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To investigate nonlinear random wave dynamics or statistics, direct phase-resolved numerical simulation of 

nonlinear random waves in deep sea on large-spatial and long-temporal scales are often performed by using 

simplified numerical models, such as these based on the Nonlinear Schrödinger Equation (NLSE). They are 

efficient and can give sufficiently acceptable results in many cases but they are derived by assuming narrow 

bandwidth and small steepness. So far, there has been no formula to precisely predict the quantitative errors of 

such simplified models. This paper will present such formulas for estimating the errors of Enhanced NLSE based 

on Fourier transform and Quasi Spectral Boundary Integral (QSBI) method when they are applied to simulate 

ocean waves on large-spatial and long-temporal scales (about 128 peak wave lengths and 1000 peak periods). 

These formulas are derived by fitting the errors of the simplified models, which are estimated by comparing their 

wave elevations with these obtained by using a fully nonlinear model for simulating the cases with initial 

conditions defined by two commonly-used ocean wave spectra with a wide range of parameters. Based on them, 

the suitable regions for the simplified models to be used are shown. 

 

1 INTRODUCTION 

It is now increasingly recognized that direct and accurate simulation of ocean waves considering sufficient 

nonlinearity is necessary for understanding their dynamics. The simulation is challenging, not only due to the 

randomness and nonlinear effects of ocean waves, but also the fact that it needs to be carried out in a quite large 

scale and for a long duration1.   

To do that, phase-averaged models, such as WAM, WAVEWATCH and SWAN etc., are very popular2-4. The 

models are based on linear wave energy transportation equation with all nonlinear effects modelled by empirical 

source terms. They give the approximated evolution of wave spectra and wave statistical parameters such as 

significant wave height. A great success has been achieved using these models, so that we all benefit from the 

forecast of the wave statistics provided by, e.g, ECMWF, NOAA and Met Office UK. Nevertheless, in many 

applications and situations, one requires more specific and accurate information rather than just wave statistics 

such as direct velocity fields, acceleration fields and wave slopes of nonlinear ocean waves to gain better 

understanding of random waves dynamics. To achieve such goals, phase-resolved models should be employed1,5. 

In this class of models, the dynamic equations governing the velocity and wave elevation are directly solved in 

time domain and so such information becomes available throughout the space at all time steps. Among them, 

numerical models based on the Navier-Stokes (short as NS) equation or coupled potential & NS model6,7 may be 

employed but they are computationally prohibitive for large scale simulations. Nevertheless, the models based on 

nonlinear potential theory alone are much faster, and thus a brief review is given below. 

One class of such models are fully nonlinear potential methods based on Finite Difference Method8-10, 
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Boundary Element Method11,12, and Finite Element Method13,14 or Quasi Arbitrary Lagrangian-Eulerian Finite 

Element Method15,16. However, they are still computationally expensive for very large scale simulations, thus 

barely applied so far to model waves in a scale of hundred wave lengths for thousand wave periods.  

Another class of nonlinear models are these based on or associated with use of the Fast Fourier Transform 

(FFT), such as FFT mixed global minimizing approach17, FFT mixed lower-upper matrix decomposition method18 

and FFT mixed finite difference scheme19, Spectral Continuation method20-22, Irrotational Green-Naghdi model23, 

Higher-Order Spectral (HOS) method24,25, Spectral Boundary Integral method26-28 and Enhanced Spectral 

Boundary Integral (ESBI) method29. This class of models is relatively faster but still needs significant amount of 

time. For an example, a 3D random sea simulation covering 42×42  peak wave lengths for 250 peak wave 

periods takes 10 CPU days on a 3 GHz-Xeon single processor PC by using the HOS method30.  

To be more efficient, researchers have developed many simplified potential models. One group of the models 

is the second order wave models, but Kriebel31,32 indicated that they could not describe the continuous spectral 

energy transfer between wave components as the amplitude of each wave component was independent of time, 

and thus they were only sufficiently accurate when the wave steepness was quite small (i.e., when the energy 

transfer between wave components was insignificant). The other group is the shallow water models, i.e., 

Boussinesq and KdV equations33,34, including the higher order versions35-37. They are suitable for weakly nonlinear 

shallow water waves38,39, thus will not be further discussed as this paper focuses only on the waves in deep seas.  

Another class of simplified models for simulating waves in deep seas are these based on the Zakharov 

equation40-42 or nonlinear Schrödinger equation (shortened as NLSE)40-44. The NLSE has a number of different 

versions, such as the cubic NLSE (shortened as CNLSE)40-44, the NLSE using the Dysthe equation45,46, the 

Modified NLSE (shortened as MNLSE)47, the Enhanced NLSE (shortened as ENLSE-4 )48, the Higher-Order 

Dysthe equation in terms of the Hilbert transform (shortened as ENLSE-5H)49, the Enhanced NLSE based on 

Fourier transform (shortened as ENLSE-5F)50 and the Hamiltonian higher-order NLSE78-80. These methods are 

based on the assumption that the bandwidth of random waves is narrow. In addition, Wang, et al.50 suggested a 

simplified method called QSBI (Quasi Spectral Boundary Integral) method, which is obtained from simplifying 

the fully nonlinear ESBI method29 by only keeping the convolution terms up to the third order while ignoring the 

integration terms for evaluating the vertical velocity. This method can be applied to simulate random waves 

without limitation on bandwidth.   

Applications of NLSE models to the direct simulation of random seas on large-spatial and long-temporal 

scales are extensive. For example, Onorato, et al.51 employed the CNLSE and performed more than 300 

simulations of random sea states on a scale of 100 peak wave lengths (L0) and 25 peak periods (T0), and found 

that rogue waves are more likely to occur when the initial wave steepness is large. Dysthe, et al.52 studied the 

evolution of the wave spectra based on both the CNLSE and the ENLSE-4 in a domain covering 100L0×100L0 

for 150T0, and found a power law behavior k−2.5 for integrated spectra53. Later, Dysthe, et al.54 and Socquet-

Juglard, et al.55 simulated 3D random seas covering 128L0×128 L0 for 150T0 based on the ENLSE-4, and pointed 

out that the probability density of surface elevation fits the Tayfun distribution very well. In addition, Shemer, et 

al.56 studied the probability of rogue waves in a domain of 77 L0 for 100T0 based on both the CNLSE and the 

Dysthe equation, and pointed out that the probability of rogue waves reaches the highest when the local bandwidth 

attains the maximum. Subsequently, Onorato, et al.57 brought the effects of current into the CNLSE and showed 

that rogue waves can be triggered naturally when a stable wave train enters a region of an opposing current flow 

field, based on a numerical simulation in a domain of 60 L0 for period of 60 T0. Later, Ruban58 considered the 

effects of non-uniform current on random waves based on the CNLSE, and simulated the wave field spanning 400 



 
 

L0 for 1000 T0. It is concluded that the reason of rogue wave occurrence is because of the interaction of quasi-

soliton coherent structures. Meanwhile, Zeng & Trulsen59 developed a NLSE for uneven bottom to simulate 

random waves propagating over 143L0 for 159 T0, and indicated that a change of water depth can provoke a 

spatially non-uniform distribution of kurtosis on the lee side of the slope. More recently, Sergeeva, et al.60 

simulated random waves in coastal regions on a scale of 20~40 L0 for up to 80 T0 based on a variable CNLSE, 

and found that rogue waves are likely to occur at deeper locations. Taklo, et al.61 also simulated a random sea on 

a scale of 70L0 for 400T0 based on the Zakharov equation and found that the measured dispersion relation deviates 

from the linear dispersion relation when the bandwidth is sufficiently narrow. Adcock, et al.62 recently applied the 

MNLSE to simulate random waves spanning 22L0×22 L0 for 300 T0 and suggested that the nonlinearity can give 

a small amount of extra elevation above that of linear theory, but the nonlinear dynamics does change the shape 

and structure of extreme waves. Moreover, Simanesew, et al.63 used the MNLSE to simulate random waves 

covering 100L0×100 L0 for 200T0 and compared with laboratory results, then suggested that a strong frequency-

dependence of the directional spread will develop due to nonlinear effects. Zhang, et al.64 also employed the 

MNLSE to simulate random waves on the scale of 256L0×256L0 for 60 T0, and found that the statistical properties 

of the simulated wave fields are basically consistent with the laboratory observation. Clamond, et al.65 carried out 

a long time simulation of soliton evolution by using the CNLSE, ENLSE-4 and their fully nonlinear method. They 

demonstrated that the ENLSE-4 model was more accurate than the CNLSE by showing that the results of the 

CNLSE started to become notably different from the results of their fully nonlinear method at 100 periods while 

these from ENLSE-4 were almost the same as those of the fully nonlinear method even at 150 periods. Wang66 

confirmed the observation of Clamond, et al.65 and indicated that the results of the ENLSE-5F model is correlated 

well with the fully nonlinear results at 500 periods when the results of ENLSE-4 became quite different from the 

latter. The additional tests (not presented here) carried out by Wang66 also show that the MNLSE and ENLSE-4 

models give almost the same results and are more accurate than the CNLSE and other lower order NLSE models, 

but less accurate than the ENLSE-5F in long time simulations. The QSBI method has just been proposed and only 

applied as an alternative for the NLSE in the hybrid model of Wang, et al.50. That paper just demonstrates that the 

QSBI method is generally more accurate than the ENLSE-5F model but takes more computational time.   

Although these simplified models are computationally efficient, they are accurate in limited conditions. 

Dysthe, et al.52 had pointed out that for narrow bandwidth waves the CNLSE and MNLSE is reliable only when 

a dimensionless time scale (the time multiplied by peak circular frequency) is up to 2ε-2 and 10ε-2 (ε peak wave 

number times amplitude), respectively. This information is very useful but it does not tell what is the specific 

values of errors if the models are employed. Xiao67 compared the results obtained by their HOS method and two 

NLS-type methods (MNLSE and NLSE using the Dysthe equation), and showed that the NLS-type methods could 

produce similar results to the HOS method when the spectrum change is slow, otherwise the results of NLS-type 

methods might be significantly different from those of the HOS method. It is desired that one would quantitatively 

estimate the errors of the simplified methods when applying them to simulate the random waves. According to 

the latest literature, the way to quantitatively and precisely estimate their errors seems not to be available, at least 

in public domain. 

The main purpose of this paper is to bridge the gap and present a method for estimating the quantitative error 

of Enhanced NLSE based on Fourier transform (ENLSE-5F) when it is applied to simulate ocean waves in large-

spatial and long-temporal scales, such as 128 peak wave lengths and 1000 peak periods. Along with this, the paper 

will also quantify the errors of the QSBI method and the linear model. The reason for concerning about the QSBI 

is that when the ENLSE-5F cannot be used, one may use the QSBI as an alternative. The reason for concerning 



 
 

about the linear model is because it is often employed in practice and it would be useful to know its errors. 

2 METHEDOLOGIES 

In order to obtain the quantitative errors, the fully nonlinear method (ESBI) and the simplified models will 

be applied to simulate a large number of cases, whose initial conditions are defined by two different but 

commonly-used ocean wave spectra with a wide range of wave parameters. For each of the cases, the errors of 

the simplified models are estimated by comparing their wave elevations with these obtained by using the ESBI at 

the end of the simulation. After the errors of all cases are obtained, the formulas are formulated by using a data 

fitting technique.   

All the numerical models have been documented in the publications cited above. Their formulations will 

only be briefed for completeness in the following sections. For convenience, all the variables involved will be 

non-dimensionalised in a consistent way, e.g., the length variables multiplied by peak wave number 𝑘0, and the 

time variables multiplied by peak circular frequency 𝜔0, where 𝜔0 = √𝑔𝑘0 and 𝑔 the gravity acceleration. 

All the dimensionless variables are listed in Table I. 

A. The ESBI and QSBI 

The Spectral Boundary Integral (SBI) method has been suggested by Clamond & Grue26, Fructus et al.68 and 

Grue28. It was improved and named as the ESBI by Wang & Ma29 and Wang et al50. This method is based on the 

potential theory with the boundary conditions on the free surface formulated as the skew-symmetric prognostic 

equation 

𝜕𝑴

𝜕𝑇
+ 𝚲𝑴 = 𝑵 (1) 

where 

𝑴 = (
𝐾𝐹{𝜂}

𝐾Ω𝐹{𝜙̃}
) , 𝚲 = [

0 −Ω
Ω 0

] , 𝑵 = (
𝐾(𝐹{𝑉} − 𝐾𝐹{𝜙̃})

𝐾Ω𝐹 {
1

2
[

(𝑉+∇𝜂∙∇𝜙̃)
2

1+|∇𝜂|2 − |∇𝜙̃|
2

]}
)  (2) 

where 𝜂  and 𝜙̃  are the dimensionless free surface elevation and the velocity potential on the free surface, 

respectively, as shown in Table I that also includes the definition of other dimensionless variables; V is the 

dimensionless vertical velocity defined by 𝑉 = 𝜕𝜙/𝜕𝑛√1 + |∇𝜂|2, 𝛺 is the dimensionless frequency defined 

by 𝛺 = √𝐾 with 𝐾 = |(𝜅, 𝜁)| = √𝜅2 + 𝜁2. In the above equations, the Fourier transform 𝐹{ } and the inverse 

transform 𝐹−1{ } are given by 

𝜂̂(𝑲, 𝑇) = 𝐹{𝜂} = ∫ 𝜂(𝑿, 𝑇)𝑒−𝑖𝑲∙𝑿𝑑𝑿
∞

−∞

 (3) 

𝜂(𝑿, 𝑇) = 𝐹−1{𝜂̂} =
1

4𝜋2
∫ 𝜂̂(𝑲, 𝑇)𝑒𝑖𝑲∙𝑿𝑑𝑲

∞

−∞

 (4) 

The solution for Eq.(1) is expressed by 

𝑴(𝑇) = 𝑒−𝚲(𝑇−𝑇0) ∫ 𝑒𝚲(𝑇−𝑇0)𝑵𝑑𝑇
𝑇

𝑇0

+ 𝑒−𝚲(𝑇−𝑇0)𝑴(𝑇0) (5) 

where 



 
 

𝑒𝚲∆𝑇 = [
cos Ω∆𝑇 − sin Ω∆𝑇
sin Ω∆𝑇 cos Ω∆𝑇

] (6) 

The vertical velocity 𝑉 can be split into four parts, i.e., 𝑉 = 𝑉1 + 𝑉2 + 𝑉3 + 𝑉4 (see Eqs. (B.1)~(B.4) in 

APPENDIX B). In the study of Wang & Ma29, several numerical techniques had been proposed in order to improve 

the computational efficiency. Firstly, they introduced a new numerical de-singularity technique to evaluate the 

integration parts more efficiently. Secondly, they reformulated the equations for 𝑉3 and 𝑉4 as (Eqs. (B.5)~(B.10) 

in APPENDIX B) 

𝑉3 = 𝑉3,𝐶 + 𝑉3,𝐼 = 𝑉3
(1)

⏟
4𝑡ℎ 

+ 𝑉3
(2)

⏟
6𝑡ℎ

+ 𝑉3,𝐼⏟
𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑖𝑜𝑛

 
(7) 

𝑉4 = 𝑉4,𝐶 + 𝑉4,𝐼 = 𝑉4
(1)

⏟
3𝑟𝑑

+ 𝑉4
(2)

⏟
5𝑡ℎ

+ 𝑉4
(3)

⏟
7𝑡ℎ

+ 𝑉4,𝐼⏟
𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑖𝑜𝑛

 
(8) 

During the simulation, the wave properties are examined. The integration parts are evaluated only when their 

effects are significant; otherwise they are neglected. In such a way, computational time is saved without degrading 

the accuracy of numerical results. Thirdly, they developed a new technique for anti-aliasing to eliminate aliasing 

problems associated with convolutions in the above equations.  

The QSBI (Quasi Spectral Boundary Integral) method is a simplified form of the ESBI method suggested by 

Wang, et al.50. In this method, the velocity accounts only for the convolution terms up to the third order and 

neglecting the integration terms, i.e., 𝑉 = 𝑉1 + 𝑉2 + 𝑉4
(1)

 with others being the same.   

The ESBI model had been validated in different situation as described in Wang and Ma29 and Wang, et al.50, 

which showed the good accuracy of the method. One of the validated cases is summarized here. In this case, the 

ESBI is used for the simulation of a Stokes wave perturbed by a directional side-band wave 𝛿𝜂 =

0.025𝜖[𝑠𝑖𝑛(𝑲𝟏 ∙ 𝑿) + 𝑠𝑖𝑛(𝑲𝟐 ∙ 𝑿)] , where 𝜖 = 0.2985 , 𝑲𝟏 = (3/2, 4/3)  and 𝑲𝟐 = (3/2, −4/3) . The 

computational domain covers 2×1.5  Stokes wave lengths on transversal and longitudinal direction and is 

resolved by 28× 28 points. The duration of the simulation is 18 wave periods. For this case, Fructus, et al.68 

presented a quantitative result of the ratio Ψ𝜖 = |𝐹{𝜂}|(𝑲=(3/2,4/3),𝑇)/|𝐹{𝜂}|(𝑲=(1,0),𝑇=0) , where 

|𝐹{𝜂}|(𝑲=(3/2,4/3),𝑇) is the value of the spectral component at a time T corresponding to 𝑲 = (3/2, 4/3). Their 

result is re-produced in FIG. 1. A code based on the method in Fructus, et al.68 was also programmed, which is 

referred to as the Fructus method and used to compute the same case. Both results are compared with that from 

the ESBI in FIG. 1. It shows that the code for the ESBI produces almost the same result as the Fructus method 

and the error at the end of the simulation is about 0.2%. The robustness and accuracy of the ESBI model has also 

been shown by other publications27,38,65.  

B. The ENLSE-5F 

As indicated above, there are many different forms of NLSE models. For the purpose of this paper, the 

ENLSE-5F model will be used. That is because of the following considerations. Compared with other lower order 

counterparts based on the Dysthe equation, this one is the most accurate but does not require significantly more 

computational time. Compared with Hamiltonian higher-order NLSEs78-80, the ENLSE-5F model is chosen by 

considering the following factors. (i) This paper is concerned about methods for phase-resolved simulation of 

random waves which needs to look at the free surface (or wave) elevation. The envelope solved in the ENLSE-

5F is directly related to the free surface elevation, and thus it is relatively easier to transform between the wave 

elevation and the envelope. The Hamiltonian NLSE is associated with the wave action which is nonlinearly related 



 
 

to the wave elevation. This feature makes it relatively more difficult to transform between the free surface 

elevation and the wave action, in particular, from the wave elevation to the wave action. (ii) Detailed analysis (not 

presented in this paper) can show that the leading order of error of the ENLSE-5F is 𝜇3𝜀3  while that of 

Hamiltonian higher-order NLSEs presented by both Craig, et al.79 and Gramstad & Trulsen80 is 𝜇2𝜀3, where 𝜇 

and 𝜀 denote the magnitude of the bandwidth and the wave steepness, respectively. One of the purposes of this 

paper is to quantify the error of NLSE and the boundary of suitability. From their orders of error, it can be seen 

that the error of ENLSE-5F would not be larger than that of Hamiltonian higher-order NLSEs and so its boundary 

of suitability should cover the boundary of suitability of Hamiltonian higher-order NLSEs. In other words, in the 

region where ENLSE-5F is not valid or not sufficiently accurate, Hamiltonian higher-order NLSEs should not be 

sufficiently accurate either. (iii) Although the NLSE equations based on the Dysthe equation, including ENLSE-

5F may not theoretically guarantee the conservation of the Hamiltonian (total wave energy) in finite and shallow 

waters, the effect of the problem is not significant in deep water concerned about in this paper, as indicated by 

Craig, et al.79. Socquet-Juglard, et al.55 showed numerically that the MNLSE conserved the total energy to high 

accuracy within the bandwidth constraint for the cases they considered. Tests have been carried out on the 

Hamiltonian estimated by using the ENLSE-5F for a typical case with strong nonlinearity considered in this paper, 

and the results (not presented here) demonstrated that the error of the Hamiltonian is less than 0.2% for the 

simulation up to 1000 peak periods. However, for the cases in finite and shallow water, Hamiltonian higher-order 

NLSEs may be better, which will be studied in future work. 

The ENLSE-5F model was suggested by Debsarma & Das49, and later modified by Wang, et al.50. In the 

method, the free surface elevation and velocity potential are written in the summation of several harmonics by 

introducing the envelope45, i.e.,  

𝜂 = 𝜂̅ +
1

2
(𝐴𝑒𝑖𝜃 + 𝐴2𝑒2𝑖𝜃 + 𝐴3𝑒3𝑖𝜃 + 𝑐. 𝑐. ) (9) 

𝜙 = 𝜙̅ +
1

2
[𝐵𝑒𝑖𝜃+𝑍 + 𝐵2𝑒2(𝑖𝜃+𝑍) + 𝐵3𝑒3(𝑖𝜃+𝑍) + 𝑐. 𝑐. ] (10) 

where 𝐴  and 𝐵  are complex envelops of the first harmonic of free surface elevation and velocity potential 

respectively, 𝐴2, 𝐴3, 𝐵2 and 𝐵3 are the complex envelope coefficients of the high-order harmonics, 𝜂̅ and 𝜙̅ 

are slowly varying parts of free surface elevation and velocity potential45, 𝑐. 𝑐. represents the complex conjugate, 

and 𝜃 = 𝑋 − 𝑇. The envelop A satisfies the following equations 

𝜕𝐴

𝜕𝑇
+ 𝐹−1{𝑖(𝜔 − 1)𝐹{𝐴}} = −

𝑖

2
|𝐴|2𝐴 −

3

2
|𝐴|2 𝜕𝐴

𝜕𝑋
−

1

4
𝐴2 𝜕𝐴∗

𝜕𝑋
+

𝑖

2
𝐴𝐹−1{|𝜅|𝐹{|𝐴|2}} +

5𝑖

8
|𝐴|2 𝜕2𝐴

𝜕𝑋2 +
9𝑖

16
𝐴∗ (

𝜕𝐴

𝜕𝑋
)

2

+
𝑖

8
𝐴

𝜕𝐴

𝜕𝑋

𝜕𝐴∗

𝜕𝑋
−

𝑖

8
𝐴2 𝜕2𝐴∗

𝜕𝑋2 +
1

2

𝜕𝐴

𝜕𝑋
𝐹−1{|𝜅|𝐹{|𝐴|2}} +

1

4
𝐴𝐹−1 {|𝜅|𝐹 {𝐴

𝜕𝐴∗

𝜕𝑋
}} +

1

2
𝐴𝐹−1 {|𝜅|𝐹 {𝐴∗ 𝜕𝐴

𝜕𝑋
}} +

𝑖

8
𝐴𝐹−1{𝜅2𝐹{|𝐴|2}}  

(11) 

The other parameters (𝐴2, 𝐴3, 𝐵2, 𝐵3 𝜂̅ and 𝜙̅) are estimated by using Eqs. (A.1)~(A.6) in APPENDIX A. The 

numerical code for the ENLSE-5F model has been validated in Wang, et al.50 and Wang66, which will not be 

repeated here.  

3 NUMERICAL SIMULATIONS AND RESULTS 

As indicated above, the errors of the simplified models will be quantified by finding the differences between 

their results and these of the fully nonlinear model. A short summary of all the models is presented in Table II, in 



 
 

which the linear model is simply described by Eq. (14) below.  

All the models will be applied to simulate the defined cases with different parameters. The simulations start 

by specifying the initial values on the free surface, which are determined by using widely-used JONSWAP and 

Wallops spectra. The JONSWAP is often employed to represent developing sea states69, which is given in terms 

of non-dimensional parameters in Table I by  

𝑆𝐽(𝑘) =
𝛼𝐽𝐻𝑠

2

2𝑘3
exp [−

5

4
(

1

𝑘
)

2

] γexp[−(√𝑘−1)
2

/(2σ2)  ]
 (12) 

where  𝐻𝑠  is the non-dimensional significant wave height (multiplied by peak wave number), 𝛼𝐽 =

0.0624(1.094 − 0.01915lnγ)/(0.23 + 0.0336γ − 0.185(1.9 + γ)−1), γ is the peak enhancement factor, and 

𝜎 = 0.07 for  𝑘 < 1 or 0.09 for 𝑘 ≥ 1. The bandwidth becomes narrower when γ increases. To represent 

developed sea states, the Wallops spectrum is often adopted as suggested by Goda69, which can be expressed by 

𝑆𝑊(𝑘) =
𝛽𝐻𝑠

2

2𝑘(𝑚+1)/2
𝑒𝑥𝑝 [−

𝑚

4𝑘2
] (13) 

where 𝛽 = 0.06238𝑚(𝑚−1)/4/(4(𝑚−5)/4Γ[(𝑚 − 1)/4])[1 + 0.7458(𝑚 + 2)−1.057]  and 𝑚  controls the 

bandwidth with the spectrum becoming narrower as 𝑚 increases.   

Corresponding to the spectra, the initial linear free surface elevation in the whole domain may be written as 

𝜂′(𝑋, 𝑇 = 0) = ∑ 𝑎𝑗 𝑐𝑜𝑠(𝑘𝑗𝑋 − 𝜔𝑗𝑇 + 𝜑𝑗)
𝑇=0

𝑁𝐽

𝑗=1

= ∑ 𝑎𝑗 𝑐𝑜𝑠(𝑘𝑗𝑋 + 𝜑𝑗)

𝑁𝐽

𝑗=1

 (14)  

where 𝑎𝑗 = √2𝑆(𝑘𝑗)Δ𝑘, 𝑆(𝑘) can be 𝑆𝐽(𝑘) or 𝑆𝑊(𝑘), and 𝜑𝑗 is randomly distributed in [0,2𝜋), 𝑘𝑗 is the 

wave number of the 𝑗𝑡ℎ component, 𝜔𝑗 = √𝑘𝑗, 𝑁𝐽 is the total number of the components. The limitation by 

using Eq.(14) (i.e., the random phase technique) was discussed in Tucker, et al.70, who suggested to use the random 

amplitude approach to give the initial free surface elevation. However, according to Elgar, et al.71, for a sufficiently 

large number of spectral components (1000 or more), no significant differences were found in the statistics 

produced by the two techniques. According to this, the total number of components considered is 1024 in the 

study. More discussions about this will be presented in Section 4.  

It is noted that 𝜂′ by Eq. (14) is merely the free modes. The initial free surface elevation with the bound 

modes can be constructed by using the technique summarised in APPENDIX C, which was introduced in Wang, 

et al.50. The initial free surface conditions may be specified by either considering only the free modes (Eq. 14) or 

the free modes plus the bound modes. As one of the purposes of this study is to quantify the error of the ENLSE-

5F, the simulation of all methods should start with the same initial conditions normally employed by the ENLSE-

5F, consisting both free modes and bound modes. In such a way, the errors between their results are mainly 

attributed to the method itself. If the initial conditions would not be the same, the errors should have included the 

effects of initial condition, which should not be considered for assessing the accuracy of the methods. Based on 

these considerations, all simulations for obtaining the results discussed hereafter are carried out by using the initial 

free surface elevation consisting of both free and bound modes.  

 

A. Computational parameters 

To perform the numerical studies, the computational parameters need to be properly selected. This section 

will discuss how to choose the proper parameters.   

There are two parameters in each of the two spectra, which are (𝐻𝑠, γ) for the JONSWAP and (𝐻𝑠, 𝑚) for 



 
 

the Wallops spectrum, respectively. In order to quantify the errors of the simplified models, the range of the 

parameters must be large enough. According to Goda69, the practical range of γ is within [1, 9] while it is within 

[5, 25] for m, which will be used in the study here.   

In the later sections, the central moment72 defined by  

𝑚𝑐 = ∫ |𝑘 − 1|
𝑆(𝑘)

𝐻𝑠
2

𝑑𝑘
+∞

0

 (15) 

will be used. The relationship between 𝑚𝑐 and the bandwidth parameters can be established through curve fitting 

and is given directly here without further details for simplicity, i.e.,  

𝑚𝑐 = 0.181 exp(−0.917𝛾0.300) (16) 

for the JONSWAP spectrum, while 

𝑚𝑐 = 0.005 exp(7.807𝑚−0.674) (17) 

for the Wallops spectrum. The fitted results by the two equations are shown in FIG. 2, where the values denoted 

by ‘target’ are those calculated directly by Eq.(15). The maximum error between the target (Eq.15) and fitted 

results (Eq.16 or Eq.17) are 0.3% and 2.0%, respectively, which is invisible in the figure. From this figure, one 

can see that the range of 𝑚𝑐 is 0.031 ≤ 𝑚𝑐 ≤ 0.072 for the JONSWAP spectrum and 0.012 ≤ 𝑚𝑐 ≤ 0.072 

for the Wallops spectrum with respect to the chosen range of 𝛾 and 𝑚.  

The non-dimensional significant wave height (𝐻𝑠) actually represents the wave steepness or nonlinearity of 

the initial free surface elevation as defined in Table I. Note that there are several ways to represent the random 

wave steepness (𝜀), e.g., Dysthe, et al.54 used 𝜀 = √2𝜎, where 𝜎2 = ∫ 𝑆(𝑘)𝑑𝑘. As 𝐻𝑠 = 4𝜎, one obatins 𝐻𝑠 =

2√2𝜀, which means 𝐻𝑠 is directly related to the steepness of the random waves. If it is very small, the waves can 

be well described by the linear model. Based on this, the lower end of the range of 𝐻𝑠 (i.e. its smallest value for 

the numerical study) is taken as 0.001. The results given in later sections will show that in the ranges of γ and m 

chosen above, the linear model can very well predict the evolution of waves when 𝐻𝑠 ≤ 0.001 (equivalently, 

𝜀 ≤ 0.0004).   

The question is that what is the largest value of 𝐻𝑠 (i.e., the upper end of its range) to be chosen for the 

numerical studies. It is well known that with the increase of the steepness, the nonlinearity of the waves becomes 

stronger, the accuracy of the three simplified models decreases and so their errors increase. A model should be 

considered as unsuitable if its error is larger than a certain value, defined as ERup. In this paper, ERup is chosen to 

be 20%. The upper end of 𝐻𝑠 should be chosen to be the value, corresponding to which the error of all three 

simplified models is smaller than ERup. According to our numerical tests discussed in later sections, the upper end 

of 𝐻𝑠 can be taken as 0.18 (𝜀 ≈ 0.064). Based on the above discussions, the range and specific values of each 

parameter chosen for numerical studies here are summarised in Table III. 

For the numerical studies, the computational domain is set as 128 peak wave lengths, which is more than 20 

km if the peak wave period is 10 seconds or more. Based on the tests presented in Wang et al.50 and Wang & Ma29, 

the domain is resolved into 8192 points for all the models in Table II. To show the resolution is sufficient, the 

cases with 𝐻𝑠 = 0.15 & 𝑚 = 5  for the Wallops spectrum and 𝐻𝑠 = 0.15 & γ = 1  for the JONSWAP 

spectrum (𝜀 ≈ 0.053) are studied by using the ESBI with both 8192 and 16384 points. The differences between 

the results by using two different resolutions are only 2.1% and 2.3% for the Wallops and JONSWAP spectrum, 

respectively. It means that 8192 points are sufficient for the ESBI. The resolution should also be sufficient for 

QSBI, ENLSE-5F and linear model as they all involve lower order terms in the computation, which should need 

a smaller number of computational points than higher order terms to achieve similar results. 



 
 

B. Effects of duration of simulations 

In this subsection, the effects of the duration of simulations will be investigated. The duration should be long 

enough so that the random waves are fully developed. To quantitatively measure the degree of the wave 

development, the abnormality indexes72 are introduced, i.e., 

𝐴𝐼𝐺(𝑇) =
|𝜕𝜂/𝜕𝑋|𝑚𝑎𝑥

|𝜕𝜂/𝜕𝑋|𝑠

   ,   𝐴𝐼𝐻(𝑇) =
𝐻𝑚𝑎𝑥

𝐻𝑠

 (18) 

where 𝐴𝐼𝐺 and 𝐴𝐼𝐻 are both functions of 𝑇, subscript ‘max’ represents the maximum value detected within the 

time range [0, 𝑇], |𝜕𝜂/𝜕𝑋|𝑠 is the significant gradient computed by using the initial free surface profile. The 

two indexes are closely related to the wave statistics and dynamics. For example, 𝐴𝐼𝐻  is used for measuring the 

maximum waves height, which is traditionally adopted for examining the survivability of structures73. While 𝐴𝐼𝐺  

describes the maximum slope of the free surface, on which the wave impact force depends74. 

In order to illustrate how the two indexes evolve with time, the cases with 𝐻𝑠 = 0.15 & 𝑚 = 5 for the 

Wallops spectrum and 𝐻𝑠 = 0.15 & γ = 1 for the JONSWAP spectrum (𝜀 ≈ 0.053) are simulated. The time 

histories of 𝐴𝐼𝐺 and 𝐴𝐼𝐻 corresponding to the cases are plotted in FIG. 3. From the figures, one can see that 

𝐴𝐼𝐺 is not stabilized until 𝑇/𝑇0 = 300 while 𝐴𝐼𝐻 becomes stable only after 𝑇/𝑇0 = 600. Based on this and 

other tests we carried out, the duration of simulation can be taken as 1000𝑇0  to ensure the waves are fully 

developed. The duration is about 3 hours in real time if the peak period is more than 10 seconds.  

FIG. 3 also shows that 𝐴𝐼𝐺  and 𝐴𝐼𝐻  at the end of simulations obtained by using the ESBI are much higher 

than these of initial values specified and obtained by using the linear model. In addition, FIG. 3(a) and (c) show 

that the 𝐴𝐼𝐺 obtained by using ESBI is almost double of the initial values and that obtained by using the linear 

model, while the 𝐴𝐼𝐻  from the ESBI is more than 1.5 times larger than others. Compared with the initially 

specified steepness (i.e., 0.15 in the cases), the obtained maximum slope of the free surface is 0.816 (i.e., 6.8×0.15).   

C. Effects of random phases 

As discussed above, the initial free surface elevation depends on Eq.(14), which is not deterministic but 

random as the phase 𝜑𝑗 is random. The question that how this affects the error of each simplified model should 

be answered priori to further explore the effects of different values of spectrum parameters. Thus some numerical 

tests are carried out in order to answer this question and the error of each simplified model is measured by 

𝐸𝑟𝑟1,2,3 =
∫ |𝜂1,2,3 − 𝜂0|𝑑𝑋

𝐿𝑑

0

∫ |𝜂0|𝑑𝑋
𝐿𝑑

0

 (19) 

where 𝐸𝑟𝑟1~3  denote the error of the linear model, ENLSE-5F and QSBI, respectively; 𝜂1~3  is the 

corresponding free surface spatial distribution obtained by the three models at the end of the simulation, 𝜂0 that 

of the ESBI, and 𝐿𝑑 is the length of the computational domain. We will mainly focus on two matters: a) one is 

about the trend of 𝐸𝑟𝑟1,2,3 evolving with time, and b) the other is the statistics of 𝐸𝑟𝑟1,2,3 at the end of the 

simulation, e.g., average and standard deviation of the error, corresponding to different series of random phases.  

For this purpose, the cases with given 𝐻𝑠 and 𝛾 or 𝑚 are simulated using all the methods in Table II 

starting with the same initial condition. The simulations for each set of the computational parameters are repeated 

10 times but using a different series of random phases 𝜑𝑗. 𝐸𝑟𝑟1,2,3 are calculated for each time steps during the 

simulations. Some examples of 𝐸𝑟𝑟1,2,3 varying with time are shown in FIG. 4, where lines with different colors 

denote results correspond to different series of random phases. It can be seen that the values of 𝐸𝑟𝑟1,2,3 

corresponding to the same parameters of 𝐻𝑠  and  𝛾  or 𝑚  are only slightly different for different series of 

random phases. It implies that even though the initial condition is different due to using different series of random 



 
 

phases, the evolution of 𝐸𝑟𝑟1,2,3 does not behave significantly differently.  

To further show the effects of random phases on 𝐸𝑟𝑟1,2,3 , the values of 𝐸𝑟𝑟1,2,3  for several sets of 

computational parameters obtained at the end of the simulation are extracted. Their average and standard deviation 

are calculated and presented in Table IV and Table V for the JONSWAP and Wallops spectra, respectively. As can 

be seen, in the cases where the average error is less than 20%, the maximum standard deviation of the errors is 

only 1.7%. These data again demonstrate that the values of 𝐸𝑟𝑟1,2,3 are not sensitive to the choice of random 

series of 𝜑𝑗.  

D. Errors of different simplified models 

The errors of different simplified models are now presented and discussed. The method to evaluate the errors 

has been described above (Eq. (19)), i.e., they are computed by using the wave profiles after simulating the cases 

with different parameters given in Table III over the duration of 1000T0 by 4 different models (the linear model, 

ENLSE-5F, QSBI and ESBI). For each case, all the four models start with the same initial free surface elevation 

determined by the method in Appendix C. The errors of the three simplified models (the linear model, ENLSE-

5F and QSBI) are then calculated by applying Eq.(19) to the relevant free surface elevations obtained at the end 

of simulations. The obtained numerical errors in such way are shown by different symbols and indicated by 

‘calculated’ in FIG. 5. It may be noted that the case with the maximum value of Hs is different in different figures. 

That is because the cases with all the errors are larger than 20% are not plotted in the figures. For an example, in 

FIG. 5a, the error of the linear model is larger than 20% for the whole range of 𝛾 for any value of Hs>0.012 (𝜀 >

0.004) and so the results for the cases with Hs>0.012 are not plotted in the figure. Similarly, the errors for all the 

other cases with the parameters given in Table III but not plotted in FIG. 5 are all larger than 20%. It may also be 

noted that the largest values of Hs in all the figures is 0.18, which indicates that all the simplified models have an 

error larger than 20% if Hs>0.18 (𝜀 > 0.064). This also justifies why we only selected the cases with Hs ≤0.18 

(corresponding to ERup= 20%) in Table III. As can be seen from these figures, the errors of each model generally 

increase with the decrease of 𝛾 (or 𝑚) and the increase of 𝐻𝑠. With reference to Eq.(16) and (17), it may also 

be said that the errors increase with the increase of 𝑚𝑐 and 𝐻𝑠. In addition, for all the values of 𝛾 and 𝑚, the 

errors of the linear model obtained by using the JONSWAP and Wallops spectra are very small, less than 1% for 

𝐻𝑠 = 0.001 (𝜀 ≈ 0.0004), which means that the linear model is sufficiently accurate for simulating the cases if 

the initial significant wave height is less than 0.001. 

To mathematically represent the calculated errors in FIG. 5, it is assumed that the calculated errors of the 

three simplified models can be fitted by 

𝐸𝑟𝑟1
′ = 𝑎1𝐻𝑠

𝑏1𝑚𝑐
𝑐1 (20) 

𝐸𝑟𝑟2
′ = 𝑎2𝐻𝑠

𝑏2𝑚𝑐
𝑐2 (21) 

𝐸𝑟𝑟3
′ = 𝑎3𝐻𝑠

𝑏3𝑚𝑐
𝑐3 (22) 

where 𝑎𝑖 , 𝑏𝑖  and 𝑐𝑖  (i = 1, 2 or 3, corresponding to the linear model, ENLSE-5F and QSBI models) are 

constants to be determined. These constants are determined by optimizing the following target function  

𝕐𝑖(𝑎𝑖 , 𝑏𝑖  , 𝑐𝑖) = ∑ (𝐸𝑟𝑟𝑖 − 𝐸𝑟𝑟′
𝑖)𝐽

2

𝐽
 (23) 

where i is taken as 1, 2 or 3, corresponding to the linear model, ENLSE-5F and QSBI; 𝐸𝑟𝑟𝑖  are these given in 

FIG. 5 by different symbols, i.e., the calculated values. Since the error larger than 20% may just indicate that a 

simplified model is not suitable for simulating the random waves as indicated before, only the data corresponding 

to 𝐸𝑟𝑟𝑖 ≤ 20% are considered for fitting the numerical results using Eqs.(20), (21) or (22). In order words, the 

points represented by J in Eq.(23) are only these below the horizontal lines of 20% in FIG. 5. 



 
 

The optimization is performed by using the toolbox (Optimization-fminsearch) in MATLAB. The details of 

this toolbox can be found in MATLAB user manual which will not be provided here. After the optimizations are 

performed, the constants in the fitting formulae corresponding to the JONSWAP spectrum are given by 

{

𝑎1 = 1.922×104, 𝑏1 = 1.967, 𝑐1 = 0.811

𝑎2 = 1.207×104, 𝑏2 = 1.944, 𝑐2 = 1.588

𝑎3 = 3.847×105, 𝑏3 = 4.564, 𝑐3 = 1.726

  (24) 

and these corresponding to the Wallops spectrum are given by 

{

𝑎1 = 1.280×104, 𝑏1 = 1.971, 𝑐1 = 0.633

𝑎2 = 4.593×104, 𝑏2 = 1.961, 𝑐2 = 1.942

𝑎3 = 5.256×104, 𝑏3 = 4.274, 𝑐3 = 1.196

 (25) 

Now, replacing 𝑚𝑐 in Eqs. (20) ~ (22) with Eqs. (16) and (17), and substituting 𝑎1~3, 𝑏1~3 and 𝑐1~3 with 

these in Eqs. (24) and (25), one has 

𝐸𝑟𝑟1
′ = 4.805×103𝐻𝑠

1.967 exp(−0.744𝛾0.300) (26) 

𝐸𝑟𝑟2
′ = 7.997×102𝐻𝑠

1.944 exp(−1.456𝛾0.300) (27) 

𝐸𝑟𝑟3
′ = 2.013×104𝐻𝑠

4.564 exp(−1.583𝛾0.300) (28) 

for the JONSWAP spectrum, while 

𝐸𝑟𝑟1
′ = 447.4𝐻𝑠

1.971 exp(4.942𝑚−0.674) (29) 

𝐸𝑟𝑟2
′ = 1.561𝐻𝑠

1.961 exp(15.161𝑚−0.674) (30) 

𝐸𝑟𝑟3
′ = 93.03𝐻𝑠

4.274 exp(9.337𝑚−0.674) (31) 

for the Wallops spectrum.  

The curves of 𝐸𝑟𝑟′
𝑖 are plotted in FIG. 5, denoted by ‘fitted’. One can see that there is excellent consistency 

between the calculated and fitted results for all the cases with 𝐸𝑟𝑟1~3 ≤ 20%. The maximum differences between 

the calculated and fitted results obtained by using the JONSWAP spectrum and Wallops spectrum are only 2.1% 

occurring at the point for 𝐻𝑠 = 0.11 (𝜀 ≈ 0.039) and 𝛾 = 1 in FIG. 5c and 1.9% occurring at the point for 

𝐻𝑠 = 0.15 (𝜀 ≈ 0.053) and 𝑚 = 25 in FIG. 5f, respectively.  

It is noted that as Eqs. (26)~(31) are obtained by using the cases with the parameters listed in Table III, they 

may be perceived to be only applicable within the range 0.001 ≤ 𝐻𝑠 ≤ 0.18 (0.0004 ≤ 𝜀 ≤ 0.064), 5 ≤ 𝑚 ≤

25  for Wallops spectrum and 1 ≤ 𝛾 ≤ 9  for JONSWAP spectrum. However, as aforementioned, the linear 

model can provide accurate results while 𝐻𝑠 < 0.001  and the errors are larger than 20% if 𝐻𝑠 > 0.18 . In 

addition, when 𝐸𝑟𝑟1~3 > 20%, it just indicates that the corresponding model cannot give acceptable results for 

modelling the random sea in deep water. Taking all the facts into account, one may know from the results presented 

in this section that (1) when 𝐻𝑠 < 0.001, the linear model can be used without significant error; (2) when 𝐻𝑠 >

0.18, none of the three simplified models should be employed; (3) when 0.001 ≤ 𝐻𝑠 ≤ 0.18, one can estimate 

the errors of the three simplified models: if the error of a model is less than 20%, this error needs to be accepted 

if using this model; if the error is larger than 20%, this model may not be employed.  

In addition, Eqs. (26)~(31) can be reformulated to find the maximum significant wave height, within which 

the simplified models can be adopted while maintaining acceptable accuracy. To do so, one should specify a 

tolerance (𝑇𝑜𝑙) and ensure that the condition 𝐸𝑟𝑟′ ≤ 𝑇𝑜𝑙 is met for the selected model. Then Eqs. (26)~(31) are 

replaced by the expressions with respect to the dimensionless significant wave height, i.e., for the JONSWAP 

spectrum 



 
 

𝐻𝑠1 = 0.013 exp(0.378𝛾0.3) 𝑇𝑜𝑙0.508 (32) 

𝐻𝑠2 = 0.032 exp(0.749𝛾0.3) 𝑇𝑜𝑙0.514 (33) 

𝐻𝑠3 = 0.114 exp(0.347𝛾0.3) 𝑇𝑜𝑙0.219 (34) 

and for the Wallops spectrum 

𝐻𝑠1 = 0.045 exp(−2.507𝑚−0.674) 𝑇𝑜𝑙0.507 (35) 

𝐻𝑠2 = 0.797 exp(−7.731𝑚−0.674) 𝑇𝑜𝑙0.510 (36) 

𝐻𝑠3 = 0.346 exp(−2.185𝑚−0.674) 𝑇𝑜𝑙0.234 (37) 

where 𝐻𝑠𝑖 (i=1,2 or 3) is the maximum significant wave height for the linear model, ENLSE-5F and QSBI to be 

employed, respectively. 

More discussions about how to use Eqs. (26)~(31) and Eqs. (32)~(37) will be given in the following sections. 

4 DISCUSSIONS  

This section will discuss several points relevant to Eqs. (26)~(31) and Eqs. (32)~(37), including their possible 

applications to evaluating the simplified models that are employed to study the random wave dynamics or statistics. 

A. Comparisons with the criterion of Dysthe, et al.’s52 

Dysthe, et al.52 had pointed out that the CNLSE and MNLSE can be reliably used on a temporal scale up to 

2𝜀−2  and 10𝜀−2 , respectively, for simulating narrow bandwidth waves (initial conditions determined by the 

Gaussian Spectrum). Based on them, for simulations of 1000 peak periods (𝑇0 = 2𝜋), the CNLSE and MNLSE 

can be used with the significant wave height (𝐻𝑠 = 2√2𝜀) up to about 0.05 and 0.11 (𝜀 ≈ 0.018 and 0.039), 

respectively. The criterion of Dysthe, et al.52 is compared with these we suggested, i.e., Eqs. (32)~(37) for 𝑇𝑜𝑙 =

10% in FIG. 8. The grey thicker dashed line denotes the up-limit of the MNLSE and the grey thinner dashed line 

represents that of the CNLSE based on the suitable temporal scale given by Dysthe, et al.52. It can be observed in 

both FIG. 8(a) and (b) that the up-limit of the MNLSE is significantly higher than these given for the ENLSE-5F 

model in this study, in particular for the cases corresponding to the JONSWAP spectrum. The former is only close 

to the latter when the Wallops spectrum with very narrow bandwidth (m>20) is used. It means that if the suggestion 

of Dysthe, et al.52 for MNLSE is followed, the results may have the error much larger than 10%. The same 

argument applies to the CNLSE employed for the JONSWAP spectrum as shown in FIG. 8(a). Furthermore, if the 

initial conditions of the CNLSE are specified by the Wallops spectrum, the up-limit of CNLSE model indicated 

by 2𝜀−2 is much different from what we give here even for the waves with a very narrow bandwidth. This implies 

that if the suggestion of Dysthe, et al.52 is followed, one would not obtain the results that bear the error of less 

than 10%.  

B. Error prediction 

Eqs. (26)~(31) can be employed for predicting the error of the simplified models. To illustrate their 

effectiveness, extra numerical tests are carried out for the cases with parameters listed in Table VI and Table VII, 

which are in the range of the parameters in Table III but different from those used for obtaining the results in FIG. 

5. In the tables, the values of 𝐸𝑟𝑟1~3 are obtained in the same way as for FIG. 5, while the values of 𝐸𝑟𝑟1~3
′  are 

predicted by Eqs. (26)~(31) for the corresponding parameters. These errors represented by ‘-’ in the tables means 

that their values are larger than 20%. It is found that although the choices of the parameters differ from these in 

FIG. 5, Eqs. (26)~(31) can still satisfactorily give quite accurate prediction of the errors as long as 𝐸𝑟𝑟1~3 < 20%. 

The maximum deviation between the calculated and predicted errors in these cases is about 1.4%, which is below 

the maxima indicated in Section 3.  



 
 

To show the level of correlation between the error given in Eqs. (26)~(31) and wave elevations, some wave 

profiles at the end of the simulation corresponding to different level of errors are displayed in FIG. 6. It can be 

seen that as long as the predicted error is small, the differences between the elevations calculated by the simplified 

models and these by the ESBI are almost invisible. We have also examined the corresponding velocity and velocity 

potential, and found that the errors of the velocity and velocity potential are in the same magnitude as those of the 

wave elevations if 𝐸𝑟𝑟1~3 < 20% (results are not presented here for shortening the length of the paper).   

As aforementioned, some studies employ the random amplitude approach to convert the spectrum to the free 

surface elevation70,75. As discussed in the former section, the results of the random amplitude approach are 

approximately the same with these of the random phase approach when the number of wave component is large71. 

To show that Eqs. (26)~(31) are also correlated with the error in the cases where the random amplitude technique 

is adopted for generating the initial free surface condition, we carry out the numerical tests on the cases with the 

parameters in Table VI and Table VII by using the random amplitude approach. The calculated and predicted 

errors are shown in Table VIII and Table IX. It is found the maximum difference between the calculated errors 

obtained by using the random amplitude approach and these predicted by Eqs. (26)~(31) is only 1.6%. The spatial 

distribution of the free surface for some cases are also presented in FIG. 7. These figures show that the results are 

very similar to FIG. 6. All the facts demonstrate that Eqs. (26)~(31) can be used to predict the errors in the cases 

where random amplitude approach would be used for generating the initial free surface condition.  

C. Suitability of simplified models 

In order to study random waves on large-spatial and long-temporal scale in deep water efficiently and 

accurately, one should firstly determine suitable model among the linear model, ENLSE-5F, QSBI and ESBI. In 

this section, graphs showing the regions suitable for different models will be presented, which may help 

researchers to select a model.    

When selecting the model, the acceptable error should be specified, such as no more than 5% as indicated 

by Wang, et al.50. Based on Eqs. (32)~(37), the graphs of the maximum significant wave height 𝐻𝑠𝑖 (i=1,2 or 3) 

suitable for different models are plotted in FIG. 9 with respect to tolerant error 𝑇𝑜𝑙 = 5%. The graphs illustrate 

the regions in which different models are suitable. For example, the ENLSE-5F is suitable for simulating all the 

cases underneath the dot-dashed lines. It is illustrated that the maximum significant wave height for a specific 

model to be applied increases when the bandwidth becomes smaller (𝛾 or 𝑚 becomes larger) for both the spectra. 

The reason is that the terms ignored in the simplified model involves the bandwidth parameter. Such terms become 

more and more important and dominating when bandwidth increases, so that they become less accurate. As a 

consequence, in order to maintain the same level of accuracy, the maximum significant wave height that the 

simplified model could be applied becomes smaller as the bandwidth increases, or becomes larger as the 

bandwidth decreases (𝛾 or 𝑚 increases).      

According to these aforementioned, it is suggested that the following conditions 

𝐻𝑠 ≤ 𝐻𝑠1: Linear model (38) 

𝐻𝑠1 < 𝐻𝑠 ≤ 𝐻𝑠2: ENLSE-5F (39) 

𝐻𝑠2 < 𝐻𝑠 ≤ 𝐻𝑠3: QSBI (40) 

𝐻𝑠 > 𝐻𝑠3: Fully nonlinear model (41) 

can be used as the criterion for selecting a model to simulate random seas on large-spatial and long-temporal 

scales in deep water. That is to say, if the condition of Eq. (38) is met, the linear model is selected; if Eq. (39) is 

satisfied, the ENLSE-5F is employed; while QSBI should be adopted for the condition of Eq. (40) to be satisfied; 

otherwise, the fully nonlinear model should be employed.   



 
 

It is noted that for the very strong nonlinear cases the breaking wave will occur and so fully nonlinear model 

ESBI will not be suitable. The up-limit of the fully nonlinear model, beyond which breaking wave occurs, were 

discussed by Melville76 and Ochi & Tsai77 for uniform wave cases. Identifying the up-limit of the ESBI is beyond 

the scope of this study, as we mainly focus on identifying the boundaries of the simplified models.  

5 CONCLUDING REMARKS 

This paper has presented the formulas for quantitatively estimating the errors of the Enhanced Nonlinear 

Schrödinger Equation based on Fourier transform (ENLSE-5F) and Quasi Spectral Boundary Integral (QSBI) 

method when they are applied for simulating nonlinear random waves in deep sea on large-spatial and long-

temporal scales in a phase-resolved manner. The two groups of formulas are given, one for the initial conditions 

specified by the JONSWAP spectrum and the other by the Wallops spectrum. The suggested formulas can give 

good predictions on the errors of the simplified models as long as the errors are less than 20% within the range of 

bandwidth in 1 ≤ 𝛾 ≤ 9  or 5 ≤ 𝑚 ≤ 25  and the significant wave height in 𝐻𝑠 ≤ 0.18  (𝜀 ≤ 0.064 ). The 

ranges of bandwidth parameters are considered to cover the most cases met in real sea states according to the 

literature available. If the error is larger than 20% estimated by the formulas and/or 𝐻𝑠 > 0.18 (𝜀 > 0.064), it 

just means that the simplified models may not give acceptable results and so may not be employed. Although the 

formulas are obtained by using initial condition based on random phase approach, they also work for those cases 

based on random amplitude approach according to the numerical tests.  

Based on the formulas, the suitable regions for the simplified models are plotted in terms of bandwidth 

parameters (𝛾 for the JONSWAP spectrum and m for the Wallops spectrum) and significant wave heights (i.e., 

peak wave number times significant wave height). The dimensionless maximum significant wave height up to 

which the simplified model could be applied becomes smaller as the bandwidth increases, or becomes larger as 

bandwidth decreases (𝛾 or 𝑚 increases), which are quite different from the qualitative indication available in 

literature.      

This paper provides useful information for evaluating the simplified wave models that are employed for 

studying random wave dynamics, e.g., how reliable are the results obtained after using the simplified models, or 

which model should be selected in order to obtain acceptable results before carrying out the simulations. However, 

it should be pointed out that although the formulas proposed in this paper are based on the cases of unidirectional 

waves, they also give an indication of the errors for the simplified models to be applied for simulating spreading 

seas. However, further studies on their errors in simulating spreading seas will be carried out in the future.   
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APPENDIX A: HARMONIC COEFFICIENTS 

In order to estimate the free surface and velocity potential, each harmonic coefficient is given in terms of A 

by Wang, et al.50, which follow as 
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APPENDIX B: FORMULATIONS FOR VERTICAL VELOCITY 

The formulations for estimating the convolution and integration parts in the vertical velocity V have been 

proposed by Grue28 and Wang & Ma29, which are also presented below 

𝑉1 = 𝐹−1 {𝐾𝐹{𝜙̃}} (B. 1) 
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APPENDIX C: CONSTRUCTION OF ENVELOPE FROM FREE SURFACE ELEVATION  

According to Eq. (9), the free surface elevation can be rewritten as 

𝜂 = 𝜂̅ + 𝜂1 + 𝜂2 + 𝜂3 (C. 1) 

where 

𝜂1 =
1

2
(𝐴𝑒𝑖𝜃 + 𝑐. 𝑐. ),   𝜂2 =

1

2
(𝐴2𝑒2𝑖𝜃 + 𝑐. 𝑐. ),   𝜂3 =

1

2
(𝐴3𝑒3𝑖𝜃 + 𝑐. 𝑐. ).    (C. 2) 

Introducing Hilbert transform 𝒽{𝜂1(𝑋)} =
1

𝜋
∫

𝜂1(𝑋′)

𝑋′−𝑋
𝑑𝑋′

∞

−∞
 to 𝜂

1
 and rearranging it gives 

𝐴 = 𝑒−𝑖(𝑋−𝑇)(𝜂1 − 𝑖𝒽{𝜂1}). (C. 3) 

Note that 𝒽{𝜂1} = 𝐹−1{𝑖 𝑠𝑔𝑛(𝜅)𝐹{𝜂1}}, then the equation above becomes 

𝐴 = 𝑒−𝑖(𝑋−𝑇)(𝜂1 + 𝐹−1{𝑠𝑔𝑛(𝜅)𝐹{𝜂1}}). (C. 4) 

Initially, 𝜂1  is equals to 𝜂′  obtained by using Eq.(14). By using Eq.(A1)~(A6) and Eq.(9) and (10) and 

specifying T=0, the initial free surface and velocity potential can be reconstructed, which will be used as the initial 

condition for the ESBI and QSBI, while the envelope 𝐴  by Eq.(C.4) is used as the initial condition for the 

ENLSE-5F.  
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FIG. 1. Evolution of perturbation components of 𝑲 = (3/2, 4/3) 

       

(a)                                (b) 

FIG. 2. Fitting results of (a) 𝑚𝑐~𝛾 and (b) 𝑚𝑐~𝑚 

 

                 (a)                                                  (b) 

 

                  (c)                                                  (d) 

 FIG. 3. The abnormality indexes against time 

           

(a) 𝐻𝑠 = 0.01, 𝛾 = 9                          (b) 𝐻𝑠 = 0.01, 𝑚 = 25 
FIG. 4. 𝐸𝑟𝑟1,2,3 against time for different random phases 



 
 

 

(a) 𝐸𝑟𝑟1 against 𝛾                                     (b) 𝐸𝑟𝑟2 against 𝛾 

 

(c) 𝐸𝑟𝑟3 against 𝛾                                   (d) 𝐸𝑟𝑟1 against 𝑚 

 

 (e) 𝐸𝑟𝑟2 against 𝑚                                 (f) 𝐸𝑟𝑟3 against 𝑚 

FIG. 5. Calculated and fitted errors of simplified models based on the JONSWAP(a-c) and Wallops(d-f) spectrum 

 

(a) Err2=0.2%                                  (b) Err3=11.4% 

 



 
 

(c) Err1=4.1%                                  (d) Err2=35.7% 

FIG. 6. Free surface elevation corresponding to different error levels for random phase approach. (‘—’: ESBI; ‘-∙-∙-∙’: 

simplified model). (a)(b) for the JONSWAP spectrum and (c)(d) for the Wallops spectrum  

 

(a) Err2=0.2%                                 (b) Err3=13.3% 

 

(c) Err1=3.9%                                 (d) Err2=56.9% 

FIG. 7. Free surface elevation corresponding to different error levels for random amplitude approach. (‘—’: ESBI; ‘-∙-

∙-∙’: simplified model). (a) (b) for the JONSWAP spectrum and (c)(d) for the Wallops spectrum 

 

(a)                                               (b) 

FIG. 8. Comparison of the maximum significant wave height from Eq. (33) and (36) for ENLSE-5F with estimation of 

Dysthe, et al.52 for CNLSE and MNLSE 

 

(a)                                               (b) 



 
 

FIG. 9. Criterion for selecting suitable model (‘—’: 𝐻𝑠1, ‘-.-.-’: 𝐻𝑠2, ‘----’: 𝐻𝑠3) 

Table I. Dimensionless variables 

𝜂 Surface elevation multiplied by 𝑘0 

𝜙, 𝜙̃ Velocity potential and that at free surface multiplied by 𝑘0
3/2

/𝑔1/2 

𝑿 = (𝑋, 𝑌) Horizontal space coordinate multiplied by 𝑘0 

𝑍 Vertical space coordinate multiplied by 𝑘0 

𝑇 Time coordinate multiplied by 𝜔0 

𝑲 = (𝜅, 𝜁), 𝐾 Wave number and its module multiplied by 𝑘0
−1  

𝛺 Wave circular frequency coordinate multiplied by 𝜔0
−1  

𝜂̅, 𝐴, 𝐴2, 𝐴3 Free surface coefficients multiplied by 𝑘0 

𝜙̅, 𝐵, 𝐵2, 𝐵3 Velocity potential coefficients multiplied by 𝑘0
3/2

/𝑔1/2 

𝐻𝑠 Significant wave height multiplied by 𝑘0 

𝑘𝑗  Wave number of an individual component multiplied by 𝑘0
−1 

𝜔𝑗  Wave circular frequency of an individual component multiplied by 𝜔0
−1 

𝑎𝑗  Wave amplitude of an individual component multiplied by 𝑘0 

𝑇0 Peak period multiplied by 𝜔0 and equal to 2π 

 

Table II. Summary of the selected unsteady wave models 

 Accuracy Efficiency 

Linear model Satisfactory accuracy for extremely small steepness waves Most efficient among all 

ENLSE-5F 
Satisfactory accuracy for small steepness and narrow 

bandwidth waves, more accurate than linear model 

Less efficient than linear model, but 

faster than the QSBI 

QSBI 
Satisfactory accuracy for small and moderate steepness 

waves with any bandwidth, more accurate than ENLSE-5F 

Slower than the linear model and 

ENLSE-5F, but faster than ESBI 

ESBI 
Satisfactory accuracy for all non-breaking waves, more 

accurate than QSBI 
Most time consuming among all 

 

Table III. Wave parameters for numerical studies  

𝐻𝑠 
0.001, 0.003, 0.005, 0.007, 0.009, 0.01, 0.012, 0.014, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 

0.09, 0.11, 0.12, 0.13, 0.14, 0.15, 0.17, 0.18 

𝑚 (Wallops) 5, 6, 7, 10, 15, 20, 25 γ (JONSWAP) 1, 2, 3, 5, 7, 9 

 

Table IV. Average and standard deviation of 𝐸𝑟𝑟1,2,3 for the JONSWAP spectrum 

  𝛾 

 

𝐻𝑠  

1 9 

Err1 Err2 Err3 Err1 Err2 Err3 

Avg Std Avg Std Avg Std Avg Std Avg Std Avg Std 

0.01 27.2 0.2 2.3 0.04 9E-4 9E-6 13.9 0.2 0.76 0.01 3E-4 4E-6 

0.11 141.7 1.2 114.8 1.7 18.9 1.7 140.0 4.3 55.3 1.4 4.5 0.3 

 

Table V. Average and standard deviation of 𝐸𝑟𝑟1,2,3 for the Wallops spectrum 

  𝑚 5 25 



 
 

 

𝐻𝑠  

Err1 Err2 Err3 Err1 Err2 Err3 

Avg Std Avg Std Avg Std Avg Std Avg Std Avg Std 

0.01 27.2 0.2 2.3 0.04 9E-4 9E-6 9.4 0.1 0.4 9E-3 1E-4 4E-6 

0.11 141.7 1.2 114.8 1.7 18.9 1.7 138.0 6.9 16.1 1.0 2.34 0.2 

 

Table VI. Comparison between the calculated and predicted error (%) - JONSWAP 

    𝛾 

𝐻𝑠 

1.5 8 

𝐸𝑟𝑟1 𝐸𝑟𝑟1
′ 𝐸𝑟𝑟2 𝐸𝑟𝑟2

′ 𝐸𝑟𝑟3 𝐸𝑟𝑟3
′ 𝐸𝑟𝑟1 𝐸𝑟𝑟1

′ 𝐸𝑟𝑟2 𝐸𝑟𝑟2
′ 𝐸𝑟𝑟3 𝐸𝑟𝑟3

′ 

0.004 3.9 4.0 0.4 0.3 2E-5 4E-6 2.3 2.3 0.2 0.1 7E-6 1E-6 

0.015 - - 4.3 4.4 4E-3 2E-3 - - 1.6 1.5 1E-3 5E-4 

0.06 - - - - 1.0 0.9 - - - - 0.4 0.3 

0.135 - - - - - - - - - - 11.4 11.2 

 

Table VII. Comparison between the calculated and predicted error (%) - Wallops 

    𝑚 

𝐻𝑠 

5.5 23 

𝐸𝑟𝑟1 𝐸𝑟𝑟1
′ 𝐸𝑟𝑟2 𝐸𝑟𝑟2

′ 𝐸𝑟𝑟3 𝐸𝑟𝑟3
′ 𝐸𝑟𝑟1 𝐸𝑟𝑟1

′ 𝐸𝑟𝑟2 𝐸𝑟𝑟2
′ 𝐸𝑟𝑟3 𝐸𝑟𝑟3

′ 

0.004 4.1 4.1 0.4 0.4 2E-5 1E-5 1.5 1.5 0.2 2E-2 3E-6 2E-6 

0.02 - - 7.8 9.2 1E-2 1E-2 - - 0.9 0.5 2E-3 2E-3 

0.06 - - - - 1.1 1.1 - - 3.4 3.9 0.2 0.2 

0.14 - - - - - - - - - - 7.4 6.4 

 

Table VIII. Comparison between the calculated and predicted errors (%) – JONSWAP (the calculated error is obtained 

by using the random amplitude approach) 

    𝛾 

𝐻𝑠 

1.5 8 

𝐸𝑟𝑟1 𝐸𝑟𝑟1
′ 𝐸𝑟𝑟2 𝐸𝑟𝑟2

′ 𝐸𝑟𝑟3 𝐸𝑟𝑟3
′ 𝐸𝑟𝑟1 𝐸𝑟𝑟1

′ 𝐸𝑟𝑟2 𝐸𝑟𝑟2
′ 𝐸𝑟𝑟3 𝐸𝑟𝑟3

′ 

0.004 4.0 4.0 0.4 0.3 2E-5 4E-6 2.3 2.3 0.2 0.1 8E-6 1E-6 

0.015 - - 4.3 4.4 4E-3 2E-3 - - 1.5 1.5 1E-3 5E-4 

0.06 - - - - 1.0 0.9 - - - - 0.4 0.3 

0.135 - - - - - - - - - - 13.3 11.2 

 

Table IX. Comparison between the target and predicted error (%) – Wallops (the calculated error is obtained by using the 

random amplitude approach) 

    𝑚 

𝐻𝑠 

5.5 23 

𝐸𝑟𝑟1 𝐸𝑟𝑟1
′ 𝐸𝑟𝑟2 𝐸𝑟𝑟2

′ 𝐸𝑟𝑟3 𝐸𝑟𝑟3
′ 𝐸𝑟𝑟1 𝐸𝑟𝑟1

′ 𝐸𝑟𝑟2 𝐸𝑟𝑟2
′ 𝐸𝑟𝑟3 𝐸𝑟𝑟3

′ 

0.004 3.9 4.1 0.4 0.4 2E-5 1E-5 1.5 1.5 0.2 2E-2 3E-6 2E-6 

0.02 - - 8.7 9.2 1E-2 1E-2 - - 1.0 0.5 3E-3 2E-3 

0.06 - - - - 1.0 1.1 - - 3.6 3.9 0.1 0.2 

0.14 - - - - - - - - - - 8.0 6.4 

 

 


