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Abstract
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1. Results obtained using the Exact-KS-FFT method

1.1. When F(z) is discontinuous

The approach to computing the exact P(D,, > ¢) when F(z) is discontinuous is outlined in
the following procedure (also given in the paper of Dimitrova, Kaishev, Tan 2017, see Section
2.1 and references to the equations therein).

Procedure Exact-KS-FFT

(i) Specify a discontinuous cdf F(z), a sample size n, and a quantile q.

(ii) As detailed in Step 1, compute A; and B; for i = 1,...,n, based on (4), where the
limites are coded using a very small €, e.g., ¢ = 10719,
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(iii) As detailed in Step 2, compute the upper and lower boundaries g(t), h(t) using
(6).

(iv) Following Steps 3 and 4, apply FFT to compute Q(1,n) defined in (10). Hence,
calculate the double-boundary non-crossing probability with respect to the PP on
the right-hand-side of (8) and respectively obtain the double-boundary non-crossing
probability with respect to 7, (t) on the left-hand-side of (8).

(v) Finally, compute the exact P(D,, > ¢q) using (5) (cf., Steps 2 and 3).

R implementation

In order to compute P(D,, > ¢), when F(z) is purely discrete using the R package KSgen-

eral, one needs to input disc_ks_c_cdf(q, n, y, ..., exact = NULL, tol = le - 08,
sim.size = le + 06, num.sim = 10), where y specifies the purely discrete cdf F'(z), pos-
sibly followed by a list of parameters ... specifying F'(x), the input parameter exact is a

logical variable specifying whether one wants to compute exact values for P(D,, > ¢) using
the FFT-based method, i.e., exact = TRUE or wants to compute the approximate values for
P(D,, > ¢) using the simulation-based algorithm of Wood and Altavela (1978), in which case
exact = FALSE. When exact = NULL and n <= 100000 by default, the exact P(D,, > ¢) will
be computed using the Exact-KS-FFT method. The input parameter tol is the value of €
that is used to compute the values A; and B;, ¢ = 1,...,n, as detailed in Step 1 of Section
2.1 in Dimitrova, Kaishev, Tan (2017) (see also (ii) of the Procedure Exact-KS-FFT).
By default, tol = 1e - 08. Note that a value of NA or 0 will lead to an error. The input
parameter sim.size is the required number of simulated trajectories in order to produce one
Monte Carlo estimate (one MC run) of the asymptotic p value using the algorithm of Wood
and Altavela (1978). By default, sim.size = le + 06. The input parameter num.sim is the
number of MC runs, each producing one estimate (based on sim.size number of trajectories),
which are then averaged in order to produce the final estimate for the asymptotic p value.
This is done in order to reduce the variance of the final estimate. By default, num.sim =
10. For instance, if one wants to use the R package KSgeneral to compute the exact value
for P(D,, > q), when F(z) follows a Binomial(3,0.5) distribution as in Example 3.4, with
n = 400, g = 0.05, one should run the following R code and obtain the corresponding result,
as shown in the column Exact-KS-FFT of Table 3.

R> binom_3 <- stepfun(c(0 : 3), c¢(0, pbinom(0 : 3, 3, 0.5)))
R> disc_ks_c_cdf(0.05, 400, binom_3)

[1] 0.05611849

C++ implementation

For example, to obtain the probability P(D,, > q), for n = 25, ¢ = 0.20 as shown in the
column Exact-KS-FFT of Table 3, according to step (i) of the Procedure Exact-KS-FFT,
we first define the cdf of a Binomial(3,0.5) distribution in the file “crossprob.cc” using the
following code.

vector <double> TheoreticalDF (vector <double> pmf)
{
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double cumulative_sum;
vector <double> TDF(pmf.size());

for(int i = 0; i < pmf.size(); ++i){

cumulative_sum += pmf[i];
TDF[i] = cumulative_sum;

}
return TDF;
}
vector <double> BinomialPF(int trial, double prob)
{
int num = trial + 1;
vector <double> PF(num) ;
for (int i = 0; i < num; ++i){
PF[i] = exp(lgamma(num) - lgamma(num - i) - lgamma(i + 1)) *
pow(prob, i) * pow(1 - prob, trial - i);
}
vector <double>::iterator it;
it = PF.begin();
PF.insert(it, 0.0);
return PF;
}
vector <double> BinomialDF(int trial, double prob)
{
vector <double> Bin_CDF = TheoreticalDF(BinomialPF(trial, prob));
Bin_CDF[Bin_CDF.size()-1]= 1.0;
return Bin_CDF;
}

vector <double> MixDF (vector <double> obs)
{
vector <double> observed = obs;
set<double> s;
for (int i = 0; i < obs.size(); ++i){
s.insert(obs[i]);
}
obs.assign(s.begin(), s.end());
vector <double> DF(obs.size());
/* The Binomial (3, 0.5) distribution in Table 3 */

vector <double> Binom_pmf = BinomialDF(3, 0.5);
for (int i = 0; i < obs.size(); ++i){
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if (obs[i] < 0.0)1
DF[i] = 0.0;

}

else if (obs[i] < 1.0)1{
DF[i] = Binom_pmf[1];

F

else if (obs[i] < 2.0){
DF[i] = Binom_pmf[2];

F

else if (obs[i] < 3.0)1
DF[i] = Binom_pmf[3];

}
else
{
DF[i] = 1.0;
}
}
return DF;

}

Also, since the cdf of a Binomial(3,0.5) distribution has jumps at 0, 1,2, 3, we need to specify
this by inputting vector_input3 = {0.0, 1.0, 2.0, 3.0}; to the int main() function in
the file “crossprob.cc’.

Next, we first run make in one of the command line tools (e.g., bash) to build the program
for the Exact-KS-FFT method, developed by Dimitrova, Kaishev, Tan (2017) and based on
the code provided by Moscovich and Nadler (2017). Then, in the command line tool, we
run the following line ./bin/crossprob ecdf 25 Boundary_Crossing_Time.txt, where 25
is the input for the sample size. We will have the following screen prompts.

Please enter the distribution type: 1 for Continuous Distribution,
2 for Discontinuous Distributions:

We enter 2 since the cdf of a Binomial(3,0.5) distribution is not continuous.
2

Then, we can choose whether to calculate the K-S complementary cdf, P(D,, > ¢), or the
p value, P(D,, > d,), corresponding to a value d,, computed based on a user provided data
sample.

Please enter the objective: 1 for K-S Complementary Distribution,
2 for P-Values:

Since we want to obtain the probability P(D,, > q), for n = 25, ¢ = 0.20, we will enter 1.
1

Here, we enter the sample size n and the quantile q.
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Please enter the sample size and quantile:

25
0.20

Probability: 0.0468500212132494
Time taken: 0.0000740000000000

Now, steps (ii), (iii), (iv) and (v) of the Procedure Exact-KS-FFT are performed. The
result for P(D,, > q), for n = 25, ¢ = 0.20, is 0.046850021 as in the column Exact-KS-FFT of
Table 3. The corresponding computation time is also printed.

Following the similar procedures as above, we can obtain other values for P(D,, > ¢) in: 1)
the Exact-KS-FFT column of Table 1; 2) the Exact-KS-FFT column of Table 2; 3) the Exact-
KS-FFT column of Table 3; 4) the Exact-KS-FFT column of Table 4; 5) the Exact-KS-FFT
column of Table 5; 6) the Exact-KS-FFT column of Table 6.

Remark 1.1. Note that the distribution of the K-S test statistic D,, depends on the hypothe-
sized distribution F'(x) when F'(x) is not continuous. Hence, to obtain P(D,, > ¢) for different
discontinuous F'(z), the users should: 1) define the mixed cdf in the file “crossprob.cc” each
time, and 2) in the file “crossprob.cc”, define the vector containing points where F'(z) has
jumps, vector_input3.

1.2. When F(z) is continuous

R implementation

In order to compute P(D,, > ¢), when F(z) is continuous using the R package KSgeneral,
one needs to input cont_ks_c_cdf(q, n). For instance, in order to compute the value for
P(D, > q), for n = 141, ng®> = 2.1, one should run the following R code and obtain the
corresponding result as shown in Table 19 for n = 141 in the column Exact-KS-FFT.

R> cont_ks_c_cdf(sqrt(2.1/141), 141)

[1] 0.02743689

C++ implementation

Note that the distribution of D, is distribution-free, when F'(z) is continuous (cf., Equation
25). Hence, we can directly run the the following

./bin/crossprob ecdf n Boundary_Crossing_Time.txt

where n is the input for the sample size in the command line tool. For example, if we want to
obtain the probability P(D,, > ¢) for ng?> = 2.1 and n = 141 as shown in the column Exact-
KS-FFT of Table 19 in Appendix C, we run in the command line tool . /bin/crossprob ecdf
141 Boundary_Crossing_Time.txt. We will have the following screen prompts.
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Please enter the distribution type: 1 for Continuous Distribution,
2 for Discontinuous Distributions:

We enter 1 since the cdf F(z) is continuous.

Here, we enter the sample size n.

Please enter the sample size:
141

Then, we can choose whether to calculate the K-S complementary cdf, P(D,, > q), or the
p value, P(D,, > d,), corresponding to a value d,, computed based on a user provided data
sample.

Please enter the objective: 1 for K-S Complementary Distribution,
2 for P-Values:

Since we want to obtain the probability P(D,, > q), for n = 141, ¢ = 0.1220394077, we will
enter 1.

Here, we enter the quantile q.

Please enter the quantile:
0.1220394077

Probability: 0.0274368890595805
Time taken: 0.0003110000000000

Hence, the result for P(D,, > q), for n = 141, ng® = 2.1, is 0.02743688914 as in the column
Exact-KS-FFT of Table 19.

Following the similar procedures as above, we can obtain other values for P(D,, > ¢) and
P(D, < q) =1—P(D, > q) in the column Exact-KS-FFT of Tables 2, 8, 9, 10, 11, 12, 13,
14, 15, 16, 17, 18, 19, 20, 21 and 22.

1.3. Speed comparison

To obtain the CPU time to compute P(D,, > ¢) 100 times with the Exact-KS-FFT method,
as shown in Table 24, we modify part of the “crossprob.cc” file. More precisely, the original
code is
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else if (command == "ecdf") {
verify_boundary_is_valid(lower_bound_steps) ;
verify_boundary_is_valid(upper_bound_steps);
cout
<< 1.0 - ecdf_noncrossing_probability(n, lower_bound_steps, upper_bound_steps,
use_fft)
<< endl;

}

and using a for loop, the above code has been implemented to compute the same probability
P(D, > ¢) 100 times.

else if (command == "ecdf") {
verify_boundary_is_valid(lower_bound_steps) ;
verify_boundary_is_valid(upper_bound_steps);
int repetition = 100;
for (int i = 0; i < repetition; ++i){
1.0 - ecdf_noncrossing_probability(n, lower_bound_steps, upper_bound_steps,
use_fft);
}
}

We build the program again; and following the Procedure Exact-KS-FFT, we can obtain
the CPU time to compute P(D,, > ¢) 100 times with the Exact-KS-FFT method, as shown
in Table 24.

Remark 1.2. In above sections 1.1, 1.2, 1.3, we have briefly introduced how we could replicate
one value in a specific table. We have also provided source files to replicate each table instead
of just one specific value of the table.

If one wants to replicate the tables using R, one can use the file “Tables_Replication.r” provided
in the replication material under the folder named “Fzact KS_FFT_Replication_R”. First of
all, the R package KSgeneral should be installed. Then, the file “Tables_Replication.r” should
be sourced in R. For example, if the file “Tables_Replication.r”is stored in the current working
directory, then one can input in R the following command.

R> source('Tables_Replication.r')

If one wants to replicate Table X in Dimitrova, Kaishev, Tan (2017), one needs to run the
following code in R

R> Tables(X),

where possible inputs of X are 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,
21, 22.

If one wants to replicate the tables in C++, first of all, in the command line tool, one should set
the current directory to where the folder “Fract_ KS_FFT_Replication_C++"is located. Then,
in the command line tool, one should run make to build the executable “crossprob”. Finally,
one should run ./bin/crossprob TableXX Boundary_Crossing_Time.txt in the command
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line tool, where possible inputs of TableXX are Tablel, Table2, Table3, Table4, Tableb,
Table6, Table8_13, Tablel4_16, Tablel7, Tablel8, Tablel9_21, Table22, or Table24.

The values of the (complementary)cdf and the corresponding computation times will be
printed in the file “Table_XX.txt” located in the folder “Fxact_KS_FFT_Replication_C++".

2. Results obtained using the asymptotic formula (15)

As noted in Example 3.1 of the manuscript, Fy (y) has two jumps, (i.e., J =2) at 1 = 0,29 =
log2.5, and fy = f1 =0, fo = 0.5, f3 = 0.8, f4 = f5 = 1. Since the jump structure of Fy(-) in
Example 3.1 is flat-jump, increasing-jump segments, the first set of increasing-jump segments
and the last set of flat-jump segments in (14) should be omitted. Therefore, one should apply
formula (15) with m = 2,11 = 0,w1 = 1,9 = 1,ws = 0, and vy = 0,v; = 0,v3 = L, wy =
0,w; = 1,ws = 1. We have implemented the asymptotic formula (15) in Mathematica 10
(Wolfram Research Inc. 2015). For example, if we want to obtain the asymptotic probability
P(D,, > q) for A = 1, the code is as following.

fl[1_.] := (-1) =~ (1) 1/ (2 » Pi) *
((£2 - f1) * (£3 - f2)* (f4 - £3)) ~ (-1 / 2);
f1 = 0;
f2 =1/ 2;
f3 =4/ 5;
f4 = 1;
lambda = 1;

glx1_, x2_, 1_] :=
Exp[-1/ 2 % (x1 ~ (2) / (f2 - f1) + x2 ~ (2) / (f4 - £3)) -
1/2 * (x2 - (-1) -~ (1) * x1 - 2 * lambda * 1) ~ (2) / (£3 - f2)];
Timing[For [sum = 0; i = - 20, i <= 20, i++,
sum += NIntegrate[
glx1, x2, i], {x1, -lambda, lambda}, {x2, -lambda, lambda}] *
fl[il]l ; 1 - sum]

The output will be
{0.73, 0.174525238}

The first element, 0.73, shows the CPU time to compute asymptotic P(D,, > ¢) with Formula
(15), whereas the second element, 0.174525238, refers to the asymptotic probability as shown
in the column Asympt. (15) of Table 1. Similarly, we can obtain asymptotic probabilities
P(D,, > q) for A =3, 2, 0.5, 0.2, 0.15, as well as the CPU time to compute them, as shown in
the column Asympt. (15) of Table 1, by modifying the line lambda = 1 to the corresponding
values of A.

Remark 2.1. When A = 3, the probability P(D,, > q) is close to zero. Hence, in Mathematica
10, we may need to increase the working precision and the precision goal, for example, by
adding WorkingPrecision -> 30, PrecisionGoal -> 20 into the function NIntegrate[].
However, the computation time will be increased as a trade-off between the efficiency and
accuracy.
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3. Results obtained using the asymptotic formula (22)

3.1. When F(z) follows a Binomial(3,0.5) distribution

Note that when F(z) follows a Binomial(3,0.5) distribution, there are four jumps in F(x)
(i.e., J =4). Since F(z) is purely discrete, one should apply formula (22). We have imple-
mented the asymptotic formula (22) in Mathematica 10. For example, if we want to obtain
the asymptotic probability P(D,, > ¢q) for A = 1 as shown in the column Asympt. (22) of
Table 3, the code is as following.

al = (3!) / (0! * (3-0)!) % (1 /2) " 3;
a2 = (3!) / (1! * (3 - 1)) * (1 / 2) ~ 3;
a3 = (3!) / (2! * (3 -2)1) % (1 / 2) - 3;
a4 = (3!) / (3! * (3-3)!) *x (1 /2 ~ 3;
lambda = 1;

c=(2*Pi) -~ ((1 -4) /2) * (al * a2 * a3 * a4) ~ (-1/2);
flx1_, x2_, x3_] :=
Exp[-0.5 * (x1 ~ 2/ al + (x2 -x1) "2/ a2+ (x3-x2) ~2/a3+x3 "2/ ad)];
Timing[1 -
N[c * Integrate[
f[x1, x2, x3], {x1, -lambda, lambda}, {x2, -lambda,
lambda}, {x3, -lambda, lambda}], 16]]

The output will be
{5.30, 0.049438582298194}

The first element, 5.30, shows the CPU time to compute asymptotic P(D,, > ¢) with formula
(22), whereas the second element, 0.049438582298194, refers to the asymptotic probability
as shown in the column Asympt. (22) of Table 3 when A = 1. Similarly, we can obtain
asymptotic probabilities P(D,, > ¢) for A = 3, 2, 0.5, 0.2, 0.1, as well as the CPU time to
compute them, as shown in the column Asympt. (22) of Table 3, by modifying the line 1ambda
= 1 to the corresponding values of .

3.2. When F(z) follows a Binomial(7,0.5) distribution

Note that when F'(x) follows a Binomial(7,0.5) distribution, there are eight jumps in F(z)
(i.e., J = 8). We have implemented the asymptotic formula (22) in Mathematica 10. For
example, if we want to obtain the asymptotic probability P(D,, > ¢) for A = 1 as shown in
the column Asympt. (22) of Table 4, the code is as following.

al = (71) / (0! * (7 -0)!) * (1 /2) ~7;
a2 = (71) / (11 * (7 - 1)1) * (1 / 2) ~7;
a3 = (71) / (2! * (7 -2)1) * (1 /2) ~7;
ad = (7!) / (3! * (7 -3)!) * (1 /2) ~7;
ab = (71) / (4! * (7 - 4)!) * (1 /2) ~7;
a6 = (7!) / (5! * (7 -5)!) * (1 /2) ~7;
a7 = (7!) / (6! * (7 -6)!) * (1 /2) ~7;
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a8 = (71) / (7t x (7 -7)!) x (1 /2) "~ 7;
lambda = 1;
c=((2*Pi) - ((1 -8)/2) * (al * a2 * a3 * a4 * ab * a6 * a7 * a8) ~ (-1 / 2);
glxi_, x2_, x3_, x4_, x5_, x6_, x7_] :=
Exp[-0.5 * (x1 ~ 2 / al + (x2 -x1) ~ 2/ a2+ (x3 -x2) ~ 2/ a3 +
(x4 -x3) ~ 2/ a4 + (x5 -x4) -~ 2/ a5 +
(x6 - x5) ~ 2/ a6 + (x7 - x6) ~ 2/ ar + x7 ~ 2 / a8)];
Timing[1 -
¢ * NIntegrate[
glx1, x2, x3, x4, x5, x6, x7], {x1, -lambda,
lambda}, {x2, -lambda, lambda}, {x3, -lambda,
lambda}, {x4, -lambda, lambda}, {x5, -lambda,
lambda}, {x6, -lambda, lambda}, {x7, -lambda, lambda},
WorkingPrecision -> 20]]

The output will be
{473.92, 0.070168353127716%}

The first element, 473.92, shows the CPU time to compute asymptotic P(D,, > ¢) with formula
(22), whereas the second element, 0.070168353127716, refers to the asymptotic probability as
shown in the column Asympt. (22) of Table 4 when A = 1. Similarly, we can obtain asymptotic
probabilities P(D,, > q) for A = 3, 2, 0.5, 0.2, 0.1, as well as the CPU time to compute them,
as shown in the column Asympt. (22) of Table 4, by modifying the line lambda = 1 to the
corresponding values of \.

. Results obtained using the method of Wood and Altavela (1978)

As explained in Section 3.2 of Dimitrova, Kaishev, Tan (2017), for a discrete F'(x) with
J number of jumps, one should simulate from the (J — 1)-variate normal random vector
(Z1,Zo, ..., Zj_1), where

E(ZZ) - 07 E(Zlu Zk) - min(f?i)ka) - f2’if2ka Z7k - ]-a ceey J - 1)

and estimate the probability in ®(A) in (9) as

N
> imt Y2420, 2, _)e[-ANT-1}
N b

where N is the number of simulations, 1y, is an indicator function, and [~ M)/~ is the
J — 1 dimensional hypercube. We have implemented Wood and Altavela (1978)’s method in
the package KSgeneral in R.

For example, if one wants to use the simulation-based method of Wood and Altavela (1978) in
order to approximate the asymptotic value for P(D,, > q), when F'(z) follows a Binomial(3,0.5)
distribution, with n = 400, ¢ = 0.05, one should use the W&A (a) method that provides bet-
ter approximation, by running the following R code and obtain the corresponding result as
shown in the column W& A (a) of Table 3.
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R> binom_3 <- stepfun(c(0 : 3), c(0, pbinom(0 : 3, 3, 0.5)))
R> disc_ks_c_cdf(0.05, 400, binom_3, exact = FALSE, tol = 1e-08,
+ sim.size = 1e+06, num.sim = 10)

[1] 0.0561864

Following the same procedures above, we can obtain the simulated probability P(D,, > ¢) due
to W& A(a) and W& A(b) methods, as shown in Tables 3, 4, 5, and 6.

5. Results obtained using the method of Arnold and Emerson (2011)

As described in Example 3.5, hypothesizing that the underling F'(x) in (1) follows a discrete
uniform distribution on [1, 10], we have simulated random samples of size n, 25 < n < 100000.
The simulated samples are stored in text files named “discrete_uniform_n.txt”, where n is the
corresponding sample size. These text files have been provided with the replication material.

For example, when n = 100, we first set the working directory to where the file “dis-
crete_uniform_100.txt” is located and then input in R the following.

R> data <- read.csv("discrete_uniform_100.txt", header = F)
R> dgof::ks.test(datal[,1 : 100], ecdf(1 : 10), exact = T)

The output is

One-sample Kolmogorov-Smirnov test

data: datal[, 1:100]
D = 0.2, p-value < 2.2e-16
alternative hypothesis: two-sided

Warning message:
In dgof::ks.test(datall, 1:100], ecdf(1:10), exact = T)
numerical instability may affect p-value

We can see that when n = 100, the K-S test statistic for the simulated sample is D,, = 0.2, the
p value obtained from the R function dgof: :ks.test is p-value < 2.2e-16, while the p value
obtained from the Exact-KS-FFT method is 0.00021. The function dgof: :ks.test becomes
numerically unstable, as noted also by Arnold and Emerson (2011). To avoid instability,
for large n the R function dgof: :ks.test allows for estimating p values via simulation, by
inputting

R> dgof::ks.test(datal[,1:100], ecdf(1:10), simulate.p.value = T, B = 2000)

where B = 2000 indicates that the number of simulations is 2000. We have executed the
above code a few times. The outputs are

One-sample Kolmogorov-Smirnov test
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data: datal, 1:100]
D = 0.2, p-value < 2.2e-16
alternative hypothesis: two-sided

One-sample Kolmogorov-Smirnov test

data: datal, 1:100]
D = 0.2, p-value < 2.2e-16
alternative hypothesis: two-sided

One-sample Kolmogorov-Smirnov test

data: datal, 1:100]
D = 0.2, p-value = 5e-04
alternative hypothesis: two-sided

Hence, we can obtain the estimated p values in the column ks.test(simulation) of Table 6.
Since the p value is estimated from simulation, the value of the p value is not constant, and
hence may be insufficiently accurate. To improve the accuracy of the simulated p value, we
can increase the number of simulations used, but with a cost of lost efficiency.

6. Results obtained using the method of Simard and L’Ecuyer (2011)

Simard and L’Ecuyer (2011) developed a C program in file KolmogorovSmirnovDist.c, which
can be downloaded from http://www.iro.umontreal.ca/ simardr/ksdir. There are two
public functions defined in the file KolmogorovSmirnovDist.c: 1) KScdf(int n, double
x), which computes P(D,, < q) for given n and ¢, and 2) KSfbar(int n, double x), which
computes P(D,, > ¢) for given n and q.

For example, if we want to obtain the probability P(D,, < ¢) when n = 20, ng?> = 0.75, as
shown in the column Simard & L’Ecuyer of Table 9, we can implement the following C++
code in IDE.

#include <iostream>

#include <iomanip>

#include <math.h>

#include "KolmogorovSmirnovDist.h"
using namespace std;

int main()
{
int numberl;
// double number2;
double KS;
double muO;
cout << "Enter the sample size: ";
// cin >> numberl >> number2;
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cin >> numberl;
// mu0 = 1.0 - 1.0/numberi;
// mu0 = 1.0/numberl;
mu0 = pow(0.75/numberl, 1.0/2.0);
// mu0 = 1.0/(1.0 * sqrt(numberl));
int repetition = 100;
clock_t tStart clock();

for (int i = 0; i < repetition; ++i){
// KS = KSfbar (numberl, mu0) ;
KS = KScdf (numberl, mu0);
}
cout << fixed << setprecision(15) << std::scientific
<< "The p-value of the KS test is: " << KS << endl;

printf("Time taken: J.5fs\n", (double)(clock() - tStart)/CLOCKS_PER_SEC);
return O;

}

Then, we enter the sample size n = 20 from the screen prompt.
Enter the sample size: 20

The output is

The p-value of the KS test is: 6.089841201378628e-01
Time taken: 0.00126s
Program ended with exit code: 0

Hence, the output is 6.089841201378628 E — 01 as shown in Table 9. Similarly, we can obtain
the probability P(D,, < ¢) due to Simard and L’Ecuyer (2011) method, as shown in the
column Simard & L’Ecuyer of Tables 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, by modifying the
line mu0 = pow(0.75/numberl, 1.0/2.0); in the above code to the corresponding ¢, and
inputting the sample size n.

On the other hand, if we want to obtain the probability P(D,, > ¢), we call the function
KSfbar(int n, double x) instead. For example, to compute P(D,, > ¢) when n = 141,
ng? = 2.1, as shown in the column Simard & L’Ecuyer of Table 19, we inplement the following
code.

#include <iostream>

#include <iomanip>

#include <math.h>

#include "KolmogorovSmirnovDist.h"
using namespace std;

int main()

{

13
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int numberl;
// double number2;
double KS;
double muO;
cout << "Enter the sample size: ";
// cin >> numberl >> number2;
cin >> numberl;
//mu0 = 1.0 - 1.0/numberl;
//mu0 = 1.0/numberl;
muO = pow(2.1/numberl, 1.0/2.0);
//mu0 = 1.0/(1.0 * sqrt(numberl));
int repetition = 100;
clock_t tStart = clock();

for (int i = 0; i < repetition; ++i){
KS = KSfbar (numberl, mu0) ;

// KS = KScdf (numberl, mu0);
}
cout << fixed << setprecision(15) << std::scientific
<< "The p-value of the KS test is: " << KS << endl;

printf ("Time taken: J,.5fs\n", (double) (clock() - tStart)/CLOCKS_PER_SEC);
return O;

}

And then, we input the sample size n = 141.
Enter the sample size: 141

The output is

The p-value of the KS test is: 2.743688914193088e-02
Time taken: 0.06638s
Program ended with exit code: 0

Hence, the output is 2.743688914193088F — 02 as shown in Table 19. Similarly, we can
obtain the probability P(D,, > ¢) due to Simard and L’Ecuyer (2011) method, as shown in
the column Simard & L’Ecuyer of Tables 18, 19, 20, 21, 22, by modifying the line mu0 =
pow(2.1/numberl, 1.0/2.0); in the above code to the corresponding ¢, and inputting the
sample size n.

Also, the CPU times to compute P(D,, > ¢) due to Simard and L’Ecuyer (2011) method
as shown in Table 23 can be obtained. Recall that A\ = gn!/2. Hence, we need to modify
the line mu0 = pow(2.1/numberl, 1.0/2.0); in the above code to mu0 = lambda/(1.0 *
sqrt (number1)) ;. For example, if we want to obtain the CPU times to compute P(D,, > ¢)
for A = 2, we need to modify the line mu0 = pow(2.1/numberl, 1.0/2.0); in the above
code to mu0 = 2.0/(1.0 * sqrt(anumberl));. Following the same procedure as above, we
can obtain the CPU times to compute P(D,, > ¢) due to Simard and L’Ecuyer (2011) method
as shown in Table 23.
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7. Results obtained using the method of Carvalho (2015)

Carvalho (2015) developed an R function pkolmim(d, n) in the package kolmim, where 4 is
the argument for the cumulative distribution function of D,,, and n is the sample size. For
example, if we want to obtain the probability P(D,, < ¢) when n = 20, ng? = 0.75, as shown
in the column Carvalho of Table 9, we first install the package kolmim in R, and then run

R> pkolmim(sqrt(0.75/20), 20)
The output is
[1] 0.6089841201379

The value for the probability P(D,, < ¢) when n = 20, ng? = 0.75 is 0.6089841201379, as
shown in the column Carvalho in Table 9. Similarly, we can obtain the probability P(D,, < ¢q)
due to Carvalho (2015) method, as shown in the column Carvalho of Tables 8, 9, 10, 11, 12,
13, 14, 15, 16, 17, by modifying the inputs d and n in the R function pkolmim(d, n).

To obtain the probability P(D,, > ¢) due to Carvalho (2015) method, as shown in the column
Carvalho of Tables 18, 19, 20, 21, 22, we implement the code 1 - pkolmim(d, n), with
corresponding values for d and n. For example, if we want to obtain the probability P(D,, > q)
when n = 141, ng? = 2.1, as shown in the column Carvalho of Table 19, we implement the
following code.

R> 1 - pkolmim(sqrt(2.1/141), 141)
The output is
[1] 0.02743688914199

The value for the probability P(D,, > ¢) when n = 141, ng® = 2.1 is 0.02743688914199 as
shown in the column Carvalho of Table 19.

To obtain the CPU times to compute P(D,, > ¢) due to Carvalho (2015) method as shown in
Table 25, we first implement the following R code.

R> carvalho <- function(m, 1){

+ #repetition <- 100

+ i<-1

+ for (i in 1 : 100){

+ kol <- 1 - pkolmim(sqrt(1/n), n)
+ i<-1+1

+ }

+ return (kol)

+}

The above code defines an R function carvalho(n, 1), where n is the sample size, and 1 is
the value for A\. For example, if we want to obtain the CPU times to compute P(D,, >
q) when n = 141, A = 2, as shown in Table 25, we implement the following R code
system.time(carvalho(141, 2)). By substituting corresponding values for n and A into
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carvalho(n, 1), we can obtain the CPU times to compute P(D,, > ¢) due to Carvalho
(2015) method as shown in Table 25.
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