

City, University of London Institutional Repository

Citation: Tahir, S. F., Ruj, S., Rahulamathavan, Y., Rajarajan, M. & Glackin, C. (2017). A

New Secure and Lightweight Searchable Encryption Scheme over Encrypted Cloud Data.
IEEE Transactions on Emerging Topics in Computing, 7(4), pp. 530-544. doi:
10.1109/tetc.2017.2737789

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/18275/

Link to published version: https://doi.org/10.1109/tetc.2017.2737789

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk



Abstract— Searchable Encryption is an emerging

cryptographic technique that enables searching capabilities over

the encrypted data on the cloud. In this paper, a novel searchable

encryption scheme for the client-server architecture has been

presented. The scheme exploits the properties of modular inverse

to generate a probabilistic trapdoor which facilitates the searching

over the secure inverted index table. We propose

indistinguishability that is achieved by using the property of a

probabilistic trapdoor. We design and implement a proof of

concept prototype and test our scheme onto a real dataset of files.

We analyze the performance of our scheme against our claim of

the scheme being light weight. The security analysis yields that our

scheme assures higher level of security as compared to other

schemes.

Index Terms— Searchable Encryption, Modular Inverse,

Extended Euclidean Algorithm, Indistinguishability, Privacy

Preservation, Inverted Index, Database as a Service (DaaS).

I. INTRODUCTION

LOUD is an environment that provides the utility of on

demand resource sharing and data access to the clients and

their devices remotely. Apart from the core categories of cloud

services i.e. SaaS, PaaS, IaaS, nowadays, Database as a Service

(DaaS) enables people to store their files on the cloud. This

DaaS helps in achieving availability of the documents but there

are some interrelated concerns associated to DaaS that are

security, trust, expectations, regulations and performance issues

[1]. The concerns above are interdependent and should be

addressed simultaneously. Encryption is probably the best

solution that comes to one’s mind while talking about security.

However, in the context of DaaS, searching over the encrypted

text or Searchable Encryption (SE) is a difficult and resource

consuming task.

This requires a SE scheme to be developed that would

facilitate performing textual searches over encrypted data. Such

a scheme would help maintain privacy of the outsourced

documents while enabling the search over the encrypted

documents. There are three main challenges associated with SE

as discussed in [2] i.e. (1) efficiency, (2) security and (3) query

S. Tahir is with the Information Security Group, School of Mathematics,

Computer Science and Engineering, City, University of London, UK, EC1V

0HB, on leave from the National University of Sciences and Technology

(NUST), Islamabad, Pakistan (e-mail: shahzaib.tahir@city.ac.uk;
shahzaib.tahir@mcs.edu.pk).

S. Ruj is with Indian Statistical Institute, 203 B.T. Road, Kolkata 700108,

India. (e-mail: sush@isical.ac.in).

expressiveness. These three terms can be assumed to be the

vertices of a triangle and an idealistic SE scheme should be

developed in such a way that it transforms the triangle into an

equilateral triangle. In other words, a balance needs to be

maintained between the faced challenges while designing a SE

scheme.

National Security Agency (NSA) has highlighted the

concerns related to security in the cloud and has proposed the

use of homomorphic encryption [3]. Homomorphic encryption

enables to perform operations on encrypted data. Though

homomorphic encryption has revolutionized the field of

cryptography, there are still major concerns related to

performance. In [4] the authors have conducted a survey and

comparison of different homomorphic and non-homomorphic

SE schemes. Their result yields that non-homomorphic SE

schemes out-perform homomorphic SE schemes in terms of

efficiency.

Till now the use of SE has been explored in connection with

E-mail servers [5] to conduct searches on confidential emails.

In the healthcare domain [6][7] the SE has been researched as

an effective method of providing keyword search on patients

health records. SE could have a profound impact on areas

related to telecom, e-commerce, warfare, big data analysis,

cloud storage.

In this paper we present a novel lightweight ranked SE

scheme. We develop and implement a proof of concept

prototype and test it on a database containing 2000 documents.

By developing the prototype, we explore the deployment of our

scheme in the telecom industry. We use the Switchboard-1

speech database [8] that is a corpus of spontaneous

conversations which addresses the growing need for large

multi-speaker databases of telephone bandwidth speech. The

corpus contains 2430 conversations averaging 6 minutes in

length; in other words, over 240 hours of recorded speech, and

about 3 million words of text, spoken by over 500 speakers of

both genders from every major dialect of American English.

This database consists of 120,000 distinct keywords. Based on

the results we generate graphs and show that the scheme is

Y. Rahulamathavan is with the Loughborough University Epinal Way,
Loughborough, Leicestershire LE11 3TU, UK. (email: y.rahulamathavan@

lboro.ac.uk)

M. Rajarajan is with the Information Security Group, School of
Mathematics, Computer Science and Engineering, City, University of London,

UK, EC1V 0HB, (email: r.muttukrishnan@city.ac.uk)

C. Glackin is with the Intelligent Voice Limited, St Clare House, 30-33
Minories, London, EC3N 1BP, (email: neil.glackin@intelligentvoice.com)

A New Secure and Lightweight Searchable

Encryption Scheme over Encrypted Cloud Data

Shahzaib Tahir, Sushmita Ruj, Senior Member, IEEE, Yogachandran Rahulamathavan, Member,

IEEE, Muttukrishnan Rajarajan, Senior Member, IEEE, Cornelius Glackin

C

mailto:r.muttukrishnan@city.ac.uk
mailto:neil.glackin@intelligentvoice.com

lightweight and shows a linear growth while scaling the input.

Hence, we prove that our scheme can perform efficient

keyword search on telephone speech. Furthermore, our scheme

can be equally helpful for performing SE in the aforementioned

domains.

Most of the schemes[5][9][10][11] proposed till date are

proven secure in the random oracle model (ROM)[12]. ROM is

based on the basic assumption that the cryptographic primitives

are replaced with idealized versions. In [13] authors have

presented a twenty year retrospective on the ROM. The authors

discuss the controversies associated with the use of ROM. This

evidence us to prove the security of our scheme in the standard

model that only limits the adversary by the resources available

i.e. time and computational resources.

A. Our Contributions

Following contributions to the field of SE have been made in

this work:

 Our foremost contribution is that we enumerate the

properties of a “secure” ranked SE scheme by formally

defining keyword-trapdoor indistinguishability and

trapdoor-index table indistinguishability.

 A primary contribution in this research is that we define

“complete indistinguishability” in searchable

encryption.

 We design and present a novel Ranked based Searchable

Encryption scheme that is completely based on a

probabilistic encryption algorithm to address the

distinguishability attacks.

 We design and implement a proof of concept prototype

and test our scheme onto a real dataset of files containing

120,000 keywords and 2000 documents to analyze the

performance of our scheme.

B. Organization

Section II presents the literature review in which existing SE

schemes are discussed. Section III discusses Ranked Searchable

Encryption Scheme (RSE) model by formally defining our

construction. In Section IV, we revisit the security definitions

related to searchable encryption and propose new definitions

for our proposed ranked searchable encryption scheme. Finally,

in Section V, we present our ranked searchable encryption

scheme followed by a security analysis. In Section VI, we

perform a comparative analysis of the existing scheme against

our scheme in terms of complexity. We also develop a proof of

concept prototype and test our scheme onto a live dataset of

documents by analyzing the computational time. The

computational time is also analyzed in Section VI. The

conclusions along with the future work are drawn towards the

end of the paper, in Section VII.

II. LITERATURE REVIEW

A state of the art searchable encryption scheme must maintain

a balance between security and efficiency. Previous researches

fail to maintain this balance thus resulting in a system that lacks

adaptability. In this section we discuss some significant

schemes.

Wang et al. in [14][15] for the first time introduce the

concept of ranked keyword searching over encrypted data. The

authors have proposed two schemes for single keyword search

over encrypted text. Their scheme was an extension of [16] and

they added secure ranking to it. Both the schemes facilitate the

server to perform ranked keyword searching on user’s behalf.

In both the schemes, the user will generate the same trapdoor

while searching for a particular file. Therefore, the schemes

lack in providing indistinguishability. There is an advantage of

their later scheme as it helps in providing dynamic inverted

index i.e. whenever a new file is added to the server the re-

ranking is not to be done but this comes with a huge

computation cost which will be discussed in the section VI.

Furthermore, the later scheme helps to keep the ranking score

encrypted that will help to avoid leakage of occurrence of a

particular keyword to the server. However, in [17] the authors

have launched a successful differential attack on the

aforementioned scheme. The authors have demonstrated that

the scheme still leaks the relevance scores to the adversary from

which the encrypted keywords can be inferred by using

estimated distributions. Therefore, their scheme lacks in

providing resistance against distinguishability attacks and leaks

information.

Kamara et al. in [10] have proposed a dynamic searchable

symmetric encryption scheme. Their work can be termed as an

extension of their previous scheme that they had proposed in

[16]. Their scheme facilitates the adding, deletion or

modification of a document. The change is brought to the server

at run time and comes with minimal modification and

recompilation of the inverted index. For the deletion of the file

they use an additional data structure that contains the pointers

to the file being deleted. For the modification they use

homomorphic encryption to encrypt the pointer so that based on

the homomorphic encryption properties the server can get

modify the file. Though this can be termed as a breakthrough in

the field of searchable encryption, there is a drawback of their

scheme i.e. the generated trapdoor is deterministic and the same

trapdoor is generated for the same word every time hence it

cannot resist distinguishability attacks. Furthermore, they have

also analyzed that their scheme leaks even more information as

compared to the previous scheme hence this scheme cannot be

termed as an ultimate solution.

Wang et al. in [18] have proposed a range search scheme on

encrypted spatial data. Their scheme i.e. Geometric Range

Searchable Encryption (GRSE) supports searchable symmetric

encryption by mapping the datasets to a set of points lying

within a geometric shape. Their design is indeed remarkable as

it is not dependent upon a particular geometric shape and

supports Axis-parallel Rectangles, Circles, Non-axis-parallel

Rectangles and triangles. However, in this scheme all the data

records within a dataset will be returned as the result and the

user may have to download every file containing that particular

keyword hence it will result in extra network traffic.

Furthermore, with the increase in the outsource data, the size of

the bloom filter is meant to be increased that will result in the

slowing down of the searching. They have also proposed an

extension of their probabilistic GRSE by using trees to increase

the efficiency of searching. However, as we have mentioned

earlier, this searching comes with a tradeoff of privacy as the

tree may reveal the path pattern. So this scheme does not

provide the desired level of security and privacy and reveals too

much information.

Tang in [19] has proposed a symmetric searchable multiparty

encryption scheme (MPSE) that is an extension of [20]. In their

scheme they introduce a Follow algorithm that allocates a token

to the writer to be distributed among the readers (user) of the

index table. This token authorizes the reader to perform the

search on the index table. This scheme facilitates the dynamic

users but does not allow dynamic databases. The authors

assume that there is a secure channel between the user and cloud

server to transmit the trapdoors. Although, the secure channel

hides the leakage of the trapdoor during transmission, the

trapdoor is based on one-way hash function due to which the

server itself can learn the access pattern and the keyword being

searched for since the same trapdoor is generated for the same

keyword. In other words the trapdoor is distinguishable. Their

scheme uses forward index i.e. an index for each file due to

which the ranking cannot be done.

In [21] Li et al. for the first time proposed efficient fuzzy

keyword searching on encrypted cloud data. The authors have

proposed two schemes i.e. the basic scheme and the wildcard

based scheme. Their proposed work tolerates the searching over

a dataset consisting of slight typo mistakes or errors. They use

the edit distance to measure the distance between the similar

erroneous words. The authors claim that the wildcard based

scheme is efficient and effective though they have not

performed any performance or complexity analysis of their

scheme. We perform the analysis in Section VI and show the

complexity of their scheme. Furthermore, since they are using

deterministic encryption for the generation of the trapdoor

hence the scheme is unable to provide prevention against

deterministic attacks and hence reveals the outcome of the

search and access pattern.

III. RANKED SEARCHABLE ENCRYPTION MODEL

We consider a single writer/single reader (S/S) architecture

and use the client-server infrastructure by visualizing a scenario

in which there are two parties, Alice (Client) and a Cloud Server

(CS). Alice intends to upload all her documents D=
{𝐷1, 𝐷2, … , 𝐷𝑁} to the CS to enable remote access. CS performs

the searching of relevant documents on behalf of Alice. In the

scheme it is assumed that the CS is a trusted but curious server.

Being trusted means that CS acts in a known and designated

manner but CS is also willing and curious to get hold of full or

partial information about the documents uploaded and held with

it.

Alice identifies a set of keywords W= {𝑊1,𝑊2, … ,𝑊𝑖}
from the set of documents D and generates a relevance score

based on the frequency of occurrence of the words with the set

of documents D. These relevance scores help in performing

ranked searching. Ranked searching facilitates the search by

giving user the liberty to select the most relevant documents

from a collection by identifying the frequency of occurrence of

a keyword within a set of documents. Ranked searching is

mainly used for single keyword search because the server may

find several documents satisfying the query whereas, in

complex queries, the server might be able to identify just a few

number of documents in response to the search query.

Therefore, ranked searching is not effective in multi-keyword

or expressive queries.

In [22], a formula (equation 1) has been presented that is

commonly used for the relevance frequency generation and is

widely used by researchers for designing the rank based

searchable encryption schemes. For example in [15][14]

authors have used the equation 1 for the ranking in searchable

encryption

 𝑅𝐹(𝑊,𝐷) = ∑
1

|𝐷|
∙ (1 + ln 𝑓𝐷,𝑊) ∙ ln (1 +

𝑁

𝑓𝑊
)𝑡∈𝑊 (1)

where 𝑊 denotes the keyword to be searched; 𝐷 denotes the

document; |𝐷| denotes length of the document obtained by

counting the words appeared in the document 𝐷; 𝑓𝐷,𝑊 denotes

number of times a word 𝑊 appears within a particular

document 𝐷; 𝑓𝑊 denotes the number of documents in the

dataset that contain the word 𝑊 and 𝑁 denotes the total number

of documents in the dataset.

Now Alice generates an index table 𝐼 (see Section V for more

details). Now Alice outsources the index table 𝐼 along with the

encrypted documents D to the CS.

If Alice wants to search for a document containing a specific

keyword, she simply generates a trapdoor T and sends it to CS.

CS uses the trapdoor T to search the index table 𝐼 and returns a

set of relevant documents in a ranked order. Figure 1 shows the

flow of events of the RSE scheme where a client is interacting

with a CS. It can be seen that mainly all the tasks are performed

on the client’s side, whereas, the searching is done at the CS

side.

Fig. 1. The flow of events of proposed RSE scheme.

We now formally define our proposed Ranked Searchable

Encryption scheme (RSE) that facilitates the search over

encrypted documents in ranked order. The following definition

presents the algorithms and the phases that our scheme

comprises of.

Definition (Ranked Searchable Encryption Scheme (RSE)) A

RSE comprises of five polynomial time algorithms Π =
(KeyGen, Build_Index, Build_Trap, Search_Outcome, Dec)
such that:

(𝐾, 𝑘𝑠) ← KeyGen(1𝜆): is a probabilistic key generation

algorithm run by the client. The algorithm takes a security

parameter λ as the input and returns a master key K and

a session key 𝑘𝑠.

(𝐼) ← Build_Index(𝐾, 𝐷): is a deterministic algorithm run by

the client to generate an index table 𝐼. The algorithm takes

a master key K and a collection of documents D to be

outsourced to the CS as input. The algorithm returns a

secure index 𝐼.

𝑇𝑤 ← Build_Trap(𝐾,𝑘𝑠, 𝑤,num): is a probabilistic algorithm

run by the client. The algorithm requires the master key

𝐾, a session key 𝑘𝑠 , keyword w and the number (num) of

documents D required as the input. The algorithm returns

a trapdoor 𝑇𝑤.

𝑋 ← Search_Outcome(𝑘𝑠, 𝐼, 𝑇𝑤): is a deterministic algorithm

run by the CS. The algorithm takes the session key 𝑘𝑠 ,
index table 𝐼 and the trapdoor (𝑇𝑤) as the input and

returns X, a set of desired document identifiers encrypted

𝐸𝑛𝑐𝐾(𝑖𝑑(𝐷𝑖)) containing the keyword w in ranked order.

𝐷𝑖 ← Dec(𝐾, 𝑋): is a deterministic algorithm run by the client.

The algorithm takes client’s master key and encrypted set

of document identifiers 𝐸𝑛𝑐𝐾(𝑖𝑑(𝐷𝑖)) to decrypt and

recover the document id’s.

Correctness: A RSE scheme is correct if for the security

parameter λ, the master key 𝐾 and the session key 𝑘𝑠 generated

by KeyGen(1𝜆), for (𝐼) output by Build_Index(𝐾, 𝐷), the

search using the trapdoor 𝑇𝑤 always returns the correct set of

encrypted document identifiers 𝐸𝐾(𝑖𝑑(𝐷𝑖)) in ranked order.

A RSE scheme is correct if the following are true:

 If 𝑤 ∈ 𝐷𝑖 then the following should hold with an

overwhelming probability

𝑆𝑒𝑎𝑟𝑐ℎ_𝑂𝑢𝑡𝑐𝑜𝑚𝑒(𝑘𝑠, 𝐼, 𝑇𝑤) = 𝐷 ∩ 𝐷𝑒𝑐(𝐾, 𝑋)
 = 𝐷𝑖 , where 1 ≤ 𝑖 ≤ 𝑛

 If 𝑤 ∉ 𝐷𝑖 then the following should hold with an

overwhelming probability

𝑆𝑒𝑎𝑟𝑐ℎ_𝑂𝑢𝑡𝑐𝑜𝑚𝑒(𝑘𝑠, 𝐼, 𝑇𝑤) = 𝐷 ∩ 𝐷𝑒𝑐(𝐾, 𝑋) = 0

Soundness: A RSE scheme is sound if for the security

parameter λ, the master key 𝐾 and the session key 𝑘𝑠 generated

by KeyGen(1𝜆), for (𝐼) output by Build_Index(𝐾, 𝐷), the

search using the trapdoor 𝑇𝑤 always returns sound results i.e. the

result should not contain any false positives.

A RSE scheme is sound if the following are true:

 If 𝑤 ∈ 𝐷𝑖 then the following should hold with an

overwhelming probability

Search_Outcome(𝑘𝑠, 𝐼, 𝑇𝑤)=1

 If 𝑤 ∉ 𝐷𝑖 then the following should hold with an

overwhelming probability

Search_Outcome(𝑘𝑠, 𝐼, 𝑇𝑤)=0

IV. SECURITY DEFINITIONS FOR RANKED SEARCHABLE

ENCRYPTION (RSE)

In the context of searchable encryption, security is studied

about privacy preservation of the data outsourced to the

CS[23][24].

A. Existing Security Definitions

The problem of searching over encrypted data has received

attention for more than a decade now. Back in 2000, Song et al.

in [25] were the first to come up with a practical way of

searching symmetrically over encrypted data. Till then there

was no formal definition regarding security for SE. Since 2000

several definitions and constructions of SE have been

presented. In 2003, Goh [26] for the first time came up with the

security definitions of searchable encryption called Semantic

Security Against Adaptive Chosen Keyword Attack (IND-

CKA). In the same paper, he proposed a searchable encryption

scheme that met his proposed definition. There were some

assumptions related to the definitions i.e. the number of

keywords (size of the documents) with in the document should

be same in order to achieve indistinguishability and if the index

is indistinguishable the trapdoors need not to be kept secure.

Since their definitions were focused towards secure indices and

not probabilistic trapdoors, their definitions could not be

generalized.

In [24] authors came up with an extension of IND-CKA that

aimed to counter the assumption of same size documents. They

supported their definition by presenting a secure index

construction called z-index which was based on bloom filters.

As highlighted in [16] that the definition was not secure and

would be fulfilled by any insecure searchable encryption

scheme. Later Goh introduced extended definitions IND1/2-

CKA and now the documents did not need to be of the same

size, and the trapdoor was again not kept secure. Curtmola et

al. in [16][23] claimed that all the previous definitions did not

provide adequate security and proposed two new definitions

Adaptive/Non-Adaptive Indistinguishability Security for SSE.

Both of the newly proposed definitions have their weaknesses

and don’t provide adequate level of indistinguishability. We

discuss the limitation of their slightly stronger definition i.e.

Adaptive Indistinguishability below.

B. Limitations of previous definitions

As mentioned earlier, Curtmola’s definitions are widely

accepted and used. They introduce four terms in [23] incurred

as a result of a search query i.e. History, Access Pattern, Search

Pattern and Trace. The history defines a tuple containing the

document collection and the keywords. Access patterns

represents the outcome, i.e. the documents contain a particular

keyword. The Search pattern tells if the same keyword is being

searched every time. Their security definition is defined as

nothing is leaked beyond the access pattern and the search

pattern while the Trapdoor is deterministic. Their definition of

Indistinguishability refers to the indistinguishable index table

generated based on pseudo-random functions.

We remark that Curtmola’s work clearly provides the desired

level of security when the trapdoor is deterministic but their

SSE-2 lacks in maintaining privacy associated to the trapdoor

and hence it is prone to distinguishability attacks. Their

construction (SSE-2) generates the same trapdoor

(deterministic) every time the same keyword is queried. As a

result the search pattern discloses which trapdoors correspond

to the same underlying keywords resulting in privacy concerns

(cf Section 4.2 of [23]). The deterministic trapdoor reveals the

corresponding history tuple “prior” to the search. Furthermore,

if an adversary is accidently given access to the trapdoor oracle

then all the future searches are revealed. Hence, we term their

definitions a primary “Baseline” for any SE scheme but

improved definitions are required for enhancing the security

and highlighting the advantage of a probabilistic trapdoor under

those improved definitions.

Therefore, based on the improved security definitions a

secure construction is required that primarily provides

indistinguishable index table and ensures trapdoor

indistinguishability that results in the increase in the security

and privacy of the entire system.

Now, we can formally state the privacy concerns associated

to RSE that are based on the following points

 The index table contains information crucial for searching

over the encrypted text and helps to relate keywords to the

documents. The index table should not reveal any (partial)

information about the documents (encrypted or

unencrypted) or the keywords (encrypted or unencrypted)

that form the table.

 The trapdoor should not reveal any information about the

keyword (unencrypted) that is being queried and should

maintain privacy of search.

 The trapdoor should be probabilistic and should not

disclose the corresponding underlying encrypted

keywords or document identifiers “prior” to the search.

 The outcome of the trapdoor should not uncover any

information about the encrypted document that is returned

as a result of the query to the user.

C. Security Definitions for Proposed RSE

We now revisit the existing definitions of SE that will be

utilized to prove the security of our proposed scheme. We

propose new definitions for indistinguishability and define

complete indistinguishability in the terms of ranked searchable

encryption. An ideal searchable encryption scheme should

fulfill all these definitions to ensure privacy. In Section V(G),

we prove that our scheme complies with the following

definitions.

1) Definition 1 (𝐷1): Non-Adaptive Indistinguishability for

Searchable Encryption

Non-Adaptive means that the adversary 𝒜 cannot make queries

based on the outcome of the previous query [16][23]. Therefore,

searchable scheme preserves security in the sense of non-

adaptive indistinguishability if for any two non-adaptively

constructed histories (documents & keywords) with equal

length and trace (documents length, search pattern and

outcome) no adversary can distinguish between the view

(encrypted documents, trapdoors & Index) of one history from

the view of the other in polynomial time with non-negligible

probability over 1 2⁄ .

2) Definition 2 (𝐷2): Adaptive Indistinguishability for

Searchable Encryption

Adaptive means that the adversary 𝐴 can make queries based

on the outcome of the previous query [16][23]. Therefore,

searchable scheme preserves security in the sense of adaptive

indistinguishability if for any two adaptively constructed

histories (documents & keywords) with equal length and trace

(documents length, search pattern and outcome) no adversary

can distinguish between the view (encrypted documents,

trapdoors & Index) of one history from the view of the other in

polynomial time with non-negligible probability over 1 2⁄ .

3) Keyword-Trapdoor Indistinguishability for Ranked

Searchable Encryption Scheme

Keyword-Trapdoor Indistinguishability refers to the act of

performing a search over encrypted text in such a way that the

redundancy in the statistics of the (plain text) keywords should

be dissipated into the associated trapdoor. Therefore, for the

same keyword appearing twice the trapdoor should not be able

to distinguishable even if the history (keyword, trapdoor) is

generated adaptively. To guess the word or the document’s

content the attacker has to intercept a tremendous amount of

data to uncover the underlying plain text in polynomial time.

The challenger begins by generating an index table against a

data collection D. The adversary selects a keyword 𝑤 and sends

it to the challenger. The challenger generates a trapdoor and

sends it back to the adversary. This continues until the

adversary has submitted polynomial-many keywords. Now the

challenger tosses a fair coin 𝑏, the adversary has to submit two

keywords (𝑤0, 𝑤1) to the challenger and receives a trapdoor

corresponding to the keyword 𝑤𝑏 . The adversary has to guess

and output the bit 𝑏.

Definition 3 (D3)(Keyword-Trapdoor Indistinguishability). Let

RSE=(KeyGen, Build_Index, Build_Trap, Search_Outcome,

Dec) be a Ranked Searchable Encryption scheme over a

dictionary W, λ be the security parameter, D be the set of

documents and 𝒜 = (𝒜0, 𝒜1, … ,𝒜𝑁+1) be such that 𝑁 ∈ ℕ

and consider the following probabilistic experiment

𝐊𝐞𝐲_𝐓𝐫𝐚𝐩RSE,𝒜(𝜆):

𝐊𝐞𝐲_𝐓𝐫𝐚𝐩RSE,𝓐(𝜆)

(𝐾, 𝑘𝑠) ← KeyGen(1𝜆)
(𝐼) ← Build_Index(𝐾, 𝐷)
𝑓𝑜𝑟 2 ≤ 𝑖 ≤ 𝑁

(𝑠𝑡𝒜 , 𝑤𝑖) ← 𝒜𝑖(𝑠𝑡𝒜 , 𝑇𝑤2 , … , 𝑇𝑤𝑖−1)

𝑇𝑤𝑖 ← Build_Trap𝐾(𝑤𝑖)

𝑇𝑤𝑁 ← Build_Trap(𝐾, 𝑘𝑠, 𝑤𝑁 , 𝑛𝑢𝑚)

𝑏
$
← {0,1}

(𝑠𝑡𝒜 , 𝑤0, 𝑤1) ← 𝒜0(1
𝜆)

𝑇𝑤𝑏 ← Build_Trap(𝐾, 𝑘𝑠, 𝑤𝑏 , num)

𝑏′ ← 𝒜𝑁+1(𝑠𝑡𝒜 , 𝑇𝑤𝑏)

𝑖𝑓 𝑏′ = 𝑏, 𝑜𝑢𝑡𝑝𝑢𝑡 1
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 𝑜𝑢𝑡𝑝𝑢𝑡 0

where 𝑠𝑡𝒜 is a string that represents and captures 𝒜′𝑠 state. We

say that the keyword-trapdoor indistinguishability holds if for

all polynomial-size adversaries (𝒜0, 𝒜1, … ,𝒜𝑁+1) such that

𝑁 = poly(𝜆),

Pr [𝐊𝐞𝐲_𝐓𝐫𝐚𝐩RSE,𝒜(𝜆) = 1] ≤
1

2
+ negl(λ),

Where probability is over the choice of 𝑏.

We explain this by designing a game in the standard model.

Game 1: Let RSE be a Searchable Encryption scheme (𝑆𝐸).
Suppose that there are at most 𝑁 keywords W =
(𝑊1,𝑊2, … ,𝑊𝑁) and 𝑀 documents D = (𝐷1, 𝐷2, … , 𝐷𝑀),
where 𝑁,𝑀 ∈ ℕ (set of natural numbers) associated to an index

table. The game is played between an adversary 𝒜 and a

challenger 𝒞. The game is divided into three phases as follows:

Phase 1: The adversary 𝒜 sends a keyword to the challenger

𝒞. The challenger 𝒞 returns a trapdoor to 𝒜. This continues

between the adversary 𝒜 and the challenger 𝒞 for a while.

Challenge Phase: The adversary 𝒜 selects two keywords

𝑊1
′,𝑊2

′ ∈ 𝑊 and send them to the challenger 𝒞. The selection

of the keywords can be done as follows:

a) 𝒜 intends to search for unique keywords such that

𝑊1
′ ≠ 𝑊2

′;

The challenger 𝒞 in response tosses a fair coin 𝑏 ← {0,1} and

generates two trapdoors corresponding to the values of b i.e.

𝑇
𝑊𝑏
′

′ such that 𝑇𝑊1′
′ ≠ 𝑇𝑊2′

′ .

After the challenge has been completed, Phase 1 is run again.

We allow the adversary to search for the same keywords again

if interested.

Outcome Phase: 𝒜 is given the generated Trapdoors

𝑇𝑊1′
′ , 𝑇𝑊2′

′ . 𝒜 will now have to guess and output 𝑏′ ∈ {0,1} and

if 𝑏 = 𝑏′ then the adversary wins. In other words the adversary

𝒜 has to output trapdoor T corresponding to 𝑊1
′,𝑊2

′ to the

challenger 𝒞 in polynomial time. If the adversary 𝒜 correctly

guessed the trapdoor corresponding to the word then it has won

otherwise RSE provides keyword-trapdoor indistinguishability

and the challenger 𝒞 wins.

Therefore the probability that the adversary 𝒜 wins is
1

2

which is according to the definition stated above.

4) Trapdoor-Index Indistinguishability for Ranked Searchable

Encryption

Trapdoor-Index indistinguishability relates to the complexity

offered by a Searchable Encryption (𝑆𝐸) scheme. The

keyword, trapdoor and index table should be complex and

involved in such a way that trapdoor should not reveal the

corresponding index table entries prior to the search and should

not be distinguishable. Therefore, for the same keyword

appearing twice the trapdoor should not be able to

distinguishable even if the history (keyword, trapdoor, index) is

generated adaptively. Furthermore, change of one bit/character

of the keyword should completely change the Trapdoor and

Index Table or vice versa.

The challenger begins by generating index table against a

data collection D. The challenger sends the set of keywords 𝑊,

the trapdoors generated for all the keywords 𝑊 along with the

associated index table entries 𝐼[0][𝑊] to the adversary while

maintaining the order in which they occur. Now the challenger

tosses a fair coin 𝑏, the adversary has to submit two keywords

(𝑤0, 𝑤1) to the challenger and receives a trapdoor

corresponding to the keyword 𝑤𝑏 . The adversary is now to

decide the corresponding index value and is challenged to

output the bit 𝑏.

Definition 4 (D4)(Trapdoor-Index Indistinguishability). Let

RSE=(KeyGen, Build_Index, Build_Trap, Search_Outcome,

Dec) be a Ranked Searchable Encryption scheme over a

dictionary W, λ be the security parameter, D be the set of

documents and 𝒜 = (𝒜0, 𝒜1) be such that 𝑁 ∈ ℕ and

consider the following probabilistic experiment

𝐓𝐫𝐚𝐩_𝐈𝐧𝐝𝐞𝐱RSE,𝒜(𝜆):

 𝐓𝐫𝐚𝐩_𝐈𝐧𝐝𝐞𝐱RSE,𝓐(𝜆)

(𝐾, 𝑘𝑠) ← KeyGen(1𝜆)
(𝐼) ← Build_Index(𝐾, 𝐷)
𝑓𝑜𝑟 1 ≤ 𝑖 ≤ 𝑁

𝑙𝑒𝑡 𝐼′ = 𝐼[0][𝑖]
𝑙𝑒𝑡 𝑤 = (𝑤1, … , 𝑤𝑖)
𝑇𝑤𝑖 ← Build_Trap(𝐾, 𝑘𝑠, 𝑤𝑖 , num)

𝑏
$
← {0,1}

(𝑠𝑡𝒜 , 𝑤0, 𝑤1) ← 𝒜0(𝑠𝑡𝒜 , 1
𝜆, 𝑤𝑁 , 𝐼

′, 𝑇𝑤𝑁)

𝑇𝑤𝑏 ← Build_Trap(𝐾, 𝑘𝑠, 𝑤𝑏 , num)

𝑏′ ← 𝒜1(𝑠𝑡𝒜 , 𝐼𝑤𝑏)

𝑖𝑓 𝑏′ = 𝑏, 𝑜𝑢𝑡𝑝𝑢𝑡 1
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 𝑜𝑢𝑡𝑝𝑢𝑡 0

where 𝑠𝑡𝒜 is a string that represents and captures 𝒜′𝑠 state. We

say that the trapdoor-index indistinguishability holds if for all

polynomial-size adversaries (𝒜0, 𝒜1, … ,𝒜𝑁+1) such that 𝑁 =
poly(𝜆),

Pr [𝐓𝐫𝐚𝐩_𝐈𝐧𝐝𝐞𝐱RSE,𝒜(𝜆) = 1] ≤
1

2
+ negl(λ),

Where probability is over the choice of 𝑏. We explain this by

designing a game in the standard model.

Game 2: Let RSE be a Searchable Encryption (𝑆𝐸) scheme.

Suppose that there are at most 𝑁 keywords W =
(𝑊1,𝑊2, … ,𝑊𝑁) and 𝑀 documents D = (𝐷1, 𝐷2, … , 𝐷𝑀),
where 𝑁,𝑀 ∈ ℕ (set of natural numbers) associated to an index

table. The game is played between an adversary 𝒜 and a

Challenger 𝒞. The game is divided into three phases as follows:

Phase 1: The challenger 𝒞 generates an index table 𝐼
corresponding to the set of documents. The challenger 𝒞

generates and sends the trapdoors for all keywords W , the index

table entries corresponding to the trapdoor and the keywords to

the adversary 𝒜.

Challenge Phase: The adversary 𝒜 is allowed to select two

keywords 𝑊1
′,𝑊2

′ ∈ 𝑊 and send them to the challenger 𝒞. The

selection of the keywords can be done as follows:

a) 𝒜 intends to search for unique keywords such that

𝑊1
′ ≠ 𝑊2

′;

The challenger 𝒞 in response tosses a fair coin 𝑏 ← {0,1} and

generates two trapdoors corresponding to the values of b i.e.

𝑇
𝑊𝑏
′

′ such that 𝑇
𝑊1
′

′ ≠ 𝑇
𝑊2
′

′ .

After the challenge has been completed, the adversary 𝒜 is

given access to the previously generated history that was sent

in Phase 1.

Outcome Phase: 𝒜 is given the generated Trapdoors

𝑇𝑊1′
′ , 𝑇𝑊2′

′ . Adversary 𝒜 will now have to guess and return the

index entry corresponding to the Trapdoors 𝑇𝑊1′
′ , 𝑇𝑊2′

′ and

𝑊1
′,𝑊2

′ in polynomial time. The adversary 𝒜 wins if the guess

is correct otherwise RSE provides trapdoor-index table

indistinguishability, and the challenger 𝒞 wins.

Therefore the probability that the adversary 𝒜 wins is
1

2

which is according to the definition stated above.

Theorem 1: Keyword-Trapdoor Indistinguishability and

Trapdoor-Index table results in the Complete

Indistinguishability for a Ranked Searchable Encryption

Scheme

𝑃𝑟𝑜𝑜𝑓 Let RSE=(KeyGen, Build_Index, Build_Trap,

Search_Outcome, Dec) be a Ranked Searchable Encryption

scheme. We make the following claim that leads to the proof of

this theorem.

𝐶𝑙𝑎𝑖𝑚: If RSE is Keyword-Trapdoor Indistinguishable, then it

is Trapdoor-Index Indistinguishable

Firstly, we assume that there exists a polynomial-size adversary

𝒜 that succeeds in an experiment 𝐊𝐞𝐲_𝐓𝐫𝐚𝐩RSE,𝒜(𝜆) with

non-negligible probability over 1 2⁄ , then there exists a

polynomial size adversary ℬ and a polynomial size

distinguisher 𝒟 that distinguishes between the output of the

experiment 𝐓𝐫𝐚𝐩_𝐈𝐧𝐝𝐞𝐱RSE,𝒜(𝜆) with non-negligible

probability over 1 2⁄ .

Let adversary ℬ sample 𝑏
$
← {0,1}; computes (𝑠𝑡𝒜 , 𝑤0, 𝑤1) ←

𝒜0(1
𝜆). The adversary ℬ. The distinguisher 𝒟 is given access

to a history consisting of trapdoors and corresponding keywords.

The adversary proceeds as follows:

1. It parses (𝑠𝑡𝒜 , 𝑤𝑖) ← 𝒜𝑖(𝑠𝑡𝒜 , 𝑇𝑤2 , … , 𝑇𝑤𝑖−1) where

2 ≤ 𝑖 ≤ 𝑁; 𝑁 ∈ ℕ

2. It computes 𝑏′ ← 𝒜𝑖+1(𝑠𝑡𝒜 , 𝑇𝑤𝑏)

3. It outputs 1 if 𝑏′ = 𝑏 , and 0 otherwise.

Clearly, ℬ and 𝒟 are polynomial size adversary since 𝒜𝑖+1

are. Now, we have to guess the probability of 𝒟’s success. 𝒟

will output 1 if and only if 𝒜𝑖+1(𝑠𝑡𝒜 , 𝑇𝑤𝑏) succeeds in

correctly guessing 𝑏. It is to be noted that the Build_Trap phase

is dependent upon trusted atomic primitives and uses a

probabilistic encryption algorithm therefore the outcome is

independent of 𝑏. Therefore, 𝒜𝑖+1 will guess 𝑏 with the

probability atmost 1 2⁄ which is according to the definitions

D3. Therefore, our initial assumption of such an adversary who

can succeed in the experiment 𝐊𝐞𝐲_𝐓𝐫𝐚𝐩RSE,𝒜(𝜆) with a non-

negligible probability over 1 2⁄ is wrong. Hence the

distinguisher 𝒟 that distinguishes between the output of the

experiment 𝐓𝐫𝐚𝐩_𝐈𝐧𝐝𝐞𝐱RSE,𝒜(𝜆) with non-negligible

probability over 1 2⁄ does not exist and it is according to our

definition D4. Hence our claim (stated above) is correct.

Now, we prove that an RSE is “Completely Indistinguishable”.

As discussed earlier, the entire scheme is dependent upon a

probabilistic trapdoor and provides Keyword-Trapdoor and

Trapdoor-Index indistinguishability. According to definition

D4, since a probabilistic trapdoor maps to an index location

while maintaining privacy, the privacy of the corresponding

document identifiers is also preserved. Due to the probabilistic

trapdoor, the indistinguishability and privacy between the

entities involved in the RSE is maintained on the whole that

results in complete indistinguishability.

V. PROPOSED RANKED SEARCHABLE ENCRYPTION (RSE)

FRAMEWORK

As discussed in Section III, our RSE scheme comprises of five

main phases. We now, present and discuss each of these phases

below. (Table I shows the notations and abbreviation used in

our scheme).
TABLE I

NOTATIONS AND ABBREVIATIONS

𝐶𝑆 – Represents a Cloud Server

𝐷 − Denotes a set of all possible documents to be outsourced to the

cloud. That is 𝐷 = {𝐷1, 𝐷2, … , 𝐷𝑁}.

𝑊 − Denotes a set of unique Keywords extracted from 𝐷𝑁 such that

𝑊 = {𝑊1,𝑊2, … ,𝑊𝑖}

|𝑊| − Denotes total number of identified distinct keywords.

|𝐷| − Denotes the size of a particular document, obtained by

counting the words appeared in the document 𝐷.

𝑅𝐹 − Denotes the relevance frequencies of the keywords 𝑊 among

the documents 𝐷.

𝑀𝑎𝑠𝑘(𝑅𝐹) – Denotes the masked 𝑅𝐹

𝑃 − Denotes a prime number of the size 𝜆 (security parameter) +1.

𝑖𝑑(𝐷𝑖) − Denotes the set of unique identifiers for each 𝐷𝑖.

𝐼 − Denotes the secure inverted Index table stored on CS and

provides ranked keyword searching.

𝑇𝑊𝑖
 − Represents the unique trapdoors generated to identify

documents 𝐷 containing word 𝑊𝑖.

𝐼𝑛𝑡𝑜_𝐼𝑛𝑡𝑒𝑔𝑒𝑟 – Represents the conversion of a value from

Hexadecimal to positive Integer.

𝐸𝑛𝑐 − Denotes a probabilistic encryption algorithm such as AES.

𝐷𝑒𝑐 − Denotes the decryption algorithm corresponding to 𝐸𝑛𝑐.

𝑥 ← 𝐴 − Represents that 𝑥 contains the content of the variable 𝐴.

𝐻(.) – Represents a keyed one-way hash function.

𝐾 – Represents the master key

𝑘𝑠 – Represents the session key

A. KeyGen Phase

The KeyGen algorithm helps the client to generate the keys.

The algorithm takes input a security parameter λ The client

generates a master key 𝐾; where, 𝐾𝜖{0,1}𝜆 and a session key

𝑘𝑠; where, 𝑘𝑠𝜖{0,1}
𝜆. The master key 𝐾 is kept secret with the

client whereas the session key 𝑘𝑠 is shared with the server prior

to the Build_Index phase.

Phase 1: KeyGen

a) Input: A security parameter λ.

b) Output: Master key 𝐾 and session key 𝑘𝑠

B. Build_Index Phase

The client generates an index table 𝐼 represented by a

dynamic array 𝐴. The client uses a cryptographic Hash function

𝐻: {0,1}𝜆 ×𝑊 → {0,1}𝐿

where 𝐿 is the length of the output. The keyed Hash function

𝐻 uses the master key 𝐾 to generate hash of the keywords and

convert them to positive integer. The array 𝐴 holds three

attributes. The first row of the array consists of a value that is

generated by calculating the inverse of the hash of a keyword

after converting it into positive integer. The first column

consists of the encrypted document identifiers 𝐸𝑛𝑐𝐾(𝑖𝑑(𝐷𝑁))
of all the outsourced documents. Whereas, the remaining

entries of the array are the relevance frequencies of the

keywords 𝑊 among the documents 𝐷. The relevance

frequencies are calculated according to equation (1). Each

column represents the relevance frequencies associated to a

particular keyword 𝑊. We multiply each column (excluding the

first row and first column of the array 𝐴) with a random number,

represented by 𝑀𝑎𝑠𝑘(𝑅𝐹). This way the relevance frequencies

are masked while maintaining proportion between the relevance

scores of the keyword 𝑊 occurring in different documents. This

helps to prevent frequency analysis attack and disclosure of

document size while maintaining correct ranking of documents.

Phase 2: Build_Index

a) Input: A set of documents 𝐷 and a master key 𝐾, a

Hash functions 𝐻(.).
b) Initialization:

 Initialize dynamic 2D Array 𝐴.

 Scan 𝐷 and build 𝑊, a set of unique and distinct

keywords occurring in 𝐷.

 Initialize Prime number 𝑃 of the size 𝜆 + 1bits.

c) Build Index 𝐼:
 for 1 ≤ 𝑡 ≤ |𝑊𝑖|:

− let 𝑎 ← 𝐼𝑛𝑡𝑜_𝐼𝑛𝑡𝑒𝑔𝑒𝑟(𝐻𝐾(𝑊𝑖)) mod P

− Compute 𝑎−1 and store it in 𝐴[1][𝑡];

− Compute 𝐸𝐾(𝑖𝑑(𝐷𝑁)),store it in 𝐴[𝑡][1];

− Calculate the 𝑅𝐹 for each 𝑊𝑖 occurring in

𝐷𝑁 using equation (1) and store the value

at the respective locations within 𝐴;

 𝑀𝑎𝑠𝑘(𝑅𝐹):
for 1 ≤ 𝑚 ≤ 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑙𝑢𝑚𝑛𝑠 𝑖𝑛 𝐴

− for 1 ≤ 𝑛 ≤ 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑜𝑤𝑠 𝑖𝑛 𝐴

o 𝐴[𝑛 + 1][𝑚 + 1] = 𝐴[𝑛 + 1][𝑚 +
1] ∗ 𝑟𝑎𝑛𝑑𝑜𝑚 𝑣𝑎𝑙𝑢𝑒𝑠

d) Output: Index table 𝐼

C. Build_Trap Phase

The client generates a trapdoor to search for documents

containing a particular keyword. The client using the master

key 𝐾 generates the hash H(.) of the keyword and converts it

into positive integer under mod 𝑃, represented by 𝑎. Again with

a probabilistic symmetric encryption algorithm, encrypts the

keyword and converts the result into positive integer under mod

P, represented by 𝑏. Now c is computed by multiplying 𝑎 with

𝑏 under mod P. The client uses a cryptographic keyed Hash

function

𝐻: {0,1}𝜆 ×𝑊 → {0,1}𝐿

where 𝐿 is the length of the output. The keyed Hash function

𝐻 uses the master key 𝐾 to generate 𝑎, the hash of the keyword

and uses session key 𝑘𝑠 to generate 𝑑, the 𝐻𝑘𝑠(𝑏). The trapdoor

consists of 𝑑, 𝑐 and the desired number of documents

represented by 𝑛𝑢𝑚.

The trapdoor is transmitted to the CS.

Phase 3: Build_Trap

a) Input: The master key (𝐾), the session key (𝑘𝑠), a

keyword (𝑤𝑖), a Hash functions 𝐻(.), desired

number of documents (𝑛𝑢𝑚).
b) Trapdoor Generation:

 let 𝑎 ← 𝐼𝑛𝑡𝑜_𝐼𝑛𝑡𝑒𝑔𝑒𝑟(𝐻𝐾(𝑊𝑖)) 𝑚𝑜𝑑 𝑃

 let 𝑏 ← 𝐼𝑛𝑡𝑜_𝐼𝑛𝑡𝑒𝑔𝑒𝑟(𝐸𝑛𝑐𝐾(𝑊𝑖)) mod P.

 let 𝑐 ← 𝑎 ∗ 𝑏 𝑚𝑜𝑑 𝑃

 let 𝑑 ← 𝐻𝑘𝑠(𝑏).

 Set Trapdoor 𝑇𝑊𝑖
← (𝑑, 𝑐, 𝑛𝑢𝑚).

c) Output: Transmit 𝑇𝑊𝑖
 to CS.

D. Search_Outcome Phase

CS now undertakes the search based on the received

trapdoor. The server has 𝑑, 𝑐 and 𝑛𝑢𝑚. The CS tries to find an

entry for which the following condition holds true 𝑑 ==
𝐻𝑘𝑠(𝑐 ∗ 𝑎

−1𝑚𝑜𝑑 𝑃). On a positive hit, the CS returns client the

encrypted document identifiers in ranked order based on the

documents having the highest relevant frequencies. The total

number of documents returned will be equal to 𝑛𝑢𝑚.

Phase 4: Search_Outcome

a) Input: A trapdoor 𝑇𝑊𝑖
 transmitted by the client, a

session key 𝑘𝑠, a Hash functions 𝐻(.) (same as

Build_trap phase) and the index table 𝐼.
b) Initialization:

 Dynamic Array 𝑋.

c) Searching:

 for 1 ≤ 𝑙 ≤ 𝑠𝑖𝑧𝑒 𝑜𝑓 𝐼:

− if (𝑑 == 𝐻𝑘𝑠(𝑐 ∗ 𝑎
−1𝑚𝑜𝑑 𝑃)):

o for 1 ≤ 𝑚 ≤ 𝑛𝑢𝑚:

 find highest RF, return

𝐸𝑛𝑐𝐾(𝑖𝑑(𝐷𝑖));

− 𝑋[] ← 𝐸𝑛𝑐𝐾(𝑖𝑑(𝐷𝑖));
d) Output: X; //set of encrypted document identifiers

stored in ranked order.

E. Dec Phase

The client after receiving the ranked encrypted document

identifiers, decrypts them to uncover the document identifiers

containing the searched keyword.

Phase 5: Dec

a) Input: The master key (𝐾), A set 𝑋 of encrypted

document identifiers stored in ranked order

b) Decryption:

 for 1 ≤ 𝑜 ≤ 𝑠𝑖𝑧𝑒 𝑜𝑓 𝑋:

− 𝐷𝑒𝑐𝐾(𝑋[𝑜]);
c) Output: Documents identifiers 𝑖𝑑(𝐷𝑖)

Remark 1: The index table 𝐼 needs to be regenerated whenever

the database is modified but this can be avoided if we remove

ranking because the re-ranking is to be done whenever a

modification is made to the outsourced database.

Remark 2: By multiplying the relevance score with random

numbers, we mask the actual frequency of the keywords and

avoid the frequency analysis attack while performing effective

and efficient ranked searching. This also helps to prevent the

disclosure of the size of the documents and maintaining

privacy.

F. Analysis of the proposed RSE scheme

We now prove that our proposed RSE scheme provides

correctness and soundness (defined in Section III).

Let (𝐾, 𝑘𝑠) represent the output of the KeyGen phase,

where, the master key 𝐾𝜖{0,1}𝜆 and the session key

𝑘𝑠𝜖{0,1}
𝜆. Given 𝑤,𝑤′ ∈ 𝑊, it is straight forward to verify

that the following are true:

 Given 𝑇𝑤 = Build_Trap(𝐾, 𝑘𝑠, 𝑤, 𝑛𝑢𝑚), the following

equality holds with a probability 1

𝑇𝑤 =

{

 𝐻𝑘𝑠 (

𝐼𝑛𝑡𝑜_𝐼𝑛𝑡𝑒𝑔𝑒𝑟(𝐸𝑛𝑐𝐾(𝑤)) ∗

𝐼𝑛𝑡𝑜_𝐼𝑛𝑡𝑒𝑔𝑒𝑟(𝐻𝐾(𝑤)) 𝑚𝑜𝑑 𝑃
) ,

(
𝐼𝑛𝑡𝑜_𝐼𝑛𝑡𝑒𝑔𝑒𝑟(𝐸𝑛𝑐𝐾(𝑤)) ∗

𝐼𝑛𝑡𝑜_𝐼𝑛𝑡𝑒𝑔𝑒𝑟(𝐻𝐾(𝑤)) 𝑚𝑜𝑑 𝑃
) ,

𝑛𝑢𝑚 }

 Given 𝑇𝑤 = Build_Trap(𝐾, 𝑘𝑠, 𝑤, 𝑛𝑢𝑚), and 𝑤′ ≠ 𝑤, the

following inequality holds with an overwhelming

probability:

𝑇𝑤 ≠

{

 𝐻𝑘𝑠 (

𝐼𝑛𝑡𝑜_𝐼𝑛𝑡𝑒𝑔𝑒𝑟(𝐸𝑛𝑐𝐾(𝑤
′)) ∗

𝐼𝑛𝑡𝑜_𝐼𝑛𝑡𝑒𝑔𝑒𝑟(𝐻𝐾(𝑤
′)) 𝑚𝑜𝑑 𝑃

) ,

(
𝐼𝑛𝑡𝑜_𝐼𝑛𝑡𝑒𝑔𝑒𝑟(𝐸𝑛𝑐𝐾(𝑤

′)) ∗

𝐼𝑛𝑡𝑜_𝐼𝑛𝑡𝑒𝑔𝑒𝑟(𝐻𝐾(𝑤
′)) 𝑚𝑜𝑑 𝑃

) ,

𝑛𝑢𝑚 }

In fact, this inequality can hold only if 𝐻𝐾(𝑤) = 𝐻𝐾(𝑤
′)

which is having a negligible probability.

This leads to the conclusion that a unique trapdoor is mapped

to a distinct keyword. Since the index table contains encrypted

file identifiers 𝐸𝑛𝑐𝐾(𝑖𝑑(𝐷)) for every document that maps to

the keywords, therefore, as a result, the value of

Search_Outcome phase corresponds to the value outlined in the

correctness and soundness definitions mentioned in Section III.

Therefore, the proposed RSE scheme is correct and sound.

G. Security Analysis

All of the previously known searchable encryption

constructions leak some information because they were based

on deterministic trapdoor [10][9]. In [27] authors have studied

the access pattern disclosure of the previously known

searchable encryption schemes that were based on deterministic

trapdoors. Our proposed scheme is based on a probabilistic

trapdoor. So before mapping our scheme against the security

definitions stated in Section IV, we would like to formally

highlight any information that our scheme leaks. We analyze

any possible leakage of information significant or insignificant,

encrypted or unencrypted based on a set of assumptions. We

analyze all the artifact that are obtained from the five

polynomial time algorithms explained previously i.e. index

table 𝐼, trapdoor 𝑇𝑤 and the outcome of a search. While defining

the leakage we assume that the attack is launched by an

adversary 𝒜 in a standard model so we do not restrict the

adversary by replacing our scheme with any weak construction.

The leakage focuses on the information that is revealed within

polynomial time. Our security analysis yields the following

results:

1) Leakage 𝐿1

Description: The leakage 𝐿1 is associated to the index

table 𝐼
Assumption: We assume that 𝐼 is revealed to all the

stakeholders i.e. the client, Cloud Server and the

adversary 𝒜.

Definition: The Leakage 𝐿1 is defined as:

𝐿1(𝐼) =

{

 (𝐼𝑛𝑡𝑜_𝐼𝑛𝑡𝑒𝑔𝑒𝑟(𝐻𝐾(𝑊𝑖)))

−1

,

𝐸𝑛𝑐𝐾(𝑖𝑑(𝐷𝑖)),

𝑀𝑎𝑠𝑘(𝑅𝐹),

𝐼𝑛𝑡𝑜_𝐼𝑛𝑡𝑒𝑔𝑒𝑟(𝐻𝐾(𝑊𝑖)) }

2) Leakage 𝐿2

Description: The leakage 𝐿2 is associated to the

Trapdoor 𝑇𝑤 generated for a particular keyword 𝑤 to be

searched.

Assumption: We assume that 𝑇𝑤 is generated by the

client and revealed to all the stakeholders i.e. Cloud

Server and the adversary 𝒜.

Definition: The Leakage 𝐿2 is defined as:

𝐿2(𝑇𝑤) = {
𝑎 ← 𝐻𝐾(𝑊𝑖) ∗ 𝐸𝑛𝑐𝐾(𝑊𝑖) 𝑚𝑜𝑑 𝑃,

𝑏 ← 𝐻𝑘𝑠(𝐸𝑛𝑐𝐾(𝑊𝑖))𝑚𝑜𝑑 𝑃,
𝑛𝑢𝑚

}

3) Leakage 𝐿3

Description: The leakage 𝐿3 is associated to search

outcome (SO) of the Trapdoor generated for a particular

word (𝑇𝑤)
Assumption: The search outcome is revealed to all the

stakeholders i.e. i.e. the client, Cloud Server and the

adversary 𝒜.

Definition: The Leakage 𝐿3 is defined as:

𝐿3(SO) = {OC(𝑤), 𝐸𝑛𝑐𝐾(𝑖𝑑(𝐷𝑖))∀𝑇𝑤∈𝐷𝑖
}

where OC is the outcome

As the trapdoor is based on a probabilistic encryption algorithm

and a keyed hash function therefore we can say that that leakage

associated to trapdoor is meaningless and we do not need to

worry about it. do not leak any information. Therefore, it is

evident that 𝐿1 and 𝐿2 lead to the security and privacy concern

but we will prove that these leakage do not reveal any

information about the data outsourced. Another point to be

noted here is that these leakages and assumptions are

interrelated and interdependent hence to maintain security all

the assumptions should be strictly met.

Lemma 1. The Ranked Searchable Encryption Scheme (RSE)

presented above is “secure” as it is (𝐿1, 𝐿2, 𝐿3)-secure and

according to Definition 𝐷1, 𝐷2, 𝐷3, 𝐷4, where 𝐿1 is associated

with the index table 𝐼 and leaks the encrypted file identifiers,

masked relevance frequencies, inverse of hash of keyword.

Whereas, 𝐿2 leaks a,b and the number of required documents

and 𝐿3 leaks the outcome of a trapdoor and the encrypted file

identifiers.

Proof Sketch. The security of our proposed scheme is

dependent upon trusted atomic primitives therefore we claim

that our scheme adds to the security of these primitives and does

not weaken the security provided by the atomic primitives. We

refer to the algorithm explained in Figure 3. The 𝐾𝑒𝑦𝐺𝑒𝑛 phase

generates two keys (𝐾, 𝑘𝑠) ← 𝐾𝑒𝑦𝐺𝑒𝑛(𝜆). The 𝑆𝑒𝑡𝑢𝑝 phase

generates an index table (𝐼) ← 𝑆𝑒𝑡𝑢𝑝(𝐾, 𝐷𝑁) corresponding to

the set of documents. The Build_Trap(K,𝑘𝑠,w,num) generates a

trapdoor 𝑇𝑤 corresponding to the word 𝑤 to be searched and

Search_Outcome(𝑘𝑠, 𝐼, 𝑇𝑤) represents the outcome of the

trapdoor. In order to prove that our scheme satisfies this lemma

we first prove that our scheme satisfies the security definitions

𝐷1, 𝐷2, 𝐷3, 𝐷4. Since our scheme uses indeterminisitic /

probabilistic encryption for the trapdoor generation therefore

the generated trapdoor 𝑇 is also indeterministic and unique for

the same keyword searched twice. It is hard for an adversary to

map the trapdoor to the keyword or form a relationship between

the keyword, trapdoor and index table prior to the search. This

also holds true for an adversary maintaining a history of the

search and outcome. Hence it satisfies the security definitions

of 𝐷1, 𝐷2, 𝐷3, 𝐷4.

Now we need to prove the security of our scheme against the

leakage 𝐿1, 𝐿2, 𝐿3. We argue that the leakage 𝐿1, 𝐿2, 𝐿3 are

meaningless and do not affect our scheme. It can be seen that

the three leakages are either encrypted, masked or Hashed

values. Based on the assumption of the master key (𝐾) being

secret, the Hash cannot be regenerated by an adversary.

Furthermore, we use a probabilistic encryption algorithm for

the encryption due to which the no meaningful information can

be obtained in polynomial time.

Therefore our scheme is (𝐿1, 𝐿2, 𝐿3)-secure against

adaptive/non-adaptive indistinguishability attacks and provides

Keyword-Trapdoor Indistinguishability & Trapdoor-Index

table indistinguishability.

Lemma 2. The Ranked Searchable Encryption Scheme (RSE)

presented above is “Completely Indistinguishable” as it is
(𝐿1, 𝐿2, 𝐿3)-secure and according to Definition 𝐷1, 𝐷2, 𝐷3, 𝐷4,

where 𝐿1 is associated with the index table 𝐼 and leaks the

encrypted file identifiers, masked relevance frequencies,

inverse of hash of keyword. Whereas, 𝐿2 leaks a,b and the

number of required documents and 𝐿3 leaks the outcome of a

trapdoor and the encrypted file identifiers.

 Proof Sketch. We extend the proof of Lemma 1 to establish

proof of this lemma. We have already proved that our scheme

is (𝐿1, 𝐿2, 𝐿3)-secure since the trapdoor of the proposed scheme

is generated based on probabilistic encryption therefore our

scheme satisfies the definitions 𝐷3, 𝐷4. Since the trapdoor T is

indistinguishable over the keyword W and the index table 𝐼,
therefore there is an equal probability that the generated

trapdoor T may be generated for any keyword 𝑊𝑖 and may be

mapped to any index table 𝐼 entry. Therefore, the outcome

(prior to the search) will be completely indistinguishable.

Hence the proposed RSE scheme is completely

indistinguishable.

VI. PERFORMANCE EVALUATION

A. Algorithmic Analysis

The algorithmic analysis is based on the complexity analysis

of the target schemes. We analyze the algorithm of each scheme

and perform this complexity analysis. This analysis is based on

upper bound analysis of the set of keywords (𝑊) and set of

document (𝐷). In the asymptotic analysis the complexities of

set of keywords (𝑊) is denoted by 𝑚, whereas the complexity

of the set of document (𝐷) is denoted by 𝑛. As discussed

previously, each scheme mainly comprises of 4 phases i.e.

KeyGen, Build_Index, Build_Trap Search_Outcome and Dec

phase. KeyGen and Dec phase are fairly identical to that other

schemes. This is why we skip the comparative analysis of these

phases and move onto the Build_Index phase. We extend the

analysis of the remaining phases of all the schemes. We perform

the analysis of our scheme while considering ranking and no-

ranking. This way the readers can easily relate and evaluate the

efficiency of our scheme to other schemes under discussion.

The algorithmic analysis is based on two cases:

1) 𝑛 < 𝑚

In this case we assume that the number of keywords will

be greater than the number of documents. From the

complexity analysis of our scheme, it is evident that the

Build_Index phase requires 𝛩(𝑛2) where 𝑛 is the total

number of documents in the dataset. The Build_Trap phase is

bound by 𝛩(𝑚), where 𝑚 are the total number of words in the

dataset. The Search_Outcome phase is bound by 𝛩(𝑚𝑛). We

would like to highlight that if we remove the ranking

functionality from our scheme then the efficiency of the

Build_Index Phase increases to 𝛩(𝑛). Whereas, the efficiency

of Search_Outcome phase can be increased to 𝛩(𝑛 + 1).
Table 2 shows the algorithmic comparative analysis of the

schemes when 𝑛 > 𝑚. From the table it is evident that our

scheme is efficient as compared to the other schemes.

Scheme

Complexity

Build_Index
Phase

Build_Trap
Phase

Search_Outcome
Phase

ERSE[14] 𝛩(𝑛2 + 3𝑛) 𝛩(2𝑚) 𝛩(𝑚𝑛)

DSE[10] 𝛩(𝑛2 + 4𝑛) 𝛩(𝑚 + 3) 𝛩(3𝑛)

GRSE[18] 𝛩(𝑛2 + 𝑛) 𝛩(𝑚) 𝛩(𝑚𝑛)

MPSE[19] 𝛩(𝑛2 + 𝑛) 𝛩(𝑚) 𝛩(𝑚𝑛)

FSE[21] 𝛩(𝑛2) 𝛩(𝑚) 𝛩(𝑚𝑛)

Our work 𝛩(𝑛2) 𝛩(𝑛) 𝛩(3) 𝛩(𝑚𝑛) 𝛩(𝑛 + 1)

TABLE II

ALGORITHMIC ANALYSIS

2) 𝑛 = 𝑚

In this case, we assume that the number of keywords are

equal to the number of documents. Since 𝛩(𝑛2) is the upper

bound of 𝛩(𝑚𝑛), therefore, 𝛩(𝑚𝑛) can be represented as

𝛩(𝑛2). We graphically represent the complexities of the

schemes by analyzing their phases separately. Our work is

represented by (I) and (II), where (I) is for ranked searching

and (II) is for unranked searching. We do the complexity

analysis of our scheme by comparing it with the ranked and

unranked schemes separately.

Figure 3 shows the Build_Index phase of the ranked

schemes. It can be seen that the complexity of our proposed

RSE scheme and existing ranked scheme increases with the

increase in the number of documents. Even though our

protocol also shows an exponential growth, it is more efficient

and outperforms the other existing scheme.

Fig. 3. Complexity analysis of Build_Index phase in ranked schemes.

On considering our scheme without ranking, it exhibits a

mentionable linear growth as compared to existing schemes that

show an exponential growth. Figure 4, graphically represents

the complexity of the unranked schemes. From the graph it is

evident that with the increase in the number of documents, there

is a very slight increase in the complexity.

Fig. 4. Complexity analysis of Build_Index phase in unranked schemes.

The complexity of the Build_Trap phase isn’t effected by

ranking or un-ranking. Therefore, Figure 5 represents a

collective graph of the Build_Trap phase of ranked and

unranked schemes. It can be seen that all the schemes show a

linear growth but our proposed scheme outperforms other

schemes in terms of complexity by maintaining the same

efficiency even with the increase in the number of keywords

being searched.

Fig. 5. Complexity analysis of Build_Trap phase.

Figure 6 illustrates a graph generated for the

Search_Outcome phase of the RSE schemes. It can be seen that

our proposed scheme and the existing ranked scheme are

showing an exponential growth by depicting the same

complexity.

Whereas, when we compare our unranked scheme with the

similar existing unranked schemes then our scheme performs

much better and is faster. Our unranked scheme shows a linear

growth in terms of the complexity. Figure 7 shows a complexity

analysis of the Search_Outcome phase of the unranked

schemes.

Fig. 6. Complexity analysis of Search_Outcome phase in ranked schemes.

Fig. 7. Complexity analysis of Search_Outcome phase in unranked schemes.

The overall complexity analysis of our scheme against

existing schemes yields that our scheme dominates the existing

schemes in terms of efficiency and can be termed a lightweight

scheme.

B. Computational Analysis

a) Dataset Description

The Switchboard-1 Telephone Speech Corpus

(LDC97S62)[28] was originally collected by Texas Instruments

in 1990-1, under DARPA sponsorship. The first release of the

corpus was published by NIST and distributed by the LDC in

1992-3. The Switchboard-1 speech database [8] is a corpus of

spontaneous conversations which addresses the growing need

for large multi-speaker databases of telephone bandwidth

speech. The corpus contains 2430 conversations averaging 6

minutes in length; in other words, over 240 hours of recorded

speech, and about 3 million words of text, spoken by over 500

speakers of both genders from every major dialect of American

English. The dataset comprises of 120,000 distinct keywords.

A time-aligned word for word transcription accompanies each

recording. As such it constitutes a realistic dataset of telephone

speech, and for this reason the Switchboard-1 transcriptions

were used to illustrate the functionality of the searchable

encryption presented in this paper.

b) Implementation Details

To demonstrate the feasibility of our RSE scheme, we have

implemented our algorithms in Java and present the results in

the form of graphs using MATLAB2016. The implementation

helps us analyze the time that each phase of the algorithm takes

while gradually scaling the input (documents or keywords). In

order to highlight the cost of cryptography we have

implemented the testbed such that the client and server side

implementation is done on the same machine. Hence, the

analysis does not take the cost incurred while transferring the

documents, index tables or trapdoor over the network, to the

CS, in to account.

The implementation uses all the algorithms presented in

Section V. We achieve encryption by implementing 128-bit

AES-CBC and the keyed cryptographic hash function used is

SHA-128. The dataset used is of the size 59MB and it contains

2100 files in total. The workstation used for the demonstration

runs with an Intel Core i5 CPU running at 3.00GHz and 8GB of

RAM.

c) Performance Metrics

To determine the performance of our RSE scheme, we

analyze the performance of each individual phases that have

been discussed throughout the paper. Since KeyGen and Dec

phase are fairly identical to that of other schemes we therefore

skip the performance analysis of these phases and shift our

focus on to the remaining phases starting from the Build_Index

phase.

1) Build_Index Phase

The Build_Index Phase comprises of index generation. After

the index table is generated it is transmitted to the CS. We

analyze the computation time index table generation. The

computational cost analysis is done by running the code on a

total of 120,000 distinct keywords, identified and extracted

from a dataset of 2100 files.

The index table is generated by the client and transmitted to

the server. Our sheme facilitates both ranked and un-ranked

searches depending upon the required functionality and area of

application. As we have mentioned in Section V, our scheme

uses equation 1 for the relevance score generation to achieve

ranking. This ranking comes with an increase in the number of

computations resulting in an increase in computational time.

Therefore, we execute ranked index generation and un-ranked

index generation seperately.

Fig. 9. Computational time for Index Generation (Ranked).

Figure 9 shows a graphical representation for the running

time of the Index generation (ranked) in seconds (sec). We

execute this phase for a total of 2000 documents, starting from

100 documents and gradually scaling the number of documents

to 2000. For 2000 documents the Index generation takes a total

of 14.7 seconds and shows a linear growth.

Figure 10 shows the computational time for the Index

Generation while removing ranking. It is evident that the

computational time is enormously reduced and 2000 documents

require only 4.9 seconds while maintaining a linear growth with

the increase in the number of documents.

Fig. 10. Computational time for Index Generation (Un-Ranked).

2) Build_Trap Phase

As discussed earlier, the trapdoor acts as a search query and

is generated by the client for a particular keyword. The

generated trapdoor is transmitted to the server and it facilitates

the search of the relevant documents. The trapdoor generation

is not effected by the ranked or unranked searching so the

Computational time remains the same. The Build_Trap phase is

executed for the keyword “about” and the trapdoor generation

takes a constant time of mere 0.016 seconds.

3) Search_Outcome Phase

Once the encrypted documents along with the index table are

uploaded on to the CS and the trapdoor has been generated and

transmitted to the CS, the next step is the searching of relevant

documents. Figure 11, represents the graph generated on

executing the Search_Outcome phase against the trapdoor

generated for the keyword “about”. The searching takes a total

of mere 0.050 seconds against 2000 documents and shows a

linear growth. The outcome of the search is ranked. The label

on the nodes represent the number of documents that are

returned against the trapdoor, containing the searched keyword.

For example, out of the total 2000 documents in the dataset,

1943 documents contain the keyword “about”.

Fig. 11. Computational time for searching for the keyword “about”.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have readdressed the problem of supporting

keyword search on encrypted data outsourced to the cloud. We

make several contributions to this domain by presenting a novel

ranked based searchable encryption scheme. Our construction

exploits the properties of modulo prime to generate a

probabilistic trapdoor. The greatest challenge in searchable

encryption is to maintain a balance between security, efficiency

and query expressiveness.

In order to perform the security analysis of our scheme, we

revisit the existing definitions for searchable encryption and

introduce the concept of indistinguishability. We prove the

security of our scheme by giving formal proofs to the new

definitions and designing games in the standard model. From

the security analysis of our construction it is realized that the

scheme provides greater security under these proposed

definitions as compared to previous schemes. In order to prove

the efficiency of our scheme, we perform an asymptotic

analysis of existing schemes against our scheme. The results

yield that our scheme is lightweight and outperforms existing

schemes.

We design and implement a proof of concept prototype and

successfully test our scheme onto a real dataset of files. The

analysis of the result yields that our scheme shows a linear

growth with the increase in the input. Based on the results we

can term our scheme to be extremely lightweight.

In our future work, we will extend our proposed scheme to

support multi-keyword searching to further support query

expressiveness and deploy it to a multi-client architecture.

ACKNOWLEDGEMENTS

We thank Intelligent Voice for providing the datasets to carry

out this work. We appreciate their useful comments and

suggestions during the implementation of this work.

REFERENCES

[1] J. Weis and J. Alves-Foss, “Securing Database as a Service: Issues

and Compromises,” IEEE Secur. Priv., vol. 9, no. 6, pp. 49–55, 2011.
[2] C. Bösch, P. Hartel, W. Jonker, and A. Peter, “A Survey of Provably

Secure Searchable Encryption,” ACM Comput. Surv., vol. 47, no. 2,

p. 18:1-18:51, 2014.
[3] Research Directorate Staff, “Securing the cloud with homomorphic

encryption,” Next Wave, vol. 20, no. 3, pp. 1–4, 2014.

[4] B. T. Prasanna and C. B. Akki, “A Comparative Study of
Homomorphic and Searchable Encryption Schemes for Cloud

Computing,” Int. J. Adv. Stud. Comput. Sci. Eng. IJASCSE, vol. 4, no.

5, 2015.
[5] D. Boneh, G. Di Crescenzo, R. Ostrovsky, and G. Persiano, “Public

Key Encryption with Keyword Search,” Eurocrypt, pp. 506–522,

2004.
[6] J. R. Troncoso-Pastoriza, S. Katzenbeisser, and M. Celik, “Privacy

preserving error resilient dna searching through oblivious automata,”

in Proceedings of the 14th ACM conference on Computer and
communications security - CCS ’07, 2007, p. 519.

[7] P. Van Liesdonk, S. Sedghi, J. Doumen, P. Hartel, and W. Jonker,

“Computationally efficient searchable symmetric encryption,” Lect.
Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect.

Notes Bioinformatics), vol. 6358 LNCS, pp. 87–100, 2010.

[8] J. J. Godfrey, E. C. Holliman, and J. McDaniel, “SWITCHBOARD:
telephone speech corpus for research and development,” in

[Proceedings] ICASSP-92: 1992 IEEE International Conference on

Acoustics, Speech, and Signal Processing, 1992, pp. 517–520 vol.1.
[9] S. Kamara and C. Papamanthou, “Parallel and dynamic searchable

symmetric encryption,” Lect. Notes Comput. Sci. (including Subser.

Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 7859 LNCS,

pp. 258–274, 2013.
[10] S. Kamara, C. Papamanthou, and T. Roeder, “Dynamic searchable

symmetric encryption,” 2012 ACM Conf. Comput. Commun. Secur.,

pp. 965–976, 2012.
[11] R. Chen, Y. Mu, G. Yang, F. Guo, and X. Wang, “Dual-Server

Public-Key Encryption With Keyword Search for Secure Cloud

Storage,” vol. 11, no. 4, pp. 789–798, 2016.
[12] M. Bellare and P. Rogaway, “Random oracles are practical: A

paradigm for designing efficient protocols,” Proc. 1st ACM Conf.

Comput. Commun. Secur., no. November 1993, pp. 62–73, 1993.
[13] N. Koblitz and A. J. Menezes, “The random oracle model: a twenty-

year retrospective,” Des. Codes, Cryptogr., vol. 77, no. 2–3, pp. 587–

610, 2015.
[14] C. Wang, N. Cao, K. Ren, and W. Lou, “Enabling secure and efficient

ranked keyword search over outsourced cloud data,” IEEE Trans.

Parallel Distrib. Syst., vol. 23, no. 8, pp. 1467–1479, 2012.
[15] C. Wang, N. Cao, J. Li, K. Ren, and W. Lou, “Secure ranked keyword

search over encrypted cloud data,” Proc. - Int. Conf. Distrib. Comput.

Syst., pp. 253–262, 2010.
[16] R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky, “Searchable

symmetric encryption,” Proc. 13th ACM Conf. Comput. Commun.

Secur. - CCS ’06, p. 79, 2006.
[17] K. Li, W. Zhang, C. Yang, and N. Yu, “Security Analysis on One-to-

Many Order Preserving Encryption-Based Cloud Data Search,” IEEE

Trans. Inf. Forensics Secur., vol. 10, no. 9, pp. 1918–1926, 2015.
[18] B. Wang, S. Member, M. Li, and H. Wang, “Geometric Range Search

on Encrypted Spatial Data,” IEEE Trans. Inf. Forensics Secur., vol.
11, no. 4, pp. 704–719, 2016.

[19] Q. Tang, “Nothing is for free: Security in searching shared and

encrypted data,” IEEE Trans. Inf. Forensics Secur., vol. 9, no. 11, pp.
1943–1952, 2014.

[20] R. Popa and N. Zeldovich, “Multi-key searchable encryption,” pp. 1–

18, 2013.
[21] J. Li, Q. Wang, C. Wang, N. Cao, K. Ren, and W. Lou, “Fuzzy

Keyword Search over Encrypted Data in Cloud Computing,” 2010

Proc. IEEE INFOCOM, pp. 1–5, 2010.
[22] I. H. Witten, A. Moffat, and T. C. Bell, “Managing Gigabytes.

Compressing and Indexing Documents and Images,” IEEE Trans. Inf.

Theory, vol. 41, p. 519, 1999.

[23] R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky, “Searchable

symmetric encryption: Improved definitions and efficient

constructions,” J. Comput. Secur., vol. 19, no. 5, pp. 895–934, 2011.
[24] Y. C. Chang and M. Mitzenmacher, “Privacy preserving keyword

searches on remote encrypted data,” Appl. Cryptogr. Netw. Secur.

Proc., vol. 3531, pp. 442–455, 2005.
[25] D. Wagner and A. Perrig, “Practical techniques for searches on

encrypted data,” Proceeding 2000 IEEE Symp. Secur. Privacy. S&P

2000, pp. 44–55, 2000.
[26] E.-J. Goh, “Secure Indexes,” An early version this Pap. first Appear.

Cryptol. ePrint Arch. Oct. 7th, pp. 1–18, 2003.

[27] M. S. Islam, M. Kuzu, and M. Kantarcioglu, “Access pattern
disclosure on searchable encryption: Ramification, attack and

mitigation,” Ndss, 2012.

[28] J. Godfrey and E. Holliman, “Switchboard-1 Release 2 - Linguistic
Data Consortium.” [Online]. Available: https://catalog.ldc.upenn.edu

/LDC97S62. [Accessed: 31-Aug-2016].

S. Tahir received his B.E. degree in

software engineering from Bahria

University, Islamabad, Pakistan, in 2013.

In 2015, he received his MS degree in

information security from National

University of Sciences and Technology

(NUST), Islamabad, Pakistan. He is

currently pursuing Ph.D. degree in

information engineering at City,

University of London, UK.

From June, 2015 to present, he is Lecturer in the Department of

Information Security, NUST, Islamabad, Pakistan and has been

awarded a scholarship by NUST for pursuing his Ph.D. at City,

University of London. He is currently also a Research Assistant

at City, University of London. His research interest include

applied cryptography and cloud security.

S. Ruj received her B.E. degree in

computer science from Bengal

Engineering and Science University,

Shibpur, India and Masters and Ph.D. in

computer science from Indian Statistical

Institute. She was an Erasmus Mundus

Post-Doctoral Fellow at Lund University,

Sweden and Post-Doctoral Fellow at

University of Ottawa, Canada. She is

currently an Assistant Professor at Indian Statistical Institute,

Indore, India. Prior to this, she was an Assistant Professor at

IIT, Indore. She was a visiting researcher at INRIA, France,

University of Wollongong, Australia, Kyushu University,

Japan. KDDI labs, Japan and Microsoft Research Labs, India.

Her research interests are in applied cryptography, security,

combinatorics and complex network analysis. She works

actively in mobile ad hoc networks, vehicular networks, cloud

security, security in smart grids. She has served as program co-

chair of IEEE ICCC (P&S Track), IEEE ICDCS, IEEE ICC, etc

and served on many TPCs. She won best papers awards at

ISPA'07 and IEEE PIMRC'11. Sushmita is a Senior Member of

IEEE.

Y. Rahulamathavan received the B.Sc.

degree (first-class honors) in electronic

and telecommunication engineering from

the University of Moratuwa, Sri Lanka, in

2008 and a Ph.D. degree in signal

processing from Loughborough

University, the UK in 2011. From April

2008 to September 2008, he was an

Engineer at Sri Lanka Telecom, Sri Lanka and from November

2011 to March 2012, he was a Research Assistant with the

Advanced Signal Processing Group, School of Electronic,

Electrical and Systems Engineering, Loughborough University,

UK. He has worked as a Research Fellow with the Information

Security Group, School of Engineering and Mathematical

Sciences, City University London, UK. Moreover, Dr.

Rahulamathavan received a scholarship from Loughborough

University to pursue his Ph.D. degree. He is currently working

as a Faculty with Loughborough University, UK. His research

interests include signal processing, machine learning and

information security and privacy. http://www.drrahul.uk/

M. Rajarajan is Professor of Security

Engineering at the City, University of

London, UK. He obtained his Ph.D. from

City University London in 2001. His

research expertise are in the areas of

mobile security, intrusion detection and

privacy techniques. He has chaired

several international conferences in the

area of information security and involved in the editorial boards

of several security and network journals. He is also a visiting

fellow at the British Telecommunications (BT) UK and is

currently actively engaged in the UK Governments Identity

http://www.drrahul.uk/

Assurance programme (Verify UK). He is a Senior Member of

IEEE, Member of ACM and Advisory board member of the

Institute of Information Security Professionals UK.

C. Glackin graduated from the University

of Ulster, School of Computing &

Intelligent Systems with an MSc in

Computing & Intelligent Systems in 2004.

Cornelius completed PhD concerning

Spiking Neural Network research at the

University of Ulster in 2009. After six

years post-doctoral research experience

working at the University of Ulster and the University of

Hertfordshire, he then moved to industry.

Cornelius is currently employed as a Research Scientist at

Intelligent Voice Ltd working on machine learning approaches

to signal processing, language modelling and speech

recognition. Cornelius’ other research interests include: kernel

machines, information theory, and robotics.

