

City, University of London Institutional Repository

Citation: Shahegh, P., Dietz, T., Cukier, M., Algaith, A., Brozik, A. & Gashi, I. (2017).

AntiVirus and Malware Analysis Tool. In: 2017 IEEE 16th International Symposium on
Network Computing and Applications (NCA). . IEEE. ISBN 978-1-5386-1465-5

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/18334/

Link to published version:

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

1

AVAMAT: AntiVirus and Malware Analysis Tool

Pasha Shahegh1, Tommy Dietz1, Michel Cukier1, Areej Algaith2, Attila Brozik2, Ilir Gashi2
1 University of Maryland, College Park, MD, USA

2 Centre for Software Reliability, City, University of London, UK

{pshahegh, tdietz3, mcukier}@umd.edu; {areej.algaith.1, attila.brozik.1, ilir.gashi.1}@city.ac.uk

Abstract— We present AVAMAT: AntiVirus and Malware

Analysis Tool - a tool for analysing the malware detection

capabilities of AntiVirus (AV) products running on different

operating system (OS) platforms. Even though similar tools are

available, such as VirusTotal and MetaDefender, they have

several limitations, which motivated the creation of our own tool.

With AVAMAT we are able to analyse not only whether an AV

detects a malware, but also at what stage of inspection does it

detect it and on what OS. AVAMAT enables experimental

campaigns to answer various research questions, ranging from

the detection capabilities of AVs on OSs, to optimal ways in

which AVs could be combined to improve malware detection

capabilities.

Keywords— security assessment; security tool; antivirus

software; malware analysis;

I. INTRODUCTION

AntiVirus (AV) products are some of the most widely used
security protection systems. They are usually deployed as the
last line of defence on desktop, laptop, tablet and smartphone
devices. Many studies compare their detection capabilities1.

There are two major platforms that allow for suspicious
files to be uploaded for scanning by multiple AV products,
namely VirusTotal and Metadefender2. VirusTotal is an online
service that hosts (at the time of writing) 56 signature-based
detection engines from different AV vendors. It is a service that
is widely used by both academia and industry to submit and
inspect malware samples. It also provides an Application
Programming Interface (API) through which multiple malware
samples can be submitted. Metadefender provides a service
similar to VirusTotal that hosts (at the time of writing) 42
signature-based detection engines.

Both of these services provide a valuable resource to
malware researchers. But they have limitations for more in-
depth analysis of AV detection capabilities:

- Both platforms run signature-based detection engines of
these AV products, rather than the full capability products
that would run on an end-point. Metadefender states the
following on its “Statistics” page (metadefender.com/stats)
“Please note that the detection data comes from Software
Development Kit (SDK) and Command Line Interface (CLI)
package versions of these anti-malware engines… so
detection results may differ significantly from commercial
endpoint performance.” VirusTotal states the following on
its’ “About” page: “VirusTotal's antivirus engines are

1 av-comparatives.org/, av-test.org/, virusbtn.com/index
2 https://www.virustotal.com/en/, https://www.metadefender.com/

commandline versions, so depending on the product, they
will not behave exactly the same as the desktop versions…”.

- Both platforms are essentially “black box” testing
platforms. In other words, the user submits a file, and gets a
response on whether the file was detected as malicious,
which AV products detected it as such, and the signature
used for the detection. But they do not provide more detail
about when the file was detected (e.g. “on entry” - before
being downloaded on the endhost; after it was downloaded
but without forcing a scan; only after a scan is performed),
or on which operating system was the AV product running
when it detected (or not) a file as malicious. This makes it
more difficult to assess the potential damage that a file may
cause on the end host before a malware is actually detected,
or whether it would have caused any damage at all on a
given operating system.

To overcome these limitations we built the AntiVirus and
Malware Analysis Tool (AVAMAT) for analysing different
malware and AV product capabilities running on different
operating systems. Currently AVAMAT supports eight full
capability AV products (i.e. the full versions of AV products,
rather than just signature based detection engines), namely:
AVG, Comodo, F-Secure, Kaspersky, FProt, Trend, Avira and
Emsisoft. These AV products are run, where available, on three
versions of the Microsoft Windows operating systems: XP, 7
and 8. With AVAMAT, a researcher can:

- analyse the diversity of detection capabilities between
different AntiVirus software on different operating systems.
Being able to analyse the same malware on machines with
the same AV yet different operating system allows us to
investigate the operating system’s effect on AV and
malware behaviour. And analysing the detection
capabilities of different AV products allows us to compare
the benefits of combining multiple diverse AVs in a diverse
defence-in-depth setup.

- analyse when does an AV product detect a malware it
encounters. We classify the detection in four stages
depending on when a malware is detected: on entry; after a
short wait; on a full scan, or after malware execution. This
allows us to, for example, better classify whether the
malware will be detected and prevented from running on
the end-host machine, or whether the malware would run
first before being executed, hence potentially requiring a
clean-up and full scan of the machine. Again we will
analyse the diversity that exists in these classifications
between different AV products and different OSs.

978-1-5386-1465-5/17/$31.00 ©2017 IEEE

2

The paper is structured as follows: Section II outlines
AVAMAT; Section III contains examples of initial results
obtained with AVAMAT; Section IV contains related work on
AV testing platforms; Section V outlines the main conclusions.

II. AVAMAT ARCHITECTURE

The AVAMAT architecture is built on top of open-source
software and uses custom-developed scripts to allow us to test
whether an AV a, running on a given OS o, detects a given
malware m on a given date d, and, if it detects it, when does it
do so. We will use the shorthand VM(a,o) to refer to a given
virtual machine that runs an AV a on an OS o. There are four
main components of AVAMAT:

- AV interfacing script (Skeleton): interfaces with custom-
developed scripts on each VM(a,o). The skeleton chooses
the specific script on VM(a,o). Once selected, the skeleton
uses the functions in the custom-developed script to
perform an analysis on malware m;

- Updaters: at the start of each experimental campaign,
updates the OS and AV with the latest updates and patches
available for each VM(a,o);

- Snapshot Manager: at the start of each experimental
campaign, takes a snapshot of each virtual machine
VM(a,o); after the virtual machine is finished inspecting a
given malware m it reverts back to the last snapshot
(ensuring that all malware in a given experimental
campaign are executed by the same VM(a,o));

- Experiment Scheduler: the administrator of the
experiment can specify how many times should an
experimental campaign be repeated. This may be useful to
enable, for example, testing how long it takes for an AV
product to detect a malware it has not detected in the past.

Figure 1 shows the AV products and OSs currently
supported in AVAMAT.

FIG. 1 – THE AV PRODUCTS AND OSS CURRENTLY SUPPORTED IN AVAMAT.
EACH BOX IS ONE VIRTUAL MACHINE (WE REFER TO A BOX AS VM(A,O)).

AVIRA AND EMISOFT NO LONGER SUPPORT WINDOWS XP VERSIONS, HENCE

THEY ARE MISSING FROM THE FIGURE ABOVE.

A. AV Interfacing script (Skeleton)

At the core of AVAMAT’s infrastructure is the Cuckoo
sandbox (cuckoosandbox.org). Cuckoo sandbox is an open
source automated malware analysis system. AVAMAT uses a
customized analysis package that puts the malware on a
machine, and then runs the AV Interfacing script (Skeleton).
The Skeleton is a Python script we have developed which
coordinates the scanning and logging of all the malware m by
an AV product a. A copy of the Skeleton resides on each of the
guest virtual machines that runs an AV product a on an OS o.
The guest virtual machines are created with KVM (linux-
kvm.org). When the Skeleton finishes, the analysis package
uploads the results file that the Skeleton generates back on to
the host machine. The results include information about: the
malware m that was just scanned, the OS o (name, version), the
AV product a (name, version), the time and date d on which
this test happened and the point at which the AV product a
detected the malware m, if it did at all. An agent script running
on the machine at start-up uploads malware to each machine.
There are four stages at which the skeleton checks if the
malware is found (Figure 2 illustrates this):

- on entry (the malware m is detected by VM(a,o) on
attempted download: the AV a detects the payload as
malicious and stops it before it downloads);

- after a short wait (currently set to 10 seconds) (i.e. the
malware was not detected on entry to VM(a,o), but was
detected by the AV product a less than 10 seconds after it
was downloaded on OS o);

- on a scan (the malware was downloaded on VM(a,o), 10
seconds have passed, and a scan was initiated, and only
then was the malware detected by the AV product a);

- after execution (the malware was not detected in any of the
aforementioned stages, but was detected when the file is
executed);

- no detection – if no detection in any of the above four
stages.

Since the stages are sequential (e.g., we only do a scan if
the malware was not detected in the previous stage(s)), the
results give us information not only about whether an AV
product detected a malware, but also when did it detect it. So,
for example, 1110 means the malware was not detected in
VM(a,o) in three earlier stages (“on entry”, “after 10 seconds”
and “on scan”), and only detected when the malware was
executed.

-

FIG. 2. THE POSSIBLE RESULTS OBTAINED ON A VM(A,O). 0 MEANS DETECTION

(NO FAILURE); 1 MEANS NO DETECTION (FAILURE).

3

AVAMAT uses Cuckoo to: communicate between the host
machine where the results are stored, and the guest machines
where the AV products are running; submit malware samples
from the repository of malware stored in the host machine to
the guest machines; execute Cuckoo’s analysis package and
upload the results to the host machine.

The host machine runs the virtualization software (KVM),
from which the guest virtual machines VM (a,o) are run, stores
the repository of malware, and an SQL database which stores
the results of testing. The host machine is setup to have an
instance of Cuckoo for every VM(a,o). Along with each
instance of Cuckoo it also contains its own unique process,
tasks database, and results server port. Each instance of Cuckoo
has its own task database, hence allowing it to synchronize
running different VM(a,o) instances at the same time.

Each guest machine VM(a,o) has three main components
written in Python: an adapter interfacing script (Skeleton), an
AV Adapter script and an Agent. Figure 3 depicts the high
level architecture of the Skeleton, AV Adapters and Agents for
one VM(a,o), and how it communicates with the host machine.

FIG. 3 - COMMUNICATION BETWEEN THE HOST MACHINE WHERE THE RESULTS

ARE STORED AND ONE GUEST MACHINE VM(A,O) THERE IS ONE CUCKOO PORT

USED BY EACH VM(A,O).

The Agent is an element of Cuckoo that enables
communication between the host operating system and the
guest operating systems. It establishes a TCP connection with
the host, allowing the host to send malware and the guest to
upload the analysis results. The Skeleton mediates between the
Agent and the AV Adapter functions, which gather the data on
the guest machine. To determine the detection stage, the
Skeleton calls on the AV Adapter’s functions. The Skeleton
records in a results text file the stage at which the malware has

been found (if at all) and the signature with which a given AV
product has detected the malware (if a signature is returned by
the AV product). We have a customized AV Adapter for each
VM(a,o) that accounts for operating system and for the
respective AV products. The AV Adapter implements
functions the skeleton expects when performing analysis.

The multiple functions in the AV adapter get the program
version, database version, engine version, malware signature,
as well as running an antivirus scan (if applicable to the
analysis).

B. Updaters, Snapshot Manager and Experiment Scheduler

Updaters: Before we start an experiment with AVAMAT
we ensure that all VM(a,o) have the latest updates applied.
AVAMAT runs automated scripts that update each VM(a,o)
with the latest updates available for each AV a and OS o.

Snapshot Manager: AVAMAT allows for multiple
malware to be sent to a given VM(a,o) in succession. So, after
we have retrieved the results from a given VM(a,o) when it
analysed malware mi, AVAMAT restores the state of the
VM(a,o) to the state it was before sending it malware mi. This
ensure that when we send the next malware mi+1 to it the state
of VM(a,o) has not been contaminated by malware mi. For this
we use built-in machine management functionality of the
cuckoo sandbox. Cuckoo has built-in libraries to revert to
snapshots of different virtualization software.

Experiment Scheduler: AVAMAT allows a researcher to
configure and run an entire experimental campaign over a long
period of time with limited supervision. For each repetition of
the experiment:

- We run the Updaters once for each VM(a,o);

- We run the Snapshot manager once at the start of the
experiment (i.e. before sending any malware to it). We
then revert back to this clean snapshot of a given VM(a,o)
after each malware m is inspected by that VM(a,o);

We run the Skeleton once after each malware m sent to a
VM(a,o).

III. RESULTS FROM USING AVAMAT

AVAMAT is currently in testing mode. In what follows we
show examples of analysis using results obtained from testing
with AVAMAT that are not possible to obtain with VirusTotal
or Metadefender. The malware we used during testing have
been collected from research honeypots that we have been
running for several years.

Table 1 shows the behaviour of Kaspersky AV when
inspecting two malware in AVAMAT. For the first malware in
the table Kaspersky detected it on Windows 7 and 8 (on scan,
i.e. step 110), but not on XP (i.e. step 1111). For the second
one it detects it on Windows XP and 8 (on scan) but not on 7.
We also provide the corresponding reports, where available,
from VirusTotal and MetaDefender which state that Kaspersky
detected them, but without information on the OS or detection
step.

4

TABLE I. DETECTION STEPS (CF. FIG 2) FOR KASPERSKY AV ON TWO

MALWARE SAMPLES

Malware MD5 XP Win7Win8 VirusTotal MetaDefender

0859f181992bb4b113cdb94420347e721111 110 110 bit.ly/2mVozRY No report found

0e16e2c22d90fcfdf639279cb2478587 110 1111 110 bit.ly/2mn0dNMbit.ly/2mHK7RB

We ran a small experiment where we sent over 5000
malware samples to AVAMAT. Figure 4 is a 3D plot showing
the stage of detection (z-axis) on different malware (y-axis) per
dates of the experiment (x-axis; non-detection is step 1111) for
Comodo on Windows 7. The malware in the y-axis have been
ordered by average difficulty of detection by the AVs (from
easiest – blue; to most difficult – red). This graph shows that
there is diversity in malware detection, and stages of malware
detection, even for the same AV on the same operating system
on different dates. Most malware are either detected on scan
(step 110) or not detected at all (step 1111) by Comodo on
Windows 7.

The analysis shown here is not possible with either
VirusTotal or Metadefender.

FIG. 4 - THE RATE OF MALWARE DETECTION (Z-AXIS) BY THE DIFFERENT

VM(A,O) (Y-AXIS; NOTE: AT THIS STAGE OF TESTING 21 VMS WERE

OPERATIONAL) PER STAGE OF DETECTION (X-AXIS; NON-DETECTION IS STEP

1111)

IV. LESSONS LEARNT, DISCUSSION AND CONCLUSION

In this paper we presented a tool called AVAMAT
(AntiVirus and Malware Analysis Tool). We built AVAMAT
to overcome the limitation`s of existing malware testing
platforms, such as VirusTotal and Metadefender, that do use
multiple AV products, but only their command line interfaces
that have limited functionality. These platforms also do not
provide details on when an AV product actually detected the
malware (on entry, on scan, once malware executes, etc.).
AVAMAT enables researchers to analyse different malware
and AV product capabilities running on different OSs.
Currently AVAMAT supports eight full capability AV
products that are run, where available, on three versions of the
Microsoft Windows OS: XP, 7 and 8. We also showed some

initial results obtained with AVAMAT that highlight its
advantages compared with VirusTotal or MetaDefender.

Using AVAMAT we plan to run experimental campaigns
to help us answer some of the following research questions (the
list is not exhaustive):

- What are the differences in the detection capabilities of
different AV products? Are there differences in detection
capabilities of AVs depending on the OS platform the AV
product runs?

- Do the AV products continue to detect a malware over
time, or are there cases of regressions in detection
behaviour?

- Which combination of AV products and OS platforms give
best detection capabilities against malware for a particular
time period?

- What are the false positive rates of AV products when
subjected to benign files? Are there differences in these
rates: by OS platform? By type of file? Etc.

AVAMAT is currently being used within our Universities.
This is to allow the functionality to be tested and debugged to
improve the reliability of the tool and the results obtained from
its use. We have two options of making the tool publically
available for other researchers to use, once the testing stage is
complete:

- Release the code so that users can build their own version
of AVAMAT, with their own AV products and licenses in
their own environments;

- Provide an API through which users can submit malware
samples for analysis to AVAMAT (similar to how
VirusTotal and Metadefender are used). But there are
inevitable infrastructure costs for deploying a tool such as
this, so the exact deployment and use model for AVAMAT
remains to be decided.

Current work and future enhancement for AVAMAT
include building support for more AV products and operating
systems, and a frontend for data analysis.

ACKNOWLEDGMENT

This research is supported by NSF award #1223634, and
the UK EPSRC project D3S (Diversity and defence in depth
for security: a probabilistic approach).

REFERENCES

(Note: for additional references, see footnotes and URLs in the main text.

All URLs last accessed on the 5-Oct-2017)

1. Oberheide, J., E. Cooke, and F. Jahanian. CloudAV: N-Version

Antivirus in the Network Cloud. in Proc. of the 17th USENIX

Security Symposium. 2008.

2. Lindorfer, M., et al. ANDRUBIS - 1,000,000 Apps Later: A View on

Current Android Malware Behaviors. in Proc. of Workshop: Building

Analysis Datasets and Gathering Experience Returns for Security

(BADGERS). 2014.

