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ABSTRACT 

Chapter 1 of the thesis introduces the technique of hydrometal lurgy , 
and describes its background in relation to pyrometallurgy, the chemital 
methods used in hydrometallurgy and its application to metal recovery, 
with particular reference to the recovery of metals as useful compounds. 

Chapters 2 and 3 show that hydrometallurgical methods can be 
applied to recovery of metals, as useful compounds, from waste and 
secondary materials. Chapter 2 descibes the recovery of nickel from a 
spent industrial catalyst as a smelting grade nickel oxide. Two 
different recovery concepts are investigated, the first involving the 
precipitation of the primary metal leaving impurities in solution, and 
the second involving the separation of impurities and leaving the 
primary metal in solution. Chapter 3 descibes an investigation into the 
recovery of zinc and copper, as commercially useful chlorides, from 
industrial waste, and it is shown, on a laboratory scale, that the 
recovery route can be integrated into an established manufacturing 
process with advantage. 

Chapter 4, the final chapter, describes ion exchange and reviews 
the practical application of anion exchange resins to the 
hydrometallurgical recovery of metals. This is followed by a review 
of the exchange resin poly-4-vinyl pyridine, and a study into the 
practical application of the resin to the extraction of metals from 
solution. The metals chosen for investigation are a selection of 
those most often present as impurities in hydrometallurgical 
solutions. It is shown that the resin exhibits good metal selectivity 
under various experimental conditions. 
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1.1 Introduction 

The traditional view of metal production, particularly of non

ferrous metals, is the treatment of primary ores by pyrometallurgical 

techniques. This can also be said about metal recovery from secondary 

ores and waste arisings. However, with the introduction of legislation 

in many industrial countries during the 1960's and 1970's, aimed at 

curbing enviromental pollution, the development of alternative methods 

to pyrometallurgy, became of importance. The alternative teclmiques 

investigated were those of hydrometallurgy, which can be described as 

the method of winning metal values by leaching of the raw material and 

subsequent chemical treatment of the arising. In this way, 

pyrometallurgical processing is avoided, therefore easing the 

difficulties associated with the compliance of anti-pollution laws. A 

comparison of hydrometallurgy and pyrometallurgy has been reviewed [1]. 

Although during the last 20 to 30 years, pyrometallurgical 

techniques and the reduction of fume output to the enviroment have 

improved, hydrometallurgical processing at the present time, does play 

an important role in metal recovery. However, this role has shifted 

from the "enviromentally friendly alternative", to one focussed on the 

processing of low grade ores and waste arisings, often involving 

chemically complex raw materials which would otherwise be economically 

unviable to process by pyrometallurgy. This shift in role has come 

about mainly because: 

1) A gradual awareness of the finite nature of the Earths 

resources has occured resulting in more importance being placed on the 

use and recyling of lower grade ores and secondary materials, which are 
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often relatively complex chemically, and therefore cannot be processed 

by conventional pyrometallurgy. 

2) Industry is more competitive, placing more emphasis on 

economics. A drawback of pyrometallurgy is the final stage of 

conversion to metal is often the most expensive. 

It therefore follows that advantage can be gained if relatively 

inexpensive low grade ores and secondary arisings are used for recovery 

of the metal value and that, provided a commercial outlet is available, 

the metal value is recovered as a commercially useful metal compound 

involving simple hydrometallurgical techniques. 

Examples of waste arisings are: 

1) Spent catalysts - source of Ni. 

2) Anode sludges - Platinum group metals, Se and Au. 

3) Flue dusts - Zn, Sn and Cu. 

4) Alloy scrap - Co and Mn. 
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1.2 Hydroaetallurgy 

The great strength of hydrometallurgy is the large number and 

variety of techniques that are available. Indeed, in principle, all the 

techniques of classical inorganic chemistry are at hand for 

hydrometallurgical processing plus relatively recent developments such 

as solvent extraction and ion-exchange resins. 

stages in the hydrometallurgical recovery of a metal value can be 

described as follows: 

a) Characterisation of the sample by analysis - usually 

involving the determination of the elemental composition of the sample 

and the compounds present, by, for example, X-ray techniques. 

b) Sample pretreatment - e.g. crushing. 

c) Leach treatment - Most commonly by a suitable acid. 

d) Treatment of the liquor to remove impurities - Usually by 

chemical means, e.g. controlled precipitation and ion exchange 

techniques. 

e) Recovery of the principal metal value - As a commercially 

useful compound, by precipitation or crystallisation, or as a metal by 

electrolysis. 

f) Purification of the product - e.g. washing 

g) Final analysis of the product. 

A schematic representation of the above is shown in figure 1.1. 

Hydrometallurgy is concerned with metals in solution, and 

therefore the leach treatment to solubilise the metal value, is 

fundamental to the recovery technique. Leaching is usually performed 
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with a suitable acid, under oxidising conditions, and most often with 

hydrochloric acid in combination with other chloride based reagents, 

such as CuC12, FeC13 or NaCl, and with chlorine or air [2]. However, 

sulphuric acid and nitrate based leach treatments are also used [3,4,5]. 

The use of higher temperatures and pressures during the leach stage is 

advantageous, particularly in increasing the leach rate, and in allowing 

the use, to greater effect, of gaseous and volatile reagents, such as 

oxygen and ammonia. 

Two main parameters can be cited as critical in determining the 

behaviour of metal species in solution, these are solution pH and 

oxidation potential. These are therefore the major variables available, 

for use by the hydrometallurgist, when considering the methods of 

separation of the impurities from the primary metal in the leachate, 

(the filtered liquor arising from the leach treatment). The pH of the 

metal containing liquor determines the solubility of hydrolysed metal 

species and the oxidation potential controls the valency of the metal 

species which often directly governs the solubility. 

The hydrolysis of metal ions, (and subsequent precipitation), can 

be represented by an equilibrium of the type, 

Mn+ + nlbO ~======:! M(OHh + nH+ 

and it is generally true that tri- and tetravalent metal ions hydrolyse 

under more acidic conditions than mono- and divalent ions. Figure 1.2 

shows the pH at which the precipitation of hydroxides, for various metal 

ions, occurs, and shows, for example, that the separation of Fe 3+ and 

Ni 2+, and of Al3+ and Zn2+ can be effected simply by pH adjustment. In 

fact one of the most important, and widely used separations of this 
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kind, involves the precipitation of a Fe 3 + impurity from solutions of 

other metal ions, as hydroxide or a hydroxy sulphate, [7,8,9]. 

Further precipitation techniques which are available to the 

hydrometallurgist for the separation of metals can be cited, these 

include, 

1) Precipitation of sulphides with variation in sulphide 

concentration and pH. 

2) Crystallisation of ammonium metal sulphates with varying 

temperature and sulphate concentration, [10]. 

3) Precipitation of insoluble metal compounds with various 

specific ligands, for example in the separation of palladium from 

rhodium trichloride solutions as a Pd-DMG complex, [11]. 

Although the major anion in solution does not generally affect the 

precipitation techniques described above, (apart from the ammonium metal 

sulphate precipitation), chloride solutions are now more frequently used 

than in the past. This increased attention toward chloride based 

hydrometallurgy can be attributed to various factors: 

a) Construction of equipment resistant to the highly corrosive 

nature of chloride solutions, as opposed to sulphate solutions, is now 

less of a problem. 

b) The formation of metal-chloro complexes in solution allows 

the use of techniques for separation which would not be possible in 

sulphate solutions. 

c) Chloride can often be recovered as hydrochloric acid, via HCI 

fume, enabling a route for recyling. 

d) Many metal chlorides are very soluble compared to the 
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corresponding sulphates, which allows the use of more concentrated 

process solutions, and therefore reduces the volumes of liquor needed to 

be handled. 

Factor b) above, is of great importance when considering the 

versatility of hydrometallurgy, because the formation of anionic metal

chloro complexes is fundamental to the significant use of anion exchange 

techniques. The formation of these complexes and their use in metal 

recovery involving anion exchange resins, is dealt with in detail in 

chapter 4 of this thesis. 

Ion exchange techniques in general can be divided into two main 

divisions, namely liquid-liquid and liquid-solid exchange, involving 

solvent extraction and ion exchange resins respectively. Sub-divisions 

can also be described, which are applicable to both. These are cation 

and anion exchange, general examples of which are given below: 

Cation exchange - Mn+ aq + nRHorg ~======~ RnMorg + nH+aq 

Anion exchange - MC16 n - + nRCl org ~======~ RnMCl60rg + nCI-- aq 

R represents the exchange active ligand in the organic species, which is 

often alkyl phophate groups in cation exchange and alkyl amines in 

anion exchange. Chelation exchange is also possible, and involves the 

direct coordination of a metal atom to an atom, often an amine nitrogen, 

in the organic ligand. 

Of the two techniques, solvent extraction has probably the most 

widespread application in industrial hydrometallurgy, examples of which 

include the nickel refining Falconbridge Matte Leach Process [121, and 

the recovery of zinc from pyrites cinders in the Zincex Process [13]. 
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Following the application of purification techniques to the 

leachate, is the final stage in the hydrometallurgical recovery of metal 

value, of winning the value in a commercially useful form, either as a 

metal, usually by electrolysis, or as a compound. 

Electrolysis can be defined as the chemical decomposition of an 

electrolyte, in a dissolved or molten state, by the passage of an 

electric current, via suitable electrodes. In the context of 

hydrometallurgy, the result of the decomposition is the deposition of 

the metal of value at the cathode. 

The electrowinning of metal values is an established part of 

hydrometallurgy, especially for the worlds non-ferrous metals production 

and in particular zinc, (e.g. Sherrit Gordon/Cominco process [3]), and 

copper, (e.g. Duval's CLEAR process [2]). However, in recent years the 

electrowinning stage in hydrometallurgy has been investigated 

critically [14,15,16], and several conclusions have been drawn [17]. 

the major one being that hydrometallurgical recovery in combination with 

an electrowinning stage often results in an energy input comparable to 

pyrometallurgical recovery. In this light, the avoidance of the 

electrolysis step, by the recovery of the metal value as a commercially 

useful compound, could, in many cases, be economically advantageous. 

With this concept, there are a number of points to consider: 

a) The commercial outlet(s) for the metal compound, and their 

specifications for the product, must be identified. 

b) The size of the market will determine the competitiveness for 

the product, and therefore will reflect its market value. 
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c) What tolerance on the purity of the primary recovered product 

is allowed? This is a very important consideration because in some 

cases, the impurities present in the crude precipitated or crystallised 

product, will be tolerated by a specific market outlet, so avoiding 

further purification, and therefore, expense. 

d) It may be advantageous to convert the primary product to a 

more specialised compound, which although may have a smaller market, 

will, by its speciallity, command a higher value. 

17 



1.3 About the thesis. 

The remainder of this thesis comprises three chapters of practical 

work, followed by three appendices. 

Chapters 2 and 3 put into practice, on a laboratory scale, various 

aspects of hydrometallurgy, and are concerned with, respectively: 

a) The development of a process for the recovery of the metal 

value from a waste arising, as a commercially useful compound. 

b) The modification of an established industrial process to 

allow greater flexibility in the choice of feedstock. 

Chapter 4 describes an investigation into the use of a relatively 

new exchange resin to the separation of metals from solution, and also 

gives details on various general aspects of anion exchange, particularly 

when applied to metal recovery. 

The appendices are concerned with the three major analytical 

techniques used in the practical work throughout the thesis, and 

describe the techniques, their practical application in the work and 

include information, and data, on aspects relating to their practical 

application. 

Wherever possible in the practical work, emphasis was placed on 

using simple techniques, involving common and relatively inexpensive 

reagents, because although the work was done on a laboratory scale, the 

possibility of its application to industry, was always an important and 

major consideration. 
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2.1 Introduction. 

A the present time, some use is being made of spent, high nickel 

content catalysts for the recovery of their nickel value. However, 

spent catalysts, low in nickel (less than 15 to 20%), are little used 

for nickel recovery because of the problems, both chemical and economic, 

which are associated with metal recovery from lower grade catalysts. 

The annual arising in the U.K. of spent catalysts low in nickel is 

approximately 500 tonnes, and therefore, considerably more nickel 

recovery and recycling could be achieved if suitable processes for 

treating these arisings was developed. 

The work described in this chapter, deals with the development of 

two processes for nickel recovery from a spent catalyst containing 

approximately 171 nickel. 

Method 1 

A spent catalyst leachate is chloridised with hydrogen chloride 

gas, to precipitate nickel from solution as nickel chloride. An initial 

increase in the Ni:secondary metal ratio, a measure of the purity of 

the compound, is achieved in this way. A further increase is achieved 

by washing, or otherwise, of the precipitate. 

Method 2 

Various techniques are used to remove secondary metals from a 

spent catalyst leachate, to produce a concentrated, purified nickel 

24 



chloride solution. 

In both methods, the purified nickel concentrates are then treated 

to give a nickel oxide of a purity suitable for the smelting industry. 

The methods described are totally different in concept, (figure 

2.1), and provide a means of comparing different aspects of the 

chemistry of nickel recovery. 
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2.2 Catalyst Analysis. 

A sample of spent nickel catalyst was received from Ireland Alloys 

Ltd. 

It was immediately apparent that the material was of a very 

heterogeneous nature, comprising of lumps of various sizes, (1 to Scm), 

seemingly of different composition, together with finer granules and 

powder. An analysis received is given in table 2.1. 

Content 

Ni 

Co 

Cu 

Mn 

C 

Table 2.1 Catalyst Analysis. 

I wt. 

17.7 

0.15 

9.5 

0.1 

7.9 

Content 

S 

Fe 

Water 

Non-aetals 

I wt. 

0.75 

30.0 

27.5 

3.2 

A sample of catalyst was crushed and sieved through a 2400 aicron, 

7 mesh seive. Because of the heterogeneity of the presieved material, 

sufficient catalyst was crushed, sieved and hoaogenised as far as 

possible, to last the complete series of experiments described in this 

chapter. A fair degree of confidence could therefore be placed on the 

consistency in composition of each sa.ple, taken fro. the sieved stock, 

for use in subsequent experiaental work. 

27 



Analysis for total Ni content of the sieved catalyst using XRF and 

a standard addition method, gave a figure of 16.41. 

A semi-quantitative analysis of the elemental composition of the 

sieved catalyst, using an SEM with EDAX attatchment, (Appendix 2), 

showed a considerable proportion of Ca and Zn to be present (5 to 101). 

in conflict with the works analysis received. 

Table 2.2 shows the apparent metal composition of the sieved 

catalyst derived from the supplied analysis and the EDAX results. Also 

given. is the specification for the smelting grade nickel oxide, as 

supplied by Ireland Alloys Ltd. The specification shows the importance 

to the smelting industry, of providing a nickel oxide low in base metal 

concentrations. Lighter metals, such as Zn and Ca, which slag out 

during smelting, are less troublesome. 

Table 2.2 Catalyst And Nickel Oxide Analyses. 

Content Catalyst NiO spec.- Content Catalyst NiO spec. * 

(approx I) (I) (approx I) (I) 

Ni 17 )50 Cd 0.2 

Co + Cu 10 3 Mo 0.5 

Fe 30 No spec. Pb 0.1 

Mn 0.1 No spec. Non-.ets 3.2 S 0.2, P 0.2 

Sn 0.1 C 7.9 No spec. 

Ca 5-10 No spec. 

Zn 5-10 No spec. (*Max. unless stated). 

28 



2.3 ~~lubilisation of the nickel content of the catalyst. 

The use of a sulphuric acid leach was ruled out, primarily to 

avoid sulphur contamination of the product nickel oxide, (a 0.2' limit 

on the sulphur content is imposed on the oxide specification). 

Hydrochloric acid was chosen as a suitable leaching agent for the 

catalyst because advantage could be taken, if necessary, of Hel 

recycling within the recovery process, and chloride solutions have a 

greater scope for the application of recovery techniques. (See section 

1.2). 

To study the efficiency of a hydrochloric acid leach on the Ni 

content of the catalyst, approximately 50g samples of sieved catalyst 

were treated with 80ml volumes of acid of various strengths. A wt. of 

catalyst: leach solution ratio of 0.625g/l was found to be a good value, 

giving a well concentrated leachate, without the leach mixture being too 

viscous. 

One hour, with vigorous stirring was allowed before filtration of 

the leach mixture. Total Ni content of the co.bined leach 

filtrate/residue washings, (the leach residue was washed with either 2 x 

50.1 water, 201, 801 or conc. HCI), was determined by A.A.S. Results 

are given in table 2.3. 

In the case of the 201 acid treat.ent, the strength of the acid 

was chosen to be just sufficient to react stoichio.etrically with the 

catalyst, giving a leachate with a pH of about 2. 
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If temperatures above ambient were used for leaching, the 

experiments were conducted under reflux. 

Table 2.3 Leach Results. 

Leach Temp. Wt.cat. wt.res. Hi (g) StU !.Residue 

(g) (g) extract. (Relative to cat.) 

Water 70 51.8 28.0 3.05 5.9 54.0 

20C1J1Cl 21 49.5 13.5 6.01 12.1 27.2 

201 21 50.3 12.4 6.20 12.3 24.6 

201 80 50.3 15.7 6.14 12.2 31.2 

20'1, 80 50.5 15.7 6.07 12.0 31.1 

801 21 49.5 12.7 6.28 12.7 25.7 

801 21 49.5 13.7 6.40 12.9 27.7 

801 80 49.8 10.0 6.43 12.9 20.1 

801 80 50.3 10.7 6.53 13.0 21.3 

Conc. 21 49.9 11.7 6.28 12.6 23.4 

Conc. 21 49.8 11.6 6.30 12.6 23.3 

The results show that besides a hydrochloric acid leachable 

nickel content of the catalyst, there reaained a proportion of the 

nickel content which was resistant to a simple acid leach, equivalent to 

about 25'1 of the total Ni content. In an attempt to dissolve this 

re.aining nickel, the use of a strongly oxidising leach was 

investigated. Experiments using 20'J, and 80'J, acid at 21 0C were repeated, 

but during the leach period, chlorine gas was passed through the leach 
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mixture at a rate sufficient to continually saturate the leach mixture 

with dissolved chlorine. Results of this experiment are given in table 

2.4. 

Leach 

20mel 

20C1, 

80'1. 

80C1, 

Temp. 

(oC) 

21 

21 

21 

21 

Table 2.4 Oxidising Leach Results. 

wt.cat. 

(g) 

49.4 

50.0 

49.9 

50.1 

wt.res. 

(g) 

15.4 

14.1 

12.6 

12.8 

Ni (g) 

extract. 

6.07 

6.10 

6.30 

6.28 

iNi t.Residue 

(Relative to cat.) 

12.3 

12.2 

12.6 

12.5 

31.2 

28.2 

25.2 

25.5 

As can be seen from table 2.4, no improvement in Ni extraction was 

achieved. 

In view of these results, it was decided that further work aimed 

at improving leaching efficiency, would not be worthwhile at this stage. 

Improvements, if achieved, would al.ost certainly lead to a recovery 

process no longer dealing with essentially simple chloride solutions, 

and would therefore necessitate the involvement of more complex recovery 

routes. Semi-quantitative analyses of the leach residue, involving 

EDAX, showed them to be mainly composed of Si, Sand Ca, with smaller 

quantities of Cu, Fe, Al and Ni. Considerable elemental carbon also 

seemed to be present. 

With a hydrochloric acid leach, approximately 73 to 791 of the 
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total Ni content. of the catalyst can be extracted. The remaining Ni 

seemed to be very resistant to leaching with hydrochloric acid, even 

under strongly oxidising conditions. 

The effect of temperature on extraction efficiency is negligible 

- no advantage is gained by external heating of the reaction. (The 

leach reaction was found to be slightly exothermic, raising the 

temperature of the solution from 21 0 C to approximately 30oC.). 

The effect of acid strength, on extraction, was also found to be 

negligible. 

The effect of leach conditions, on overall solubilisation of the 

catalyst, does show some variation. In the case of a strongly acid 

leach, especially at high temperature, considerably more solubilisation 

occurs, compared to a leach with 20S HCl at high temperature -

approximately 101 more, almost all of which is unwanted solubilisation. 
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2.4 Method! The Precipitation Of Nickel Chloride Fro. The Catalyst 

Leachate With ftydrogen Chloride Gas. 

2.4.1 Introduction. 

In concentrated hydrochloric acid, the majority of metals can 

exist as soluble anionic chloride complexes. Indeed, extensive use is 

made of this fact for the retention of metal species, from hydrochloric 

acid, on anion exchange columns. [1,2,3,4,15]. Separation of one metal 

from another is achieved by utilising the variations in stability of 

each metal complex, with varying acid concentration. Examples of well 

known anionic chloro-complexes include FeCI6 3-, CuC14 2- and ZnCI4 2-. 

Although most metals are able to form these complexes in hydrochloric 

acid, there are exceptions. Ni 2 +, AI3+, the Alkali and Alkaline Earth 

metals are examples. 

With knowledge of the facts mentioned above, it was apparent that 

the possibility may exist for the developaent of a technique, for the 

separation of nickel from other metals in the catalyst leachate, 

involving HCI gas. In a concentrated hydrogen chloride solution, the 

inability of Ni 2+ to form co~lexes, would significantly reduce the 

solubility of nickel chloride, relative to other metal chlorides. A 

subsequent literature survey revealed a few references to earlier work 

on the use of HCI gas and concentrated hydrochloric acid to reduce the 

solubility of NiCl2 [16,17]. Seidel and Fischer [5], investigated the 

solubility of NaCI, KCI, NH4CI, BeCI2, AlCl3 and two double chlorides in 

hydrochloric acid of various concentrations, at OoC. The variation in 

the solubility of the salts were then used as a basis for separations. 
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Kubo and Toniguchi (18], described a method for the separation of Ni2+ 

and C02+, whereby a chloride solution was saturated with HCl gas to 

precipitate the nickel content, leaving a cobalt chloride solution of 

acceptable commercial purity. The use of HCl saturated organic 

solvent-water mixtures has also been investigated for metals separation 

[6,7]. 

Preliminary work on the solubility of nickel, as nickel chloride, 

in HCl saturated solutions at 21oC, yielded promising results. With a 

pure NiCl2 solution, nickel solubility was reduced from approximately 

160g/l Ni in water, to less than 109/I, by saturating the solution with 

HCl gas. Precipitates obtained in this way, seemed anhydrous in nature, 

changing colour from yellow when in contact with the HCI solution, to 

green on exposure to air. Previous work, by other workers, suggests 

that the precipitated compound is NiC12.2H20 [18,19]. A further 

reduction in the solubility was achieved by saturating the solution with 

the gas at OoC. However, it was decided that subsequent detailed 

experiments involving catalyst leachates, would be conducted at room 

temperature. This would avoid the practical problems associated with 

operating systems at teaperatures well below aabient, a fact 

particularly important in industry, where economic constraints would 

also be involved. 

Hydrogen chloride is a relatively expensive gas, compared to other 

widely available gases, so efforts to recycle the gas within the 

recovery process were considered important. 

A preliminary scheme for the separation of nickel from the 
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catalyst was devised and is illustrated in figure 2.2. 

Hydrogen chloride gas, used for the precipitation of nickel 

chloride from the catalyst leachate, would be recycled in the form of a 

concentrated solution, and would be used csubsequently as a leach 

solution for a fresh batch of catalyst. The loss of nickel within the 

process, due to incomplete precipitation, would therefore be prevented. 

As a simplified description, the method proposed is based on a 

series of leach-precipitation cycles, where the only input to the system 

would be fresh catalyst and Hel gas, and the only outputs would be leach 

residue (acid insolubles), and the precipitated nickel chloride. 

Sections 2.4.2 and 2.4.3 describe an investigation into the 

recovery scheme proposed in figure 2.2. In the experimental work, 

particular attention is given to the effect on the precipitation and 

purity of the nickel chloride, of continually recycling of the solution 

involved. 

The purification of the chloride by washing and anion exchange, 

and the subsequent preparation of nickel oxide, are then described. 

In the remainder of section 2.4., conclusions drawn from the 

results obtained, are discussed, and an overall summary of the method is 

presented. 
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2.4.2 Nickel chloride precipitation. 

Preliminary work on nickel chloride precipitation by absorbing dry 

HCI gas into catalyst leachates, (obtained by leaching 50g samples of 

catalyst with 80ml volumes of concentrated hydrochloric acid), indicated 

that prolonged absorption of dry HCI gas, leading to complete saturation 

of the leachates, was not necessary in order to achieve a considerable 

reduction in nickel chloride solubility. Table 2.5 shows the results 

obtained by following the precipitation in terms of Iw/w HCI content of 

the reaction medium, the specific gravity of the liquor and the nickel 

chloride solubility within the liquor. 

Table 2.5 HCI Absorption And Nickel Chloride Solubility. 

SHCI 

(w/w) 

28.9 

31.7 

33.8 

36.7 

38.2 

S.G. 

1.419 

1.380 

1.366 

1.355 

1.355 

NiCl2 solubility 

(gIl Ni) 

up to 160 

14.7 

6.7 

2.2 

1.3 

Remarks 

No pptn. 

Initial bulk pptn. 

Further pptn. 

Further pptn. 

HCI satd. liquor 

In view of these results, it was decided for subsequent 

experimental work, HCI absorption would be ceased directly after the 

initial bulk precipitation. This would save on the quantity of HCI gas 

used and would avoid handling strongly fuaing HCl solutions. 
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It was found that the filterability of precipitates obtained in 

this way was excellent. The handleability of the filter cakes was also 

found to be excellent, the cakes being compact and dry. 

The solubility of FeCI3, ZnCl2, CoCl2 and CuCl2 in concentrated 

HCI solutions was investigated and found to be high, in most cases )100g 

metal per litre. Of the other metal chlorides found in the catalyst 

leachates, only FeCl2 and AICl3 showed low solubility, llgl1 Fe and 

<5g/l Al respectively. Contamination of the precipitated NiCl2 from 

FeCl2 and AlCl3 is unlikely to be significant because of the low 

concentrations of these compounds present in the catalyst leachates. 

(See 2.4.3). 
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2.4.3 Investigation into repeated leach/precipitation cycles. 

Approximately 125g of sieved catalyst was added to 200ml of 

concentrated hydrochloric acid. The mixture was stirred for one hour 

with no external heating, and then filtered with a Buchner apparatus. 

Dry HCI gas was passed into the leach filtrate until the initial bulk 

precipitation had occured. The precipitate was filtered on a No.3 glass 

sinter, and maximum compression of the cake. Concentrated 

hydrochloric acid was added to the filtrate to return the volume to 

200ml and the filtrate then used as a leach solution for a fresh 125g 

batch of catalyst. This leach/precipitation cycle was repeated a 

further 3 times. The filter cakes were analysed for metal concentration 

by A.A.S. and HCI content by titration with standard alkali and methyl 

red indicator. Experimental data and results are given in tables 2.6 to 

2.9. 

Cycle 

1 

2 

3 

4 

Table 2.6 Experimental Data For Leach Cycles. 

wt.Catalyst Vol.Filtrate 

(g) (.1) 

125.2 202 

125.4 197 

125.1 191 

124.9 195 

39 

wt.Cake 

(g) 

63.8 

75.2 

80.8 

79.1 

Vol.Filtrate 

After pptn(ml) 

166 

167 

157 

162 



Cycle 

1 

2 

3 

4 

Ni 

10.29 

(16.12) 

12.79 

(17.01) 

12.29 

(15.21) 

12.52 

(15.83) 

Table 2.7 Filter Cake Analyses. 

wt. Metal in Cake (g) 

('f, Metal in Cake) 

Fe Zn Cu 

0.59 0.21 0.14 

(0.92) (0.33) (0.22) 

0.95 0.32 0.33 

(1.28) (0.42) (0.44) 

1.31 0.61 0.37 

(1.62) (0.75) (0.46) 

1.35 0.70 0.38 

(1.71) (0.88) (0.48) 

Co 

0.04 

(0.06) 

0.09 

(0.12) 

0.09 

(0.11) 

0.08 

(0.10) 

Al 

0.03 

(0.05) 

0.05 

(0.07) 

0.07 

(0.09) 

0.06 

(0.08) 

HCI in 

Cake 

('f,) 

10.3 

10.8 

11.1 

11.1 

Table 2.8 Nickel Recovery ~ Precipitation. 

Cycle 

1 

2 

3 

4 

wt.Ni in Ni Solubility in 

Leacbate(g) HCl satd Liq.(g/l) 

12.81 

14.39 

13.59 

13.83 

40 

15.2 

9.6 

8.3 

8.1 

'f, Ni pptd. 

80.3 

88.9 

90.4 

90.5 



Tabl~ 2.9 Ni:Secondary Metal Ratio In Filter Cake. 

Cycle 

Original Cat. 

1 

2 

3 

4 

Fe 

2.6 

17.4 

13.3 

9.4 

9.3 

Zn 

4.6 

49.0 

40.0 

20.1 

17.9 

Cu 

11.7 

73.5 

38.8 

33.2 

32.9 

Co 

86.3 

257.2 

142.1 

136.5 

156.5 

Al 

59.9 

343.0 

256.0 

176.0 

209.0 

The results show that following the first precipitation cycle, 

reasonable consistency was subsequently observed for volume reductions, 

lNi precipitated, residual NiCl2 solubility and the filter cake weight. 

No detrimental effect on the overall extraction of nickel from the 

catalyst, by repeated cycling of leach solutions, was apparent. 

The purity of the precipitated nickel chloride decreased as the 

number of cycles increased. This was expected, because concentrations 

of secondary aetals in solution would gradually increase through 

successive leach cycles. 

41 



2.4.4 Purification of precipitated nickel chloride ~ washing. 

The effect of washing precipitated nickel chloride with 

concentrated hydrochloric acid, on the Ni:secondary metal ratios, was 

investigated. 

Approximately 67g of filter cake, with a composition and initial 

Ni:secondary metal ratio typical of a third of fourth cycle precipitate, 

was slurried with 25ml of concentrated hydrochloric acid, (sg 1.18), and 

then filtered on a No.3 glass sinter. The filter residue was compressed 

as much as possible, to give a dry, compact cake. 

The washing procedure was repeated a further 3 tiaes using fresh 

25ml volumes of acid to ultimately give a filter cake which had been 

washed 4 times. 

Analyses of the filter cakes after each wash, for metal content by 

A.A.S., revealed the results given in table 2.10. Data on the 

solubilisation of nickel during each wash is given in table 2.11. 

Table 2.10 shows that washing the filter cake with concentrated 

hydrochloric acid progressively increased the Ni:secondary ratios and 

hence the overall purity of the nickel chloride. Approximately a ten 

fold increase in ratios was achieved after two washes, with up to a fifty 

fold increase after 4 washes. The exception was the Ni:Co ratio - little 

increase was observed. 

As expected, quantities of nickel chloride were solubilised by the 
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Tabl~ 2.10 The Effect Of Washing The Filter Cake On Metal Content. 

Wash 

Ni 

Before wash 15.21 

1 17.04 

2 17.30 

3 17.48 

4 17.52 

~ In Filter Cake 

(Ni:Secondary Metal Ratio) 

Fe Zn Cu Co 

1.62 0.75 0.46 0.11 

(9.4) (20.1) (33.2) (136.5) 

0.79 0.30 0.23 0.11 

(21. 7) (57.4) (75.1) (152.4) 

0.29 0.10 0.11 0.11 

(59.0) (167.2) (156.8) (152.0) 

0.12 0.05 0.07 0.11 

(145.7) (327.8) (249.8) (154.3) 

0.05 0.02 0.05 0.11 

(320.9) (1027) (320.9) (160.4) 

Al 

0.09 

(175) 

0.04 

(410) 

0.02 

(1003) 

(0.01 

(>1700) 

(0.01 

(>1700) 

Table 2.11 Effect Of Washin~ The Filter Cake On Nickel Content. 

Wash 

Before 

1 

2 

3 

4 

Wt.Ni t.Ni t.Ni in fa Overall wt. Cake fa Overall 

Solub.(g) Solub. Cake 

0.27 

0.28 

0.37 

0.49 

2.6 

3.0 

4.3 

6.4 

15.21 

17.04 

17.30 

17.48 

17.52 
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Ni Solub. Solub.(g) Cake Solubn. 

2.6 

5.4 

9.0 

13.8 

13.1 

4.5 

5.3 

6.5 

13.1 

16.8 

20.7 

25.0 



washing procedure. An increase of 2 to 3' on the overall Ni 

solubilisation occured after each wash. 
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2.4.5 Purification of precipitated nickel chloride ~ anion exchange. 

As already pointed out in section 2.4.1, Ni 2+ is an unusual metal 

ion because of its inability to form complex chloride anions in chloride 

solutions of any HCI concentration. This fact makes NiCl2 solutions, 

containing other Transition Metal impurities, ideally suited to 

purification by anion exchange, because the majority of Transition Metal 

ions readily form coaplex chloride anions. 

ego FeCl3 + 3Cl- ~======~ FeC16 3-

CI- + NiC12 + ReI --------> No reaction. 

Where R • functional group of the exchange resin matrix. 

Valuable work by Kraus and Nelson [4], showed that in hydrochloric 

acid Fe 3 + can be retained by a strong base quarternary ammonium anion 

exchange resin, if the HCI concentration is greater than about 1M/I; 

CU2+ in HCI >3M/I; C02+ >7M/I, whereas Zn2+ can be retained in solutions 

of any HCI concentration. 

In the present work it was thought possible that a nickel chloride 

solution, prepared by dissolving filter cake in water, could be purified 

by simply passing the solution through an anion exchange column. 

Because of the high concentration of chloride ions originating from 

NiCI2, the addition of hydrochloric acid would be unnecessary. This 
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could allow a simple route for the recycling of the HC1 content of the 

filter cakes by evaporation, (and subsequent recovery), before 

dissolution of the cakes in water. Figure 2.3 shows the scheme. 

The proposed method for the purification of the nickel chloride 

was investigated. 

15g samples of unwashed filter cake were heated at 1050 C for 2.5 

hours to evaporate HC1, before dissolution of each sample in 2Om1 water, 

to give solutions containing approximately 125-135g/l Ni (2.15 to 

2.35M/l Ni; 4.3 to 4.7M/l Cl-) at pH 1.5. (Maximum nickel solubility as 

NiCl2 is about 160g/I). Loss of weight on heating was found to be 41 to 

471. The solutions were then percolated through an anion exchange 

column, packed with Amberlite lRA-400, a strong base, quarternary 

ammonium, anion exchange resin in the chloride form. The treated 

solutions were then analysed for metal content by A.A.S. 

Further solutions were prepared, treated and analysed in a similar 

way, without the prior heat treatment of the filter cakes. Solutions 

prepared in this way, had si.ilar nickel concentrations to those 

prepared from heat treated filter cakes, but also contained a 

hydrochloric acid concentration of 2.0 to 2.2M/l, giving a total 

chloride concentration of 6.3 to 6.9M/I. 

Results of these experiments are given in table 2.12. 

Table 2.12 shows that very good reductions in concentrations of 

Fe, Zn and Cu were achieved by anion exchange, even at pH 1.5. Under 
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Table 2.12 Solution Treatment ~ Anion Exchange. 

Before Treatment 

After Treatllent 

(pH 1.5) 

Solution 1 

Solution 2 

(2.0-2.2M/l HCI) 

Solution 3 

Solution 4 

Ni:Secondary Metal Ratio 

Fe Zn Cu Co Al 

12.5 20.0 39.1 174.7 187.3 

5734 

5207 

50,000 

50,000 

8148 

8270 

179.0 

180.7 

>50,000 >50,000 >50,000 640.0 

>50,000 )50,000 )50,000 575.6 

187.8 

187.7 

189.1 

187.4 

the experimental conditions described, Ni:Fe and Ni:Cu ratios were 

increased at least 100 fold, with a further 10 fold increase in 

solutions of higher acid concentration. The Ni:Zn ratio was increased 

over 2500 tiaes, irrespective of acid concentration. No increase in the 

Ni:Co ratio was observed except in solutions containing greater acid 

concentration, where about a 3 fold increase occured. As expected, 

Ni:Al ratios were unaffected. 

48 



2.4.6 Preparatio~ Of Nickel Oxide From Nickel Chloride Filter Cakes. 

The preparation of nickel oxide from the filter cakes was achieved 

with a method involving the precipitation of nickel hydroxide. A low 

temperature heat treatment was used to convert the hydroxide to oxide. 

With this method, the overall procedure was simple, the only reagent 

needed being sodium hydroxide solution. Figure 2.4 shows the scheme. 

Preliminary experiments showed that washing of the hydroxide or 

oxide to be essential to remove excess sodium chloride. Samples of 

oxide resulting from a procedure which included no washing stage, gave 

nickel and sodium contents of approximately 401 and 20' respectively. 

Because of the gelatinous nature of nickel hydroxide, the washing 

procedure was carried out on the oxide. 

Nickel chloride solutions, containing 125-135g/l Ni, and varying 

in purity depending on the prior treat.ent, (see 2.4.4 and 2.4.5), were 

treated with with a stoichiometric quantity of 4M NaOH solution, to 

completely precipitate the nickel content as hydroxide. Precipitation 

was done gradually, at 900 C with continual stirring, and the mixture 

then boiled for 15 minutes. The precipitate was filtered, and then 

heated at 4000 C for 1 hour. The resultant oxide was powdered to 20 

mesh, and stirred with an excess of hot water. The oxide was allowed to 

settle, and the liquor decanted. The washing procedure was repeated 

once and the oxide then filtered. Each oxide sample prepared, was dried 

at 800C and analysed for metal content by A.A.S. Table 2.13 shows the 

results for I metal content of the oxides in terms of the observed range 
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for a series of products. 

Table 2.13 Metal Content Of Products. 

Pretreatment Ni:secondary 

Metal Ratio 

None Typical of 

3rd or 4th 

cycle ppt. 

Filter Cake Typical of 

Washed Twice Cake Washed 

Two Times 

Ni 

60 

to 

64 

67 

to 

70 

Anion 

Exchange 

Typical of 69 

Solution Ex'd to 

At pH 1.5 72 

Fe 

t. Metal 

Zn Cu Co Al Na 

4.8 2.9 1.7 0.3 0.3 2 

to to to to to to 

5.2 3.3 1.4 0.4 0.4 4 

1.2 0.5 0.2 0.3 0.1 2 

to to to to 

1.4 0.7 0.4 0.4 

to 

4 

0.01 (0.01 (0.01 0.3 0.3 2 

to to to 

0.4 0.4 4 

Negligible concentrations of Cd, Sn, Pb, Mo and Ca were found. 

Table 2.13 shows that even with no pretreataent, an oxide was 

prepared containing >601 Ni, which is within the 501 specification. 

Furtheraore, concentrations of secondary .etals did not exceed the 

specifications given in table 2.2. However, with the introduction of a 

purification step, very low secondary .eta1 concentrations were 

achieved, with a corresponding increase in the Ni content of the 

product - up to 101 co~ed with oxides fro. non-pretreated filter cakes. 
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2.4.7 Conclusions and summary. 

The method detailed in the previous sections, involving the 

precipitation of nickel chloride and the subsequent preparation of 

nickel oxide, has been shown to be successful with respect to the 

overall purity of the oxide. Even with no purification of the 

precipitated nickel chloride, an oxide with an acceptable composition 

can be prepared, although results do suggest that with an increasing 

number of leach/precipitation cycles. (certainly in excess of 4), the 

combined copper and cobalt concentration of the product may become 

unacceptably high. 

If a more stringent control of the impurity levels and the nickel 

content of the product is required, it has been shown that washing of 

the precipitate and/or the use of anion exchange, are an effective means 

of achieving higher purity. Very good results can be achieved using 

either purification aethod, allowing a flexibility in the coice of 

purification technique, depending on the purity target. Ni:secondary 

metal ratios can be considerably increased where Fe, Zn and Cu are 

concerned, but to increase the Ni:Co ratio is aore difficult. However, 

the results do suggest. that a ratio similar to the Ni:Cu ratio will be 

obtained if anion exchange is used, and the HCI concentration of the 

solution to be treated, is increased froa the 2M/I value used in the 

experimental work. Work Qy Kraus and Nelson [4], suggests a 

concentration of greater than 6M/l should be used for considerable 

purification froa cobalt. 

In order to increase the Ni:Al ratio, washing of the filter cakes 
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is important, because Al3+ is an ion which is unable to form chloride 

anions in solution. 

Washing of the nickel oxide is essential in order to achieve an 

oxide of acceptable Ni content. Indeed, in this respect, the overall 

sodium chloride content of the oxide is a liaiting factor and depends 

on washing efficiency. To enable the washing stage to be as easy as 

possible, it is strongly recommended that washing should involve the 

oxide rather than the hydroxide because of the differences in the 

physical nature of the two compounds. 

Accepting that in terms of results, the basic method described is 

successful, what are the main points of importance and interest which 

derive fro. the work? 

a) Nickel chloride precipitation with HCI gas. 

1) Co.plete saturation of the catalyst leachate with BCI gas i~ 

unnecessary; a satisfactory reduction in nickel chloride solubilty, at 

room temperature, can be achieved without saturation. 

2) Coaplete precipitation of the nickel content of the catalyst 

leachate is also unnecessary, because residual nickel in solution after 

precipitation, is recycled. Thus an important flexibility in the 

quantity of HCl gas absorbed is present, negating the use of an accurate 

means to follow HCl absorption. 

3) Precipitates obtained fro. the Hel treatment, are very easy 
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to filter and form compact, dry cakes of good handleability. 

b) Repeated leach/nickel chloride precipitation cycles. 

1) Recycling of solutions after precipitation, for use in the 

leaching of a fresh batch of catalyst, is possible. No disadvantage to 

nickel extraction, or extent of precipitation over 4 complete cycles, is 

apparent. 

2) Recycling of solutions does have a detrimental effect on the 

purity of the precipitate. Continual recycling decreases Ni:secondary 

ratios. 

c) Washing of nickel chloride filter cakes. 

Washing of the filter cakes with concentrated hydrochloric acid, 

does solubilise a portion of the content. Problems associated with this 

fact, can be overco.e by: 

1) Returning nickel containing washings, (which are probably 

saturated with nickel chloride), to the leach stage - loss of nickel 

from the process in this way, is therefore avoided. 

2) Minimising the number of washes, (and volume of washing 

solution), depending on the purity of the oxide desired. 

d) Hydrogen chloride recycling. 
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The disadvantage of using HCl gas, where it is supplied 

commercially, is its expense relative to other common industrial gases. 

But the amount of gas required, can be minimised by: 

1) Recycling HCI containing solutions. 

2) Returning the HCI content of the filter cakes to the process. 

In theory, HCl will only be inputed into the system to replace 

that consumed during catalyst leaching. 

e) Overall nickel recovery. 

Overall recovery depends solely on the efficiency of the 

catalyst leaching stage; a yield of approxiaately 75' is achieved based 

on the catalyst containing 17' Ni. Future work should therefore attempt 

to improve leaching efficiency with this type of catalyst. However, 

with a different catalyst, which contains a .ore easily leachable nickel 

content, the method described could be applied with even greater 

success. 

f) By combining efficient filter cake washing with anion exchange, 

nickel chloride could be prepared with a purity of greater than 99.8'. 

By taking into consideration the above points, a method for the 

recovery of the nickel value from the spent catalyst, can be finalised, 

and is outlined in the scheme given in figure 2.5. 
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2.5 Method ~ The Preparation Of ! Concentrated Nickel Chloride So)ution 

~ Purification Of The Spent Catalyst Leachate. 

2.5.1 Introduction. 

In contrast to Method 1, Method 2 relies on the removal from the 

catalyst leachate of major secondary metals, to leave a concentrated 

solution which is purified to an extent to enable a nickel oxide to be 

prepared within the specification given in table 2.2. An outline of the 

proposed method is given in figure 2.6. 

The effect on the nickel content of the product, of a major zinc 

impurity, is investigated by preparing a nickel oxide product both with 

and without prior treatment of the process solutions with an anion 

exchange purification step to remove the zinc impurity. 

The preparation of nickel oxide from the purified nickel chloride 

solution is effected by the route described in Method 1 (2.4.6). 
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2.5.2 Leaching of the catalyst, and the removal ~! copper from the leach 

liquor ~ cementation. 

The removal of copper from solution can be easily achieved by 

using a simple cementation reaction involving iron metal: 

Fe + Cu2+ --------) Cu + Fe 2 + 

This method could also afford a method of copper recovery by 

employing iron in the fora of rods or plates fro. which the copper could 

be retrieved. 

The solubilisation of quantities of iron via the cementation 

reaction, would not complicate the nickel recovery process, because 

significant quantities of iron would already be present in the catalyst 

leachate. However, in order to minimise the excess solubilisation of 

iron via an acid reaction, it was essential to allow the ceaentation 

reaction to occur in leach liquors that were low in acid concentration 

(>pH 1). 

Preliminary experiments showed that if cementation was maintained 

at room temperature, and the iron was added in a massive form, rather 

than powder, (granulated and massive iron is relatively less reactive 

toward cementation than powdered fora [8]. (See also section 3.4», 

then negligible cementation of nickel occured. 

200g saaples of sieved catalyst were each leached with 320m 1 of 

201 (v/v) hydrochloric acid. (An approximately stoichiometric quantity 
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of acid). The leach mixtures were stirred for 4 hours with no external 

heating. After 1 hour, 109 of coarse iron filings were added. 

Following the 4 hour period, the leach mixtures were filtered, and the 

leachates analysed for metal content by A.A.S. 

Table 2.14 shows the results of these analyses in terms of the 

range of concentrations found, together with typical Ni:secondary 

metal ratio values. 

Table 2.14 Leachate Analysis. 

Ni Fe In Cu Co Ca Al 

Conca with Fe 65-69 25-27 6-10 <0.5 0.5-0.6 (0.07 0.6-1.0 

treatment (gIl) 

Without Fe 65-69 20-22 8-10 4-6 0.5-0.8 <0.07 0.6-1.0 

treatllent (gIl) 

Typical Ni:M 2.5 7.4 200 105 1500 85 

with Fe 

Leachate pH • 2.0 to 2.5 Voluae of leachate • 69 to 931 of leach soln 

Reference to table 2.14 shows that the copper concentration in the 

leachates was reduced considerably by the iron treat.ent - down to 

(0.5g/1. With the ceaentation technique, the Ni:Cu ratio in the 

leachates was reduced to a value calculated as being acceptable for the 

subsequent preparation of nickel oxide. (See table 2.2). 
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2.5.3 The removal of iron and aluminium from the leachate ~ ~ 

adjustment. 

The precipitation of impurity metal ions from solution by 

hydrolysis, caused by a controlled pH adjustment, is a common technique 

in hydrometallurgy used for the separation of certain secondary metals 

from the primary metal solution. Indeed, the removal of Fe 3 + from 

solution as a hydroxy type precipitate, (Fe 3 + can precipitate in a 

number of forms by hydrolysis [9], depending on conditions, such as 

geotite and jarosite [10,11]), is used in industrial operations. 

The use of hydrolysis for the separation of iron from other metals 

in solution, is particularly attractive because of the very small 

solubility product of Fe(OH)s [12], allowing complete precipitation of 

Fe 3 +, as Fe(OH)s, at a pH between 3.0 and 3.5, a value which is 

decidedly more acidic than is found for the hydrolysis of the majority 

of metal ions. (Ni 2+, Zn2+, C02+, Fe2+ undergo complete hydrolysis in 

the range pH 5 to 8 [13,14]. See figure 1.2). 

In the context of the present work, the removal of iron from the 

catalyst leachate, (essentially a nickel chloride solution), would be a 

simple matter of adjusting the pH of the liquor following the treatment 

of the catalyst leachate with chlorine gas to ensure iron in solution 

exists wholly as Fe S +. With this technique, it was suspected that a 

considerable proportion of the alu.iniua content of the leachate would 

also be precipitated by hydrolysis owing to the similarly low solubility 

product of Al(OH)s. (Complete precipitation of Al(OH)s occurs above 

approximately pH 4, but to achieve this value in a concentrated nickel 
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chloride solution would be difficult because of the problem of 

coprecipitation of Ni(OH)2). 

Catalyst leachates, pretreated to remove copper (2.5.2), were 

treated with chlorine by bubbling the gas slowly through the stirred 

solutions at 20-250 C. Complete oxidation of Fe 2 + in solution was 

assumed to have been effected when the solution reaained saturated with 

chlorine after cessation of the gas flow. 

After the chlorine treatment, the solutions were heated to 

boiling, stirred vigorously, and the pH adjusted to approximately 3.5 

with 4M NaOH solution. The hot liquor/precipitate mixtures were then 

filtered and each residue was compressed as much as possible. The 

filtrates were analysed for metal content by A.A.S. The range of 

concentrations found are given in table 2.15. 

Table 2.15 Filtrate analyses after iron hydroxide precipitation. 

Ni Fe Zn Cu 

Cone. (gIl) 57-59 (0.01 0.5-7.5 (0.5 

Ni:M Ratio >7000 apprx 8 200 

Co 

0.5 

110 

Ca 

0.2 

290 

Al 

0.05 

1150 

The results show that the combined oxidatio/pH adjustment step 

reduces the iron and aluainiua concentrations to low levels. 
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2.5.4 The preparation of nickel oxide from the purified nickel 

chloride liquor. 

The procedure described in section 2.4.6, was used to prepare 

samples of nickel oxide from the treated leachates (60g/l Ni ~ pH 3.5): 

a) With no further treatment of the liquor. 

b) With treatment of the liquor by anion exchange using 

Amberlite lRA-400 to reaove zinc fro. solution. (See section 2.4.5). 

Table 2.16 shows the ranges of metal concentrations found by A.A.S 

in the nickel oxide sa.ples. 

Table 2.16 Metal Content Ot Nickel Oxide Sa.ples. 

Ni Fe 

No Exch' 62-65 (0.01 

Treatment 

Zn 

6-8 

Metal Content (~) 

Cu Co Ca Al 

<0.3 0.4-0.6 0.2-0.3 <0.1 

With 68-71 (0.01 0.001 <0.3 0.4-0.6 0.2-0.3 <0.1 

Treatment 

Na 

2-4 

2-4 

The results show that the purity of the oxides prepared were 

within the specification given in table 2.2. The samples were subjected 

to EDAX analysis, (see Appendix 2), which showed that negligible 

concentrations of Cd, Pb, Sn and Mo were present. 
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2.5.5 Conclusions and summary. 

Table 2.16 shows that a nickel oxide of sufficient yurity to meet 

the specifications given in table 2.2 can be prepared by the method 

proposed in figure 2.6. 

With an anion exchange purification step to remove zinc from the 

nickel chloride solution immediately prior to hydroxide precipitation, 

an increase in nickel content in the oxide of about 6' from 62-65' to 

68-71' can be achieved. The use of anion exchange in this way is 

ideally suited because complex zinc chloride anions are a species very 

easily absorbed by an anion exchange resin, requiring no control of 

solution acidity [15]. 

In conclusion, Method 2 relies on relatively si~le procedures, 

such as pH adjustment and the application of anion exchange resins, 

(techniques already in co .. on use in industry), and the ainimua of 

reagent input, but can achieve satisfactory results for the preparation 

of a smelting grade nickel oxide fro. the spent catalyst. The method 

could provide for copper recovery if necessary. 

With respect to yield, the sa.e co .. ents made about Method 1 are 

applicable to Method 2, i.e. the .ain factor governing the overall yield 

is the initial leach efficiency. (See 2.4.7). 
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2.6 ~ Ca.parison Of The Two Methods - General Conclusions. 

From a purely subjective viewpoint, what would be the advantages 

and disadvantages of each method if expanded to an industrial scale? 

Although each method relies on a totally different approach to the 

recovery project, both methods were developed with common aims, viz:-

a) To involve the minimum of stages within the process. 

b) To use the minimum of reagents, with reagent recycling if 

possible. 

c) To use simple, manageable techniques. 

With these aims in mind, the processes have been given a firm 

foundation, in terms of practical and econoaic viability, if considered 

for industry. Overall, these constraints have been adhered to, but in 

terms of the cost of reagents, Method 1, the process involving hydrogen 

chloride gas, may be at a disadvantage. However, the method is 

ammenable to reagent recovery and recycling. 

From the practical standpoint, the use of concentrated, probably 

fuaing hydrochloric acid solutions throughout aost of Method 1, would 

pose more probleas on scale-up of the aethods to industry, while Method 

2 applies techniques co .. only employed in industrial hydrometallurgical 

operations - an obvious advantage. 

A factor which plays an important role in the degree of success of 

a particular recovery operation in industry, is the flexibility of the 
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method regarding the composition of the raw material feedstock. With 

this factor, the concept involved in the recovery project is very 

important. If the process relies on liquor purification, leaving a 

solution containing only the primary metal, as in Method 2, with 

separate purification stages for specific impurities, then the 

introduction of a new contaminant to the feedstock may result in the 

need for the introduction of further process stages to maintain product 

purity, and therefore its suitability for the market outlet. However, 

if the recovery concept involves the precipitation of the primary metal 

value fro. the process solution, as in Method 1, then the problems 

discussed above are less likely to occur, provided the precipitation 

technique is reasonably specific. 

With the above comments in mind, Method 1 would have an advantage 

if scaled up to industry. However, the final decision as to the 

suitability, would not only depend on the factors described, but also 

how well each method would integrate with existing on-site operations 

and resources. 

In conclusion, both aethods have been shown to be successful for 

the preparation, on a laboratory scale, of a smelting grade nickel oxide 

from a low grade spent nickel catalyst, and therefore foundations for 

the development of two industrial operations have been laid. 
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3.1 Introduction. 

Zinc chloride is produced on an industrial scale in the U.K. by 

William Blythe & Co. Ltd. The zinc chloride is sold as a concentrated 

solution, (46, 58 and 72~ w/w) , and as an anhydrous powder, for use in 

many industrial and commercial outlets, including: 

1) In pesticides as a timber preservative. 

2) In the chemicals industry, for exaaple in the manufacture of 

fluxes, diethy1 zinc catalysts in the polymer industry, and as a process 

chemical in the manufacture of insulin. 

3) In textile finishing for flaae proofing, and as a mordant. 

4) In the printing industry, in chemicals for etching 

lithographic plates. 

5) In the electronics industry as a dry battery electrolyte. 

6) As a corrosion inhibitor. 

The raw aateria1 used by Wi11iaa Blythe for zinc chloride 

production, is a secondary zinc residue, consisting of zinc oxide fumes, 

zinc ashes and fines, and various other residues. The residue 

originates from the metallurgical industry, and is a by-product of 

various smelting and refining operations. The residue most often used 

in the zinc chloride process, (described in this work as the 

conventional zinc residue), consists of about 651 In, as a mixture of 

metal and oxide. It contains quantities of impurity metals, Fe, Cu, MD, 

Al and Pb, generally in percentages of <21. (Table 3.1). Sulphate is 

also a co .. on impurity. 

The zinc chloride manufacturing process, which is a batch 
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Table 3.1 Composition Of Conventional Zinc Residue. 

Metal Zn Fe Pb Cu Al Mn so 

~wt. 60-70 0.5-1.5 0.5-1.5 <0.1 <0.3 <0.05 <0.1 

operation involving 2-3 tonnes of residue per batch, can be divided into 

three distinct process stages, (figure 3.1), viz: 

a) Acid killing - treatment of the zinc residue with 

hydrochloric acid to give an impure zinc chloride solution. 

b) Clearing - clearing the solution of major impurities. 

c) Zinc dusting - final refining. 

Acid killing. 

A volume of concentrated HCl, (36~ w/w) , aixed with press washings 

from downstreaa operations, is added to a batch of zinc residue. The 

reaction is exothermic and no external heating is required. When the 

reaction is completed, the pH is between 1 and 3. The aixture is 

filtered to give a "black filter press" residue, (which is washed 

twice), and a concentrated liquor containing 30 to 401 ZnCI2. 

Clearing process. 

The filtered liquor fro. the killing process is concentrated to 

about 461 ZnCl2 by evaporation, during which tiae sodium chlorate is 

added to completely oxidise the iron in solution to Fe 3 +. The pH of the 

liquor is then adjusted to approxiBately 3.5 to precipitate Fe 3 + and 

A13+ as hydroxides. 

73 



+ D~ 

~ 
0)0 

D~ ~::::J 
roo- O)QJ 

~ 
Cl).-. au: U--J 

........... 
en ~ =C::::J 

C\J ...--.. 

00 
...--..'-' u ...--..U 

« o~ ro 
~ co 

~ ~C.f') 
.-. UC.f') :::::u roQJ 

o~ at ~ 

0 Q..) 
uo .59 

C.f')1:.-

C.-. 
C.f')o 

B2( ~:J 
~ 00-

t:...:..-. 
0: Cl.-.J 

74 

c..n 
c..n 
0) 
U 
o 
~ 

CL 

01 
c: 

en 
en 
QJ 
U 
0 
~ 

CL 

01 
C 0.-. 
~ 

ro 
0) 

....--. 
U 

en 
en 
QJ 
U 
0 
I:.-
D-
Ol 
c 0.-. 

....--. 

....--. 
0.-. 
~ 



If the liquor gives a positive test tor sulphate, sufficient 

BaCl2 is added to precipitate all the sulphate as BaS04. 

The liquor is then treated with KMn04 to precipitate manganese 

from solution as Mn02. 

Finally the mixture of liquor and precipitated impurities is 

filtered to give a "red filter press" residue, (which is washed once), 

and a concentrated ZnCl2 solution which contains lead as the only 

major impurity. 

Zinc dusting process. 

The liquor resulting tro. the clearing process, is treated with 

zinc dust to precipitate lead and copper fro. solution. The 

precipitated metals are filtered off, and the filtrate is either 

evaporated to dryness under vacuua to produce anhydrous InC 1 2 , or 

concentrated to give 46, 58 or 721 w/w solution. 

The process described produces InC12 of a purity which is suitable 

for most industrial and co .. ercial require.ents. (Table 3.2). 

Table 3.3 shows the i~rove.ent in purity of the product compared 

to the raw zinc residue, in terms of In : secondary metal ratios. 

The process has proved, over the years, to be a successful 

operation in teras of both its cheaical and econoaic viability. 

However, problems are encountered, (as with all aanufacturing 
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Table 3.2 Technical Specification Of 46~ ZnCl2 Solution. 

ZoCI Zo 

46~ 221 

ZnO 

1.01 

Fe 

<5ppm 

Pb 

<lOp~ 

Cu 

<2ppm 

Al 

<5Oppm 

Table 3.3 Comparison Of Raw Zn Residue And Product ZnCl 2 

Zinc residue 

461 solution 

Zn Secondary metal ratio 

Fe Pb Cu Ai Mn 

65 65 1200 450 

44000 22000 110000 4400 

1600 

44000 

Mn 

(5ppm 

processes), particularly with the availability of raw materials and 

reagents, and with fluctuating aarket deaand for the product. 

The largest area of concern at the present, is the problem of 

availability of residues which are suitable for the current zinc 

chloride process. Of specific concern is the presence of undesirably 

high concentrations of impurities in the feedstock. This applies 

particularly to the levels of AI, Cu and sulphate. 

The current process can cope with higher levels of SUlphate, but 

the larger aaounts of BaCl2 required to re.ove the sulphate results in a 

considerable increase in production costs. 

The presence of unusually high concentrations of Al and eu 

however, have direct effects on the chemistry and economics of the 
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process. These effects arise fro. filtration difficulties and zinc dust 

consumption, respectively. These probleas have usually been overcome by 

placing strict specification limits on the impurity contents of the 

residue feedstock. These restrictions however, necessarily reduce the 

choice of arisings available for use in the zinc chloride manufacturing 

process. 

The aias of the work described in this chapter are to investigate: 

1) The problem of a high Al iapurity in the zinc residues, to 

enable these high Al residues to be used in the zinc chloride process 

without disadvantage. 

2) The cheaical behaviour of residues containing high 

concentrations of Cu, with a view to their use in the process, and to 

the recovery of the copper value. 

3) The use of iron metal to remove Pb and Cu from a zinc 

chloride solution, as an alternative to purification with zinc dust. 
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3.2 ~ Method For The Use Of High Aluainiua Zinc Residues In The Zinc -- ----

3.2.1 Introduction. 

In the process described in figure 3.1, any Al impurity present in 

the leachate is reaoved , together with the Fe impurity, si~ly by 

altering the pH of the liquor to precipitate these i.purities as 

hydroxides. This aethod of separation works well with leachates which 

contain relatively small concentrations of AI, but the filtration of 

larger quantities of hydroxide presents a problea because of the 

gelatinous nature of the precipitate. (1,13]. To avoid these 

filtration difficulties, Williaa Blythe i~se a maxi.ua Al content of 

0.3' on the zinc residues used for zinc chloride production. So far, 

this necessary restriction on Al content has not caused problems with 

the availability of suitable zinc residue feedstock. The forecast on 

the future availability of zinc residues sufficiently low in Al however, 

indicates that problems aay be encountered. Even at the present time, 

changes in techniques in the metallurgical industry result in zinc 

residues, containing higher percentages of AI, (often in excess of 3'), 

becoming available, replacing the available tonnages of residues which 

.eet the specification limit. 

The work carried out in this section of Chapter 3, describes a 

method of reaoval of Al based on the low solubility of aluminium 

chloride in concentrated zinc chloride solutions, saturated with HCI 

gas. 
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As Pb can often be a major impurity in zinc residue leachates, the 

effect of HCI saturation on the solubility of PbCl2 in concentrated 

ZnCI2 solutions, is also investigated. 

The ZnCI2-HCI-AICI3 systea is investigated involving a study of: 

a) The amount of HCI required to saturate ZnCI2 of varying 

concentration, and 

b) the variation of AICI3 solubility in such solutions. 

The results obtained fro. these investigations are then used as a 

basis of a .odification to the ZnCl2 aanufacturing process, to show 

that high Al zinc residues can be used succesfully for ZnCl2 

preparation, at least on a laboratory scale. 
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3.2.2 The use of hydrogen chloride gas to reduce the solubility of 

aluminium chloride in concentrated zinc chloride solutions. 
- -- -"-==.;:;.:~= 

In chloride solutions, many metals are present as anionic chloride 

complexes, a fact which is often utilised in the removal of metals from 

hydrochloric acid solutions, by anion exchange. (See section 4.3 ). 

Certain metals, such as nickel, aluainium and the Group 1 and 2 

metals, do not however, fora anionic chloride coaplexes readily. The 

fact that Ni 2+, for example, foras only weak complexes with chloride 

ions, has been used in this work, as a basis for its separation from 

other metals in solution by the aethod described in the previous 

chapter. The method involved the saturation of NiC12 solutions with 

HCI gas, which resulted in the precipitation of nickel chloride, while 

other metals, which are able to fora chloride complexes, remained in 

solution. Bearing in mind that the solubility of nickel chloride can 

be considerably reduced in this way, the possibility of separating 

aluminium chloride from a ZnCl2 solution, using a similar technique, 

was studied. 

A preliminary experiaent involving the saturation, with dry HCI 

gas, of an unfiltered mixture of high Al zinc residue leachate, showed 

that aluminium chloride could be precipitated. In this case, the Al 

concentration was reduced froa 12ag/ml to O.4ag/al, which is equivalent 

to a leachate derived froa a zinc residue containing 0.1' AI. 
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3.2.3 Evaluatio~ of the amount of hydrogen chloride gas required for the 

saturation of zinc chloride solutions of varying concentration. 

solutions of ZnCl2, (prepared from GPR grade reagent), varying in 

concentration fro. 30.0 to 67.51 w/w ZnCI2, were saturated with dry HCI 

gas, in a covered vessel, at 22 0 C. Saturation was shown by the use of 

bubble indicators before and after the gas was passed into the solution. 

The HCI saturated solutions were then analysed for acid content by 

acid-base titration , using methyl red as indicator. 

The results of this investigation are shown in table 3.4, and 

shown graphically in figure 3.3. 

Tabl~ 3.4 Hydrogen Chloride Saturated ZnCl2 Solutions. 

ZnC!z Vol. increase HCl in sat. HCl in sat. 

(Iw/w) on sat. (I) soln. (Iw/v) soln. (Iw/w) 

30 36.9 41.35 30.41 

38.5 34.5 38.51 26.93 

45 32.5 37.14 24.76 

53 32.0 35.15 22.24 

61 32.2 34.11 20.18 

67.5 31.4 32.01 17.88 

The results show that with increasing ZnCl2 concentration, 

1) the quantity of gas required for saturation decreased, and 
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2) the volume increase, resulting from the absorption of the gas 

into the solution, also decreased. 

During the saturation of the solutions with the gas, no 

crystallisation was observed, which indicates a high solubility of 

ZnC12 in the HCI saturated solutions. 
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3.2.4 The solubility of aluminium chloride in ZnCl2 solutions 

saturate4 with hydrogen chloride. 

Solutions of ZnCI2, varying in concentration from 30 to 67.5~ 

w/w, were treated with dry HCI gas, until near saturation of the 

solutions was reached. Powdered anhydrous aluminium chloride was then 

added, in slight excess, to saturate the solutions with aluminium 

chloride. Further dry gas was then passed into the solutions until 

complete saturation with HCI was reached, at 22 oC. 

Each liquor/aluminium chloride slurry was stirred, with a magnetic 

stirrer, for 2 hours. A glass sintered filter, (No.3 porosity), was 

then lowered into the liquor, and positioned so as to allow the solution 

to percolate up through the filter. Loss of BCI gas was minimised by 

keeping the vessel covered as .uch as possible. An aliquot of filtered 

solution was withdrawn and analysed for Al by a colorimetric method. 

(See Appendix 3). 

The results are given in table 3.5 and figure 3.4. 

It was found that the solubility of AI, as aluminium chloride, in 

the solutions, varied little over the concentration range 30 to 451 w/w 

ZnCI2. Within this range, the solubility was found to be <O.06agAl/ml. 

When the concentration was increased from 45S, the solubility increased 

sharply to reach a aaxi.um of >14agAI/al in solutions containing 60 to 

641 w/w ZnCI2. The solubility then decreased in solutions containing 

greater concentrations of ZnCl2. 
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Table 3.5 Solubility Of Aluminium Chloride In ZnCl2 Solutions, 

Saturated With HCl Gas. 

ZnCl2 cone. before 

HCl satn. (1w/w) 

30.0 

38.5 

45.0 

53.0 

54.0 

57.5 

61.0 

64.0 

67.5 

66 

Cone. At in HCl 

satd. soln.(mg/ml) 

0.02 

0.03 

0.05 

0.39 

1.28 

5.70 

14.60 

4.60 

3.60 
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3.2.5 The use of hydrogen chloride gas to reduce the concentration of Al - -- --
in leachates deriving from high Al zinc residues. 

The results obtained for the solubility of aluminium chloride in 

ZnCl2 solutions saturated with HCI gas, show that it should be possible 

to control the ZnCl2 concentration of leachates derived froa high Al 

zinc residues to remove most of the Al as an aluminium chloride 

precipitate. By saturating the leachates with HCI gas, the Al 

concentration can be reduced to values less than the limits imposed for 

easy filtration of the treated leachates. 

Conventional zinc residues generally require a weight of residue 

(g) : volume of solution (al) ratio of about 1:2. Therefore, a 

conventional zinc residue containing 0.3' AI, (accepted as the maximum 

value for the process), would produce a leachate containing about 

1. 5agAI /ml. 

Reference to figure 3.4, shows that in order to reduce the Al 

concentration in the leachate to <1.5agAl/al, the liquor should have a 

ZnCl2 concentration, prior to saturation with HCI gas, of <55' w/w, 

which corresponds to an S.G. of <1.65. (Figure 3.2). 

Based on this inforaation, the .ethod involving BCI gas, was 

applied to leachates derived froa high Al residues, with the aim of 

reducing the Al concentration in the leachates to an acceptable level. 

200.1 volumes of concentrated hydrochloric acid were treated with 

separate quantities of various high Al zinc residues until the pH of the 
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liquors, in each case , was 1.0. The reaction mixtures, were cooled to 

20oC, and sufficient concentrated hydrochloric acid was added to reduce 

the S.G. of the liquor to 1.47, a value corresponding to about 44S w/w 

ZnCI2. Each unfiltered reaction mixture was then treated with dry HCI 

gas, until saturation. The gas treatment was carried out in a covered 

vessel, with continuous stirring of the liquor using a magnetic stirrer. 

When saturation was complete, stirring was continued for a further hour, 

and the liquor was then vacuum filtered using a glass fibre paper and 

the minimum of suction to avoid loss of HCl gas. The filtered liquors 

were subsequently analysed for Al concentration by A.A.S. 

The results of these experiments are given tables 3.6 and 3.7, and 

show that when the leachates were saturated with HCI gas, the Al 

concentration in the liquor was reduced to within the 1.Smg/ml limit, 

from an initial concentration which varied fro. 17.7 to 6.7mg/al. This 

means that treatment of the zinc residues which contained 2.5 and 1.3~ 

AI, reduced the concentration of this impurity to an acceptable level 

for use in the ZnCl2 process. 

Coaparison of the results for aluminium chloride solubility in HCI 

saturated liquors, show that the Al concentration in the leachates is 

higher than for a ZnCl2 solution of similar concentration. In a 44~ 

ZnCl2 solution, aluminium chloride solubility is (O.OSmgAI/ml, (figure 

3.4), co~red to a leachate value of 0.2 to l.SagAI/al. 

An explanation of this discrepancy, may be attributed to the type 

of filtration used for the leachates. With suction filtration, (which 

was not used when determining the solubility of aluminium chloride in 
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Table 3.6 High Al Zinc Residue Analysis. 

Sample 

C1171 

C1171A 

C1171B 

Co.position (Iwt.) 

Al Zn 

3.7 62.5 

2.5 64.2 

1.3 63.8 

Fe 

1.4 

1.4 

1.3 

Pb Cu Mn 

0.04 <0.01 0.03 

0.32 0.01 0.03 

0.51 0.01 0.04 

Tabl~ 3.7 Effect Of HCl Gas On Leachate. 

Sample Wt.residue 

used (g) 

C1171 97.4 

C1171 97.4 

C1171A 98.0 

C1l71A 97.8 

C1171B 106.3 

Cl171B 103.8 

Leachate Acid added to Al conc.(mg/ml) 

SG IZnC12 adjust SG (ml) Before After 

1.51 46.5 25 17.7 1.5 

1.51 46.5 25 17.6 1.2 

1.52 47.0 33 12.0 0.4 

1.51 46.5 25 11.7 0.5 

1.54 48.5 46 6.7 0.2 

1.53 47.5 39 6.9 0.2 

HCl saturated ZnCl2 solutions), the conditions during filtration of the 

leachates, are not conducive to the liquor remaining saturated with HCl 

gas. Therefore, redissolution of some of the precipitated aluminium 

chloride is possible during the filtration procedure, which would give 

unexpectedly high concentrations of Al in the filtered liquor. 
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3.2.6 Application~! the hydrogen chloride method to the zinc chloride 

process. 

After treatment of the leachate with HCI gas, the liquor contains 

a high concentration of hydrochloric acid. To enable this leachate to 

be used in the ZnC1z process, the acid has to be neutralised. This can 

be achieved by dissolving quantities of low Al zinc residue in the 

liquor. 

Leachates originating from the experiments described in section 

3.2.5, were treated with conventional low Al residue, (batch 525, 

O.131AI), to use up the excess acid and alter the pH to 2. To avoid 

problems with high solution viscosity, the leachates were diluted with 

water, prior to the addition of zinc residue, to increase the volume by 

about 70s. 

The leachates were cooled and filtered, and the filtrates analysed 

for metal impurity content by A.A.S. The approximate ZnC12 content of 

each filtrate was determined by measuring the S.G. The results are 

shown in table 3.8. 

It was found that treatment of the diluted, HCI treated leachates, 

with low Al residue, resulted in ZnCl2 solutions of similar S.G. and 

purity to a typical leachate deriving from a conventional low Al zinc 

residue. Of particular significance in the results, is the Al 

concentration, which is consistantly less than 1.S.g/ml. 
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Table 3.8 Treatment Of Leachates With Further Zinc Residue. 

Sample Dilution 525 res. 

(ml) added(g) 

C1l71 145 

C1171A 160 

C1171B 180 

525 

87.3 

95.1 

113.6 

Liquor After Treatment 

SG ZnCl2 Vol. pH Al Fe Pb Cu Mn 

(i) (m1) (gil) 

1.48 44 339 2.05 1.30 4.11 0.40 0.01 0.14 

1.47 44 384 2.20 0.59 2.53 0.92 0.01 0.12 

1.49 45 430 2.20 0.53 2.41 0.53 0.01 0.15 

1.55 49 - 2.0 0.73 2.39 0.98 0.01 0.21 

Data for 525, a conventional low Al residue, are derived from a 

single acid leach of this residue. 
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3.2.7 The solubility of lead chloride in zinc chloride solutions 

saturated with hydrogen chloride gas. 

The experiment described in section 3.2.4, which investigated the 

solubility of aluminium chloride in zinc chloride solutions, saturated 

with HCI gas, was repeated for lead chloride, another of the impurities 

found in zinc residue leachates. The solubility of lead chloride in 

concentrated zinc chloride solutions at pHl was also investigated for 

comparison. 

The results are shown in figure 3.5, and tables 3.9 and 3.10. 

Table 3.9 Solubility Of PbCl 2 

In HCI Saturated ZnClz Solns. 

ZnClz cone. 

(1, w/w) 

30.0 

38.5 

45.0 

53.0 

61.0 

67.5 

Solubility 

(mgPb/al) 

5.50 

3.50 

1.73 

0.85 

1.86 

5.57 

Table 3.10 Solubility Of PbCl 2 

In ZnCl2 Solutions At pHI. 

ZnCl2 cone. 

(1, w/w) 

30.0 

38.5 

45.0 

53.0 

60.0 

66.0 

Solubility 

(mgPb/ml) 

0.96 

0.72 

0.62 

0.64 

0.65 

2.01 

The solubility of PbCl2 in HCI saturated ZnCl2 solutions was 

found to initially decrease when the concentration of ZnCl2 was 

increased from a 301 solution, and reached a minimum at about 531 ZnC12. 
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The solubility was then found to increase steadily with increasing 

ZnCl2 concentration. 

Relatively little change in the solubility of PbCl? was observed 

with varying ZnCl2 concentration in solutions at pHi, over the range 30 

to 60~ ZnCl2 

Figure 3.5 shows that the overall solubility of PbCl2, in ZnCl2 

solutions, was found to be higher in those solutions saturated with HCl 

gas, over the range of ZnCl2 concentrations investigated. 
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3.2.8 Conclusions and summary. 

The work descibed has shown that the solubility of aluminium 

chloride in concentrated zinc chloride solutions, can be significantly 

reduced by saturating the solutions with HCI gas. The concentration of 

aluminium chloride can be reduced to less than O.lmgAI/ml, from an 

original solubility in excess of i5agAI/ml before the HCI treatment. 

However the solubility in the HCI saturated solutions, does depend on 

the ZnCl2 concentration. The optimum concentration for maximum 

reduction in the aluminium concentration, is within the range 30 to 55' 

w/w ZnCI2. 

The solubility of PbCl 2 has been shown to increase in concentrated 

ZnCl2 solutions when these solutions are treated with HCI gas. This 

fact is probably due to the foraation of soluble anionic lead 

chioro-complexes. For lead removal, the optimum concentration is about 

53S w/w ZnC12. 

The application of hydrogen chloride gas for the reaoval of 

aluminium from high Al zinc residue leachates, has been shown to be 

successful; the solubility of aluainium chloride being reduced to 

<1.5agAI/ml. This concentration of Al is equivalent to a leachate 

deriving from a low aluminium zinc residue. In an industrial situation, 

it would be satisfactory to use measurements of the specific gravity of 

the leachates as a means of optimising the concentrations prior to the 

HCI gas treatment. The high concentration of HCI in solution can be 

used up by addition of low Al zinc residue, to fora additional zinc 

chloride. The final leachate would then have ZnCl2 and aluminium 
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chloride concentrations similar to those obtained by dissolving low Al 

zinc residue in hydrochloric acid in the conventional process. 

A scheme that integrates the Al removal step into the industrial 

ZnCl2 process is shown in figure 3.6. Three comments on the use of such 

a scheme can be made, viz: 

1) The method permits the use of the high Al zinc residues that 

are being produced in increasing quantities, but still requires the 

availability of low Al residue. 

2) No upper limit on the concentration of Al in the high Al zinc 

residue is imposed. The efficiency of aluminium removal depends only on 

the solubility of aluminium chloride in the hydrogen chloride treated 

leachate. 

3) Hydrogen chloride gas is required for the precipitation 

reaction, but subsequently becomes a substitute for concentrated 

hydrochloric acid. 

4) The quantities of low and high Al zinc residue required, are 

approxiaately equal. 
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3.3 The Recovery 91 The Copper Value Fro. !!~ Copper ~inc. Residues, And 

The Use Of These Residues In The Zinc Chloride Process. -- - - ---- - - -- ==-=~:= =-~==-=-

3.3.1 Introduction. 

Although the majority of zinc residues, and certainly those used 

conventionally for zinc chloride manufacture, generally contain only 

small quantities of copper, «O.lt), there are residues available which 

contain considerable quantities of this metal, and which are available 

in tonnages large enough to permit their use for both zinc chloride 

production and copper recovery on an economic industrial scale. 

However, at the present time in the U.K., these high copper residues 

are not used for zinc chloride production, due to the lack of a suitable 

copper recovery process. The production of zinc chloride alone from 

these residues, would be economically unviable, because the residue 

price reflects both its zinc and copper value. 

The following experiaental work describes a method for the 

preparation of copper chloride from a high copper zinc residue. Copper 

chloride was chosen as the product of the recovery process, because this 

compound is already produced by William Blythe. The method which will 

be described, was designed froa the outset, to allow the leachate, 

originating from the initial leach of the zinc residue, to be used 

directly for zinc chloride production by the established process. For 

reasons of econo.y, the incorporation of this feature in the process 

developed for zinc and copper recovery, is of prime importance if future 

use is to be aade of the high copper residues on an industrial scale. 
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3.3.2 [ish copper zinc residues. 

Samples of zinc residues, each containing a high percentage of Cu, 

were received from William Blythe. Table 3.11 shows metal analyses for 

each residue. 

Table 3.11 Sampl~ Analyses. 

Sample Zn Cu Fe Pb Al 

(Weight s) 

A 43.11 13.48 0.44 1.28 0.60 

B 35.31 20.17 0.62 1.44 0.40 

C1015C 24.4 54.6 0.36 2.70 0.06 

C1015E 42.9 14.1 0.34 1.06 0.49 

CI015F 34.4 25.4 0.50 1.80 0.34 

Quantities of each saaple were treated with a slight excess of 

concentrated hydrochloric acid, to give a liquor with a pH of between 0 

and 0.5. After allowing the leach aixture to cool, (the reaction in 

each case was found to be very exothermic), it was filtered and the 

resultant leachate was analysed by A.A.S. The results of these analyses 

are shown in table 3.12. 

As can be seen from table 3.12, very little solubi1isation of the 

copper content of the zinc residues occured. Inspection of the leach 

residues showed they were co.posed of a considerable proportion of 

metallic Cu, a fact which explains the low concentration of solubi1ised 
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Cu in the leachates. 

Sample 

A 

B 

C1015C 

Cl015E 

C1015F 

Cu 

3.21 

0.60 

0.10 

0.07 

0.05 

Tabl~ 3.12 Leachate Analyses. 

Fe Pb 

(cone. gil) 

3.85 

3.41 

2.31 

2.14 

2.46 

0.59 

0.36 

0.51 

0.50 

0.39 

Al 

0.26 

1.08 

0.08 

1.01 

0.85 

Dried leach res. 

(1. of sample) 

53 

69 

77 

39 

38 

A semi-quantitative analysis of the leach residues, by EDAX (see 

Appendix 2), showed that each was eo.posed aainly of Cu, with smaller 

quantities of Zn, Al, Pb and Si. 
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3.3.3 Recovery of the copper value, as copper chloride, from sample ~ 

high copper zinc residue. 

Sample B was chosen for the investigation into copper recovery 

because apart from the high Cu content, concentrations of the secondary 

metals Fe, Pb and Al are similar to a conventional zinc residue used for 

the manufacture of zinc chloride. 

Quantities of sample were treated with concentrated hydrochloric 

acid to give a leachate of between pH 1.0 and 1.5. 100g of residue 

required 110ml of reagent. The leachate was found to contain impurities 

in concentrations comparable to those found in leachates deriving from 

conventional zinc residues. The leach residues, after filtration, 

weighed between 76 and 78g. 

3.3.3b Solubilisation of the leach residue. 

60g of leach residue was added to 115aL of water, acidified with 

5m1 of concentrated hydrochloric acid. Chlorine gas was passed into the 

stirred mixture until the copper metal had been completely solubilised. 

This was indicated by the change in colour of the liquor from dull green 

to a bright apple green, and the liquor becoming saturated with 

chlorine. The reaction was slightly exothermic and no heating was used. 

The cooled reaction mixture was filtered and the filtrate analysed by 

A.A.S. 
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A further 60g sample of leach residue was treated and analysed in 

a similar way with the exception that the sample was treated with two 

60ml volumes of concentrated hydrochloric acid to solubilise the 

remainder of the leachable material. This was followed by a thorough 

wash of the residue with water, before the chlorine treatment as 

described. The samples of leach residue were found to be reduced to 45 

to 50i in weight during this acid pretreatment. 

The two procedures described were repeated with further samples of 

leach residue. The solutions so prepared were approximately 2M in 

copper chloride and 0.4M in HCI. 

The residues from the chlorine treatment were 6 to 9i of the 

original leach residue. EDAX analyses of washed samples of these 

residues showed them to be mainly composed of Si, apparantely as a sand, 

with negligible concentrations of Cu. 

Table 3.13 shows the range of Cu:secondary metal ratios found in 

the copper chloride solutions prepared as described. 

Table 3.13 Copper Chloride Solution Analyses. 

Leach residue 

Non pretreated 

Pretreated 

Cu:secondary metal ratio 

Zn h Th ~ Al 

1.3-1.4 70-110 

2.0-2.6 230-270 
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It was found that pretreatment of the leach residue, with the acid 

wash procedure, gave copper chloride solutions which contained 

Cu:secondary metal ratios considerably improved to those in solutions 

originating from non pretreated leach residues. Ratios were increased 

generally by 10 fold for Mn and AI, and 2 to 3 fold for Zn, Fe and Pb. 

3.3.3c Purification ~f the impure copper chloride solutions ~ anion 

exchange. 

Table 3.13 shows that the main impurities in the copper solutions 

are Zn and Pb. The removal of a zinc impurity from a chloride solution 

can be readily achieved by anion exchange, (see section 2.4.5), because 

anionic chloride complexes of Zn2 + are tenaciously retained by a strong 

base anion exchange resin, even from very dilute solutions of 

negligible hydrochloric acid content. [2,3]. Work by Kraus and 

Nelson, [18], showed that lead can also be removed from chloride 

solutions, of low acid content, by a similar technique. 

Kraus and Moore [3], deterained that in hydrochloric acid 

solutions, copper is retained by a strong base anion exchange resin, 

only if the overall chloride concentration, (as hydrochloric acid), is 

greater than 3M. Therefore, to purify the copper solution by anion 

exchange, it is apparent that the overall chloride concentration 

should be less than 3M, (i.e. for very dilute hydrochloric acid 

solutions, e.g. >pH1, where the chloride contribution is essentially 

only fro. the copper salt, the concentration of CuCl2 , should be 

<1.5M), if retention of copper by the resin is to be avoided. 
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The use of an anion exchange resin therefore seems to be an ideal 

method for the purification of the copper solutions from the major 

impurities. In this way, the recovery of the zinc value as a zinc 

chloride solution, may be achieved by elution of the loaded resin 

with water. 

A sample of impure CuC12 solution, originating from a pretreated 

zinc residue, was diluted with an equal volume of water to give a 

solution containing l.lmole/l CuC12, (68.2gCu/l), and 0.2mole/l HCI. 

This solution was then passed through an anion exchange column 

containing Amberlite IRA-400 resin, (chloride form). The resultant 

solution was then analysed by A.A.S. Table 3.14 shows the effect of the 

treat.ent on the purity of the copper solution, in teras of Cu:secondary 

metal ratios. 

Iable 3.14 Effect Of Anion Exchange On CuC12 Solution Purity. 

Before 

After 

Zn 

2.6 

)40,000 

Cu:Secondary metal ratio 

Fe Pb Mn 

252 

254 

47 

4000 

4000 

4000 

Al 

800 

800 

It was found that in all cases when further solutions were treated 

in the same way, similar results were obtained. Impurity levels of Pb, 

and particularly Zn, were decreased draaatically. As expected, no 

improvements for Fe,Mn and Al were observed. 
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3.3.3d Preparation of anhydrous CuC1 2 from the resi~ !reate4 solutions. 

The resin treated copper solutions contain typically O.2M HCl. 

Before the preparation of the anhydrous salt, the acid needs to be 

neutralised. This can be conveniently achieved with CuO, which by 

raising the solution pH to above 3.2, would also serve to reduce the 

iron concentration in solution, (iron will be present as Fe 3 +, because 

of the previous chlorine treatment), by precipitation of hydrolised Fe 3 +, 

(section 2.5.3). 

A sample of the resin treated copper solution, was heated to 

boiling and treated with CuO, (SLR grade), to raise the solution pH to 

approximately 3.5. The liquor was filtered and the filtrate 

evaporated to initiation of crystallisation. Complete crystallisation 

was effected by cooling. To convert the hydrated CuCl2 to the anhydrous 

form, the crystalline mass was heated at 1050C for 3 hours. The purity 

of product was deterained by analysis with A.A.S. The results of the 

analysis is shown in table 3.15 

Ratio 

I 

p~ 

Table 3.15 Anhydrous CuCl2 analysis. 

Cu Zn Fe Pb Mn 

>47000 15000 )47000 20000 

47.13 0.05 

<10 30 <10 20 

Al Ca 

4000 6000 

110 80 

The results given in 3.15 were found to be typical of further 
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samples of anhydrous CuCl1 prepared in the way described. The Cu 

content of such samples varied between 47.08 and 47.201, giving an assay 

for CuCl2 of 99.6 to 99.91. The theoretical Cu content for pure CuCl2, 

is 47.26~. 
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3.3.4 Pretreatment ~f the leachate, conta!~!~ solubilised copper, to 

precipita~~ the copper as copper metal. 

In section 3.4 it will be shown that a concentrated lnC12 

solution, containing solubilised copper, can be treated with Fe metal to 

precipitate the copper fro. solution. In this way, the copper 

concentration can be reduced to less than 5mg/1. If massive Fe metal is 

used, and the solution is aaintained at room temperature, the work in 

section 3.4 also shows that it is possible to precipitate the Cu from 

solution without precipitating Pb. The use of massive Fe, e.g. rods, 

allows separation of the Fe and precipitated Cu to be effected. 

The method of precipitating Cu fro. lnC12 solutions without 

coprecipitation of Pb, has an attractive application to the work 

described in the previous sections. Thus, where an unfiltered leachate, 

originating from a high Cu zinc residue, contains a significant 

concentration of solubilised Cu, the aethod described would provide a 

route to confining the copper content of the zinc residue totally to the 

acid insoluble residue, without contamination of the residue with 

unreacted Fe or precipitated Pb. 

Sample A, described in section 3.3.2, is an example of a high Cu 

zinc residue containing a proportion of acid soluble Cu. 

200ml of concentrated hydrochloric acid was treated with 

sufficient saaple A to kill the acid to pH 0.9. The unfiltered leachate 

was cooled to 23oC, and 3.1g of clean Fe nails, attached to nylon lines, 

were coapletely imaersed in the liquor, which was stirred vigorously 
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with a magnetic stirrer. After 1 hour the nails were withdrawn, and the 

liquor filtered. The filtrate was analysed for Cu and Pb by A.A.S. both 

before and after the Fe treatment. 

A further two samples of sample A were treated similarly. The 

results of these analyses are given in table 3.16. 

Table 3.16 Treatment Of The Leachate With Massive Fe Metal. 

Run 

1 

2 

3 

Cu conc. (.g/l) 

Initial 

3190 

3340 

3305 

Final 

33.1 

17.0 

21.4 

Pb cone. (mg/l) 

Initial 

507 

580 

611 

Final 

510 

579 

606 

The results show that the eu concentration was reduced to 

concentrations which are comparable to those found in conventional zinc 

residue leachates, without a significant reduction in the Pb 

concentration in solution. 
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3.3.5 Conclusions and summary. 

The method described for the recovery of the copper value, as 

copper chloride, from a high Cu zinc residue, has been shown to be 

successful. 

The Cu content of each high eu zinc residue received fro. William 

Blythe, was found to be mainly composed of metallic Cu, which resulted 

in little soluble Cu in the leachates. Thus, in theory, each of these 

high Cu zinc residues, could be treated with the same method developed 

for saaple B for the recovery of the Cu value as copper chloride of 

cODBercial value. 

It has been shown that high Cu zinc residues which give leachates 

containing a significant concentration of solubilised Cu, can still be 

used for Cu recovery, using the .ethod described, by precipitating the 

copper with Fe .etal. In so doing, the Cu content of the zinc residue 

is restricted to the leach residue, and the leachate contains a Cu 

concentration comparable to those deriving from conventional zinc 

residues. 

Although the concentration of typical impurities in leach 

residues, would certainly differ, depending on the feedstock, the method 

developed for copper chloride aanufacture, would be flexible with 

respect to variations in the concentration of most impurities in the 

leach residues. Pretreat.ent of the leach residue with hydrochloric 

acid, followed by residue washing, accounts for the majority of the 

leachable impurities. This pretreataent stage can be considered an 
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important step in the production of a copper chloride of good purity. 

The presence of untypically large concentrations of Zn, Fe and Pb in 

solution could be dealt with, without any major change to the recovery 

route. Higher concentrations of Al could reduced to acceptable levels 

by ensuring on addition of the CuO, the pH is raised to at least 3.4 to 

coprecipitate the A13+ with the Fe3+ in solution by hydrolysis. 

However, high concentrations of Mn may be troublesome. 

In conclusion, the aethod described, provides a route for the 

production of good quality copper chloride, (>99.6S purity), from 

suitable high Cu zinc residues, while still enabling these residues to 

be used for zinc chloride production via the established process. 

A high Cu zinc residue can be considered suitable for the recovery 

of both Zn and Cu value, via the route developed if: 

1) The Cu content of the zinc residue is resistant to leaching 

with hydrochloric acid, but can be solubilised with a chlorine/acid 

coabination. Ideally, the copper content should be aetallic Cu. 

2) The Cu content of the zinc residue is soluble only to a 

liaited extent, to enable therefore, the precipitation of the Cu with 

aassive Fe, without an excessive increase in the solution Fe 

concentration to an extent which will give probleas in subsequent ZnCl? 

aanufacture. 

3) The leachate deriving fra. the high Cu zinc residue, is of a 

purity suitable for ZnCl2 aanufacture. 

A scheae based on the work described, for the industrial 
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manufacture of ZnCl1 solution and anhydrous CuCl1 , from a high Cu zinc 

residue, of the types described, is given in figure 3.7. 
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3.4 The Use Of Iron Metal To Reduce The Concentrations Of Lead And ----- - -- -----
Copper, In Concentrated Zinc Chloride Solutions, ~ Ceaentation!. 

3.4.1 Introduction. 

In the industrial manufacture of ZnC12r the lead impurity in the 

process solutions is removed by treatment of the solutions with Zn dust. 

(section 3.1). 

Zn + Pb2 + --------) Zn 2 + + Pb E = +O.63V 

This treatment also serves to reduce the copper concentration in 

solution. 

In + Cu 2 + --------) Zn2 + + Cu E • +1.10V 

This zinc dusting process has proved to be successful in the 

manufacturing process, but has the disadvantage of being an expensive 

treatment because of the cost of the reagent. 

Iron metal has long been used, and is a well known reagent for the 

precipitation of Cu from aqueous solutions. [5,6,7,8]. Its uses for 

this purpose in hydrometallurgical processes, is especially popular 

because of the frequency in occurance of iron as an initial impurity in 

such solutions. 

Fe + Cu2+ --------) Cu + Fe 2+ E = +O.78V 
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The use of Fe metal for the precipitation of Pb from aqueous 

solutions, seems to have been investigated to a very limited extent, 

because literature references on this subject are scarce. The reaction 

is favourable, 

Fe + Pb2~ --------> Pb + Fe2~ E = +O.31V 

and would seem to be an attractive method for the purification of 

aqueous solutions from a lead impurity. It would be particularly 

favourable where an iron impurity in solution already exists, and where 

chloride solutions are involved. The use of sulphate or sulphide 

precipitation would probably be undesirable because of the introduction 

of these anions into solution. 

In the context of the ZnCl2 process, the use of cementation with 

Fe metal as an aid to, or even a replacement for, the Zn dusting stage, 

does seem attractive because of the apparent economic advantage of 

replacing partly, or even wholly, Zn dust with Fe metal. 

Table 3.17 Cost Of Fe Powder And Zn Dust. 

Metal Cost (l/3Kg) 

~~rt 13 

Fe Powder 5 

The experimental work described in the following sections of 

Chapter 3, investigates the use of Fe .etal, both massive and powder, 
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for the purification of concentrated ZnCl L solutions from lead and 

copper impurities. 
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3.4.2 Iron powders. 

In any experimental work where metal powders are used, it is 

important to describe the nature of the powder. The powders of many 

individual metals, can be obtained in various forms, and can often be 

differentiated by the process of manufacture, which in turn, attributes 

the powders with a particular particle size distribution and density. 

[10,11,15]. This is certainly true of Fe powders, [12,16,4], which can 

be obtained in several different forms, the major preparative techniques 

for which are: 

1) Atomization - A stream of molten metal is struck with air or 

water jets. The particles formed this way are collected and sieved. 

This is probably the most common method of production. 

2) Reduction - Iron oxide is reduced in a solid or gaseous 

medium, to give sponge Fe or hydrogen reduced aill scale. The powder 

produced is usually the most impure of the powders. The powder has an 

average particle size of 6-70 microns, depending on the conditions. 

3) Electrolytic deposition - Fe is deposited from aqueous 

solutions by electrolysis. By control of the reaction conditions, 

powdery deposits can be obtained. Fe powder produced by electrolysis, 

has an average particle size of 50-80 microns. 

4) Decomposition of iron carbonyl - Fe2(CO)9 is decomposed at 

200 to 250oC, to give the finest and .ost expensive of the common types 

of Fe powder. The average particle size is about 7 microns. 

5) Mechanical co .. inution - Relatively coarse particles are 

produced by machining. 
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The experiments described in the following sections are designed 

to study the effect of Fe metal on the Pb, or Pb and Cu concentrations 

in concentrated ZnCl2 solutions. The type of Fe metal used, is varied 

between three types of powder, (table 3.18), and massive metal. In this 

way, the effect of each type of Fe metal, on the Pb and Cu 

concentrations, is studied. 

Tabl~ 3.18 ~ Of Fe Powder Used In Experimental Work. 

Fe Powder I Particle Size (microns) 

>125 90-125 63-90 <63 

"Fe .. etal powder" 46.5 22.5 18.0 13.0 

(BDH 28600) 

"Reduced by H2" <1.0 1.0 1.5 >96.5 

(BDH 28602) 

"Electrolytic" 29.0 27.0 24.0 20.0 

(BDH 28601) 

The experimental conditions are varied in terms of solution 

temperature, initial Pb concentration, type and weight of Fe used. 

Also, a parameter, the Fe:Pb .ole ratio, (which is derived from the 

ratio of the number of .oles of Fe to the number of moles of Pb 

initially in solution), is calculated for each experiment, as a means of 

comparing directly the efficiency of Pb relloval by different types of 

Fe. 
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In the first series of experiments, the cementation reaction is 

studied at high temperature, and the Pb concentration is determined 

after 5 hours. In later experiments, reactions are performed at room 

temperature, for 1 hour only. Under the less reactive conditions, the 

results obtained would be more useful when applied to an industrial 

scale. In a 20Om1 volume of solution, with magnetic stirring, excellent 

mixing can be achieved. It is therefore a reasonable assumption, that 

if the reaction is not complete after 1 hour at room temperature, then 

the particular reaction would likely to be of little use on a large 

scale, where hundreds of litres of solution would be involved, and 

which would likely to be subject to less efficient mixing. 

In the 1 hour experiments, the effect of Fe on both the Pb and Cu 

concentrations is studied. Kinetic experiments, involving a qualitative 

investigation into the rate of Pb precipitation, is also studied. 

All experiments involve 200.1 of 35-361 ZnC12 solution, at pH 1.0 

to 1.5, (similar to ZnC12 process solutions). Mixing of the reaction 

mixture is kept as constant as possible by using a magnetic stirrer on a 

fixed setting. 
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3.4.4 !reatme~~ of ~ot, concentrated zinc c~loride solutions with Fe 

metal, and the effect o~ !he sol~tio~ lead concentration. 

3.4.4a ~ffect o~ P~ preci~itation of variations in initial Pb 

concentration and the weight of "Fe powder" (BDH 28600) used. 

20Om1 volumes of 35~ wlw ZnCl2 solution, containing up to 

5000mg/ml Pb, as PbC12, were heated to, and maintained at, 80-85 oC, and 

treated with various weights of "Fe powder", (BDH 28600). The powder 

was added to the hot solution and the mixture stirred vigorously for 5 

hours with a magnetic stirrer. Loss of water, by evaporation, was 

reduced by placing a cold surface over the opening of the reaction 

vessel. After the 5 hour period, the mixture was cooled to 20oC, and an 

aliquot of filtered solution was analysed for Pb concentration by A.A.S. 

The results of this investigation are shown in table 3.19. 

Table 3.19 Effect Of Fe Powder On Pb Concentration 

In Zinc Chloride Solutions. 

wt. Fe 

(g) 

10.0 

10.0 

10.0 

10.0 

10.0 

10.0 

Fe:Pb 

(mole ratio) 

1529 

751 

385 

247 

191 

124 

121 

Pb conc. (mg/l) 

initial after 5 hrs 

121.3 1.3 

246.9 1.2 

481.3 2.4 

751.9 3.1 

972.3 5.4 

1492 4.4 



Table 3.19 contd. 

10.0 98 1895 4.4 

10.0 76 2428 3.0 

10.0 68 2742 3.7 

10.0 37 4986 2.2 

2.0 21 1761 11.3 

2.0 21 1765 11.3 

2.0 12 2991 4.6 

2.0 12 2980 8.9 

2.0 9 4078 9.2 

2.0 9 3894 10.6 

1.0 10 1767 89.0 

1.0 10 1766 61.9 

1.0 6 2957 59.3 

1.0 6 2980 68.4 

1.0 8 2188 114.8 

1.0 8 2217 40.0 

Table 3.19 shows that in all cases, where 10.0g of powder was 

used, the solution Pb concentration was reduced to <6mg/l, even when the 

initial concentration was in excess of 1000ag/l. In experiments which 

used 2.0g of powder, the concentration was reduced fro. between 1760 and 

4080 mgll to <12mg/l. In each experi.ent involving 1.Og powder, the 

concentration was reduced to between 40 and 115.g/l. 

3.4.4b Effect on ce.entation on variations in the ~ of Fe powder 

used. 
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A similar procedure was used to that described in the previous 

section, with the exception that the type of Fe powder used was varied 

in order to investigate the effect of this change had on Pb removal. 

Table 3.20 shows the results obtained. 

TabJe 3.20 liffect Of ~ Of Fe Powder On Pb Removal. 

Fe metal 

FeH 

FeE 

Fep 

FeR 

FeE 

Fep 

FeR 

FeH 

FeE 

FeE 

Fep 

Fep 

Felt 

Felt 

wt. Fe 

(g) 

10.0 

10.0 

10.0 

2.0 

2.0 

2.0 

1.0 

1.0 

1.0 

1.0 

1.0 

1.0 

19.3 

19.3 

Fe:Pb 

(mole ratio) 

1855 to 46 

1855 to 46 

1855 to 46 

21.8 to 9.5 

21.8 to 9.5 

21.8 to 9.S 

8.5 

8.5 

8.4 

8.4 

8.5 

8.4 

161.5 

161.5 

FeR = "Fe reduced by H2" (BDH 28602) 

FeE • "Electrolytic Fe" (BDH 28601) 
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Pb conc. (mg/l) 

Initial After 5 hrs 

100 to 4000 (5 

100 to 4000 (5 

100 to 4000 (6 

1700 to 3900 (12 

1700 to 3900 <12 

1700 to 3900 <12 

2188 271.9 

2188 153.8 

2217 458.5 

2217 201.0 

2188 114.8 

2217 40.0 

2217 954.6 

2217 426.4 



Fep = "Fe powder" (BDlI 28600) 

FeH = Fe nails (1") 

It was found that experiments using 1.0 and 2.0g of powder gave 

similar results irrespective of the type of powder; the Pb concentration 

was reduced to <6 and <12mg/l respectively. 

Experiments involving 1.0g of powder, reduced the Pb concentration 

from about 170Omg/1 to between 40 and 46Omg/l, with the best reduction 

being achieved by the Fep type powder. 

Massive Fe was found to be relatively ineffective. 

An observation of note occured with experiments involving 1.0 or 

2.0g of powder. Soon after the addition of the powder to the hot 

solution, «1/2 hour), several spherical pellets formed, the formation 

of which was seen to be especially rapid when the FeB was involved. No 

powdered metal was seen to be present in the solution after the 

formation of the pellets, which had a shiny, metallic appearance. 
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3.4.5 I!eatme~1 Qf concentrated zinc chloride solutions with Fe metal ------_. --- ------- ----- --- - --

concentration. 

200ml of 361, ZnCl2 solution, at pH 1. 2, containing about 35Omg/L 

Pb as PbCl2, was treated with 1.3g Fep type powder. The mixture was 

maintained at 20-23oC, and was stirred vigorously with a magnetic 

stirrer. The variation in the solution Pb concentration with time was 

followed by withdrawing aliquots of solution which were then analysed 

for Pb with A.A.S. The experiment was repeated using FeE and FeH 

powders. 

The results are given in tables 3.21 to 3.23 and figure 3.8. 

Table 3.21 Fep Powder Table 3.22 FeE Powder 

(Fe:Pb = 27.2) (Fe:Pb = 25.7) 

Time(mins) Pb(mg/l) Time(mins) Pb(mg/l) 

o 354.5 o 375.3 

29 352.2 36 317.6 

56 338.2 59 282.3 

93 282.2 80 256.5 

117 227.4 97 240.0 

177 95.6 180 180.0 
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Ta~l~ 3.23 FeR Powder 

(Fe:Pb = 26.1) 

Time(mins) Pb(mg/l) 

o 369.2 

23 137.5 

41 49.8 

60 14.1 

81 <5 

101 <5 

Figure 3.8 shows that FeB reduced the Pb concentration to less 

than 5mg/1 in 80 minutes. In contast, the FeE and Fep powders were 

considerably less efficient in reducing the Pb concentration. A slow 

but steady decrease was observed giving values of 180 and 95.6ag/1 Pb 

after 3 hours, respectively. 

3.4.5b Effect of varying the weight of FeR powder ~ the solution P~ 

concentration. 

The previous experiment showed that the FeR powder has the 

greatest effect on the Pb concentration under the conditions studied. 

In the following experiments, the weight of this powder is gradually 

reduced to determine at which Fe:Pb mole ratio the Pb concentration was 

no longer significantly reduced. 

Saaples of FeB powder were added to 200ml volumes of 361 ZnCl2 
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solution containing about 350mg/1 Pb as PbCb. The mixture was stirred 

vigorously with a magnetic stirrer, and the temperature of the solution 

was maintained at 20-23 oC. After 60 minutes an aliquot of solution was 

withdrawn and analysed for Ph by A.A.S. 

The results are shown in table 3.24 and figure 3.9. 

Ta'hl~ ;3.24 Effect Of FeR On Solution Pb Concentration. 

Wt. FeH 

(g) 

5.4 

5.4 

2.6 

2.6 

1.3 

1.3 

0.64 

0.64 

Fe:Pb 

(mole ratio) 

283.4 

275.5 

132.2 

134.0 

66.9 

68.9 

35.1 

34.6 

Pb concentration (mg/l) 

Initial After 1 hour 

353.5 <5 

363.6 <5 

364.7 <5 

359.9 <5 

360.2 50.6 

350.2 22.5 

337.7 310.0 

342.9 315.0 

Very good Pb removal was observed for experiments involving 5.4 

and 2.6g powder, (mole ratio 280 and 133 respectively), the 

concentration being reduced to less than 5ag/l in each case. A further 

decrease in the weight of powder used, to 1.3g, (mole ratio about 68), 

was found to decrease the efficiency of Pb removal - a concentration of 

20 to 50mg/l was reported after 60 minutes. With 0.64g powder, (mole 

ratio about 35), little effect was observed. 
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3.4.5c Precipitation of Pb and Cu with Fe metal. --------------

The effect of various types of Fe metal on the Pb and Cu 

concentrations in concentrated ZnCl2 solutions was investigated. 

20Om1 volumes of 36~ ZnC12 solution, at pH between 1.0 and 1.5, 

containing about 350mg/l Pb and 7.5g/l Cu, as chlorides, were treated 

with various weights of Fe metal. The solutions were maintained at 

20-23oC and were stirred vigorously with a magnetic sirrer. After 1 

hour, an aliquot of solution was withdrawn from each experiment and the 

Pb and Cu concentration analysed by A.A.S. 

The results of this investigation are shown in table 3.25. In the 

table, the value for the Fe;Pb mole ratio was calculated using the 

weight of Fe remaining after complete precipitation of the Cu in 

solution by Fe. 

Table 3.25 shows that in all cases, the Cu concentration was 

reduced from 750Omg/l to less than 5mg/l. It was found that this figure 

was reached in less than 10 minutes, and less than 40 minutes with 

powder and nails respectively. The cemented Cu was of a powdery nature 

and did not adhere to the Fe powder. 

The effect of Fe .etal on the solution Pb concentration was found 

to decrease in the order FeR» Fep = FeE> Fen (l" nails), with 

concentrations of Pb after 1 hour of (5, 115 to 180, approx. 200, and 

approx. 345mg/1 respectively. 
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Table 3.25 Effect Of Fe On Pb And Cu Concentration~ 

Fe type 'lit. Fe Fe:Pb Pb(mg/l) Cu(mg/l) 

(g) (mole ratio) Initial 60mins Initial 60mins 

Fep 5.4 213.3 354.9 176.1 7500 <2 

Fep 5.4 194.4 389.4 115.5 7500 <2 

FeE 5.4 215.8 350.8 201.7 7500 <2 

FeE 5.4 211.9 357.3 191.0 7500 <2 

FeR 5.4 214.8 352.5 <5 7500 <2 

FeH 5.4 208.2 363.6 <5 7500 (2 

FeK 5.4 219.5 344.9 340.0 7500 (5 

Fel{ 5.4 213.3 354.9 350.0 7500 <5 
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3.4.6 Summary ~nd conclusions. 

3.4.6a The removal of lead from 35-36~ zinc chloride solutions. 

Solutions at 80-85 oC. 

The results show that if conditions involve a high solution 

temperature, (80-85oC), and vigorous stirring, which can be assumed to 

favour the precipitation reaction, then the addition of sufficient Fe 

metal to the solution will result in a considerable reduction in the 

lead concentration, and can be achieved irrespective of the type of Fe 

metal used, of those types studied. 

Very low Pb concentrations can be achieved, «12mg/1 over 5 

hours), with Fe powders in hot solutions containing up to at least 

400Omg/l Pb, as PbC12, if the Fe:Pb mole ratio, in 200ml of solution, is 

greater than 9.5. 

Solution at 20-230 C. 

FeB is by far the most effective for Pb removal from solution 

compared to the two other powders studied. With FeE and Fep powders, 

indications are that a reaction time of )3 hours is required to reduce 

the Pb concentration froa about 350.g/l to <lOOmg/l, with a mole ratio 

of 25. However, with FeB powder, <10Omg/l Pb can be attained in about 

30 minutes, and <5mg/l Pb in 80 minutes. With a mole ratio of at least 

132, <5mg/l can be achieved in less than 60 minutes. 
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Massive Fe is very ineffective toward Pb precipitation at 20-23oC. 

In ZnCl2 solutions which contain both lead and copper chlorides, 

the precipitation of Pb seems unaffected by the presence of the copper. 

The precipitation of the Cu occurs relatively rapidly, and leaves excess 

Fe metal to proceed with the precipitation of Pb from solution. 

3.4.6b Reactivity of different types of Fe metal toward Pb pre~ipitation 

from 36~ zinc chloride solutions. ------

The results clearly show, for solutions at 20-23oC, that weight 

for weight the FeR powder is the most reactive toward Pb precipitation 

compared to the other two powders and massive Fe. The greater 

reactivity allows a considerable reduction in the solution Pb 

concentration to be achieved in a relatively short period of time. 

The greater reactivity of the FeR powder can be explained simply 

in terms of the specific surface area, (S.S.A.), of this powder compared 

to the other two types. Table 3.18, which compares the particle sizes 

of the three powders, shows that the FeR type is the finer, and 

therefore can be assumed to have the greatest S.S.A. 

In a reaction which occurs essentially at the surface of the 

reagents, such as the cementation reaction, the rate of reaction depends 

very much on the fineness of the reagents. With this in mind, the four 

types of Fe metal studied, should have the cementation reactivity in the 

order FeR »FeE >Fep »Feft. At a solution temperature of 20-23oC, this 

reactivity series does compare favourably with experimental results. 
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In ZnCl2 solutions at 80-85oC, the rate of the cementation 

reaction is considerably faster than at room temperature. On addition 

of Fe powder to the hot solution, Pb deposits rapidly. Aggitation of 

the reaction mixture promotes the formation of conglomerates, which 

contain Fe powder and precipitated Pb. (Soft metals, such as Zn, Sn and 

Pb, tend to precipitate as spongy metals, which show a tendency to form 

conglomerates if compacted together.). Further agitation compresses the 

conglomerates by impaction, ultimately to form hard spherical pellets, 

of low S.S.A., and the initial reactivity of the Fe powder is lost. 

With this explanation, it can be seen why the extra reactivity of the 

FeH type powder, co.pared to the other powders, is no longer an 

advantage in hot solutions. 

In conclusion, it can be said that a lead impurity in a 

concentrated ZnCl2 solution, can be reduced in concentration by 

precipitation with Fe metal. 

By using powdered Fe, lead can be reduced to very low 

concentrations, «12mg/l), rapidly and simply. With reactions at 

20-23oC, FeH type powder is the most efficient in removing lead from 

solution compared to Fep and FeE powders, or massive Fe. At 80-85oC, 

the 3 powders are equally effective for lead removal. 

The precipitation of Cu from concentrated ZnCl2 solutions, to 

concentrations of <5ag/l, can be achieved effectively and simply with 

either of the 4 types of Fe studied. 
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3.4.7 Suggeste~ application of the precipitation of Pb and Cu with Fe 

metal to the zinc chloride manufacturi~ process. 

The use of Fe metal to reduce the concentrations of lead and 

copper in concentrated ZnCl2 solutions, as described in the previous 

sections of this chapter, could be applied to the manufacturing process 

in two ways: 

1) By applying the reaction to the filtered zinc residue 

leachate prior to the clearing process and omitting a Zn dusting process 

completely. 

2) By applying the precipitation reaction to the zinc residue 

leachate to remove the copper and the bulk of the lead from solution, 

but still operating a Zn dusting process, as a final refining step, but 

on a reduced scale. 

In the first proposed application, the aim would be to reduce the 

concentrations of lead and copper to within the technical specification 

of the commercial ZnCl2, i.e. (2 and (lOppm respectively. The 

experimental results obtained on the precipitation of Pb and Cu with Fe 

metal, do show that the application of this method is possible. 

However, in practice, the aodification of the manufacturing process in 

the manner described, aay be undesirable because it is likely that 

higher grade reagents, (e.g. ZnO for pH adjustment and the chlorate 

oxidant), would be required up process, to ensure solution 

concentrations of copper and lead remain sufficiently low. 

The second proposed application, seems more advantageous. The 
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existing ZnCl2 process would remain essentially unaltered, but would 

require less Zn powder per batch because the bulk of the lead, and 

almost all of the copper, would be removed from the process solution 

prior to the Zn dusting stage. A further, possibly more attractive 

advantage, would be the less stringent control required on the Cu and 

Pb concentrations in the Zn residue feedstock. The copper and lead in 

the leachate, would be reduced to acceptable levels early in the process 

stream, immediately prior to removal of the iron in solution, by the 

clearing stage. Figure 3.10 illustrates the scheme. 
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4.1 Introduction 

Exchange resins can be divided into three distinct groups, viz: 

a) Anion exchangers 

b) Cation exchangers 

c) Resins with metal chelating properties. 

The prescence of the weakly basic pyridine nitrogen in 

poly-4-vinyl pyridine, (PVP) , allows the resin to be described 

technically as an anion exchange resin, but the coordinating ability of 

the N donor atom also confers chelating type behaviour on the resin. 

Previous work on the behaviour of PVP toward metal retention 

involved investigations into the mechanisms by which the resin removed 

metal ions from solution. Particular reference should be made to 

interesting work by Kopylova [29,30], (see section 4.4). Literature 

references to the practical value of PVP for metal extraction from 

solution are, however, scarce; the data often being presented only from 

the standpoint of the metal-resin structural interaction. In view of 

this, it was regarded that a study on the characterisation of the resin 

from a practical viewpoint was warranted. Experiments described in this 

chapter are designed to achieve that aia by investigating the metal 

loading capabilities of the resin in chloride solutions of varying metal 

concentration and acidity. A study of concentrated solutions should be 

particularly important on three counts, viz: 

a) Hydrometalurgical leachates, (in which metal recovery and 

purification are of priae importance), are often concentrated solutions. 

2) In the concentrated choride solutions that are often found in 

metal recovery situations, many metals will be present as anionic 
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chloride complexes and although the resin is known to show extensive 

metal chelating ability, no studies of its behaviour in the presence of 

complexed metal ions have been carried out. The practical use of the 

resin will depend critically on the relative strengths of the 

chloro-metallate complexes and the resin-metal chelates. 

3) The removal of unwanted metal ions from leach solutions is 

often necessary, and the ability of PVP to purify solutions by 

selectively removing metal impurities is important. 

These three aspects of PVP are studied in this work. In all 

experimental work a batch technique was used, and the results were 

subsequently used to make predictions on the capability of the resin in 

seperating metals by column chromotography. 

The metals studied in the experimental work were selected from 

those most likely to occur in solutions arising from hydrometalurgical 

operations. 

Prior to the description of the experimental work, this chapter 

reviews: 

a) Anion exchange and anion exchange resins, and includes details 

on the formation of anionic chloroaetallate complexes, and the use of 

the resins for the retention of metal co~lexes from solution. 

b) Chelation and anion exchange resins with chelating ability. 

c) Factors which affect the rate of retention of metal species. 

d) Industrial uses of anion exchange resins, including those 

having metal chelating ability. 

e) Vinyl pyridine type resins. 

143 



4.2 AI!!on Ex~hange And ~ion Exchange Resins. 

4.2.1 General description~ 

Anion exchange resins, in common with the cation types, are 

insoluble materials composed of an inert, crosslinked polymer matrix, 

carrying fixed ionic groups. Associated with these groups are mobile 

anions or "counter ions", which are capable of exchange with a 

stoichiometric quantity of anions when in contact with an electrolyte 

solution. A typical anion exchange process can be written, 

where R represents the structural unit of the organic matrix, and X the 

counter ion. An anion exchanger can therefore be described as a cation 

matrix carrying exchangeable anions. 

The exchange process is reversible and usually achieved in solutions 

containing high concentrations of compounds of the X anion; for example, 

NaX, KX and HX. 

The exchange behaviour of the anion exchange resin , is determined 

by the fixed ionic groups, while the nature of these groups determines 

the exchange capacity. The resins can be divided into two groups -

those containing weakly basic species such as -NH2, and the strongly 

basic resins containing quartenary a..onium ions. The base strengtb of 

the resins determines their operative pH. Strongly basic resins remain 

ionised even at high pH values, whereas those containing simple amine 

groups, are only ionised in acidic enviroments and therefore are not 
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exchange active in alkaline solutions because of the formation of 

uncharged groups. 

x- H H 
I / 

-N+H + OH- --------) -N + H20 + x-
\ \ 
R R 

Quartenary Weakly basic Uncharged 

ion secondary amine group 

The weakly basic resins were the first type of anion resins to be 

prepared. Adams and Holmes (1,2] described a patent whereby an exchange 

resin was manufactured by the condensation of an aromatic amine, 

(n-phenylenediamine), with formaldehyde. The earlier resins, which were 

products of condensation polyaerisations, tended to be polyfunctional 

because further reactions with the aldehyde produced secondary and 

tertiary amine groups. This lack of control over the nature of the 

condensation products was a major drawback during their preparation, and 

resulted in the limited use of the earlier resins. 

With the develo~ent of styrene type addition polymers, a greater 

degree of control could be used on the extent of crosslinking and 

functionality induced during manufacture. 

Some of the most important anion exchange resins are based on 

crosslinked styrene polymers [3,4,5,6,7]. Basic groups are produced by 

chloromethylation of the styrene group, with subsequent treatment with 

ammonia or alkylamine, or a tertiary alkylamine, to produce anion 

exchange resins with weakly basic or strongly basic characteristics, 

145 



respectively. The latter reaction, the "quarternisation" of a 

chloromethylated resin, is the key reaction in the production of most of 

the well known, commercial anion exchange resins. Examples include 

Dowex 1, Amberlite lRA-400 and Duolite A-42, derived from 

trimethylamine, and Dowex 2, Amberlite lRA-410 and Duolite A-40, derived 

from dimethylethanolamine. Treatment of the chloromethylated 

intermediate with a secondary alkylaaine, gives a mono-functional weak 

base resin with tertiary amino groups [81. By treatment with ammonia 

and primary alkylamines, polyfunctional, weak base resins are obtained. 

Examples of resins of this type are Dowex 3, Aaberlite IR-45 , Nalcite 

WBR and Duolite A-14. 

Anion exchange resins with strong base quartenary phosphoric and 

tertiary sulphonic groups can also be prepared. 
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4.2.2 Ion exc~ange ~ilibria. 

Where equilibrium between an ion exchange resin and exchangeable 

ions in solution exists, an equilibrium constant K can be defined, such 

that, 

K = [Bn+][A+)n 
[Bn+) [A+) 

for the ion-exchange reaction, 

where barred species represent those in the solid phase and square 

bracketed quantities are the equilibrium ionic activities. Where 

concentrations are used rather than activities, the value K is not a 

constant, but a purely practical quantity, refered to as the selectivity 

coefficient KB A • True equilibriua constants are difficult to obtain due 

to the lack of reliable data for activity coefficients in the exchanger 

phase. Studies on ion exchange equilibria are therefore carried out in 

solutions where reasonable assuaptions can be made regarding ion 

activity coefficients. 

other practical quantities used to define ion exchange 

equilibria, are the distribution coefficient, KA [defined as the 

equilibrium concentration of a given ion in the exchanger, (meq/g), 

divided by the equilibrium solution concentration, (meq/ml)), and the 

separation factor, d, [defined as the ratio of the distribution 

coefficients of both ions in the exchange reaction, dBA = KBd/KA d ). 
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Both values are not constants and depend on the experimental conditions 

under which they are determined, but. do provide qualitative comparisons 

between various ionic species involved in exchange reactions. 
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4.2.3 Factors affecti~ the ra~~ o( metal retention. 

Ion exchange is a diffusion process. Although the actual exchange 

of ions is probably instantaneous, the rate determining step of the 

overall exchange reaction, is the interdiffusion of the exchanging ions, 

either within the exchanger itself, (particle diffusion), or in an 

adherent liquid "film" which is not affected by agitation of the 

solution, (film diffusion). Most rate laws concerned with ion exchange, 

(and sorption processes), therefore involve the use of a quantity, known 

as the diffusion coefficient, which takes into account the effect of 

various conditions have on the diffusion process, and hence on the 

overall kinetics of the ion exchange and sorption reactions. Consistant 

quantitative predictions on the magnitude of diffusion coefficients are 

difficult to obtain due to a lack of reliable theory. However a number 

of resin characteristics and reaction conditions are known to effect the 

rate of diffusion. These are discussed in a qualitative manner below. 

a) Degree of swelling and the mesh width of the resin. 

The rate of diffusion increases with an increase in the extent of 

swelling of the resin, and decreases with the width of the resin matrix 

[38,39]. The latter effect is particularly important where the mesh 

width and size of the diffusing species are comparable. One of the most 

important characteristics of the resin, governing both factors is the 

degree of crosslinking of the polymer network. Highly crosslinked 

resins swell only to a relatively li.ited extent and contain relatively 

small mesh widths. 

b) Size of the ionic species. 
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The smaller the species, the faster the diffusion in the absence 

of other effects that interfere. In weakly and moderately crosslinked 

resins, where the size of the pores allows solvation of the ions to 

occur, the size of the solvated species determines their mobility. In 

highly crosslinked resins there is little room for solvation and the 

size of the non-solvated ions determines the diffusion rate. 

c) Valence of the ionic species and the chemical nature of the 

resin matrix. 

Reduction in the mobilities of the diffusing ions can result from 

electrostatic and specific chemical interactions of the ions with the 

resin matrix. The extent of this effect can depend on the valence of 

the diffusing ionic species. Polyvalent ions are, in general, retarded 

to a greater degree than monovalent ions [38,40,41]. 

d) Composition of the pore liquid. 

The pore liquid, (the solution contained in the interstices of the 

resin matrix), can be considered to be the medium in which diffusion 

takes place. Thus its composition, viscosity and degree of ionic 

solvation, affects the mobilities of the diffusing ions. 

e) Temperature. 

As in solutions in general, the diffusion coefficient increases 

with temperature. Normally, the increase in mobility of the diffusing 

species, is greater in ion exchange than in ordinary aqueous solutions, 

because with increasing te.perature, retarding specific or electrostatic 

interactions become weaker, the matrix becomes more flexible, and the 

ions become smaller because solvation is reduced. 
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The factors outlined above, are particularly important to column 

operations, because the kinetics of ion exchange has an important effect 

on the sharpness of elution peaks, and hence on the efficiency of ion 

separation. 

The quantitative theory of ion exchange kinetics is very complex. 

Even for the simpler problem of ion exchange in batch operations, 

(compared to the column technique), kinetic theory has only been 

produced for certain ideal situations. Nevertheless, theories based on 

drastic simplifications of column kinetics, have been proposed and have 

often been used to predict the approximate performance of ion exchange 

columns. 
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4.3.1 Anionic metal - halide complexes. 

The existence of anionic metal-halide complexes in solution is 

fundamental to the ability of true anion exchanging resins to recover 

metals from solutions of metal halide salts. Reference to the occurance 

of these complexes are widespread, and fairly well documented. Some 

species are well known, such as [FeF6]3-, because of the common use of 

F- to mask Fe 3 + when this ion interferes in an analytical procedure. A 

further example is [AgCI2]- which accounts for the relatively high 

solubility of AgCl in strong hydrochloric acid. The non-existance of 

anionic halide complexes involving Alkaline and Alkaline Earth metals is 

also of note. 

Information concerning the relative stabilities of different metal 

halide complexes can be deduced by refering to the appropriate 

equilibrium constant for the complex foraing reaction. Two constants 

can be refered to, the stepwise or consecutive constant K, and the 

cumulative or gross constant • 

1) Stepwise constant K. 

For the reaction, 

MXn-l + X ~ •• =.==~ MXn 

where M = metal and X = halide, and concentrations are in mole/I, 

the constant Kn can be written, 
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Kn = [MXnl 
[MXn-l] [xl 

ego Ag+ + CI- ~======~ AgCI 

AgCI + CI- ~======~ (AgCI2)-

2) Gross constant B. 

For the reaction, 

log Kl = 3.53 

log K2 = 1.81 

mM + nX ~======~ M.Xn 

Ban = [M.Xn ] 
[M].[X]n 

logB62 = 30.0 

A considerable amount of data on both constants, K and B, for many 

inorganic complexes, can be found in the book, "Stability Constants", 

compiled by the Chemical Society (London), (Special publication No. 

13). 

Predictions on the relative stabilities of anionic metal halide 

complexes, based purely on theory, are difficult to make with any 

accuracy,but workers have in the past, attempted to classify metals into 

groups depending on their complex halide stabilities. Ahrland and 

co-workers, noted two classes of metals; type "a", which form complex 

ions with relative stabilities which decrease in the order F-» Cl- )Br-

>1-, and type "b", where the order is reversed. Class "a" incorporates 
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the metal ions with inert gas structures, such as Al3+ and B3+ , and it 

suggested that complexes are formed primarily by electrostatic 

attraction with little polarisation of electrons. The metals lying 

within the triangular region Cu-Os-Bi are classed as "b" type, and 

characterised by having large ions, of low charge, which are easily 

polarisable. Multivalent metals on the verge of either class, such as 

Mo, behave as metals of both types depending on the valency. Higher 

oxidation states, (eg. Mo6+), exhibits characteristics of class "a". 

However, lower valences, (eg. Mo3+), where polarisation of the ion can 

be greater, may be classed as type "b". 

The effect of increasing charge on the metal ion does show some 

predictable behaviour within the two classes. Isoelectronic metal ions 

of type "a", do show a tendency to fonn progressively stronger complexes 

with F- with increasing metal charge, although stability is limited due 

to the formation of oxo-complexes, induced by the high charge. For 

example, Cr6+ exists as Cr04 2- in solution. The formation of these 

oxo-complexes does not, however, exclude their use in ion exchange 

operations, as the recovery of Cr, as Cr042- from wastewater testifies, 

(see 4.3.4). Isoelectronic ions of type "b", generally form weaker 

complexes with CI-, Br- and 1- , and stronger complexes with F-, the 

higher the metal ion charge. 

On descending a group in the periodic table, Stability constants 

infer that heavier elements tend more toward "b"type behaviour. In this 

respect, reference can be made to the increased stability of Hg2+ and 

Ta3+ for Br- over F-, than for Cd2+ and Ga3+ with the same halide ions. 

Similarly, the platinum metals, show an increased tendency to complex 
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Cl-, Br- and 1- compared to Fe, in both +2 and +3 oxidation states. 

Increasing the solution halide concentration, has two effects on 

complex formation, Firstly, the charge effects the reaction equilibrium, 

[Mx+] + [X-] ~======~ [MXn](x-n)-

a greater proportion of Mx+ being involved in complex formation. 

Secondly, larger concentrations of halide ion, promote the formation of 

complexes containing increasing number of halide atoms. 
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4.3.2 Ion exchange of anionic metal complexes. 

Although anion exchange resins, by their very nature, are used 

widely for the exchange of typical anions, (eg. halides, 304 2 -, N03-

etc.) between solution and solid phase, this does not necessarily 

exclude the application of these resins to the retention and recovery of 

metal species. Many metals are able to form anionic chloride complexes 

in chloride solutions, the formation of which depends on various 

factors, (see section 4.3.1). Variation of the relative stabilities of 

the complexes in solutions of varying hydrochloric acid concentration, 

enables the separation of metals to be made using anion exchange resins. 

Indeed, separations of this nature, using column chromotography, are 

established and valuable procedures. With respect to their behaviour in 

hydrochloric acid solutions, metals can be divided into three groups, 

viz: 

1) Metals which are not exchanged regardless of acid 

concentration. (Alkali, Alkaline Earths, Sc 3+, Y3+, AI3+, Ni 2 + and 

Th4 +). 

2) Metals showing increasing exchange with increasing acid 

concentration. (eg. Fe 3+ and Ru3+). 

3) Metals decreasing in exchange activity with increasing acid 

concentration. (Transition aetals, especially second and third row 

elements). 

Many anion exchange studies in hydrochloric acid solutions have 
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been carried out by Kraus, Moore and Nelson [9,10,11], who have written 

an important series of papers collectively titled "Anion Exchange 

Studies", which give detailed accounts of the separation of metals in 

hydrochloric acid solutions, including the separation of ions of Zr and 

Nb, and of Co and Ni, in HCI/HF and HCI solutions respectively, using 

the commercial resin, Dowex-l. The ability of anion exchange resins to 

separate heavy transition metals such as Zr and Nb, by means of their 

halide complexes, is partiCUlarly important because stable aqueous 

solutions of these elements are only easily achieved by the formation of 

fluoride and chloride complexes. Indeed, one of the first anion 

exchange experiments, involved the separation of Hf and Zr, as fluoride 

complexes, with Amberlite lRA-400. (Huffman and Lilly [12]). 

Separation of these metals by alternative methods is difficult because 

of their similar chemical properties and ionic radii. 

The use of mixed solvent systems, for separation of anionic metal 

halide complexes, is often encountered in anion exchange. Mixing an 

organic solvent, (acetone or ethanol, for example), lowers the 

dielectric constant and increases electrical forces between ions. 

Complex ion formation then becomes more favourable. Pioneering work in 

this field was carried out by Fritz and Pietzyk [13], who investigated 

the exchange characteristics of resins in solutions with varying 

hydrochloric acid and organic solvent concentration. The effect of the 

presence of organic solvents can be considerable. Work by Korkisch 

[14], showed that in hydrochloric acid solutions, containing Ni, Fe and 

Co, the normal sequence of retention strengths on a resin, is 

dramatically altered. In 90i acetone/ 101 water, Fe 3 + is not retained, 

whereas Ni 2 + and C02+ are exchange active. 
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Separation of metals by exchange of their anionic complexes, is 

not only confined to species involving halides. Exchange of U6+ from 

solutions of sulphuric acid and nitric acid has been achieved [15]. 

Separations involving the exchange of oxalate complexes Zr4+ and Nb5 + 

[16,17]; platinum metals [18]; Sn4+ [19,20]; Sb5 + [19,20]; and Te 4+ [20] 

have been reported. Mention can also be made of the exchange of hydroxy 

complexes of Mo6+ [21,22],and the platinum metals [18]. 
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4.3.3 Anion exchan~ resins wit~ metal chel~t!~~ ability. 

A chelating agent is a compound containing donor atoms that can 

complex with a single metal atom to form a cyclic chelate. The 

principal atoms in coordination chemistry are N, 0 and S, each atom 

having at least one non-bonding electron pair to act as the donor 

orbital in the complex formation. 

Chelate complexes may be either neutral molecules, or positive or 

negative complex ions, associated with appropriate counter ions to 

produce electroneutrality. 

Just as chelates can be formed with single ligand molecules, 

incorporation of these ligands onto a cross-linked polymer matrix, 

produces chelate forming resins. 

The distinction between chelate resins and weak base anion 

exchange resins is often unclear. The capability of many of the latter 

resins to act as ion exchangers is unquestioned, but in some cases, a 

clear division of the exchange mechanism into either ion exchange or 

chelating, is a difficult task, due to the variation of resin property 

with solution composition [431, and the general vagueness of resin 

characterisation. For instance, .any chelating resins are described 

technically, as weak base anion exchangers, simply because of the 

presence of primary, secondary or tertiary amine groups in the polymeric 

structure. 

The chelating reaction, in chelating resins, is a diffusion 

process, and the general effects on ion exchange kinetics, of the 
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physical characteristics of the resin matrix and the solution 

composition, described in section 4.2, can equally be applied to the 

kinetics of both anion exchange and chelation reactions. 

The equilibrium constant K, for the reaction involving the 

coordination of an atom in a functional group, (L), on a resin matrix, 

with a metal species, (M), 

nL + M ~======~ LnM 

(barred quantities represent activities or concentrations in the 

so lid phase) 

differs from the constant involved in ion exchange equilibria, in that 

no resin counter ion is involved, 

K = [LnMl 
Lt] n [M] 

and can be referred to as the overall equilibrium constant, or stability 

constant, K, it being the product of the individual constants for the 

stepwise formula reactions. 

I + M ~======~ 1M K == &:M] 
][M] 

K = fii~k] 

Where more than one metal species exists in solution, a 

etc. 

displacement equilibrium exists, similar to a true ion exchange 
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equilibrium, eg., 

MI. + M' ~======:!I M'L + M 

For the reaction shown above, the exchange equilibrium constant K 

can be written such that, 

K •• ' = K.,/K. 

where K., and K. are the overall equilibrium constants for the 

coordination of the ligand L with M' and M respectively. 

Because the donor atoms in the functional groups of the chelating 

resins, can act as Lewis bases, (good examples being the N atom in 

resins containing amine and pyridine groups), metal ions have to compete 

with hydrogen ions for the available donor atoms. The pH of the aqueous 

system is therefore of considerable importance to the behaviour of a 

weak base resin, simultaneous equilibria existing, involving both resin 

protonation and metal chelation, 

H+ + L ~======a LH+ 

Kp = [LH+i 
[H+] [ ] 

which gives the equation, 

K = 
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[Mx+] = [H+] ') x [Mix+] x 1 
[tH+] '2 KKp2 

Therefore an increase in solution acidity results in a decrease in the 

metal loading of the resin. At an even lower pH the resin is present in 

a fully protonated form, and is inactive towards chelation, but not 

necessarily towards ion exchange. 

I-

The majority of resins derive their chelating ability from the 

presence of amine or imine groups in the polymeric structure. 

\ 
".-C=NH 

imine 

I 
-C-NH 

I 

amine 

Many studies on the metal loading character of these types of 

chelating resins have been carried out [43,44,45,46,47,48]. Resins 

containing the iminodiacetic acid group have been reviewed [49], and the 

properties of substituted diamine resins, described [50]. Reviews have 

also been published on commercially available resins, including Dowex 

A1 [51] and Chelex 100 [17]. 

Two other important types of chelating resin are those based on 

vinyl pyridine, (which are dealt with in some detail in section 4.4), 

and the commercially available Uniselec UR series (Unitika Co., Japan), 

which are phenolic chelating resins, and which have been used for 

various purposes [52,53,54,55,56], including the recovery of uranium and 
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nickel from waste water originating from flue gas treatment processes 

[57], and the removal of iron from acidic zinc plating baths [58]. 

Reviews on the Uniselec UR series, concerned with their development and 

applications, have been presented by Arakawa [59] and Uejima [60]. 

Various reviews on the general subject of chelating resins can be 

refered to [61,62,63,64], including studies on their applications 

[65,66], which are usually involved with their use for the removal of 

heavy metals from waste water [67,68]. 
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4.3.4 Industrial ~lications. 

Since the mid-1970's, the increased need to process poorer quality 

waters, and the resurgence of the uranium proecessing industry, have 

been major factors in the growth in the use of ion exchange resins for 

industrial applications. Improvements, both in resin manufacture and 

the exchange capabilities of resins, have further enhanced the scope of 

their use in industry, increasing their advantages, especially from an 

economic viewpoint, over competing processes such as solvent extraction, 

crystallisation, dialysis and electrochemical methods. Ion exchange 

resins are now used widely in industry and several applications can be 

cited, including: 

1) Water treatment - softening; dealkalisation; demineralisation 

and nitrate removal. 

2) Wastewater treatment - removal of radioactive nuclides; heavy 

metal removal; rinse water recycling. 

3) Chemical processing - catalysis; reagent purification; metal 

extraction and recovery. 

4) Sugar separation and purification 

5) Small scale uses - pharmaceuticals and reagent/ product 

analysis. 

Some of the more important uses of anion exchange resins in both 
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ion exchange and chelating situations are now described. 

4.3.4a !reatme~i of wastewater. 

Anion exchange resins are employed for the treatment of 

wastewaters, originating from industrial processes, to remove 

potentially harmful metals, before either the disposal of the water into 

the enviroment or recycling. The advantages of using resins for these 

applications are, 

a) the resins are non-toxic, 

b) subsequent metal recovery is possible, (and certainly 

desirable where metal values are concerned), 

c) the capability of handling waters containing solid matter by 

batch techniques, 

d) resins can be chosen that exhibit metal selectivity, eg 

between toxic and non-toxic metal, and can improve process efficiency. 

The use of anion exchange resins for the recovery of chromate from 

waste solutions, originating from chromic acid plating or chromate based 

corrosion inhibiting operations, is particularly widespread. Various 

resins have been used for this application, including pyridine type weak 

base exchangers [69] and ~berlite lRA-93 or lRA-400 [70]. In the 

aajority of cases, Cr species in solution are removed as chromate, 

Cr04 2-, and recovered as a strong chromic solution [71,72,73], Cr 

concentrations being reduced to less than 2ppm. 

Anion exchange resins are similarly employed for general heavy 

metal removal from wastewaters, especially where the metal is 
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particularly toxic, ego Hg [74], Cd [75] and As [76]. In some cases, 

actual recovery of the metal is desirable; for instance where a high 

metal value is concerned, ego pt [77,78]. 

A general study on the use of anion exchange resins for heavy 

metal purification of wastewaters, has been carried out by Hirai and 

Kudo [48], who used phenolic chelating resins to reduce 5-1Oppm 

concentrations of Pb, Cd and Cr to less than O.Olppm. Many other 

similar studies can be refered to, including those of Namda and Matsuda 

[67], Yamada [79] and Ueshima [67]. 

In the nuclear industry, ion exchange systems are often used for 

the removal of trace quantities of radioactive nuclides from water 

intended for release into the enviroment. Generally mixed beds of both 

anion and cation resins are used. The recovery of neptunium [80] and 

of americium and curium [81] from plutonium process waters can be cited. 

The strong base resin, Dowex SBR, has been used for the recovery of 

technetium from solutions containing a high concentration of fluoride 

[82]. An interesting study has been carried out by Nabratil and 

Martella [83], in which various anion exchange resins were investigated, 

to recover Plutonium from nitric acid waste solutions. Amberlite 

lRA-938 was reported to give the highest breakthrough capacity, (and the 

fastest elution rate), for column operations. 

4.3.4b Recovery of silver from waste photographic process solutions. 

In the photographic industry, considerable silver value is present 

in the waste solutions originating from the fixing stage of the 
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photographic process. Unreacted silver halides, present in the film 

coating, are solubilised by complexation with sodium or ammonium 

thiosulphate, forming complexes of the type, [Ag(SZ03)2]3- and 

[Ag(S203)3]5-. Although the silver in these solutions is normally 

recovered by electrochemical reduction, some use has been made of ion 

exchange processes on anion exchange resins [84]. Buyers [85], 

concluded that the use of ion exchange for the recovery of silver from 

photographic solutions has no advantage over the electrochemical method 

where non-dilute solutions are concerned ( )O.5g/l Ag). But for more 

dilute solutions, recovery by anion exchange is more favourable, not 

least from the economic point of view. Liquors originating from the 

film washing procedure, are one source of such dilute solutions. 

The industrial anion exchangers, AV-16-G and AV-17, have been used 

by Darankov [49], for the extraction of silver, as [Ag(S20S)2]S-, and 

Koboshi [86], has reported that in solutions containing unusually large 

concentrations of Br- and 1-, weak base resins are superior to strong 

base resins for silver recovery. 

4.3.4c Uranium production industry. 

The production of uranium from uraniua containing minerals is 

usually achieved via a sulphuric acid leach, following various ore 

pretreatment steps. In some cases, upgrading of the leach liquor is 

required, and this can be achieved with strong base anion exchangers 

[87,88], because uranium has an unusual ability to form anions in 

SUlphate media. 
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-------~ ~-------

n = 1,2 or 3 

Anion exchange on a resin, R, with a chloride counter ion, occurs 

via two reactions: 

The uranium content of the resin loaded phase, is eluted with NaCI or 

acid solutions. 

In processes using a carbonate leach, complex carbonate anions are 

formed, and these can also be removed on an exchange resin, by the 

process: 

The anion exchange resins that are used for the leach upgrading, 

are typically Aaberlite IRA-400, Dowex 1, Permutit SKB and Deacidite FF. 

It has been found that conditions can be chosen to enable anion exchange 

to be very specific for the uranium complexes, with equilibrium being 

achieved relatively rapidly coapared to typical exchange rates. Where 

the leach liquors exhibit poor settling and filtering characteristics, a 

modification of the batch type operation, called the resin-in-pulp 
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process, is employed, rather than the usual column technique. In the 

resin-in-pulp process, the unclarified liquor is contacted with a series 

of perforated stainless steal baskets, containing the exchange resin. 

Intimate contact of the resin with the liquor, is achieved by 

alternately raising and lowering the baskets through the liquor. 

However, equilibrium is reached more slowly than in the column 

operations. 

After upgrading of the leach liquor, the uranium in solution is 

precipitated with sodium or ammonium hydroxides. The precipitates 

normally contain about 80~ U30a. 

4.3.4d Uranium isotope separation. 

Host nuclear power stations employ uraniua fuel which has been 

enriched with the 235 isotope. Fuel enrichaent is normally achieved 

using the gaseous diffusion process, whereby gaseous UF6, is allowed to 

diffuse through diffusion barriers, the different rates of diffusion of 

the 235 and 238 isotopes enables isotope separation to be effected. 

During the 1970's, workers at the Asahi Chemical Industry Co. 

Ltd., developed and patented, a process for the separation of the 

uranium isotopes on anion exchange resins [89,90,91,92,93]. A solution 

containing U6 + co~lex ions, is passed through an anion exchange column, 

where the complexes are absorbed. A reducing agent is then used to 

elute the uraniua species and reduce the uranium to U4+. The resulting 

eluate is percolated through a second anion exchange column, containing 

an oxidising agent, where the U4+ complex ions are oxidised to U6+ and 
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absorbed by the exchange resin. The enrichment. factor over a limited 

number of redox cycles, falls short of that required by most nuclear 

industries, but economic factors make the use of this method for isotope 

enrichment desirable on an industrial scale. Various resins for this 

application are described by the authors, including those obtained from 

the chloromethylation and amination of cross-linked polymers, prepared 

from the addition polymerisation of styrene, vinyl toluene or 

ethylvinylbenzene with divinylbenzene. The functional groups are 

tertiary amines. 

4.3.4e Metal extraction. 

In the extraction of metals from ores, tailings etc., where the 

leach solutions can contain large quantities of contaminants and 

relatively small concentrations of the desired metal, especially where 

precious metals are concerned, ion exchange resins can be employed to 

selectively isolate and concentrate the desired metal. A good example 

of this type of extractive technique, involving uranium, has already 

been discussed, (see 4.3.4c), but further, perhaps less well known 

examples, can be refered to. The extraction of gold from ores and 

process tailings is often achieved with a cyanide leach. By aeration of 

the leach liquor, the gold is dissolved by the formation of [Au(CN)2]

complex ions. The gold is ultimately recovered by precipitation with 

zinc dust or aluminium .etal. Recently, anion exchange resins have been 

used to advantage, by incorporating them insitu with the cyanide leach 

liquor [94,95,96]. In this aethod, the gold complexes formed during 

cyanidation, are rapidly absorbed by the resin. At equilibrium, 

separation of the resin from the undissolved solids is achieved with an 
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appropriate sieve, or in some cases, the resin-in-pulp process, (see 

4.3.4c), has been used. Introduction of anion exchange resins into gold 

extraction processes, has been reported to increase the rate of leaching 

and eliminate several process steps, such as filtration and 

clarification of the leach liquor. Increased gold recovery has also 

been reported [96]. 

Reference can also be made to the improved recovery of selenium 

and tellurium [97], and of beryllium [98], using anion exchange resins 

in similar extractive processes to those for gold. 

A general review on the use of ion exchange resins in 

hydrometa11urgy, in which the commercial exchangers available on an 

industrial scale, and the results of their applications, are detailed, 

have been presented by Samborskii and Vaku1enko [99]. 

4.3.4f Upgrading of water purity. 

The purification of water for the use in non-sterile 

pharmaceutical products using Ambergard XE-352 resin, has been described 

by Scruton [100]. Kovac [101] has reviewed the use of anion exchange 

resins for the preparation of high quality water, free of metal 

contaminants, for the milk industry. 

In conclusion, it can be said that anion exchange resins have 

important, but at the same time, perhaps limited roles to play in 

industrial processes. Limited in the sense that the application is 

generally restricted where a relatively low quantity of the metal is 
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present. Larger quantities require progressively higher numbers of 

exchange/elution cycles, which is simply not practical or economically 

viable on an industrial scale. But in solutions where high 

concentrations are present, compared to the desired metal, for example 

in precious metal leach liquors, the flexibility of exchange resins, 

with respect to metal selectivity, can be fully exploited, and used to 

great advantage over other metal recovery techniques. 
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Polyvinyl-pyridine type anion exchangers are derived from the 

vinyl-pyridine monomer. 

2-vinyl pyridine 3-vinyl pyridine 4-vinyl pyridine 

Polymerisation occurs via the vinyl group. In practice, the 

polymers are usually cross-linked with 5-101 divinylbenzene, (DVB) , to 

produce insoluble resins with resonable resistance to thermal 

degradation, although the use of variuos other crosslinking agents is 

not uncommon. Included in this group are divinylacetylene and 

vinylcyclohexane [23,24,25]. An anion exchanger, produced from the 

copolymerisation of vinyl pyridine and vinylbenzylchloride, is reported 

to possess high thermal stability in acid and alkaline solutions [26], 

thermal stability being attributed to the presence of the aromatic and 

pyridine rings in the structure. Gorodnev [27], in a detailed DTA study 

of the thermal stability of vinylpyridine exchangers, reported that the 

physiochemical characteristics of the resins, remain unchanged up to 

1600 C. Resins with increased aechanical strength and heat resistance 

can be produced by conducting the copolyaerisation of vinyl pyridine and 

DVB, in the presence of vinylcarbonate [28]. 
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Vinylpyridines derive their anion exchange activity from the 

protonation of the pyridine nitrogen. Thus they can be refered to as 

weak base anion exchangers 

H+X-. 
I , 

I 
-c-c

I I 

+ y- ~======~ 

I 
-C-C
I I 

+ X-

Although the resin could remove anionic metal species from 

solution by this mechanism, an alternative process involving the 

complexing ability of the N-donor atoms of the pyridine rings, is 

possible. A considerable proportion of their retentive power has, in 

fact, been attributed to the coordination of metals directly to the 

nitrogen of the pyridine ring. In a detailed investigation into the 

methods of sorption of metals by ion exchange resins, with reference to 

vinylpyridines in particular, Kopylova [29,30), studied the shift and 

intensities of absorption bands in the infra-red spectrum attributed to 

different N-metal vibrations. It was shown that the initial infra-red 

spectrum of po ly-4-viny I pyridine , comtained peaks at 1598 and 1630/cm, 

corresponding to non-protonated and protonated pyridine nitrogen, 

respectively. After the resin had co.e into contact with various 

transition metals however, the 1598/cm band was shifted by up to l8/cm, 

the absolute value depending upon the metal involved. The intensity of 

the 1630/cm band was diminished. The shift was found to corrolate with 

the energy of the N-metal bond, which decreases in the order 

Cu}Ni>Cd>Co}Zn. 
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That the degree of protonation or hydration of the pyridine 

nitrogen is an important factor in the determination of retention 

characteristics of vinylpyridine resins, was recognised by Saldadze 

[31] • 

Various mechanistic and kinetic studies on the sorption of metals 

by vinylpyridine exchangers have been published. The sorption of Bi on 

resins of various structure, was investigated by Nad'ol, Kuseleva and 

Kopievher [32]. A polarographic study on the kinetics of anion exchange 

of chloride complexes of Zn and Cd, was described by Asambadze (33]. 

Results achieved, suggested the inner diffuse character of the resin, is 

an important factor in the retentive process. The sorption of tungsten 

by 2-methyl-5-vinylpyridine, and quantitative extraction of M06+ and 

W6 +, by polyfunctional, amino-substituted vinylpyridine resins, have 

also been investigated [34]. other general studies, include those of 

Paslikov [35], and Saldadze [31). 

References to patents on the industrial applications of 

vinylpyridine resins are sparse, but two examples are: 

a) The use of poly-4-vinylpyridine, DVB cross-linked resin for 

the recovery of Cr from dye industry waste liquor, originating from a 

mordant dyeing process (36). 

b) The developaent of a process to recover pure uranium from 

sulphuric acid solutions, containing approximately 550ppm U, with a 91 

DVB cross-linked resin, in which 991 recovery, has been reported [37]. 
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4.5 Poly-4-vi~lpyridine Meta! Extraciion ~ri.ents. 

4.5.1 Preparation of the resin for the experimental work. 

The resin used for the experimental work, was in 10 mesh bead 

form, cross-linked with 6~ DVB. 

4.5.1a Resin pretreatment. 

The pretreatment stage, involved completely stripping the resin of 

any metal loaded phase, using strong hydrochloric acid 

Hel 
metal loaded resin ---------) metal free, + metal chloride 

protonated resin 

4.S.1b Resin activation. 

Pretreatment of the resin using acid, was followed by an 

activation stage, in which the resin was prepared in the free base form, 

using strong ammonium hydroxide. 

metal free, 
protonated resin 

NH40H 
--------) unprotonated + NH4Cl + H20 

resin 

Use of the resin in the free base form in subsequent experimental 

work, allowed the effects on metal loading, of varying degrees of resin 

protonation, resulting from contact of the activated resin with varying 

concentrations of hydrochloric acid, to be studied. (Section 4.5.4). 

In each case, 2M solutions of HCI and NH40H, were used, using 
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volumes of solution approximately twice the resin volume. The solutions 

were stirred with the resin for 15 minutes with HCI, and 60 minutes with 

NH40H. Slow stirring speeds were used to avoid excessive attrition of 

the resin beads. After each stage, the resin was filtered under 

suction, and washed several times with distilled water. Special 

attention was paid to efficient washing of the resin, to remove all 

traces of ammonia solution. 

If the resin was to be stirred after activation, care was taken to 

prevent drying out, by keeping it in a closed, moist atmosphere. 

The choice of using two stages for resin activation, rather than 

ammonia solution alone, was found to be desirable on two counts. 

Firstly, the use of an acid pretreatment stage, avoided problems 

associated with metal hydrolysis in alkaline solution, and secondly, the 

stripping reaction using acid, was found to be very rapid, the reaction 

going to completion almost immediately on addition of the acid. the 

rapid reaction with HCI could be seen by the rapid colour change of the 

resin. (Most metals, when retained, were found to distinctly colour the 

resin. Copper, for example, showed an intense blue colouration, whereas 

the unloaded form of the resin, was pale yellow). 
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The experiments described in section 4.5, are based on the 

determination of the quantity of metal retained by a known weight of 

resin, when equilibrium conditions are reached between the resin and the 

metal in solution. In the cases where solution purifications are 

involved, the experiments decribed are based on the determination of the 

residual metal concentration. 

Each experiment used a sample solution of either 50 or 100ml, 

(containing a known quantity of standardised hydrochloric acid, and an 

A.R. grade metal chloride), which was equilibrated with 8-10g of moist 

resin, activated in the free base form, (see 4.5.1). All experiments 

were conducted at 20-22 0 C, and the solutions were well stirred during 

the reaction period. The length of time needed to reach equilibrium was 

determined by measuring the solution concentration at various time 

intervals. Under the experimental conditions described, equilibrium was 

reached in 30-40 minutes, but in practice, one hour was allowed before 

each experiment was terminated. 

4.5.2a Determination of metal loading. 

To determine the weight of metal retained at equilibrium, an 

indirect method, (subtracting the quantity of metal remaining at 

equilibrium from that present initially), was used for the preliminary 

experimental work, but, because of various impracticalities, was soon 

abadoned in favour of a direct method, (stripping the metal from the 

resin using a suitable reagent and determining the quantity of metal in 

178 



the resultant solution). 

When equilibrium had been reached, the resin was filtered, and the 

pH ot the filtrate measured. The resin was then washed 3 times with 

distilled water to remove residues of sample solution. The metal 

content of the resin was stripped using two 25ml portions of 2M Hel, 

slurrying the acid/resin mixture thoroughly before filtration. Finally, 

the resin was again washed with distilled water, (two 20ml volumes), 

before the solution comprising the acid stripped phase and the final 

wash filtrates, was analysed for metal content by A.A.S. 

4.5.2b Determination of residual metal concentration. 

At equilibrium, the resin/solution mixture was filtered, and the 

pH of the filtrate measured. The filtrate was then analysed for metal 

content by A.A.S. 
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4.5.3 Presentation of results. 

Results of the experimental work are presented in tabular form, 

and, where possible, illustrated with graphs. Loading curves are 

produced by plotting % loading against initial pH of the solution, or 

the initial metal concentration. 

WK = wt. metal stripped from resin, and WR = calculated dry wt. of resin 

used. The percentage dry weight of each new batch of activated resin, 

was generally in the range 47 to 53%. 

Each loading curve is presented with a specific weight of resin to 

volume of solution ratio, WR/V, and to enable direct comparisons to be 

drawn between loading curves of different metals, the WR/V parameter 

was held reasonably constant and generenly in the range 0.045 to 

0.050g/ml. 
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The effect of the initial solution pH on the loading capability of 

the resin, was investigated using the procedure decribed in 4.5.2 

Loading values were determined for Cu2+, Ni2+, C02+, Zn2+, Cd 2 +, 

Fe 3 +, Ca 2+ and K+, in solutions varying in pH from 0.28 to a maximum of 

4.7 and with metal initial metal concentrations of 0.5 and 10.0g/l. The 

results, except for Fe 3 +, Ca2 + and K+, are given in tables 4.1 to 4.5, 

and shown graphically in figures 4.1 and 4.2. For Fe 3 +, Ca 2 + and K+, 

loadings of <0.01'1 were observed and therefore no further dat.a are 

presented. 

A common shape for the loading curve is observed for all elements. 

The data infers that high acidity prevents metal retention, and '1 

loading does rise sharply as the pH becomes less acidic, reaching a 

maximum loading between pH 0.75 and 1.25, before falling steadily to 

lower loading values as the pH approaches neutral. Higher loading 

values are achieved for Cu2 + relative to the other ions studied. 

At least a ten-fold increase in the maximum loading figures are 

observed when t.he initial metal concentration is increased from 0.5 to 

lO.Og/i. 
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Resin wt 

(g) 

0.5g/1 Cu; WR/V = 0.065g/ml (upper table) 

10.0g/1 Cu; WR/V = 0.047g/ml (lower table) 

Cal. drywt. Initial Final Wt.loaded 

(g) pH pH metal (mg) 

Loading 

c.t. 

==================================================================== 
11.80 6.43 0.28 1.14 <2 <0.03 

11.60 6.32 0.50 2.50 30 0.47 

11.90 6.00 0.67 3.18 34 0.57 

12.10 6.59 0.97 3.59 34 0.51 

13.40 7.30 1.28 4.00 30 0.42 

12.21 6.65 1.96 4.23 15 0.23 

12.20 6.65 4.70 5.60 14 0.21 

--------------------------------------------------------------------

9.21 4.69 0.28 1.18 21 0.45 

9.11 4.64 0.50 2.30 185 3.99 

9.22 4.69 0.67 2.99 427 9.10 

9.21 4.69 0.97 3.52 441 9.40 

9.53 4.85 1.28 4.15 329 6.78 

9.44 4.80 3.70 Cu(OHh precipitation. 

--------------------------------------------------------------------
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Resin wt 

(g) 

0.5g/1 Ni; WR/V = 0.054g/ml (upper table) 

10.0g/1 Ni; WR/V = 0.050g/ml (lower table) 

Cal. drywt. Initial Final Wt.loaded 

(g) pH pH metal(mg) 

Loading 

'f, 

==================================================================== 
10.80 5.53 0.28 1.15 <1 <0.01 

11.01 5.64 0.50 2.54 3 0.05 

10.30 5.17 0.68 3.21 6 0.12 

10.52 5.39 0.97 3.68 13 0.24 

10.29 5.27 1.28 4.21 13 0.25 

11.20 5.73 1.96 5.65 7 0.11 

--------------------------------------------------------------------

9.20 4.84 0.28 1.17 <1 <0.01 

9.31 4.90 0.50 2.50 42 0.86 

9.50 5.00 0.68 3.19 137 2.73 

9.32 4.90 0.97 3.84 141 2.88 

10.00 5.26 1.28 4.25 113 2.15 

9.22 4.84 1.96 4.39 60 1.24 

9.21 4.84 4.60 5.71 (1 <0.01 

--------------------------------------------------------------------
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Resin wt 

(g) 

Table 4.3 Cobalt Loadi!!8 Wit~ 1M!. 

0.5g/1 Co; WR/V = 0.052g/ml (upper table) 

10.0g/1 Co; WR/V = 0.049g/ml (lower table) 

Cal. drywt. Initial Final Wt.loaded 

(g) pH pH metal(mg) 

Loading 

" 
==================================================================== 

10.30 5.32 0.26 1.17 <1 <0.01 

10.30 5.32 0.50 2.63 <1 <0.01 

10.82 5.65 0.68 3.31 1 0.02 

10.11 5.23 0.97 3.82 2 0.04 

10.10 5.22 1.28 4.11 3 0.06 

9.40 4.86 1.96 5.80 1 0.02 

--------------------------------------------------------------------

9.67 4.93 0.28 1.18 <1 <0.01 

9.81 5.00 0.50 2.51 31 0.63 

9.53 4.86 0.66 3.12 63 1.29 

9.80 5.00 0.97 3.87 103 2.07 

9.79 5.00 1.28 4.10 95 1.91 

9.65 4.92 1.96 5.20 23 0.46 

--------------------------------------------------------------------
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Resin wt 

(g) 

0.5g/l Zn; WR/V = 0.049g/ml (upper table). 

10.0g/l Zn; WR/V = 0.046g/ml (lower table). 

Cal. drywt. Initial Final Wt.loaded 

(g) pH pH metal(mg) 

Loading 

1. 

==================================================================== 
9.81 5.01 0.28 1.18 <1 <0.01 

9.99 5.10 0.50 2.59 1 0.02 

9.80 5.01 0.68 3.31 2 0.05 

9.40 4.80 0.97 3.90 5 0.11 

9.61 4.91 1.28 4.19 5 0.10 

9.72 4.97 1.96 4.75 4 0.08 

--------------------------------------------------------------------
8.40 4.23 0.28 1.17 18 0.43 

9.30 4.69 0.50 2.51 37 0.79 

9.61 4.85 0.68 3.16 85 1.76 

9.00 4.54 0.97 3.79 111 2.44 

9.33 4.71 1.28 4.15 80 1. 70 

9.62 4.86 3.30 5.31 15 0.31 

--------------------------------------------------------------------
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Resin wt 

(g) 

0.5g/l Cd; WR/V = 0.049g/ml (upper table). 

10.0g/l Cd; WR/V = 0.049g/ml (lower table). 

Cal. dry wt. Initial Final wt . loaded 

(g) pH pH metal (mg) 

Loading 

t, 

==================================================================== 

9.81 4.92 0.28 1.17 <1 <0.01 

9.70 4.87 0.50 2.63 1 0.02 

9.72 4.88 0.67 3.30 2 0.04 

9.89 4.96 0.97 3.85 2 0.05 

9.68 4.86 1.28 4.19 2 0.05 

9.75 4.89 3.15 4.81 1 0.03 

--------------------------------------------------------------------

9.59 4.89 0.28 1.19 2 0.05 

9.70 4.95 0.50 2.48 33 0.66 

9.68 4.94 0.67 3.21 47 0.95 

9.58 4.89 0.97 3.84 58 1.18 

9.61 4.90 1.28 4.18 59 1.20 

9.61 4.90 3.05 5.59 46 0.95 

--------------------------------------------------------------------
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4.5.5 Effect of initial metal concentration on loading~ 

In view of the considerable difference observed between maximum 

loading values obtained in solutions containing initially 0.5 and 

lO.Og/l metal, (see 4.5.4), the effect of the initial metal 

concentration on the metal loading of the resin, was investigated in 

more detail, at a pH corresponding to the approximate value at which 

maximum loading occurs. 

Loading values were obtained for Cu2+, Ni 2+, C02+, Zn2+ and Cd2+, 

at pH 0.68, using the procedure described in 4.5.2, for solutions 

varying in initial metal concentration from 1.0 to 20.0g/1. Results are 

given in tables 4.6 to 4.8, and in figure 4.3. 

Reference to the graph in figure 4.3, reveals a steady increase 

in the loading capacity of the resin, with increasing initial metal 

concentration. However, the loading capacity reaches an apparent 

maximum, when the initial concentration is in excess of 20g/l metal. 

The resin achieves greater loading values for Cu 2 +, relative to Ni?+, 

C02+, Zn2+ and Cd2+. 
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Table 4.6 Effect Of ~etal Concen~ration On Loading~ 

Resin wt. 

(g) 

Cu; WR/V = O.050g/ml (upper table). 

Ni; WR/V = O.048g/ml (middle table). 

Cd; WR/V = 0.051g/ml (lower table). 

Cal. dry wt. Initial metal wt. loaded 

(g) cone. (gIl) metal (mg) 

Loading 

!. 

================================================================= 
9.41 

10.11 

9.60 

10.00 

10.00 

4.76 

5.12 

4.86 

5.06 

5.06 

1.0 

2.5 

5.0 

9.0 

20.0 

59 

163 

276 

455 

541 

1.24 

3.20 

5.68 

8.99 

10.69 

-----------------------------------------------------------------
9.40 4.93 1.0 15 0.30 

9.22 4.82 2.5 48 1.00 

9.00 4.72 5.0 94 2.00 

9.09 4.75 9.0 124 2.60 

9.21 4.82 20.0 145 3.01 

-----------------------------------------------------------------
9.40 

9.40 

9.61 

10.00 

9.43 

5.04 

5.04 

5.15 

5.36 

5.05 

1.0 

2.5 

5.0 

9.0 

20.0 

(1 

9 

21 

55 

84 

(0.05 

0.18 

0.41 

1.03 

1.66 

-----------------------------------------------------------------
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Table 4.7 liffeci Of Metal Concentration ~ Loading. 

Resin wt. 

(g) 

Co; WR/V = 0.045g/ml (upper table) 

Zn; WR/V = 0.048g/ml (lower table) 

Cal. dry wt. Initial metal wt. loaded 

(g) conc. (gil) metal (mg) 

Loading 

." 

================================================================= 

8.81 

9.00 

8.72 

9.70 

8.90 

4.40 

4.50 

4.36 

4.85 

4.45 

1.0 

2.5 

5.0 

9.0 

20.0 

3 

7 

17 

59 

80 

0.07 

0.15 

0.40 

1.22 

1.80 

-----------------------------------------------------------------

9.50 4.67 1.0 5 0.11 

10.21 5.03 2.5 26 0.52 

9.62 4.74 5.0 58 1.22 

9.50 4.67 9.0 69 1.48 

9.51 4.67 20.0 127 2.71 

-----------------------------------------------------------------
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4.5.6 Loa4~~ characteristics of the resi~ i~ so!~tions of high 

chloride concentration. 

Many metals, particularly the transition metals, are able to form 

anionic chloride complexes, so enabling them to participate in anion 

exchange reactions with suitable counter ions on exchange resins. (See 

4.3.1 and 4.3.2). Poly-4-vinyl pyridine can, in theory, act as a weak 

base anion exchange resin. (See 4.4). The possibility of metal 

retention by PVP, by anion exchange of metal chloride complexes, has 

therefore to be considered. The effect of a high chloride:metal ratio, 

(where an excess of chloride would promote the formation of metal 

chloride complexes), on the metal loading of the resin was investigated. 

Loading values where determined for Cu2+, Ni 2+, C02+, Zn2+, Cd2+ 

and Fe 3 + by following the procedure given in 4.5.2, in solutions varying 

in pH from 0.28 to approximately 4, and containing an initial metal 

concentration of O.5g/1 with a concentration of 40g/1 KCI. 

A preliminary experiment involving Cu2+, an ion known to form 

complex halides, showed an enhancement for loading values in solutions 

up to a maximum of approximately 20g/l KCI, with no further increase in 

loading observed above this concentration. 

Results are given in tables 4.8 to 4.10, and shown graphically in 

figures 4.4 and 4.5. 

Reference to the data shows that the presence of the KCI produces 

greater loading values in all cases, with marked increases in loading 
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observed particularly for Cu2+ and Ni2+. No data data presented for 

Fe 3 + because of the precipitation of the hydroxide during the 

experiments. 
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!~ble 4.8 Effect Of High Chloride Concentration On Loa~ing. 

Resin wt Cal. 

(g) 

Cu; WR/V = 0.045g/ml (upper table). 

Ni; WR/V = 0.046g/ml (lower table). 

drywt. Initial Final Wt.loaded 

(g) pH pH metal(mg) 

Loading 

t. 

==================================================================== 
8.21 4.46 0.28 1.24 <1 <0.01 

8.70 4.72 0.50 3.45 37 0.78 

8.30 4.51 0.68 4.10 42 0.93 

8.50 4.61 1.28 4.75 43 0.93 

8.23 4.47 1.97 4.98 40 0.89 

8.40 4.08 3.50 5.39 44 1.08 

--------------------------------------------------------------------

9.26 4.63 0.28 1.24 (1 (0.01 

9.21 4.60 0.50 3.62 17 0.36 

9.25 4.62 0.68 4.28 30 0.65 

9.17 4.58 0.97 4.64 37 0.81 

9.32 4.66 1.28 4.94 36 0.97 

9.20 4.60 3.15 6.70 (1 <0.02 

--------------------------------------------------------------------

195 



Table 4. 9 ~ffect. Of High Chloride Concentration On Loadi!l.A!. 

Resin wt. Cal. 

(g) 

Co; WR/V = 0.044g/ml (upper table). 

Zn; WR/V = 0.046g/ml (lower table). 

dry wt. Initial Final Wt.loaded 

(g) pH pH metal (mg) 

Loading 

t 

==================================================================== 
9.31 4.37 0.28 1.23 <1 <0.01 

9.39 4.40 0.50 3.51 9 0.02 

9.48 4.45 0.68 4.39 16 0.36 

9.28 4.35 0.97 4.74 27 0.62 

9.29 4.36 1.28 4.91 29 0.66 

9.13 4.28 3.48 7.0 (1 <0.01 

--------------------------------------------------------------------

9.58 4.66 0.28 1.24 <1 <0.01 

9.41 4.58 0.50 3.40 4 0.09 

9.40 4.57 0.68 4.32 7 0.16 

9.14 4.44 0.97 4.64 11 0.25 

9.49 4.61 1.28 4.88 11 0.24 

10.28 5.00 3.50 6.81 4 0.07 

--------------------------------------------------------------------
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Table 4.10 Effect Of High Chloride Concentration ~ Load!~ 

Cd; WR/V = 0.046g/ml. 

Resin wt Cal. dry wt. Initial Final Wt.loaded Loading 

(g) (g) pH pH metal (mg) t. 

==================================================================== 

9.20 4.64 0.28 1.24 <1 <0.01 

9.24 4.66 0.50 3.56 1.5 0.03 

9.14 4.61 0.68 4.28 2 0.05 

9.31 4.69 0.97 4.74 3 0.07 

9.37 4.72 1.28 4.96 3 0.07 

9.09 4.58 3.14 6.5 2 0.05 

--------------------------------------------------------------------
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4.5.7 ~~lution purification. 

The application of PVP to the purification of metal chloride 

solutions, was investigated in terms of the effect in variations of both 

solution pH and the WR/V value on the concentration of the residual 

metal impurity. The results of such investigations, involving Alkali 

Metal chloride solutions, were then used to choose favourable conditions 

for the purification of various concentrated Transition Metal chloride 

solutions. 

4.5.7a Effect of ~~ 

The ability of the resin to reduce concentration levels of 

different metal impurities, in concentrated KCl solutions of varying 

initial pH, was investigated by determining the metal impurity 

concentration after the equilibration of a quantity of activated resin 

in the sample solution. 

Residual metal i.purity concentrations were determined using the 

procedure described in 4.5.2, for solutions containing 40g/1 KCI, and 

initially 500ppm Cu2+, Ni2+, Co2+, Zn2+ and Cd2+, and varying in 

initial pH fro. 0.28 to approxiaately 4. Solutions containing no KCI 

were also investigated. 

Results are given in Table 4.11 and displayed graphically in 

Figures 4.6 and 4.7, froa which it can be seen that maximum solution 

purification occurs within the pH range 0.8 to 1.1, (as would have been 

predicted using the data obtained from the previous experiments), with 
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almost quantitative removal within this region for Cu2+, Zn2+ and Cd2+ 

in concentrated KCl solutions, and for Cu2 + and Cd2+ in dilute 

solutions. In all cases, a high chloride concentration improves 

solution purification. 

4.S.7b Effect of increasing the !RLY valu~ 

Results of the previous experiment show that maximum solution 

purification occurs in solutions with an initial pH within the range 0.8 

to 1.1. The effect of increasing the WR/V value was investigated with 

a view to achieving quantitative removal of Cu2+, Cd2+ and Zn2+ from a 

40g/1 KCI solution. 

Residual concentrations were investigated following the general 

procedure described in 4.S.2 and with solutions containing initially 

SOOppm Cu2 +, Ni2+, C02+, Zn2+ and Cd2+ at pH 1.0. The solutions were 

equilibrated with different weights of activated resin, to give a WR/V 

value varying from O.OS to 0.30g/ml. Similar solutions containing no 

KCI were also investigated. 

The results are given in table 4.12, and show that concentrations 

of the metals under study are reduced to <2ppm in the KCI solutions, 

except for C02+, which was reduced to a minimum of not less than 

100ppm. 

4.5.7c Purification of transition metal chloride solutions. 

Separate solutions of 40g/1 NiCl2 and CoCI2, at pH 3.40 and 3.55 
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respectively, both containing a O.5g/l impurity of Cu2+j and a 40g/l 

solution of CuC12 at pH 0.28, containing 0.5g/l impurities of Zn2+ and 

Cd 2+, were treated with a quantity of resin to give a WR/V value equal 

to O.048g/ml. Residual metal impurity concentrations were determined in 

the usual way. 

Results are given in table 4.13, and show that Cu2+ can be reduced 

to <100ppm in both concentrated NiC12 and CoC12 solutions, and that 

levels of Zn2+ and Cd2+ in the concentrated CuC12 solution, can be 

reduced to <18Oppm and <55ppm respectively, with, in all cases, 

negligible extraction of the major metal ion present in solution. 
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WR/V 

(g/ml) 

Ta~l~ 4.11 Sol~tion Purification - Effect Of ~~ 

In 40g/l KCl solution (upper table) 

In dilute solution (lower table) 

Initial metal cone. 500ppm 

Initial Final Residual metal concentration 

pH pH Cu Ni Co Zn 

(ppm) 

Cd 

=============================================================== 
0.050 0.28 1.24 500 491 518 183 60 

0.049 0.50 3.46 8 310 470 69 45 

0.049 0.68 4.07 2 109 354 9 14 

0.048 0.97 4.39 2 95 303 6 5 

0.050 1.37 4.84 6 268 419 15 10 

0.050 3.18 5.25 99 449 479 394 375 

---------------------------------------------------------------

0.049 0.28 1.15 528 520 560 432 114 

0.046 0.50 2.58 218 508 557 429 183 

0.047 0.68 3.24 44 420 521 295 64 

0.049 0.97 3.70 31 329 463 220 22 

0.047 1.37 4.10 74 334 458 253 27 

0.047 2.94 4.83 237 452 479 411 284 

---------------------------------------------------------------
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Ta~l~ 4.12 Solution Purification - Effect Of !R~ 

WR/V 

(g/m!) 

In 40g/1 KCl solution (upper table) 

In dilute solution (lower table) 

Final Residual metal concentration 

pH Cu Ni Co In 

(ppm) 

Cd 

======================================================== 
0.051 4.58 2 77 274 4 4 

0.104 4.92 <1 23 149 2 2 

0.204 5.31 <1 21 135 2 <2 

0.296 5.60 (1 16 112 (2 (2 

-------------------------------------------------------

0.051 3.72 30 321 458 225 19 

0.103 4.51 11 148 289 109 9 

0.205 4.92 7 132 272 84 5 

0.295 5.52 4 125 258 59 3 

-------------------------------------------------------

Table 4.13 Solution Purification - Transition Metal C~loride Sol~~ 

Soln WR{V Initial Final Residual metal conc.(ppm) Metal removed t 

(g/ml) pH pH Zn Cd Cu Ni Co Cu 

=====================_==========s=az================================= 

CUCl2 0.049 0.28 1.23 

NiCl2 0.045 3.40 4.98 

CoCl2 0.046 3.48 5.04 

171 51 

93 

89 

0.11 

0.04 

0.04 

---------------------------------------------------------------------
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4.5.8 Summary and conclusions. 

The results of the experimental work have shown that the weakly 

basic resin, poly-4-vinyl pyridine, prepared in the free base form, is 

able to extract metals from chloride solutions, with an efficiency which 

depends on the pH and composition of the solution. For maximum metal 

extraction, the optimum initial pH of the solution was found to be 

within the range 0.8 to 1.2 for a WR(V ratio of 0.045 to 0.050g/ml. 

Increasing the metal chloride concentration in solution was found 

to increase the extractive power of the resin, relative to that metal. 

A similar effect was found to occur with all resin active metals 

generally when experiments were carried out in solutions containing a 

high concentration of KCl. 

The resin exhibited a .etal preference, the order of which 

depended strongly upon experimental conditions. Loading experiments 

indicated a selectivity decreasing in the order 

Cu2+»Ni2+>Zn2+>Co2+>Cd2+ and Cu2+>Ni2+>Co2+»Zn2+»Cd2+ for solutions 

which are dilute. and containing 40g/1 KCI. respectively. with no 

retention shown for Alkali and Alkaline Earth metals. However. the 

solution purification experiments showed a selectivity decreasing in the 

order Cu2+=Cd2+»Zn2+>Ni2+»Co2+ and Cu2+=Cd2+=Zn2+>Ni2+»Co2+ for 

dilute and 40g/1 KCl solutions respectively. 

On comparison of the sequences indicated by the two experimental 

approaches, it can be seen that the order of preference is considerably 

different. This can be explained by making the assumption that both 
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strong and weak interactions are involved in metal retention by the 

resin. The strong interactions being composed of strong electrostatic 

forces, (anion exchange), and coordinate bonding, and the weak 

interactions comprising weak electrostatic forces and sorption. In the 

case of the solution purification approach, the resin, after 

equilibration with the metal containing solution, is not subjected to 

further treatment by way of washing or filtration. Weak interactions 

between metal species and resin therefore remained intact. However, in 

the loading experiments, isolation of the resin, followed by washing and 

suction filtration, it may be assumed that only strong interactions 

remain intact, reducing the apparent metal loading of the resin relative 

to the loading values infered by the solution purification experiments. 

Assuming the involvement of the strong and weak interactions, it 

can be said that Cu2+, C02+ and Ni2+ show predominantly strong 

interactions with the resin, whereas Cd2+ is retained by weak 

interactions, and ln2 + interactions of both types. 

It cannot be overstressed, that the differences observed in the 

apparent metal selectivities, when comparing data from both experimental 

approaches, is of great significance in the practical application of the 

resin, whether in a small scale or industrial enviroment. 

Whether or not the resin can be described as possessing anion 

exchange behaviour, with metal species in solution, is open to question. 

The selectivity sequences infered by the experimental data, 

(particularly those data obtained in solutions having high chloride 

concentrations, where the formation of anionic metal chloride complexes 
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would be favourable), do tend to confirm the conclusions made by 

Kopylova that poly vinyl pyridines in general, interact with metals, 

predominantly by direct coordination of the metal to the pyridine 

nitrogen, (see 4.4), and certainly contradict the expected sequence 

based solely on the activity of the metals in complex halide formation 

[42]. (Approximately Cu2+=Cd2+=Zn2+)Co2+»Ni2+). The inactivity of 

Ni2+ in such complex formation is well known. 

An interesting property of the resin, is its apparent total 

inactivity toward Fe 3 +. No retention of the metal by the resin was 

observed over the pH range investigated. Unfortunately, complications 

were encountered in solutions containing Fe 3 +, because the final pH of 

the equilibrated solution was often above the value at which hydrolysis, 

and subsequent precipitation of the ion, occurs. Precipitation was 

found to occur in solutions of high ionic strength, whereas in dilute 

solutions, no precipitation occured because of the formation of 

colloidal ferric hydroxide. 

With the data obtained from the experimental work, predictions can 

be made on the behaviour of the resin in column chromotography. For 

instance, metal separations involving Ni2+ and Co2+; Cu2+ and Zn2+; Cd2+ 

and Ni 2+; and Cu2+ and C02+ should be possible, with excellent 

separation expected for the latter two cases. Quantitative removal from 

solution of Cu2+, Cd2+ and Zn2+, with a column technique, should easily 

be attained. 

In conclusion, it can be said that poly-4-vinyl pyridine has shown 

good metal retentive properties in a variety of solutions. The data 
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attained will allow predictions to be made on the performance of the 

resin in future metal recovery and solution purification operations. 

Predictions would be particularly accurate in applications involving 

solutions and conditions similar to those investigated in the 

experimental work in this chapter. 
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APPLICATION OF ATOMIC ABSORPTION SPBCTROSCOPY~ 

Atomic absorption spectroscopy, (A.A.S.), was used extensively 

throughout the practical work described in the thesis, for the 

determination of metal concentrations in solution. Analyses were 

performed on a Perkin Elmer spectrometer, with a choice of air/acetylene 

or air/nitrous oxide flame atomisation. Measurement of absorption was 

by digital readout. 

A.A.S. was applied particularly to the determination of impurity 

metals in process solutions, and principally to the solution analysis of 

Cu, Fe, Pb, and Mn in ZnCI2, Fe, Zn, Pb, Mn, and Al in CuCI2, and of Cu, 

Fe, Zn, Co and Al in NiCI2. 

Because of the importance of the technique to the validity of the 

results given in the thesis, emphasis was placed on ensuring the 

accuracy of the analyses by: 

a) The use of accurate calibration standards. 

b) Frequent calibration during analysis, and thorough checking 

of the sample readings. 

c) Determining the linear concentration/absorption range, and 

working, as far as possible, within this range. 

d) Being aware of, and counteracting, interferences. 

Because of the complexity of many of the solutions under 

investigation, e.g. leachates, d) was considered of great importance. 

To neutralise the effects of interferences arising from such solutions, 
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the method of standard additions was applied extensively, particularly 

to solutions containing very high concentrations of primary metal 

relative to the impurity metal of interest, an example of which is the 

analysis of impurities in concentrated ZnCl2 solutions, (chapter 3). In 

this example, the most prevalent interference was found to arise from 

the high salt concentration, which imparted a relatively high viscosity 

to the analyte solution, even after necessary dilution, resulting in a 

lower rate of aspiration and therefore an erroneously low absorption 

figure. This type of interference was investigated early in the 

practical work, some examples of the effect are illustrated in figures 

Al.l and Al.2. 

A.A.S. was found to be a reliable and effective analytical 

technique when applied to the practical work within the thesis. 
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APPENDIX :2 

SAMPLE ANALYSIS BY E.D.A.X. ----

E.D.A.X. (Energy Dispersive Analysis of Xrays) was used, where 

required, to give semi-quantitative data on the elemental composition of 

solid samples, particularly to raw materials containing the metal 

value, and leach residues, to give data on the impurity metals, and 

leach selectivity, respectively. 

Sample excitation was by a J.E.O.L. JEM 100D transmission 

electron microprobe, (40KV beam), with a scanning attachment. Xray 

fluorescence was recorded by a computer based EDAX 9100/60 system, wit.h 

results shown by VDU. The software incorporated a Z.A.F. prograa, to 

apply corrections to computations, to allow for atomic number, (Z), 

reabsorbtion of xrays, (A), and resultant refluorescence, (F). With 

this software, a more accurate semi-quantitative analysis was achieved. 
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APPENDIX J ----- -

KEASUREKENT OF ~UMINIUM CONCENTRATION IN CON~TED ZIN~ CHLOR~DE 

SOLUTIONS. 

Because of the relative insensitivity of Al analysis by AAS, a 

technique, with a more suitable sensitivity, was found and adapted to 

the measurement of aluminium concentrations in concentrated ZnCl2 

solutions [1]. 

The technique involved the measurement of absorbance with 8 

Corning Absorptiometer, at approximately 550nm (605 filter), of a 

AI-Eriochrome Cyanine R dye complex. Initial measurements were 

performed in solutions at pH 6, but because of problems concerning the 

precipitation of zinc hydroxide at this pH, 8 modified method was used, 

involving determinations of absorbance, at pH 3, in alcoholic solutions 

[2,3]. Because of the relatively high concentrations of ZnC12 

necessarily present in the sample solution, the effect of this compound 

on the Al-dye absorbance was investigated before serious use of the 

analysis technique was considered. Results showed that over the 

greater part of the Al concentration range investigated, a reduction in 

measured absorbance occured when ZnCl2 was present, and that the 

magnitude of the reduction varied with concentration of the salt. 

Figure A3.1 illustrates the effect. Whilst this interference posed no 

great problems, calibration standards were prepared to match, as 

accurately as possible, the concentration of ZnCl2 in the sample 

solution. 
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The method used was as follows: 

Standards. 

1) 1 to 10ml, depending on sample concentration, of a solution 

of ZnCl2 in hydrochloric acid, was adjusted to pR3 with ammonia and 

2Sml of pH3 acetic acid/ammonium acetate buffer added. 

2) 0 to Sml of 100ugAI/ml aluminium chloride solution was added, 

followed by SOml of A.R.grade ethanol and 2ml of 0.2~ dye in water. 

3) The solution was made up to 10Oml, and left for 20 minutes 

for the colour to develop fully. 

Sample. 

1) An aliquot of sample solution was substituted for the 

ZnCl2 solution, and then treated as above but ommiting the Al standard 

addition. 

New dye solution was prepared daily, and measurements were 

performed within 1 hour of standard and sample preparation. Good 

reproducibility was observed. 
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