~ (3 ~ .7. All the values of discharge coefficients with flat 

profile are slightly lower than those values when power law profile has 

been used for the model. 

Figure 4.3 shows the variations of discharge coefficients 

with all three pressure tappings.The curves were obtained by comparing 

the coefficients for flat profile with those computed for the power-law 

profile (the basic model results). It can be seen that the variations 

are quite small for .3, ~~ .5 but then increase with ~ to a maxi~um 

error of -1.6% at (3 so .7. 
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Table 4.2 also presents the variations of the theoretical 

pressure loss coeffficients(corrected and uncorrected) with ~ 

ratio.These predicted variations increased with increasing t' beyond f3 
> .4. 

The percentage variations of the corrected pressure loss 

coefficients from the model values are found in figure 4.4.It has been 

noted that as p ratio is increased, the variations of the pre1iicted 

pressure loss correction coefficients increase to a maximum deviation 

4.4: TURBULE:WE DITENSITIES AND LENGTH SCALE FAC'l'OR DEPE~DE'lCE. 

The level of turbulence intensity i used to obtain the model 

for orifice metering has been 1uite low (3"') whereas t~e length scale 
II 

factor ft wa.s even lower (O.Sij).These values of i and? are varied to 

assess their sensitivity on the discharge and pressure loss 

coefficients. 

There are essentially two methods that author employed to 

show the dependence of the orifice coefficients on i and 

~.First1y,either i or 7\ are varied keeping the other fi~ed,or both of 

them are increased simultaneously by the same factor.Second1y,the 

values of i and ~ were obtained from previous computations downstream 

of the orifice plate and these values are then used to simulate the 

program.The reason for doing this is because just do~stream of the 

orifice plate the flow will be extremely turbulent and would 
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realistically represent a highly turbulent field. 

Table 4.3 shows the effects of changinG the turbulence 

intensities i and length scale factor )\ for p = .7 orifice plate.The 

power-law profile has been used to simulate flow fields.The model 

values of orifice coefficients appearing in row (a) are used for the 

comparison. 

"""ore t.'eaf bl~tJaG"SI. ~.H''CJf.ftfs 
I 

Row .£ " 
Co Co ~ 

I<tJ,u. ' 
Corr .. c tf4II 

ftQ."Sc (D- 0/.> c.()t'P1er Jeth, •. 

(4) ·03 • DDS' · sq'J • 61 Dlf. • S-CfJ' 5·/12 If·77t 

l") • DC! ·005 . s," o "''-
· S-,., 5·/61 If. '7'IIJ 

(tJ 003 .01S • S'73 . 'oct, • srt:U 5' .ff.,. ;,7t, 

(It) ·oq • 01$ • 51t6 • "oB ·n., 5"·177 4·7'0 

(e) "D~ .61t ·~13 • '023 • SIOS r·4/2 s'()S'+ 

Table 4.3:Effects of Changinq Turbulence Intensity i and Length Scale 

Factor" for a § =0.7 Orifice Plate. 

In the second,third and fourth rows of the table the orifice 

coefficients have been obtained by the use of the first method 

described above. The values appearing in row (b) have been obtained by 

tripling the turbulence intensity i while keeping the length sc~le 

factor 1\ fixed(. 5%). Although the results of discharge coefficients 

are slightly greater than those of ~odel values,the variations are very 

small .13% (for flange), .13cy,,(for D-D/2) and .20~(for corner) 

respectively. This shows that changing i has a small affect on the 
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discharge coeffiient for all tappings. 

The corresponding corrected pressure loss coefficient has 

slightly lower value than the model value.This variation is also small, 

wi thin .5k 

The orifice coefficients appearing in row (c) of the table 

was obtained by tripling the length scale factor 1\ and the turbulence 

intensity i unchanged(3").It can be seen that the computed discharge 

coefficients do not vary so much with the model values.They are within 

.08%(flange), .08%(D-D12) and .3%(corner) respectively.Similarly the 

variation of corrected pressure loss coefficient is very small, within 

.3%. It therefore can be concluded that by triplin.3 the length scale 

factor and keeping turbulence intensity unchanged do not affect the 

orifice coefficients since their variations ~ith model values are 

negligibly small. 

Similarly very small variations occcur ,.,hen both i and ~ are 

increased by same factor of 3,(see row (d)). 

It may be summarised therefore,by using the first oetho1 

discussed earlier, that the orifice coefficients(ie di~charge and 

pressure loss coefficients)are not sensitive to turbulence intensity i 

and length scale 1\ that may typically be encountered. 

In obtaining values of discharge and pressure less 

coefficients in table 4.3 in row (e) ,an entirely ,jifferent approach has 

been adopted.The author found the average turbulenc'3 energy k across a 
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radius downstream of the orifice plate at the last grid line of the 

computational domain, where the variations of the energy across the pipe 

are small.From there the turbulence intensity i may be computed 

according to relation 

• 

where k,.., is the average inlet turbulence kinetic enargy and U i.ra,. bein3 

the inlet velocity. 

The averaged inlet dissipation rate E"", has been obtained 

from previous computational results in similar manner to that described 

above. Since k4V and e~ are related by 

--

where l --

(R being the pipe radius)then the length scale factor ~ may be 

computed from above relations as ~ ,kaAr and R are known values. 

It was unfortunate however to adopt this type of approach 

since the computed i is always less than 3'" (the model value) whereas 

for length scale factor j\ always very much greater than .5%( the model 

value for A ) .For a particular values of i-=0.02 anrl}\ ... 64 which "lias 

obtained by this method (see table 4.3 in row (e»,the computed results 

for discharge and pressure loss coefficients were tabulated.It can be 

seen that this type of approach has produced a significant variation on 
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the orifice coefficients. 

The variations of orifice coefficients with the model values 

are wi thin 1.7% (flange) ,1.3 % (D-D/2) and 2.2 ~ (corner) 

respectively,whereas for corrected pressure loss coefficient is about 

All the resul ts for the variations in i and ~ are summarised 

in table 4.4. 

Pr.tl,·cfuJ. / Tht~rf.-h·C4( 1J"$ c.Ju.a" c a.nd 
Pre.ss I,Lr to LIJS$ C.t.Jf,'Cif.11 +-0$ 

ROfAJ Co J-lAnS& Co (D ... DI!l) CI) ~rt)t.,. yr,.ttJeJ. Ie ....... 

~) -t - 13 -t ·13 of ·~o - -5' 

(c) - • ()9 - '0, - -'3 .. '3 

CtJ) + • oS' -t . D, -+ • or - • 3 

(9 - "7 - ,·3 -:l·2 -t S., 

Table 4.4: Percentage Variations of Orifice Coefficients With Changes 

of i and }\ • 

4.5:0RIFIC~ PLATE THICK~ESS DEPENDmNCE. 

The model developed in this study 'fas for a thin orifice 

plate based on a ~ • .7 and power-law velocity profile.In this 

section, the above model will also be used to demonstrate how a thick 

orifice plate would affect the orifice coefficients(ie the discharge 
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and pressure loss coefficients).For this,s series of computer program 

were run by using the model with different values of 

compression/expansion factor EPSX from ~here the orifice plate 

thickness has been defined.All results of the coefficients we~e 

tabulated as can be seen in table 3.4.It can be noted the discharge 

coefficients for all three commonly used pressure tappings decrease 

with increasing EPSX until a certain value where the discharge 

coefficients are essentially constant.This is the thin orifice plate 

region. 

For a more clear visualisation,the variations of discharge 

coefficients (for each tappings) were 

reciprocal of tlf)~ -the convenient 

plotted versus D,.jt (the 

specification for plate 

thickness).This can be seen in fig.4.5. The curves show they tend to 

level off at asymptotic values of - O. 6(flange), '" 0.61 (D-'D/2) and 

~O. 59(corner) respectively. For the sake of comparison, the 

experimental data for discharge coefficients for both tappings are 

however shown tabulated on the same figure 4.5.From these results thin 

orifice plate region can be defined as that where the discharge 

coefficients are asymptotically constant.For flange and corner tappings 

this would be for a value. of D2It 7 125 or t/D2, ~ .008. It is 

interesting to note that for the D-D/2 tappings the asymptotic region 

occurs when Dt/t 7 350 or tiD ~ .003. 

It is of interest to note that BSI1042 recommen~ that the 

orifice plate thickness should be sllch that , 

tiD, < .02 when ~ ) .2 

(see figure 3.2 in chapter 3). In terms of t!D 2. this inequality 
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becoces, 

tlDt. < .02/jJ for Il > .2 . 

S.o fo r p = • 7 

t/D'J..f .03 or Dsft 'l 33 

The results of this study iniicate that the orifice plate 

should be thinner to ensure that the discharge coefficients (and 

pressure loss coefficients) are in an asymptotically constant region 

(see figure 4.5). 

The curves therefore have indicated that the discharge 

coefficients does depend on the plate thickness markedly.The thicker 

the orifice plate,the greater is the discharge coefficients.Thick 

orifice plates are therefore not practically used for orifice metering 

as discharge coefficient would vary as the orifice plate became thinner 

(due perhaps to wear). 

Figure 4.6 shows the variations of discharge coefficients 

wi th plate thickness for different values of fA in the range .4 ~ P ~ 
.7.Each curve however shown only for flange tap.It can be seen that the 

curves are constant. 

The variations of the correcte,:i pressure loss coefficient 

with orifice plate thickness (for 8 = .7 orifice) is shown in figure 

4.7(results taken from table 3.4).This also shows an asymptotically 

constant region for thin orifice plates(~~>150). 
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4.6: REYNOLDS NmmER DEPENDE~tCE. 

5 
The Reynolds number of 1x10 has been used for modelling a ~ 

• .7 orifice plate.The following will demonstrate how the change of 

orifice Reynolds number affects the discharge and pressure loss 

coefficients.As already mentioned previously the power-law velocity 

profile has been used for the model. 

Table 4.5 shows the variations of discharge and p~essure loss 

coefficients with orifice Reynolds number.From the table it can be seen 

that the predicted discharge coefficients increase with the Reynolds 

number.The corresponding experimental data show the opposite 

behavlour(ie decreasing values with increasing orifice Reynolds 

number).The percentage variations of the coefficients with the data are 

also shown in the table. 

tJrI1"C& TS,eD r~ +e"Cl4.1 E. ,,~c,,'tn. entcll Pu~.." +rtt}" 
Rt:JntJIlis O(sc.hllt, 9- o ,c.'" CI r8 f 

Vo.,..IQk,ns Nu.mlt&r CltJ}fel""fs C. t,Jit c..l t..nl-$ 

Re~ 
C.D Co Ct) t:I) Co Ci) '0 '" CIJ 

IIAnse (D-DI,.) "'nCo,. JI.tlS- (IJ-,,,-) c.rMir .l'Anse O-I1J.) tar"..,. 

')C .os • 51'3 .'/0+ • 5"43' • ,/22 . "'~ • "33 -2'3% -1.3% - 3·:2 % 

~-6JCII • ':135' . '3'a · "',. . '0'' II - - ... :2.ST, - -
, 

. '35' • (GO, .'~53 • &Dl1 • 'CJ5" + 5"3% .. :2.,?; I ~ to - -

Table 4. 5: Variations of Discharge Coefficients with Orifice Reynolds 

Number. 
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The variations of the corrected pressure loss coefficient may 

be obtained from table 4.6.The table shows the coefficients decrease 

with increasing Reynolds number. The percentage variations from the 

experimental data are also shown in the table. 

Orifr'C& 

J<U,'D. 
ClJrrc.c+wi 

~f.%P 
PuCLntA", 

~"DI"s Kthe.D. V4ra'a+ins W"""b&.r, Rtr. 

1 )( 10 6 5'. 18~ If· 77'1- If -ICIS -tJ3· 7'" 
~.sx lOS 4-'23 io· 2 t I 'r' I'li .,. ,.. () % 

1)( 10' 4-3 1, 4. 0 5'"8 Jr.l9i - 3·3% 

Table 4.6:Variations of Corrected Pressure Loss Coefficients with 

Orifice Reynolds Number. 

It is interesting to note that although the variations with 

Reynolds number show marked changes in the computed results compared 

with small changes in the experimental results.The computed results 

have errors which fall either side of the experimental results ~s the 

Reynolds number is increased.In fact for the corrected pressure loss 

coefficients a much better comparison with experiment is achieved at 

high Reynolds number. 

Before concluding this chapter,it should be pointed out that 

after the author had completed his stu1y on orifice metering,a paper 

entitled '~umerical Modelling of Turbulent Flow Through Thin Orifice 

Plates' by R.''l.Davis and G.E.Mattingly was discovered.This was 

presented at a symposium, 'Proceedings of the Symposium on Flow in Open 
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Channels and Closed Conduits' held at NBS, Gaitersburg,M.D(issued 

October,1977).Their model was also based on the k-£ turbulent TEACH-T 

computer model and therefore the following will 3how how the discharge 

coefficients in their study compare with the results obtained in the 

present study.The comparison are however for D-D/2 and corner tappings 

and with p ratio in the range O. 4 ~ f3 " .7. There is no data on 

discharge coefficient ,.,i th flange tap and pressure loss coefficients to 

compare with. 

Table 4.7 shows the comparison of the computed discharge 

. coefficients( for D-D/2 .!ind corner tappin.~s) with data of Davis and 

Hattingly (1977).They have used a power-1a'..,. velocity profile with 

1/9-th. power index p,whereas in the present study the power index of 

1/12 has been used.The results indicate quite similar values except 

for the jS = .7(P-D/~ tapping result. Typically the variations for the 

other results are~ 1~2~.Bearing in ~ind th3t the- results were 

obtained completely independently the agreement is quite encouraging. 

Co (D - Df:/.) Co (cor n to r) 

p,..se,nt Davi$ clIul p,.e,se" t. OQvis Qncl Petru" +q,c V.,.La HOl'\8 
~ = PaA,. Skul!l Maijira,l~ Sh.u'~ M.fh~IJ CD (1).012.) Coeu,.nc,.) 

.4- · '073 . 6'5 .'017 
-'" - '·3 -, ·2 

-5 .'037 · 60, · '031 • '07 - ·1 - -5 

., ·'048 . '" • 6007 -602 - '-8 - -2. 

·7 . ',0. • 637 • 5936 • 5'1' - .'2 ..,. -4 

Table 4.7:,a-ratio Dependence -Comparison "lith Data of Davis and 

Mattingly (1977). 
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4.7:CONCLUDI~G REMARKS. 

The quantitative results presented in this chapter for 0.3 ~ 

~,o. 7 orifice plate computer simulations lead to the following 

conclusions. 

(a) The discharge coefficients (flange D-D/2 and corner 

tappings) can be predicted to within • approximately :t 3 ~ of those 

reported in BSI 1042. In the mid-range jJ - 0.45 the agreement is 

excellent whereas the maxim~~ deviation occurs at the extremities ~ • 

0.3, P = 0.7. 

(b) The pressure loss introduced by the orifice plate can be 

calculated to wi thin 15 ~ of that obtained experimentally.For o. 3 ~ II 

~ 0.5 the error is less than 5% whereas after J9 - 0.5 the error 

increases rapidly to maximwn (15") at )9 = 0.7.A plausible explanation 

for this is that at high ~ the pressure drop across the orifice is 

small so any errors in the calculation procedure will be magnified and 

also errors arising from calculating the correction required to account 

for the pipe wall loss will be significant. At small t9 the pressure 

loss due to the orifice is large compared to the wall loss and 

therefore such errors ~'lill not arise. 

(c) VariOUS sensi ti'/i ty tests were done with the following 

resul ts. 

(i) The velocity profile affects the orifice coefficients,the 

difference between a power-law prOfile (approximately 1/12 index) and a 
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flat or uniform profile being about 1/4 

coefficients and 1/2 - 3 % fo r pressure loss coefficients. 

(ii) In general typical variations in turbulence intensities and length 

scales have a very small effect on the orifice coefficients (both 

pressure loss and discharge coefficients).However high turbulence 

levels such as those encountered 10-15 diameters dO\ffistrea:n of an 

orifice plate lead to significant changes (1 

coefficients and 6" for pressure loss coefficients). 

2 ~ for discharge 

(iii) The orifice plate thickness has a marked affect on both 

coefficients when the thickness is above some particular value.This was 

found to be D~/t < 125 for flange and corner tappings and D2/t < 350 

for D-D/2 tappings, where D2. is the orifice diameter, t the 

thickness.This inequalities define what is meant by a thin orifice 

plate.They seem to violate that from 13SI 1042 implying that the orifice 

plate should be thinner. 

s 
(iv) The results presented were for Re 2 -1x10 .Increasing the Reynclds 

number led to changes in the coefficients contrary to experiment (BSI 

1042) where they are essentially constant.The reason for this is 

unknown and need to be explored further.It was interesting to note that 

although the theoretical results varied with Reynolds number they 

straddled the experimental result. 

(d) Independent results presented by Davis and Uattingly at 

an NBS symposiu:n ~.,ere discovered after completion of this 

study.Co:nparison of their results with those presented here showed an 



98. 

encouragingly clcse agreement. 

In conclusion it would appear that the basic model can be 

used to calculate quantities of interest to the designer and user of 

orifice plates.Although the maximum errors of +3~ in calculation of 

discharge coefficients are too large for accurate metering the basic 

trends found are correct.In contrast the pressure loss errors of 15"6 

are sufficiently useful for practical design purposes. 
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CHAPTSR 5 

C0~CLUSIO~S 

The study presented in this thesis set out to apply the k-£ 

turbulent mathemaical model developed at Imperial College London,to 

orifice metering. Before embarking on this the author explored the 

underlying theory behind the k-S model and this has been presented in 

this thesis together with programming details.~~ost of this work has 

been relegated to the various mathematical appendices. 

The careful development of the orifice meter model presented 

in Chapter 3 followed by detailed application results to thin orifice 

plates presented in Chapter 4 (summarised in section 4.7) has clearly 

shown the value of this type of modelling.The prediction of discharge 

coefficients for a range of diameter ratio values (~) to within a few 

percent(+3~) and pressure loss coefficients to within 15~ indicates 

that such models will find increasing applications in future studies of 

the orifice meter and other related differential pressure flow metering 

devices such as venturi meters and various forms of nozzles. 

It would appear that a combined experimental/theoretical 

approach to the understanding and design of flow meters in this class 

would be useful and timely. Timely in the sense that the processing 

power of digital computers has reached the stage,as indicated in this 

thesis,where extremely useful results for the previously intractable 

problems of turbulent recirculating flows can be salved. 
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To give some idea of the power of this approach it should be 

realised that if the results presented in Chapter 4 were reproduced 

experimentally,they would require (according to the author's estimate) 

at least 120 separate experim~ntal runs.Each of these would be costly 

and time consUIIling. 

Although the present model developed applies to two 

dimensional axisymmetric flow through a concentric orifice plate,in 

theory turbulent models such as the k- £ model presented here ,can be 

applied to three dimensional flows, for example those encountered at 

bends upstream of an orifice meter. The limitations on such modelling 

are still the large store and computing time requirements for a 

solution. 

More easily solved problems at present would be the 

incorporation of swirl into a two dimensional axisymmetric flow. This 

would require the addition of another component of velocity W in the 

.azimuthal or out-of- the plane 9- direction. The k- f model would have to 

be modified and then solved for this additional variable. 

Regarding the best form of man-machine (computer) dialogue it 

would appear that future work should concentrate on the development of 

interactive programs with extensive use of graphic facilities (such as 

those available in our departmental PRIME 550 computers).With the 

addition of extensive pre and post-processing facilities to basic 

analaysis programs (such as the one developed here for orifice 

meters) ,very effective interaction will be achieved.For example the 

preprocessor could prompt the user regarding the orifice geometry and 
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flow conditions required by the user,whereas a post processor could be 

used to interrogate the resulting solution to investigate 

pressure,velocity and turbulence fields anywhere in the flow 

calculation domain as well as displaying the entire field graphically 

if required.For example flow streamlines could be displayed as could 

pressure contours and velocity vectors~This area is an important area 

for further investigations.General and extensive work on pre an·1 post 

processors is being done by various interested group within the 

Interactive Computing Facility (rCF) of the Science Research Council. 

Looking further into the future it would appear likely th~t 

finite element based equivalents of the TEACH-T finite difference code 

will be developed. These may have the advantage of greater flexibility 

in describing complex boundaries and boundary 

much of the finite element software such 

conditions.In 

as mesh 

addi tion 

generation 

preprocessors and post processing 'Viewers' will then be appropriate. 
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AP?ENDIX A 

A.1': DERIVATION OF· ~aVI Ell-STOKES' DIFl'rn}I~rTIAL ~m.TIO'l'l 

An infinitesimal volune of fluid element which at ti'l1e t has 

the shape given by fig :A.1' will be considered. Its velocity in space 

".i S CX'~I) i-=1l, 2, 3 will be denoted by ~('X.~~ t) and moves following 

the fluid SO that its acceleration will be given by the substantial 

derivative of the velocity.l.ofe also asstllle the body force per unit mass 

will be denoted by, 

= 

and is not shown in the figure. 

-Ix. <::; :: :::1 

Fig:A.1 

, ___ .--4. _____ ?, 

--- .----- -., 
~' 

~ 

Shear and normal stresses in the x-direction 
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If the fundamental statement of Newton's second law in terns 

of momentum for an inertial reference is applied to the volume 

element, the follo\'1ing expression, 

d F --
will be obtained where dL is a.n infinitesi.rnal force,~ ~.V ... t) is 

the sUbstantial or total derivative( see Shames, 1,962) ,dm is the mass of 

1\ A 
the infini tesillal fluid and ~::. ~('4)t.). 

The force dF may be resolvej into its co:nponents,narnely the -
surface force dt and the body force ~dm to yield, 

where dm is assumed to be constant.In the x-direction,equation (A.3) 

becomes, 

From the figure also,the following expression for the surface 

force in x-direction,may be obtained, 

'" which relates it '11th stresses 6"'iJ" 

By replacement of equation (A.5) into (A.4),the followin~ 



is the fluid density.Above 

represented by a tensor notati~n, 

set of 
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dm equ.'lls I' dv,/ 

(A.6) may be equations 

-- " .l2..fU' u . . at c. Vt(,)j. 1~2.13 

/'to 

'",here 6JL is a 'dia~onslly symmetric' tensor am repeated 

in:iices bplies sunmation-i.e. Einstein notation. Fltua tion 

represents a general fl uiri flow when coupled with continuity equation, 

(A.S) 

which would be obtained from the consideration of lllass conservJltion. 

/'to 
The sresses 6'.c;. ca use 

deJorMltHonS Qr& ~'+l.r",ina.J ,,~ 
since these,( deformation ra tes( or 

" instantaneous velocities "£ ) it 

defor.nations of f'1 uid elements and 

spatilll Variations t,. ac of the 
, ~ 

is possible to relate those sresses 

with these defor.nation rates.The avera~e nor.nal sresses is related to 

the instantaneous pressure ~ by, 

A 

::: -r (A.~ ) 
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The rates of deformation is split up into two parts-- the 

~ A 
symmetric S~· and antisymmetric parts .,.~. ~"here, 

#;;; . ,.. ,.. 
- S-tJ -t ",,'J 

~. III- -

A 
.J. (~4i ~U' ) 

Sfj - -t ~ ...,ith - :z 'lfj' (A. H) 

~ - J.. (J~,; ~~') 
am ~" - ~ "'fJ - ~ U (A.1·2 ) 

The symmetrical part deter.nines the deformation of fl uid 

elements and is called rate of strain( or defor.nation) tensor, while the 

antisymmetric part determines a rotation of the fluid elenents without 

deformation. 

If the £1 uid is considered Newtonian, there must be a relation 
,.. A 

between stresses ~J and. the strain ra. te tensor s.t.J. ,so, 

,.. 
6: '. I'J = 

where ~ is the fluid viscocity. 

For i - j, there is lin additioMl contribution from pressure 

p which causes either a co~pression or an expansion of the fl uid 

elements thus, 

'''here , •• " A-J the kronecker delta ( or unit second order tensor), 
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am is a constant to be deter.nined.This constant may be 

obtained by the follo~ing contraction (summation) process: 

(A.1·6) 

from where (A. 1'?) 

after relations (A.9) and (A.15) have been used and the fact that, 

By replacing equation (A.1'7) into (A. 14) we obtain, 

(A. n) 

Equations (A.?) am (A.S) now become,after sli~ht 

arrangement, 

(A. 20) 

(A.S) 

'lhich forms a general expression for the Navier-Stokes' differential 

equations for compressible flow. However for a steady incompressible 

flow with body forces neglected equations (A.20) and (A.S) now reduce 

to, 

(A.21) 
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A. 

and aILe: - (A. 22) 
''%.c.. -

.,... 
h s.' "-

where 6: o. = - r '4.-J * ~}AS&'.j' (A. 23) "'J 

I\-

-t ~i) "" J.(~ S(J° -- !2. ~. and ~ ( A. 24 ) 

as the instantaneous rate of strain. 

A.2: V~RTICITY FOR1Ioi OF THE NAVIER-ST~KES' mUATIO'S ~F )oTIO"l 

Refering back to equation (A. 21!) now with body forces 

included "ore have, 

If relations(A.23) and(A.24) are used,then equation (A.25) 

is equivalent to 

(A. 26) 

where V ~ ~~-JiS the kinematic fluid viscocity. 

NO't1 expression ~. ~. ,4,- on the left hand side of (A. 26) can 
';) 

be represente:i into other fons thro~h, 
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(A. 27) 

A 
where Gc)/c is the instantaneous vorticity associated with the 

,.. 
rota tion tensor, r ti and is defined by, 

-- (A.28) 

where £(jl<. is the al ternating tensor having values zero if any two 

of i,j,k are equal; +1l if i,j,k forms a cyclic permutation of 1,2,3 

and _1l if i,j,k forms an anticyclic permutation of 1',2,3. 

The second term on the right hand side of (A.26) may also be 

written as, 

which in turn reduces to, 

after continuity is applied to the second term of equation(A.29) and 

A 
y .. 

Aj 

has been used.Now by replaci~ e~uations (A.27) and (A.30) into (A.26) 

we obtain 

• 
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which is the vorticity form of the Navie~Stokes' equations. 
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APPENDIX 13 

B.l REDUCTIO~ OF ~AVIER-3TOKESt EQUATI01S ~O BER30JLLI ~QU~TION 

If we assume that the viscous effects of the fluid are 

" neglected and the fluid itself is irrotational (i.e when ~k • 0) than 

equation (A.32) reduces to a simpler form, 

For all i· 1,2,3 the following expression ~ill be obtained, 

(B.2) 

or in unit vector forms,(as can be seen in fi~ure B.1),equaticn (B.2) 

becomes, 

~ 1i,(Iu.2.) -t i ~(t~~) + t-k,(! ~l) =- -.c.' .1 ~e (B.3) 
..... 1' 

I 

j1i.(t~) 0t:(J..A.j ~ (B.4) ;-li,Jt:') ° .l.;t . 
l' T 9' ...2."oJ c -:I f ~1- -j.f 

! ~(i~J + ~ t (t~l) T !~(*~~) c _~.L~ (B.5) 

-~ 

where i,j and k are unit vectors along x,y and z respectively. -- ,., 

By adding equ~tions (B.3),(B.4) and (3.5) and notin~ that 

(see fig: B. 1 ) , 
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(B. 6) 

we obtain, 

~ 

V(t V1) .: I V A -7 f -3V~2 (B.7) 

where V = i*, of- i-~I- l' 4 f; (B.8) - - !l3 

A~ ~2- ~t. A a.. 

and V = ~I ~ '"2. "t ~3 (B.9) 

flDW 

..",I-~A~--------"""" %, (I) 
,.... 

Fig.B.1:A Body Force(Gravitaticnal) \cting on An Elenental Disnlacement 

Vector,~. 

On taking a scalar product of (~.7) with any displacement 

vector denoted by, 

(13.10) 



121. 

and assuming that, 

(B.11 ) 

a perpendicular distance from (xl-xa) plane,the following total 

differentials will be obtained, 

- (B.12) -
and on integration,the Bernoulli's equation will result, 

i.e 
t V1. .L "2 i f P 

where c3 is a constant.Equation (B.13) sometimes is written in the 

following fom, 

= CIf-

where (B.1?) 

and c., is another constant.The terms on the left hand side of equation 

(B.14) are respectively called velocity head ,pressure head and 

potential (or elevation) head. 

The Bernoulli's equation ~hich has been derived in equations 

(B.13 ) or (B.14) use·l the assumptions th.st the fluid flow is 

steady,incompressible,irrotaticnal ,no energy loss due to viscous 

effects,adiabatic( i.e. no heat is added to ,er removed from the fluid) 
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and the change in the internal energy is negligible. 

B.2 APPLICATIa~ OF BERNOULLI'S 8QUATIOU TO ORIFICE PLATE 

By applying the Bernoulli's equation(B.14) for sections 1 and 

3 of fig.B.2 we have,for horizontal pipe, 

where 

.E! 
1 

and from continuity,we have, 

-- (B.16) 

(B. 15) 

(~.17) 

Assuming that there is no energy loss due to frictional 

effects,equation (B.16) becomes,by using continuity equ~tion (B.17), 

(B.18 ) 

The flow rate through section 3 is given by, 

(3.19 ) 

(B.2') 

where v3 in equation (B.18) has been replaced into equation (B.19) to 

obtain equ'ition (B.20).The flow rate given by (B.20) has been obtaine'i 
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by ass\L'1ling that there is no energy loss due to friction,so equation 

(B.20) represent the flo~ rate of a perfect fluid in terms of pressure 

difference in the meter.This equation may be rewritten as, 

(B.21) 

where Q,thu stands for theoretic~l flow rate.In practice 

however,because of the frictional resistances ,the actual rate, ~ct is 

less than the theoretical ones,i.e. ~~ .These two quantities are 

related by, 

--

where a coefficient 

velocity,defined by 

(B.22) 

known as the coefficient of 

~ctu...t U"&.wa."t:t at V ... ut ClnWlltM 

T~c-.I V'""'tit4j ot" V~ CDt\h-a~ 

has been introduced.The actual rate of flow is now written as (by 

replacing B.21 into B.22), 

Cv A3 -- (B.24) 

J 1- {~y 
The cross-sectional area A3 which is the smalle3t cross 

section of the flow (called the veml contracta) is unknown and less 

than A1 the geometrical throat for.u by the orifice.Define another 

coefficient,Cc as follows, 
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.. 

-- I (B.25) 

in such a way that equation (B.25) is related to this lattest 

coefficient by, 

= Ccr~ A5. (B.26) 

1'- c-J"( ~yl 
when relation (B.25) has been used and Ar is a pressure drop across 

the orifice,replacing (PI - PJ).Since Cc as well as CV~re functions of 

~ At ~ .. m .. Ai (t.,here A2,. and AI are respectively the orifice an~ pipe 

cross-sectional areas),Cc in the denominator of (B.26) is absorbed into 

~ and Cc and Ctrin the numerator of (B.26) are combined to form a 
At 

single coefficient C4,then the equation (B.26) may be writen as, 

~AtK :. c.t A<l.J7 A P (B.27) 

Cl 
~ -where - 11 - (¥.-)2 

(B.28) 

is called the flow coefficient (which is the coefficient of disch~rBe 
t 

wi th veloei ty-of-approaeh nefined by the dimensionless term J I _ ("'IAa) 1 

included); Ci is also called discharse coefficient of orifice ~-ri th 

velocity of approach factor included or called 'higher' coefficient of 

dischar6e(Buckingham,1956). 

In our present study, the quantity <t«.c4- from equation (B. 27) 

may be obtained from the progra~,by 

u~ A, (B.29) 
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where U~ and Al are the inlet velocity through the cross-sectional 

area At of the pipe.By combining equations (B.27),(B.28) and (B.29),the 

follo,iinB equation for the discharge coefficient eJ ' 

Cd. - U~ (B.30) 

is obtained. 

It should be noticed that equation (B.30) is the same as 

equation (3.34) (see Chapter 3), • .,here ~ is the orifice to pipe 

diameter ratio (= b, ,.,here D2 is 
1>, 

the orifice dia.'lleter and D, is the 

pipe diameter), I' is the fluid density,Ui., is the inlet velocity and 

~p is the pressure drop across the orifice plate. 
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APPS!mIX C. 

r·1ATHEMATICAL FORtlliLATIONS OF TURBULENCE. , 

C.1:INTRODUCTION. 

In modelling flow processes it is nesessary. to formulate some 

mathematical equations which describe the flow. For Uewtonian fluids 

such equations have been formulated.These are the well-known 

Navier-Stokes' differential equations(for the derivation of the 

equations see appendix A).These equations apply to almost all flows of 

engineering interest includins those encountered in flow metering. 

To solve the Navier-Stokes' differential equations 

numerically, would require an excessively fine finite difference meshes 

in both space and time.Even ~ith present day computers this is not 

feasible.The approach adopted is to treat turbulent flC'f on a 

statistical approach based on means and fluctuating correlations.In 

this Appendix the statistical ~escription of turbulence is 

introduced,Reynolds equation is derived by ti:ne averaging the 

Havier-Stokes' equations,~s well as turbulent kinetic energy 

equation. The problem of closure in the Reynolds equation is discussed 

in section C.4,and the particular closure leading to the (k-£) 

effective viscoci ty model is introduced. Deriv'ltion of the (k-t) model 

is discussed in Appendix D. 
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C.2 THE TUtE-DEPE~DENT NAVIER-STOKES' EQUATIOWL 

C.21 The Equations: 

For unsteady,compressible flow, the conservation transport 

equations are: 

Mass Conservation. 

. A-

1£f ~.(f~) - 0 ..,. -

I~omentum Conservation. 

~(pUe) of- ~·~CD~) :. D <£. 
~. 4j -to 

A.. 

-p~~ 
,.. 

~}J.l 3Aj where ~j' - -t 2. JA5g' --
,.. ,.. 

A t(~-t"~) (strain tensor) SA-'l --
,.. 

l ,. "it • ~ fA.t ( dilation) 
11L 

u~ • velocity in direction-i (i = 1,2,3), 

p a pressure, 

B~ = body force/unit mass in direction-i, 

~~ = kronecker delta, 

P • fluid density, 

r · fluid viscocity, 

and A -sign indicates instantaneous quantities. 

(C." 

"., ll.: (C.2) 

(C.5) 
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Equation (C.2) has been derived from Newton's second law of 

motion(see Appendix A). It is called the Navier-Stokes' 

equations.Equation (C.1) is a continuity equation which expresses the 

conservation of mass in a given control volume. 

C.22 Laminar and Turbulent Flo:fs. 

The Navier-Stokes' equations apply both for laminar and 

turbulent flows. They consist of four equations with six 
A 1\ 

unknowns,name1y uJ, (i-1 ,2,3),p, f and f' .In addition to above equations 

two other auxiliary relations are required to cornp1etely describes the 

flow; 

(i) an equation of state which may be expressed generally by, 

I' lIS I'Cf,T) (C.6) 

" where T is a local temperature and p is an instantaneous pressure.If 

fluid is incompressible p is a constant. 

(ii) an equation expressing the conservation of energy which is not 

stated here as it is not central to our later discussions on turbulent 

models, 

C.23 Difficulty of Solutions. 

The Navier-Stokes' equations are non-linear and this one fact 

that makes their solutions difficu1 t.A1 though the set of Navier-Stokes' 
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do not have a general solution, they may be solved under various 

restrictive assumptions (eg.for a low Reynolds number laminar flow in 

pipes or for plane boundary- layer turbulent flows).With the aid of 

digital computers more complicated laminar flows can be considered. 

On the other hand,for turbulent flows,especially those lfith 

recirculation (eg.the flow just downstream of an orifice) this presents 

considerable difficulties,since such flows are essentially 3-D and 

unsteady.In addition, the time and length scales of the turbulent 

motion vary over many orders of magnituie-that is 

characteristic of pipe size and flow velocity down to 

from those 

microscnles 

approaching molecular dimensions. Thus although the Navier-Stokes' 

equations are deterministic,to solve them for turbulent flows by 

computer would require an excessively fine finite difference meshes in 

space. 

Almost all in engineering applicaticns,the flow properties 

are time-averaged in order to reduce the excessive fine meshes for 

their predictions.In this study the approach employed for turbulent 

flows is based on the time-averaged equations. 

C.3 STAISTICAL THEORY OF TURBULENCE. 

C.31 Introduction: 

The notion of fluctuations of velocity fields in study of 

turbulence is fundamental.The fluctuations vary ~ith time and space.In 
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a steady laminar flow, the velocity does not depend on time,whi1e in 

turbulence it fluctuates in a fairly unpredictable way.The p~ocess of 

these fluctuations are perfectly compatible with the notion of 

randomness.Consequent1y,turbu1ence may be described best by a 

statistical approach characterised by means and correlations. 

If a fluid flow is treated random1y,we may introduce a 

concept of mean quantities.For examp1e,the velocities ~l(x"t),ia1 ,2,3 

at any position Xi, may be measured as a function of time and then 

averaged these measurements,as 

totT 

tT J ~"("¥.l,t).u 
t-l 

(c.?) 

This integral represents the limit of averaging measurements taken at 

successive moments of time and will itself f1uctu~te depending on the 

starting position and duration of the averaging processes.The time T 

represents the interval over which the averaging is to be carried out 

and it will ha.ve to be large compared to any of the ft'equen~ies of the 

fluctuations. Since ~.i is a time dependence quantity,UJ, 1fi11 then vary 

slightly with time T ,but as T is made very large, the variation will be 

negligible and Ui is consequently independent of time. 

ro{athe::latical1y this time-average is defined as, 

itT 
dr J .tt..: (?t,.;)~) tit 

t-T 
(c.s) 

while experimentally, the averaging pt'ocess is continued until the 
-A 

fluctuations in ui are acceptably very small. 
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If above definition depends on the starting time of 

integration,statisticians define the averaging precess in a different 

way.For example,if one decides to find the fluid velocity in pipe,one 

would imagine making experiments on a large number of pipes at the SRme 

time.If there are N pipes with corresponding velocities ~~(xi,t),t 
being the time at which the imaginary measurements are ma1e,then define 

an ensemble average by, 

<. ~ ('X.c;,t) ') (C.9) 

Here, < > means a realisation avera,~e while is an 

average with respect to time.If defined by (C.9) is 

independent of time,~~(~,t) is also independent of time,then the time 

average equ~ls ensemble average,ie 

(C.10) 

Condition given by (C.10) is known ~s the ergodic hypothesis. 

Since the fluid flow is fluctuating rapidly and rannemly,it 

is convenient to ass~~e that the instantaneous velocities ~l(xi,t) may 

be split up into their components-the mean velocities U~(x~) and the 

'fluctuating parts ul x"" t) in such Ii way that, 

(C.11) 

where the mean quantities Ui(x~ given by, 
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-- (C.12) 

do not fluctuate,while ui(x~,t) are fluctuating quantities with zero 

mean,ie 

-- (C.13) 

which would be obtained by time-averaging (C.11) and then using (C.12). 

A 
The instantaneous pressure p is also decomposed into its mean 

and fluctuating parts ie, 

1\ 

P P 1: P (C.14) 

C.32 Derivation cf Reynolds Equation. 

Recalling equations (A.21) and (A.22) (see Appendix A) and by 

assuming that the instantaneous quantities may be resolved into their 

mean and fluctuating components,represented respectively by the capital 

and small letters,in such away that, 

1\ U,i - -= .u.c: • ", . o. (C.15) u..l - -t , -c. --
A P • f = 0 (C.16) P - -t P .) --

1\ L(i ..,. c;:: •• • 6"-tj . = 0 
~J' 0: "J , - (C.17) 



i\ 

SiJ· - (C.18) 
S.c.)· - T St.J· . St· = 0 - J ~ -

with LlJ - - P~-iJ' + ~ft SAJo (C.19) 

(if)" - - rEij -t ~f sC:j (C.20) 

S~· - .!. (il U.. -t ~) (C.21 ) where - 2 ~~ . 

$... •• - .!.(~ T ~) (C.22) and ~ - ~ 2'::1. , 

then we have the following expressions, 

(C.23) 

o (C.24) 

On averaging with respect to t1me,the following equations 

will be obtained, 

(C. 25) 

and o (C.26) 

Equation(C.26) is the continuity equ~tion and equ~tion (C.25) is called 

the Reynolds equation which may be rewritten into a more simpler form 

by, 

--



where "'[ .. 
"J 

~.c.j' - I' <tA.' ttl 

and 1:' .. is given by equaa tion (C ~ 19) • .... J 

It can be seen that equation (C.27) 
I 

equation (A.21-) (see Appendix A) if the U~ s 
A 

T J.j by ~AiJ' • 

has 

are 
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(C.28) 

the sa:ne form 
AI 

replaced by u" S 

as 

and 

Thus the equations of mean flow are the same as the ordinary 

equa tions of motion,except that there are additional virtu.'ll stresses 

denoted by, 

-- - I'M.: I.I..J . (C.29) 

appear in the mean equations (C.27).These stresses are called the 

Reynolds stresses,which represent the mean rate of momentu:n tr~nsfer 

across a fluid layer due to velocity fluctuations.The turbulence model 

then ascribes how this correlation (relation C.29) and other 

-:r- ... ' correlation,-,P"uj (,-There.., an1 ui are scalar and velocity 

fluctuations) arising from scalar convective non-linear ter.ns,are to be 

found.This involves the problem of closure which will be discussed in 

section (C.4). 

C.33 Kinetic Energy of Mean and Turbulent Flows. 

By multiplying the Reynolds equation (C.27) by Ui ,we should 



get the following equation, 

- -7 ~.(U~oTfJ) - fo T~it;. V,: 

= 1 >to (Ur: tjo) - 7 4j" s~· 
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(C.30) 

In obtaining equation (C.30) the following facts have been used, that 

since both TJ,i and SCi are symmetric tensors, they are' survive' in the 

DU' ;0 0 

expression Ttl »~ as ~~. contains the symmetric S~' and anti symmetric 

tenso rs Rid' • 

When equation . (C.28) for T~ is replaced into equation 

(C.30),the result so-obtained is called the equation for mean kinetic 

energy,ie 

(C.31 ) 

In arriving equation (C.31) the ass~~ption that the fluid density ~ is 

constant has been used. 

The equation for the turbulent kinetic energy(or just 

turbulent energy), k • tU;U;· may be obtained as follows; 

~tultiplying equ.'1tion (C.tl) with (U';' + u.l) and replacin,3 

~ 4,)0 and 6.t:.J. by (C.19) and (C.20),the followin~ expressions,with 

slight rearrangement,~ill be Obtained, 
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(C.32) 

By time-averaging of equation (C.32) ,the follot'1ing will be 

obtained,after some slight manipulations,· 

On subtraction of ~quation (C.31) from equation (C.33) the 

equation for the turbulence energy,k will be obtained as follows 

= ~. (- 'i'; ..,. u" t.l.&'$..i - a ~·",,·4.ti) 
~ 

(DajJuriut. Tr4Y1sp,rt) 
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C.34 Statistical Description of Turbulent Flows. 

In a steady,hc!1lcgeneous pure shear flow,in which all averaged 

quantities except Uj are independent of position and in which ~~J is 

constant,the production of turbulence energy and its dissipation rate 

balance each other (Tennekes,1972) so, 

or symbolically is denoted by, 

:::. £ 
(C. 36) 

where • 

is the energy production of turbulence and 

E = (C.}9) 

its dissipation rate. 

By employing the scale relation, 

and the Reynolds stresses estim~te, 

(C.40) 
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where lL and ,(, are respectively the velocity and lensth scales, then 

the production term 09 may be estimated by, 

:: - .(.(,.; Lti S",:,' ,..,., 1.L '" S:i 

= A 1J.l S~j S~i (C.41) 

where A is an undetermined coefficient which is of order one for most 

simple flows(Tennekes,1972).Equation (C.35) now becomes ,by using 

equation (C.41) as production term, 

(C.42) 

- "llL 
where - -y 

is the Reynolds number associated with length scale ~ • 

It can be seen from equation (C.42) that when Ri is large,the 

tem ~:t S..y must be very much smaller than s"./ s .... :,- for equality to be 

mantained,so 

(C.44) 

stating that the mean strain rate S~' is very much smaller than that of 

the fluctuating strain rate S4j when Reynolds number is large. 

Since strain rates have the dimension of frequency (sec'), 

inequality (C.44) also implies that the eddies which contribute most 
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to the energy dissipation h~ve very small convective time scales 

compared to that of the mean flow, which in turn suggest th~t there 

should be very little interactions between S~)' and S"?i. 

The energy exchange between mean flow and the turbulence is 

governed by the dynamics of the large eddies since these eddies 

contribute most to the turbulence produc tion rid which increases with 

increasing eddy size (see eqn. C.41).The energy extracted by the 

turbulence from the mean flow mainly at scales comp~rable to the length 

scale.t • 

The rate of energy transferred by the large eddies is of the 
l 

order 11.2. with time scale 'of the order ii .The dissipation rate is 

thus estimated by the ratio of energy transferred to the time 

scale,hence 

£ 

(C.4S) 

for some coefficient B of order one. 

Since at high Reynolds number s~. and S~i are not stronBly 

interacted ,then small-scale structure of turbulence tends to be 

independent of any orientation effects introduced by the ~ean shear so 

all averages relating to sm~ll eddies do not change under rotations or 

reflections of the coordinate system. This small-scale atructure is 

called isotropic and so any length scale for the estim~te of s~· must 

be very much smaller than the length scale l,for IJ .. E is dways to 

be maintained.Here the small scale Il is introduced, called the Taylor 
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microscale. 

C.4 THE CLOSURE PROBLEf1. 

In the Reynolds equation (C.27),there are six additional 

variables have been introduced,(~~).These are due to the 

contribution of the turbulent motion to the mean stress tensor. This 

tensor is called the Reynold stress tensor and is composed of one point 

correlation and is designated by relation (C.29). 

This Reynolds stress is a diagonally symmetric -c:u .. ~,(, with 

the diagonal components of ~~J. are normal stresses(p~essure3)-their 

values are ~nn by putting i-j.In many flows these normal stresses 

contribute little to the transport of mean moment~~(Tennekes,1972).The 

off-diagonal components of 7:";i (ipj) are shear (or tangential) 

stresses-they playa dominent rol~ in the theory of mean moment~~ 

transfer by turbulent motion this also play a decisive rol~ in 

determining the flow behaviour as the fine-scale effects are primarily 

expressed through them. 

The system of tran~port equations cannot be solved unless 

~J is specified in terms of other mean variables-the system of 

equations must be closed.In principle it is possible to derive 

additional transport for those unknown correlations by mul tiplyin.~ the 

Navier-Stokes' equation by ~-A and averaging with respect to time,the 

resulting new equation however contains further unknown higher order 

correlations of the foI'!ll u,uiuk, generated by the convective non-linear 
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inertia terms U' ~ .... ~ • Indeed 
~~ 

the differential equations for the 

n-th.order velocity correlations can be derived similarly from the 

basic N.:1vier-Stokes' equ!ltions, but it will always comprise the unknown 

velocity correlations of the (n+1 )-th. order,as a consequence of the 

non-linear character of the turbulence.It hBppens that in the 

process, there are more unknowns than equations.Therefore at one 

stage,it will necessary to make attempts to guess a relation between 

the unknown correlation "C.c,Jo and Stj' in such a way that a closed set of 

equations is obtained. 

The problem of the development of turbulence mathematical 

models then boils down to finding an adequate method of closing the set 

of equations.The problem in general is called the 'closure problem' and 

its solutions are called 'turbulence model' or , closures' 

(Bradshaw(ed),1976). 

Lower or higher level closures may be employed in closing the 

set of equations.However in this study, the lower. level (second order 

correlations) closure is employed.'!'hey in principle,include 

one-equation models,two-equ~tion models and stress-equ.'i tion 

models. These three models are discussed in details in 

Bra:ishal'l(ed),1976,but in the present study,the two-equation models or 

the (k-£) effective viscocity models is employed,and this forms the 

subject of next section.The higher level closures are outside the scope 

of this thesis. 
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C.5 THE (k-£)EFFECTIVE VISCOCITY r10D~L. 

C.51 Basic Concept. 

The Transport la'ils for laminlir flows-Newton' s law of 

viscocityand Ficke's law of diffusion are assumed to be valid for 

turbulent flows as well.These relations are called the 'constitutive 

relations' • 

The turbulent diffusional fluxes are expressed in terms of 

... effective' viscocities(or "exchange' coefficients) multiplied by 

gradients of mean flow properties.These fluxes may be expressed as, 

where 

"'C.f,j' I' Uilf.J· -= -

s.c.· .. :J 

~ 
u 

a 
4> 

f' 
1.(.,.: 

, 
-I' cp ~. --

:: .J,. (hlli + !Yi) 
~ ~ ~X-.: 

-.. U' + ui ; u, :. 0, A. 

c J -t cfJ' -• " = ~ - ' - J 

• scalar variables, 

.. fluctuating components 

.. fluctuating components 

~l'tS.t.i 

11 36 
tAt t)~ • 

;J 

A 
of 'P, 

/\ 
of Ut, 

f--t • turbulent or eddy visCGci ty, 

~ J... .. turbulent diffusivi ty. '4 .. ~ 

(C.46) 

( C.47) 

(C.49) 
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Boussinesq in 1877 (Launder,1972), has suggested that the 

Reynolds stresses may be represented by the produ,~ t of the gradient of 

the mean velocity and turbulent viscocity," ~. 'l'he value of this 

viscocity will vary from point to point in the flow domain and hence it 

is not a property of the fluid itself. 

The introduction of Pt. and rit, t provide a framework for 

constructing a turbulence model.It is necessary to seek a method in 

determining these quantities in terns of known or calculable 

quantities. 

C.52 An Algebraic Formula fer #t. 

Basically Pt is obtained from the assumption that near a 

wall region,the production of turbulence energy k and its dissipation 

rate, e balance 

derivative ~ 

each other.For a two dimensional flow, the cross-stream 

a is very much greater then the down-stream derivative JG( 

,then equation (C.35) becomes, 

-- (C.49) 

where u and v are respectively velocity fluctuations in axial and 

radial directions. 

In a fully turbulent region,the shear stress near a wall ~~ 

is assumed to be constant and, 
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-- LtV - 1:CIo) -7 (C. 50) 

Assuming that the dissipation rate is always maint~ined by 

ener3Y extraction from the mean flow, this dissipation rate £ is 

proportion,d to wall stress, LW and the distance normal to the ~lall,y 

(Reynolds ,1474) , ie 

(C.51 ) 

Hence E (c. 52) 

for any constant A. 

The choice of relation (C.52) is because when equations 

(c. 50) and (C.52) are placed into equation (C.49),the following 

relation is obtained, 

-aU ~U" - - (C.53) 8';1 - ~ 

where U" -Jf being the velocity friction.E~u~tion (C.53) m~y 

be rewritten as, 

cl u+ - A(~~) (C.54) -

U'" - U (C.55) where - ~ 

~-i" = .'1 U't. 
)I 

(C.56) 
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lo' ,.. ? is the kinematic viscoci ty. 

On integration of equqtion(C.54) will lead to a logarithmic 

mean velocity variation, 

(c. 57) 

where E is some constant.E~uation (C. 57) is equivalent to those 

obtained by using Prand tl hypothesis of mcmentum transport (Hinze, 195,9) 

with ~ixing length'~M given by, 

= 3{!J (C. 58) 

for any constant i<, for wall layer with £. :II * ,in this case. 

Again,from equation (c. 50), 

- "Cw _Lt." = -~ (C.50) 

- )It (~) - ( Boussinesq) (C.59) 

= t!(~)~ (Prand tl) (C.60) 

where It and ~ are respectively turbulent kine~atic viscocity and 

mixing length of the turbulence,in such a way that, 

Pt = I't:./*, (C.61 ) 
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where = (c. 62) 

Relation given by (C.61) is known as Prandtl mixing length 

model(Launder, 1972). 

By equating equgtions (C.59) and (C.60) it can be seen that, 

(C. 63) 

..L 
= -lrra I ~ I 2 by (C. 50) and (C. 60 ) (C.64) 

\ ~It I ~U It is clear that -,0 and ("""lY) act as velocity scales 

for they have same dimension of velocity.Hence equation (C.64) may be 

rewri tten (\'Ti th the help of equg. tion C. 62) , 

f't. = (C.65) 

where 1l is the velocity scale. This velocity Bcale liould be the squ':\re 

root of the turbulence energy,k for ~ t has dimension of velocity as 

well. 

where 

Hence ~ may be expressed as, 

t .. length scale (similar to mixing length,l".), 

k = turbulence energy(:. iUi11':), 

f · fluid density.' 

(C.66) 
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In attempting to eliminate the need for .specifying the 

turbulence length scale t as a function of position throughout the flow 

domain,several workers have explored. the use of a second turbulence 

partial differential equation which in effect gives l.The differential 

equation is the dissipation rate of energy equation I! which coupled 

with k to give the (k-E) two-equation model of turbulence. 

In effective-viscocity models the turbulence quantities 

employed are the turbulence energy, k and its dissipa tion rate, E. • They 

have their own transport equations (see appendix D for their 

derivaticns) whereas there is no equation for t, provided here and 

deriving a transport equation for t is out of scope in the present 

study (its derivation may be found in Taylor(ed),1990). 

However,by general ising equation (C.52) to include part of a 

boundary layer where the 'cascade' process (the process which transfer 

energy from larger to smaller eddies) may be suppose:l to depend only on 

p,1<: and t(LaUnder,1972) one take, 

:: (C.67) 

Thus in terms ~f k and £. , 't r.lay be rewritten as ( ie, by 

combining equations (C.66) and (C.67»), 

:. (C.68) 

where CfL· the fundamental coefficient of proportionality between 

stresses and strain rates. 
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C.53 Scalar Turbulent Diffusivi ty 'f,t for 4. 

The turbulence exchange coefficient 'd,J ~ is proportional to 

the local density jO ,mixing length lm,f for f and characteristic 

velocity 12 of the fluctuation quantity.f-tathematically it is written as 

(Launder, 1972), 

(C.69) 

This mixing length tm.l# for the scalar variable ~ has been 

ass~~ed to be of the same order of magnitude at every point in the flow 

domain as ~m ,the mixing length for momentum transfer.A new quantity 

~,t ~as been introduced to represent these ratio (ie. on division of 

equation (C.6S) by equation (C.69», 

-- -- (C.70) 

and is called turbulent Prandtl/Schmidt nu~ber.This number has been 

expected to be of order unity.For free sh9ar flows without bouy9nt 

effects,most workers used the values of cS4>,t in the range of .5 to 

.7.For near wall flows in a round pipe,an average value of .85 has been 

used successfully in heat transfer calculation (Launder,1972). 

The turbulent viscocity and diffusivity coefficients Pt and 

~,,! 
Pt 

C .. cr.,t ) given by the relations (C.68) and (C.70) have been 

defined using the two-equation model of turbulence.The problem now 

reduces to obtaining k and e on which they are basei for given 
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Prnndtl/Schmidt number6"f,t.The derivations of the (k-E) equ'itions and 

Prand:t;l/Schmid t number cr£ for £ are obtained in !lppendix D. 
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DERIVATIO~ OF TTlS 'k-S' TTJRBULENT i1ATHEMATICU ~iODSL. 

D.1 : ASSUlrPTIONS IN THE TURBULENCE ~tODEL. 

In the modelling of turbulent flows leading to the k-e 

models, the following fundamental ass~mptions have been used. 

(i) The local turbulence Reynolds n~mber,Re defined by (Launjer,1972), 

see also equation F.1(Appendix F), 

~ R"t :: ~ = -p.£ 
is assumed to be large enough to neglect viscous actions on the 

transport of k and ~ • 

(ii) At high Ret the dissipation of turbulence energy is assumed to be 

iso tropic. This follo\.,s from condition (i). 

D.2:THE k-EQlJATIO:f. 

Recall equation (C.34) (see Appendix C) for energy of 

turbulence, 

UJ /xl1-u;;ii ) 
~ 

C Convtc.-km) 

.. -~[u.;Ho +:iU .... L) -:z" u.'S.j } 

trt"AI\ Sft'd ) 

~)UC: 
- "J aXj 

( PrDJuc,HIm) 

iv (~;. T 1~)2 

(D"$'i~Mn.) 

(D.1 ) 

Equation (D.1) is for a steady incompressible fluid flc~ 

which expresses that the energy supply to the turbulent flew from the 
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mean flow by the action of the shear stress (i.e. the production 

term) and by turbulent diffusion due to velocity and pressure 

fluctuations and viscous action (the transport term) and dissipation of 

k= J.u.-:\i'. is equal to the convection of turbulent energy by mean motion. s. £ ... 

-The production term; -u·u·S·· has been put in the form of 
'" J \J 

that in equation (n.l) since ui.ui is a symmetric tensor,so the product 

of uLuJ'S,j' is equal to 

~O, (Tonnekes,1972). 
Xj 

turbulent shear stress. 

-the product of UiUj and 

This te~ represents 

Similarly the dissipation term,which 

the deformation rate 

the production of k by 

has been obtained by 

a"". replacing S"j terms by j (~ !!Ii. +~. )(see also expression C.22 of 

Appendix C),thus giving the last term of the equ~tion (D.l) as the 

dissipation of k due to viscous action .The term on the left hand sHe 

of the equation (D.l) is the convection of k by the mean flow. 

The unmodelled equ~tion for k given by eqn.(D.1) represents 

the exact equation for k.rn modelling this equ~tion to obtain the form 

of equation the way it is solved in the (k- &) equations,the follo.fing 

assumptions will be made.The transport by viscous stress term will be 

neglected at high Reynolds number(this will be discussed in the next 

paragraph)compared with the transport due to pressure and velocity 

fluctuations.The distruction of turbulence is assumed to be isotropic 

at high Reynolds number. The constitutive relations(see App.C, section 

C.5) will be employed to the transport of k as well as £ 
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The transport of energy by turbulent fluctuating velocities 

and by viscous stress of equation (D.l) may be estimated respectively 

as follows, 

(D.2) 

and 

where ~ is the Taylor microscale smaller than e .The ratio of 

equations (D.2) and (D.3) gives, 

En 
)I 

which s ta tes that when the Reyno ld s nu.'11 ber R ~ (.. y.) is large then 

from equation (D.4) the viscous terms may be neglected compared to the 

turbulent velocity fluctuation te~ns tUiu~ui.Hence equ3tion (D.1) 

reduces to, 

where (D.6) 

The turbulent diffusion of energy is assu~ed to obey the 

gradient transport law,as already implied by the eddy viscocity concept 

for the transport of momentum, ( 14,,,,,,, lCfS9) 
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is the turbulent exchange coefficient assumed to be 

proportional to eddy viscocity,i.e, 

(see e~uation C.70,Appendix C) (n. 8) 

where ~k is Prandtl/Schmidt nu~ber for the turbulent energy,k.This 

ass~~ption implies that the diffusion length scales for both ~ean 

moment~~ and turbulent energy are proportion~l to each other and 

represented by t, .Eluation (D.5) now becomes, 

--where (D. 10) 

is the turbulence kinetic energy, and , 

f :: (D.6) 

is the dissipation r~tes,)I is the ( laminar) kinem~tic 

viscocity.Equation (D.9) is called the k-e~uation. 

For large Reynolds nunber,viseous dissipation of the kinetic 

energy occurs in the smallest eddies.These small-scale structure tend 

to be isotropic (Tennekes,1972) so th~t relation (D.6) beec,mes, 

= V (D. 11 ) 

as local isotropy does not prefer direction from large-scale motions to 
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sml'l.ller ones( Bradsha,'1( ed) ,1976) and there is no correlation between 

aU .. ' and ~ for the smallest eddies (Ideriah, 1977). 
~ ,; 

This equation ~ay be obtained via the dynamics of mean square 

vorticity fluctuations tcl.''''.c:· WJ.. .Below is the derivation of the 

vorticity equation from which the e -equation may be derived.This 

approach for obtaining the £ -equation is an original one derived by 

the author. 

We have from equation (A.32)(see Appendix A) with body forces 

neglected,the following equation,after some slight rearrangement, 

(D. 12) 

" is obtainerl, where as before (c) it is the instantaneous vortici ty 
,.. 

associated with the rotation tensor "'~J' . They are defined by, 

--

and 

By applying the operator 

(D.12) we obtain, 

, curl' E..:P! ~ 
f 

into 

(n.n) 

(D.14) 

equation 
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The term on the left hand side of equation (D.15) involves 

the product of ~n antisymmetric tensor ~f'~ 
D~ 

tensor D'lr~X'" and so it should vanish and 

following ~dentity 

an~ the symmetric operator 

on the right hand side,the 

(D.16) 

has been used.So equation (D.15) now reduces to 

or 

By d efini tion, ,.,e have, 

('0.18) 

then on differentiation, 

= o ('0.19) 

since divergence of a vector product is zerc,and equation (D.17) 

reduces further to, 

(1).20) 

where continuity 
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~. 

= 0 
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(D.21 ) 

still applies. 

since 

or 

Recall back equation (A.10 of Appendix A), 

(A.1 0) 

1\ 
On multiplica.tion of (A.10) throu~hout by Wi then we have, 

o (D.22) 

(D.23) 

• -iE"4i$At~· (since j and k are dUJ:1my indices), 

~ -+tfijk~.~,,(bY interchanging k and j) (D.24) 

By adding equations (D.24) and (D.23),we get the result that, 

-- o (D. 25) 

By replacing equation (D.22) into equation (D.20) we get the 

vorticity equ~tion, 
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(D.26) --

Equa tion ('0.26) mllY be regarded as a starting point for 

obtaining the e - equation. The idea is similar to cbtaining 

turbulence energy by 'first splitting the instantaneous quantities into 

mean and fluctuating parts,with 

" Ur: (D.27) .(t. = + "4 ;.&. 

J\ w..: 'I: ..Cl" 1- "'~ (D.28) 

,. 
S~f S":J S(J' - + (D.29) -

where S.c,y - .!.(~ "alJ') ('0.30) - ~ ~J 
l' ~ 

and 5.., • . 
tl 

C' tCli; "t ~) 
~,. 

('0.31 ) 

By intrGducing quantities (D.27) through (D.29) into 

equation (D.26),we get 

(D.32) 

and on time averagin:; shllll cbtain, 
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The energy of ~ean vorticity may be obtained by multiplying 

..!l..;. ,'Ii th equation (D. 33) , 

If equation (D.32) is multiplied by (..0.,+ &c)';) then we get, 

and on time-averaging the following expressions will be obtained, 

2-

-t W";k>iS,:>, + J,I ~a'fl ('i.l2..:.I2.) - )I~" • ~: 

(D. 35) 



Subtracting equation (D.34) from (D.35) we get 

Ul~"(ilo7i"'':) = [- tdi~"l~ 
(~f(c;I1m) 

-I' W, WjS_J" .. "'':'''jS~" .. Jl.j u"~J 
( Pro"u.d·,~ ) 

160. 

(D. 36) 

and is called the equ~tion for mean square vorticity fluctuations. 

Each of the production terms on the right hand side of 

equation (D.36) are respectively,~radient production of 

-W.:W~ ,produc tion of W';Wi. by stretching of turbulent vorticity by 

the action of the fluctuatin~ rate of strain $.,j , production of U"'w,; 

by stretching of turbulent vorticity by the action of the mean strain 

rate S":j and mixed prc·duction term(Tennekes, 1972). 

From definition of $~i and r..:i ,,,'19 have 

= ~(~ .. ~)~ a(t-~)J[t(~~\W) .. t(~-~) 
I AA - 6'£ :: (A T 8) ( ~ - B) } 

:: (~~) 



'61 • 

t. 
0::.. ..!- .u.... M· 

~~.a~;'j :I 
or 

since ~ = 0 by continuity. 
DxJ 

Now, 

(D.3S) 

and ; t» ~ (D.39) 

so that their ratio is of the order /""'tJ (D. 40) 

But with estimates of 

- "'\t'L -Al..,."J. ,...., (D.41 ) 

S.-.y. . "" 1l 
(D.42) -:r 

'\L'l. 
~·£tii ~ (D.3S) and >." 

aquation (C.35,see Appendix C) becomes, 

3 ... cst = 2l1C$ l:( (D. 43) " .. 

or 2s' £. - 1.lL = R, (n.44) - -
Cs " .. A 

or Rt ~ 
l'- (D.45) -,,& 



for SO:!le coefficients Cs and C, c f order one. Hence for large Reynolds 
1,2-

number R (which is of the order 7\1 (from D.45»,then from relation 

(D.40) it shows that the term, 

(D.45) 

may be neglected.Consequently,from equation (D.37),tha following is 

obtained, 

Sfj'S,,;i :!: -(,~t""U (for high Reynolds number) (D.47) 

Also 

(D.4S) 

for isotropic turbulence, and 

- (e.Jk ~)(e"k~) t4lItCJk. - t.c)'J. --

- (~'r~jf - S.,Gjr) ~ .~ -
- ~.~ - ~.~ - ~~ ~z, 

IAl ~)2. _ ~~.~ • 
Hence - ; t"'''J f-+J - Xi I~~· 

= 2 "'AjJ0t'''iJ' (by 0·41) 

162. 
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or -w" ~ 'l.~j"S'if(by E. 47, see Appondix E) (D.49) 

or by multiplying equ~tion (D.49) throughout by l' 

V ,->0 = 2J1~JS.tj :. e (by C.38,see Appendix C) 

where E • 

(D. 50) 

which is the same as the earlier defined E (see equation D.6). 

Now by mul tiplying '-f'(JA ::'I'V) and replacing 

(D. 50s) 

into equation (D.36) we obtain the exact(unmcdelled)equstion for e . 

.. [-~, ~""''!I' - I'J' 'l)~;:tJ ~. to! L' J 
(~ (~ 

-+ [- .2 f AI.''; .. ~ ... ~}. of' Il f' 1IIo''''i.!\j' "" ~f ...... J 'S;' of' Pf~'Iol" t:l J 
~ <y (JJ (j) 

.t [- '-fl' ~xJ ,.:ri.7 J (O.SI) 

(y 
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where the terms (a), •••• ,(h) are respectively given by, 

(a)-convection of £ by mean motion, 

(b)2transport of E due to velocity fluctuation, 

(c)2transport of £ due to molecular action, 

(d)-production of E by mean motion 

(e)sproduction of E by turbulent stretching of turbulent vorticity, 

(f)-production of f by stretcing of vcrticity fluctuations by mean 

strain rate S':j, 

(g)=mixed productic.n term(Tennekes, 1972), and 

(h)-dissipation of e by viscous action. 

Modelled e -equation. 

For a two-dimension~l turbulence flO\f, there is no 

vortex-stretching(Tennekes,1972),so the second,third and fourth of the 

production terms on the right hand side of equation(D.51) vanish.The 

estimates of the viscous and transport teI'lns at high Reynolds number 

Ifill be given as f0110,,,s. 

The transport term due to velocity fluctustion of equation 

(n.51) is, 

--
14 
T 

u.t. 
'-~ .. 
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or -- (D. 52) 

and the viscous term is estimated as, 

(D. 53) 

for some coefficients G ~nd H of order one.The ratio of those two terms 

given by (D. 52) and (D. 53) is of the order ~ • ~t .~his implies that 

.~-for high Reynolds number,R& the viscous transport term )llJ'Xjh..J~';"i in 

equation (D. 51) may be neglected; finally, this equation reduces to a 

simpler form, 

(D. 54) 

As already implied previously, the diffusion term 

~(f)l~':U).,·f.tj) (since p -f~) for S is assumed to obey the gradient 

transport law,ie. 

(D. 55) 

in a similar manner as equation (D.7) for turbulence energy k.Here fi 
is the turbulent exchange coefficient and is ass~~ed to be proportional 

to eddy viscocity,ie, 

(D. 56) 
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""here eft is the Prand t1/Schmid t nwnber for the dissipation rate 

e .Hence equation (D. 54) becomes, 

(D. 57) 

If equation (D. 57) for £ may be expressed in the form cf 

equation (D.9) for k,ie in the fOron, 

~j~(f£) ,. -fx;(~~) - f[~~I~/\~~ 1 
(a) 

(~ (D.58) 

The terms (a) and (b) may be treated as f0110\ls. By definition,the 

term (a) beco:nes, 
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or (D. 59) 

where the second term on the right hand side of equation (D. 59) 

vanishes by continui ty.No,., the firs't term of equation(D.59) which 

represents the generation of f from the mean flow,is simulated in the 

form proposed by Hanjalic and Launder, 1972,:1s (:3ee Iieriah,1977). 

(D.60) 

Hence 

(D. 61 ) 

The te~n (b) of equation (D. 58) may be approximated by, 

= o 

=. (D.62) 

where again continuity equation has been used to remove the second term 
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on the right hand side of equation (D.62). 

d~ • The term(v.jl may be treated in the manner proposed by 

Lu~ley,1974, which is also used by Ideriah,1977, ~ 

& 

= ~t 
(D.63) 

It is therefore becau3e of the relations (D. 59) and 

(D.63),equation (D.57) may be rewritten as fo110\'I9, 

(D.64) 

for SOlle constants C I, and C~ at hi3h Reynolds nU!nb'3r. The values of 

these constants are given as in table 2.1(see chapter 2). 

Equation (n. 64) is called the ~ -equation. 

As can be seen that the transition from N~vier-Stokes' 

equation to Reynolds equ~tion (eqn.C.25)for steady, incompressible 

-f1ow,creates new terms'-I'ul~' called the Reynolds stresses.It is these 

stresses that one faces difficulties to 'close' those systems of 

transport equations (see Appendix C for closure problem). 

The problem now is to find relationships between these 

stresses with known mean quantities. However if the Reynolds stresses 

are expressed in term of 'effective' viscocities multiplied by 

gradients of mean flow properties, the follol'lin,'J relationship is adopted, 
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for cartesian coordinates, 

i,j - 1,2,3 (D. 65) 

where ui denote velocity fluctu~tions, }l~ the turbulent viscocity and 

lJi the ~ean velocities independent of time.If equation (D.65) is 

accepted as basis of calculations,a formula is then needed for the 

calculation of 1\ (see Appendix C,section C.52 for obtaining formula of 

/It ). 

ifhen the Reynolds stresses given by equ~tion (D.65) is 

replaced into equ'ltions(D.9) and (D.64) the final (k- e. )equations h·'lve 

the following form, 

k-equation. 

If (p') - ~(~~.) -t ~ - Cof£ (1).66) -

E. -equation. 

£(f£) - ~(~' bE) E ~ (D.67) - ~ Crt SV .,. 4 C,1i - C'lop 

where ~~ ~) ~(). (1).68) C; - fAt ~. -t xt' 1i; -

0 e. U·.l. 
~ &Xj' 

(D.69) 

-k & t .u ..... A.LL. (turbulence kinetic energy) (D. 70) 
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"I. • b4l)2 - .Lj.I (~ .,. SU" , (dissipa ticn rate) 
,. ,,~. Xl 

(D.71 ) 

with = (D. 72) 

where ~* and 6i are turbulent Prandtl/Schmidt number for k and e 

respectively-usu~lly they are taken to be constants at high Reynolds 

number; CI and C~ are some constants.The values of these tr's and 

CIS are found in table 2.1(see chapter 2). 

The follol-,ing is shown ho", Prand tl/Schmid t number era for , 

in terms of constants d<. ,C I ,C2,. and CIA- is obtained. 

Derivation of Prandtl/Schmidt number ere for £ • 

By neglecting convective transport of £ in the inerti~l 

sublayer of the mcdelled e -equation( one-dimension'll Couette flow still 

apply)then equation (D.64) reduces to, 

(D.73) 

By using equations (F.12) and (F.30)(see Appendix F) to 

eliminate -uv~~ an~~~) respectively,equ.tion (D.73) reduces to, 

(D.74) 

from whare, 
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(D.75) 

will be obtained.In arriving equation (D.75) equation (C.68)(see 

Appendix C) for ~ has been used.&luation (D.75) is called the 

turbulent Prandtl/Schmidt number for £ .The constants of turbulence 

appearing in equation (D.75) have values given in table 2.1(8ee Chapter 

2). 
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APPE~fDIX E. 

DERIVATIOU !\ND SOLUTION PROC~DURE OF FI~IT~ DIFFE':lENCE EQUATIO'l3. 

E.1 I~TRODUCTION. 

The follo,,,ing appendix will discuss the derivation of the 

transport finite difference equations(fdes) for scalar quantities (k 

and t ) and mGmentu:n. There are methGds of transforming partial 

differential equations(pdes) into finite difference form.This includes 

the Taylor series expansion method and micro-integration method.In this 

study,the latter method of Gosman (1976) is employed. 

E.2 TRANSPORT FDES FOR SCALAR V!\RIABL~S. 

The procedure of deriving the fdes for scalar properties is 

to integrate the pdes(see equation 2.24 of Chaptl3r 2) C'Ner shaded 

control vGlume rep~esented by fig.E.l,ie, 

-- o (8.1) 

where dV is the control vGlume over which the integratiGn is performed, 

and dV ~ rtLr J.x. 

By using Gauss' theorem to replace the volume integr~ls to 

surface ones, the convection and diffusion terms give rise to surr~oe 
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integrals over the faces of the control volume(c.v.)giving, 

N 

s 

Fig.E.1 :A Typical Scalar Cell(Control Volume), f with Fluxes on the . , 
Boundaries,S; s. 

J{(pUr4-rr,~{ - (pUr+ - r,+~)..,} J.r 
s 

of- j[(fVr"'-"~l)1'I -(,..Vrcf>-r,+~~ }o/JC -J S+/lV ... 0 (S.3] 

~ V 

or 

• Each of the terms 1.;,.'s (i-e.·.f,e,n and s where each of these 

small letters are located mid-way between the point P ani its 
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neighbours,E,W,N and S,see fig.E.1) represent the combined convective 

and diffusive fluxes located at the boundaries of the c.v denoted by 

each subscriPts,S' is the source ter.u for each individual scalar 

variable, 'I> • 

To express those fluxes in terms of values of f at the node 

points in the neighbourhood of P, we need to assume the vTiria tion of , 

between those pOints.In choosing this variation,we should ensure the 

compa tibili ty of surface integrals between adjacent control vc·1umes for 

example the expression for the flux across the face bet'feen the node . ~ 

points ~., and P,Cl" as in fig. E.1 should be the same irrespective of 

whether the control volume surrounding ~., or th9 one ,,,hich surrounds P 

is being considered. 

E.21 Convective an~ Diffusive Flux 3xpression. 

The basic formulation of the convection and diffusion terms 

may be explained by considering the transport across one face of the 

control volume. 

Fig.E.2 shows a face of area A~(for the west boundary of the 

control volume) normal to the X-direction this lies mid-way between the 

nodes ~'l and P which is at a distance S XfW IIp'3.rt.The variable 4' is 

assumed to vary linearly between those nodes.The contribution by this 

face to the integral represente~ byequation (E.1) over the control 

volume is given by, 
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= 

The discrete values of the flow variables 4> are generally 

represented by averages over the respective control volumes honce the 

values ,~ mid-way between Wand P may be expressed as, 

'vllreA A", 

, 
• 
• 

'II 
I 

~~ P 
• W' • bT'fts I 

I 
I 
I 
I 
I 
I 
I 
I 
I 
! 

""p --.. 

'Xpw ) I 
Fig.E. 2: A Flux q,., Across a 'Sollndsry of the Control Volume. 

-- (E.6) 

By replacing equation (E.6) into (E.5) for ~W will 

result,after slight rearrangement, 

--fc.>UwAw 

where Pew = If» lJ.., bY-prJ 
~Jw 

is called a local Peclet number lit bou:ld.'lry 
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w. 

Expression (~.7) gives the combined convective and diffusive 

flux in terms of node values and this has been obtained by employing a 

central-difference scheme for 10\'1 I Pe I 1e for -2<?E\.)<+2. For large 

(Pe~1 ie for P~~+2 or P~'-2,upwin1 difference scheme is used.The 

upwind formula may be obtained by setting the local Peclet n~~ber,Pe~ 

to be, 

-t" -- (E.8) 

from the' exact' solution formula for qc.) which is derived 'lith the aid 

of a 1-D analaysis • This 'exact' solution fo~ula is given by 

(Gosman,1976), 

• ,. = 

where &.., = ewu-' &X pW (5:.10) 

r. ,w 

(~. 11) 

(B.12) --

= 

::. (E.14) 
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Consider equ~tions (m.14) and (~.9), 

• 

As I lw ~ I ,~ 'k) ~ ~W 
f.,UwA~ 

(~.15) 

Again from equation (E.7), 

• 

Wh.1\ Paw - ,-, 1,.., qw - --ItsU..,A~ 

(E.16) 

• 

~ = -~ , $~ - ~p -
.t()~A~ 

Therefore by combining equation (8.7) for low (Pew I and 

equations (m.1;) and (m.16) for high I Pewl ,tie get the representation 

of the combined convection and diffusion flux for the whole range of 

Pe", .Consequently ''Ie use a 'hybrid scheme' ,ie a combination of the 

so-called the cent~al- and the upwind-difference schemes. This effers 

good compromise between accuracy and economy and is n~erically 

stable(Gosm~n,1976).Its rationale is explained by SpaldinB(1972). The 

scheme may therefore be s~~marised as follows, 
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(~.17) 
• 
~~ 

p~uwA", 
:: cf>w J few Q + :t 

4>p , fe,. , - 2. 

From equation (E.9) for the exact solution formula to be 

identical with the set of equations (E.17), the weighting f·'lctor (for 

example the west boundary) fw must have the values, 

-- t , (~.18) 

o , 

The remaining total flux expressions q,~ and q', for the 
&'ft 

east,north and south boundaries of the control volume may be obtained 

in exactly the same manner. 

E.22 The Source Term,S' • 

The total source over the control volume cannot exactly be 

integrated without the knowledge of the particular expression of the 

term s' of the variable f. 

However,whatever the form of the particular expressions may 

be,it can be anticipated that the result may be forced into a 
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linearised form,thus 

-- (~.19) 

• • where S p and Su are deduced from the integrated and linearised form 

of the source and they are in general a function of 4> • 

For variables U, V,k and e we have respectively, 

{1JV 

S SVdV 
V 

J~dV 
V 

u 
S~ :: SplJp T 

V SV - Sp Vp t - u 

:: J (1 - Ct f e.) a v 
v (t ~ 

= Sp kp -t Su 
2-

= J(C,~i -Cs ft) dV 

" - ~-+~ -

(E.20) 

(1!:.21) 

(l!1.22) 

(~.23) 

where the superscripts U, V, k and t are related to each individual 

dependent variables; Up,Vp,kp and 8.p are values of U,V,k and E at the 

point P nearest to a wall.The modifications of the linearised source 

treatment near a w~ll will be discussed in Appendix F. 

E.23 The Co~plete Difference Equations. 

When the fini te-differenc9 representations of all the terl'l!! 

of equation (E.1) have been ·Norked c·ut,then 'lie can assemble the flux 
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terms (like equation (E.17» and source terms (equation (E.19» into 

equation (S.4).Witn the aid of continuity,the following finite 

difference equations for scalar qu.rmtities are obtained, 

where Q.p 
L 
1\ 

0", 

AI/J 

:: L Qtl 
n 

:II summation over 

- plAJ Uu, Aw Jw -
:: 't"f • ~1' "S 

neighbours 

t.k. 

5~ 
u 

(N,S,E,i'l), 

and f~ etc. are defined by equation (3.18) etc. 

(E.24) 

(E.25) 

(E.26) 

(~.27) 

Although equation (~~24) has the appearence of a linear 

equation,it is actually not since the coefficients (a~etc. which 

represent co~bined convection and diffusion coefficients) thomselves 

depend on values of 4> 's.This non-linearity will be handled by an 

iter3tion scheme,in which the coefficients of the finite difference 

equations are recalculated in every iteration cycle (described later) • 

Similar equations are derivable for other scalar variables to 

be solved namely for k and e since transport 'equations exist for 

them.No transport equation exists for pressure,p.A l~ter section sh~ll 

discuss the measure in obtaining the pressure fields. 
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S.3 FINITS DIFFERENCE HOMENTlHl EQUATIons. 

\fhile the foregoing derivation of the finite difference 

equations is based on general dependent scalar variable,~,the finite 

difference momentum equations are derived in a similar pattern except 

that the control volumes are displaced because the velocities 

themselves are displaced the conventions are otherwise the sa~e. 

The finite difference equa tion fo r U-momentum (the control 

volume of which is shown shaded in fig.E.3) is, 

N • 
a,.., A .. ~ 

• t • I 

I ! i"-na 
I 

1 • I 
t - --.- -- .. --- .. . 

i~ 
• 
I 
I , 
I 

S 

Fig.E.3:A Typical 1-Cell (Control Volume). 

u 

~r 

(Qp- S;JUp = ~Q"u., + A(w(,W -Pp) ... Su (3.28) 

where !!. su:nming over neighbours 

(E.29) 
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(E.30) 

flJ) i.s a hybrid difference of local Reynolds number Re.., defined by, 

Raw ::. I'~ u~ ~x PW 
,...~ 

~Uw = -i(fwUw-t-fpUp) (E.32) 

and f~ etc are defined by equation (~.18) etc. 

E.4 HAnDLING OF P;tgSSURE LI~;(A'JE. 

The finite difference equations for non-hydrodynamic 

variables (in this study only k and E) can be solved directly by the 

use of TDlU (for .!ri-,1?iagonal l!atrix ilgori thm) • An additional procedure 

is employed along with the TDrU to solve the hydrodynamic variables (ie 

U,Vand p),ca11ed the SD1PLE procedure (discribed later). 

Before discussing the Sn~PLE a1gorithms,it is useful to note 

briefly the suitability of velocity-pressure equation set for numerical 

solution. 

(i) Requirement. 

To so 1 ve fo r a particular variable t/l, an equ.'i tion ~.,here </> 

appear as dominant of its own differential equ~tion must be needed. 
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(ii) Assessment. 

All the non-hydrodyn~~ic variables satisfy above requirement 

since they have their own equations (the k- e equations).Velocity 

components U and V also satisfy the requirement via momentum 

equations.However the pressure has no equation of its own.The remaining 

mass-conservation (continuity) equation does not contain pressure,p. 

A special measure is therefore seems to be needed to obtain 

the pressure fields.The measure employed here is first by estimating 

the pressure fields at all nodes,then obtaining estimates of U and V by 

solving the momentum equations. Finally correcting the pressure fields 

through a pressure-correction equation in such a way that to bring the 

velocity fields to satisfy continuity equation.The values of U,V and p 

are now used as new guesses and the process repeated until desired 

solution is obtained.Thi3 procedure is thus kno'm as SI:-1PLE (for 

Semi-Implicit !1ethod for Pressure Linked-Equations). - - - - - -

E.41 Pressure Solution 

The process in obtaining the pressure fields involve tho 

following steps. 

(i) The initial estL~ated values of pressure (denoted by ~ ) is 

specified at all grid nodes of the computation domain. 

(ii) The momentum equations are solved by L-B-L (for line-]y-&ine) 

method (discussed later) to yield corresponding values of U ~nd V.These 
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values (denoted by U". 'and V* ) will probably no t satisfy the 
oM-

continuity,but s3tisfy the follo,'ling equ.~tiGn for U -velocity, 

where U* and V~ are based on the estimated pressure field p~. 

Those 'incorrect' values of U," and p require the 

imposition of some correction (denoted by primes) U' ,V' and p' defined 

by, 

: U 
I 

V v - V~ 

I 

P - r* 

From continuity equation,we have 

where ~ -.4 U 
"l)C I 

("8.37 ) 

.11/ 
and 3

M 
(ideally zero) is mass source (or generation per unit vGlur.le). 
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On integration of equation (e.35) similar to equation (~.1) 

for a typical ccmtrol volume as indicateti in fig. E. 4 to yield , 

(E.3S) 

where G£,Gw,Gn ~nd Gs are fluxes across bou~daries denoted by e,w,n ~nd 

s respectively and &V is the control volume enclosing point P as 

indicated by fig.E.4. 

w 

I 
I 
I 
I 

• s 

Fig.E.4:Definitions of Fluxes at w,e,n and s \lall Bcundaries. 

If the velccities are correct,the continuity equation will be 
-lit 

satisfied and the mass source S~ will be zero.However the estimated 

velocities U" and V* and hence r! (where G-density x velocity) ,.,ill not 

satisfy ccntinuity but instead produce a net mass source ~Ipdefined by, 
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E.42 Derivation of Pressure-Correction Equation. 

As has been mentioned earlier that when the velooities 

satisfy the continuity equation,the right hand side of equation (E.38) 

will be zero and since the true values of the variables are related to 

their corrections by the following relations, 

U ::: U" ~ U' 

V • VX -to Vi 

P :. f* 1: " G· I 

~ • + ~ (E.40) 

then we have ( from ( .. , equation ~.38)with Sm :0) the fo llowing relation 

resul t, 

t:. Mp 

where :.lpiS given by (~.39).'For nearly incompressible flow, 

I IJ~ U' Cit:!: I" 
(8.42) 

One of the staggered grid system advantageous is used here to 

derive the corrections for velocities or fluxes G' • 

Refering to fig.E.5,G~ the flux correction on the west 'IIdl 

of the control volume may be exp~essed as follows, 



, 
W. I'YJ 

..,. 
I 
I , 
I 
I 
I 
I 
I 
I 

• , . 
~ ... 

I 

• • • I 

• • • ... ,. 

Fig.E.5:Derivation of Flux Corrections. 

I I '} 
c _ Jl.., ( Pp - rw 

~')(PW 

187 • 

, 
'p .p 

I 
where permeability coefficient ~~ may be obtained from the 

linearisation of resistance law about ~ ie, 

By replacing equation (F.:.44) to (g.43) \.,il1 result, 
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Now the expression, 

= - (F.:.46) 

may be obtained from equation (E.33) so that equation (F.:.45) new 

reduces to a more simpler expression for Ow ie, 

By combining ~quations like (E.42) and (F.:. 47) the velocity 

corrections U~ has the expression, 

I 

Uw • 

The remaining velocity corrections U& ,US and U' 
ft at 

boundaries e,s, and n respectively may be obhined by similar an~lysis 

as abc,ve. 

Hence by replacing equ~tion like (E.43) into equation (~.41) 

will leaj to a pressure-correction equ3tion which has ~he following 

form, 

where 1& La,. 
n 

~ summation over n3ighbours, 

(E. 50) 
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and :1p is given by equation (~. 39) 1s called the residual mass source 

associated with esti~ated at'3. 

Above finite difference equation is solved for p' (the 

pressure correction) by L-B-L procedure of TD7U. 

E.5 :USCELLA:lEOUS !otATTERS. 

E.51 Numerical Stability and Convergence of Solution. 

The finite difference equations mentioned earlier,when 

considered linear, are so constructed as to guarantee convergence of 

the LEL solution procedure. Often, because of the non-line,'lri ties 

present in the system of differential equations,or because of the large 

number of algebraic equa,tions resulting from the use of finite 

difference schemes,divergence may sometimes result. 

To suppress any such tendency,it is often necessary to employ 

underrelaxation.All methods of underrelaxation try to reduce the chan~e 

in the value of a variable during one iteration.In addition to the 

depen:ient variables,auxiliary quantities like viscocity, can be 

underrelaxed with advantage. 

A relaxation factor f is defined by, 

-- (~. 51 ) 



Alp~ • where '1"1 

~p • 
tU 

4>, · 
and 0<r<1. 
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value of ~p at present iteration with underrelaxation. 

value of tip at present iteration wi tRout underrelaxation. 

value of ~f at previous iteration. 

"Then f>l it implies overrelaxation ·..rhich is the counterpart 

of underrelaxation.Since in the problem of interest,the interlinkages 

between various equations are so strong,it is usually necessary to slow 

down the changes rather than to encourage them.For r-1 the values of 

4> • s are not relaxed. 

The underrelaxatiop factors for each of the variables are 

presented in the program calculation (see section '.3.Chapter 3). 

Besides underrelaxation,to reme1y numerical instability is to 

increase the number of sweeps of the TDMA this will give more complete 

solution of the equations during each iterations.The 

pressure-correction equation is the most sensitive in this respect so 

that.it has highest n~~ber of sweeps compared to other dependent 

variables (see Chapter 3,section 3.'.). 

Convergence. 

Recall equation (P..24), 

(B. 24) 
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In general,convergence is guaranteed when following criterion 

is satisfied, called the Scarborough criterion(Gosman,1976) ie, 

(E.;2) 

All equations satisfy above condition,since 

lJ a~s > 0 

Ii) Qp - Lan (3.53) - t\ 

U.) s· f 
~ 0 

In the process of solution p~ocedure,conver~ence is assessed 

how nearly the current solution approx1m~tes to the exact solution of 

the finite difference equ!ltions for each dependent variables at th9 end 

of each iteration. 

The main convergence test is based on the , 'residual 

sources,R,'s" of the difference equations defined by, 

where + is any qu·mti ty (velocities or scalar qU'lnti ties). 

A convergence test is made by comparing the accumulation of 
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the change of R~ over all the grid pOints to some reference 

value.Calculation is continued until 

(E. 55) 

where RU,RV'lnd Rp,sre residual sources for velocities U,V and pressure 

correction p' and ~ is a preset value which needs to be selected by 

computer experimental(see Chapter 3,section 3.44). 

If the current solution exactly satisfies the difference 

equation,Rf will eventually be zero. 

E.52 Accuracy of Solution. 

Of course,once a convergence solution is obtained,we are 

faced with the problem of accuracy,ie how close the finite difference 

solution so obtained to the true solution of the differential 

equations.The accuracy of the solution procedure will in general be a 

function of the number of grid nodes employed. For each flow 

configuration,3 grid independent solution is sought by increasing the 

number of grid lines until no further changes are observed in the final 

solution. 

The location of inlet and outlet boundaries may be assessed 

by adjusting the upstream and downstream distances from the orifice 

plate. 

Furthermore,for predictions to reflect reality,it is 
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necessary to know the ade~uacy of the use of the turbulenca modal in 

the present study. This can be assessed by comparison with experimental 

data. 

E.53.Allowancs of Mass-flow Imbalance. 

During iteration cycles sometimes may occur that the mass 

flows do not satisfy continuity.This situation may be represented in 

fig.E.6. 

w 

s 

Fig.E.6:Possibility of Mass-Flows do not Satisfy Continuity. 

The situation nO,f is that all the a~ s of equation (E.24) are 

zero,implying that the finite difference equations then become 

singular,since 
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(E. 56) 

To overcome that situation,is to add 'false' source ~ 

through the linearised treatment, 

where bv is the control volume of the cell in fig.E.6 • 

• 
mn.J :: 

• --
~p • value of ct> at Pat present iteration, 

Ih °rld 
.... 't" • value of 'lp at previous iteration. 

By linearising the source term in the manner of equation 

(E.19), 

(E. 60) 

and by comparing equations (m.57) and (E.60),following expressions will 

be obtained, 

b:f = - I Wtnttl (E.61) 

:: , M"ct \. ~tU. (E. 62) 
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The final form of finite difference equations solved become, 

(E. 63) 

where bf and Cj have values given by equations (E.61) and (E.6?).These 

additional constants has no effect on the final solution,for when 

then • o (aosman, 1976) (13!.65) 

E.6 SOLUTION PROCEDUR~ OF THE DIFFERENCE E~UATImlS. 

E.61 Introduction. 

Having constructed algebraic equations for all nodes in the 

calculation domain, the next job will be to solve this set of equations 

simultaneously. Since the equations are non-linear and interlinked,the 

use of iterative methods become important.The main ~embers of these 

methods are point iteration and line iteration.The first one includes 

direct solution by the Gauss elimination method.But this method seems 

to require too large computer storage and time(LQI,f\dcr-(ed),1975).The 

Gauss-Seidel method of successive substitution converges rather 

slowly,especially when the number of equation is large.The latter 

method is the line i teration,'\'1hich includes Line-'3y-Line(L-B-L) .At 
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present,the LBL method seems to be of best choice and therefore in this 

study we employ the LSL solution procedure which will be described 

below. 

E.62 The LBL Procedure. 

Figure E.7 shows the illustration of the procedure.For the 

solution for points on each line (eg.North-30uth line)the values of the 

individual variables ~ on the neighbouring lines are ass~ned to be 

temporarily knot~.The equation for each point on the N-S line then 

reduce to one where only three values( ie qp , ~N and fs) are 

unknown.Refer to equation (E.24) we have, 

N 
I 

t 
W P I 

, 
I 

S ~-

- --- ~Ll'" 
J#' - S ... 

Fig.E.7:The LBL Procedures. 

(E. 66) 
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whsre c' 

I 

and Q.f (EI68) 

~'Ii th respect to the figure 1.1, 

~p - ~i --
(EI69) 

~S - cfj-J --
t"" - $ji' --

For each grid node ~n the (:~-S) line (the line solved 

considered) say node j the finite difference equations may be expressed 

as, 

(EI 70) 

where coefficient3 ~ , Rjllnd ~ take the form, 

I 

trj 
.t. 

~I =.AL ~ :...9- (E.71 ) - .=.L - p. , J '3 
, D· 

'J J 

at - aN P - ~ D - a' - , - , - (EI 72) - - - f 

where apt and C' are given by equations (::::.68) and (E.67) 

respectivelYIZj contains values of 4>'s of points on the neighbouring 
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lines which are ass~~ed to be' temporarily known and Q1 ~nd Rj are known 

coefficients. 

Equ~tion (E.70) may be written as set of equaticns,(for 

4>->- s ~t.~3 .... R~ fl .... l~ ( i) 

4>1 - f-:. 4't -t R,4>. l' ;, ( ii) -

«I>a. - ~t 'S -l' RJt~3 ... ~ ... (iii) - • , , • , • , , • · , • • • • , , · • • , , • • • • • , I · • · , , 
• • · · · ! 

~n 
, 

• ~~I\"l -t R ... ~I\_' .. ~n 

fa is assUr.led to be knc~m, then by eliminating tP2. from 

(ii), 43 from (iii) etc.,a general formula for •• J 
would be 

obtained(known as the recurrence relation). 

~. 
J 

, j. 2, ••• ,n (~.73) 

vi th 4"ofI 
II 

a known value too.T!1e coefficients .\j qnd CJ are given by, 

A' a = 
O/U' 

(Ib' - PJ' ".;-.) 
" I 

" ( /lJ Cj-t .. S,) (E.74) c· -. CJ (DJ' - ~J AJ-') 
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No te: AI'" 0 and C," - q, (a known value). 

By straight forward algebraic manipulation ,the set of 

equations is converted into one expressible by a general recurrence 

relation for 

coefficients 

t· J 
A· J 

(equation (E.7~». 

a.s 

and 

indicated above (equation 
I 

Cj obtained from the recurrence 

the 

formulae 

It is from this general recurrence relation for ~j that all 

values for ~ from j-2 to j-n are calculated,and the process is quite 

easy as one only needs to evaluate the A's and C·'s in order to obtain 

cp's. 

To apply the TDMA to entire field,the process is started from 

the extreme left of the (~-S) line and traverse along this line,next it 

is repeated along successive neighbouring (~-S) lines Yith most 

recently calculated +' s a.nd then the entire grid is swept through 

until the desired solution is obtained. 

E. 7: CONCLUDING RE~<tARKS. 

This appendix completes the derivation of the finite 

difference equations both for scalar and velocity variables.The main 

pOints of the appendix may consist of the following: 
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The governing partial differential equations are transformed 

to their algebraic equivalence by finite difference formulations.The 

partial differential equations are descretised in space to obtain their 

finite difference counterpart,by the use of 'micro-integration' 

method, together with the 'hybrid' difference scheme for the convective 

and diffusive fluxes.These difference equations are solved by LBL 

iteration method which employs the TDMA. 

A consequence of using the 'primitive' variables (U,V and p) 

is the need to obtain the pressure field by some special measure.The 

procedure employed here is the SIMPLE algorithms which involves guess 

and correct method.The pressures are obtained by solving the 

pressure-correction equation, whose basis are the continuity and 

moment~~ equations, together with linearised resistance law. 

Other special features of solution procedure (under 

miscellaneous matters) such as nlwerical stability and convergence are 

given.General remedies in overcoming such instabilities has also been 

indicated together with the method in which accurate solution is 

obtained. 

Finally the 

difference equations(ie 

detail in section E.6. 

solution procedure of solving the finite 

the LBL procedure) has been discussed in quite 
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APPENDIX F. 

NEAR 1ofA.LL R~~·ISlDIES. 

F.1 INTRODUCTION. 

In wall regions there are essentially three major 

characteristics which distinguish them from central flow region. 

(i) Steep non-linear variations in mean-axial velocity 

U,turbulent viscocity f't ,temperature and so on.In addition,local 

Reynolds number changes considerably in that region. 

(ii) Laminar an~ turbulent effects are of the same order of 

magnitude; levels of local turbulence Reynolds number Ret defined by 

(Launder and Spalding,1972) 

-- (F.1) . 

is sufficiently low for molecular viscocity to influence the 

production, diffusional transport and dissipation of turbulence 

energy.In this region also eddy structure is influenced by the presence 

of the ·..,all. 

(iii) 3enerally as the wall is approached the flow is 

essentially 1-D Couette.The layer in this region is assumed to be of 

constant stress ( 't -!l: tw ). 
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The turbulence model has been designed for high Reynolds 

number,\lhereas near w':llis this number becomes very small SO the medel 

is inadequate in this region.Both this fact and steep variations of 

flo\l properties near ,.,alls necessitate special attention for grid nodes 

close to walls. 

F.2 WALL FUNCTIOJS. 

In order to minimise excessive computer storage and run tim~s 

near a wall region, the wall function method is employed.As already 

mentioned,near a wall region, the local Reynolds n~~ber,y+ changes 

rapidly.This number varies, depending on the normal distance y from the 

wall,which makes the flow properties are often expressed in terms of 

l' ,defined by, 

where y = normal distance from the wall, 

Ut .. [1Mlp (. friction '1eloci ty) , 

tw - 'N'sll shear stress. 

(F.2) 

The wall region is made up of three zones (Hinze,1959) based 

+ on y • 

(1) The viscous sublayer(O<y+<,) where the viscous effects dominate. 

(2) The inertial sublayer (30<yT<400) where the flow is assumed to be 

completely turbulent but sufficiently close to the wall so that the 

shear stress is approximately constant, 1; ~ t.". 
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(3) Batween layers (1) and (2) is the transition ( or 'buffer')layer 

(5<y+<30) of vigorous turblence dynamics where the flow is neither 

co~plete1y dominated by viscous effect nor turbulent. 

In many engineering calcu1ations,the buffer layar is disposed 

off,so that the result only have two layers-the viscous and inertial 

sublayers.This is achieved by defining a point y+ ~ 11.63 where the 

linear velocity profile in the viscous sub1ayer meets the logarit~ic 

velocity profile in the inertial sublayar.This approach has extended 

... 
the viscous sublayer to cover the range O<y ,1 1.63.The flow wit~in this 

region is assumed to be p'lrely viscous and above which pOint (:>11.63) 

it is purely turbulent. 

The characteristic of these regions are well established 

experimentally and theoretically and a rough sketch of velocity 

profiles near a wall region is given in fig.F.1. 

Fig.F.1 The Law of the ~all. 
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F.21 Squation of Mean Motion. 

In this study,the assQ~ption has been ~ade that the thin 

layer close to the wall is a region of local equilibriQ~.The shear 

stress in the layer is a.pproximately uniform and a 1-D Couette !lOli' 

analysis is made. 

The total shear stress may be written as, 

: fl{l t *) ~ 
or 'C 

~ 
: (I -t IF) ~: 

2-

where 'Cw - ,0 Ut (wall shear stress) .. 

u+ u - -- U't 
(F.6) 

~ .. - ~ tJ,:_ (local Reynolds number) -
V 

(F.7) 

3ituation 1 
of-

~fhen y ~11.63 (in the viscous sublayer) the turbulent viscocity jU~ is 

very much smaller than laminar viscocity 1< ie, 

and the shear stress is approximately constant,ie, 
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..ll -

then equa.tion (F.4) reduces to a simple relation,given by, 

-- (F.S) . 

5i tua ticn 2. 

+ '.fuen y >11.63 (in the inertial sublayer) Pi: is very much larger than 

fL and the constancy of shear stress still applies.One dimensional 

Couette floYl analysis has been used for turbulent kinematic viscoci ty 

Jlt in the region, and it is assumed to be proportional to the product 

of the normal distance y from the wall and friction velocity 

U1: .Therefore in inertial sublayer region,we have the following, 

and thus reducing equation (F.4) to 

... -

(Hinze, 1959) (F.9) 

(F.10) 
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By combining equ,3 tions (F. 9) and (F. 10) and on 

integration,the following equ~tion for yT>1 1.63 is obtained. 

(F.lt) 

where J( = Von Karman constant - .4187 

E = ·an integration constant =9.793. 

Equations (F.8) and (F.11) are commonly called the la,., of the wall 

which may be represented by curves shown in fig.F.1. 

F.22 Turbulence Energy,k. 

The approach adopted is valid for the inertial sublayer 'fhere 

the flow is assumed completely turbulent,but sufficiently close to the 

wall so that the shear stress remains ap~roximately constant.In this 

region the local rate of turbulence - ~O energy production, -uv 1;" is 

balanced .by the viscous dissipation f .Further.nore,in this layer both 

convection and diffusion of k are neg1i~ible, thus giving, 

- E (F.12) 

where u and v are velocity fluctuations in axial and radial directions. 

3y multiplying both sides of equation (F.12) by t' P,1; (Hhere 

p is the fluid density and fl~ is the turbulent vis~ocity ani is given 

by equation C.6S of Appendix C) and using the gr'l:iient transport 

hypothesis (for a 1-D flo~of) i.e. 
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the following expressions ~dll be obtained, 

(-r lilr )·(~t~) - fa Ie 'I. ct' 
Dr -

Wr 1'0. (q'" cr- (,,~ '.'3) 
0'" {ftTg --

r,~ - fl k'J. ep.. 
(F.14) or -

tI ': P.. ~() --tiq - - ft.UT (F.15) ;-rhere -

. has been use1 to obtain equation (F.14). 

From equation (F.14) the following expression of shear stress in the 

inertial sublayer '[,1. is obtained, 

-- (F.16) 

The wall shsar stress iC~ may be derived basically from the 

defini tion of U ~ 

(F.1?) 
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because the friction velocity Ut. - J'7 (F.18) 

As the shear stress near wall region ... is nearly constant,U 

may then be approximated as, 

JJ... tJJ ptI. 
"tiw 

.J. .L 

- (%+). f~' t I
a 

-

~ i- t t 
:: U-&.p.p.~. ct 

- U1.· f -I.. J;. c,.l (F.19) -

where --- u -U+ (F.20) 

.... 
and -- for y ~ 11.63 for viscous sublayer 

i<. ~(P'l) fGr y+ > 11. 63 for inertial sublaYJr 

By equating equations (F.16) and (F.19) in the inerti~l 

sublayer (since "C' ~ 1:(&) still applies) ,k is related to eft and U" by 

the following relation, 

(F.21 ) 
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Local Reynolds Nurnber,y +. 

To obtain the local Reynolds n~~ber,it is best to start with 

the definition of y+ i.e. 

..D-- (F.22) 

By using equation. (F.16) to replace 'tI in equ.'ltion (F.22) we 

get, 

-- (F.23) 

where II = r ,.' is the (la:ninar) kine:!latic viscoci ty. 

F.23 Rate of Energy Dissipation E . 

By mul tiplying equation (F. 12) right throu.gh by I' then we 

have, 

(F.24) 
pe 

Also since the shear stress in the ¥gll region is given by, 

-f~fT = -r;Z ~ ~ (see equation F .15) (F.25) 



then we have, 

... -

The shear stress at the wall is given by, 

"t .... ::!!: "C 1. :: f., 1~ (see equation F.' 5) 
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(F.26) 

(F.27) 

By eliminatin3 ~ from equations (F.26) and (F.27) the 

following result for ~ in terms 1:'"" f' and £ will be obtained, 

(F.28) 

By using relation (F.5) for t;w and equation (F.9) !or lit 

into equation (F.28),the dissipation rate E. relates to friction 

velocity U~ and distance y from the wall as follows, 

(,.29) 

In the inertial sublayer, (w~en equation (F.21) for U~ is 

replaced into eqution (F.29» the dissipation r'lte may be rewritten as, 

(F.30) 
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For extension to 'buffer' and viscous sublayer in the 

k-balance, e must be modified as follows ,-for a region close to a wall 

equation (F.15) may be approximated by, 

(F.31 ) 

where Up and UN are respectively velocity at a point P nearest to the 

wall and at the wall itself.yp is the normal distance of the point P to 

the wall-For a non-slip condition,U", = O. 

By equating equlltions (F.16) and (F.31) the folowing relation 

is obtained for ~i ie, 

-- (F. 32) 

where kp is the value of turbulence energy at the point P. 

By solving equations (C.6.S3)(see Appendix C) and (F.32) 

together,the dissipation rate fp at the point P is related to yp and 

Up as follows, 

--
l' 

where Up is related to U't and U by, 

--
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and by elimina tins Up in equa. tions (F. 33) and (F. 34) and by using 

relation (F.21) for Ut,the dissipation rate £p at P in the viscous 

sublayer may be re written as, 

fp - 1e~Cf~ • U'" (F. 35) -
~p 

U1- - ~i' t"" ':1+ , 11·'3 -
where i<.f.... (E~") 1« !f > 11·'3 

F • 3 INCORPORATIO:l OF "'ALL BOU~tDARY CONDITIQ}TS. 

F.31 Introduction. 

As has been noted in section (3.23,see Chapter 3) that wall 

boundaries in modelling orifice plate have been divi1ed into ~ 

regions,n~~ely the two wall regions(upstream(in region and 

downstream(region 3) of orifice plate),two boundaries(front face and 

rear face of orifice plate) and one region at the bottom of orifice 

plate(region 2).Here the wall boundary conditions will be discussed. 

At the wall boundaries of calculation domain,the general 

fini te difference eq'la tions (see Appendix E) are not applicable .Hence 

special measures are then req~ired for the cells(control vclwnes) next 

to the wall boundaries.As has also been mentioned,the grid arrangement 

is such that the boundaries coincide with the control vol~~es-this is 

advantageous for ensurin3 conservation anl for flux calculations.The 



following lines will show how the \1811 boundary condi Uons are 

incorpora ted. 

It has to be mentioned that in this 

study,we(Gosman,1976)adopt the method of 'false' source treat:nent , . .,here 

flux through boundary of a particular control volume has the form,say 

for the west boudary of the control volume (see also Appendix E), 

h S
f 

were p 

the value 

• --

and s3 are in gener~l function of a variable <I> 

of q> at a pOint P ne~rest to the wall boundary. 

(F. 36) 

and tPp is 

This type of treatment will become clear when dealin~ with 

control vol~~es of velocity components at corners of the orifice 

plate.This is discussed later under 'corner treatments'. 

F.32 ~omentum Equations. 

(i) Tangential Velocity. 

Fig.F.2 shows typical velocity cells with one of their 

boundaries coincide with w~lls.The wall in fig.F.2(a) may either be top 

walls of the' pipe(in regions or 3), or bottom face of orifice 

plate(in region 2) of the floti domain.The walls in fig.F.2(b) and (c) 

being front face and rear face of orifice plate respectively. 
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Fig.F.2:(a):A -rypical U-Cell with ;lorth Viall Coincides with a ~lall 

Boundary. 

(b) and (c): A Typical V-Cell with Bast/TN'est :vall Coincide 

with Front Face and Rear Face of Orifice ~espectjvely. 
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A tangential velocity Up or V p (depending on which boundaries 

are refered to, parallel or normal to flow direction) for a point node 

P nearest to the wall boundary is obtatned from usual momentum balance. 

Refering to fig.F.2 the general fdes is not applicable-the 

usual links(4)p''''~tJrelation in fig.F.2(a), tbp"'" ~t relation in (b) and 

~ ~ 'W relation in (c)) are suppressed.This can be achieved by setting 
p 
appropriate coefficients to be zero separately,ie 

-- c> 

o 

-- o 

where a ,a ,and arl are difined similar to equation (E.29)(sGe 
N E 

Appendtx E), and N, E and 'iT stand for the North,E'ist and ~.olest boundaries 

of the cells considered. 

The shear force FS (say in fig.F.2(a)) may be expressed 8S, 

= 

where 'CS (~~) and S)(pW are respectively \-mll shear stress ~nd 

distance of point P from W. 

For the point P nearest to the wall in the turbulence 
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region( i.e y'" > 11.63) the wall shear stress tcA takes the expresdon 

given by, 

-Cw ::. 
:K f q.t ~(Uf-U~) (F.3g) 

IA.. (£ '1;) 

where kpW : t( kp -t ~W) (F.40) 

~..L .L 9-t ::. f ~e . p (pit (F.41) P fA-

k P is the value of k at the point P. 

Equation (F.39) was obtained by combining equations (F.19) 

and (F.20) and using equ'ition (F.11) for yT> 11.63.Again for non-sli.p 

condition UN 2 O.Equation (F.39) may be rewritten as, 

(F.42) 

-- (F.43) 

If P falls wi thin the viscous sub1ayer (ie y+ ~ 11.63) the 

wall shear stress is also expressible as equation (F.42) but now with, 

where 

-- (F.44) 

Up - axial velocity at the point P, 

yp 31 nomal distance of the point P fro!:l the wall, 

f - fluid density, 
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and fA- :or fluid viscoci ty. 

Cr-' S< and E are constants values given by table 2.1 (see 

Chapter 2) together with other CiS and ~'s constants. 

By replacing equation (F.42) into equation (F.38) and by 

incorporating the result of the shear stress through source treatment 

in the manner as equation(F.36),we shall get, 

--
o (F.45) 

where value of t",c~n take either from equations (F.43) or (F.44) 

depending on y'" ~"lhether it is > or ~ 11.63. 

Similar treatments may be carried out for V-velocity 

components having east/ west walls of the control volumes coinoide 

front face(in fig.F.2(b» or rear face(in f1g.F.2(c» of the orifice 

plate. 

Above treatments of shear stress F S (-:!!- F", ) W9.S for 

tangential velocities. However there is no special treatment necessary 

for normal velocities. 

(ii): Corner Treatments. 

The following a·:iditional treatments are for two corners of 
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·~he prifice plate in the flow domain.At the corners of the plate there 

are positions where half face of the velocity cells(control volumes) 

are 'exposed' to the calculation domain( flO'f domain) and half of them 

coinc~de with boundaries of the orifice plate(ie front fnce,bottom face 

and rear face of orifice plate boundaries). These situ~tions may be 

shown ~'in fig.F. 3. 

, " 

. I .• 

Il ' WILt+LII(l/~ ~({/~_ 
: Fronf. f!(lU .~ 

__ +--~ of Drifc'u 
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. .., 

I 

- ... .,..-- , 
---r-
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~-I~--~~--~~--~--~---T--------+---~--~-4~ 
1 W1H~ fr~~., ; 

- -1- --
Y I , 

---i------~-- --i------~--

• .c. 

I , 

Fig. F. 3: Corner l' rea tments. 

, , 
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U-!1omentum. 

At corner (A) (see fig F.3) the contribution of flux from 

east w!lll of V-cell q, (in the front fnce of the orifice plate) j.s 

given by, 

• - fc· Ur· f Awar (F .47) \e- o. 

where fc - iCfw -to fr) (F.4S) . 

A.,,,, - T '5+1 • b,9 pS (F.49) .. 

and C is a point mid-way between Wand P enclosed by the U-cell 

The expression of (F.47) is then incorporated through the 

source treatment similar to e~uation (F.36) to give, 

(F. 50) 

= 0 

where negative sign has been introduced to promote stability. 

The treatments at corner (B) of fig.F.3 is simHar to those 

at corner (A). Above treatments are applicable only for the bottom 

face of the orifice plate(in region 2). 
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v -!1omen tum. 

The treatment for V-moment~~ at corners (A) and (B) follow 

the same pattern as for U-momentum except the contribution of flux is 

from the north wall of U-cell( again consj.~ler corner (A» qn instead of 

q~ in previous calculation. Above treatments are applicable for front 

face (in region 1) and rear face (tn region 3) of the orifice plate. 

F.33 Turbulence Quantities. 

The boundary values for the turbulent q,uanti ties ( k and £ ) 

at the grid points nearest to the wall are specified in accordance with 

the law of the wall. 

(i) Turbulence Energy k. 

Fig.F.4 shows typical k or E sc~lar-cells with north,east 

and west -",aIls of cells (control volumes) coincide ,.,i th the top 

wall(including bottom face of the orifice plate) front face and rear 

face of the orifice plate as indicated by small letters (a),(b) and (c) 

respectively. 

The turbulence energy k at the node point P,kp is obtained by 

solving the governing transport eq,uation.Since the energy falls to zero 

at the wall,the contributions of flux from the wall vanish,ie, 

-- o (F.52) 
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\fhere n being normal to the wall. This can be achieved by setting aN ,a, 

and sWto zero similar to relations (F.37). 

-- .. ---- -I 
I , 
I , 

N 

l , 
I 

S I 
'4f--~~---. 

(a.) 

E 

Fig.F.4:Typical Scabr Cells (k and £ ) lfith ?lorth,lJast and ~{est 

Walls Coincide with Top Walls(a),Front Face of Orifice 

Plate(b) and Rear Face of Orifice ?late(c) qcspectively, 
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The generation G (see equation 2.16 of Chapter 2) reduces to 

a simpler form,as a result of using the assumptions that l~ II , 'aT 

and V components of velocity near w311 region 

vanish(Bradshaw,1971 ),then, 

= 

Since at the wa1l,V-velocity does not change with 

direction-x,ie, 

o 

and by using equation (F.15) the generation term G is modified to, 

- = ~C say (F.55) 

where liS 'lnd respectively \~all shear stress ,mean Ilxia1 

velocity at the point P and the distance of P from the wall.G~ is 

called part of the generation term modH:i.ed in terms of wI:11l shear 

stress(Gosman,1976).Again in this study U~is ass~~ed to be zero. 

It is also noted that fro!'!l eq~lati.ons(F.53) and (F.54) the 

modified generation term may also be written as, 

(F.56) 
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If this modified generation of equ~tion (F.56) is subtracted 

from the unmodified generation of k,then the final expression for the 

total generation of turbulence energy can be written in the form, 

-- (F.57) 

where Gr is the total unmodified generation of k less ""t('~) 2..and G
C 

is 

given by equation (F.55)(Gosman,1976). 

The dissipation term c., p £ is also modified to reflect 

equation (F.30) and when it is integrated over the control volume,it 

takes the value (see eqn.F.35 for E-expression), 

-- Cpr S e,tJV 
V 

-

• Cof Cp\1}~'r- ~N""') U".&V (F.SS) 

where SV is the control volume encloses the point P where k is 

stored.kp is the value of k at the node point P and the superscript (*) 

appearing in the equation (F.58) stands for the value of k of the 

previous iteration, kN is the turbulence energy at the wall w~ich has 

zero value, yp is the normal distance of nearest node P from the 

wall, p is the fluid density CD an:! Cft are constants given 

2.1 (see Chapter 2). 

j.n table 

+ "'1hen the point P falls wi thin the turbulence region (i.e.y > 

11.63) equation (F.58) may be written as, 
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Cor£ :. tit · Sv.lc p (F. 59) 

i'ihere dot - 3J., ~"J. (F.60) - Cpf ~ 2. l.a (cY,t) 

Br " 

.... 
If P lies within the viscous sublayer (y ~ 11.63) equation 

(F.58) has the same equ~tion as equation (F.59) but now with, 

(F.61 ) 

where (F.62) 

If equation (2.22)(see Chapter 2) is integrated over the 

control volume and linearising the result in the manner described by 

equation (~.19)(see App. E) with f ~:{,the following expressions for 

s~ and ~ may be deduced 

sit p -- (F.63) 

" • Sv (F.64) 

where &V is the control volume which encloses P where k is stored .dt 
can t~ke values either from equations (F.60) or (F.61) depending on y+ 

i'ihether it is > or" 1.63.The generation term G appearing in equ~tion 

(F.64) is the S~~e as G in equqtion (F.57). 
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(ii) Energy Dissipation Rate E . 

E £ 
Basically the linearisation 'constants' Sp and Su are 

deducible from the integrated source term Sf. for £, (ie by integrating 

equation 2.23 of Chapter 2 over the control volume) giving, 

-- * _ C~ P fp (' 
• oV 

*r 
(F.65) 

W-. SV 
f 

= (F.66) 

where lJ V is the control volume for £ and k f and E.p are values of 

k and E at the point P and superscript (*) indicates the values of 

individual variables 'at previous iterations. 

However,since in the wall flow3,unlike k which falls to zero 

at the wall, f reaches its maximum value there. This makes & - balance 

for a cell extending right up to the wall difficult.It is due to this 

difficul ty that ~fe(Gosman, 1976) adopt a fixed value for tp j,n the 

inertial sublayer( irrespective of the local Reynolds nu:uber ,yt) based 

on 'equilibriu.-n' relations(see eqn.F.30). To achieve f .. fp(ifhere E.r 
is the value of E at p) the following changes are made to Sf and ('!O6 

')U· 

and 

sr
p - - ~ (F.67) 

(F.68) 

30 
where 0' is a large number of the order 10 and ef is given by 

(see equation (F.30) for value of e at p), 
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£p - i. ~~~ -
'1'# 

where • ~ (F.70) 

KJr 
This \'lill ensure that ·E '=f,p in the computer solution. 
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APPENDIX G. 

PROGRAI! FLOWCHART 3UBROUTI'LIES A~'D PROGRAr1 LISTING. 

Figure G.1 shows the flo • ., chart of the modified TE.~CH-T 

computer program,that will help to increase clarity of the program 

layout that will be discussed in the following 1ines.A program listing 

is provided at the end of this Appendix. 

The program was run on both the CDC 7600 machine at the liLCC 

and also on the departmental PRn~E S50.The listing provided is for the 

ULCC CDC7600 machine. The PRDtE version has some minor modifications. 

There are six general subroutines relevant to any particular 

variable solved. They are the CO"NTRO,INIT,PROPS,PRO:WD,LISOLV and 

PRINT.In addition,there are major set of CALCU,CALCV,CALCP,CALCTE and 

CALCED subroutines for velocities U and V, pressure correctiGn 

p' ,kinetic energy k and dissipation rate f where the variables of 

interest are solved for. 

Overall control is exerted by the main subroutine CO~TR0 

which performs the initial and final op~rations and also controls the 

iteration.The function of this subroutine inclu:1es setting the number 

of sweeps (NS',fP<p, for each variable tp ) throughout domain of 

calculation.It contains four chapters, 
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START --+----. 

I 
IN 1 T,--13~--r 

PRO PS-11.......,1---

PRINT 
INITIAL.....-f-t-
VALUIS 

CONTRo 
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eALCU 
'--t~..JPROM"D 

C.AL.CV 

CALCP 

CALCTE .-+ ...... USOLV 
CAL.('ED 

D--H-t--'J PROPS 

.r 

PR'%N"t 
o-....... ot-II-""I1rx·MH&ClAT. 

,j, 
VAW., 

\ PRINT 
- ..... -...--,.1 f':rtfAL 

V~LUSS 

GA LC. Cll.AT& 
AIlIO PR.INT 
OI~CJ(AR"C)r 

,Aass flU LOSS 
G.DEF~lc.ll!NTS 

eTC. 

~If 

STOP' 

Fig.G.1 :The Program Flc~"chart. 
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Chapter 1 • 

In this chapter includes (i) specifying the grid sp'lcing and 

grid distributions upstrea.:n/ downstrea"ll of orifice plate, (ii) selection 

of dependent variable to be solved,(iii) reference values for fluid 

properties, (iv) turbulence constants and 

underrelaxation factors for each variables. 

Chapter 2. 

bO\Uldary values,( v) 

This chapter gives the initial variable fields and initial 

outputs. 

Chanter 3. 

Chapter 3 gives how the fluid properties are updated and 

prints out intermediate output for each variables,and 

Chapter 4. 

The discharge ani pressure loss coefficients and also shear 

stress coefficient along pipe wall when convergnce is achieved,were 

calculated in this final chapter of the routine. 

Subroutine nlIT performs initialisation jcbs".,'nich consists 

of two chapters,chapter is to establish geometrical configurations 

and chapter 2 initialises all variables to be solved. 

Subroutine PROPS, takes c.!lre of calculating fluid properties 

like fI- 'f etc. 
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e.g (a.1) 

-where - (G.2) 

is the turbulence viscocity and ~ is for the laminar ones. 

Subroutines CALC' make the main calculations of the f'ini te 

difference equations for each 4> (t/> ;; U, V, k, £) consisting of, 

Chapter 1 • 

All the convective and diffusive coefficients 9.t (i-N,S,E,'i) 

the form E.14 of appendix E) and st of the difference equations (of 

• and Su (see equ9.tion E.19 appendix E) for each ~ vari!:lbles are 

assembled. 

Chapter 2. 

ifall modifications are made by calling :lODt for the 

individual 4» fro:n subroutine PRO:WD. 

Chapter 3. 

Final coefficients a p (see equation E. 25 )are assembled here 

and residual sources are calculated. 

Chapter 4. 

Recurrence relation (see equation (E.13) of Appendix E) are 

solved by TD"U for new values of e$J.ch variables by first .~ssemblying 
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TD~U coefficients(see Appendix E,equation (E.74)). 

CALC? • 

In addition to four chapters described above, this CALCP 

subroutine contains, 

Chapter 5. 

The correct velocities (see equation E.40)are made here by 

first correcting pressures according to expression, 

p ::. p~ 
I 

+ f (a.3) 

Subroutine PRO~~OD. 

All modifications on solid boa~darios are made in this 

subroutine. Corrections due to wall and boa~dary effects are ~ade 

here,eg.for a specific call (control volume)near top ~~ll of pipe,the 

normal <Pp"" fll relation breaks down. This is achieved by setting 

AN(I,J) s 0 (where AU(I,J) is the coefficient of cO!1lbined convective 

and diffusive flux through north ",nIl of the conntrol volume an·i is 

given by relation E.26,see Appendix E).This routine consists of 

chapters,e~ch chapter corresponds to a specified variable 

modifications.It is not necessary to mcdify fluid properties ,pressure 

and intern'll energy.T:1'lese correspond tc chapters 1,4 and 5 

respectively,in the prograll listing provided. 



The shear stress on the 

modifications to st and S: (where 

pipe wall ts is calculated and 

• • Sp and Su are defined by equation 

(E.19)(see Appendix E) at the wall are made in this routine. 

Subroutine 11S01V. 

This subroutine performs the 1BL iteration,which has been 

discussed in Appendix E.The coefficients correspond to each variables 

are called in,from individual CALCfsubroutines.This is used to solve 

for the flow field variables in the recurrence formulae of the TDfiA 

(see equation E.73 of Appendix E). 

Subroutine PRINT. 

This routine provides output of variable arrays together ,.,i th 

headings for each individu9.l variable, ~ .• 
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c 

PROGR A:4 i-lAIN (OUTPUT, TAPBG""OUTPUT, 'rAPE') 
SUBROUTI~E CO~TRO 

233. 
!1AIN 

C**********************************************************,.*****~*********»**** 

C 
c ................................ TEACH-T ••••••••••••••••••••••••••••••••• 
C * A COMPUTER PROGRAM FOR THE CALCULATION OF ** 
C * T~iO -DI:~ENSIONAL (PLANS OR AXISY!'PH~TRICAL) *.,. 
C .» TURBULE~T RECIRCULATING FLm~S. *·It 
C·,..,.·,. SI7-1ULATION OF ORIFICE :!ETER MOD~L ***·It*lt 
C ·nlt DEVELOPSD BY M.lIAFIZ ***.,.** 
C *.** SYSTEr1S SCIENCE DEPART~Ell'I ****.,.* 
C'",'','' THE CITY UNIVERSITY,LONDON EC1V OHB,1981 *.,.**** 
C**·lE-****·,.·lt*·,.·",·lt**·****·,.·lt·**·"'***·*.**.*****·,+·,.**'****'*******''''***')10***11-*'''***********'»****'''* 
CHAPTER 0 0 0 0 0 0 0 0 PRELI:UNARIF.S 0 0 0 0 0 0 0 0 ~'IAIN 

C ~m 
DIf.IENSION HEDU(6) ,HEDV(6) ,HEDP(6) , HF.'DT (6 ) ,HEDK(6) ,HEDD(6) ,H:o:n-·'I(6) ~-!oD~ 

1 , HEDA( 6) , HEDB( 6) "iODA 
COM:10N HAPl 

1 /UVEL/RESORU, NS\ofPU, mFU, DXEPU(40) ,DXP~'lU(40) ,SS'.m(40) 
1/VVEL/RESORV,NSWPV,URFV,DY~PV(40),DYPSV(40),~NSV(40),RCV(40) 
1 /PCOR/RESOW~, NSilPP, UHFP, DU (32,32) , DV (32,32), IPREF, JPREF 
1 /TEU /RESORK, NS;O[PK, URFK 
1 /TDIS/RESORE, NS~IPD, UHFE 
1/VAR/U(32,32),V(32,32),p(32,32),PP(32,32),TE(32,32),ED(32,32) 
1/ ALL/IT, JT, NI, NJ, NIM1 , NJM1 , GREAT 
1 /GEO~>i/INDCOS, X(40), Y(40) ,DXEP(40), DXP'i(40) ,DYNP(40) , DYPS (40), 
1 SNS(40),SEW(40),XU(40),YV(40),R(40),RV(40) 
1/FLUPR/URFVIS,VISCOS,DENSIT,PRANDT,DEN(32,32),VIS(32,32) 
1/KASE T1 /UIN, TEIN, EDIN, FLO'IIN, ALA?IlDA, 
2 RSI>iALL, RLARGE, AL5, AL6, JSTEP, ISTEP, JSTP1 , JSTi'!1 , ISTP1 , IST~1 , 
3 ISTP2,ISTP3,ISTM2 

f~ODA 

1 /TURB/GEN (32,32), CD, crm, C1 , C2, CAPPA, ELOG, tsRED, PRTE . 
1 /WALLF /YPLUSN (32), XPLUSE(32), XPLUSvr(32), TAU!~ (32), TAtT8 (32), TAtJlA(32) 
1 /COEF / AP(32, 32) , AN (32,32) , AS (32,32) , AE (32,32) , A'i(32, 32) , SU(32, 32) , 
1 SP(32,32) 

LOGICAL IUCALU, INCALV, INCALP, INPRO, INCALK, INCALD, DICALM, 1NCALA, 
1 INCALB 

C****»* DOWNSTREAM OF ORIFICE PLATE(IN REGION3) 
GREAT-1.E30 
NITER-O 
IT-32 
JT-32 
NSUPU-3 

NS\O[PV-3 
NS\iPP -5 
NS:O[PK -3 
NS·.ofPD -3 
READ(5, 01 a )HEDU, HEDV, HEDP, HEDT, HEDK, HEDD, H3D~1, HEDA, HEDB , 

010 FORMAT(6A~) 
C 
CHAPTER 1 
C 
C-----GRID 

NI-32 
NJ-22 
NIM1-NI-1 
N.H1-NJ-1 
INDCOS-2 
ISTEP-16 
JSTEP-15 
KSTEP-16 

1 1 

IL-KSTEP-1 ~ 

1 PARAMETERS AND CONTROL INDICES 1 1 1 

MODA 
MAIN 

MAIN 
MAIN 

1 i·lAIN 
T·lAIN 
!o1AIU 

~toDA 

r·l0UA 
rmDA 



H1=1L-1 
DX:J=5. 
DXD=15. 
1STPl =ISTEP+l 
1ST:·! 1 =1STEP-1 
ISTP2=ISTEP+2 
1STP3"'ISTEP+3 
IST:·12=ISTEP-2 
JSTPl =JSTEP+1 
JST:11 =JSTEP-l 
RSDRL"JSTi11 /FLOAT (N J -2 ) 
AR=RSDRL**2 
RLARG~=.050R 

DIAM=2.0*RL.\RGS 
C,u**** Do· .. m'3TREAI-i OF ORIFICE PLATB (IN REGIO~ 3) 

ALTOT2=DXD*DIA?1 
EPSX=1 .9 
SUMX2"'(EPSX**IL-EPS,X) /(EPSX-l • )+0. 5*~PSx**I"1+a. 5 
DX2=ALTOT2/Sur·lX2 
DX20=DX2 

C**··· .. ** IN REGION2 AND DmiNSTRBAM REGIO:l (IN REGION 3) 
. X(ISTEP)--0.5*DX2 

X(ISTP1)=-X(ISTEP) 
DO WO I=ISTP2, NIr-il 
X(I)=X(I-l )+EPSX*DX2 

1 ao DX2=EPSX*DX2 
X(NI)=X(NIM1)-X(NI-2)+X(NIM1) 

C****** UPSTREAf.i OF ORIFICE PLATE (IN REGION 1) 
ALTOTl =Dxu*DIA~1 
SUf.IXl =(EPSX**IST;>il-EPSX)/(EPSX-l. )+0. 5*EPSX**IST!12 
HDX2=0.5*DX20 . 
DXl =(ALTOT1-HDX2 )/Sur1X1 
DX10=DXl 
DO 900 I-l,ISTM2 
NN=ISTEP-I 
NNP1-NN+1 
X(NN)-X(NNP1)-EPSX*DX1 

900 DX1-EPSX*DXl 
X(1 )-X(2)-(X(3)-X(2» 
ALTOT3-ALTOT1 +ALTOT2 . 
AL5=O.5*(X(2)+X(1 » 
AL6-ALTOT3-AL5 
T=O.5*EPSX*(ABS(DX10)+ABS(DX20»+ABS(DX20) 

C**************··· .. ********** 
DY-RLARGE/FLOAT (rU-2) 
Y(l )"'-0.5*DY 
DO 101 J"2, NJ 

101 Y(J)-Y(J-l)+DY 
RS:ULL-0. 5*(Y (JSTEP )+Y (JSTP1 » 
Dl-2.·0*RLARGE 
D2-2.0*RSMALL 
TOD1-T/Dl 
TOD2-r/D2 
D20T-D2/T 

C-----DEPEND~NT VARIABLE SELECTION 
INCALU=. TRUE. 
INCALV-.TRUE. 
INCALP-.TRUE. 
INCALK=.TRUE. 
INCALD".TRUE. 
INPRO". TRUE. 

C-----FLUID PROPERTIES 
DE~SIT -1000.0 

C-----TURBULENCE CONSTANTS 
crm-o.09 
CD-1.oo 

MODA 
!'40DA 

HODA 
!-tODA 

MODA 

MODA 
MODA 
MODA 
nODA 
MODA 

?<1AIN 
MAIN 
rUIN 
MAIN 

MAn 

MAIN 
MAIN 
MAIN 

2~4. 



C 1 =1 .44 
C2~1 .92 
CAPPA"'. 4187 
ELOG=9.793 
PRED=~APPA*CAPPA/(C2-Cl)/(C~U*~.5) 
PRTE=1.0 

C-----BOUNDARY VALUES 
TURBIN-.03 
ALArmA"".005 
VISCOS-.8E-3 
RE2=1 .OE+5 
REl =RE2*RSDRL 
DTD=DEN;)IT*DIAI1 
BUIN1-RE1*VISCOS/DTD 
A=5. 83E-5*(REl ) 
B=4.16S-12*(RE1)**2 
D=A-B 
XP=7.48+D 
S=(XP+l.)*(2.*XP+l.) 
RECXP=l./XP 
UMAX=.5*s*RECXP**2*BUIN1 

C*****·· UPSTREAM OF ORIFICE PLATE 
UIN-BUINl 
UIN2=BUIN1/AR 
TEIN=TURBIN*BUIN1**2 
EDIN=TEIN*-!tl • 5/(ALArmA*RMRGE) 

c****** DOiiNSTREA!>l OF ORIFICE PLATE 
UOUT=UIN2*AR . 

C-----PRESSURE CALCULATION 
IPREF=2 
JPREF=2 

C-----PROGRAM CONTROL AND !WNITOR 
fl1AXIT=-2500 . 
IMON=-12 
J:.10N"8 
URFU=O.5 
URFV=O.5 
URFP=1.0 
URFE=J.7 
URFK=-O.7 
U;lFVIS=-O.7 
INDPRI-250 
SORr~AX-O. 01 

C 
CHAPTER 2 2 2 2 2 2 INITIAL OPERATIONS 2 2 2 2 2 2 2 
C 
C-----CALCULATE GEOMETRICAL QUANTITIES AND SET VARIABLES TO ZERO 

CALL INIT 
C-----INITIALISE VARIABLE FIELDS 

FLo\HN-0.0 
ARDEN==O.O 
DO 200 J -2 , N J:1f 1 
U(2,J)-UMAX*(1.-Y(J)/RLARGg)**RECXP 
TE(l,J)""TEIN 
ED(l,J)=EDIN 
ARDEN=0.5*(DEN(1 ,J)+DEN(2~J»*R(J)*SNS(J) 

200 FL01:1IN"'FLmHN+ARDEN*lJ (2, J) 
JF IN""JSTPl 
DO 202 1-3, NI 
IF(!. LE. ISTM1 )JFIN=NJ 
IF(1.GE.ISTP2)JFIN-NJ 
FACTOR-(YV(JSTP1)*RV(JSTP1»/(YV(JFIN)*RV(JFIN» 
JEND-JF IN-1 
DO 202 J-2,JEND 
TE(r,J)-TEIN 
ED(I, J)-EDIN 

2 

:V.I~ 

:iAIN 
!1()DA 
!1ODA 
!'·l aD A 
:-tAIN 
;1.~IN 

IUIN 
:1AIN 
MAIN 
MAIN 

MAIN 
MAIN 
MAIN 

MAIN 
2 MAIN 

MAIN 
~.uIN 
11AIN 
M.UN 
MODA 
r~ODA 

MODA 
MODA 

MODA 
MODA 
MODA 

MODA 
t40DA 
MODA 

235. 



'l'E(2,J}"'TI-:(1,J} 
ED(2,J}-ED(1,J} 

202 U(I,J}-UI12*FACT~R 
YPLUSN (1 } .. O. 0 
DO 203 1"'2 , NI~ll 

203 YPLUS~(I}·11.0 
DO 204 J-JSTEP,NJ 
XPLUSE(J )"'11 .0 

204 IF(J.EQ.JSTEP)XPLUSE(J)-O.O 
DO 902 J-JSTEP,NJ 
XPLU3W(J)-11.0 

902 IF(J.EQ.JSTEP)XPLU3W(J)-0.0 
CALL P~OPS 

C-----INITIAL OUTPUT 
WRITE(6, 21 0) 
\/RITE (6,211 ) 
WRITE(6,220) UIN 
WRITE(6,1034)UIN2 
WRITE(6,1035)REl 
WRITE (6,1036)T 
WRITE (6, 1037 )D2 
WRITE(6,1038)TOD2 
WRITE(6,1060)D200T 
WRITE(6,1043)TOD1 
~iRITE(6, 1039)SUMX2 
WRITE(6,1040)DX20 
WRITE(6,1041 )SUMX1 
WRITE(6,1042)nX10 
WRITE (6,1044 )NI 
WRITE (6, 1045)N J 
WRITE(6,1046)ISTEP 
WRITE(6,104i)JSTEP 
WRITE(6,1061 )KSTEP 
WRITE(6,1062)EPSX 
\fRITE (6, 1048 )DXlJ 
WRITE(6,1049)DXD 
WRITE(6,1057)SOR~AX 
WRITE(6,1058)TURBIN 
WRITE(6,1059)ALAMDA 
WRITE(6, 230 )RE2 
WRITE(6,240) RSDRL 
WRITE(6,260) DENSIT 
WRITE(6,250) VISCOS 
IF(INCALU) CALL PRINT(2,2,NI,NJ,IT,JT,~J,y,U,HEDU) 
IF(INCALV) CALL PRINT(2,2,NI,NJ,IT,JT,X,YV,V,HEDV) 
IF(IN-::~ALP) CALL PRINT(2,2,NI,NJ, IT,JT,X, Y,P,REDP) 
IF(INCALK) CALL PRINT(2,2,NI,NJ,IT,JT,X,Y,TE,HBDK) 
IF(INCALD) CAL~ PRINT(2,2,NI,NJ,IT,JT,X,Y,ED,HEDD) 

C ••••••• CALCULATE RESIDUAL SOURCES NOR~ALIZATION FACTORS •••••••••••••••• 
FLOWIN -0.0 ' 
XMONIN -0.0 
DO 657 J-2, NJr.i1 
ARDEN -o.5*(DEN(1,J)+DEN(2,J»*R(J)*SN~(J) 
FLOWIN -FLOWIN+ARDEN*U(2,J) 
XMONIN ·X~ONIN+ARDEN*U(2,J)*U(2,J) 

657 CONTlriUE 
RESORT -0.0 

HOD .. 
~10D~ 
!10DA 

MAIN 
MAU 

:iODA 
MODA 
MAIN 
MAIN 
;.tAIN 

C MAIN. 
CRAPI'ER 3 3 3 3 3 3 3 ITERATION LOOP 3 3 3 3 3 3 3 3 3 'UIrI 
C MAIN 

WRITE(6, 310) DtON, JMON !4AIN 
300 NITER-NITER+1 

IF(I~CALU) CALL CALCU 
IF(INCALV) CALL CALCV 
IF(INCALP) CALL CALCp 
IF(INCALK) CALL CALCTE 

:HIN 
~AIN 

!ttAPf 
MAIN 



IF(I'~ALn) ~ALL CAL~~D 
C-----:JPDAT2: FLlJID P:\::>P~HITIE:3 

IF(I~pqO) CALL P~OP3 
C-----I~TE~1EDIATE OUTPUT 

RESOW1 =RESOR-'1/Flb:lIN 
RESORU cRESORU/X~ONIN 
RSSO:1V "'RESORV /X~-'lONIN 
DUM:-1Y=O.O 
\ofRITE (6,311) NITER, RESORU, RESORV, RES()R\'l, RESORT, RESORK, RESORE 

1 , U(I~ON, J~-'lON), V (DION , J:-tON) ,p(ntoN, J!lON) ,DU:-.1~U, 
1 TE(II10N,NJ:.11),ED(r10N,N.r..11) 
IF(f.tOD(~nTER,INDPRr).NE.O) GO TO 301 
IF( IN~ALU) CALL PRI~T(2, 2, NI, NJ, IT, JT, XU, Y, U, H~DU) 
IF(INCALV) CALL PRINT(2,2,NI,NJ,IT,JT,X,YV,V,HEDV) 
IF( IN~ALP) CALL PiUNT(2, 2, NI, NJ. IT, JT, X, Y, P, H~DP) 
IF(INCALK) CALL PRINT(2,2,NI,NJ,IT,JT,X,Y,TE,HBDK) 
IF(INCALD) CALL PRINT(2,2,NI,NJ,IT,JT,X,Y,ED,HlmD) 
liRITE (6,310) nlON, Jr-lON 

301 CONTIN"JE 
C-----TE~-'lINATION TESTS 

SORCE "AMAX1 (RESOR'<1, RESORU, RESORV) 
IF(NITER. EQ. 40. AND. SORCE. GT.1. OE4*SORI1AX)GO TO 302 
H'(:UTER.EQ.MAXIT) GO TO 302 
IF(SORCE.GT.SORMAX) GO TO 300 

!'!A I1~ 
:·1A I~ 
:·lAH 
:~AIN 

HODA 

MAI~ 

!40DA 
:'-'lODA 
j<1AI~ 

:-.tUN 
. ~1.~IN 

I-'lAIN 
MAIN 
MAIN 

Io1AIN 

302 CONTIN"JE ~AIN 

C :<1AIN 
CHAPrE~ 4 4 4 4 4 4 FINAL OPERATIONS AND OUTPUT 4 4 4 4 4 4 ~UIN 
C MAIN 

IF(INCALU) CALL PRINT(2,2,NI,NJ,IT,JT,~J,Y,U,HEDU) 
IF(INCALV) CALL PRINT(2,2,NI,NJ,IT,JT,X,YV,V,H3DV) 
IF(INCALP) CALL PRINT(2,2,NI,NJ,IT,JT,X,Y,P,HEDP) 
IF(INCALK) CALL PRINT(2,2,NI,NJ,IT,JT,X,Y,TE,HEDK) 
IF(nWALD) CALL PRINT(2, 2, NI, NJ, IT, JT, X, Y, ED, HEDD) 
IF(INPRO ) CALL PRINT(2,2,NI,NJ,IT,JT,X,Y,VIS,HED'1) 

C-----CALCULATION OF NON Dnl~ISIONAL TURBULENCE ENERGY AND LENGTH SCALE 
DO 400 1""2, NIM1 
DO 400 J"2, NJr41 
SU(I,J)-TE(I,J)*DEN(I,J)/ABS(TAUN(I» 
IF(I.EQ.ISTEP.AND.J.GE.JSTP1)TE(I,J)-0.0 
IF(I.EQ.ISTP1.AND.J.GE.JSTP1)TE(I,J)"0.0 

400 SP(I,J)-TE(I,J)**1.5/ED(I,J)/RLARGE 
CALL PRINT(2,2,NI,NJ,IT,JT,X,Y,SU,HEDA) 
CALL PRINT(2,2,NI,NJ,IT,JT,X,Y,SP,HEDB) 

C-----CALCULATION OF SHEAR-STRESS COEFFICIENT ALONG LARGE DUCT WALL 
WRITE(6,402) 
DO 401 1-2, NIl>! 1 
SSC-TAUN(r )/( 1. O*DENSIT*UOUT*UOUT) 
XUH :aXU(I)/(RLARGE-RStULL) 
WRITE(6,403) I,XUH,SSC 

401 CONTINUE 
c*·.-u* CALCULATION OF DISCHARG3 AND ?RESSURF. LOSS COEFFI::: IE"lTS*-u***** 

P1 :ap(2, NJM1) 
P3-P (3 ,NJ:41 ) 
PISTM1-P(ISTM1,N~~1) 
PISTP2-P(ISTP2,NJM1) 
P4""P (UIM 1, N.nt 1 ) 
DPCT-(P1-?4)-DP13*ABS(X(NI~1)-X(2»/A3S(X(3)-X(2» 
DCCT-UIN*SQRT(DENSIT*(1./RSDRL·lt4-1.)/2./DPCT) 
HDUIN-.5*DENSIT*UIN**2 
XKTHEO-(P1-P4)/HDUIN 
XKTCTD=PC/HDUIN . 
XKEX?1-(1./(.609*AR*(1 .-AR**2.6)*(1 .+TOD2**3.5)+AR**3.6)-1 .)*~2 
XFD"".0254 
XFU--XFD 
XD2D-RLARGE 
XDU--DIA.~01 

!''l:)DA 
HODA 
MAIN 
MAIN 
!lAIN 
M041 

MODA 

237. 



r ... nTP2 
1 IF(~(I).GS.XFD)~) TO 2 

1=1 +1 
GO TO 1 

2 D'D=I 
IFm:1 "'IFD-1 
P1FD-P(1FD,NJ~1) 
PIFD~11=p(1Fm1 ,NJ'11) 
X1FD=;( (IFD) 
XI FlX·11"'X (IFD:~l ) 
PFD=PIFD:'l1 +{PIFD-PIFD:-l1 )*(XFD-XIFD:11 )/(XIFD-'lCIFD:.l1 ) 
I=1ST:-11 

3 IF(X(1).LE.XFU)GO TO 4 
1=1-1 
GO TO 3 

4 IFU=1 
IFUP1 "'IFU+1 
PIFU=P(IFU,N~11) 
PIFUP1=P(IFUP1,N.T11) 
XIFU=X (1FU) 
XIFUP1-X (IFUP1) . 
PFU-PIFUP1 +(PIFU-PIFUP1 )*(XFU-XIFUP1 )/(XIFU-XIFU?1) 
I=1STP2 

5 IF(X(1).G~.XD2D)GO TO 6 
1=1 +1 
GO TO 5 

6 ID2D'"'I 
ID2Dr11 =ID2D-l 
PID2D=P(ID2D,N~11) 
PID2Dl=P(ID2DM1,NJ~1) 
X1D2D=X (ID2D) 
XID2D 1"X (ID2D~11 ) 
PD2D-PID2D1 +(PID2D-PID2Dl )*(XD2D-XID2Dl ) /(XID2D-XID2Dl ) 
I"ISTMl 

7 IF(X(I).LE.XDU)GO TO 8 
1=1 -1-
GO TO 7 

8 IDU-I 
IDUP 1 -IDU +1 
PIDU-P(IDU,NJM1) 
PIDUP1=?(IDUP1,N~~1) 
XIDU-X (IDU) 
XIDUP1:aX (IDUPl ) 
PDU-PIDUP1+(PIDU-PIDUP1)*(XDU-XIDUP1)/(XIDU-XIDUP1) 
DPFT-PFU -PF D 
DPDD'2T "'PDU -PD2D 
DCFT-UIN*SQRT(DENSIT*(1./RSDRL**4-1.)/2./DPFT) 
DCDD2T"UIN*3QRT(DENSIT*(l ./RSDRL**4-1 .)/2./DPDD2T) 
WRITE(6,1051)DCFT 
WRITE{6,1052)DCDD2T 
WRITE(6,1053)DCCT 
WRITE(6,1054)XKTHEO 
WRITE{6,1055)XKTCTD 
WRITE(6,1056)XKEXP1 
STOP 

C-----FORMAT STATE~ENTS 
KUN 
?>lAIN 

TtaBULENT FLO\~ THROUG~t A SUDDEN F.NL.A.RG~:UN 210 FOR~1AT(lHO,47X,*KASE T1 
1T*////) 

2.11 FOR~-iAT(l HO, 50X, 29H BACK AND ROSCHIre EXPERHiENTS'/ / / /) 
220 FOR~AT(//lHO,15X,*INLET FLUID VELOCITY UIN*,T60,lH=,3X,lPS11.3) 

1034 FORr1AT (1 HO, 15X, *ORIFICE FLUID VELOC ITY UIN2*, T60, 11-1=, 3X, lPE11. 3) 
1035 FOR:UT(1HO,15X,*REYNOLD'3 N'J:-1BER1 aE1*,T60,1H",3X,1PS11.3) 
1036 FOR'1AT(lHO,15X,*ORIFICE PMTE THIC10IESS T*,T60, 1t{"',3X, 1PE11.3) 
1037 FOR~-iAT(1HO,15X,*ORIFICE PLATE DIAMETER D2*,T60,lH",3X,lPE11.3) 
1 038 FORi\lAT (1 HO, 15X;ltPLATE THIC~ESS OVF:R ORIFICE DIA.~ETER T/D2*, T60, 

11H .. ~ 3X, 1 PE 11 • 3) 
~ 

23'3. 



1'JGO FOR'·i.llT(1HO,15.{,*lRIFT0E DH;'l.AND PMTE T4I~K'm3S RATTO D2/T*,T60, 
1 111"", 3 X, 1? S 11 • -;) 

105:) FOR'HT(lllO, 15X,*SU1X2*,T60, lH-,3X, lP&'!11.3) 
1040 FORAAT(lHO,15X,*DX20*,T60,14=,3X,lPS11.3) 
1011 FOR:1AT(lHO, 15X,*3U:·IX1*,T60, lH",3X, lPE11.3) 
1042 FOR~AT(190,15X,*DX10*,T60,lH-,3X,lPEll.3) 
1043 FOWUT(lHO,15X,*PL'TE THICK"t~~S OVER PIPE DUi1ETER T/D1*,T60, 

1 1 H"', 3X, 1 PE 11 • 3) 
1044 FOR;·tAT(lHO,15X,*DIRECTION-X GRID NO.NI*,T60,lH-,3X,lPEll.3) 
1045 FOlli~AT(lHO,15X,*DIRECTION-Y GRID NO.NJ*,T60,lH-,3X,lPE11.3) 
1046 FOR;1AT (1 HO, 15X, *ISTEP':+, T60, 1 H-, 3X, 1PE 11.3) 
1047 FOR~AT(lHO,15X,*JSTEP*,T60,lHs,3X,lPE11.3) 
1061 FOR~AT(lHO,15X,*K3TEP*,T60,lH~,3X,lPE11.3) 
1062 FOR:'!AT(lHO,15X,*EPSX*,T60,lH-,3X,lPE11.3) 
1048 FOR:UT(1!W,15X,*INLET DISTANCE(IN DIAl~.)DXU*,T60,1H",3X,lPEll.3) 
1 049 FOR!1AT(1 XO, 15X, *OUTLET DIST. (In DI&.r1. )DXD*, T60, lH-, 3X, lPE11 .3) 
1057 FORr1AT(1HO, 15X, *I1AXI;m1\1 SOURCE SOR~AX* ,T50, 1H=, 3X, lPB1'. 3) 
1058 FOR:<1AT (1 HO, 15X, *TURBULENCE I:{TE~SITY TURBIN*, T60, 19=, 3X, lPF.ll1 .3) 
1059 FORMAT(l HO, 15X, *LENGTH SCALE FACTOR ALAI'iDA*, T60, lH", 3X, lPE11 .3) 

230 FOR~1AT(lHO, 15X, *REYNOLDS NU!iBER2 RE2* ,T60, 1H=, 3X, l.PB11. 3) 
240 FOR!1AT(lHO,15X,*DIAr.lETER RATIO D2/Dl*,T60,lH"",3X,lPE11.3) 
250 FOR:.tAT(lHO,15X,* LAIUNA.R VISCOSITY *,T60,lH-,3X,lPE11.3) 
260 FOR~AT(lHO,15X,*FLUID DENSITY *,T60,lH=,3X,lPEll.3) 

310 FOR~tAT(lHO,*ITER * ,*I---------------ABSOLUTE RESIDUAL SOURCE SIDi l'1AIN 
lS---------------I I-------FIELD VALUES AT MONITORING LOCATION*,* MODA 
2 (*,12, * , *,12, *)* , *--------1* / 2X, *NO. * , 3X, ·*U~10~1* ,6X, *'1:'>iO:1* , 6X, *f.'!A MAIN 
3SS*,6X,*ElER*,6X,*TKIN*,6X,*DISP*,10X,*U*,9X,*V*,9X,*P*,9X,*T*,9X, MODA 
4·~*,9X,*D*/) MODA 

311 FORMAT(lH ,I3,4X,1P6El0.3,3X,1P6El0.3) MODA 
402 FOR~AT(///5X,lHI,7X,5HXU(I),6X,10HS.S.COEFF.) 

C 

403 FO&~AT(/5X,I5,2(lPE11.3» 
1 051 FOIt'1AT (/ /1 HO, 15X, *DIS. COEF. (FLANGETAP)DCFT*, T60, lH-, 3X, lPE 11 .3) 
1052 FOR:>tAT( 1 HO, 15X, *DIS. COEF. D-D/2TAP DCDD2T*, T60, 1 H"', 3X, lP311 .3) 
1053 FOfu4AT(1HO, 15X,*DIS.COEF.(CORNER TAP)nCCT,T60,lH=,3X,lPE11.3) 
1054 FOR~AT(lHO,15X,*THTCAL PRES.LOS.COEF.XKTHEO*,T60,lH-,3X,lPE11.3) 
1055 FOR~lAT(1 HO, 15X, *CTDTCALPRES. LOS. COEF .XKTCTD* ,T60, m-, 3X, lPE11. 3) 
1056 FORlUT( 1 HO, 15X, *EXPTAL PRES. LOS. COEF. XKEXP 1 * , T60, lH-, 3X, lPE11 .3) 

END 
SUBROUTINE INIT 

CHAPTER 0 0 0 0 0 0 0 0 PRELEHNARIES 0 0 ° 0 ° 0 0 0 
C 

C 

C01-tlmN 
1 /UVEL/RESORU, NSWPU, U~FU, DXEPU(40), DXPWU(40) ,SEiW(40) 
1 /VVEL/RESORV, N$o[PV, URFV, DYNPV (40), DYPSV(40) , SNSV(40), RCV (40). 
1/PCOR/RESORM,NSWPP,URFP,DU(32,32),DV(32,32),IPREF,JPREF 
1 /VAR/U (32,32), V(32., 32) ,p(32, 32) ,PP(32, 32), TE(32, 32) ,ED(32, 32) 
1 / ALL/IT, JT, NI, NJ, NDl1 , NJ:'i 1, GREAT 
1 /GEO~4/INDCOS, X(40), Y (40), DXEP(40), DXPW(40), DYNP(40) , DYPS (40), 
1 SNS(40) ,SEW(40) ,X'J (40), YV (40), R(40), RV(40) 
1/FLUPR/URFVIS,VISCOS,DENSIT,PRANDT,DEN(32,32),VIS(32,32) 
1 /KASE T 1 /u IN , TEIN , EDIN , FLm'l IN, ALAMDA, 

2 RS:'-1ALL, RLARGE, AL5, AL6, JSTEP, ISTEP, JSTPl , JST!t11 , ISTP1, ISTM 1, 
3 ISTP2, ISTP3, IST:12 
1/TURB/GE~(32,32),CD,CMU,C1,C2,CAPPA,ELOG,PRED,PRTE 
1/COEF/AP(32,32),AN(32,32),AS(32,32),AE(32,32),AW(32,32),SU(32,32), 
1 SP(32,32) 

CHAPI'ER 1 
C 

CALCULATE GEmmTRICAL QUANTITIES 1 

DO 100 J·l ,NJ 
R (J ).y (J) 

100IF(INDCOS.EQ.1)R(J)Dl.0 
c****** IN REGIONl 

DXP\/( 1 )-0.0 
DO 943 I=1.,ISTi11 

~IN 
INIT 
INIT 
INIT 
INIT 
INIT 

INIT 
IN IT 
INIT 
INIT 
INIT 
INIT 

INIT 



DEP(I)"'X (I +1 )-X (1) 
~H5 DXP,!(1+1 )=DX8P(I) 

DYP3(1 )=0.0 
DYNP(:IJ)=J.O 
DO 102 J=-I, NJM 1 
DY~P(J )=Y (J+1 )-Y (J) 

102 DYPS (J +1 )::oDYN p(J) 
SE~'I (1 )::00.0 
DO 948 1 =2 , 1ST;·11 

948 SE:Il( 1 )-0. 5*(DXEP(1 )+DXPif( 1» 
SNS(1 )-0.0 
SNS (:i J)=O. 0 
DO 104 J==2, NJt11 

104 SUS (J )=0. 5*(DYNP(J )+DYPS (J» 
xu (1 )"'0.0 
DO 953 1=2,1STEP 

953 XU (1 )-0. 5*(X (I)+X (1 -1 » 
DXP',iU(1 )=-0.0 
DXPWU (2 )=0.0 
DXEPU(1 )""0.0 
DO 954 1=2, 1ST~11 
DXEPU(1)=XU(r+1 )-XU(1) 

954 DXPWU(r+1 )-DXEPU(1) 
SE'\{U(1 )-0.0 
SE'iU (2 )-0.0 
DO 955 r-3,IST~1 

955 SE':lU(r )=0. 5*(DXBPU (r )+DXP',-lU(r» 
YV (1 )"0.0 
RV(1 )"0.0 
DO 108 J=2, NJ 
RV(J)-0.5*(R(J)+R(J-1 » 
RCV(J)-0.5*(RV(J)+RV(J-1 » 

108 YV(J)""0.5*(Y(J)+Y(J-1» 
DYPSV(l )""0.0 . 
DYPSV(2 )"0.0 
DYNPV (1 )-0.0 
DYNPV(NJ)=O.O 
DO 109 J-2, N.Dtl 
DYNPV(J)aYV(J+1 )-YV(J) 

109 DYPSV(J+1 )aDYNPV(J) 
SNSV(1 )-0.0 
SNSV(2)-0.0 
SNSV(NJ)-O.O , 
DO 110 J-3, N~l 

110 SNSV(J)aO.5*(DYNPV(J)+DYPSV(J» 
c****** IN REGION2 

DO 944 I-rSTEP,1STP1 
DXEP(r )""X (r +1 )-X (I) 

944 DXPW(r+1 )=DXEP(I) 
DYPS(I):aO.O ' 
DYNP(JSTP1 )-0.0 
DO 945 J-1, JSTEP 
DYNP(J)-Y(J+1 )-Y(J) 

945 DYPS(J+1 )-DYNP(J) 
SE'w(1 )""0.0 
DO 949 I-ISTEP,ISTP1 

949 SE'i(I )-0. 5*(DXEP(r )+DXPW(1» 
SNS(1 )-0.0 
SNS (JSTPl )"0.0 
DO 950 J-2, JSTEP 

950 SNS(J)-0.5*(DYNP(J)+DYPS(J» 
XU(1 )-0.0 
DO 956 r-IsTP1,ISTP2 

956 XU(I)-O.5*(X(I)+X(I-1» 
DXPWU(1 )-0.0 
DXPWU(2 )-0.0 

IN1T 

I~IT 

!:lIT 24') • 
nIT 
INIT 
1NIT 
INIT 

IlHT 
1NrT 
rNIT 
DIlT 
I:nT 

INIT 
INIT 
INIT 

IN IT 

INIT 
INIT 

INIT 
INIT 
IN IT 

• INIT 
INIT 
PUT 
INIT 
IN IT 

~.wDA 

INIT 
INIT 
IN IT 
INIT 
INIT 
INIT 
INIT 
INIT 



DX\.~PU(1 )=-).0 
DO 957 I~ISTEP, ISTP1 
D X~ PU (I ) .. X:J ( I + 1 ) - X '-J (I ) 

957 DXP.W(I+1 )=DXSPU(I) 
3£':/U(1 )=-0.0 
SS"r/U(2 )=0.0 
DO 958 I=ISTEP,ISTP1 

958 S£'I'1U(I )"'0. 5*(DXEPU(I )+DXPWU(I» 
YV(l )=0.0 
RV(l )"'0.0 
DO 962 J=-2, JSTP1 
RV(J)""0.5*(R(J)+R(J-1 » 
RCV(J )=0. 5*(RV(J)+RV(J -1 » 

962 YV (J )"0. 5*(Y (J )+Y (J -1 » 
DYP3V(1 )=0.0 
DYPSV(2 )=0.0 
DYNPV (J3TP1 )=0.0 
DO 963 J-2,JSTEP 
DYNPV(J)-YV(J+1 )-yv(J) 

963 DYPSV(J+l )-DY~pV(J) 
SNSV(l )=0.0 
SNSV(2)-0.0 
SNSV(JSTP1 )-0.0 
DO 964 J-3,JSTEP 

964 SNSV(J)"0.5*(DYNPV(J)+DYPSV(J» 
C****** IN REGION3 

DXEP(NI )·0. 0 
DO 946 I -ISTP2, NIf~ 1 
DXEP(I )=X (I +1 )-X (1) 

946 DXP';1(I+1 )"'DXEP(I) 
DYPS(l )=0.0 
DYNP(N J)-O. 0 
DO 947 J-1, NJM1 
DYNP(J):aY(J+l )-Y(J) 

947 DYPS(J+1 )~DYNP(J) 
SE'A( 1 )"'0.0 
DO 951 I·ISTP2,NI~1 

951 SE'.f(I )""0. 5*(DXEP(I )+DXP',v(I» 
SNS(l )-0.0 
SNS(NJ)-O.O 
DO 952 J"2, NJr11 

952 SNS(J)-0.5*(DYNP(J)+DYPS(J» 
XU(l )-0.0 
DO 959 1-1STP3 NI 

959 X(J(I)"0.5*(X(I)+X(I-1» 
DXPVU(l )-0.0 
DXPWU(2 )-0. 0 
DXEPU(1 )-0.0 
DXEPU(NI)-O.O 

. DO 960 I-1STP2,N1M1 
DXEPU (I ) .. XU (I +1 )-XU (I ) 

960 DXPWU(1+1 )-DXEPU(1) 
SEWU(l )-0.0 

. SE'd'U (2 )"0.0 
DO 961 I-1STP2,N1M1 

961 SEWU(1)-O.5*(DXEPU(I)+DXPWU(I» 
YV(l )-0.0 
RV(l } .. O.O 
DO 965 J-2, NJ 
RV(J)-0.5*(R(J)+n(J-l » 
RCV(J)aO.5*(nv(J)+RV(J-l » 

965 YV(J)"O.5*(Y(J)+Y(J-1» 
DYPSV(l )=0.0 
DYP3V(2 )-0.0 
DO 966 J-2. NJl-i 1 
DYNPV~J)·~V(J+l )~Yy(J) 

241. 



)6G DYP3V(J+l )""DY:iPV (J) 
S:lSV(l ):to.O 
SN3V(2)'"'0.0 
S~SV (U J )=::>.0 
DO ']67 J-3, NJ~11 

967 SNSV(J )"'0. 5*(DY;{PV (J )+DYPSV(J» 
C 
Cl~PTER 2 2 2 2 2 2 SET VARIABLES TO ZERO 2 2 2 2 2 2 
C 

DO 200 1-1 ,NI 
DO 200 J"1, NJ 
u(r,J)-o.O 
V(I,J)'"'O.O 
p(r,J)-o.O 
pp(r,J)-o.O 
TE(r,J)-o.O 
ED(r,J)-o.O 
DEN(r,J)-DENSIT 
vrs(r,J)"VISCOS 
DU(r,J)-o.O 
DV(I, J) .. O. 0 
su(r,J)=ao.O 
SP(I, J)-O. 0 

200 CONTINlJE 
RETUrtN 

INIT 
INIT 
IN IT 
INIT 
IN IT 
INIT 
IN IT 
INIT 
INIT 

!-tODA' 
MODA 
INIT 
INIT 
INIT 
INIT 

INIT 

242. 

END INIT 
SUBROUTINE PROPS PROPS 

C PROPS 
CHAPTER 0 0 0 0 0 0 0 0 PRELIMINARIES 0 0 0 0 0 0 0 0 PROPS 
C "O~ 

CO~~O~ PROPS 
1/FLUPR/~RFVIS,VISCOS,DE~SIT,PRANDT,DE~(32,32),VIS(32,32) 
1 /VAR/U(32, 32), V(32, 32) ,P(32, 32) ,PP(32, 32) ,TE(32, 32) ,ED(32, 32) 
1/ALL/IT,JT,NI,NJ,NI~1,N~1,GREAT 
1/TURB/GEN(32,32),CD,CMU,C1,C2,CAPPA,ELOG,PRED,PRTE 
1t~ASE T1tJIN,TEIN,EDIN,FLOWIN,ALAMDA, 
2 RSMALL, RLARGE, AL5, AL6, JSTEP, ISTEP, JSTP1, JST:of1, ISTP1, IST:'ti1, 
3 ISTP2, ISTP3, IS~~2 

C 
CHAPTER 1 1 VISCOSITY 
C 

DO 100 1-2, NIM1 
VI~(I,1)-VIS(I,2) 
DO 100 J-2, NJM1 
VISOLD-VIS (I, J) 
IF(ED(I,J).EQ.O.) GO TO 102 
VIS(I,J)-DEN(I,J)*TE(I,J)**2*CMU/ED(I,J)+V1SCOS 
GO TO" 101 

102 VIS(I,J)-VISCOS 
" IF(I.EQ.1STEP.AND.J.GE.JSTP1 )VI3(I,J)-0.0 

IF (I. EQ.1STP1. AND. J. GE. JSTP1 )VIS (I, J)-O. 0 
101 vis (I, J)-URFVIS*VIS (I, J)+ (1 • -'JRFVIS )*VISOLD 
C-----UNDER-RELAX VISCOSITY 

C 

100 CONTINuE 
RETlffiN 
END 
SUBROUTINE CALCU 

CHAPTER 0 0 0 0 0 0 0 0 PRELI~INARIES 0 0 0 0 0 0 0 0 
C 

cO;~r·'lON 

1 /UVEL/RESORU, NSWPU, URFU, DXEPU(40) ,DXP'I1U(40), SElU(40) 
1/PCOR/RESOR~,NSWPP,URFP,DU(32,32),DV(32,32),IPaEF,JPREF 
1/VAR/U(32,32),V(32,32),P(32,32),PP(32,32),TE(32,32),ED(32,32) 
1/ ALL/IT, JT, NI, NJ, NUt1 , NJ'~ 1 , GREAT 
1 /GEO:.t/INDCOS, X(40), Y(40), DX~P(40), DXP',ol( 40), DYNP(40) ,DYPS (~O), 

PROPS 

PROPS 

PROPS 
PROPS 

PROPS 
PROPS 

PiWPS 
PROPS 

PROPS 
PROPS 
CALCU 
CALCU 
CALCU 
CALCU 
CALCU 



1 S;lS(40),m-:.~(40),X'J(40),YV(40),R(40),RV(40) 
1 /FLUPR/URFVIS, VI3C03, D2~~SIT, PRAIDT, DEN ('32, :52) , VI3 ('52,52) 
1 /COEF / AP (32,32) , AN (32,32) , AS (32,32) ,AE (32,32) ,A'!/ (32, :~2) ,8U (32, 32) , 
1 SP(32, 32) 243. 
1/I..ASr:; T1 /lJIN, TEIN, EDIN, FLOWIN, ALAr1D.~, 
2 RS:-1ALL, RLARGE, AL5, AL6, J3TEP, ISTEP, JSTP1 , JST~>t1, ISTP1 , IST~~1 , 
3 ISTP2, ISTP3, ISTM2 

C 
CHAPTER 
C 

ASSEMBLY OF COEFFICIENTS 1 

DO 100 I-3,NIM1 
DO 101 ~ "'2 , N J111 

C-----CC);.tPUTE AREAS AND V0LU:.1E 
AREAN"'RV(J+1 )*SEiU(I) 
AREAS~RV(J)*S~iU(I) 
AREAE"ti-R (J )*SNS (J ) 
VOL'"'R (J )*SE\W(I )*SNS (J) 

C-----CALCULATE CONVECTION COEFFICIENTS 
GN~.5*(DEN(I,J+1 )+DEN(I,J»*V(I,J+1) 
GNw-o.5*(DEN(I-1 ,J)+DEN(I-1 ,J+1 »*V(I-1 ,J+') 
GS=O.5*(DEN(I,J-' )+DEN(I,J»*V(I,J) 
GS~-o.5*(DEN(I-1 ,J)+DEN(I-1 ,J-1 »*V(I-1 ,J) 
GE-D.5*(DEN(I+1 ,J)+DEN(I,J»*U(I+1 ,J) 
GP-o.5*(DEN(I,J)+DE~(I-1 ,J»*U(I,J) 
G'.i-o.5*(DE~(I-1 ,J)+DEN(I-2,J»*U(I-1 ,J) 
CN-D.5*(GN+GNW)*AREAN 
CS-o.5*(GS+GSW)*AREAS 
CE-J. 5*(GE+GP)* AREAEW 
C;'I-o. 5*(GP+GW)* AREAE'i . 

C -----CALC ULATE DIFFUS ION COEFFIC IENTS . 
VISn-o.25*(VIS(I,J)+V1S(1,J+' )+V13(1-1 ,J)+V1S(I-1 ,J+1» 
V1SS-o. 25*(VIS (I, J)+VIS(I, J-1 )+vrs (1 -1 , J)+VIS (1-1 , J-1 » 
DN~VISN*AREAN/DYNP(J) 
DS-VISS*AREAS/DYPS(J) 
DE-VIS(I,J)*AREAEW/DXEPU(r) 
D~·VIS(1-1 ,J)*ARE~J/DXPWU(I) 

C-----CALCULATE COEFFICIENTS OF SOURCE TERMS 
. $oIP-CN-CS+CE-CW 

CPzAMAX1(O.O,~1P) 
CPO-CP 

C-----ASS~~BLE MAIN COEFFICIENTS 
AN(I,J)-AMAX1(ABS(O.5*CN),DN)-0.5*CN 
AS(I,J)-AMAX1 (ABS(0.5*CS),ns)+O.5*CS 
AE(I,J)-AMAX1(ABS(0.5*CE),DE)-0.5*CE 
Ai(1,J)-AMAX1(ABS(0.5*~i),DA)+0.5*~i 
DU(I,J)-AREAEW 
SU(I,J)-CPO·J(I,J)+DU(I,J)*(P(I-1,J)-P(1,J» 
SP(I,J)--CP 

C 

DUDXP -(U(I+' ,J)-U(I,J»/SEW(I) 
DUDxr1 -(U(I,J)-U(I-1 ,J»/SEW(I-1) . 
SU(I,J) -(VIS(I,J)*DUDXP-VIS(I-1 ,J)*DUDXM)/SEiofU(I)*VOL+SU(I,J) , 
GAMP -0. 25*(VIS(I,J)+VIS(I-1 ,J)+VIS(I,J+' )+V13(I-1 ,J+'» 
DVDXP -RV(J+1 )*(V(1,J+1 )-V(1-1 ,J+1 »/D~P(1) 
GAMM -o.25*(VIS(I,J)+VIS(I-1,J)+VI3(I,J-1 )+V1S(I-1,J-1» 
DVDX?1 -RV(J)*(V(I,J)-V(I-1,J»/DXEP(I) 
SU(I,J).·SU(I,J)+(GAMP*DVDXP-GAMM*DVD~~)/SNS(J)/R(J)*VOL 

101 CONTINUE 
100 CONTINUE 

CALCU 
1 CAL~U 

CALCU 
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CALCU 
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CALCU 
CALCU 
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CALCU 
CALCU 
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CALCU 
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CALCU 
CALCU 
CALCU 

CALCU 
CALCU 
CALCU 

C 

2 CALCU 
CALCU 
CALCU 

C CALCU 
CHAPTER 3 FINAL COEFF. ASS~1BLY AND RESIDUAL SOURCE CALCULATION 3 3 CALCU 

CALL MODU 

CHAPTER 2 2 2 2 2 2 2 PROBL1~I-1 MODIFICATIONS 2 2 2 2 2 2 
C 

RESORU-o.O CALCU 
CALCU 



DO 300 1·3, H r1 1 
DO 301 J""2, NJ:l1 
AP(I,J)=AN(I,J)+AS(I,J)+AS(I,J)+A~(I,J)_SP(I,J) 
DU(1,J)3DU(I,J)/AP(I,J) 
RESOR"AI~(I,J)*J(I,J+1 )+AS(I,J)*'J(I,J-1 )+AE(I,J)*U(I+1 ,J) 

1 +AW(I,J)*U(I-1,J)-AP(I,J)*U(I,J)+SU(I,J) 
VOL=a (J )*SKi( I )*SNS (J) 
SORVOL-GREAT*VOL 
IF(-SP(I,J).GT.0.5*SORVOL) RESOR.R~SORlsORVOL 
RESORU-RESORU+ABS(RESOR) 

C-----UNDER-RELAXATION 
AP(I,J)-AP(I,J)/URFU 
SU(I, J)-SU(I, J)+ (1 • -TJRFU)* AP(I, J)*IJ (1, J) 
DU(I,J)-DU(I,J)*URFU 

301 CONTInUE 
3.00 CONTINUE 

C 
CHAPTER 4 4 4 SOLUTION OF DIFFERENCE EQUATION 4 4 4 4 4 4 4 
C 

C 

DO 400 Ua l ,NSWPU 
400 CALL LISOLV(3,2,NI,NJ,IT;JT,U) 

RETURU 
END 
SUBROUTINE CALeY 

CHAPTER 0 0 0 0 0 0 0 0 PRELI~INARIES 0 0 0 0 0 0 0 0 
C 

CO;.nWN 

1 /VVEL/RESORV, NS'IIPV, URFV, DYNPV (40), DYPSV(40), SNSV (40) ,RCV(40) 
1 /PCOR/RESOR:'l,NSWPP, URFP, DU(32, 32) ,DV(32, 32) ,IPREF, JPREF 
1 /V AR/U (32,32) , V (32,32) ,p(32, 32) ,PP (32,32) ,TE (32,32), ED(32, 32) 
1/ALL/IT,JT,NI,NJ,NIM1,N~1,GREAT ' 
1 /GEOM/INDCOS, X(40), Y(40) ,DX~P(40) ,DXP'i(40) ,DYNP(40), DYPS (40), 
1 SNS (40) ,SEti(40) ,xu (40), YV(40), R(40) ,RV(40) 
l/FLUPR/uRFVIS,VISCOS,D~NSIT,PRANDT,DEN(32,32),VIS(32,32) 
1 ICOEF/ AP(32, 32) ,AN(32, 32) ,AS (32,32) ,AE(32, 32) ,A','1(32, 32) ,SU(32, 32), 
1 " SP(32, 32) 
1 tlCASE T1 /UIN, TEIN, EDIN, FLO'AIN, ALAMDA, 
2 RS!-lALL, RLARGE, AL5, AL6, JSTEP, ISTEP, JSTP1, JST~i1, ISTP1, ISTM1, 
3 ISTP2,ISTP3,ISTM2 

C 
CHAPTER 1 1 1 
C 

1 ASSE:-iBLY OF COEFFICIENTS 1 

DO 100 1-2, NUll 
DO 101 J-3, NJMl 

C-----CO~PUTE AREAS AND VOL~E 
AREAN-RCV(J+1 )*Sgl(I) 
AREAS-RCV(J)*SEW(I) , 
AREAE1-RV(J)*SNSV(J) 
VOL-RV(J)*SEW(I)*SNSV(J) 

C-----CA~ULATE CONVECTION COEFFICIENTS 
GN-0.5*(DEN(I,J+1 )+DEN(I,J»*V(r,J+1) 
GP-o. 5*(DEN (I, J )+DEN (I, J-1 ) )*V (I, J) 
GS-o.5*(DEN(I,J-l )+DEN(I,J-2»*V(I,J-1) 
GE-o.5*(DEN(I+l,J)+DEN(r,J»*U(I+l,J) 
GSEaO.5*(DEN(I,J-l )+DEN(I+1 ~J-1 »*11(1+1 ,J-1) 
Gi-o.5*(DEN(I,J)+DEN(I-1,J»)*U(I,J) 
GS'I-0.S*(DEN(I,J-1 )+DEN(I-1 ,J-l »*U(I,J-l) 
CN-o.5*(aN+Gp)*AREAN 
CS-o.5*(CP+GS)*AREAS 
CE-0. 5*(GE+GSE)* AREAE~" 
CW-(). 5*(G'/+GS\f)* AREAE~f 

C-----CALeULATE DIFFUSION COEFFICIENTS 
VISE-o.25*(VIS(I,J)+VIS(I+1 ,J)+VIS(I,J-l )+VIS(I+1 ,J-l» 
VISi-o.25*(VIS(I,J)+VIS(I-1,J)+VIS(I,J_1 )+VIS(I-l ,J-l» 
DN-VIS(I,J)*AREAN/DYNPV(J) , 

1 
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D3-VI3(I,J-l )*ARSA1/DYPJV(J) 
D3"VISE':+AR~AE'J/DXEP(I ) 
D'.v sV I ~:l· AR Ell. E't/ /D XP':I (r ) 

C-----CAI£UL,\TE COEFFICIENTS OF SOURCE TE~\iS 
S:·lpa C U-C3+CE-C'N 
CpaAMAX1 (0.0,~1P) 
CPO-CP 

C-----ASSE:1BLE MAIN COEFFIC1E:-ITS 

C 

AN(r, J)-AMAX1 (ABS(O. 5*CN) ,DN)-O. 5*CN 
AS(I,J)-AMAX1(ABS(0.5*CS),DS)+0.5*CS 
AE(I, J)-A!UX1 (ABS(O. 5*CE) ,DE )-0. 5*CE 
AW(r, J)'"'AMAX1 (ABS(O. 5*C\'1) ,D'.f) +0. 5*C'lt 
DV(I, J)=-0.,5*(AREAN+AREAS) 
SU(I, J )"CPO*V (I, J)+DV (I, J)*(p (I, J -1 )-p (I, J» 
SP(1, J):--CP 
IF(1NDCOS.EQ.2) SP(l,J)-SP(1,J)-V13(I,J)*VOL/RV(J)**2 
IF(1NDCOS.EQ.2) SP(1,J)=-SP(I t J)-VIS(I,J)*VOL/RV(J)**2 
DUDYP -(U(l+1 ,.rJ-U(l+1 ,J-1 )J!DYPS(J) 
GAr·IP -O.25*(VIS(l,J)+VIs(r+1 ,J)+VIs(r,J-1 )+VIS(I+1 ,J-1» 
GA~i:1 -o.25*(V1S(I,J)+VI3(I-1 ,J)+VIS(1,J-1 )+VI3(1-1 ,J-1» 
DUDYl1 -(U(I,J)-U(I,J-1 »/DYPS(J) . 
SU(I,J)'-SU(I,J)+(GAMP*DUDYP-GAMM*DUDYM)/S~N(I)*VOL 
DVDYP -(V(1,J+1 )-V(1,J»/SNS(J) 
RGAMP -VIS (I, J)*R (J) 
DVDYM -(V(I,J):'V(1,J-1 »/SNS(J-1) 
RGAMM -VIS(I,J-1)*R(J-1) , 
SU(1, J) -SU(I, J)+ (RGAMP*DVDYP-RGAr-r:Ii*DVDYi1) /(R (J )*SNS (J) )*VOL 

101 CONTINUE 
100 C O~T1NUE 

CHAPTER 2 2 2 2 2 2 2 PROBLEM MODIFICATIO~S 2 2 2 2 2 2 
C 

CALL rWDV 
C 
CHAPTER 3 FINAL COEFF. ASSm1BLY AND RESIDUAL SOURCE CALeUL\TION 3 3 
C 

RESORV-o.O 
DO 300 1-2, NIM1 
DO 301 J-3, NJM 1· ' 
AP(I,J)-AN(I,J)+AS(I,J)+AE(I,J)+AW(I,J)-SP(I,J) 

,DV(I,J)-DV(I,J)/AP(I,J) . 
RESOR-AN(1,J)*V(I,J+1 )+AS(I,J)*V(I,J-1 )+AE(I,J)*V(1+1 ,J) 

1 +AW(I,J)*V(1-1,J)-AP(I,J)*V(I,J)+SU(1,J) 
VOL-R(J)*SEW(I)*3NS(J) 
SORVOL-GREAT*VOL 
1F(-SP(I,J).GT.O.5*SORVOL) RESOR-RESOR/SORVOL 
RESORV-RESORV+ABS(RESOR) 

C-----UNDER-RELAXATION 

C 

AP(I, J)-AP(1, J)/URFV 
SU(I,J)-3U(I,J)+(1.-URFV)*AP(I,J)*V(1,J) 
DV(I,J)-DV(I,J)*URFV . 

301 CONTINU~ 

300 CONTINUE 

CHAPTER 4 4 '4 SOLUTIO] OF DIFFERENCE EQUATIO~ 4 4 4 4 4 4 4 
C 

C 

DO 400 N-1,.NS\tPV 
400 CALL LISOLV(2,3,NI,NJ,IT,JT,V) 

RETURN 
ElD 
SUBROUTI1~E CALCP 

ClL\PTER 0 0 0 0 0 0 0 0 PRELI?UNARIES 0 0 0 0 0 0 0 0 
C ' 

COl·t:~ON 

1 /PCOR/~E80Rr1 ,NS'iPP, URFP, I?U(32, 32) ,DV(32, 32), IPRE?, JPRE~ 
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1 IV A H/,] (52,32) , V (32 ,32) ,p(32, 32 ) ,pp (32, 32) ,TB (52, 32) ,ED(32, 32 ) 
1/ ALL/IT, J1', NI, NJ, NI:·11 ,NJ>11 ,G~EAT 
1 /GEO~1/INDC OS, X (40), Y(40), DXEP( 40), DXPw( 40), DY~P(40) ,DYP] (40) , 
1 SNS(40),SE";~(40),X1JC1-0),YV(40),H(40),RV(40) 
1 /FLUPR/:JRFVIS, VI3C03, Dr.!NSIT, PRANDT m:~ (32,32) ,VIS (32,32) 
1 /COEF/ AP(32, 32) ,AN(32, 32) ,AS (32, 32 ~ ,AB(32, 32) ,A'.i(32, 32) ,SU(32, 32) , 
1 SP(32, 32) 
1 /KASE T 1 /U IN, TEIN, EDI~, FLOW IN , ALAi-iDA, 
2 RSi-iALL, RLARGE, AL5, AL6, JSTEP, ISTEP, JSTP1 ,JSTI'11 , ISTP1 , IST:11 , 
3 ISTP2,ISTP3,IST~2 

RES()R:·i-O.O 
C 
CHAPTER 1 
C 

1 ASSE:1BLY OF COEFFIC IENTS 1 

DO 100 1-2, NIM 1 
DO 101 J=2,NJ:-i1 

C-----C~1PUTE AREAS AND VOLU~E 
ARE AN -R V (J +1 )*s K( ( r ) 
AREAS-RV(J)*SEw(r) 
AREAE'J-R (J )*sns (J) 
VOL-R (J )*SNS (J )*SE\of(r) 

C-----CALCULATE COEFFICIENTS 
DENN-o.5*(DEN(r,J)+DE~(r,J+1 » 
DENS-o.5*(DEN(r,J)+DEN(r,J-1 » 
DENE-o.5*(DEN(r,J)+DEN(r+1,J» 
DEN',i-0.5*(DEN(I,J)+DEN(I-1,J» 
AN(I, J)-DENN*AREAN*DV(I, J+1 ) 
As(r,J)-DEUS*AREAS*Dv(r,J) 
AE (I , J )-DENE* AREAE'.i*DU (1 +1 ,J) 
AW( I, J )-DENi* AREAE',f"DU (r, J) 

C-----CALCULATE SOURCE 'rER~-lS 
CN-DENN*v(r,J+1 )*AREAN 
CS-DENS*V (I, J)*AREAS 
CE-DENE·J(r+1,J)*AREAgw 
CW-DENw*u(r,J)*AREAgl' 
SMP-CN-CS+CE-CW 
SP(I, J)-O. 0 
su(r, J)--SI(P 

C-----CO~PUTE SUM OF ABSOLUTE MASS SOURCES 
RESO~~-RESORM+ABS(SMP) 

101 CONTINUE' 
100, CONTINUE 

C 
CHAPTER 2 2 2 2 2 2 2 PROBLEr-i I-lODIFICATIONS 2 2 2 2 2 2 
C 

CALL MODP 
C 
CHAPrER 3 3 3 3 3 FINA~ COEFFICIENT ASSE:I1BLY 3 3 3 3 3 3 3 
C 

DO 300 1-2, NIM 1 
DO 301 J-2, NJ:H . , 

301 AP(r, J)-AN(r, J)+AS (r, J )+AE(r, J)+ A',v( I, J)-SP(I, J) 
300 CONTINUE 

C 
CHAPrER 4 4 4 4 4 SOLUTION OF DIFFERENCE EQUATIONS 4 4 4 4 4 
C 
C 
CHAPTER 5 5 5 5 CORRECT VELOCITIES AND PRESSURE 5 5 5 5 5 5 

DO 400 N-t , NS',iPP 
400 CALL LISOLV(2, 2, N1, NJ, IT, JT, PP) 

C 
C-----VELOCIT1ES 

DO 500 I -2 , ND11 
DO 501 J-2,N.n1 
IF(I. NE. 2) U (1, J)-U (I, J)+Du(r, J)*(PP(I-1 , J)-PP(I, J» 
IF(J.NE.2) V(I,J)-v(r,J)+DV(r,J)*(pP(I,J~l)_pp(r,J» 
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501 ~JNTUIU~ 

500 C ONT r flUE 
C-----PRE:J3URES (WITH pjWVrSlO~ FOR UIIDE~-dELAX~TIO~) 

PPRE?=PP(IPREF,JPREF) 

C 

DO 502 1-2. NI:-l1 
DO 503 J-2. NJ:11 
IF(I.EQ.ISTEP.AND.J.G3.JSTP1)PP(I.J)aO.0 

. IF( 1. EQ. ISTEP. AND. J. GS. J3TPl )p (I. J )-0.0 
IF(I.EQ.ISTP1.AND.J.GE.J3TP1)PP(1.J)-O.0 
1F(I.EQ.ISTP1.AND.J.GE.JSTP1)P(I.J)-0.0 
P(I.J)-P(I,J)+URFP*(PP(I,J)-PPREF) 
PP(I,J):"O.O 

503 C OUTI NUE 
502 C ONTIN:JE 

RETURN 
Erm 
SUEROUTINE CALCTE 

CHAPTER 0 0 0 0 0 0 0 PRELI~INARIES 0 0 0 0 0 0 0 
C 

C 

COH}10N 
1 /TEN/RESORK, NS~yPK, URFK 
1 IV AR/U (32, 32) , V (32,32) , P(32, 32) , PP (32, 32) , TE (32,32) , ED(32, 32 ) 
1 / ALL/IT, JT. NI, NJ, NIM 1, N.D1.1 , GREAT 
1 /~EOM/I~DCOS, X(40), Y(40) ,DX8P(40), DXP:.i(40), DYNP(40) , DYPS (40), 
1 SNS (40), SEW(40),XU (40), YV (40), R(40) ,RV(40) 
1 /FLtJPR/URFVIS, VISCOS, DENSIT, PRAIIDT, DEN (32,32) , VIS (32,32) 
1/COEF/AP(32,32 ),AN(32,32),AS(32,32),AE(32,32),AN(32,32),SU(32,32), 
1 SP(32,32) . 
1/TURB/GEN(32,32 ),CD,CMU,C1,C2,CAPPA,ELOG,PRED,PRTE 
1 /WALLF/YPLUSN(32) ,XPLUS','i(32), TAUN(32), TAtl'il(32) 
1 /:<ASE T1/UIN,TEIN,EDI~,FLO·.nN,ALumA, 
2 RSi-iALL, RLARGE, AL5, AL6, JSTEP. ISTEP, JSTP1. JST;l{l, ISTP1. IST~.t1, 
3 ISTP2, ISTP3, IST:.i2 
1 /SUSP /SUKD (32,32) , SPKD (32,32) 

CHAPTER 1 1 1 ASS·E:01BLY OF COE!"'FIC IENTS 1 
C 

PRTE-l .0 
DO 100 1-2, NI1011 
DO 101 J='2, NJI.f1 

C-----CO:·IPUTE AR.EAS AND VOLm-IE 
AREAN-RV(J+1 )*SEw(~) 
AREAS-RV(J)*S~I(I) 
AREAEW-R(J)*SNS(J) 
VOLaR (J )*S!~S (J )*SEli( I) 

C-----CALCULATE CONVECTION COEFFICIENTS 
. GN-0.5*(DEN(I,J)+DEN(I,J+1 »*V(I,J+1) 

GS-o.5*(DEN(I,J)+DEN(I,J-1 »*V(I.J) 
GE-0.5*(DEN(I,J)+DEN(I+1 ,J»*U(I+1 ,J) 
G~-o.5*(DEN(I,J)+DEN(I-1 ,J»*U(I,J) 
CIl-GN*AREAN 
CS-G3*AREAS 
CE-GE*AREAE'I 
CW-3W* AREAE'i 

C-----CALCULATE DIFFUSIO~ COEFFICIENTS 
GAMN-o.5*(VIS(I,J)+VIS(I,J+l »/PRTE 
GAMS-o.5*(VIS(I,J)+VIS(I,J-l »/P~TE 
GAME-u.5*(VIS(r,J)+VIS(I+1,J»/?RTE 
GAWi-O.5*(VIS(I,J)+VIS(I-1.J»/PRTE 
DN-3AMN*AREAN/DY~P(J) 
DS-GM1S*AREAS/DYPS (J) 
DE-GAI·1E*AREAE'i/DXEP(I) 

D'I-GAI·rl* AREAE'J/DXP'i( I) 
C-----SOURCE TER~S 

S:4P-C N-CS+CE-C'i 

CALCP 
~ALCP 

GALeP 
CALCP 247. 
CALCP 
CALCP 

CALCP 
CALCP 
CALCP 
CALCP 
CALCP 
CALCP 
KINE 
KINE 
KINE 
KINE 
KINE 
KINE 

KINE 
KINE 
KINE 

KINE 
KINE 
KINE 
KINE 
KINE 
KINE 
KINE 
KINE 
KINE 
KINE 
KINE 
KINE 
KINE 
KINE 
KINE 
KINE 
KI~E 

KINE 
KINE 
KINE 
KINll: 
KINE 
KINE 
KINE 
KINE 
KINE 
KINE 



CP".~:,iAX1 (J.O, S~,~?) KI:"lE 
CPO'"'CP KINS 
DUDXa(U(1+l,J)-'J(1,J»/SS,i(I) :<r:'Hi 
DVDY-(V(r,J+l )-V(I,J»/S:IS(J) KINB 24.9. 
DUDY-«U(I,J)+U(I+l ,J)+U(r,J+l )+iJ(1+1 ,J+1 »/4.~(U(I,J)+J(1+1 ,J)+ :10DA 

lU(r,J-l )+U(1+1 ,J-1 »/4. )/Sim(J) . KINE 
DVDX-«V(I,J)+V(1,J+1 )+V(I+l ,J)+V(I+l ,J+l »/4.-(V(r,J)+V(I,J+l )+V( MODA 

11-1 ,J)+V(I-l ,J+1 »/4.)/SE',i(r) , KINE 
GEN(I,J)-(2.*(DUDX··2+DVDY**2)+(DUDY+DVDX)**2)*VIS(I,J) 
IF(J.EQ.2)RV(J)-GREAT 

VDR-V (I, J)/RV(J) :40DA 
IF(INDCOS.EQ.2) GEN(I,J)-GEN(I,J)+VIS(I,J)*0.5*(VDR+V(1,J+l)/ 

1 RV (J +1 ) )**2 
C-----ASSE;·1BLE rliAn~ COEFFIC IENTS KINE 

AN(1,J)-AMAX1(ABS(0.5*CN),DN)-0.5*CN IINE 
AS (I, J )-AMAXl (ABS(O. 5*CS), US )+0. 5*CS KINE 
AE(r, J)-AIUXl (ABS(O. 5*CE) ,DE )-0. 5*CE KINE 
AII(I, J)-A!(AXl (ABS(O. 5*C-~1) ,D'J)+O. 5*C',i KINE. 
su(r,J)-CPJ*rE(I,J) KIllE 
SUKD(r J)-SU(I J) MODA 
su(r, J)-3U(I, J)+GEN (I, J)*VOL KINE 
SP(I~J)--CP KINE 
SPKD(I,J)-SP(I,J) . MODA 
SP(I, J )-SP(I, J)-CD*CMU*DEN (I, J)**2*TE(I, J)*VOL/VIS (I, J) KINE 

101 CONTINUE KINE 
100 CONTINUE KINE 

C KINE 
CHAPrER2 2 2 2 2 2 PROBLE~ MODIFICATIONS 2 2 2 2 2 2 KINE 

C KINE 
CALL ~IODTE KINE 

C KINE 
CHAPrER 3 FINAL COEFFIC IEtiT ASSEYiBLY ,AND 'RESIDUAL SOURCE CALCULATION 3 KINE 
C KINE 

RESORK-O.O ' KIUE 
DO 300 I -2, NI141 KINE 
DO 301 J-2,NJM1 KINE 
AP(I,J)-AN(I,J)+AS(I,J)+AE(I,J)+AW(I,J)-SP(I,J) KINE 
RESOR-AN(I,J)*TE(I,J+1 )+AS(I,J)*TE(I,J-l )+AE(I,J)*rE(I+1 ,J) KINE' 

1 +AW(I,J)*TE(I-l,J)-AP(I,J)*rE(I,J)+SU(I,J) _ KINE 
VOL-R(J)*Sgw(I)*SNS(J) 
SORVOL-GREAT*VOL 
IF(-SP(I,J).GT.O.5*SORVOL) RESOR-RESOR/SORVOL 
RESORK-RESORK+ABS(RESOR) ~ODA 

C-----UNDER-RELA~'TION KINE 
AP(I,J)-AP(I,J)/JRFK KINE 
SU(I,J)-SU(I,J)+(1.-URFK)*AP(I,J)*TE(I,J) MODA 

301 CO~TINUE KINE 
300 C ONTHlUE KINE 

C KINE 
CHAPTER 4 4 4 4 4 SOLUTION OF DIFFERENCE EQUATIONS 4' 4 4 4 4 KINE 
C ' KINE 

DO 400 N-l ,NS\o(PK MODA 
400 CALL LISOLV(2,2,NI,NJ,IT,Jr,TE)' KINE 

RETURN KINE 
END KINE 
SUBROUTIlfE CALCED DISP 

C DISP 
CHAPTER 0 0 0 0 0 0 0 PRELI~INARIES 0 0, 0 0 0 0 0 DISP 

C DISP 
CO:(~ON 

l/TDIS/RESORE,NS~PD,URFE 
1 / ALL/IT, JT, NI, NJ, Nm 1, NJM 1, GREAT 
1 /GEOi'l/I~DCOS, X(40), Y(40) yDXEP(40), DXP','i(40), DINP(40), DIPS (40) , 
1 SNS(40), SE:I(40) ,XU (40), IV (40), R(40), RV(40) 
1 /FLUPR/URFVIS, VISCOS, DENSIT, PRANDT DEl (32,32), VIS (32,32) 
1 /COEF/ AP('32 , 32) ,AN(32, 32) ,AS(32, 32) ,AE(32, 32) ,A;~(32, 32) ,SUC~2, 32), 



1 SP(j2, 32) 

1 /TURB/3E!J (32,32) t CD, C:W, C 1 , C2, CAPPA, ELOG, r:mn, P1T:~ 
1 hlALL~ /YPLU1N (32) , XPLU~r..,r(32) , TAU~J (52) ,TAlU(32) 
1 /SU3P/SUKD(52, 32) ,SPKD(32, 32) 
1 /VAR/U (32,32) , V (32,32) ,P(52, 32), PP (32,32) ,78 ('32,32) ,EDC52, 32) 
l/KASE T1 /UIN, TElil, EDIN, FLO"w'IN, AM:mA, 
2 RS:1ALL, RLA RGE, AL5, ALG, J3T8P, ISTEP, J'3TPl , J~3T'11 , ISTP1 , IST'U , 
3 ISTP2, ISTP3,ISTA2 

C 
CHAPrER 
C 

ASSE1BLY OF COEFFIC IE'lTS 1 

DO 100 1-2, Nml 
DO 101 J-2,NJ:>tl 

C-----CO:1PUTE AREAS AND VOLU:.iE 
AREAU-RV(J+l )*SE"ll(r) 
AREASaRV(J )*SE'J(r) 
AREAEWaa(J)*SNS(J) 
VOL-R(J)*SNS(J)*Sg-A(I) 

C-----CALCULATE CONVECTIO~ COEFFICIENTS 
GJ-o.5*(mm(1,J)+DEN(I,J+l »*V(I,j+l) 
GSaO. 5*(D~N(I, J)+DEN(I, J-l »*V(1, J) 
GE~.5*(DE~(I,J)+DEN(I+l ,J»*J(I+l ,J) 
GW~.5*(D3N(I,J)+DEN(I-l ,J»*U(1,J) 
CN-3N*AREAN 
CS-GS*AREAS 
CE-GE*AREAEW 
CW"'3'i*AREAEW 

C-----CALCULATE DIFFUSION COEFFICIENTS 
GAI·m-D. 5*(VIS (I, J)+V1S (I, J+l » /PRED 
GAMS=O. 5*(VIS (I, J)+VIS (I, J...:l » /PRED 
GAME-D.5*(VIS(I,J)+VIS(I+l,J»/PRED 
GAf·fl-0. 5*(V1S (I, J)+V1S (I -1 ,J» /PRED 
DN-GA~N*AREAN/DYNP(J) 
DS-GAMS*AREAS/DYPS(J) 
DE-GAME*AREAE'A/DXEP(1) 
D~-GAWi*AREAE'i/DXPN(I) 

C-----SOURCE TERMS 
S:1P-CN-CS+CE-CW 
CP-AloiAXl (0.0, StolP) 
CPO-CP 

C-----ASSEMBL& MAIN COEFFICIE~TS 

C 

AN(I, J)-A~IAXl (ABS(O. 5*CN) ,DN )-0. 5*CN 
AS(I,J)-AMAX1(ABS(0.5*CS),ns)+0.5*CS 
AE(I,J)-AMAX1(ABS(0.5*CE),DE)-0.5*CE 
AN(I, J)-AI-iAXl (ABS(O. 5*C'.() ,17 .. 1)+0. 5*C1t1 
SU(I, J )-CPO*E!D(I, J) 
SUKD(1,J)-SU(I,J) 
SU(I,J)-SU(I,J)+Cl*CMU*GEN(I,J)*VOL*DEN(I,J)*TE(I,J)/VIS(1,J) 
SP(I,-J)--CP 
SPKD(I J)-SP(I J) 
SP(1,J)-SP(I,J)-C2*DEN(I,J)*ED(1,J)*VOL/TE(I,J) 

101 CONTINUE 
100 CONTINUE 

CHAPTER 2 2 2 2 2 2 PROBLE~ MODIFICATIONS 2 2 2 2 2 2 
C 

CALL MOD~D 
C 
CHAPrER 3 FINAL COEFFICIENT ASSE:1BLY AND RESIDUAL SOURCE CALCULATION 3 
C 

RESOREaO.O 
DO 300 1-2 t NIM1 
DO 301 J-2, NJM 1 
AP(I,J)-AN(I,J)+AS(I,J)+AE(I,J)+AW(I,J)_SP(I,J) 
RESOR-AN(r,J)*ED(r,J+l )+AS(I,J)*~D(I,J-l )+AE(r,J)*8D(r+l ,J) 

1 +A~(I,J)*ED(I~1,J)-AP(I,J)*8D(I,J)+SU(I,J) 

DISP 
DISP 
DISP 
DISP 
DISP 
DISP 
DISP 
DISP 
DISP 
DISP 
DISP 
DISP 
DISP 
DISP 
DISP 
DISP 
DISP 
DISP 
DISP 
DISP 
DISP 
DISP 
DISP 
DISP 
DISP 
DISP 
DISP 
DISP 
DISP 
DISP 
DISP 
DISP 
DISP 
DISP 
DISP 
DISP 
DISP 
DISP 
!\iODA 

DISP 
MODA 
DISP 
DISP 
DISP 
DISP 
DISP 
DISP 
D1SP 
DISP 
DISP 
DISP 
DISP 
DISP 
DISP 
DISP 
DISP 
DISP 
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VJL-~(J)~3N3(J)~38~(I) 

SORVJL""~REAT*VOI, 
rF(-3P(r,J).GT.0.5*3JRVOL) aEsoR-RE~oRIsoRvJL 
RESORE-RESORE+ABS(RE30R) 

C-----JND~~-RELAX~TrO~ 
AP(r,J)-AP(r,J)/JRFE ' 

C 

su(r, J) 313U(r, J)+ (1 • -URFE)*AP(r, J)*ED(r, J) 
:501 conTrNUE 
300 CONTINUE 

CHAPTER 4 4 4 4 4 SOLUTIO~ OF DIFFEREN~E EQUATIONS 4 4 4 4 4 
C 

DO 400 N-1, N$~PD 
400 CALL LISOLV(2, 2, HI, NJ, IT, JT, ED) 

RETURN -
END 
SUBROUTINE LISOLv(rSTART,JSTART,NI,NJ,IT,JT,PHI) 

C , 
CHAPTER 0 0 0 0 0 0 0 0 PRELPUNARIES 0 0 0 0 0 0 0 0 
C 

DL·IEllSION PHI (IT, JT) , A(40) ,B(40), C( 40) ,D(40) 
CO:>1MON 

1 ICOEF / AP(32, 32 ) , AN (32, 32 ) , AS (32,32) , AE (32,32) , NIT (32, 32) , SU (32, 32) , 
1 SP(32, 32) 

NI1-!1-=:n-1 
NJM1-N J-1 
J3TM 1-JSTART-1 
A(JSTr>t1 )-0.0 

c-----CO:>tMENCE W-E SWEEP 
DO 100 I-ISTART,NIM1 
C(JSTM1)-PHI(I,JSTM1) 

C-----CO:-1:.tENCE S-N TRAVERSE 
DO 101 J·JSTART,N~11 

C-----ASSEMBLE TDMA COEFFIC IENTS 
A(J )-AN(I, J) 
B(J)-AS(I,J) 
C(J)-AE(I,J)*PHI(I+1 ,J)+AW(I,J)*PHI(I-1 ,J)+SU(I,J) 
D(J )-AP(I, J) 

C-----CALCULATE COEFFICIENTS OF RECURRENCE FO~{ULA 
TEIDol-1./(D(J)-B(J)*A(J-1 » 
A(J )-A(J )*1'ERi-i 

101 C(J)-(C(J)+B(J)*C(J-1 »*TERi-1 
C-----OBTAIN NF:i PHI"S 

C 

DO 102 JJ-JSTART,NJM1 
J-NJ+JSTtol1-JJ 

102 PHI(I,J)-A(J)*?HI(I,J+1 )+C(J) 
100 CONTINUE 

RETURN 
END 
SUBROUTINE PROMOD 

CHAPTER 0 0 0 0 0 0 0 PRELIlHNA'RIES 0 0 0 0 0 0 0 0 0 
C 

C<Y.'I!-1ON 
1 /UVEL/RESORU, NSWPU, URFU, DXEPU (40), DXP',m(40), SETJ/U(40) 
1 /VV~L/RESORV, NS\fPV , URFV, DYNPV (40), DYPSV(40), SNSV (40) ,RCV(40) 
1 /PCOR/RESOR~ol NS',ofPP, URFP, DU (32,32) ,DV(32, 32) ,IPREF, JPREF 
1 /VAR/U (32,32), V(32, 32) ,P(32, 32) ,PP(32, 32), TE(32, 32) ,ED(32, 32) 
1/ALL/IT,Jr,NI,NJ,NIM1,N~1,GREAT 
1 /GEO~t/INDCOS, X(40), Y(40) ,DXSP(40), DXPW( 40), DYNP(40), DYPS (40), 
1 SNS (40) ,SE'i(40) ,XU (40) ,YV (40) ,R(40) ,RV(40) 
1/FLUPR/URFVIS,VISCOS,DENSIT,PRANDT,DEN(32,32),VI3(32,32) 
1/KASE T1t~IN,TEIN,EDIN,FLOWIN,ALAMDA, 
2 RS~ALL, RLARGE, AL5, AL6, JSTEP, ISTEP, JSTP1 , J3Tl{1 , ISTP1 , IST:~ 1, 
:; ISTP2, 1STP3, IST:~2 
1 /StlSP /SUKD (32,32) , SPKD (32,32) 

~lODA. 

DISP 
DISP 
MODA 
DISP 
DISP 
DISP 
DISP 
DISP 
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DISP 
DISP 
DI~P 
LISOLV, 
LISOLV 
LISOLV 
LISOLV 

LISOLV 

LISOLV 
LISOLV 
LISOLV 
LISOLV 
LISOLV 
LISOLV 
LISOLV 
LISOLV 
LISOLV 
LISOLV 
LISOLV 
LISOLV 
LISOLV 
LISOLV 
LISOLV 
LISOLV 
LISOLV 
LISOLV 
LISOLV 
LISOLV 
MODA 
LISOLV 
LISOLV 
LISOLV 
LISOLV 
PRO:>iOD 
PR 0:-1 OD 
PRmWD 
PRO'l:OD 
PRO)tOD 



1/COE?/AP(j2,52),AN(32,32),AS(52,52),AS(52,5?),AI(32,32),SU(32,32), 
1 SP(32, 32 ) 
1 /TU]B/:::S;~ (32 ,32) , CD, C~.m, C 1 , C2, CA PP,\, ELOG, PR gD, PRT8 
1 /"'/ALLF /YPLlJSN (32) , XPLUSE (32) , XPLUSJ( 32) , TA U] (52) , TAUB (32) , TA U'.~ (32) 

C 
CHAPl'ER 1 
C 

PROPERTIES 1 

ENTRY 110DPRO 
C-----~O MODIFICATIO~S FOR THIS PROBLS~1 

RETURN 
C 
CRAPl'ER 2 2 2 2 2 2 2 2 U !to:~ENTU'1 2 2 2 2 2 2 2 2 2 
C 

ENTRY :·lODU 
c*****lI- I~SIDE OR IF ICE PLATE 

DO 1030 I=rSTEP,rSTP2 
DO 1030 J-JSTP1, N.Y.·11 

1030 sp(r,J)--GREAT 
C-----TOP WALL 
C****** TOP WALL1(rN REGION1) 

CIYrER;-1-C~U**O. 25 
YP-YV(~~ J)-Y (N.Di 1 ) 
J-N.r11 . 
DO 210 I-3,ISTM1 
SQRTK"'SQRT(O. 5*(TE(r, J)+TE(I -1 , J») 
DENU-o.5*(DEN(r,J)+DE~(I-1 ,J» 
YPLUSA-0.5*(YPLUSN(r)+YPLUSN(r-1 » 
rF(YPLUSA.LE.11.63) GO TO 211 
T.'ofULT-DENU*CDrER:1*SQRTK*CAPPA/ ALOG(ELOG*YPLUSA) 
GO TO 212 

211 Ti-!ULT=<VISCOS/YP 
212 TAUN(I)--T~ULT*U(I,J) 

sp(r, J)-SP(I, J)-T;·1ULT*SE'.m(r )*RV(NJ) 
210 AN(r,J)-o.O 

TAUN(2 )"TAUN(3) '. 
C****** BOTTOM FACE OF ORIFICE PLATE(TOP ~ALL2(IN REGION2» 

ISTP2-1 STEP+2 
CDrERM-CMU**O.25 
YP-YV(JSTP1)-Y(JSTEP) 
J-JSTEP 
DO 907 I-1STEP,tSTP2 ' 
SQRTK-SQRT(0.5*(TE(1,J)+TE(I-1,J») 
DENU-o.5*(DEN(i,J)+DEN(r-1,J» 
ARE'.V-RV(J+1 )*SNSV(J+1 ) 
DENAR1-0. 25 * (DEN (I, J)+DEN (1-1 , J»* ARE·.~V 
DENAR2-DENAR1 
YPLUSA-D.5*(YPLUSN(r)+YPLUSN(r-1 » 
1F(YPLUSA. LE. 11 .63 )Ti-1ULT-V1SCOS/YP 
TMULT-DE~U*CDTERM*SQRTK*CAPPA/ALOG(ELOG*YPLUSA) . 
TAUN(1)--TMULT*U(1,J) 
1F(r.EQ.1STEP)SP(I,J)-Sp(r,J)-DENAR1 
IF(I.EQ.rSTP2)SP(I,J)-SP(I,J)-DENAR2 
SP(I,J)-SP(1,J)-TMULT*SE'NU(r)*RV(JSTP1) 
1F(I.EQ.1STEP)TAUN(r)-.5*TAUN(I) 
IF(I. EQ. ISTP2)TAtrn(r ) •• 5*TAU~(I) 
TAUN(I )-TAUN(1) 

907 AN(I, J)-O. 0 
C****** TOP wALL3(IN REGION3) 

CDTERM-CMU**O.25 
YP-YV(NJ)-Y(N.Dl1 ) 
J-NJM1 
DO 910 r -ISTP3, Nm 1 
SQRTK-SQRT(O.5*(TE(1,J)+TE(r-l,J») 
DENU-o.5*(DBN(I,J)+DEN(1-l,J» 
YPLUSA-o.5*(YPLUSN(r)+YPLUSN(r-l » 
IF(YPLUSA.LE.11.63)GO TO 911 

P10'10D 
PRO;·10D 
P~O~OD 

PRO'lOD 
PRO:10D 
PRO'WD 
PR.O~OD 

PRO~OD 
PRO:,lOD 
PRO:10D 

:WDA 
:10DA 
MODA 

fWD A 
f10DA 
MODA 
MODA 
:10DA 
MODA 
!'tiODA 
MODA 
MODA 
MODA 
}iOD,\ 
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T:·1ULT-DE:1U*CIn'ER·..,·''>QRTK*CAPP,a./ ALOG(ELOG*YPLW) A) 
G,) TO 912 

911 T~ULT·Vr3COS/YP 
912 TAUN(r)--T.I1ULT'·'J(I,J) 

sp(r, J )-SP(I, J )-T;·1ULT*SE\W (r )*RV(N J) 
910 AN(r,J)-o.O I 

TAU~(Nr)·TAUN(NI~1) 
C-----SIDE rlALL 
ClloH'

lIo** FRONT FACE OF ORIFICE PLATE(SIDE WALL1) 
DO 913 J-JSTP1, nJio11 

913 AE(rSTEP,J)-O.O 
C»***** REAR FACE OF ORIFICE PLATE(SIDE WALL3) 

rSTP2"'ISTEP+2 
DO 914 J-JSTP1, NJM 1 

914 AW(rSTP2,J)-0.0 
C-----SY.1METRY AXIS 

DO 203 I-l,NI 
. U (I, 1)-u (I , 2) 

203 AS(r,2)-O.0 
C-----OUTLET 

ARDENT-J.O 
FlOW-o.O 

C 

DO 204 J'"'2,N~{1 

ARDEN- O. 5*(DEN(NIM1, J)+DEN(NI~1-1 , J»*R (J )*SNS(J) 
ARDENT-ARDENT+ARDEN 

204 FLOW-FLOW+ARlEN*U (NHU, J) 
U rNC '"' (FLOIHU-F LOW) / ARDENT 
DO 205 J"'2,N~1 

205 U(NI,J)·~(NIM1,J)+UlnC 
RETURN 

CHAPrER 3 3 3 3 3 3 3 3 V )1Q:.1ENTm 3 3 3 3 3 3 3 3 3 
C 

ElTRY MODV 
C****** INSIDE ORIFICE PLATE 

DO 1031 r-ISTEP, ISTP1 
DO 1031 J-JSTP1, NJ.tf 1 

1031 SP(I,J)--GREAT 
C---~-SIDE wALL 
C****** FRONT FACE OF ORIFICE PLATE(SIDE WALL1) 

CDTERM-C~U**O.25 
XP-XU(ISTEP)-X(ISTM1) 
I-ISTM1 
DO 915 J-JSTP1,NJMl 
SQRTK~SQRT(0.5*(TE(I,J)+TE(I,J-1 ») 
DENV-o.5*(DEN(I,J)+DEN(I,J-1 » 
AREANU-RV(J)*Sg~U(I+1 ) 
DENAR3-o.25*(DEN(I,J)+DEN(r,J-1 »*AR~ANU 
DENAR4-DENAR3 
XPLUSAaO.5*(XPLUSE(J)+XPLUSE(J-1 » 
IF{XPLUSA. LE.11 .63 )T,·WLT-VISCOS/XP 
TiofULT-DENV*CDTER1·1*SQRTK*CAPPA/ ALOG(ELOG*XPLUSA) 
TAUE{J)--TMULT*V{I,J) 
1F(J. EQ. JSTP1 )SP(I, J)-sp(r, J)-DENAR3 
sp(r, J)-SP(I, J)-TiofULT*SNSV (J )*RV(J) 
IF{J.EQ.JSTP1)TAUE{J)-.5*TAUE(J) 
TAUE{J )-TAUE{J) 

915 AE{I, J)-O. 0 
TAUE(JSTEP)-TAUE(JSTP1) 
TAUE{NJ)-rAUE(NJM1) 

C****** REAR FACE OF ORIFICE PLATE(SIDE ~/ALL3) 
C·DTER!It-CMU**O.25 
XP-X(ISTEP)-XU(rSTEP) 
ISTP2-ISTEP+2 
I-ISTP2 
DO 91 8 J·J~TP1, N.r.~ 1 

110DA 
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MODA 
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SQi~TK-3Q~T(:J. 5*('rE(I, J)+Tr.:(r, J-1 ») 
D:;NV:aO. 5*(D~'! (r, J )+DEii (r, J-1 » 
XPLU3A=J.5*(X?LU3~(J)+XPL~11(J-1 » 
IF(XPLUSA. LE. 11 ~ 63 )T.WLT:·Vr3COs/xp 
T.ruLT"'DEnV*CD1'ER:~*3 Q:lT K*CAPPAI ALOG (~LOG*X PLU::> A) 
TAlr.i(J )--T:.wLT*'/ (I, J) 
IF(J.EQ.JSTP1)SP(I,J)-Sp(r,J)-DENAR4 
sp(r, J)=-SP(I, J)-TlmLT*S~13V(J )*av(J) 
IF(J. EQ. JSTPl )TAIU(J)-. 5*TAU.I(J) 
TAIH(J ):aTAU~'i(J) 

918 A'I(I,J)-O.O 
TAU',i(JSTEP)-TAU'.f(JSTPl ) 
TAU,t(N J)-TAU'J( N J.1 1 ) 

C-----TOP «ALL 
C·**·u** TOP ',HLLl (In REGION1) 

DO 313 1-2, IST;11 
313 AN(I,N.D1l)=-O.O . 

C****'** BOTTOM FACE OF ORIFICE PLATE(TOP iiALL2(IN REGION2» 
DO 1006 I=ISTEP,ISTP1 

1006 AN(I,JSTP1):aO.0 
c****** TOP wALL3(IN REGIO~3) 

DO 1007 I=ISTP2,NDU 
1 007 AN (I , N.M 1 )=-0. 0 

C-----S~.fMETRY AXIS 
DO 302 I-2,NIMl 

302 AS(I,3)-0~0 
RETURN 

C . 
CHAPTER 4 4 4 4 4 4 P1ESSURE CORRECTION 4 4 4 4 4 4 4 4 
C 

C 

Elf TRY ~-iODP 

RETlBN 

CHAPTER 5 5 5 5 5 5 5 THER~AL ENERGY 5 5 5 5 5 5 5 5 5 
C 

ENTRY MODT 
C-----110 MODIFICATIONS FOR THIS paOBLE?ol 

RETURN 
C 
CHAPl'ER 6 6 6 6 6 6 6 TURBULENT KINETIC ENERGY 
C 

ENTRY MODTE 
c****** INSIDE ORIFICE PLATE 

DO 1032 I-ISTEP,ISTP1 
DO 1032 J-JSTP1,N~~1 

1032 SP(I,J)--GREAT 
C-----TOP WALt 
C**··*** TOP WALL1 (IN REGION1) 

CDTERM-CMU**O.25 
YP-YV(!{J)-Y(NJ:.i1 ) 
J-!{.hl{ 1 
DO 924 I-2,ISTM1 
DENU-DEN(I,J) 
SQRTK-SQRT (TE(I, J» 
VOL-R (J )*SNS (J )*SE',f( I) 
G~NCOU-o. 5*( ABS(TAUN(I +1 )*U (I +1 ,J) )+ABS(TAUN(I )*U (I, J») IYp 
YPLUSN(I)-DENU*SQRTK*CDTERM*yp/VISCOS 
DUDY-«U(I,J)+U(I+1 ,J)+U(I,J+1 )+U(I+1 ,J+1 »/4.-(;1(I,J)+U(I+1 ,J)+ 

1U(I,J-1 )+U(I+1 ,J-1 »/4.)/SNS(J) 
GENRES-GEN(I,J)-VIS(I,J)*DUDY**2 
GEN(I,J)-GENRES+GENCOU 
IF(YPLUSN(I).LE.11.63)GO TO 925 
DITER~-DEN(I.J)*(CMU**.75)*SQRTK*ALOG(ELOG*YPLUSN(I»/(CAPPA*!P) 
GO TO 926 

925 CONTI:iUE 
DITER!4-DEN (1, J)*( c:m**. 75 )*SQRTK*YPLUSN (1) Iyp 
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Y26 C Oij'InJE 
suC I, J)""GS:l (1, J )*'JuL+3 UKD (1, J) 
SP(I, J):a-:)lTE~r-~ltiJ:)L+'3?KD (r, J) 

924 AN(I,J)2).O , 
c·"·lt***"11- BOTTO.'l FACE OF ORI?ICE PLt..TE(TOP ':lALL2(1N REGrON2» 

CDTER1"'C:1U*ltJ.25 
YP-YV(JSTP1)-Y(J3TEP) 
J"JSTEP 
DO 927 1-1STEP,ISTP1 
DENU-DEN (I, J) 
SQRTK-SQRT(TE(1, J» 
VuL-a{J)*SNS(J)*SE'N(r) 
GENCOU-J.5*(ABS(TAUN(I+1 )*:1(1+1 ,J»+ABS(TAU~(I)*J(I,J»)!YP . 
YPLUSN(I)aDENU*3QRTK*CDrE~~*YP/VISCOS 
DUDY-«U(1,J)+U(I+1 ,J)+:1(1,J+1 )+U(1+1 ,J+1 »/4.-(U(I,J)+LJ(1+1 ,J)+ 

1U(1,J-1 )+U(1+1,J-1 »/4.)/SNS(J) 
GENRES-GEN(1,J)-VIS(1,J)*DUDY**2 
GEN(1,J)aGENRES+GENCOU 
IF(YPLUSN(I).LE.ll.63)GO TO 928 
DITER~·DEN(1,J)*(CMU**.75)*SQRTK*ALOG(ELOG*YPLUSN(I»/(CAPPA*YP) 
GO TO 929 

928 CONTINUE 
DITER:-t-DEN (I, J)* (crm** .75 )*SQRTK*YPLUSN (1)!YP 

929 CONTINJE 
SU(I,J)-3E~(1,J)*VOL+SUKD(I,J) 
SP(I,J)a-DITE~~*VOL+SPKD(1,J) 

927 AN(I, J)aO. 0 
C****** TOP WA113(IN REGION3) 

C IYl'ER~ -C 11U**0 • 25 
YP-YV (~J)-Y (N J~i1 ) 
J-~JM1 

DO 930 1-1STP2,NI:-t1 
DENU=DE~(1,J) 
SQRTK-SQRT(TE(1,J» 
VOLaR(J)*SNS(J)*SEW(I) 
GENCOU-o. 5*(ABS(TAUN(1 +1 )*U (1 +1 ,J »+ABS(TAUN(I )*U (1, J») /YP 
YPLUSN(1)-DENU*SQRTK*CDTERM*YP/V1SCOS 
DUDY-«U(I,J)+U(1+1 tJ)+U(1,J+l )+U(1+1 ,J+1 »/4.-(U(1,J)+U(1+1 ,J)+ 

1U(1,J-1 )+U(1+1 ,J-1 )J!4.)/SNS(J) 
GENRES-GEN(I,J)-VIS(I,J)*DUDY**2 ' . 
GE~(I,J)-3ENRES+GENCOU 
IF(YPLUSN(1).LE.ll.63)GO·TO 931 
DITER*-DEN(I,J)*(CMU**.75)*SQRTK*ALOG(ELOG*YPLUSN(1})/(CAPPA*YP) 

931 CONTINUE 
DITER:~-DEN(I, J)*(CMU**. 75 )*SQRTK*YPLU3N(1 )!YP 
GO TO 932 

932 CONTINUE 
SU(1,J)-GEN(I,J)*VOL+SUKD(I,J) 
SP(1,J)--D1TER'*VOL+3PKD(I,J) 

930 AN(I, J)-O. 0 

:WDA. 
:WDA. 

C -----3 IDE WALL J10DA 
C***** FRONT FACE OF ORIFICE PLATE(SIDE WALL1) 

CDTER~-C~U**O.25 
XP-XU (ISTEP )-X (1ST:41 ) 
r-ISTl-il . 
DO 933 J-J3TP1,N~1 
DENV-DEN(I,J) ~ODA 
SQRTK-SQRT(TE(r, J» MODA 
VOLaR (J )*SNS (J )*SE'oI( I) MODA 
XP1USE(J)-DElV*SQRTK*CDTER~*Xp/VrSC03 
GENCOU-o.5*(ABS(TAUE(J+1 )*V(1,J+1 »+ABS(TAUE(J)*V(r,J»)/XP 
DVDX-«V(I,J)+V(I,J+l )+V(I+1 ,J)+V(1+1 ,J+1 »/1.-(V(I,J)+V(I,J+1 )+V( 110DA 

1I-l,J)+V(I-l,J+1»/4.)/SNl(I) MODA 
G€NRES-GEN(I,J)-VIS(I,J)*DVDX**2 
GgN(I,J)-GENRES+GENCOU ~ODk 
IF(XPLUSE(~).~·11.63)~O ~O 934 
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DIT8~1·DS~(I,J)*(C1U**.15)*3QqTK*ALOG(SLOG*X?LU3S(J»1(CAPPA*K?) 
G:) TO 9.55 

951 CONTI:WE 
DITER:'1-D8~ (I, J )*( C:'1U** .15 )*3Q~TK*XPLUSE(J) /:<p 

955 CmJTINn 
SU(I,J)2SUKD(I,J)+GEN(I,J)*VOL 
sp(r, J)-SPKD (r, J)-DITER:1*VOL 

933 AE(r,J)-:>.O 
C*****.* REAR FACE OF ORIFICE PLATE(SIm~ ~~ALL3) 

CDTER~-CMU**O.25 

XP=X(ISTEP)-XU(ISTEP) 
ISTP2"ISTEP+2 
I-ISTP2 
DO 997 J~JSTP1,NJ:'11 
DE:{V =D!!:N (I , J) 
SQRTK"'3QRT(TE(I, J» 
VOL~a (J )*3NS (J )*SElJ( I) 
XPLU3'Il(J )aDENV*3QRTK*CDTEIt-t*XP /VISCOS 
GENCOU-o.5*(ABs(rAU~(J+1 )*V(I,J+1 »+ABS(TAUw(J)*V(I,J»)/XP 
DVDX"«V(I,J)+V(I,J+1 )+V(I+1 ,J)+'I(I+1 ,J+1 »/4.-(V(I,J)+V(1,J+1)+ 

1V(I-1,J)+V(I-1 ,J+1 »/4.)/sE~O[(I) 
. GE!HES-GEN (I, J)-V1S (I, J)*DVDX**2 
GE~(I,J)-GENRES+GENCOU 
IF(XPLUSt1(J). LE. 11 .63 )GO TO 936 
DITER:ol·DE~~ (I, J )*( CloW**. 75 )*S QRTK*ALOG (ELOG*){PLUS',of(J » I( CAPPA*XP) 
GO TO 937 

936 CONTINUE 
DITER~~"DEN (r, J)*( c~m**. 75 )*SQRTK*XPLUS:'of(J) /xp 

9"57 CONTINUE 
SU(I,J)aSUKD(I,J)+GEN(I,J)*VOL 
SP(I,J)aSPKD(I,J)-DITER~*VOL 

997 AW(I,J)=-O.O 
C-----SYMMETRY AXIS 

J-2 

C 

DO 630 1-2, NUll 
TE(I,1 )-TE(1,2) 
DUDY-«U(I,J)+U(I+1 ,J)+U(I,J+1 )+U(I+1 ,J+1 »/4.-(U(1,J)+U(I+1 ,J)+ 

1U(I,J-1 )+tJ(I+1 ~J-1 »/4.)/SNS(J) 
VOL-a(J)*SNS(J)*SEw(1) 
GEN(I,J):aGEN(I,J)-VIS(I,J)*DUDY**2 
SU(I,J)-SUKD(I,J)+GEN(I,J)*VOL 

630 AS(I,2):a0.0 
RETURN 

CHAPTER 7 7 7 7 7 7 7 7 DISSIPATION 
C 

ENTRY rWDED 
c****** INSIDE ORIFICE PLATE 

NJ['ol2aNJ-2 
DO 1033 I-1STEP,ISTP1 
DO 1033 J-JSTP1, NJIoi2 

1033 SP(1,J)--GREAT 
C-----TOP WALL 
C****** TOP WALL1(IN REGIONt) 

YP-YV(NJ)-I(N.Dl1 ) 
J·N~1 
TER!1-(crW**.75 )/e CAPPA*IP) 
DO 938 1-2, IST:11 
SU(I,J)-GREAT*TERM*TE(I,J)**1.5 

938 SP(I, J )a-GREAT 
C·»***** BOTTOi{ FACE OF ORIFICE PLATE(TOP \ofALL2(IN REGION2» 

YP-YV(JSTP1)-Y(JSTEP) 
J-JSTEP 
TER~-(CMU**.75)/(CAPPA*YP) 
DO 939 I-ISTEP,ISTP1 
SU~I, J~-3REAT*TER!-t*rE (r, J)**1 .5 
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959 SP(I,J)·-~REAT 
C****** TOP lALL3(IN REGIO~3) 

YP-YV (~J)-Y (J J,11 ) 
J-:IJ .. l1 
TSR:·1~ (c;·m**. 75) I( CAPPA *'ip) 
DO 940 I-ISTP2,NI;11 
SUer, J)"'~REAT*rEtr1*TE(I, J)**I. 5 

940 SP(I,J)--GREAT 
c-----SIDE WALL 
c****** FRONT FACE OF ORIFICE PLATE(SIDE WALL1) 

xp-xu (ISTEP )-X (ISTi·l1 ) 
1·IST;~1 
TERM-(CMU**.75)/(CAPPA*XP) 
NJIof2-3J-2 
DO 941 J-JSTP1,NJM2 
su(r,J)-GREAT*TERM*TE(r,J)**1.5 

941 sp(r, J)--GREAT 
C****H' REAR FACE OF ORIFICE PLAT~(SIDE WALL3) 

XP-X(ISTEP)-XU(ISTEP) 
ISTP2-ISTEP+2 
I-ISTP2 
TER:·1- (CMU** .75) I( CAPPA *XP) 
N J:<t2-:'l J-2 
DO 942 J-JS~P1, NJ:'12 
SU(I, J)'"'GREAT*TER;1*TE(I, J)**1 .5 

942 sp(r,J)--GREAT 
c-----SY.-1:1ETRY AXIS 

DO 730 1=2, Nla 1 
730 AS(1,2)-O.0 

RETlBN 
EJD 
SU9ROUTI~E PRINT(ISTART.JSTART,NI.NJ,IT~JTIX,y,PrlI,H3AD) 
DL-1ENSION PHI (IT. JT) ,X(IT), Y(JT) ,HEAD(6), STORE(50) 
DDlmSION F(7) ,F4(11 ) 
DATA F/4H(1H ,4H,A6, ,4HI3, ,4!i11I ,4Hl0, ,4H7X, , 

14HA6) I 
DATA F4/4H 11 ,4H 21 ,4H 31 ,4H 41 ,4H 51 ,4H 6I , 

1 4H 7I , 4H 81 , 4H 91 , 4H 1 01 , 4H 111 I 
DATA HI,HY/oH 1 - 6H Y - I 
1SKIP-1 
JSKIP-1 
WRITE(6,110)HEAD 
ISTA-ISTART-12 

1 00 CONTI NUE 
ISTA-ISTA+12 
IEND-1STA+11 
IEND-;UNO(NI, lEND) 
F(4)-F4(IEND-ISTA) 
WRITE(6,112) 
DO 101 JJ-JSTART,NJ,JSKIP 
J-JSTART+NJ-JJ 
DO 120 I-ISTA,IEND 
A-PHI(I,J) 
IF(ABS(A).LT.1.E-20) A-0.0 

120 STORE(I)-A 
101 WRITE (6 ,113) J, (STORE(r ), I-IST,A, lEND, lSKIP), Y(J) 

WRITE(6,114) (X(I),I-ISTA, lEND, ISKIP) 
c-'-----------------------------------------------

IF(IEND. LT. rn )GO TO 100 
RETURN 

110 F OR,\1AT (1 HO, 20 (2H*-)' 7X, 6A6, n, 20 (2H-*» 
111 FOR:UT(IHO,6H I- ,13,11I1(),7X,* Y - *) 
112FOR'UT(3H J) , 
11 3 F OR:'U T (I H , 13, 1 P 12£ 10. 2, OPF 7 • 3 ) 
114 FOR:-lAT(6HOX- ,F7.3,11F10.3) 

ErlD 

MODA 

:.tODA 
!o,fODA 

MOD A. 
}lODA 
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