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REPRESENTATIONS OF
WREATH PRODUCTS OF ALGEBRAS

JOSEPH CHUANG AND KAI MENG TAN

Abstract. Filtrations of modules over wreath products of algebras are

studied and corresponding multiplicity formulas are given in terms of

Littlewood-Richardson coefficients. An example relevant to Jantzen fil-

trations in Schur algebras is presented.

1. Introduction

Let A be a finite-dimensional algebra over a field k and w be a positive

integer such that w! is nonzero in k. It is well-known that the simple modules

of the wreath product A oSw (which we denote by A(w)) can be constructed

in a systematic way from the simple modules of A and are naturally labelled

by tuples of partitions. This construction still makes sense if one starts with

a set of not necessarily simple A-modules.

The aim of this paper is to study how filtrations of A-modules induce

filtrations of the A(w)-modules constructed from them in this way. We give

explicit formulas, in terms of Littlewood-Richardson coefficients, for multi-

plicities of factors in filtrations. This allows, for example, a nice description

of the Ext-quiver of A(w) in terms of the Ext-quiver of A, as well as (in

the appropriate context) the calculation of decomposition numbers of A(w)

from decomposition numbers of A.

Most of our work is no harder if we replace k by a discrete valuation ring.

We need this level of generality for an application in [1]: the determination of

Jantzen filtrations of Weyl modules in certain well-behaved blocks of Schur

algebras.
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After intorducting some notation in section 2 we introduce the wreath

product and the basic construction of modules in section 3. Then the main

results on filtrations are obtained in section 4. The next two sections con-

cern the eAe construction and quasihereditary algebras. We end with an

important example.

2. Preliminaries

Let w be a positive integer. A composition w = (w1, w2, . . . ) of w, denoted

as w � w, is a sequence of nonnegative integers which sums to w. If wi = 0 for

all i > r, we usually write w = (w1, w2, . . . , wr). A partition λ = (λ1, λ2, . . . )

of w, denoted as λ ` w, is a composition of w which is non-increasing. Given

a partition λ, not necessarily of w, we write |λ| for the sum
∑

j λj .

Let Λ be the set of all partitions, and for any set I let ΛI be the set of I-

tuples λ = (λi)i∈I of partitions and ΛIw the set of λ such that
∑

i∈I |λi| = w.

If ≥ is a partial order on I, then we define a partial order � on ΛIw by λ � µ

if and only if λ = µ or ∑
γ∈I
γ≥i

|λγ | ≥
∑
γ∈I
γ≥i

|µγ |

holds for all i ∈ I and holds with a strict inequality for some i′ ∈ I.

Given λ ∈ Λ and λ1, . . . , λs ∈ Λ let c(λ;λ1, . . . , λs) be the associated

Littlewood-Richardson coefficient if |λ| =
∑s

i=1 |λi| and 0 otherwise (see,

e.g., [8, I.9]).

Let S(U) be the symmetric group on a finite set U . We write Sw for

S({1, . . . , w}). If w = (w1, . . . , wr) � w, then there is a Young subgroup

Sw = S({1, . . . , w1})×S({w1 + 1, . . . , w1 + w2})× · · ·

×S({
r−1∑
i=1

wi + 1, . . . ,
r∑
i=1

wi}),

which we identify in the obvious way with a subgroup of Sw.

For any partition λ of w and any commutative ring R let SλR be the

associated Specht module of the group algebra RSw (see [5, 8.4]). If R1 →

R2 is a ring homomorphism, then R2 ⊗R1 S
λ
R1
∼= SλR2

.

We make use of the following notations and conventions in this paper:



REPRESENTATIONS OF WREATH PRODUCTS OF ALGEBRAS 3

(1) R denotes either a discrete valuation ring or a field.

(2) w is a fixed positive integer such that w! is invertible in R.

(3) A denotes a unitary R-algebra, finitely generated over R.

(4) By an A-module, we mean a finitely generated left A-module.

We shall also write ⊗ in place of ⊗R and Sλ in place of SλR.

If M is a left A-module then M∨ = HomR(M,R) is a right A-module

with action given by (φa)(m) = φ(am) (φ ∈M∨, a ∈ A, m ∈M). We shall

denote by nM the direct sum of n copies of an A-module M . If M is an

A-module and Γ a set of A-modules, we say that M is filtered by Γ if there

is a filtration

M = M0 ⊇M1 ⊇ · · · ⊇Mm+1 = 0

and a bijection between Γ and the (m+ 1)-element set {Mi/Mi+1 | 0 ≤ i ≤

m} of subquotients such that corresponding modules are isomorphic.

If X is an RSw-module and w � w, then by restriction of scalars we

obtain an RSw-module, denoted as Resww X or just ReswX. Similarly, if Y

is an RSw-module, then the induced module RSw ⊗RSw Y is denoted as

Indww Y or just Indw Y .

Lemma 2.1. Let w = (w1, . . . , wr) � w.

(1) For i = 1, . . . , r, let λi ` wi. Then

Indww(Sλ
1 ⊗ · · · ⊗ Sλr) ∼=

⊕
λ`w

c(λ;λ1, . . . , λr)Sλ.

(2) Let λ ` w. Then

Resww S
λ ∼=

⊕
λ1`w1,...,λr`wr

c(λ;λ1, . . . , λr)(Sλ
1 ⊗ · · · ⊗ Sλr).

Proof. If R is a field, this is well known. If R is a discrete valuation ring,

we note that because w! in nonzero in the quotient field K of R and in the

residue field k of R the group algebras KSv and kSv are split-semisimple for

any v ≤ w. Thus every kSv-module lifts uniquely to an RSv-module free

over R; in particular Sλk lifts uniquely to Sλ if λ ` w and Sλ
i

k lifts uniquely

to Sλ
i

if λi ` wi (i = 1, 2, . . . , r), and thus the result follows.
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3. Wreath products

Let A be an R-algebra. The symmetric group Sw acts as algebra automor-

phisms on Tw(A), the w-th fold tensor power of A, by place permutations:

σ(a1 ⊗ · · · ⊗ aw) = aσ−1(1) ⊗ · · · ⊗ aσ−1(w).

We define an R-algebra

A(w) := Tw(A)⊗RSw

with the twisted multiplication

(α⊗ σ)(β ⊗ τ) = ασ(β)⊗ στ (α, β ∈ Tw(A);σ, τ ∈ Sw).

For example, if A is the group algebra of a group G, then A(w) is isomor-

phic to the group algebra of the wreath product G oSw.

If w = (w1, . . . , wr) � w, then Tw(A) ⊗ RSw is a subalgebra of A(w),

isomorphic to A(w1)⊗· · ·⊗A(wr) (where A(0) = R by convention). We shall

denote this subalgebra by A(w). If V is an A(w)-module then by restriction

of scalars we obtain an A(w)-module which we denote by ResA(w)
A(w) V or, by

an abuse of notation, Resww V . If W is an A(w)-module we shall denote the

induced module A(w)⊗A(w) W by IndA(w)
A(w) W or Indww W . As a right A(w)-

module, A(w) is free with basis {1 ⊗ σ | σ ∈ Sw/Sw}; hence Indww W =⊕
σ∈Sw/Sw

(1⊗ σ)⊗W .

We list some well known properties of these restriction and induction

functors.

Lemma 3.1. Let w = (w1, . . . , wr) � w.

(1) If V is an A(w)-module and W an A(w)-module, then

HomA(w)(Indww W,V ) ∼= HomA(w)(W,Resww V ).

(2) For i = 1, . . . , r, let Vi be an A(wi)-module. For 0 = i0 < i1 <

· · · < il−1 < il = r, let vj =
∑ij

s=ij−1+1ws for j = 1, 2, . . . , l. Then

v = (v1, . . . , vl) � w and

IndA(w)
A(w)

(
r⊗
s=1

Vs

)
= IndA(w)

A(v)

 r⊗
j=1

IndA(vj)

 ij⊗
t=ij−1−1

Vt

 .



REPRESENTATIONS OF WREATH PRODUCTS OF ALGEBRAS 5

(3) Let Vi be an A(wi)-module for each i = 1, . . . , r, and let π ∈ Sr.

Then

IndA(w)
A(w1,...,wr)

(V1 ⊗ · · · ⊗ Vr) ∼= IndA(w)
A(wπ(1),...,wπ(r))

(Vπ(1) ⊗ · · · ⊗ Vπ(r)).

If V is an A(w)-module and X is an RSw-module then V ⊗X becomes

an A(w)-module in the following way:

(α⊗ σ)(v ⊗ x) = (α⊗ σ)v ⊗ σx (α ∈ Tw(A), σ ∈ Sw, v ∈ V, x ∈ X).

We denote this A(w)-module by V �X.

If A is the group algebra of a group G, then A(w) is isomorphic to the

group algebra of the wreath product G o Sw and X may be viewed as an

A(w)-module via the natural epimorphism R(G o Sw) → RSw. In this

situation V �X is just the usual inner tensor product of two modules over

the group algebra.

Similarly, if w � w, and W is an A(w)-module and Y is an RSw-module,

we get an A(w)-module W � Y .

We tabulate some properties of this construction:

Lemma 3.2. Let w = (w1, . . . , wr) � w.

(1) Suppose that for i = 1, . . . , r we have an A(wi)-module Vi and an

RSwi-module Xi. Then we have an isomorphism

(V1 �X1)⊗ · · · ⊗ (Vr �Xr) ∼= (V1 ⊗ · · · ⊗ Vr)� (X1 ⊗ · · · ⊗Xr)

of A(w)-modules.

(2) Suppose that V is an A(w)-module and X is a RSw-module. Then

ResA(w)
A(w)(V �X) ∼= ResA(w)

A(w) V � Resww X

(3) Suppose that V is an A(w)-module and Y is a RSw-module. Then

V � (Indww Y ) ∼= IndA(w)
A(w)((ResA(w)

A(w) V )� Y )

(4) Suppose that W is an A(w)-module and X is a RSw-module. Then

(IndA(w)
A(w) W )�X ∼= IndA(w)

A(w)(W � Resww X)
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Proof. The first two isomorphisms are given by the obvious identical maps,

and the last two are given by

v � (σ ⊗ y) 7→ (1⊗ σ)⊗
(
(1⊗ σ−1)v � y

)
and

((1⊗ σ)⊗ w)� x 7→ (1⊗ σ)⊗ (w � σ−1x)

respectively.

If M is an A-module, then its w-th fold tensor power Tw(M) is a Tw(A)-

module, with tensors acting on tensors component-wise. This action extends

to A(w) by letting Sw act by place permutations and we call the resulting

module T (w)(M).

If λ ` w, we define an A(w)-module

T λ(M) := T (w)(M)� Sλ.

Remark.

(1) Since S(w) = R is the trivial representation, we see that T (w)(M) =

T (w)(M)�S(w), so that there is no ambiguity in the notation T (w)(M).

(2) We define T ∅(M) = R by convention.

We have an analogue of Lemma 2.1:

Lemma 3.3. Let M be an A-module and let w = (w1, . . . , wr) � w.

(1) For i = 1, 2, . . . , r, let λi ` wi. Then

IndA(w)
A(w)(T

λ1
(M)⊗ · · · ⊗ T λr(M)) ∼=

⊕
λ`w

c(λ;λ1, . . . , λr)T λ(M).

(2) Let λ ` w. Then

ResA(w)
A(w)(T

λ(M)) ∼=
⊕

(λi`wi)i

c(λ;λ1, . . . , λr)(T λ
1
(M)⊗ · · · ⊗ T λr(M)).
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Proof. For part (1), we have, using Lemmas 3.2(1,3) and 2.1(1),

IndA(w)
A(w)

(
r⊗
i=1

T λi(M)

)
∼= IndA(w)

A(w)

(
r⊗
i=1

(T (wi)(M)� Sλi)

)

∼= IndA(w)
A(w)

(
r⊗
i=1

T (wi)(M)�
r⊗
i=1

Sλ
i

)

∼= IndA(w)
A(w)

((
ResA(w)

A(w) T
(w)(M)

)
�

r⊗
i=1

Sλ
i

)
∼= T (w)(M)� Indww(Sλ

1 ⊗ · · · ⊗ Sλr)

∼= T (w)(M)�

(⊕
λ`w

c(λ;λ1, . . . , λr)Sλ
)

∼=
⊕
λ`w

c(λ;λ1, . . . , λr)T λ(M).

We can prove part (2) similarly, using Lemma 3.2(1,2) and Theorem 2.1(2).

We now consider radical series, in the case where R is a splitting field.

Lemma 3.4. Suppose that R = k is a splitting field for A.

(1) We have rad(Tw(A)) =
∑w−1

i=0 T i(A)⊗ rad(A)⊗ Tw−i−1(A).

(2) If A is semisimple, then so is A(w).

Proof. Part (1) is a well-known fact (see, e.g., [3, proof of (10.38)]). For part

(2), we show that every A(w)-module is completely reducible. Let M be an

A(w)-module and let N be an A(w)-submodule of M . Since A is semisimple,

so is Tw(A). Thus N has a Tw(A)-complement in M ; let π : M → N be

the projection along this complement and define π′ : M → N , π′(m) =
1
w!

∑
σ∈Sw

σπσ−1(m). Then π′ is a A(w)-homomorphism, and π′|N = idN ,

so that M = N ⊕ kerπ′ as A(w)-modules.

Lemma 3.5. Suppose that R = k is a splitting field for A.

(1) radn(A(w)) = radn(Tw(A))⊗ kSw for all n ∈ N.

(2) If V is an A(w)-module, then for all n ∈ N,

radn(V ) = radn(ResA(w)
Tw(A)(V )).
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(3) If V is an A(w)-module, and X is a kSw-module, then for all n ∈ N,

radn(V �X) = radn(V )�X.

(4) If w � w and W is an A(w)-module, then for all n ∈ N,

radn(A(w)) = radn(Tw(A))⊗ kSw;

radn(IndA(w)
A(w) W ) = IndA(w)

A(w)(radn(W )).

Proof.

(1) Note that, by Lemma 3.4(1), rad(Tw(A)) is invariant under the ac-

tion of Sw, so that (rad(Tw(A)) ⊗ kSw)n = radn(Tw(A)) ⊗ kSw.

Thus rad(Tw(A))⊗kSw is a nilpotent ideal, and the quotient of A(w)

by it is isomorphic to (Tw(A)/ rad(Tw(A)))(w), which is semisim-

ple by the previous lemma. Thus rad(A(w)) = rad(Tw(A)) ⊗ kSw.

Hence

radn(A(w)) = (rad(Tw(A))⊗ kSw)n

= radn(Tw(A))⊗ kSw.

(2) We have

radn(V ) = radn(A(w))V = (radn(Tw(A))⊗ kSw)V

= (radn(Tw(A))V = radn(ResA(w)
Tw(A)(V )).

(3) We have

radn(V �X) = radn(A(w))(V �X)

= (radn(Tw(A))⊗ kSw)(V �X)

= (radn(Tw(A))⊗ kSw)V �X

= radn(A(w))V �X

= radn(V )�X.
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(4) Note thatA(w) ∼= Tw(A)⊗Sw, so we show radn(A(w)) = radn(Tw(A))⊗

kSw using similar argument as part (1). Now,

radn(A(w)⊗A(w) W ) = (radn(Tw(A))⊗ kSw)(A(w)⊗A(w) W )

= A(w)⊗A(w) radn(Tw(A))W

= A(w)⊗A(w) radn(W ).

We now introduce the key construction of A(w)-modules from A-modules.

Definition 3.6. Let {M(i) | i ∈ I} be a set of A-modules. Given any

λ = (λi)i∈I ∈ ΛIw, we construct an A(w)-module M(λ) as follows:

M(λ) := Indw(|λi|)i∈I

(⊗
i∈I

T λ
i
(M(i))

)
.

In view of Lemma 3.1(3), the order in which the tensor product is taken

is not important.

The fact that the moduleM(λ) depends on theM(i)’s is not made explicit

by our notation, but we believe there shouldn’t be too much danger of

confusion.

This is a natural and important construction. For example,

Proposition 3.7 (Macdonald [7, p. 204]). Suppose that R = k is a splitting

field for A. Let {M(i) | i ∈ I} be a complete set of nonisomorphic simple A-

modules. Then A(w) is a split k-algebra and {M(λ) | λ ∈ ΛIw} is a complete

set of nonisomorphic simple A(w)-modules.

The following observation that will prove useful.

Lemma 3.8. Let M be an A-module whose direct summands are {M(i) |

i ∈ I}. Then the direct summands of the A(w)-module Indw(1w)(T
w(M)) are

{M(λ) | λ ∈ ΛIw}.

Proof. By Lemma 3.1(2), Indw(1w)(T
w(M)) is isomorphic to a direct sum of

modules

Indw(wi)i∈I

(⊗
i∈I

Indwi(1wi ) T
wi(M(i))

)
,
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where (wi)i∈I is an I-tuple of nonnegative integers summing to w and each

such tuple actually occurs. Each term Indwi(1wi ) T
wi(M(i)) is by Lemma

3.3(1) in turn isomorphic to a direct sum of T λ
i
(M(i))’s for λi ` wi where

each such partition occurs. The statement follows.

Corollary 3.9. Suppose that {M(i) | i ∈ I} is a set of projective A-modules.

Then M(λ) is projective for all λ ∈ ΛIw.

Proof. It suffices to show the Corollary for the case where {M(i) | i ∈ I} is a

complete set of indecomposable projective A-modules. In this case, we apply

Lemma 3.8 with M = A, and conclude that M(λ) is a direct summand of

Indw(1w)(T
w(A)) = A(w), and hence is projective.

Remark.

(1) All of the constructions in this section are well-behaved under base

change. Let R1 → R2 be a ring homomorphism. For example R2

can be the fraction field or residue field of R1, when R1 is a discrete

valuation ring. Given an R1-algebra A1 we set A2 = R2 ⊗R1 A1.

Firstly we have an obvious isomorphism of R2-algebras

R2 ⊗R1 A1(w) ∼= A2(w).

If {M1(i) | i ∈ I} is a set of A1-modules and λ ∈ ΛIw, then we can

construct, as above, an A1(w)-module M1(λ) as well as an A2(w)-

module M2(λ) (from the modules M2(i) = R2 ⊗R1 M1(i)). There is

an isomorphism of A2-modules

R2 ⊗R1 M1(λ) ∼= M2(λ).

(2) The constructions in this section are functorial in an obvious way.

In particular, given sets {M(i) | i ∈ I} and {N(i) | i ∈ I} of A-

modules, along with homomorphisms {φ(i) : M(i) → N(i) | i ∈ I},

we get canonically defined homomorphisms φ(λ) : M(λ) → N(λ)

for all λ ∈ ΛIw.

(3) There are obvious analogous versions of all the constructions in

this section for right modules. In particular given a set of right

A-modules {M ′(i) | i ∈ I} we can construct for any λ ∈ ΛIw a right
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A(w)-modules M ′(λ). Moreover if {M(i) | i ∈ I} is a set of left A-

modules and M(i)∨ ∼= M ′(i), then a straightforward albeit tedious

argument shows that M(λ)∨ ∼= M ′(λ) for all λ ∈ ΛIw.

4. Filtrations

In this section we investigate how filtrations of modules behave with re-

spect to the constructions described in the previous section.

We begin with a two lemmas, which handle the most basic case.

Lemma 4.1. Let A and B be R-algebras. Let M be an A-module having a

filtration

M = M0 ⊇M1 ⊇ · · · ⊇Mm ⊇Mm+1 = 0,

and N be a B-module having a filtration

N = N0 ⊇ N1 ⊇ · · · ⊇ Nn ⊇ Nn+1 = 0.

Assume that the subquotients Mi/Mi+1 and Nj/Nj+1 are all R-free. Then

the A⊗B-module M ⊗N is filtered by{
Mi

Mi+1
⊗ Nj

Nj+1
| 0 ≤ i ≤ m, 0 ≤ j ≤ n

}
.

Proof. Let Vi,j = Mi+1 ⊗N +Mi ⊗Nj . Then

M ⊗N = V0,0 ⊇ V0,1 ⊇ · · · ⊇ V0,n ⊇ V1,0 ⊇ V1,1 ⊇ · · · ⊇ Vm,n ⊇ 0

is a filtration of M ⊗ N , and Vi,j
Vi,j+1

∼= Mi
Mi+1

⊗ Nj
Nj+1

if j < n and Vi,n
Vi+1,0

∼=
Mi
Mi+1

⊗Nn.

Lemma 4.2. Let M be an A-module having a filtration

M = M0 ⊇M1 ⊇M2 ⊇ · · · ⊇Mm ⊇Mm+1 = 0

such that each subquotient Mi/Mi+1 is R-free. Then the A(w)-module T (w)(M)

is filtered by the set{
Indww

(
m⊗
s=0

T (ws)

(
Ms

Ms+1

))
| w = (w0, w1, . . . , wm) � w

}
.
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Proof. We can choose an R-basis B for M along with a function g : B →

{0, . . . ,m} so that for s ∈ {0, . . . ,m}, the subset {b ∈ B | g(b) ≥ s} is a basis

for Ms. Hence if b0 ∈ B and a ∈ A, then ab0 ∈ spanR{b ∈ B | g(b) ≥ g(b0)}.

It is clear that {b1⊗· · ·⊗bw | b1, . . . , bw ∈ B} is anR-basis of T (w)(M). Define

the weight of b1 ⊗ · · · ⊗ bw to be the composition w = (w0, w1, . . . , wm) � w

where ws = |{i | g(bi) = s}| for all s. Note that the set of basis elements with

a given weight is invariant under the action of Sw. For each nonnegative

integer n, let Zn be the R-span of{
b1 ⊗ · · · ⊗ bw | bi ∈ B,

w∑
i=1

g(bi) ≥ n

}
.

Then Zn is an A(w)-submodule of T (w)(M), and is in fact equal to

∑
(n1,...,nw)�n

(
w⊗
i=1

Mni

)
.

We have a filtration

T (w)(M) = Z0 ⊇ Z1 ⊇ · · · ,

and Zn/Zn+1 has a basis {b1 ⊗ · · · ⊗ bw + Zn+1 | bi ∈ B,
∑w

i=1 g(bi) = n}.

For each w = (w0, . . . , wm) � w such that
∑m

s=0 sws = n, let Vw be the

R-span in Zn/Zn+1 of the basis elements with weight w. Then Vw is an

A(w)-submodule of Zn/Zn+1, and

Zn/Zn+1 =
⊕

w=(w0,...,wm)�w∑m
s=0 sws=n

Vw.

Thus T (w)(M) is filtered by the set {Vw | w = (w0, . . . , wm) � w}. We

now provide a description of Vw. Let
∑m

s=0 sws = n, and consider the R-

submodule V0 of Zn/Zn+1 spanned by elements of the form b1⊗· · ·⊗bw+Zn+1

with g(b1) = · · · = g(bw0) = 0, g(bw0+1) = · · · = g(bw0+w1) = 1, etc. Note

that V0 is an A(w)-submodule of Zn/Zn+1 isomorphic to

m⊗
s=0

T (ws)

(
Ms

Ms+1

)
.

As an R-module, Vw =
⊕

σ∈Sw/Sw
(1 ⊗ σ)V0. As such, Vw = IndA(w)

A(w) V0
∼=

IndA(w)
A(w)

(⊗m
s=0 T

(ws)
(

Ms
Ms+1

))
.
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When R is a field and the filtration of M is an refinement of the radical

filtration, we are able to obtain a formula for the radical layers of T (w)(M).

Lemma 4.3. Suppose that R = k is a field, and let M be an A-module

having a filtration as in Lemma 4.2.

(1) Suppose Ms = rads(M). Then

radn(T (w)(M))
radn+1(T (w)(M))

∼=
⊕
w

Indww

(
m⊗
s=0

T (ws)

(
rads(M)

rads+1(M)

))
,

where w = (w0, w1, . . . , wm) runs over all compositions of w such

that
∑m

s=0 sws = n.

(2) Suppose that the given filtration of M is a refinement of the radical

filtration, so that for s = 0, 1, . . . ,m, we have radls(M) ⊇ Ms %

radls+1(M) for a unique ls. Then

radn(T (w)(M))
radn+1(T (w)(M))

∼=
⊕
w

Indww

(
m⊗
s=0

T (ws)

(
Ms

Ms+1

))
,

where w = (w0, w1, . . . , wm) runs over all compositions of w such

that
∑m

s=0wsls = n.

Proof. For part (1), keeping the notations used in the proof of Lemma 4.2,

it suffices to show that Zn = radn(T (w)(M)). Using Lemma 3.4(1), we see

that

radn(Tw(A)) =
∑

(n1,...,nw)�n

(
w⊗
i=1

radni(A)

)
.

Now

Zn =
∑

(n1,...,nw)�n

(
w⊗
i=1

radni(M)

)

=
∑

(n1,...,nw)�n

(
w⊗
i=1

radni(A)

)
(Tw(M))

= radn(Tw(A))(Tw(M)) = radn(T (w)(M)),

the last equality by Lemma 3.5(2).

For part (2), let Mr = rads(M) and Mt = rads+1(M), and thus li = s for

all r ≤ i < t. Using Lemma 4.2, we know that T (vs)(Mr/Mt) is filtered by
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the set {
Indvs

(
t−1⊗
i=r

T (wi)

(
Mi

Mi+1

))
| (wr, wr+1, . . . , wt−1) � vs

}
.

The statement thus follows from part (1) and Lemma 3.1(2).

We now introduce the main result on filtrations. Let {M(i) | i ∈ I}

and {N(j) | j ∈ J} be sets of R-free A-modules and suppose that each

M(i) has a filtration whose subquotients are isomorphic to N(j)’s. We

will construct filtrations of the A(w)-modules M(λ) (λ ∈ ΛIw) in which

the subquotients are isomorphic to N(µ)’s (µ ∈ ΛJw) (see Definition 3.6).

We shall keep track of multiplicities and give additional information on the

radical filtrations of the M(λ)’s when the original filtrations are refinements

of radical filtrations. We shall assume for the sake of simplicity that the

N(j)’s are pairwise nonisomorphic.

We write down the given filtrations

(∗) M(i) = M(i, 0) ⊇M(i, 1) ⊇ · · · ⊇M(i,mi + 1) = 0,

set K = {(i, s) ∈ I × Z | 0 ≤ s ≤ mi}, and let

F (i, s) =
M(i, s)

M(i, s+ 1)

for each (i, s) ∈ K. By assumption each F (i, s) is R-free and isomorphic to

a unique N(j). Let Kj = {(i, s) ∈ K | F (i, s) ∼= N(j)}.

Proposition 4.4. Let λ ∈ ΛIw.

(1) The A(w)-module M(λ) has a filtration with subquotients isomorphic

to N(µ)’s (µ ∈ ΛJw) in which N(µ) appears

(∗∗)
∑

ρ

∏
i∈I

c(λi; ρi0, . . . , ρimi) ·
∏
j∈J

c(µj ; (ρis | (i, s) ∈ Kj))


times, with the sum taken over all ρ = (ρis) ∈ ΛKw .

(2) Suppose that R = k is a splitting field for A and the filtrations in (∗)

are composition series refining the radical filtrations (thus the N(j)’s

are simple). For (i, s) ∈ K, we define lis by

radlis(M(i)) ⊇M(i, s) ) radlis+1(M(i)).
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Then the multiplicity of the simple A(w)-module N(µ) in the r-th

radical layer of M(λ) is given by (∗∗), with the sum taken over all

ρ = (ρis) ∈ ΛKw satisfying
∑

(i,s)∈K |ρis|lis = r.

Proof. We will make repeated use of Lemmas 3.2 and 3.3 without comment.

Let w = (wi | i ∈ I) � w. Firstly, by Lemma 4.2, we know that for each

i ∈ I, the A(wi)-module T (wi)(M(i)) is filtered by the set{
Indwivi

(
mi⊗
s=0

T (vis)(F (i, s))

)
| vi = (vi0, . . . , vimi) � wi

}
.

If λi ` wi, then

Indwivi

(
mi⊗
s=0

T (vis)(F (i, s))

)
� Sλi

∼= Indwivi

((
mi⊗
s=0

T (vis)(F (i, s))

)
� Reswivi (Sλ

i
)

)

∼= Indwivi

( mi⊗
s=0

T (vis)(F (i, s))

)
�

⊕
(ρis`vis)s

c(λi; ρi0, . . . , ρimi)

(
mi⊗
s=0

Sρ
is

)
∼=

⊕
(ρis`vis)s

c(λi; ρi0, . . . , ρimi) Indwivi

(
mi⊗
s=0

T ρ
is

(F (i, s))

)
.

Thus the A(wi)-module T λ
i
(M(i)) = T (wi)(M(i))� Sλi is filtered by the

set{
c(λi; ρi0, . . . , ρimi) Indwivi

(
mi⊗
s=0

T ρ
is

(F (i, s))

)
| (ρis ` vis)s, vi = (vi0, . . . , vimi) � wi

}
.

It follows from Lemma 4.1 that M(λ) = Indww
(⊗

i∈I T
λi(M(i))

)
is filtered

by the set (see Definition 3.6){(∏
i∈I

c(λi; ρi0, . . . , ρimi)

)
F (ρ) | ρ = (ρis) ∈ ΛKw

}
.

Given any ρ = (ρis) ∈ ΛKw , let vis = |ρis|, wj =
∑

(i,s)∈Kj vis, w = (wj)j∈J ,

v = (vis)(i,s)∈K , and vj = (vis)(i,s)∈Kj . Then

F (ρ) = Indwv

 ⊗
(i,s)∈K

T ρ
is

(F (i, s))
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∼= Indww

⊗
j∈J

Indwjvj

 ⊗
(i,s)∈Kj

T ρ
is

(N(j))


∼= Indww

⊗
j∈J

Indwjvj

(Reswjvj T
(wj)(N(j))

)
�

⊗
(i,s)∈Kj

Sρ
is


∼= Indww

⊗
j∈J

T (wj)(N(j))� Indwjvj

 ⊗
(i,s)∈Kj

Sρ
is


= Indww

⊗
j∈J

(T (wj)(N(j))�

⊕
µj`wj

c(µj ; (ρis)(i,s)∈Kj )S
µj


=
⊕
µ

∏
j∈J

c(µj ; (ρis)(i,s)∈Kj )

N(µ),

where the sum runs over all J-tuples µ = (µj | j ∈ J) of partitions.

Putting this together with our calculations above we obtain the first state-

ment of the Proposition.

Now we assume that R = k is a splitting field for A and that the filtrations

of the M(i) are composition series refining the radical filtrations: for each

(i, s) ∈ K we have radlis(M(i)) ⊇M(i, s) ) radlis+1(M(i)) for some lis.

Firstly, by Lemma 4.3(2) we know that for each i ∈ I, the r-th radical

layer of the A(wi)-module T (wi)(M(i)) is isomorphic to

⊕
vi

Indwivi

(
mi⊗
s=0

T (vis)(F (i, s))

)
,

where the sum is over vi = (vi0, . . . , vimi) � wi such that
∑mi

s=0 vislis = r.

Thus by Lemmas 3.5(3), 3.2(4) and 2.1(2), the r-th radical layer of the

A(wi)-module T λ
i
(M(i)) = T (wi)(M(i))� Sλi is isomorphic to

⊕
vi

 ⊕
(ρis`vis)s

Indwivi

(
mi⊗
s=0

c(λi; ρi0, . . . , ρimi)
(
T (vis)(F (i, s))� Sρis

)) ,

where the outer sum is again over vi = (vi0, . . . , vimi) � wi such that∑mi
s=0 vislis = r.

Hence, using Lemma 3.5(4) and the argument in the proof above, the r-th

radical layer of M(λ) is a direct sum of F (ρ)’s for ρ = (ρis) ∈ ΛKw satisfying∑
(i,s)∈K |ρis|lis = r, and F (ρ) appears with multiplicity

∏
i∈I c(λ

i; ρi0, . . . , ρimi).
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Finally we express each F (ρ) as a direct sum of simple modules N(µ) as

above and obtain the second statement in the Proposition.

As an easy application of our results, we have the following:

Lemma 4.5. Suppose R = k is a splitting field for A. Let {M(i) | i ∈ I} be

a set of A-modules, and suppose that for each i ∈ I, M(i) has a simple head

L(i), and L(i) � L(j) if i 6= j. Then M(λ) has a simple head isomorphic

to L(λ) for all λ ∈ ΛIw.

Proof. Let {N(j) | j ∈ J} be a complete set of simple A-modules. We

may assume that J ⊇ I and N(i) = L(i) for all i ∈ I. We then apply

Proposition 4.4(2). Note that lis = 0 if and only if s = 0, and (i, 0) ∈ Ki.

Thus
∑

(i,s)∈K |ρis|lis = 0 implies that ρis = ∅ for all s ≥ 1, so that λi =

ρi0 = µi.

Proposition 4.6. Let R = k be a splitting field for A, and let {L(i) | i ∈ I}

be the simple A-modules and {P (i) | i ∈ I} their projective covers.

(1) For each λ ∈ ΛIw, P (λ) is the projective cover of L(λ).

(2) (Ext1-quiver)

(a) For λ ∈ ΛIw, we have

dimk Ext1
A(w)(L(λ), L(λ)) =

∑
i∈I

p(λi) dimk Ext1
A(L(i), L(i)),

where p(λi) is the number of distinct parts of λi.

(b) For λ,µ ∈ ΛIw, λ 6= µ, we have Ext1
A(w)(L(λ), L(µ)) = 0 unless

either

• there exists j ∈ I, such that λi = µi for all i ∈ I, i 6= j,

• there exists ν ∈ Λ such that both λj and µj are obtained

from ν by adding one node,

• Ext1
A(L(j), L(j)) 6= 0,

in which case

dimk Ext1
A(w)(L(λ), L(µ)) = dimk Ext1

A(L(j), L(j));

or
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• there exist j, j′ ∈ I, j 6= j′, such that λi = µi for all i ∈ I,

i 6= j, i 6= j′

• µj is obtained from λj by adding one node

• µj′ is obtained from λj
′
by removing one node

• Ext1
A(L(j), L(j′)) 6= 0,

in which case

dimk Ext1
A(w)(L(λ), L(µ)) = dimk Ext1

A(L(j), L(j′)).

Proof. The first statement follows from Lemma 4.5 and Corollary 3.9. The

second statement follows from Proposition 4.4(2) using the fact that, in the

notation of the statement of that Proposition,
∑

(i,s)∈K |ρis|lis = 1 implies

there exists a unique (i, s) ∈ K with s > 0 such that ρis 6= ∅; furthermore,

ρis = (1) and lis = 1.

If we are given a unitriangular system of filtrations of A-modules, then the

resulting filtration of A(w)-modules is also unitriangular. More precisely,

Proposition 4.7. Let {M(i)} and {N(i)} be two sets of A-modules indexed

by a common partially ordered set (I,≥), and assume that each N(i) is R-

free. Suppose that for each i ∈ I, M(i) has a filtration such that every

subquotient is isomorphic to N(j) for some j ≤ i, and N(i) occurs exactly

once. Then each λ ∈ ΛIw, M(λ) has a filtration such that every subquotient

is isomorphic to N(µ) for some µ � λ, and N(λ) occurs exactly once.

Proof. Our hypothesis implies that (i, s) ∈ Kj only if i ≥ j, so that
⋃
j≥tKj ⊆

{(i, s) ∈ K | i ≥ t}. Now, if a summand of (∗∗) in Proposition 4.4(1) is

non-zero, then |µj | =
∑

(i,s)∈Kj |ρ
is| and |λi| =

∑mi
s=0 |ρis|, so that

∑
j≥t
|µj | =

∑
j≥t

∑
(i,s)∈Kj

|ρis| ≤
∑
i≥t

mt∑
s=0

|ρis| =
∑
i≥t
|λi|,

i.e, µ � λ.

Now suppose µ = λ. Then the above inequality is an equality for all

t ∈ I. Let I ′ = {i ∈ I | λi 6= ∅}. Then I ′ is finite, and for all i ∈ I \ I ′,

ρis = ∅. We complete the proof by showing by induction that λi = ρisi = µi
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for all i ∈ I ′, where Fisi is the unique subquotient of M(i) isomorphic to

N(i).

Let t be a maximal member of I ′. Then if t′ > t, we have
∑

j≥t′ |µj | ≤∑
i≥t′ |λi| = 0; in particular, µt

′
= ∅. Thus, |λt| =

∑
i≥t |λi| =

∑
j≥t |µj | =

|µt|, which also shows that ρts 6= ∅ if and only if s = st. This further yields

λt = ρtst = µt. The inductive step is similar.

5. The eAe construction.

Let e ∈ A be an idempotent. Then eAe is a subalgebra of A (with identity

element e), and we have an exact functor

f : A-mod → eAe-mod

given by f(M) = eM on objects and taking a homomorphism M → N to

the restriction eM → eN . Define

ew = e⊗w ⊗ 1 ∈ Tw(A)⊗RSw = A(w),

an idempotent in A(w). Then it’s easy to see that

ewA(w)ew = (eAe)(w)

and with this identification we have an exact functor

fw : A(w)-mod→ (eAe)(w)-mod

defined in a similar manner as f . This functor has good properties with

respect to the constructions studied in section 3:

Proposition 5.1.

(1) If M is an A-module then

fw(M (w)) = (f(M))(w).

(2) If V is an A(w)-module and X an RSw-module then

fw(V �X) = fw(V )�X.
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(3) If w = w1 +w2, V1 is an A(w1)-module, and V2 is an A(w2)-module,

then

fw(Indw(V1 ⊗ V2)) = Indw(fw1(V1)⊗ fw2(V2)).

(4) If {M(i) | i ∈ I} is a collection of A-modules and we set N(i) =

f(M(i)), then for any λ ∈ ΛIw we have

fw(M(λ)) = N(λ).

Proof. These all follow directly from the definitions.

In some cases of interest (for example if A is a Schur algebra and f is the

Schur functor [4, §6]) EndeAe(f(A)) ∼= A, where the isomorphism is given

by right multiplication of A on f(A) = eA. This property passes to wreath

products:

Proposition 5.2. Suppose that the homomorphism

A→ EndeAe(f(A))

given by right multiplication of A on f(A) = eA is an isomorphism. Then

the homomorphism

A(w)→ End(eAe)(w)(fw(A(w)))

given by right multiplication of A(w) on fw(A(w)) = ewA(w) is also an

isomorphism.

Proof. First of all, the homomorphism

Tw(A)→ EndTw(eAe)(T
w(eA))

given by right multiplication of Tw(A) on Tw(eA) is an isomorphism, by

(10.37) of [3] (which states the result for algebras over fields, but the same

proof works for any algebra over a commutative ringR as long as the modules

are free over R.)

Next, note that fw(A(w)) ∼= T (w)(eA) � RSw = Indw(1w)(T
w(eA)) and

right multiplication by α⊗ τ corresponds via the isomorphisms (see Lemma
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3.2(2) and Lemma 3.1(1))

End(eAe)(w)(fw(A(w))) ∼= Hom(eAe)(w)(Indw(1w)(T
w(eA)), T (w)(eA)�RSw)

∼= HomTw(eAe)(T
w(eA), Tw(eA)� Resw(1w)RSw)

∼= HomTw(eAe)(T
w(eA),⊕σ∈Sw(1⊗ σ)⊗ Tw(eA))

to the homomorphism sending m ∈ Tw(eA) to (1⊗ τ)⊗m(ατ).

6. Quasihereditary algebras

Let A be a finite-dimensional algebra over a field k with simple modules

{L(i) | i ∈ I} indexed by a partially ordered set (I,>). Recall (or see [2])

that a finite-dimensional k-algebra A is quasihereditary (with respect to >)

if there exist A-modules {∆(i) | i ∈ I} such that

(1) ∆(i)/ rad(∆(i)) ∼= L(i) and every composition factor of rad(∆(i)) is

isomorphic to L(j) for some j < i.

(2) P (i) has a filtration

P (i) = P (i)0 ⊇ P (i)1 ⊇ · · · ⊇ P (i)l+1 = 0

such that P (i)0/P (i)1
∼= ∆(i) and such that for each γ ∈ {1, 2, . . . , l},

we have P (i)γ/P (i)γ+1
∼= ∆(j) for some j > i.

If A is quasihereditary then the ∆(i)’s are characterised up to isomorphism

by properties (1) and (2), and are called the standard modules of A.

Now suppose that A is quasihereditary and split over k. Then {L(λ) | λ ∈

ΛIw} are the A(w)-simple modules, and by Proposition 4.6(1), P (λ) is the

projective cover of L(λ). By Lemma 4.5, ∆(λ) has simple head isomorphic

to L(λ) and by Proposition 4.7, every composition factor of rad(∆(λ)) is

isomorphic to L(µ) for some µ ≺ λ. Furthermore, Proposition 4.7 also

shows that P (λ) has a filtration in which each subquotient is isomorphic to

∆(µ) for some µ � λ and ∆(λ) occurs exactly once. But since ∆(λ) is the

only subquotient that has head isomorphic to L(λ), this subquotient must

occur at the top. Thus A(w) is a quasihereditary algebra with standard

modules {∆(λ) | λ ∈ ΛIw}, with respect to the partial order �.
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7. Example

Let k be a field and n an integer ≥ 2. Let A be the path algebra over k

of the quiver

•
0

γ1
�
δ1

•
1

γ2
�
δ2

•
2
· · · •

n−2

γn−1

�
δn−1

•
n−1

modulo the ideal generated by

{γiγi+1, δi+1δi, δiγi − γi+1δi+1 | 1 ≤ i ≤ n− 2} ∪ {δn−1γn−1}.

Let L(i) be the simple A-module corresponding to the vertex i, and let

P(i) be a projective cover of L(i). The radical layers of the P(i)’s are as

follows:

P(0) =

L(0)

L(1)

L(0)

, P(i) =

L(i)

L(i− 1) L(i+ 1)

L(i)

(1 ≤ i ≤ n−2), P(n−1) =
L(n− 1)

L(n− 2)
.

Let Ω(0) = L(0), and for i ∈ I = {0, . . . , n − 1}, let Ω(i) be a nonsplit

extension L(i) by L(i−1). Then it’s easy to check that A is a quasihereditary

algebra with simple modules L(i) and standard modules Ω(i) indexed by I

with the natural order.

This is an important example: it is well-known that A is the basic algebra

of any weight 1 block of any q-Schur algebra over k for which n is the least

positive integer such that 1 + q+ . . .+ qn−1 = 0 in k. (this can be deduced,

for instance, from [9, p.126, rule 13].)

Now let w be a positive integer such that w! is invertible in k. By the result

of the previous section, the algebra A(w) is quasihereditary with simple

modules L(λ) and standard modules Ω(λ) indexed by λ ∈ ΛIw. Define for

λ,µ ∈ ΛIw polynomials

radΩ,λ,µ(v) =
∑
r≥0

[radr Ω(λ)/ radr+1 Ω(λ) : L(µ)]vr,

radP,λ,µ(v) =
∑
r≥0

[radr P(λ)/ radr+1 P(λ) : L(µ)]vr.
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Proposition 7.1. We have for λ,µ ∈ ΛIw,

(1) radΩ,λ,µ(v) = vδ(λ,µ)
∑

α0,...,αn

β0,...,βn−1

n−1∏
j=0

c(λj ;αj , βj)c(µj ;βj , αj+1)

where α0, . . . , αn, β0, . . . , βn−1 run through Λ and

δ(λ,µ) =
n−1∑
j=1

j(|λj | − |µj |).

Moreover

(2) radP,λ,µ(v) =
∑

ν∈ΛIw

radΩ,ν,λ(v) radΩ,ν,µ(v).

Note that for every nonzero term in the sum in (1) we must have

|αi| =
i−1∑
j=0

|µj | − |λj |, |βi| = |λi|+
i−1∑
j=0

|λj | − |µj |.

Formula (1) has been independently discovered by Miyachi in [10]; we are

following Leclerc-Miyachi’s presentation of the formula [6].

Proof. Formula (1) is a direct application of Proposition 4.4(2). To get

formula (2) is a little harder: we express both sides in terms of Littlewood-

Richardson coefficients using Proposition 4.4(2) and then use the following

identity which is valid for σ, σ̃, τ, τ̃ ∈ Λ:∑
λ

c(λ;σ, σ̃)c(λ; τ, τ̃) =
∑

α,β,α̃,β̃

c(σ;α, β)c(σ̃; α̃, β̃)c(τ ;α, β̃)c(τ̃ ; α̃, β).
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