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Abstract

After a Human-Level AI-oriented overview of the status quo in neural-symbolic

integration, two research programs aiming at overcoming long-standing chal-

lenges in the field are suggested to the community: The first program targets a

better understanding of foundational differences and relationships on the level of

computational complexity between symbolic and subsymbolic computation and

representation, potentially providing explanations for the empirical differences

between the paradigms in application scenarios and a foothold for subsequent at-

tempts at overcoming these. The second program suggests a new approach and

computational architecture for the cognitively-inspired anchoring of an agent’s

learning, knowledge formation, and higher reasoning abilities in real-world inter-

actions through a closed neural-symbolic acting/sensing–processing–reasoning

cycle, potentially providing new foundations for future agent architectures,

multi-agent systems, robotics, and cognitive systems and facilitating a deeper

understanding of the development and interaction in human-technological set-

tings.
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1. A Tale of Symbols and Signals: The Quest for Neural-Symbolic

Integration

“I repeat my belief that learning has to be at the center of the arti-

ficial intelligence enterprise. While I do not regard intelligence as

a unitary phenomenon, I do believe that the problem of reasoning5

from learned data is a central aspect of it.” (Leslie Valiant, Valiant

(2013), p. 163)

A seamless coupling between learning and reasoning is commonly taken as

basis for intelligence in humans and, in close analogy, also for the biologically-

inspired (re-)creation of human-level intelligence with computational means.10

Still, one of the unsolved methodological core issues in human-level AI, cog-

nitive systems modelling, and cognitive and computational neuroscience—and

as such one of the major obstacles towards solving the Biologically Inspired

Cognitive Architectures (BICA) challenge (Samsonovich (2012))—is the ques-

tion for the integration between connectionist subsymbolic (i.e., “neural-level”)15

and logic-based symbolic (i.e., “cognitive-level”) approaches to representation,

computation, (mostly subsymbolic) learning, and (mostly symbolic) higher-level

reasoning.

AI researchers working on the modelling or (re-)creation of human cognition

and intelligence, and cognitive neuroscientists trying to understand the neu-20

ral basis for human cognition, have for years been interested in the nature of

brain-computation in general (see, e.g., Adolphs (2015)) and the relation be-

tween subsymbolic/neural and symbolic/cognitive modes of representation and

computation in particular (see, e.g., Dinsmore (1992)). The brain has a neu-

ral structure which operates on the basis of low-level processing of perceptual25

signals, but cognition also exhibits the capability to efficiently perform abstract

reasoning and symbol processing; in fact, processes of the latter type seem

to form the conceptual cornerstones for thinking, decision-making, and other

(also directly behavior-relevant) mental activities (see, e.g., Fodor & Pylyshyn

(1988)).30

2



Building on these observations—and taking into account that hybrid sys-

tems loosely combining symbolic and subsymbolic modules into one architecture

turned out to be insufficient for the purpose—agreement on the need for fully

integrated neural-cognitive processing has emerged (see, e.g., Bader & Hitzler

(2005); d’Avila Garcez et al. (2015)). This has several reasons also beyond the35

analogy to the described functioning principles of the brain:

• In general, network-based approaches possess a higher degree of biological

motivation than symbol-based approaches, also outmatching the latter in

terms of learning capacities, robust fault-tolerant processing, and general-

ization to similar input. Also, in AI applications they often enable flexible40

tools (e.g., for discovering and processing the internal structure of possibly

large data sets) and efficient signal-processing models (which are biologi-

cally plausible and optimally suited for a wide range of applications).

• Symbolic representations are generally superior in terms of their inter-

pretability, the possibilities of direct control and coding, and the extraction45

of knowledge when compared to their (in many ways still black box-like)

connectionist counterparts.1

• From a cognitive modelling point of view, subsymbolic representations for

tasks requiring symbolic high-level reasoning might help solving, among

many others, the problem with “too large” logical (epistemic) models (see,50

e.g., Gierasimczuk & Szymanik (2011)) which seem to lead to implausible

computations from the reasoning agent’s perspective (Degremont et al.

1Based on results as, for instance, the ones presented in Olden & Jackson (2002), it has

been argued that the inner mechanics of artificial neural networks (ANNs) can be made

accessible using randomization methods and similar. While this is true when seeing ANNs

as quantitative tools or means of statistical modelling, from the quite different perspective of

mechanistic or explanatory knowledge about principles, rules, and processes within ANNs as

part of cognitive architectures the black box character remains (with rule extraction methods,

as, e.g., proposed in Andrews et al. (1995), d’Avila Garcez et al. (2001), or Zhou et al. (2003),

mitigating the problem only to a minimal degree).
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(2014)). On the other hand, being able to lift subsymbolic brain-inspired

models and corresponding simulations to a symbolic level of description

and analysis promises to close the interpretative and explanatory gap be-55

tween actual biologically-motivated model dynamics and observed behav-

ior also for tasks involving complex or abstract reasoning.

In summary, cognitive-level interpretations of artificial neural network (ANN)

architectures and accurate and feasible neural-level models of symbolic process-

ing are highly desirable: as an important step towards the computational (re-60

)creation of mental capacities, as possible sources of an additional (bridging)

level of explanation of cognitive phenomena of the human brain (assuming that

suitably chosen ANN models correspond in a meaningful way to their biological

counterparts), and also as important part of future technological developments

(also see Sect. 6).65

But while there is theoretical evidence indicating that both paradigms in-

deed share deep connections, how to explicitly establish and exploit these cor-

respondences currently remains a mostly unsolved question. In the following,

after a concise overview of the state of the art in the field of neural-symbolic

integration in Sect. 2, as an invitation to researchers from the relevant com-70

munities two research programs are laid out which have the potential to shed

light on this foundational issue: The first one, summarized in Sect. 3, targets

a better understanding of the empirical differences and commonalities between

formalisms from the symbolic and the subsymbolic paradigm on the level of

computational complexity in more scenario-specific and fine-grained ways than75

previously achieved. The second one, outlined in Sect. 4, gives a conceptual

sketch of a research effort developing a new approach and computational ar-

chitecture for the cognitively-inspired anchoring of an agent’s learning, knowl-

edge formation, and higher reasoning abilities in real-world interactions through

a closed neural-symbolic acting/sensing–processing–reasoning cycle. If imple-80

mented successfully, the second program will lay the foundations for a new

generation of intelligent agent systems, also giving evidence of the capacities of
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fully integrated neural-symbolic learning and reasoning on system level. Thus,

as explained in Sect. 5, when taken together both programs—besides signif-

icantly advancing the field of neural-symbolic integration—promise to greatly85

contribute to all four pillars and the respectively associated main scientific views

of BICA identified in Stocco et al. (2010). Additionally, major impact of the

research programs (and the corresponding form of neural-symbolic integration)

can also be expected on an immediate technological level in the area of smart

systems. Sect. 6 sketches the corresponding technological scenario and describes90

an envisioned example from the domain of ambient-assisted living (AAL).

2. Status Quo in Neural-Symbolic Integration as of 2015

Concerning our current understanding of the relationship and differences be-

tween symbolic and subsymbolic computation and representation, the cognitive-

level “symbolic paradigm” is commonly taken to correspond to a Von Neumann95

architecture (with predominantly discrete and serial computation and localized

representations) and the neural-level “subsymbolic paradigm” mainly is concep-

tualized as a dynamical systems-type approach (with distributed representations

and predominantly parallel and continuous computations).

This divergence notwithstanding, both symbolic/cognitive and subsymbolic/neural100

models in theory are considered substantially equivalent in most (if not all)

practically relevant dimensions (see Sect. 2.1 for details). Still, in general expe-

riences from application studies consistently and reliably show different degrees

of suitability and performance of the paradigms in different types of application

scenarios, with subsymbolic approaches offering themselves, e.g., for effective105

and efficient solutions to tasks involving learning and generalization, while high-

level reasoning and concept composition are commonly addressed in symbolic

frameworks. Unfortunately, general explanations (and solutions) for this foun-

dational dichotomy this far have been elusive when using standard methods of

investigation.110
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Figure 1: A schematic overview of common conceptualizations concerning symbolic and sub-

symbolic representation and computation, as well as the connections and differences between

both paradigms (see Sect. 2.1 for details concerning the indicated formal equivalences).
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2.1. Formal Analysis of Symbolic and Subsymbolic Computation and Represen-

tation

According to our current knowledge, from a formal perspective—especially

when focusing on actually physically-realizable and implementable systems (i.e.,

physical finite state machines) instead of strictly abstract models of compu-115

tation, together with the resulting physical and conceptual limitations—both

symbolic/cognitive and subsymbolic/neural models seem basically equivalent.

Notwithstanding partially differing theoretical findings and discussions (as,

e.g., given in Tabor (2009)), both paradigms are considered computability-

equivalent in practice (Siegelmann (1999)). Also from a tractability perspec-120

tive, for instance in van Rooij (2008), equivalence in practice with respect to

classical dimensions of analysis (i.e., interchangeability except for a polynomial

overhead) has been established, complementing and supporting the theoreti-

cal suggestion of equivalence by Van Emde Boas in his Invariance Thesis (van

Emde Boas (1990)) . Finally, Leitgeb provided an in principle existence result125

in Leitgeb (2005), showing that there is no substantial difference in represen-

tational or problem-solving power between dynamical systems with distributed

representations or symbolic systems with non-monotonic reasoning capabilities.

Still, these results are only partially satisfactory: Although introducing basic

connections and mutual dependencies between both paradigms, the respective130

levels of analysis are quite coarse and the found results are only existential in

character. While establishing the in principle equivalence described above, in

Leitgeb (2005) no constructive methods for how to actually obtain the corre-

sponding symbolic counterpart to a subsymbolic model (and vice versa) are

given.135

Concerning the complexity and computability equivalences, while the latter

is supported by the results in Leitgeb (2005), the former stays mostly untouched:

While coming to the same conclusion, i.e., the absence of substantial differences

between paradigms (i.e., differences at the level of tractability classes), no fur-

ther clarification or characterization of the precise nature and properties of the140

polynomial overhead between symbolic and subsymbolic approaches is provided.
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2.2. Neural-Symbolic Integration in AI, Cognitive Modelling, and Machine Learn-

ing

Research on integrated neural-symbolic systems (especially in AI and to a

certain extent also in cognitive modelling) has made significant progress over145

the last two decades (see, e.g., Bader & Hitzler (2005); d’Avila Garcez et al.

(2015)); partially, but not exclusively, in the wake of the development of deep

learning approaches to machine learning (see, e.g. Bengio et al. (2013); Schmid-

huber (2015)). Generally, what seem to be several important steps towards the

development of integrated neural-symbolic models have been made:150

• From the symbolic perspective on the capacities of subsymbolic computa-

tion and representation, the “Propositional Fixation” (i.e., the limitation

of neural models on implementing propositional logic at best) has been

overcome, among others, in models implementing modal or temporal log-

ics with ANNs (see, e.g., d’Avila Garcez et al. (2008)).155

• From the subsymbolic perspective, neural computation has been equipped

with features previously (almost) exclusively limited to symbolic models

by adding top-down governing mechanisms to modular, neural learning ar-

chitectures, for example, through the use of “Conceptors” (Jaeger (2014))

as computational principle.160

• Deep learning approaches to machine learning—by the high number of

parameterized transformations performed in the corresponding hierarchi-

cally structured models—seem to, at first sight, also conceptually provide

what can be interpreted as different levels of abstraction above and beyond

mere low-level processing. The resulting networks partially perform tasks165

classically involving complex symbolic reasoning such as, for instance, the

labeling of picture elements or scene description (see, e.g., Karpathy &

Fei-Fei (2014); Vinyals et al. (2014)).

• Recently proposed classes of subsymbolic models such as “Neural Turing

Machines” (Graves et al. (2014)) or “Memory Networks” (Weston et al.170
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(2015)) seem to also architecturally narrow the gap between the (subsym-

bolic) dynamical systems characterization and the (symbolic) Von Neu-

mann architecture understanding.

Nonetheless, all these developments (including deep neural networks as lay-

ered recurrent ANNs) stay within the possibilities and limitations of the respec-175

tive classical paradigms without significantly changing the basic formal charac-

teristics of the latter.

2.3. Summary

Although remarkable successes have been achieved within the respective

paradigms, the divide between the paradigms persists, interconnecting results180

still either only address specific and non-generalizable cases or are in principle

and non-constructive, benchmark scenarios for principled comparisons (e.g., in

terms of expressive strength of knowledge representation formalisms or descrip-

tive complexity) between subsymbolic and symbolic models have still not been

established, and questions concerning the precise nature of the relationship and185

foundational differences between symbolic/cognitive and subsymbolic/neural

approaches to computation and representation still remain unanswered (see,

e.g., Isaac et al. (2014)): in some cases due to a lack of knowledge for deciding

the problem, in others due to a lack of tools and methods for properly specifying

and addressing the relevant questions.190

3. Identifying and Exploring Differences in Complexity

Focusing on the just described lack of tools and methods, together with the

insufficient theoretical knowledge about many aspects of the respective form(s)

of computation and representation, in the first of the two envisioned research

programs (initially introduced in Besold (2015)), the classical findings concern-195

ing the relation and integration between the symbolic/cognitive and the sub-

symbolic/neural paradigm described in Sect. 2 shall be revisited in light of new
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developments in the modelling and analysis of connectionist systems in gen-

eral (and ANNs in particular), and of new formal methods for investigating the

properties of general forms of representation and computation on a symbolic200

level.

To this end, taking into account the apparent empirical differences between

the paradigms and (especially when dealing with physically-realizable systems)

assuming basic equivalence on the level of computability, emphasis shall be put

on identifying and/or developing adequate formal tools and investigating pre-205

viously unconsidered aspects of existing equivalence results. Focus shall be put

on the precise nature of the polynomial overhead as computational-complexity

difference between paradigms: Most complexity results for symbolic/cognitive

and subsymbolic/neural computations have been established using exclusively

TIME and SPACE as classical resources (see, e.g., Thomas & Vollmer (2010);210

Sima & Orponen (2003)), and the tractability equivalence between paradigms

(see, e.g., van Rooij (2008)) mostly leaves out more precise investigations of

the remaining polynomial overhead. Against this background, the working hy-

potheses for the program are that TIME and SPACE are not always adequate

and sufficient as resources of analysis for elucidating all relevant properties of215

the respective paradigms, and that there are significant characteristics and ex-

planations to be found on a more fine-grained level than accessible by classical

methods of analysis (settling on the general tractability level).

The main line of research can be summarized in two consecutive questions

(corresponding to the stated working hypotheses), one starting out from a more220

subsymbolic, the other from a more symbolic perspective:

• Question 1: Especially when considering subsymbolic/neural forms of

computation and the associated dynamical systems conception, the ade-

quacy and exhaustiveness of the classical approaches to complexity anal-

ysis using only TIME and SPACE as resources for a fully informative225

characterization must be questioned. Are there more adequate resources

which should be taken into account for analysis?
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• Question 2: Especially when considering the symbolic level, are there

more adequate approaches/methods of analysis available than classical

complexity theory, allowing to take into account formalism- or calculus-230

specific characterizations of computations or to perform analyses at a more

fine-grained level than tractability?

Finally, in an integrative concluding step taking into account the methods

and findings resulting from the previous two, a third question shall be investi-

gated:235

• Question 3: Can the in principle results from Leitgeb (2005) be extended

to more specific and/or constructive correspondences between individual

notions and/or characterizations within the respective paradigms?

Answers to these questions (and the resulting refined tools and methods)

promise to contribute to resolving some of the basic theoretical and practical240

tensions described in Sect. 1 and 2: Although both paradigms are theoretically

undistinguishable (i.e., equivalent up to a polynomial overhead) in their gen-

eral computational-complexity behavior using classical methods of analysis and

characterization results, empirical studies and application cases using state of

the art approaches still show clear distinctions in suitability and feasibility of the245

respective paradigms for different types of tasks and domains without us having

an explanation for this behavior. Parts of this divergence might be explained by

previously unconsidered and unaccessible complexity-related properties of the

respective approaches and their connections to each other.

The targeted level of work is situated between the (purely theoretical) devel-250

opment of methods in complexity theory, network analysis, etc. and the (purely

applied) study of properties of computational and representational paradigms

by applying existing tools: Previous work from the different fields and lines of

research shall be assessed and combined—in doing so, where necessary, adapt-

ing or expanding the respective methods and tools—into new means of anal-255

ysis, which then shall subsequently be applied to suitably selected candidate

models representing paradigmatic examples of symbolic or subsymbolic rep-
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resentations/computations with respect to features relevant for the respective

question(s) at hand.

3.1. Proposed Program Structure and Approaches260

The envisioned research program is divided into three stages, corresponding

to the three initially posed questions. Each of the latter can (and should)

be addressed in its own right, but when taken together the respective answers

promise to also shed light on the bigger question for the existence and the precise

nature of foundational differences between the symbolic and the subsymbolic265

paradigm.

3.1.1. Adequate Resources for Analysis.

TIME and SPACE are the standard resources considered in classical com-

plexity analyses of computational frameworks. Correspondingly, most results

concerning complexity comparisons between symbolic and subsymbolic models270

of computation also focus on these two dimensions (as do, e.g., the aforemen-

tioned results in van Rooij (2008); van Emde Boas (1990)).

Still, the reading of TIME and SPACE as mostly relevant resources for com-

plexity analysis is closely connected to a Turing-style conception of computation

and a Von Neumann-inspired architecture as machine model, working, e.g., with275

limited memory. Especially when considering other computational paradigms

with different characteristics, as, e.g., the dynamical systems model commonly

associated to the subsymbolic/neural paradigm, the exhaustiveness and ade-

quateness of TIME and SPACE for a full analysis of all relevant computational

properties has to be questioned. Instead, it seems likely that additional re-280

sources specific to the respective model of computation and architecture have

to be taken into account in order to provide a complete characterization.

Thus, in a first stage of the program, popular network types on the sub-

symbolic/neural side shall be investigated for relevant dimensions of analysis

other than TIME and SPACE. Besides the classical standard and recurrent ap-285

proaches, of course also other models such as recurrent spiking neural networks
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(see, e.g. Gerstner et al. (2014)), Long Short-Term Memory networks and ex-

tensions thereof (see, e.g., Monner & Reggia (2012)), or recurrent stochastic

neural networks in form of Boltzmann machines (Ackley et al. (1985)) and re-

stricted Boltzmann machines (Hinton (2002)) could (and eventually will have290

to) be considered.

Taking recurrent networks of spiking neurons as examples, also measures

such as spike complexity (a bound for the total number of spikes during compu-

tation; Uchizawa et al. (2006)), convergence speed (from some initial network

state to the stationary distribution; Habenschuss et al. (2013)), sample com-295

plexity (the number of samples from the stationary distribution needed for a

satisfactory computational output; Vul et al. (2014)), or network size and con-

nectivity seem to be promising candidates for relevant dimensions of analysis.

These and similar proposals for the other network models shall be criti-

cally assessed and, where possible, put into a correspondence relation with each300

other, allowing to meaningfully generalize between different subsymbolic/neural

models and to provide general characterizations of the respective computations.

Having in mind the overall goal of connecting subsymbolic and symbolic ap-

proaches, a guiding heuristic for the selection of candidate proposals and also

during the final step of cross-model generalization is provided by the degree305

of expected cross-paradigmatic relevance: Taking examples from above, while

spike complexity—due to its direct correspondence to energy consumption dur-

ing computation—by itself seems to be an interesting and (especially biologi-

cally) highly relevant perspective for characterizing the resource-requirements

of computations in a recurrent spiking neural network, its relevance for char-310

acterizing the complexity of this type of ANN as compared to a corresponding

symbolic model might be limited due to the lack of a direct counterpart to the

concept of energy use in the logic-based framework. Convergence speed, on

the other hand, while (although less directly) still related as resource to en-

ergy consumption in the network setting, might allow for a more direct and315

adequate bridging to symbolic forms of computation, possibly corresponding to

concepts such as the required number of inference steps in the calculus of a
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certain logic-based formalism.

At the end of this stage, new proposals for adequate resources usable in

refined complexity analyses for subsymbolic/neural computation, together with320

application examples in terms of proof of concept analyses of popular paradigms,

will be available.

3.1.2. Adequate Methods of Analysis

In parallel to and/or following the search for more adequate resources for

complexity analyses of mostly subsymbolic/neural models of computation, in325

a second stage of the program emphasis shall be shifted towards the sym-

bolic/cognitive side. While staying closer to the classical conception of com-

plexity in terms of TIME and SPACE, recent developments in different fields of

theoretical computer science shall be combined into tools for more model-specific

and fine-grained analyses of computational properties.330

Parameterized-complexity theory (see, e.g., Downey & Fellows (1999)) makes

the investigation of problem-specific complexity characteristics possible, while

tools such as, e.g., developed in the theory of proof-complexity (see, e.g., Kraj́ıcek

(2005)) allow for more varied formalism- or calculus-specific characterizations of

the respective computations than currently done. Additionally, tools from de-335

scriptive complexity theory (see, e.g., Immerman (1999)) and work from model-

theoretic syntax (see, e.g., Rabin (1965)) seem likely to offer chances for shed-

ding light on complexity distinctions below the tractability threshold (i.e., for

exploring the precise nature of the polynomial overhead) and to allow for more

fine-grained and discriminative comparisons between paradigms and models.340

Thus, results from the just mentioned fields/techniques can be examined for

their applicability to better characterizing symbolic computation and to poten-

tially establishing conceptual connections to characterizations of subsymbolic

computation from the previous stage. Taking into account their specific prop-

erties and strengths, the corresponding tasks for the respective approaches can345

be summarized as follows:

• Parameterized-complexity theory: Taking into account problem- and application-
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specific properties of (families of) problems and connecting these to results

describing specific properties of subsymbolic or symbolic computation and

representation, try to explain the different suitability of one or the other350

paradigm for certain types of tasks.

• Descriptive complexity theory and model-theoretic syntax: Attempt to

explore complexity distinctions between different forms of symbolic and

between symbolic and subsymbolic computation also in more fine-grained

ways than by mere tractability considerations (e.g., also taking into ac-355

count the polynomial-time hierarchy and the logarithmic-time hierarchy).

• Proof-complexity theory: Explore formalism- and calculus-specific prop-

erties of symbolic computations and try to map these onto properties of

specific subsymbolic models.

Concerning a concrete implementation, one possibility is to initially apply360

methods and ideas from parameterized-complexity theory to existing and ac-

cepted computational complexity results concerning subsymbolic and symbolic

computation and representation in certain tasks and domains. Here, task- and

domain-specific properties of the respective paradigms shall be investigated also

beyond and below the level of classical tractability, attempting to elucidate parts365

of the reasons for the empirical differences between approaches.

In a first step, previous results from the literature can be taken and the pa-

rameterized dimension of analysis can be added, so that specificities of the task

or domain can be investigated while still maintaining the connection to previous

findings and the embedding in a more general scientific context. Subsequently,370

the overall approach of parameterized analysis can be combined with notions

taken from or inspired by the other aforementioned forms of (originally symbolic-

focused) fine-grained complexity analysis which allow to discriminate complex-

ity properties below the classical tractability threshold and on a formalism- and

calculus-specific level. The resulting combined approaches can then be applied375

to specific symbolic models selected based on hypotheses and correspondences

15



obtained in the previous stage of the program (described in Sect. 3.1.1), as well

as on their suitability for the type of analysis under consideration.

At the end of this stage, proposals for refined methods of analysis especially

for forms of symbolic/cognitive computation and application examples in terms380

of proof of concept analyses, together with suggestions for correspondences to

models of subsymbolic/neural computation, will be available.

3.1.3. Correspondences Between Paradigms

In a third and final part of the program, by combining the results of the

preceding stages, additional dimensions can be added to previous analyses and385

established equivalence results, and the precise nature of the polynomial over-

head as computational difference between paradigms can better be explained.

Also, the outcomes of previous stages shall be integrated where meaningfully

possible, ideally providing the foundations for a general set of refined means

of analysis for future comparative investigations of symbolic/cognitive and sub-390

symbolic/neural computation.

Depending on previous outcomes, some of the following (interrelated) ques-

tions are expected to be addressable:

• Given the in principle equivalence between (symbolic) non-monotonic log-

ical systems and (subsymbolic) dynamical systems, is it possible to estab-395

lish complexity-based systematic conceptual relationships between partic-

ular logical calculi and different types of subsymbolic networks?

If such relationships can indeed be identified, this will be informative in

at leas two ways: On a functional level, given that certain subsymbolic or

symbolic approaches are known to perform well on specific tasks, knowl-400

edge about correspondences between paradigms can narrow down the

range of candidates for solving the same tasks using methods from the re-

spective other paradigm. On a structural level, the envisioned conceptual

relationships promise additional ways of comparing the respective struc-

ture of the conceptual spaces of subsymbolic and symbolic approaches—405
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while their internal organization (e.g., concerning gradual differences in ex-

pressivity or computational properties between different logics, or learning

capacity or computational complexity between different types of ANNs)

by now has been mapped out fairly well, establishing correspondences

and transferring known structural orderings from the respectively better-410

known space to the other still poses major challenges.

• Can adaptations in network structure and/or (the artificial equivalent of)

synaptic dynamics (see, e.g., Choquet & Triller (2013)) in a neural rep-

resentation in a systematic way be related to re-representation in a logic-

based representation, or (alternatively) is there a systematic correspon-415

dence on the level of change of calculus? Can changes in network type

in a neural representation in a systematic way be related to changes of

non-monotonic logic in a symbolic representation?

As dynamic adaptations of network topology, connection properties and/or

synaptic properties can be taken as hallmarks of the functioning of the420

human brain and, to a large extent, also of many successful ANN mod-

els, finding or creating corresponding mechanisms for symbolic approaches

would promise to also allow for a transfer of functional properties from the

subsymbolic to the symbolic paradigm, for instance, with regard to appli-

cations in learning and generalization. On the other hand, by observing425

the corresponding changes on the symbolic level a better understanding

and explanation of the actual functioning and mechanisms at work in the

subsymbolic case can be expected. Similar expectations can be main-

tained on the less biologically-motivated, but from a computer science

perspective currently possibly even more relevant level of network types430

and different logics.

• Can the correspondences and differences between novel network models

approximating classical symbolic capacities (as, e.g., top-down control) or

architectures (as, e.g., a Von Neumann machine) and the original symbolic

concepts be characterized in a systematic way?435
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While several promising network models offering partial interpretations in

symbolic terms have recently been proposed (see Sect. 2.2), this far the

correspondences between the new model and the classical notions have

mostly been established on a case-by-case basis and no targeted develop-

ment aiming at methodically developing the newly introduced approaches440

further towards fully covering the classical conceptualizations have been

presented. Here, systematic correspondences could offer guidance for the

corresponding process.

At the end of this stage, partial answers to some of the stated questions to-

gether with proposals for future lines of investigation continuing the work started445

in the program will be available. Also, suggestions for new tools and methods for

the comparative analysis of symbolic/cognitive and subsymbolic/neural compu-

tation will be made.

3.2. Expected Outcomes

If implemented successfully, the sketched research program is expected to be450

highly beneficial for neural-symbolic integration on at least two dimensions, a

methodological and a theoretical one.

From the methodological point of view, new general approaches and up-

dated and refined formal tools for better and more adequately analyzing and

characterizing the nature and mechanisms of representation and computation in455

the corresponding paradigm(s) will be developed: Alternative resources comple-

menting TIME and SPACE for the characterization of properties of (especially

subsymbolic/neural) computation will be provided, and emphasis will be put

on making model-specific properties of the respective computing mechanisms

accessible. Also, alternative methods complementing the classical complexity-460

theoretical approach to the characterization of properties of (especially sym-

bolic/cognitive) computation will be explored and canonized. Here, the focus

will be on opening up formalism- or calculus-specific properties of the respec-

tive computing mechanisms, and on offering more fine-grained insights than

available in the classical framework.465
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From the theoretical point of view, new perspectives on the relation be-

tween symbolic/cognitive and subsymbolic/neural representation and computa-

tion will be explored and a better understanding of the respective approach(es)

and their interaction (with a strong orientation towards a future integration of

conceptual paradigms, of levels of explanation, and of involved scientific dis-470

ciplines) shall be established. Emphasis will be put on understanding the in-

teraction between model-specific changes in one paradigm and corresponding

adaptations of the respective conceptual or formal counterpart within the other

paradigm.

4. Anchoring Knowledge in Interaction in a Framework and Archi-475

tecture of Computational Cognition

The research program proposed in the previous section aims at uncovering

basic distinctions and connections between subsymbolic and symbolic computa-

tion and representation on a—although strongly empirically motivated—mostly

theoretical level. Complementing and completing this approach, in the follow-480

ing (building on parts of a larger proposal originally presented in Besold et al.

(2015)) a second research endeavor is outlined, aiming at integrating neural-

level and cognitive-level approaches in a new perspective and cognitive system

architecture for interaction-grounded knowledge acquisition and processing in

a closed acting/sensing–processing–reasoning cycle. In addition to the question485

of neural-symbolic integration it, thus, also is of direct relevance for practical

challenges such as representational re-description and the progressive acquisi-

tion of abstract representations from raw sensory inputs in robot architectures

(Guerin et al. (2013)).

4.1. An Agent’s Knowledge for/in/from Its World490

Natural agents in many situations in their reasoning seem to rely on an

enormous richness of representations (multimodal, grounded, embodied and sit-

uated), with many layers of representation at different levels of abstraction, to-

gether with dynamic re-organization of knowledge. Also, real-world situations
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require agents to perform what can be interpreted as dynamic changes or align-495

ments of representation, as different agents might use different languages and

levels of description. Unfortunately, when trying to follow the natural example

by transferring and (re-)creating this representational richness and diversity in

artificial agents, the resulting mismatches cannot be cured by standardization,

but arise due to differences in the environment, tasks to be solved, levels of500

abstraction, etc. Additionally, real-world applications also demand online and

bidirectional learning that takes place in real-time, as well as the adaptation to

changes in the environment, to the presence of new agents, and to task changes.

In order to be able to face these challenges, we envision a system operating

on different levels of representations (corresponding to different formal layers505

in the system’s architecture). The hierarchy could consist, for instance, of a

(lowest) neural layer learning on the perception/motor level, an anchoring layer

learning elementary (semi-)symbolic representations of objects, a reactive layer

taking over in critical situations, a deep learning layer learning on more abstract

levels, a symbolic layer doing reasoning and planning, and a (higher) symbolic510

layer providing the core ontology. Some of these layers have obvious, some

have partial, some have fuzzy, and some have no mappings/relations between

themselves.

Now, a corresponding architecture should be in a “pre-established harmony”

with initial correspondences between and across levels: Triggering an abstract515

plan to move from A to B should result in the motor action to move from A to B,

classifying on the neural level a certain perceptual input such as, for instance, a

chair should result in the activation of the concept “chair” in the ontology or the

working memory, and so on. And whilst the basic links might be hard coded,

learning a new concept on the subsymbolic level should somehow result in a520

new concept entry in the ontology, i.e., there should be interaction between the

different layers in terms of information and conceptualizations. Finally, when

thinking about a simulated or actual system that is operating on these interact-

ing levels in a multi-representational manner it should allow for the learning or

detection of obvious mappings between the layers, for detecting novelties and525
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correlations, for systematically unfolding the specific properties of structures on

different levels, or for finding invariant properties of the interactions between

levels.

4.2. From Interaction to Knowledge and Back

Against this background, in Besold et al. (2015) a program has been proposed530

for ’anchoring knowledge in interaction’, aiming at developing, theoretically and

practically, a conceptual framework and corresponding architecture that model

an agent’s knowledge, thinking, and acting truly as interrelated parts of a unified

cognitive capacity. That is, knowledge is seen as multi-layered phenomenon

that appears at different levels of abstraction, promotes interaction between535

these levels of abstraction, is influenced by the interaction between agent and

environment (potentially including other agents), and is essentially linked to

actions, perception, thinking, and being. Thus, the future architecture aims

to anchor and embody knowledge by the interaction between the agent and its

environment (possibly including other agents), to give an approach to lift the540

resulting situated action patterns to a symbolic level, to reason by analogy on

the abstract and the subsymbolic level, to adapt, or in case of clashes, repair

the initial representations in order to fit to new situations, and to evaluate the

approach in concrete settings providing feedback to the system in a reactive-

adaptive evolutionary cycle. Among others, this will require a new paradigm545

for neural-symbolic knowledge repositories featuring different integrated levels

and forms of knowledge representation (as, e.g., multi-modal or hybrid).

On an embodied level, elementary forms of representations shall be learned

from an agent’s interactions within an environment. As the resulting multi-

modal representations are likely to be noisy, uncertain, vague, unstable over550

time, and represented in different languages in different agents, an extension of

the anchoring framework in robotics Coradeschi & Saffiotti (2000) to grounding

not only objects, but also certain general observable properties appearing in the

environment, will be needed.

Once an interaction-based neural representation of knowledge has been ob-555
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tained, neural systems can promote robust learning from data, as part of an

online learning and reasoning cycle. On this level, a lifting procedure shall be

specified that will produce descriptions, thus lifting grounded situations and

an agent’s action patterns to a more abstract (symbolic) representation. This

can be done using techniques from machine learning such as, e.g., deep neural560

networks (as mentioned in Sect. 2.2) and analogy-making across networks (i.e.,

representation systems) and learning processes (i.e., procedural approaches) as

proposed in d’Avila Garcez et al. (2015).

Although one could consider the neural-symbolic part already as solved with

the “syntactic” lifting of neural representations to symbol-based ones, the en-565

visioned research program targets an additional “semantic” step: As already

mentioned, initial multi-modal representations lifted from the subsymbolic level

can be error-prone and are likely to be represented in different and possibly

at first incompatible representation languages between different agents. In or-

der to also close these contentual gaps within and between agents, a dynamic570

re-organization and alignment (based on ontology repair mechanisms, analogy,

concept invention, and knowledge transfer) is foreseen. These mechanisms foster

adaptation of an agent to new situations, the alignment between representations

of different agents, the reformulation of knowledge entries, and the generation

of new knowledge.575

In summary, the envisioned account of the emergence of representations

through cognitive principles in an agent (or multi-agent) setting can be concep-

tualized as follows: Grounding knowledge in cognitively plausible multimodal

interaction paradigms; lifting grounded situations into more abstract represen-

tations; reasoning by analogy and concept blending at more abstract levels;580

repair and re-organization of initial and generated abstract representations.

4.3. Proposed Program Structure and Approaches

The proposed approach requires the integration of expressive symbolic knowl-

edge representation formalisms, relational knowledge, variables, and first-order

logic on the one hand with representations of sensorimotor experiences, action585
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patterns, connectionist representations, and multi-modal representations on the

other—basically exhausting the entire spectrum of levels of representation con-

sidered in neural-symbolic integration.

With respect to the formalization, research methods from machine learning

(e.g. cross-validation as described by Dietterich (1998) or Arnold et al. (2010)’s590

layer-wise model selection in deep neural networks) will be applied to learn con-

ceptual knowledge from subsymbolic data. The resulting conceptual knowledge

will be provided as input to the analogy-making process to generate new con-

cepts by abstraction and transfer of knowledge in a domain-independent and

multi-modal setting. As this might potentially change the signatures of the595

underlying representation language(s), the theory of institutions (Diaconescu

(2008)) will be used in order to model the corresponding dynamic changes of

languages. Finally, the repair of theories and the concept invention mechanisms

will be linked to analogy-making and are situated on the level of higher-order

logic (Bundy (2013); Lehmann et al. (2013)).600

From the perspective of neural-symbolic integration, the envisioned research

program can be subdivided into three main modules:

• Cognitive Foundations of Knowledge and Anchoring: Approaches from

computational neuroscience and network-level cognitive modeling (as, e.g.,

the recently proposed framework of conceptors in dynamical system mod-605

els; Jaeger (2014)), together with theoretical considerations on sensorimo-

tor interactions as part of knowledge formation (Fischer (2012)), serve as

basis for the creation of low-level input representations and content for

the subsequent stages of processing and reasoning. These inputs are then

used in an anchoring step (Coradeschi & Saffiotti (2000)) grounding sym-610

bols referring to perceived physical objects in the agent’s environment.

Compared to previous approaches (Chella et al. (2003)), in the present

context anchoring shall be developed further and conducted under even

more general conditions: If the proposed program is implemented suc-

cessfully, among others, anchoring will happen top-down and bottom-up615
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during learning, and new symbols for new objects and categories are dy-

namically introduced by repair and concept invention mechanisms.

Although at first sight lying outside the core domain of neural-symbolic

integration, an effective solution to the anchoring problem in the just

described form seems nonetheless indispensable. A fully integrated neural-620

symbolic cognitive system should bridge from direct sensory inputs to

high-level symbolic representations and vice versa, with the equivalence

between representations not only residing on a syntactic but also on a

semantic and computational level—the latter of which require the capacity

to reason about perceptual input also on lower representation levels in625

conceptual terms.

• Lifting Knowledge from the Subsymbolic to the Symbolic Level: Deep

learning as a form of representation learning that aims at discovering mul-

tiple levels of representation has shown promising results when applied to

real-time processing of multimodal data (De Penning et al. (2011)), and630

state-of-the-art deep learning methods and algorithms have been able to

train deep networks effectively when applied to different kinds of networks,

knowledge fusion, and transfer learning (Bengio (2009)). However, more

expressive descriptions and forms of representation have become more dif-

ficult to obtain from neural networks.635

This module constitutes the centerpiece from the perspective of neural-

symbolic integration. In it, neural learning shall be combined with tem-

poral knowledge representation in stochastic networks, for instance by

using variations of the Restricted Boltzmann Machine model (Hinton

(2012)). The resulting approach then will offer a method for validating hy-640

potheses through the symbolic description of the trained networks whilst

robustly dealing with uncertainty and errors through a Bayesian infer-

ence model. Furthermore, using the “conceptual spaces” from Gärdenfors

(2000) (building and expanding upon work presented, e.g., in LeBlanc &

Saffiotti (2008)), symbolic and subsymbolic data shall be linked in the645

24



proposed complex loop of sensing, processing, and reasoning.

• Analogy/Blending and Concept Formation/Reformation: While the first

module on cognitive foundations of knowledge and anchoring shall pro-

vide the basis on which the lifting process can operate, the envisioned

framework is completed by a third module framing and supporting the650

lifting process on an upper representational level. In this part of the

program, analogy-making and concept (re)formation shall be added to

the acting/sensing–processing–reasoning cycle in order to model high-level

knowledge processing and to provide feedback and partial guidance to the

knowledge acquisition and interpretation processes on lower levels.655

Analogy is classically understood as a method to detect and operate on

structural commonalities between two domains (Gentner et al. (2001)),

and due to its central role in human cognition over the years a signifi-

cant number of computational models of analogy-making have been de-

veloped in AI (Besold (2011)). The targeted approach in the sketched660

program advances beyond the current state of the art in that general-

izability, multi-modal representations, and the grounding in the agent’s

interaction with the environment are considered to be essential features.

Additionally, analogy-making shall not only happen on the (symbolic)

knowledge level, but already before that during learning and knowledge665

lifting, leading to cross-informing learning processes between similar sen-

sory settings. Furthermore, analogies shall directly be linked to knowledge

repair and knowledge formation mechanisms in order to facilitate the res-

olution of errors appearing almost unavoidably as part of the described

paradigm: An important way in which new concepts are formed is through670

the (analogy-based) combination of existing concepts into a new concept

by a blending mechanism (Fauconnier & Turner (2002)), or by the evolu-

tion of existing concepts that have proved inadequate. Inadequacies of the

latter type are often revealed by failures of inference using the old con-

cepts. Here, based on the reformation algorithm (Bundy (2013)), generic675
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mechanisms for repairing agents’ faulty representations (especially those

produced by imperfect analogies) will be developed.

When taken together, solving all three modules allows for a completely inte-

grated neural-symbolic architecture, bridging not only on a syntactic level from

connectionist to symbolic representations, but also taking into account semantic680

structures on all levels, from regularities and governing rules in the perceived en-

vironment of an agent (accessed via computations on the sensory input stream),

through commonalities on an intermediate procedural level, to similarity struc-

tures and concept (re)formation on abstract knowledge entries. In doing so, the

sketched cognitive computational framework will come closer to its biological in-685

spiration, the human brain and mind, in functional and (abstracted) structural

terms than previous architectures, serving as a proof of concept for the power

and as test bench for the limitations of many currently popular theories and

approaches. As such, it will not only serve as a step towards the (re-)creation of

intelligence with computational means, but potentially will on a meta-level also690

allow to assess the suitability of current attempts at reaching this long-standing

goal.

4.4. First Steps Towards an Implementation

A basic conceptual architecture for the envisioned computational framework

can be sketched as presented in Fig. 2. In accordance with the program struc-695

ture presented in the previous section, from a neural-symbolic perspective it

consists of three main functional components with the lifting of knowledge from

the subsymbolic to the symbolic level as centerpiece mediating between low-level

embodied sensing and anchoring and high-level concept formation and process-

ing.700

Interaction happens both between layers within individual modules (as, e.g.,

between the cognitive foundations and the anchoring) as well as across compo-

nents (as, e.g., through the feedback from the concept formation/reformation

to the anchoring). This results in a tightly interconnected architecture forming
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Figure 2: A schematic overview of structure and internal knowledge dynamics of the envi-

sioned architecture featuring a closed neural-symbolic cycle of learning and reasoning (adapted

from Besold et al. (2015)). While all three modules are relevant for closing the subsym-

bolic/symbolic cycle, the central functional component of knowledge lifting corresponds to

the classical core part of neural-symbolic integration. In addition to the depicted knowledge

dynamics from the level of an agent’s embodied sensing and acting to conceptual theories (and

back), interactions between the modules and sub-components also happen on other levels: For

instance analogy-making also shall operate on the level of mechanisms during learning and

knowledge lifting (see Sect. 4.3).
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a dynamic whole, with changes in one layer propagating to others in order to705

re-establish the “harmony” introduced in Sect. 4.1.

Within the low-level subsymbolic module, the aforementioned conceptors

(Jaeger (2014)), deep neural networks (Lee et al. (2009)), and similar approaches

are employed in order to initially pre-structure the perceptual input stream on

a subsymbolic level, augmenting the proto-structure resulting from the proper-710

ties and modalities of the embodied setting. This structure can then serve as

foothold for the anchoring process in a perception-based coupling of structural

to environmental elements and/or to action-based percepts of the agent (also

taking into account the property and attribute levels of objects/entities). Thus,

while staying within the subsymbolic realm, more abstract correspondences be-715

tween structured parts of the perceptual input stream and the corresponding

represented content are established. These vehicle-content pairs then can be ar-

ranged in a hierarchical structure on the level of different objects/entities, but

also more fine-grainedly on the level of object/entity-specific properties.

Within the high-level symbolic module, analogy and analogy-based blending720

are used to structure the permanently changing overall knowledge base of the

agent, to transfer and adapt knowledge between similar contexts, and to create

new high-level concepts through the blending of concepts in the knowledge base.

These processes potentially reveal existing or introduce new inconsistencies be-

tween concepts, which can then be addressed by the top-level concept formation725

and reformation layer. In this highest layer, inconsistencies are fixed through

manipulations of the symbolic representational structure, in turn possibly intro-

ducing new representations or concepts by altering the represented knowledge

elements or the overall representation language. In order to maintain the in-

ternal structure of the overall framework, the top layer therefore might have730

to feed back changes or additions to the subsymbolic anchoring layer which

then is forced to perform the corresponding adaptations in its assignment of

objects/entities to representations.

Finally, the neural-symbolic core module in the center of the architecture

bridging from low-level to high-level representations and processing builds upon735
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the output of the anchoring layer, i.e., correspondences between objects/entities

in the perceived environment and structural elements of the subsymbolic repre-

sentation, and uses deep learning techniques for representation learning in order

to convert (and, by doing so, lift) the subsymbolic content-loaden representa-

tions to logic-based expressions. The corresponding learning process taps into740

pre-existing knowledge on the symbolic side based on the analogy mechanism

and the assumption that relative temporal continuity of the environment (and,

thus, the agent’s input stream) should result in newly lifted symbolic concepts

sharing analogical commonalities with already existing ones, which then in turn

can be exploited to support the lifting process. Additionally, using the same745

assumption of only gradual change in the environment successive or parallel

lifting processes can be implemented in a cross-informing manner, establishing

analogical similarities not only over knowledge items (i.e., procedural objects)

but also over the processes themselves and exploiting the expected appearance

of similar sub-parts of the corresponding mechanisms.750

5. Integrating Both Programs: Why the Whole Is More than the

Sum of the Parts

While being at first sight almost orthogonal in approach and nature of ques-

tions (formal and theoretical on the one side, engineering-focused and systems-

oriented on the other), both research programs share deep connections, have to755

be regarded as complementary and cross-informing, and promise to mutually

augment each other in results and impact not only, but also with respect to the

‘four pillars of BICA’ (Stocco et al. (2010)).

The program on complexity differences and connections between different

subsymbolic and symbolic formalisms for computation and representation can760

shed light on aspects of crucial importance for a systems-oriented program as

the ‘anchoring knowledge in interaction’ cognitive architecture. Results from the

former program can help in selecting suitable approaches within the different

layers and modules of the envisioned cognitive framework assuring the feasibility
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of operating the resulting implemented system. The more engineering-focused765

perspective of the second proposed program on the other hand provides incentive

to pursue a more constructive approach to the questions asked in the theoretical

research program, instead of limiting the focus to existential results. Also,

the cognitive architecture offers a natural use case and empirical testbed for

the expected outcomes of the complexity-oriented research endeavor, by this770

completing the cross-informing feedback loop between both programs.

With respect to the mentioned core lines of research on Biologically-Inspired

Cognitive Architectures (i.e., the bottom-up reverse engineering of the brain, the

human-like aspects of artificial intelligence, the integration of data and models,

and the development of a computational architecture), the aggregate of results775

from both programs promises to advance significantly beyond the state of the

art. As already described in Sect. 1, bridging between subsymbolic/neural and

symbolic/cognitive approaches to representation and computation promises to

answer several long-standing questions in the relevant fields and to establish

explanatory bridges between the different perspectives on the human brain and780

its capacities. In doing so, especially through the second program and its agent-

based embodied approach, a more human-like style of interacting in and, subse-

quently, learning from the environment can be expected, presumably resulting

in conceptualizations and knowledge structures which are closer to human pro-

cessing than current computational accounts. By closing the gap between neural785

representations and logic-based models the mass of data collected in the neu-

rosciences is made accessible to use in computational-level models developed

by cognitive psychologists and AI researchers, allowing for the validation or

refutation of existing and the development of new hypotheses about human

cognition and intelligence, while in the opposite direction also allowing for the790

more targeted and purpose-specific collection of new data. Finally, the second

program specifically aims at delivering a cognitive architecture implementing

a closed subsymbolic/symbolic acting/sensing–processing–reasoning cycle, par-

tially building on results from the first program and pushing far beyond the

state of the art in current cognitive architectures in several respects.795
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6. The Immediate Vision: Preparing the Ground for Really Smart

Systems in the 21st Century

On the long run, integrating symbolic/cognitive and subsymbolic/neural

paradigms of computation and representation is expected to solve foundational

questions within AI/computer science and cognitive and computational neuro-800

science (as discussed in Sect. 1 and 5), at the same time bringing these fields

closer to each other and establishing deeper rooted connections beyond today’s

level of metaphorical similarities and inspirational links between models and con-

ceptions. At the same time, as already mentioned at the beginning of Sect. 4,

successful neural-symbolic integration also promises to solve crucial challenges805

in neighboring fields such as representational re-description and the progressive

acquisition of abstract representations from raw sensory inputs in robot archi-

tectures (Guerin et al. (2013)). There, by endowing robots with the ability to

explore different ways of storing and manipulating information across the entire

spectrum of subsymbolic and symbolic approaches, it shall become possible to810

use multiple problem solving strategies from low-level systematic search to ab-

stract reasoning (Evans (2003)). Still, significant and lasting impact also on a

shorter timescale can be expected in another domain of study and technological

development, namely in the area of smart systems.

Following the advent of the internet/WWW, ubiquitous computing (Poslad815

(2009)) and ambient intelligence systems (Aarts & Wichert (2009)) mostly per-

forming high-level and complex reasoning based on low-level data and signals

will be key to the future development of advanced intelligent applications and

smart environments. Whilst accumulating large sets of data and subsequent (of-

ten statistical) reasoning can provide for current applications Cook et al. (2009),820

many real-world scenarios in the near future will require reliable reasoning also

based on smaller samples of data, either due to the need for immediate (re)action

without the time delay or effort required for obtaining additional usable data,

or due to the need of dealing with rare events offering too few similar data

entries as to allow for the application of standard learning- or statistics-driven825

31



approaches. If a bridge between the subsymbolic sensor data and high-level

symbolic representations can be established, then knowledge- and rule-based

approaches promise to mitigate the just described problems. Pre-coded sym-

bolic background information and rule-based semantic processing can deal with

foreseeable types of rare events, and logic-based representations of occurrences830

which cannot be accounted for offer the possibility to search for different, but

sufficiently similar data points across different knowledge sources possibly aug-

menting the data set available for the low-level approaches. The correspond-

ing systems will, thus, have to make use of subsymbolic processing side by

side with complex abstract reasoning mechanisms, which then will have to be835

used to inform subsequent low-level sensing and processing steps in an action-

oriented continuous acting/sensing–processing–reasoning cycle (similar to the

cognitive system envisioned as outcome of the corresponding research program

from Sect. 4).

A concrete application scenario could, e.g., be envisioned in the domain of840

AAL. While current systems mostly have to rely on statistical approaches and

continuously growing amounts of sensor data in monitoring and interpreting the

users behavior in order to operate appropriately, processing the available sensor

information on all levels of the neural-symbolic hierarchy in parallel promises

not only incremental progress but qualitatively new functionalities. On the one845

hand (mostly symbolic) semantic information could be taken into account in

interpreting the observed user behavior and environment also in highly uncom-

mon situations, allowing for previously unachieved forms of interaction: Tak-

ing an example from AAL in a care context, imagine a situation in which a

cognitively-impaired person misinterprets an apple-shaped candle as an actual850

fruit and attempts to bite into the candle. While this constitutes a very rarely

occurring setup, if the system is able to assess the high-level ontological infor-

mation that, although apple-shaped, a candle does not fall into the category

of eatable objects or food items this enables an intervention from the system

preventing the user to proceed with the intended action. Still, full integration855

from the level of biologically-adequate brain models and simulations to abstract

32



reasoning and semantic processing (and back) in the mid-term should make

even more advanced systems possible. Taking models and simulations of human

perception processes and corresponding brain computations on the neural level

(as, e.g., a version of Jirsa et al. (2010)’s Virtual Brain additionally equipped to860

also allow for external input) and making them accessible and interpretable to a

smart system will eventually enable the latter to “see through the user’s eyes”,

paving the way for a qualitatively new generation of user models. Equipped

with a sufficiently accurate account of the user’s (low-level) perception-based

reading of the environment, subsequent biologically-inspired neural-level com-865

putations, and corresponding (high-level) interpretations, a smart system could

predict when automatically induced ambient changes (such as, e.g., switching

on a light source) will help clarify potential perception-based ambiguities or

generally facilitate and enhance the user’s perception and, thus, interactions.
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T., Kühnberger, K.-U., Lamb, L., Miikkulainen, R., & Silver, D. (2015).

Neural-Symbolic Learning and Reasoning: Contributions and Challenges. In

AAAI Spring 2015 Symposium on Knowledge Representation and Reasoning:935

Integrating Symbolic and Neural Approaches. AAAI Press volume SS-15-03

of AAAI Technical Reports.

d’Avila Garcez, A., Broda, K. B., & Gabbay, D. (2001). Symbolic knowledge

extraction from trained neural networks: A sound approach. Artificial Intel-

ligence, 125 , 155 – 207.940

35

http://dx.doi.org/10.1098/rspa.2013.0194


d’Avila Garcez, A., Lamb, L., & Gabbay, D. (2008). Neural-Symbolic Cognitive

Reasoning . Cognitive Technologies. Springer.

De Penning, H. L. H., d’Avila Garcez, A., Lamb, L. C., & Meyer, J.-J. C.

(2011). A Neural-symbolic Cognitive Agent for Online Learning and Reason-

ing. In Proceedings of the 22nd International Joint Conference on Artificial945

Intelligence (pp. 1653–1658). AAAI Press.

Degremont, C., Kurzen, L., & Szymanik, J. (2014). Exploring the tractability

border in epistemic tasks. Synthese, 191 , 371–408.

Diaconescu, R. (2008). Institution-independent Model Theory . (1st ed.).
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