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 

Abstract— Searchable Encryption is an emerging 

cryptographic technique that enables searching capabilities over 

the encrypted data on the cloud. In this paper, a novel searchable 

encryption scheme for the client-server architecture has been 

presented. The scheme exploits the properties of modular inverse 

to generate a probabilistic trapdoor which facilitates the searching 

over the secure inverted index table. We propose 

indistinguishability that is achieved by using the property of a 

probabilistic trapdoor. We design and implement a proof of 

concept prototype and test our scheme onto a real dataset of files. 

We analyze the performance of our scheme against our claim of 

the scheme being light weight. The security analysis yields that our 

scheme assures higher level of security as compared to other 

schemes. 

Index Terms— Searchable Encryption, Modular Inverse, 

Extended Euclidean Algorithm, Indistinguishability, Privacy 

Preservation, Inverted Index, Database as a Service (DaaS). 

I. INTRODUCTION 

LOUD is an environment that provides the utility of on 

demand resource sharing and data access to the clients and 

their devices remotely. Apart from the core categories of cloud 

services i.e. SaaS, PaaS, IaaS, nowadays, Database as a Service 

(DaaS) enables people to store their files on the cloud. This 

DaaS helps in achieving availability of the documents but there 

are some interrelated concerns associated to DaaS that are 

security, trust, expectations, regulations and performance issues 

[1]. The concerns above are interdependent and should be 

addressed simultaneously. Encryption is probably the best 

solution that comes to one’s mind while talking about security. 

However, in the context of DaaS, searching over the encrypted 

text or Searchable Encryption (SE) is a difficult and resource 

consuming task. 

This requires a SE scheme to be developed that would 

facilitate performing textual searches over encrypted data. Such 

a scheme would help maintain privacy of the outsourced 

documents while enabling the search over the encrypted 

documents. There are three main challenges associated with SE 

as discussed in [2] i.e. (1) efficiency, (2) security and (3) query 
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expressiveness. These three terms can be assumed to be the 

vertices of a triangle and an idealistic SE scheme should be 

developed in such a way that it transforms the triangle into an 

equilateral triangle. In other words, a balance needs to be 

maintained between the faced challenges while designing a SE 

scheme. 

National Security Agency (NSA) has highlighted the 

concerns related to security in the cloud and has proposed the 

use of homomorphic encryption [3]. Homomorphic encryption 

enables to perform operations on encrypted data. Though 

homomorphic encryption has revolutionized the field of 

cryptography, there are still major concerns related to 

performance. In [4] the authors have conducted a survey and 

comparison of different homomorphic and non-homomorphic 

SE schemes. Their result yields that non-homomorphic SE 

schemes out-perform homomorphic SE schemes in terms of 

efficiency. 

Till now the use of SE has been explored in connection with 

E-mail servers [5] to conduct searches on confidential emails. 

In the healthcare domain [6][7] the SE has been researched as 

an effective method of providing keyword search on patients 

health records. SE could have a profound impact on areas 

related to telecom, e-commerce, warfare, big data analysis, 

cloud storage. 

In this paper we present a novel lightweight ranked SE 

scheme. We develop and implement a proof of concept 

prototype and test it on a database containing 2000 documents. 

By developing the prototype, we explore the deployment of our 

scheme in the telecom industry. We use the Switchboard-1 

speech database [8] that is a corpus of spontaneous 

conversations which addresses the growing need for large 

multi-speaker databases of telephone bandwidth speech. The 

corpus contains 2430 conversations averaging 6 minutes in 

length; in other words, over 240 hours of recorded speech, and 

about 3 million words of text, spoken by over 500 speakers of 

both genders from every major dialect of American English. 

This database consists of 120,000 distinct keywords. Based on 

the results we generate graphs and show that the scheme is 
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lightweight and shows a linear growth while scaling the input. 

Hence, we prove that our scheme can perform efficient 

keyword search on telephone speech. Furthermore, our scheme 

can be equally helpful for performing SE in the aforementioned 

domains. 

Most of the schemes[5][9][10][11] proposed till date are 

proven secure in the random oracle model (ROM)[12]. ROM is 

based on the basic assumption that the cryptographic primitives 

are replaced with idealized versions. In [13] authors have 

presented a twenty year retrospective on the ROM. The authors 

discuss the controversies associated with the use of ROM. This 

evidence us to prove the security of our scheme in the standard 

model that only limits the adversary by the resources available 

i.e. time and computational resources. 

A. Our Contributions 

Following contributions to the field of SE have been made in 

this work: 

 Our foremost contribution is that we enumerate the 

properties of a “secure” ranked SE scheme by formally 

defining keyword-trapdoor indistinguishability and 

trapdoor-index table indistinguishability. 

 A primary contribution in this research is that we define 

“complete indistinguishability” in searchable 

encryption. 

 We design and present a novel Ranked based Searchable 

Encryption scheme that is completely based on a 

probabilistic encryption algorithm to address the 

distinguishability attacks. 

 We design and implement a proof of concept prototype 

and test our scheme onto a real dataset of files containing 

120,000 keywords and 2000 documents to analyze the 

performance of our scheme. 

B. Organization 

Section II presents the literature review in which existing SE 

schemes are discussed. Section III discusses Ranked Searchable 

Encryption Scheme (RSE) model by formally defining our 

construction. In Section IV, we revisit the security definitions 

related to searchable encryption and propose new definitions 

for our proposed ranked searchable encryption scheme. Finally, 

in Section V, we present our ranked searchable encryption 

scheme followed by a security analysis. In Section VI, we 

perform a comparative analysis of the existing scheme against 

our scheme in terms of complexity. We also develop a proof of 

concept prototype and test our scheme onto a live dataset of 

documents by analyzing the computational time. The 

computational time is also analyzed in Section VI. The 

conclusions along with the future work are drawn towards the 

end of the paper, in Section VII. 

II. LITERATURE REVIEW 

A state of the art searchable encryption scheme must maintain 

a balance between security and efficiency. Previous researches 

fail to maintain this balance thus resulting in a system that lacks 

adaptability. In this section we discuss some significant 

schemes. 

 

Wang et al. in [14][15] for the first time introduce the 

concept of ranked keyword searching over encrypted data. The 

authors have proposed two schemes for single keyword search 

over encrypted text. Their scheme was an extension of [16] and 

they added secure ranking to it. Both the schemes facilitate the 

server to perform ranked keyword searching on user’s behalf. 

In both the schemes, the user will generate the same trapdoor 

while searching for a particular file. Therefore, the schemes 

lack in providing indistinguishability. There is an advantage of 

their later scheme as it helps in providing dynamic inverted 

index i.e. whenever a new file is added to the server the re-

ranking is not to be done but this comes with a huge 

computation cost which will be discussed in the section VI. 

Furthermore, the later scheme helps to keep the ranking score 

encrypted that will help to avoid leakage of occurrence of a 

particular keyword to the server. However, in [17] the authors 

have launched a successful differential attack on the 

aforementioned scheme. The authors have demonstrated that 

the scheme still leaks the relevance scores to the adversary from 

which the encrypted keywords can be inferred by using 

estimated distributions. Therefore, their scheme lacks in 

providing resistance against distinguishability attacks and leaks 

information. 

Kamara et al. in [10] have proposed a dynamic searchable 

symmetric encryption scheme. Their work can be termed as an 

extension of their previous scheme that they had proposed in 

[16]. Their scheme facilitates the adding, deletion or 

modification of a document. The change is brought to the server 

at run time and comes with minimal modification and 

recompilation of the inverted index. For the deletion of the file 

they use an additional data structure that contains the pointers 

to the file being deleted. For the modification they use 

homomorphic encryption to encrypt the pointer so that based on 

the homomorphic encryption properties the server can get 

modify the file. Though this can be termed as a breakthrough in 

the field of searchable encryption, there is a drawback of their 

scheme i.e. the generated trapdoor is deterministic and the same 

trapdoor is generated for the same word every time hence it 

cannot resist distinguishability attacks. Furthermore, they have 

also analyzed that their scheme leaks even more information as 

compared to the previous scheme hence this scheme cannot be 

termed as an ultimate solution. 

Wang et al. in [18] have proposed a range search scheme on 

encrypted spatial data. Their scheme i.e. Geometric Range 

Searchable Encryption (GRSE) supports searchable symmetric 

encryption by mapping the datasets to a set of points lying 

within a geometric shape. Their design is indeed remarkable as 

it is not dependent upon a particular geometric shape and 

supports Axis-parallel Rectangles, Circles, Non-axis-parallel 

Rectangles and triangles. However, in this scheme all the data 

records within a dataset will be returned as the result and the 

user may have to download every file containing that particular 

keyword hence it will result in extra network traffic. 

Furthermore, with the increase in the outsource data, the size of 

the bloom filter is meant to be increased that will result in the 

slowing down of the searching. They have also proposed an 

extension of their probabilistic GRSE by using trees to increase 

the efficiency of searching. However, as we have mentioned 

earlier, this searching comes with a tradeoff of privacy as the 

tree may reveal the path pattern. So this scheme does not 



provide the desired level of security and privacy and reveals too 

much information. 

Tang in [19] has proposed a symmetric searchable multiparty 

encryption scheme (MPSE) that is an extension of [20]. In their 

scheme they introduce a Follow algorithm that allocates a token 

to the writer to be distributed among the readers (user) of the 

index table. This token authorizes the reader to perform the 

search on the index table. This scheme facilitates the dynamic 

users but does not allow dynamic databases. The authors 

assume that there is a secure channel between the user and cloud 

server to transmit the trapdoors. Although, the secure channel 

hides the leakage of the trapdoor during transmission, the 

trapdoor is based on one-way hash function due to which the 

server itself can learn the access pattern and the keyword being 

searched for since the same trapdoor is generated for the same 

keyword. In other words the trapdoor is distinguishable. Their 

scheme uses forward index i.e. an index for each file due to 

which the ranking cannot be done. 

In [21] Li et al. for the first time proposed efficient fuzzy 

keyword searching on encrypted cloud data. The authors have 

proposed two schemes i.e. the basic scheme and the wildcard 

based scheme. Their proposed work tolerates the searching over 

a dataset consisting of slight typo mistakes or errors. They use 

the edit distance to measure the distance between the similar 

erroneous words. The authors claim that the wildcard based 

scheme is efficient and effective though they have not 

performed any performance or complexity analysis of their 

scheme. We perform the analysis in Section VI and show the 

complexity of their scheme. Furthermore, since they are using 

deterministic encryption for the generation of the trapdoor 

hence the scheme is unable to provide prevention against 

deterministic attacks and hence reveals the outcome of the 

search and access pattern. 

III. RANKED SEARCHABLE ENCRYPTION MODEL 

We consider a single writer/single reader (S/S) architecture 

and use the client-server infrastructure by visualizing a scenario 

in which there are two parties, Alice (Client) and a Cloud Server 

(CS). Alice intends to upload all her documents D=
{𝐷1, 𝐷2, … , 𝐷𝑁} to the CS to enable remote access. CS performs 

the searching of relevant documents on behalf of Alice. In the 

scheme it is assumed that the CS is a trusted but curious server. 

Being trusted means that CS acts in a known and designated 

manner but CS is also willing and curious to get hold of full or 

partial information about the documents uploaded and held with 

it. 

Alice identifies a set of keywords W= {𝑊1,𝑊2, … ,𝑊𝑖} 
from the set of documents D and generates a relevance score 

based on the frequency of occurrence of the words with the set 

of documents D. These relevance scores help in performing 

ranked searching. Ranked searching facilitates the search by 

giving user the liberty to select the most relevant documents 

from a collection by identifying the frequency of occurrence of 

a keyword within a set of documents. Ranked searching is 

mainly used for single keyword search because the server may 

find several documents satisfying the query whereas, in 

complex queries, the server might be able to identify just a few 

number of documents in response to the search query. 

Therefore, ranked searching is not effective in multi-keyword 

or expressive queries. 

In [22], a formula (equation 1) has been presented that is 

commonly used for the relevance frequency generation and is 

widely used by researchers for designing the rank based 

searchable encryption schemes. For example in [15][14] 

authors have used the equation 1 for the ranking in searchable 

encryption  

 𝑅𝐹(𝑊,𝐷) = ∑
1

|𝐷|
∙ (1 + ln 𝑓𝐷,𝑊) ∙ ln (1 +

𝑁

𝑓𝑊
)𝑡∈𝑊      (1) 

where 𝑊 denotes the keyword to be searched; 𝐷 denotes the 

document; |𝐷| denotes length of the document obtained by 

counting the words appeared in the document 𝐷; 𝑓𝐷,𝑊 denotes 

number of times a word 𝑊 appears within a particular 

document 𝐷; 𝑓𝑊 denotes the number of documents in the 

dataset that contain the word 𝑊 and 𝑁 denotes the total number 

of documents in the dataset. 

Now Alice generates an index table 𝐼 (see Section V for more 

details). Now Alice outsources the index table 𝐼 along with the 

encrypted documents D to the CS. 

If Alice wants to search for a document containing a specific 

keyword, she simply generates a trapdoor T and sends it to CS. 

CS uses the trapdoor T to search the index table 𝐼 and returns a 

set of relevant documents in a ranked order. Figure 1 shows the 

flow of events of the RSE scheme where a client is interacting 

with a CS. It can be seen that mainly all the tasks are performed 

on the client’s side, whereas, the searching is done at the CS 

side. 

 

 

Fig. 1.  The flow of events of proposed RSE scheme. 

We now formally define our proposed Ranked Searchable 

Encryption scheme (RSE) that facilitates the search over 

encrypted documents in ranked order. The following definition 

presents the algorithms and the phases that our scheme 

comprises of. 

 



Definition (Ranked Searchable Encryption Scheme (RSE)) A 

RSE comprises of five polynomial time algorithms Π =
(KeyGen, Build_Index, Build_Trap, Search_Outcome, Dec) 
such that: 

(𝐾, 𝑘𝑠) ← KeyGen(1𝜆): is a probabilistic key generation 

algorithm run by the client. The algorithm takes a security 

parameter λ as the input and returns a master key K and 

a session key 𝑘𝑠. 

(𝐼) ← Build_Index(𝐾, 𝐷): is a deterministic algorithm run by 

the client to generate an index table 𝐼. The algorithm takes 

a master key K and a collection of documents D to be 

outsourced to the CS as input. The algorithm returns a 

secure index 𝐼. 

𝑇𝑤 ← Build_Trap(𝐾,𝑘𝑠, 𝑤,num): is a probabilistic algorithm 

run by the client. The algorithm requires the master key 

𝐾, a session key 𝑘𝑠 , keyword w and the number (num) of 

documents D required as the input. The algorithm returns 

a trapdoor 𝑇𝑤. 

𝑋 ← Search_Outcome(𝑘𝑠, 𝐼, 𝑇𝑤): is a deterministic algorithm 

run by the CS. The algorithm takes the session key 𝑘𝑠 , 
index table 𝐼 and the trapdoor (𝑇𝑤) as the input and 

returns X, a set of desired document identifiers encrypted 

𝐸𝑛𝑐𝐾(𝑖𝑑(𝐷𝑖)) containing the keyword w in ranked order. 

𝐷𝑖 ← Dec(𝐾, 𝑋): is a deterministic algorithm run by the client. 

The algorithm takes client’s master key and encrypted set 

of document identifiers 𝐸𝑛𝑐𝐾(𝑖𝑑(𝐷𝑖)) to decrypt and 

recover the document id’s. 

Correctness: A RSE scheme is correct if for the security 

parameter λ, the master key 𝐾 and the session key 𝑘𝑠 generated 

by KeyGen(1𝜆), for (𝐼) output by Build_Index(𝐾, 𝐷), the 

search using the trapdoor 𝑇𝑤 always returns the correct set of 

encrypted document identifiers 𝐸𝐾(𝑖𝑑(𝐷𝑖)) in ranked order. 

A RSE scheme is correct if the following are true: 
 

 If 𝑤 ∈ 𝐷𝑖  then the following should hold with an 

overwhelming probability 

𝑆𝑒𝑎𝑟𝑐ℎ_𝑂𝑢𝑡𝑐𝑜𝑚𝑒(𝑘𝑠, 𝐼, 𝑇𝑤) = 𝐷 ∩ 𝐷𝑒𝑐(𝐾, 𝑋) 
       =  𝐷𝑖 , where 1 ≤ 𝑖 ≤ 𝑛 

 

 If 𝑤 ∉ 𝐷𝑖  then the following should hold with an 

overwhelming probability 

𝑆𝑒𝑎𝑟𝑐ℎ_𝑂𝑢𝑡𝑐𝑜𝑚𝑒(𝑘𝑠, 𝐼, 𝑇𝑤) = 𝐷 ∩ 𝐷𝑒𝑐(𝐾, 𝑋) = 0 
 

Soundness: A RSE scheme is sound if for the security 

parameter λ, the master key 𝐾 and the session key 𝑘𝑠 generated 

by KeyGen(1𝜆), for (𝐼) output by Build_Index(𝐾, 𝐷), the 

search using the trapdoor 𝑇𝑤 always returns sound results i.e. the 

result should not contain any false positives. 

A RSE scheme is sound if the following are true: 
 

 If 𝑤 ∈ 𝐷𝑖  then the following should hold with an 

overwhelming probability  

Search_Outcome(𝑘𝑠, 𝐼, 𝑇𝑤)=1 
 

 If 𝑤 ∉ 𝐷𝑖  then the following should hold with an 

overwhelming probability 

Search_Outcome(𝑘𝑠, 𝐼, 𝑇𝑤)=0 

IV. SECURITY DEFINITIONS FOR RANKED SEARCHABLE 

ENCRYPTION (RSE) 

In the context of searchable encryption, security is studied 

about privacy preservation of the data outsourced to the 

CS[23][24]. 

A. Existing Security Definitions 

The problem of searching over encrypted data has received 

attention for more than a decade now. Back in 2000, Song et al. 

in [25] were the first to come up with a practical way of 

searching symmetrically over encrypted data. Till then there 

was no formal definition regarding security for SE. Since 2000 

several definitions and constructions of SE have been 

presented. In 2003, Goh [26] for the first time came up with the 

security definitions of searchable encryption called Semantic 

Security Against Adaptive Chosen Keyword Attack (IND-

CKA). In the same paper, he proposed a searchable encryption 

scheme that met his proposed definition. There were some 

assumptions related to the definitions i.e. the number of 

keywords (size of the documents) with in the document should 

be same in order to achieve indistinguishability and if the index 

is indistinguishable the trapdoors need not to be kept secure. 

Since their definitions were focused towards secure indices and 

not probabilistic trapdoors, their definitions could not be 

generalized. 

In [24] authors came up with an extension of IND-CKA that 

aimed to counter the assumption of same size documents. They 

supported their definition by presenting a secure index 

construction called z-index which was based on bloom filters. 

As highlighted in [16] that the definition was not secure and 

would be fulfilled by any insecure searchable encryption 

scheme. Later Goh introduced extended definitions IND1/2-

CKA and now the documents did not need to be of the same 

size, and the trapdoor was again not kept secure. Curtmola et 

al. in [16][23] claimed that all the previous definitions did not 

provide adequate security and proposed two new definitions 

Adaptive/Non-Adaptive Indistinguishability Security for SSE. 

Both of the newly proposed definitions have their weaknesses 

and don’t provide adequate level of indistinguishability. We 

discuss the limitation of their slightly stronger definition i.e. 

Adaptive Indistinguishability below. 

B. Limitations of previous definitions 

As mentioned earlier, Curtmola’s definitions are widely 

accepted and used. They introduce four terms in [23] incurred 

as a result of a search query i.e. History, Access Pattern, Search 

Pattern and Trace. The history defines a tuple containing the 

document collection and the keywords. Access patterns 

represents the outcome, i.e. the documents contain a particular 

keyword. The Search pattern tells if the same keyword is being 

searched every time. Their security definition is defined as 

nothing is leaked beyond the access pattern and the search 

pattern while the Trapdoor is deterministic. Their definition of 

Indistinguishability refers to the indistinguishable index table 

generated based on pseudo-random functions. 

We remark that Curtmola’s work clearly provides the desired 

level of security when the trapdoor is deterministic but their 

SSE-2 lacks in maintaining privacy associated to the trapdoor 

and hence it is prone to distinguishability attacks. Their 



construction (SSE-2) generates the same trapdoor 

(deterministic) every time the same keyword is queried. As a 

result the search pattern discloses which trapdoors correspond 

to the same underlying keywords resulting in privacy concerns 

(cf Section 4.2 of [23]). The deterministic trapdoor reveals the 

corresponding history tuple “prior” to the search. Furthermore, 

if an adversary is accidently given access to the trapdoor oracle 

then all the future searches are revealed. Hence, we term their 

definitions a primary “Baseline” for any SE scheme but 

improved definitions are required for enhancing the security 

and highlighting the advantage of a probabilistic trapdoor under 

those improved definitions. 

Therefore, based on the improved security definitions a 

secure construction is required that primarily provides 

indistinguishable index table and ensures trapdoor 

indistinguishability that results in the increase in the security 

and privacy of the entire system. 

Now, we can formally state the privacy concerns associated 

to RSE that are based on the following points 

 The index table contains information crucial for searching 

over the encrypted text and helps to relate keywords to the 

documents. The index table should not reveal any (partial) 

information about the documents (encrypted or 

unencrypted) or the keywords (encrypted or unencrypted) 

that form the table. 

 The trapdoor should not reveal any information about the 

keyword (unencrypted) that is being queried and should 

maintain privacy of search. 

 The trapdoor should be probabilistic and should not 

disclose the corresponding underlying encrypted 

keywords or document identifiers “prior” to the search. 

 The outcome of the trapdoor should not uncover any 

information about the encrypted document that is returned 

as a result of the query to the user. 

C. Security Definitions for Proposed RSE 

We now revisit the existing definitions of SE that will be 

utilized to prove the security of our proposed scheme. We 

propose new definitions for indistinguishability and define 

complete indistinguishability in the terms of ranked searchable 

encryption. An ideal searchable encryption scheme should 

fulfill all these definitions to ensure privacy. In Section V(G), 

we prove that our scheme complies with the following 

definitions. 
 

1) Definition 1 (𝐷1): Non-Adaptive Indistinguishability for 

Searchable Encryption 
 

Non-Adaptive means that the adversary 𝒜 cannot make queries 

based on the outcome of the previous query [16][23]. Therefore, 

searchable scheme preserves security in the sense of non-

adaptive indistinguishability if for any two non-adaptively 

constructed histories (documents & keywords) with equal 

length and trace (documents length, search pattern and 

outcome) no adversary can distinguish between the view 

(encrypted documents, trapdoors & Index) of one history from 

the view of the other in polynomial time with non-negligible 

probability over 1 2⁄ . 

 

 

 

2) Definition 2 (𝐷2): Adaptive Indistinguishability for 

Searchable Encryption 
 

Adaptive means that the adversary 𝐴 can make queries based 

on the outcome of the previous query [16][23]. Therefore, 

searchable scheme preserves security in the sense of adaptive 

indistinguishability if for any two adaptively constructed 

histories (documents & keywords) with equal length and trace 

(documents length, search pattern and outcome) no adversary 

can distinguish between the view (encrypted documents, 

trapdoors & Index) of one history from the view of the other in 

polynomial time with non-negligible probability over 1 2⁄ . 
 

3) Keyword-Trapdoor Indistinguishability for Ranked 

Searchable Encryption Scheme 
 

Keyword-Trapdoor Indistinguishability refers to the act of 

performing a search over encrypted text in such a way that the 

redundancy in the statistics of the (plain text) keywords should 

be dissipated into the associated trapdoor. Therefore, for the 

same keyword appearing twice the trapdoor should not be able 

to distinguishable even if the history (keyword, trapdoor) is 

generated adaptively. To guess the word or the document’s 

content the attacker has to intercept a tremendous amount of 

data to uncover the underlying plain text in polynomial time. 

The challenger begins by generating an index table against a 

data collection D. The adversary selects a keyword 𝑤 and sends 

it to the challenger. The challenger generates a trapdoor and 

sends it back to the adversary. This continues until the 

adversary has submitted polynomial-many keywords. Now the 

challenger tosses a fair coin 𝑏, the adversary has to submit two 

keywords (𝑤0, 𝑤1) to the challenger and receives a trapdoor 

corresponding to the keyword 𝑤𝑏 . The adversary has to guess 

and output the bit 𝑏. 
 

Definition 3 (D3)(Keyword-Trapdoor Indistinguishability). Let 

RSE=(KeyGen, Build_Index, Build_Trap, Search_Outcome, 

Dec) be a Ranked Searchable Encryption scheme over a 

dictionary W, λ be the security parameter, D be the set of 

documents and 𝒜 = (𝒜0, 𝒜1, … ,𝒜𝑁+1) be such that 𝑁 ∈ ℕ 

and consider the following probabilistic experiment 

𝐊𝐞𝐲_𝐓𝐫𝐚𝐩RSE,𝒜(𝜆): 
 

𝐊𝐞𝐲_𝐓𝐫𝐚𝐩RSE,𝓐(𝜆) 

(𝐾, 𝑘𝑠) ← KeyGen(1𝜆) 
(𝐼) ← Build_Index(𝐾, 𝐷) 
𝑓𝑜𝑟 2 ≤ 𝑖 ≤ 𝑁 

(𝑠𝑡𝒜 , 𝑤𝑖) ← 𝒜𝑖(𝑠𝑡𝒜 , 𝑇𝑤2 , … , 𝑇𝑤𝑖−1) 

𝑇𝑤𝑖 ← Build_Trap𝐾(𝑤𝑖) 

𝑇𝑤𝑁 ← Build_Trap(𝐾, 𝑘𝑠, 𝑤𝑁 , 𝑛𝑢𝑚 ) 

𝑏
$
← {0,1} 

(𝑠𝑡𝒜 , 𝑤0, 𝑤1) ← 𝒜0(1
𝜆) 

𝑇𝑤𝑏 ← Build_Trap(𝐾, 𝑘𝑠, 𝑤𝑏 , num) 

𝑏′ ← 𝒜𝑁+1(𝑠𝑡𝒜 , 𝑇𝑤𝑏) 

𝑖𝑓 𝑏′ = 𝑏, 𝑜𝑢𝑡𝑝𝑢𝑡 1 
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 𝑜𝑢𝑡𝑝𝑢𝑡 0 

where 𝑠𝑡𝒜  is a string that represents and captures 𝒜′𝑠 state. We 

say that the keyword-trapdoor indistinguishability holds if for 

all polynomial-size adversaries (𝒜0, 𝒜1, … ,𝒜𝑁+1) such that 

𝑁 = poly(𝜆), 
 



Pr [𝐊𝐞𝐲_𝐓𝐫𝐚𝐩RSE,𝒜(𝜆) = 1] ≤
1

2
+ negl(λ), 

Where probability is over the choice of 𝑏. 

We explain this by designing a game in the standard model. 
 

Game 1: Let RSE be a Searchable Encryption scheme (𝑆𝐸). 
Suppose that there are at most 𝑁 keywords W =
(𝑊1,𝑊2, … ,𝑊𝑁) and 𝑀 documents D = (𝐷1, 𝐷2, … , 𝐷𝑀), 
where 𝑁,𝑀 ∈ ℕ (set of natural numbers) associated to an index 

table. The game is played between an adversary 𝒜 and a 

challenger 𝒞. The game is divided into three phases as follows: 
 

Phase 1: The adversary 𝒜 sends a keyword to the challenger 

𝒞. The challenger 𝒞 returns a trapdoor to 𝒜. This continues 

between the adversary 𝒜 and the challenger 𝒞 for a while. 
 

Challenge Phase: The adversary 𝒜 selects two keywords 

𝑊1
′,𝑊2

′ ∈ 𝑊 and send them to the challenger 𝒞. The selection 

of the keywords can be done as follows: 

a) 𝒜 intends to search for unique keywords such that 

𝑊1
′ ≠ 𝑊2

′; 

The challenger 𝒞 in response tosses a fair coin 𝑏 ← {0,1} and 

generates two trapdoors corresponding to the values of b i.e. 

𝑇
𝑊𝑏
′

′  such that 𝑇𝑊1′
′ ≠ 𝑇𝑊2′

′ . 

After the challenge has been completed, Phase 1 is run again. 

We allow the adversary to search for the same keywords again 

if interested. 
 

Outcome Phase: 𝒜 is given the generated Trapdoors 

𝑇𝑊1′
′ , 𝑇𝑊2′

′ . 𝒜 will now have to guess and output 𝑏′ ∈ {0,1} and 

if 𝑏 = 𝑏′ then the adversary wins. In other words the adversary 

𝒜 has to output trapdoor T corresponding to 𝑊1
′,𝑊2

′ to the 

challenger 𝒞 in polynomial time. If the adversary 𝒜 correctly 

guessed the trapdoor corresponding to the word then it has won 

otherwise RSE provides keyword-trapdoor indistinguishability 

and the challenger 𝒞 wins. 

Therefore the probability that the adversary 𝒜 wins is 
1

2
 

which is according to the definition stated above. 
 

4) Trapdoor-Index Indistinguishability for Ranked Searchable 

Encryption 

Trapdoor-Index indistinguishability relates to the complexity 

offered by a Searchable Encryption (𝑆𝐸) scheme. The 

keyword, trapdoor and index table should be complex and 

involved in such a way that trapdoor should not reveal the 

corresponding index table entries prior to the search and should 

not be distinguishable. Therefore, for the same keyword 

appearing twice the trapdoor should not be able to 

distinguishable even if the history (keyword, trapdoor, index) is 

generated adaptively. Furthermore, change of one bit/character 

of the keyword should completely change the Trapdoor and 

Index Table or vice versa. 

The challenger begins by generating index table against a 

data collection D. The challenger sends the set of keywords 𝑊, 

the trapdoors generated for all the keywords 𝑊 along with the 

associated index table entries 𝐼[0][𝑊] to the adversary while 

maintaining the order in which they occur. Now the challenger 

tosses a fair coin 𝑏, the adversary has to submit two keywords 

(𝑤0, 𝑤1) to the challenger and receives a trapdoor 

corresponding to the keyword 𝑤𝑏 . The adversary is now to 

decide the corresponding index value and is challenged to 

output the bit 𝑏. 

Definition 4 (D4)(Trapdoor-Index Indistinguishability). Let 

RSE=(KeyGen, Build_Index, Build_Trap, Search_Outcome, 

Dec) be a Ranked Searchable Encryption scheme over a 

dictionary W, λ be the security parameter, D be the set of 

documents and 𝒜 = (𝒜0, 𝒜1) be such that 𝑁 ∈ ℕ and 

consider the following probabilistic experiment 

𝐓𝐫𝐚𝐩_𝐈𝐧𝐝𝐞𝐱RSE,𝒜(𝜆): 
 

                        𝐓𝐫𝐚𝐩_𝐈𝐧𝐝𝐞𝐱RSE,𝓐(𝜆) 

(𝐾, 𝑘𝑠) ← KeyGen(1𝜆) 
(𝐼) ← Build_Index(𝐾, 𝐷) 
𝑓𝑜𝑟 1 ≤ 𝑖 ≤ 𝑁 

𝑙𝑒𝑡 𝐼′ = 𝐼[0][𝑖] 
𝑙𝑒𝑡 𝑤 = (𝑤1, … , 𝑤𝑖) 
𝑇𝑤𝑖 ← Build_Trap(𝐾, 𝑘𝑠, 𝑤𝑖 , num) 

𝑏
$
← {0,1} 

(𝑠𝑡𝒜 , 𝑤0, 𝑤1) ← 𝒜0(𝑠𝑡𝒜 , 1
𝜆, 𝑤𝑁 , 𝐼

′, 𝑇𝑤𝑁) 

𝑇𝑤𝑏 ← Build_Trap(𝐾, 𝑘𝑠, 𝑤𝑏 , num) 

𝑏′ ← 𝒜1(𝑠𝑡𝒜 , 𝐼𝑤𝑏) 

𝑖𝑓 𝑏′ = 𝑏, 𝑜𝑢𝑡𝑝𝑢𝑡 1 
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 𝑜𝑢𝑡𝑝𝑢𝑡 0 

 

where 𝑠𝑡𝒜  is a string that represents and captures 𝒜′𝑠 state. We 

say that the trapdoor-index indistinguishability holds if for all 

polynomial-size adversaries (𝒜0, 𝒜1, … ,𝒜𝑁+1) such that 𝑁 =
poly(𝜆), 

Pr [𝐓𝐫𝐚𝐩_𝐈𝐧𝐝𝐞𝐱RSE,𝒜(𝜆) = 1] ≤
1

2
+ negl(λ), 

Where probability is over the choice of 𝑏. We explain this by 

designing a game in the standard model. 
 

Game 2: Let RSE be a Searchable Encryption (𝑆𝐸) scheme. 

Suppose that there are at most 𝑁 keywords W =
(𝑊1,𝑊2, … ,𝑊𝑁) and 𝑀 documents D = (𝐷1, 𝐷2, … , 𝐷𝑀), 
where 𝑁,𝑀 ∈ ℕ (set of natural numbers) associated to an index 

table. The game is played between an adversary 𝒜 and a 

Challenger 𝒞. The game is divided into three phases as follows: 
 

Phase 1: The challenger 𝒞 generates an index table 𝐼 
corresponding to the set of documents. The challenger 𝒞 

generates and sends the trapdoors for all keywords W , the index 

table entries corresponding to the trapdoor and the keywords to 

the adversary 𝒜. 
 

Challenge Phase: The adversary 𝒜 is allowed to select two 

keywords 𝑊1
′,𝑊2

′ ∈ 𝑊 and send them to the challenger 𝒞. The 

selection of the keywords can be done as follows: 

a) 𝒜 intends to search for unique keywords such that 

𝑊1
′ ≠ 𝑊2

′; 

The challenger 𝒞 in response tosses a fair coin 𝑏 ← {0,1} and 

generates two trapdoors corresponding to the values of b i.e. 

𝑇
𝑊𝑏
′

′  such that 𝑇
𝑊1
′

′ ≠ 𝑇
𝑊2
′

′ . 

After the challenge has been completed, the adversary 𝒜 is 

given access to the previously generated history that was sent 

in Phase 1. 
 

Outcome Phase: 𝒜 is given the generated Trapdoors 

𝑇𝑊1′
′ , 𝑇𝑊2′

′ . Adversary 𝒜 will now have to guess and return the 

index entry corresponding to the Trapdoors 𝑇𝑊1′
′ , 𝑇𝑊2′

′  and 

𝑊1
′,𝑊2

′ in polynomial time. The adversary 𝒜 wins if the guess 



is correct otherwise RSE provides trapdoor-index table 

indistinguishability, and the challenger 𝒞 wins. 

Therefore the probability that the adversary 𝒜 wins is 
1

2
 

which is according to the definition stated above. 
 

Theorem 1: Keyword-Trapdoor Indistinguishability and 

Trapdoor-Index table results in the Complete 

Indistinguishability for a Ranked Searchable Encryption 

Scheme 
 

𝑃𝑟𝑜𝑜𝑓 Let RSE=(KeyGen, Build_Index, Build_Trap, 

Search_Outcome, Dec) be a Ranked Searchable Encryption 

scheme. We make the following claim that leads to the proof of 

this theorem. 
 

𝐶𝑙𝑎𝑖𝑚: If RSE is Keyword-Trapdoor Indistinguishable, then it 

is Trapdoor-Index Indistinguishable 
 

Firstly, we assume that there exists a polynomial-size adversary 

𝒜 that succeeds in an experiment 𝐊𝐞𝐲_𝐓𝐫𝐚𝐩RSE,𝒜(𝜆) with 

non-negligible probability over 1 2⁄ , then there exists a 

polynomial size adversary ℬ and a polynomial size 

distinguisher 𝒟 that distinguishes between the output of the 

experiment 𝐓𝐫𝐚𝐩_𝐈𝐧𝐝𝐞𝐱RSE,𝒜(𝜆) with non-negligible 

probability over 1 2⁄ . 

Let adversary ℬ sample 𝑏
$
← {0,1}; computes (𝑠𝑡𝒜 , 𝑤0, 𝑤1) ←

𝒜0(1
𝜆). The adversary ℬ. The distinguisher 𝒟 is given access 

to a history consisting of trapdoors and corresponding keywords. 

The adversary proceeds as follows: 
 

1. It parses (𝑠𝑡𝒜 , 𝑤𝑖) ← 𝒜𝑖(𝑠𝑡𝒜 , 𝑇𝑤2 , … , 𝑇𝑤𝑖−1) where 

2 ≤ 𝑖 ≤ 𝑁; 𝑁 ∈ ℕ 

2. It computes 𝑏′ ← 𝒜𝑖+1(𝑠𝑡𝒜 , 𝑇𝑤𝑏) 

3. It outputs 1 if  𝑏′ = 𝑏 , and 0 otherwise. 
 

Clearly, ℬ and 𝒟 are polynomial size adversary since 𝒜𝑖+1 

are. Now, we have to guess the probability of 𝒟’s success. 𝒟 

will output 1 if and only if 𝒜𝑖+1(𝑠𝑡𝒜 , 𝑇𝑤𝑏) succeeds in 

correctly guessing 𝑏. It is to be noted that the Build_Trap phase 

is dependent upon trusted atomic primitives and uses a 

probabilistic encryption algorithm therefore the outcome is 

independent of 𝑏. Therefore, 𝒜𝑖+1 will guess 𝑏 with the 

probability atmost 1 2⁄  which is according to the definitions 

D3. Therefore, our initial assumption of such an adversary who 

can succeed in the experiment 𝐊𝐞𝐲_𝐓𝐫𝐚𝐩RSE,𝒜(𝜆) with a non-

negligible probability over 1 2⁄  is wrong. Hence the 

distinguisher 𝒟 that distinguishes between the output of the 

experiment 𝐓𝐫𝐚𝐩_𝐈𝐧𝐝𝐞𝐱RSE,𝒜(𝜆) with non-negligible 

probability over 1 2⁄  does not exist and it is according to our 

definition D4. Hence our claim (stated above) is correct. 

Now, we prove that an RSE is “Completely Indistinguishable”. 

As discussed earlier, the entire scheme is dependent upon a 

probabilistic trapdoor and provides Keyword-Trapdoor and 

Trapdoor-Index indistinguishability. According to definition 

D4, since a probabilistic trapdoor maps to an index location 

while maintaining privacy, the privacy of the corresponding 

document identifiers is also preserved. Due to the probabilistic 

trapdoor, the indistinguishability and privacy between the 

entities involved in the RSE is maintained on the whole that 

results in complete indistinguishability. 

V. PROPOSED RANKED SEARCHABLE ENCRYPTION (RSE) 

FRAMEWORK 

As discussed in Section III, our RSE scheme comprises of five 

main phases. We now, present and discuss each of these phases 

below. (Table I shows the notations and abbreviation used in 

our scheme). 
TABLE I 

NOTATIONS AND ABBREVIATIONS 

 
 

𝐶𝑆 – Represents a Cloud Server 

𝐷 − Denotes a set of all possible documents to be outsourced to the 

cloud. That is 𝐷 = {𝐷1, 𝐷2, … , 𝐷𝑁}. 

𝑊 − Denotes a set of unique Keywords extracted from 𝐷𝑁 such that 

𝑊 = {𝑊1,𝑊2, … ,𝑊𝑖} 

|𝑊| − Denotes total number of identified distinct keywords. 

|𝐷| − Denotes the size of a particular document, obtained by 

counting the words appeared in the document 𝐷. 

𝑅𝐹 − Denotes the relevance frequencies of the keywords 𝑊 among 

the documents 𝐷. 

𝑀𝑎𝑠𝑘(𝑅𝐹) – Denotes the masked 𝑅𝐹 

𝑃 − Denotes a prime number of the size 𝜆 (security parameter) +1. 

𝑖𝑑(𝐷𝑖) − Denotes the set of unique identifiers for each 𝐷𝑖. 

𝐼 − Denotes the secure inverted Index table stored on CS and 

provides ranked keyword searching. 

𝑇𝑊𝑖
 − Represents the unique trapdoors generated to identify 

documents 𝐷 containing word 𝑊𝑖. 

𝐼𝑛𝑡𝑜_𝐼𝑛𝑡𝑒𝑔𝑒𝑟 – Represents the conversion of a value from 

Hexadecimal to positive Integer. 

𝐸𝑛𝑐 − Denotes a probabilistic encryption algorithm such as AES. 

𝐷𝑒𝑐 − Denotes the decryption algorithm corresponding to 𝐸𝑛𝑐. 

𝑥 ← 𝐴 − Represents that 𝑥 contains the content of the variable 𝐴. 

𝐻(. ) – Represents a keyed one-way hash function. 

𝐾 – Represents the master key 

𝑘𝑠 – Represents the session key 

A. KeyGen Phase 

The KeyGen algorithm helps the client to generate the keys. 

The algorithm takes input a security parameter λ The client 

generates a master key 𝐾; where, 𝐾𝜖{0,1}𝜆 and a session key 

𝑘𝑠; where, 𝑘𝑠𝜖{0,1}
𝜆. The master key 𝐾 is kept secret with the 

client whereas the session key 𝑘𝑠 is shared with the server prior 

to the Build_Index phase. 
 
 

 

Phase 1: KeyGen 
 

a) Input: A security parameter λ. 

b) Output: Master key 𝐾 and session key 𝑘𝑠 

B. Build_Index Phase 

The client generates an index table 𝐼 represented by a 

dynamic array 𝐴. The client uses a cryptographic Hash function 

𝐻: {0,1}𝜆 ×𝑊 → {0,1}𝐿 

where 𝐿 is the length of the output. The keyed Hash function 

𝐻 uses the master key 𝐾 to generate hash of the keywords and 



convert them to positive integer. The array 𝐴 holds three 

attributes. The first row of the array consists of a value that is 

generated by calculating the inverse of the hash of a keyword 

after converting it into positive integer. The first column 

consists of the encrypted document identifiers 𝐸𝑛𝑐𝐾(𝑖𝑑(𝐷𝑁)) 
of all the outsourced documents. Whereas, the remaining 

entries of the array are the relevance frequencies of the 

keywords 𝑊 among the documents 𝐷. The relevance 

frequencies are calculated according to equation (1). Each 

column represents the relevance frequencies associated to a 

particular keyword 𝑊. We multiply each column (excluding the 

first row and first column of the array 𝐴) with a random number, 

represented by 𝑀𝑎𝑠𝑘(𝑅𝐹). This way the relevance frequencies 

are masked while maintaining proportion between the relevance 

scores of the keyword 𝑊 occurring in different documents. This 

helps to prevent frequency analysis attack and disclosure of 

document size while maintaining correct ranking of documents. 
 

 

Phase 2: Build_Index 
 

 

a) Input: A set of documents 𝐷 and a master key 𝐾, a 

Hash functions 𝐻(. ). 
b) Initialization: 

 Initialize dynamic 2D Array 𝐴. 

 Scan 𝐷 and build 𝑊, a set of unique and distinct 

keywords occurring in 𝐷. 

 Initialize Prime number 𝑃 of the size 𝜆 + 1bits. 

c) Build Index 𝐼: 
 for 1 ≤ 𝑡 ≤ |𝑊𝑖|: 

− let 𝑎 ← 𝐼𝑛𝑡𝑜_𝐼𝑛𝑡𝑒𝑔𝑒𝑟(𝐻𝐾(𝑊𝑖)) mod P 

− Compute 𝑎−1 and store it in 𝐴[1][𝑡]; 

− Compute 𝐸𝐾(𝑖𝑑(𝐷𝑁)),store it in 𝐴[𝑡][1]; 

− Calculate the 𝑅𝐹 for each 𝑊𝑖 occurring in 

𝐷𝑁 using equation (1) and store the value 

at the respective locations within 𝐴; 

 𝑀𝑎𝑠𝑘(𝑅𝐹): 
for 1 ≤ 𝑚 ≤ 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑙𝑢𝑚𝑛𝑠 𝑖𝑛 𝐴  

− for 1 ≤ 𝑛 ≤ 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑜𝑤𝑠 𝑖𝑛 𝐴 

o 𝐴[𝑛 + 1][𝑚 + 1] = 𝐴[𝑛 + 1][𝑚 +
1] ∗ 𝑟𝑎𝑛𝑑𝑜𝑚 𝑣𝑎𝑙𝑢𝑒𝑠 

d) Output: Index table 𝐼 

C. Build_Trap Phase 

The client generates a trapdoor to search for documents 

containing a particular keyword. The client using the master 

key 𝐾 generates the hash H(.) of the keyword and converts it 

into positive integer under mod 𝑃, represented by 𝑎. Again with 

a probabilistic symmetric encryption algorithm, encrypts the 

keyword and converts the result into positive integer under mod 

P, represented by 𝑏. Now c is computed by multiplying 𝑎 with 

𝑏 under mod P. The client uses a cryptographic keyed Hash 

function 

𝐻: {0,1}𝜆 ×𝑊 → {0,1}𝐿 
 

where 𝐿 is the length of the output. The keyed Hash function 

𝐻 uses the master key 𝐾 to generate 𝑎, the hash of the keyword 

and uses session key 𝑘𝑠 to generate 𝑑, the 𝐻𝑘𝑠(𝑏). The trapdoor 

consists of 𝑑, 𝑐 and the desired number of documents 

represented by 𝑛𝑢𝑚.  

The trapdoor is transmitted to the CS. 
 

 

Phase 3: Build_Trap 
 

 

a) Input: The master key (𝐾), the session key (𝑘𝑠), a 

keyword (𝑤𝑖), a Hash functions 𝐻(. ), desired 

number of documents (𝑛𝑢𝑚). 
b) Trapdoor Generation: 

 let  𝑎 ← 𝐼𝑛𝑡𝑜_𝐼𝑛𝑡𝑒𝑔𝑒𝑟(𝐻𝐾(𝑊𝑖)) 𝑚𝑜𝑑 𝑃 

 let  𝑏 ← 𝐼𝑛𝑡𝑜_𝐼𝑛𝑡𝑒𝑔𝑒𝑟(𝐸𝑛𝑐𝐾(𝑊𝑖)) mod P. 

 let   𝑐 ← 𝑎 ∗ 𝑏 𝑚𝑜𝑑 𝑃 

 let  𝑑 ← 𝐻𝑘𝑠(𝑏). 

 Set Trapdoor 𝑇𝑊𝑖
← (𝑑, 𝑐, 𝑛𝑢𝑚). 

c) Output: Transmit 𝑇𝑊𝑖
 to CS. 

D. Search_Outcome Phase 

CS now undertakes the search based on the received 

trapdoor. The server has 𝑑, 𝑐 and 𝑛𝑢𝑚. The CS tries to find an 

entry for which the following condition holds true 𝑑 ==
𝐻𝑘𝑠(𝑐 ∗ 𝑎

−1𝑚𝑜𝑑 𝑃). On a positive hit, the CS returns client the 

encrypted document identifiers in ranked order based on the 

documents having the highest relevant frequencies. The total 

number of documents returned will be equal to 𝑛𝑢𝑚. 
 

 

Phase 4: Search_Outcome  

 

a) Input: A trapdoor 𝑇𝑊𝑖
 transmitted by the client, a 

session key 𝑘𝑠, a Hash functions 𝐻(. ) (same as 

Build_trap phase) and the index table 𝐼. 
b) Initialization:  

 Dynamic Array 𝑋. 

c) Searching: 

 for 1 ≤ 𝑙 ≤ 𝑠𝑖𝑧𝑒 𝑜𝑓 𝐼: 

− if (𝑑 == 𝐻𝑘𝑠(𝑐 ∗ 𝑎
−1𝑚𝑜𝑑 𝑃)):  

o for 1 ≤ 𝑚 ≤ 𝑛𝑢𝑚:  

 find highest RF, return 

𝐸𝑛𝑐𝐾(𝑖𝑑(𝐷𝑖)); 

−  𝑋[ ] ← 𝐸𝑛𝑐𝐾(𝑖𝑑(𝐷𝑖)); 
d) Output: X; //set of encrypted document identifiers 

stored in ranked order. 

E. Dec Phase 

The client after receiving the ranked encrypted document 

identifiers, decrypts them to uncover the document identifiers 

containing the searched keyword. 
 

 

Phase 5: Dec  
 

a) Input: The master key (𝐾), A set 𝑋 of encrypted 

document identifiers stored in ranked order 

b) Decryption: 

 for 1 ≤ 𝑜 ≤ 𝑠𝑖𝑧𝑒 𝑜𝑓 𝑋: 

− 𝐷𝑒𝑐𝐾(𝑋[𝑜]); 
c) Output: Documents identifiers 𝑖𝑑(𝐷𝑖) 

 



Remark 1: The index table 𝐼 needs to be regenerated whenever 

the database is modified but this can be avoided if we remove 

ranking because the re-ranking is to be done whenever a 

modification is made to the outsourced database. 
 

Remark 2: By multiplying the relevance score with random 

numbers, we mask the actual frequency of the keywords and 

avoid the frequency analysis attack while performing effective 

and efficient ranked searching. This also helps to prevent the 

disclosure of the size of the documents and maintaining 

privacy. 

F. Analysis of the proposed RSE scheme 

We now prove that our proposed RSE scheme provides 

correctness and soundness (defined in Section III).  
 

Let (𝐾, 𝑘𝑠) represent the output of the KeyGen phase, 

where, the master key 𝐾𝜖{0,1}𝜆 and the session key 

𝑘𝑠𝜖{0,1}
𝜆. Given 𝑤,𝑤′ ∈ 𝑊, it is straight forward to verify 

that the following are true: 

 Given 𝑇𝑤 = Build_Trap(𝐾, 𝑘𝑠, 𝑤, 𝑛𝑢𝑚), the following 

equality holds with a probability 1 

 

𝑇𝑤 =

{
 
 

 
 𝐻𝑘𝑠 (

𝐼𝑛𝑡𝑜_𝐼𝑛𝑡𝑒𝑔𝑒𝑟(𝐸𝑛𝑐𝐾(𝑤)) ∗

𝐼𝑛𝑡𝑜_𝐼𝑛𝑡𝑒𝑔𝑒𝑟(𝐻𝐾(𝑤)) 𝑚𝑜𝑑 𝑃
) ,

(
𝐼𝑛𝑡𝑜_𝐼𝑛𝑡𝑒𝑔𝑒𝑟(𝐸𝑛𝑐𝐾(𝑤)) ∗

𝐼𝑛𝑡𝑜_𝐼𝑛𝑡𝑒𝑔𝑒𝑟(𝐻𝐾(𝑤)) 𝑚𝑜𝑑 𝑃
) ,

𝑛𝑢𝑚 }
 
 

 
 

 

 

 Given 𝑇𝑤 = Build_Trap(𝐾, 𝑘𝑠, 𝑤, 𝑛𝑢𝑚), and 𝑤′ ≠ 𝑤, the 

following inequality holds with an overwhelming 

probability: 

 

𝑇𝑤 ≠

{
 
 

 
 𝐻𝑘𝑠 (

𝐼𝑛𝑡𝑜_𝐼𝑛𝑡𝑒𝑔𝑒𝑟(𝐸𝑛𝑐𝐾(𝑤
′)) ∗

𝐼𝑛𝑡𝑜_𝐼𝑛𝑡𝑒𝑔𝑒𝑟(𝐻𝐾(𝑤
′)) 𝑚𝑜𝑑 𝑃

) ,

(
𝐼𝑛𝑡𝑜_𝐼𝑛𝑡𝑒𝑔𝑒𝑟(𝐸𝑛𝑐𝐾(𝑤

′)) ∗

𝐼𝑛𝑡𝑜_𝐼𝑛𝑡𝑒𝑔𝑒𝑟(𝐻𝐾(𝑤
′)) 𝑚𝑜𝑑 𝑃

) ,

𝑛𝑢𝑚 }
 
 

 
 

 

 

In fact, this inequality can hold only if 𝐻𝐾(𝑤) = 𝐻𝐾(𝑤
′) 

which is having a negligible probability. 
 

This leads to the conclusion that a unique trapdoor is mapped 

to a distinct keyword. Since the index table contains encrypted 

file identifiers 𝐸𝑛𝑐𝐾(𝑖𝑑(𝐷)) for every document that maps to 

the keywords, therefore, as a result, the value of 

Search_Outcome phase corresponds to the value outlined in the 

correctness and soundness definitions mentioned in Section III. 

Therefore, the proposed RSE scheme is correct and sound. 

G. Security Analysis 

All of the previously known searchable encryption 

constructions leak some information because they were based 

on deterministic trapdoor [10][9]. In [27] authors have studied 

the access pattern disclosure of the previously known 

searchable encryption schemes that were based on deterministic 

trapdoors. Our proposed scheme is based on a probabilistic 

trapdoor. So before mapping our scheme against the security 

definitions stated in Section IV, we would like to formally 

highlight any information that our scheme leaks. We analyze 

any possible leakage of information significant or insignificant, 

encrypted or unencrypted based on a set of assumptions. We 

analyze all the artifact that are obtained from the five 

polynomial time algorithms explained previously i.e. index 

table 𝐼, trapdoor 𝑇𝑤 and the outcome of a search. While defining 

the leakage we assume that the attack is launched by an 

adversary 𝒜 in a standard model so we do not restrict the 

adversary by replacing our scheme with any weak construction. 

The leakage focuses on the information that is revealed within 

polynomial time. Our security analysis yields the following 

results: 
 
 

1) Leakage 𝐿1 

Description: The leakage 𝐿1 is associated to the index 

table 𝐼 
Assumption: We assume that 𝐼 is revealed to all the 

stakeholders i.e. the client, Cloud Server and the 

adversary 𝒜. 

Definition: The Leakage 𝐿1 is defined as: 
 

𝐿1(𝐼) =

{
 
 

 
 (𝐼𝑛𝑡𝑜_𝐼𝑛𝑡𝑒𝑔𝑒𝑟(𝐻𝐾(𝑊𝑖)))

−1

,

𝐸𝑛𝑐𝐾(𝑖𝑑(𝐷𝑖)),

𝑀𝑎𝑠𝑘(𝑅𝐹),

𝐼𝑛𝑡𝑜_𝐼𝑛𝑡𝑒𝑔𝑒𝑟(𝐻𝐾(𝑊𝑖)) }
 
 

 
 

 

 

2) Leakage 𝐿2 

Description: The leakage 𝐿2 is associated to the 

Trapdoor 𝑇𝑤 generated for a particular keyword 𝑤 to be 

searched. 

Assumption: We assume that 𝑇𝑤 is generated by the 

client and revealed to all the stakeholders i.e. Cloud 

Server and the adversary 𝒜. 

Definition: The Leakage 𝐿2 is defined as: 
 

𝐿2(𝑇𝑤) = {
𝑎 ← 𝐻𝐾(𝑊𝑖) ∗ 𝐸𝑛𝑐𝐾(𝑊𝑖) 𝑚𝑜𝑑 𝑃,

𝑏 ← 𝐻𝑘𝑠(𝐸𝑛𝑐𝐾(𝑊𝑖))𝑚𝑜𝑑 𝑃,
𝑛𝑢𝑚

} 

 

3) Leakage 𝐿3 

Description: The leakage 𝐿3 is associated to search 

outcome (SO) of the Trapdoor generated for a particular 

word (𝑇𝑤) 
Assumption: The search outcome is revealed to all the 

stakeholders i.e. i.e. the client, Cloud Server and the 

adversary 𝒜. 

Definition: The Leakage 𝐿3 is defined as: 
 

𝐿3(SO) = {OC(𝑤), 𝐸𝑛𝑐𝐾(𝑖𝑑(𝐷𝑖))∀𝑇𝑤∈𝐷𝑖
} 

 

where OC is the outcome 
 

As the trapdoor is based on a probabilistic encryption algorithm 

and a keyed hash function therefore we can say that that leakage 

associated to trapdoor is meaningless and we do not need to 

worry about it. do not leak any information. Therefore, it is 

evident that 𝐿1 and 𝐿2 lead to the security and privacy concern 

but we will prove that these leakage do not reveal any 

information about the data outsourced. Another point to be 

noted here is that these leakages and assumptions are 

interrelated and interdependent hence to maintain security all 

the assumptions should be strictly met. 
 



Lemma 1. The Ranked Searchable Encryption Scheme (RSE) 

presented above is “secure” as it is (𝐿1, 𝐿2, 𝐿3)-secure and 

according to Definition 𝐷1, 𝐷2, 𝐷3, 𝐷4, where 𝐿1 is associated 

with the index table 𝐼 and leaks the encrypted file identifiers, 

masked relevance frequencies, inverse of hash of keyword. 

Whereas, 𝐿2 leaks a,b and the number of required documents 

and 𝐿3 leaks the outcome of a trapdoor and the encrypted file 

identifiers. 

Proof Sketch. The security of our proposed scheme is 

dependent upon trusted atomic primitives therefore we claim 

that our scheme adds to the security of these primitives and does 

not weaken the security provided by the atomic primitives. We 

refer to the algorithm explained in Figure 3. The 𝐾𝑒𝑦𝐺𝑒𝑛 phase 

generates two keys (𝐾, 𝑘𝑠) ← 𝐾𝑒𝑦𝐺𝑒𝑛(𝜆). The 𝑆𝑒𝑡𝑢𝑝 phase 

generates an index table (𝐼) ← 𝑆𝑒𝑡𝑢𝑝(𝐾, 𝐷𝑁) corresponding to 

the set of documents. The Build_Trap(K,𝑘𝑠,w,num) generates a 

trapdoor 𝑇𝑤 corresponding to the word 𝑤 to be searched and 

Search_Outcome(𝑘𝑠, 𝐼, 𝑇𝑤) represents the outcome of the 

trapdoor. In order to prove that our scheme satisfies this lemma 

we first prove that our scheme satisfies the security definitions 

𝐷1, 𝐷2, 𝐷3, 𝐷4. Since our scheme uses indeterminisitic / 

probabilistic encryption for the trapdoor generation therefore 

the generated trapdoor 𝑇 is also indeterministic and unique for 

the same keyword searched twice. It is hard for an adversary to 

map the trapdoor to the keyword or form a relationship between 

the keyword, trapdoor and index table prior to the search. This 

also holds true for an adversary maintaining a history of the 

search and outcome. Hence it satisfies the security definitions 

of 𝐷1, 𝐷2, 𝐷3, 𝐷4. 

Now we need to prove the security of our scheme against the 

leakage 𝐿1, 𝐿2, 𝐿3. We argue that the leakage 𝐿1, 𝐿2, 𝐿3 are 

meaningless and do not affect our scheme. It can be seen that 

the three leakages are either encrypted, masked or Hashed 

values. Based on the assumption of the master key (𝐾) being 

secret, the Hash cannot be regenerated by an adversary. 

Furthermore, we use a probabilistic encryption algorithm for 

the encryption due to which the no meaningful information can 

be obtained in polynomial time. 

Therefore our scheme is (𝐿1, 𝐿2, 𝐿3)-secure against 

adaptive/non-adaptive indistinguishability attacks and provides 

Keyword-Trapdoor Indistinguishability & Trapdoor-Index 

table indistinguishability. 
 

Lemma 2. The Ranked Searchable Encryption Scheme (RSE) 

presented above is “Completely Indistinguishable” as it is 
(𝐿1, 𝐿2, 𝐿3)-secure and according to Definition 𝐷1, 𝐷2, 𝐷3, 𝐷4, 

where 𝐿1 is associated with the index table 𝐼 and leaks the 

encrypted file identifiers, masked relevance frequencies, 

inverse of hash of keyword. Whereas, 𝐿2 leaks a,b and the 

number of required documents and 𝐿3 leaks the outcome of a 

trapdoor and the encrypted file identifiers. 
 

 Proof Sketch. We extend the proof of Lemma 1 to establish 

proof of this lemma. We have already proved that our scheme 

is (𝐿1, 𝐿2, 𝐿3)-secure since the trapdoor of the proposed scheme 

is generated based on probabilistic encryption therefore our 

scheme satisfies the definitions 𝐷3, 𝐷4. Since the trapdoor T is 

indistinguishable over the keyword W and the index table 𝐼, 
therefore there is an equal probability that the generated 

trapdoor T may be generated for any keyword 𝑊𝑖 and may be 

mapped to any index table 𝐼 entry. Therefore, the outcome 

(prior to the search) will be completely indistinguishable. 

Hence the proposed RSE scheme is completely 

indistinguishable. 

VI. PERFORMANCE EVALUATION 

A. Algorithmic Analysis 

The algorithmic analysis is based on the complexity analysis 

of the target schemes. We analyze the algorithm of each scheme 

and perform this complexity analysis. This analysis is based on 

upper bound analysis of the set of keywords (𝑊) and set of 

document (𝐷). In the asymptotic analysis the complexities of 

set of keywords (𝑊) is denoted by 𝑚, whereas the complexity 

of the set of document (𝐷) is denoted by 𝑛. As discussed 

previously, each scheme mainly comprises of 4 phases i.e. 

KeyGen, Build_Index, Build_Trap Search_Outcome and Dec 

phase. KeyGen and Dec phase are fairly identical to that other 

schemes. This is why we skip the comparative analysis of these 

phases and move onto the Build_Index phase. We extend the 

analysis of the remaining phases of all the schemes. We perform 

the analysis of our scheme while considering ranking and no-

ranking. This way the readers can easily relate and evaluate the 

efficiency of our scheme to other schemes under discussion. 

 

 

 

 

The algorithmic analysis is based on two cases: 

1) 𝑛 < 𝑚 

In this case we assume that the number of keywords will 

be greater than the number of documents. From the 

complexity analysis of our scheme, it is evident that the 

Build_Index phase requires 𝛩(𝑛2) where 𝑛 is the total 

number of documents in the dataset. The Build_Trap phase is 

bound by 𝛩(𝑚), where 𝑚 are the total number of words in the 

dataset. The Search_Outcome phase is bound by 𝛩(𝑚𝑛). We 

would like to highlight that if we remove the ranking 

functionality from our scheme then the efficiency of the 

Build_Index Phase increases to 𝛩(𝑛). Whereas, the efficiency 

of Search_Outcome phase can be increased to 𝛩(𝑛 + 1). 
Table 2 shows the algorithmic comparative analysis of the 

schemes when 𝑛 > 𝑚. From the table it is evident that our 

scheme is efficient as compared to the other schemes. 
 

 

 

Scheme 

Complexity 

Build_Index 
Phase 

Build_Trap 
Phase 

Search_Outcome 
Phase 

ERSE[14] 𝛩(𝑛2 + 3𝑛) 𝛩(2𝑚) 𝛩(𝑚𝑛) 

DSE[10] 𝛩(𝑛2 + 4𝑛) 𝛩(𝑚 + 3) 𝛩(3𝑛) 

GRSE[18] 𝛩(𝑛2 + 𝑛) 𝛩(𝑚) 𝛩(𝑚𝑛) 

MPSE[19] 𝛩(𝑛2 + 𝑛) 𝛩(𝑚) 𝛩(𝑚𝑛) 

FSE[21] 𝛩(𝑛2) 𝛩(𝑚) 𝛩(𝑚𝑛) 

Our work 𝛩(𝑛2) 𝛩(𝑛) 𝛩(3) 𝛩(𝑚𝑛) 𝛩(𝑛 + 1) 

TABLE II 

ALGORITHMIC ANALYSIS 
 

 



2) 𝑛 = 𝑚 

In this case, we assume that the number of keywords are 

equal to the number of documents. Since 𝛩(𝑛2) is the upper 

bound of 𝛩(𝑚𝑛), therefore, 𝛩(𝑚𝑛) can be represented as 

𝛩(𝑛2). We graphically represent the complexities of the 

schemes by analyzing their phases separately. Our work is 

represented by (I) and (II), where (I) is for ranked searching 

and (II) is for unranked searching. We do the complexity 

analysis of our scheme by comparing it with the ranked and 

unranked schemes separately. 

Figure 3 shows the Build_Index phase of the ranked 

schemes. It can be seen that the complexity of our proposed 

RSE scheme and existing ranked scheme increases with the 

increase in the number of documents. Even though our 

protocol also shows an exponential growth, it is more efficient 

and outperforms the other existing scheme. 
 

 
 

Fig. 3.  Complexity analysis of Build_Index phase in ranked schemes. 
 

On considering our scheme without ranking, it exhibits a 

mentionable linear growth as compared to existing schemes that 

show an exponential growth. Figure 4, graphically represents 

the complexity of the unranked schemes. From the graph it is 

evident that with the increase in the number of documents, there 

is a very slight increase in the complexity. 
 

 

 
Fig. 4.  Complexity analysis of Build_Index phase in unranked schemes. 

The complexity of the Build_Trap phase isn’t effected by 

ranking or un-ranking. Therefore, Figure 5 represents a 

collective graph of the Build_Trap phase of ranked and 

unranked schemes. It can be seen that all the schemes show a 

linear growth but our proposed scheme outperforms other 

schemes in terms of complexity by maintaining the same 

efficiency even with the increase in the number of keywords 

being searched. 
 

 
 

Fig. 5.  Complexity analysis of Build_Trap phase. 

 

Figure 6 illustrates a graph generated for the 

Search_Outcome phase of the RSE schemes. It can be seen that 

our proposed scheme and the existing ranked scheme are 

showing an exponential growth by depicting the same 

complexity. 

Whereas, when we compare our unranked scheme with the 

similar existing unranked schemes then our scheme performs 

much better and is faster. Our unranked scheme shows a linear 

growth in terms of the complexity. Figure 7 shows a complexity 

analysis of the Search_Outcome phase of the unranked 

schemes.  
 

 
 

Fig. 6.  Complexity analysis of Search_Outcome phase in ranked schemes. 



 
 

Fig. 7.  Complexity analysis of Search_Outcome phase in unranked schemes. 

 

The overall complexity analysis of our scheme against 

existing schemes yields that our scheme dominates the existing 

schemes in terms of efficiency and can be termed a lightweight 

scheme. 

B. Computational Analysis 

a) Dataset Description 

The Switchboard-1 Telephone Speech Corpus 

(LDC97S62)[28] was originally collected by Texas Instruments 

in 1990-1, under DARPA sponsorship. The first release of the 

corpus was published by NIST and distributed by the LDC in 

1992-3. The Switchboard-1 speech database [8] is a corpus of 

spontaneous conversations which addresses the growing need 

for large multi-speaker databases of telephone bandwidth 

speech. The corpus contains 2430 conversations averaging 6 

minutes in length; in other words, over 240 hours of recorded 

speech, and about 3 million words of text, spoken by over 500 

speakers of both genders from every major dialect of American 

English. The dataset comprises of 120,000 distinct keywords. 

A time-aligned word for word transcription accompanies each 

recording. As such it constitutes a realistic dataset of telephone 

speech, and for this reason the Switchboard-1 transcriptions 

were used to illustrate the functionality of the searchable 

encryption presented in this paper. 

b) Implementation Details 

To demonstrate the feasibility of our RSE scheme, we have 

implemented our algorithms in Java and present the results in 

the form of graphs using MATLAB2016. The implementation 

helps us analyze the time that each phase of the algorithm takes 

while gradually scaling the input (documents or keywords). In 

order to highlight the cost of cryptography we have 

implemented the testbed such that the client and server side 

implementation is done on the same machine. Hence, the 

analysis does not take the cost incurred while transferring the 

documents, index tables or trapdoor over the network, to the 

CS, in to account. 

The implementation uses all the algorithms presented in 

Section V. We achieve encryption by implementing 128-bit 

AES-CBC and the keyed cryptographic hash function used is 

SHA-128. The dataset used is of the size 59MB and it contains 

2100 files in total. The workstation used for the demonstration 

runs with an Intel Core i5 CPU running at 3.00GHz and 8GB of 

RAM. 

c) Performance Metrics 

To determine the performance of our RSE scheme, we 

analyze the performance of each individual phases that have 

been discussed throughout the paper. Since KeyGen and Dec 

phase are fairly identical to that of other schemes we therefore 

skip the performance analysis of these phases and shift our 

focus on to the remaining phases starting from the Build_Index 

phase. 
 

1) Build_Index Phase 
 

The Build_Index Phase comprises of index generation. After 

the index table is generated it is transmitted to the CS. We 

analyze the computation time index table generation. The 

computational cost analysis is done by running the code on a 

total of 120,000 distinct keywords, identified and extracted 

from a dataset of 2100 files. 

The index table is generated by the client and transmitted to 

the server. Our sheme facilitates both ranked and un-ranked 

searches depending upon the required functionality and area of 

application. As we have mentioned in Section V, our scheme 

uses equation 1 for the relevance score generation to achieve 

ranking. This ranking comes with an increase in the number of 

computations resulting in an increase in computational time. 

Therefore, we execute ranked index generation and un-ranked 

index generation seperately. 

 

 
 

Fig. 9.  Computational time for Index Generation (Ranked). 
 

Figure 9 shows a graphical representation for the running 

time of the Index generation (ranked) in seconds (sec). We 

execute this phase for a total of 2000 documents, starting from 

100 documents and gradually scaling the number of documents 

to 2000. For 2000 documents the Index generation takes a total 

of 14.7 seconds and shows a linear growth. 

Figure 10 shows the computational time for the Index 

Generation while removing ranking. It is evident that the 

computational time is enormously reduced and 2000 documents 

require only 4.9 seconds while maintaining a linear growth with 

the increase in the number of documents. 



 
 

Fig. 10.  Computational time for Index Generation (Un-Ranked). 
 

2) Build_Trap Phase 
 

As discussed earlier, the trapdoor acts as a search query and 

is generated by the client for a particular keyword. The 

generated trapdoor is transmitted to the server and it facilitates 

the search of the relevant documents. The trapdoor generation 

is not effected by the ranked or unranked searching so the 

Computational time remains the same. The Build_Trap phase is 

executed for the keyword “about” and the trapdoor generation 

takes a constant time of mere 0.016 seconds. 
 

3) Search_Outcome Phase 
 

Once the encrypted documents along with the index table are 

uploaded on to the CS and the trapdoor has been generated and 

transmitted to the CS, the next step is the searching of relevant 

documents. Figure 11, represents the graph generated on 

executing the Search_Outcome phase against the trapdoor 

generated for the keyword “about”. The searching takes a total 

of mere 0.050 seconds against 2000 documents and shows a 

linear growth. The outcome of the search is ranked. The label 

on the nodes represent the number of documents that are 

returned against the trapdoor, containing the searched keyword. 

For example, out of the total 2000 documents in the dataset, 

1943 documents contain the keyword “about”. 

 

 
 

Fig. 11.  Computational time for searching for the keyword “about”. 

 

VII. CONCLUSION AND FUTURE WORK 

In this paper, we have readdressed the problem of supporting 

keyword search on encrypted data outsourced to the cloud. We 

make several contributions to this domain by presenting a novel 

ranked based searchable encryption scheme. Our construction 

exploits the properties of modulo prime to generate a 

probabilistic trapdoor. The greatest challenge in searchable 

encryption is to maintain a balance between security, efficiency 

and query expressiveness.  

In order to perform the security analysis of our scheme, we 

revisit the existing definitions for searchable encryption and 

introduce the concept of indistinguishability. We prove the 

security of our scheme by giving formal proofs to the new 

definitions and designing games in the standard model. From 

the security analysis of our construction it is realized that the 

scheme provides greater security under these proposed 

definitions as compared to previous schemes. In order to prove 

the efficiency of our scheme, we perform an asymptotic 

analysis of existing schemes against our scheme. The results 

yield that our scheme is lightweight and outperforms existing 

schemes. 

We design and implement a proof of concept prototype and 

successfully test our scheme onto a real dataset of files. The 

analysis of the result yields that our scheme shows a linear 

growth with the increase in the input. Based on the results we 

can term our scheme to be extremely lightweight. 

In our future work, we will extend our proposed scheme to 

support multi-keyword searching to further support query 

expressiveness and deploy it to a multi-client architecture. 
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