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Abstract. The recognition that human minds/brains are finite systems with lim-
ited resources for computation has led researchers in Cognitive Science to ad-
vance the Tractable Cognition thesis: Human cognitive capacities are constrained
by computational tractability. As also artificial intelligence (AI) in its attempt to
recreate intelligence and capacities inspired by the human mind is dealing with
finite systems, transferring the Tractable Cognition thesis into this new context
and adapting it accordingly may give rise to insights and ideas that can help in
progressing towards meeting the goals of the AI endeavor.

Two famous ideas conceptually lie at the heart of many endeavors in computational
cognitive modeling and artificial intelligence (AI): The “computer metaphor” of the
mind, i.e. the concept of a computational theory of mind , and the Church-Turing thesis.
The former bridges the gap between humans and computers by advocating the claim
that the human mind and brain can be seen as an information processing system and
that reasoning and thinking corresponds to processes that meet the technical definition
of computation as formal symbol manipulation, the latter gives an account of the nature
and limitations of the computational power of such a system.

But the computer metaphor and the Church-Turing thesis also had significant im-
pact on cognitive science and cognitive psychology. One of the primary aims of cog-
nitive psychology is to explain human cognitive capacities which are often modeled
in terms of computational-level theories of cognitive processes (i.e., as precise charac-
terizations of the hypothesized inputs and outputs of the respective capacities together
with the functional mappings between them). Unfortunately, computational-level the-
ories are often underconstrained by the available empirical data, allowing for several
different input-output mappings and corresponding theories. To mitigate this problem,
different researchers over the last decades have proposed the use of mathematical com-
plexity theory, and namely the concept of NP-completeness, as an assisting tool (see,
e.g., [1]), bringing forth the so called “P-Cognition thesis”: Human cognitive capacities
are hypothesized to be of the polynomial-time computable type.

An immediate objection concerns the finite capacity of human intelligence (and,
indeed, of all computing systems). The analysis of algorithms — and complexity theory
in general — is primarily interested in the asymptotic growth in the requirement of
resources for problems, which is reflected in the fact that our preferred computational
model (the Turing Machine) is theoretically allowed an unlimited amount of time and
space which can be used during computation. In contradiction to this theoretical model,
one could claim that since all “real” computing systems have a strictly limited amount
of resources then they have no more power than that of a finite state machine. This,
however, ignores the purpose of complexity theory and algorithmic analysis, which is
to provide tools to study the rate of growth of computational resources. In this light, one



should read negative results provided by complexity theory as giving an upper bound
on the size of instances that finite computational systems can solve comfortably, where
the upper bound provided depends on the given problem at hand and the complexity
of both the reduction used and the problem that was reduced to. Therefore, when the
P-Cognition thesis states that “human cognitive capacities are of the polynomial-time
computable type”, our interpretation is that “humans can comfortably solve non-trivial
instances of this problem, where the exact size depends on the problem at hand”.

Accepting this, it seems that using “polynomial-time computable” as synonymous
with “efficient” may even be too restrictive: In fact, it is often the case that we as hu-
mans are able to solve problems which may be hard in general but suddenly become
feasible if certain parameters of the problem are restricted. This idea has been formal-
ized in the field of parametrized complexity theory, in which “tractability” is captured
by the class FPT.3 Now, identifying “problems with an FPT algorithm” as “efficiently
solvable” cannot be done lightly and requires some judgement using the problem defi-
nition. To this effect, we remark that most known problems with FPT -algorithms have
reasonable parametrized growth functions — we believe that even if f (κ) = 2O(κ) then
the algorithm is still effective on instances where κ is guaranteed to be small.

From this line of thought, [5] introduces a specific version of the claim that cogni-
tion and cognitive capacities are constrained by the fact that humans basically are finite
systems with only limited resources for computation. This basic idea is formalized in
terms of the so called “FPT-Cognition thesis”, demanding for human cognitive capac-
ities to be fixed-parameter tractable for one or more input parameters that are small in
practice (i.e., stating that the computational-level theories have to be in FPT). But whilst
the P-Cognition thesis also found its way into AI (cf., e.g., [6]), the FPT-Cognition the-
sis to the best of our knowledge this far has widely been ignored.

Therefore, we propose a way of (re)introducing the idea of tractable computability
for cognition into AI and cognitive systems research by rephrasing the FPT-form of
the Tractable Cognition thesis into a “Tractable AGI thesis” (Tractable Artificial and
General Intelligence thesis): As not only humans, but also all of the currently available
computing systems are ultimately finite systems with limited resources (and thus in this
respect are very similar to human minds and/or brains), in close analogy it seems highly
recommendable to also demand for computer models of AI and complex cognitive ca-
pacities to be of the (at least) fixed-parameter tractable type.

Tractable AGI thesis
Models of cognitive capacities in artificial intelligence and computational cognitive systems
have to be fixed-parameter tractable for one or more input parameters that are small in prac-
tice (i.e., have to be in FPT).

In the rest of the note, we will work through an example of an application of the
TAGI thesis to a modern area of research.

For a long time, attempts at modeling and reproducing human rationality and rea-
soning in artificial systems had been based on logical formalisms. Whilst originally al-
most exclusively classical (i.e., monotonic, homogeneous) logics were used, researchers
rather quickly faced the challenge of having to deal with the defeasibility of common
sense reasoning, resulting in the development of non-monotonic logics. Unfortunately,
the latter formalisms exhibit one severe drawback: To the best of our knowledge thus far

3 A problem P is in FPT if P admits an O( f (κ)nc) algorithm, where n is the input size, κ is a
parameter of the input constrained to be “small”, c is an independent constant, and f is some
computable function. For an introduction to parametrized complexity theory see, e.g., [3, 4].



all prominent approaches to logic-based non-monotonic reasoning have been shown to
be highly intractable, i.e., NP-hard or worse. Under the computational assumption that
P 6= NP it follows that the existence of an “algorithmic cure-all” is unlikely — there is
no efficient algorithm which will be able to exactly compute the processes of reasoning
exactly for any set of input parameters. This observation significantly contributed to a
progressing abandonment of the logical approach to modeling cognitive capacities and
processes within cognitive psychology and later also AI. In reaction a theory rivaling
logics as standard tools has gained almost overwhelming acclaim: Bayesian probabilis-
tic modeling. This conceptually seemingly orthogonal view claims to offer several ad-
vantages over the classical logic approaches; within a short time, Bayesianism has had
considerable successes in modeling human behavior (see, e.g., [7]).

However we think that unconditional optimism is not justified, as — despite being
seemingly ignored — the switch of formalisms has not made the intractability issue
disappear. As well, probabilistic (Bayesian) inference of the most probable explanation
(MPE) of a set of hypothesis given observed phenomena has been shown to be similar
to logic-based non-monotonic reasoning in that it is NP-hard and stays computation-
ally intractable even under approximation [8]. So also here, for growing input sizes
the feasibility of completing computation within a reasonably short period of time, and
without using an unrealistic amount of memory, may become questionable dramatically
quickly. Still, an entire abandonment of the overall approach would most likely be pre-
mature, as there seem to be ways of avoiding the fall into the abyss of intractability:
For instance in [9], a way of salvaging parts of the potential cognitive plausibility of
Bayesian approaches has been sketched by proposing that instead of the original prob-
lem domains some form of restricted input domains might be used in human cognition,
possibly allowing to avoid the impending complexity explosion.

So how may the Tractable AGI thesis be of help here? It could serve as a principle
for deciding whether a particular Bayesian-style model is worth investing further effort
or should be abandoned. Suppose the cognitive modeler or AI system designer is able
to prove that his model at hand is — although in its most general form NP-hard —
at least fixed-parameter tractable for some set of parameters κ. This implies that if the
parameters in κ are fixed small constants for problem instances realized in practice,
then it is possible to efficiently compute a solution. However, there is also a non-trivial
corollary of this: any instance of the problem can be reduced to a problem kernel.

Definition 1. Kernelization
Let P be a parameterized problem. A kernelization of P is an algorithm which takes an
instance x of P with parameter κ and maps it in polynomial time to an instance y such that
x ∈ P if and only if y ∈ P, and the size of y is bounded by f (κ) ( f a computable function).

Theorem 1. Kernelizability [10]
A problem P is in FPT if and only if it is kernelizable.

This theorem on the one hand entails that any positive FPT result obtainable for
the model in question essentially implies that there is a “downward reduction” for the
underlying problem to some sort of smaller or less-complex instance of the same prob-
lem, which can then be solved — whilst on the other hand (assuming W[1]4 6= FPT)
any negative result implies that there is no such downward reduction.

4 W[1] is the class of problems solvable by constant depth combinatorial circuits with at most 1
gate with unbounded fan-in on any path from an input gate to an output gate. In parameterized
complexity, the assumption W[1] 6= FPT can be seen as analogous to P 6= NP.



This (formal) correspondence between complex instances and simpler manifesta-
tions of a problem seems to match well with an observation from problem-solving and
reasoning experiments with human participants: Different forms of reductions from
complex to simpler (but still solution-equivalent) problems are reported to be pervasive
and crucial in many human problem solving scenarios (see, e.g., [11]).

And also on the more theoretical side, the described equivalence might form a con-
necting point to recent, much-noticed developments in cognitive science and cognitive
psychology. A growing number of researchers in these fields argues that humans in their
common sense reasoning do not apply any full-fledged form of logical or probabilistic
(and thus intractable) reasoning to possibly highly complex problems, but rather rely
on mechanisms that reduce the latter to equivalent, simpler ones (see, e.g., [12]). But
although the number of supporters of these and similar ideas is constantly growing, a
commonly accepted formal account of how this reduction process might work (or even
technically be characterized and reconstructed) thus far has not been given. Recogniz-
ing this as a serious deficit, Theorem 1 and its interpretation can provide inspiration
and first hints at hypothesizing a specialized cognitive structure capable of comput-
ing the reduced instance of a problem, which then might allow for an efficient solving
procedure — with the overall hypothesis in turn possibly serving as foundation and
starting point for the development of computational accounts and (in the long run) a
computational recreation of heuristics in computational cognitive models of reasoning,
problem-solving and AI.
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