City Research Online

Design and experimental evaluation of a parabolic-trough concentrating photovoltaic/thermal (CPVT) system with high-efficiency cooling

Karathanassis, I. K., Papanicolaou, E., Belessiotis, V. & Bergeles, G. (2017). Design and experimental evaluation of a parabolic-trough concentrating photovoltaic/thermal (CPVT) system with high-efficiency cooling. Renewable Energy, 101, pp. 467-483. doi: 10.1016/j.renene.2016.09.013

Abstract

The design and performance evaluation of a novel parabolic-trough concentrating photovoltaic/thermal (CPVT) system are discussed in the present study. Initially, the system design and manufacturing procedures as well as the characteristics of the system sub-components are thoroughly illustrated. At a second stage, the findings in regard to the optical quality of the parabolic trough are presented, as obtained through an experimental procedure that utilizes a custom-made measuring device. The device bears a grid of sensors (photodiodes), so that the irradiation distribution on the receiver surface and the achieved concentration ratio can be determined. Besides, the main factors that have a significant effect on the trough optical quality were identified through ray-tracing simulations. The system electrical and thermal performance was subsequently evaluated in a test rig specially developed for that reason. Three variations of the system receiver incorporating different PV-module and heat-sink designs were evaluated and the prototype CPVT system was found to achieve an overall efficiency approximately equal to 50% (44% thermal and 6% electrical efficiencies, respectively) mainly limited by the trough optical quality, however with a very weak dependency on the operating temperature.

Publication Type: Article
Additional Information: © 2017. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/
Publisher Keywords: Optical analysis, Ray-tracing, Experimental evaluation, Parabolic trough, CPVT system
Subjects: T Technology > TA Engineering (General). Civil engineering (General)
Departments: School of Science & Technology > Engineering
SWORD Depositor:
[thumbnail of RenEn_D-16-00479R2_Karathanassis_et_al_Clean_Version.pdf]
Preview
Text - Accepted Version
Available under License Creative Commons Attribution Non-commercial No Derivatives.

Download (1MB) | Preview

Export

Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Downloads

Downloads per month over past year

View more statistics

Actions (login required)

Admin Login Admin Login