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Abstract 

Japan is one of the largest importers of different types of energy commodities in the 

world due to the lack of domestic energy resources. Tokyo Commodity Exchange 

(TOCOM) plays an important role for participants in the energy markets in Japan, 

since it is one of the main commodity exchanges for energy futures. However, majority 

of studies on energy futures focus on NYMEX and ICE prices and there seems to be 

no systematic studies on TOCOM energy futures. Hence, we consider investigating 

the dynamics and the behaviour of TOCOM energy futures and its market 

microstructure. We study three most liquid energy futures contracts in TOCOM, 

namely gasoline, kerosene and crude oil, over six consecutive months with the aim to 

address three main questions. First, we analyse the dynamics of energy futures 

contracts by modelling the realised volatility with consideration of high- and low-

volatility regimes. The in-sample results support that volatility of TOCOM energy 

futures is regime-dependent, while the results of out-of-sample are mixed. Next, we 

set up a framework to analyse the behaviour of TOCOM energy futures contracts by 

investigating the relation between trading volume and price volatility under different 

market conditions defined by the shape/slope of forward curve. Both 

contemporaneous and lead-lag relation between trading volume and volatility are 

found significantly positive, while the latter is weaker. The asymmetric effect of 

market conditions is different from commodities due to the use of underlying 

commodities. Kerosene futures participants are more sensitive when market is in 

contango while crude oil futures participants are more sensitive in backwardation. 

Finally, we study the market microstructure of TOCOM by analysing the determinants 

of bid-ask spread components, and examine the asymmetric impact of sell-initiated 

and negative-return trading volume on bid-ask spread. It is evident that trading volume 

and volatility are two important determinants of BAS, and sell-initiated transactions 

seem to happen with higher BAS. The findings of this thesis provide useful 

implications for risk management and trading strategy by offering dynamics of 

volatility and insights of market microstructure. 
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Chapter 1 Introduction to Energy Markets 

 

 

 

 

1.1 Introduction 

The global production, consumption and trade in energy commodities have been 

increasing in pace with world economic growth. Energy commodities play a crucial 

role in the world economy as input for production, manufacturing, transportation as 

well residential and commercial consumptions. Amongst primary sources of energy 

(petroleum, natural gas, coal, hydroelectricity, and renewable), petroleum and 

petroleum products have been the main source of energy for almost a century. The 

world consumption of petroleum and petroleum products averaged just over 95 million 

barrels per day (mbd) in 2015, and the largest proportion of world total primary energy 

consumption with approximately 33% share. 1  In addition, despite the increase in 

investment on renewable energy, discovery of new sources of energy closer to 

consumption areas such as shale gas, as well as uncertainty about the economic growth 

and environmental issues in the long run, it is estimated that global demand for 

                                                 

1 BP Statistical Review of World Energy 
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petroleum and petroleum products will increase by an average of 1.1% per annual, to 

121 mbd in 2040.2 

 Japan is the world third largest economy after US and China with a GDP of 

4.383 trillion US$ in 2015, according to the World Bank statistics, and is one of the 

largest importers of different types of energy commodities. In fact, the lack of 

domestic energy resources has turned Japan into one of largest importers of energy in 

the world. Based on the EIA statistic in 2015, less than 4% of total energy consumed 

in Japan was domestically produced. Japan is the world's largest liquefied natural gas 

importer (4.0 billion cubic feet per year), third-largest coal importer (210 million tons 

per year), and third-largest crude oil importer (3.8 mbd). Given the energy intensity of 

the economy and the consumption of petroleum in Japan, Tokyo Commodity 

Exchange (TOCOM) introduced futures contracts on petroleum products (Kerosene 

and Gasoline) in 1999 and crude oil in 2001, to allow consumers and producers to 

hedge their exposure and traders to invest or speculate on energy prices. 

 The aim of this chapter is first to provide an overview of the world energy 

markets and trade. Second, we discuss the Japanese energy demand, market as well as 

the role of Tokyo Commodity Exchange (TOCOM) in providing petroleum and 

petroleum product futures for Japanese energy consumers and producers to hedge their 

exposure and traders to invest or speculate on prices. Finally, a number of areas are 

identified and discussed as topics for this thesis. These include using high frequency 

intraday data to estimate and forecast realised volatility, examining how the 

information disseminates into market, and investigating the determinants of bid-ask 

spread.  

 

1.2 An Overview of Global Energy Market 

Energy markets and prices have been the topic of many studies over the years because 

energy commodities are essential for the economy. Energy commodities are used as 

inputs for manufacturing, transportation, construction, industrial production, 

                                                 

2 EIA International energy outlook 2016 
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commercial and residential consumption, and almost all aspects of economic activities. 

The importance of energy commodities for the world economy has increased as we 

become more and more dependent on energy for our day to day life.  In fact, the global 

demand and supply for energy commodities including crude oil and petroleum product, 

natural gas, coal, and electricity (hydro, nuclear, wind, renewable, amongst others) 

have been continuously increasing over the past 100 years. Figure 1-1 presents the 

historical evolution of world energy consumption by type from 1965 to 2015. Amongst 

different types of energy commodities, crude oil by far has the largest share in world 

energy consumption (4362 million tonnes of oil equivalent) in 2015, followed by coal 

(3840 mtoe), natural gas (3135 mtoe), hydroelectricity (893 mtoe), Nuclear (583 mtoe) 

and renewable energy sources (365 mtoe).  

 The global energy markets function with a unique structure of supply and 

demand mechanisms which introduces a great degree of complexity along with 

significant levels of uncertainty. In addition, weather and climate changes, 

technological advances, changes and geopolitical events, all influence both supply and 

demand for energy commodities. For instance, in 1973, crude oil prices soared from 

$3/bbl to $12/bbl due to the embargo against the U.S. imposed by Arab oil producer. 

In 1979, the Iranian revolution caused the severe decline in crude oil production in 

Iran, which drove crude oil prices up to another peak of over $39/bbl. However, the 

increase in crude oil production in non-OPEC countries and the gradually decline in 

crude oil consumption led to the oil glut in the 1980s. In 1986, the crude oil sharply 

dropped to $10.25/bbl, and followed by volatile fluctuations. Baumeister and 

Peersman (2013) argue that oil supply and demand in short-term has become less 

elastic since oil prices fell in 1986, so any small disturbance in either side can cause 

greater impact on prices. Thus, the volatility of crude oil has increased to a higher 

level, which in turn created the opportunity to producers, consumers, investors and 

energy market participants for large profits from speculation on oil and energy prices 

as well as large losses when investment strategies failed, and motivated more 

speculative trading. Büyükşahin et al. (2008) point out that the proportion of NYMEX 

crude oil speculative traders, defined by CFTC as a trader who does not hedge but 

trades with objective and of achieving profits through successful anticipation of price 
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movements3, increases from around 25% in 2000 to approximately 50% in 2008. 

According to the COT reports, the proportion in 2016 has increased to just over 70%. 

 

Figure 1-1: World energy consumption by type 

 
          Source: BP Statistical Review of World Energy 2016 

 

 A major part of global demand for petroleum and refined products is from the 

OECD countries (See Figure 1-2).4 However, the petroleum consumption in non-

OECD countries has been growing fast, especially since mid-2000, and gradually 

becoming the main driver for the growth in global petroleum consumption. In fact, the 

consumption of crude and petroleum products in non-OECD countries reached the 

same level of consumption in OECD countries. The consumption of crude oil and 

products in OECD countries, on the other hand, has had a small growth until the end 

of 1990s, and then remains stable with a little decline in recent years, as a result of 

increase in use of alternative energy resource including nuclear and renewable energy. 

Furthermore, Figure 1-3 presents the growth in petroleum consumption in five largest 

consuming economies in 2014, namely the US (19.11 mbd), China (11.52 mbd), Japan 

(4.3 mbd), India (3.74 mbd) and Russia (3.70 mbd). It can be seen that while the US 

                                                 

3 http://www.cftc.gov/ConsumerProtection/EducationCenter/CFTCGlossary/glossary_s 
4 The data is according to the U.S. Energy Information Administration (EIA). 
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remains the largest consumer of petroleum in the world, the consumption in China has 

been growing at a fast rate and become the second largest petroleum consuming 

country ahead Japan, India and Russian Federation and other large European 

economies.  

 

Figure 1-2: Development of World Petroleum Consumption 

 

Figure 1-3: Historical petroleum consumption for top five consuming countries 

 

With respect to the supply of petroleum and products, Figure 1-4 presents the 

historical production in OECD and non-OECD countries. It can be seen that the largest 

proportion of petroleum production belongs to the non-OECD countries with a steady 
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growth to meet the increasing demand for petroleum. The OECD countries seem to 

produce around 24% of the world petroleum but their consumption share is around 

50%. Finally, Figure 1-5 presents historical petroleum production for five largest 

petroleum procuring countries. It can be noted that the U.S. has become the largest 

petroleum producer by producing 14.13 mbd in 2014, while Saudi Arabia and Russia 

are second and third biggest producers by producing 11.62 and 10.85 mbd, 

respectively.  

 

Figure 1-4: World petroleum production 

 

Figure 1-5: Historical Petroleum Production for the Top Five Producing Countries 
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Figure 1-6: Historical Price Movement of WTI, Brent, Bonny and Dubai crude oil 

Nominal Crude oil prices

Inflatoin-adjusted WTI crude oil prices 

 

 

The other noticeable trend in international crude oil market is the increase in 

price and price volatility over the years, and in particular, in the last 10 to 15 years. 

Figure 1-6 shows the historical nominal prices for three major crude oil benchmarks 

around the work, namely West Texas Intermediate (WTI) in the US, Brent Crude in 

the UK and Europe, and Dubai crude in the Middle East, and the real prices for WTI 

crude oil since 1988. As illustrated in Figure 1-6, crude oil prices exhibit an upward 

trend with increased fluctuations between 2000 and 2008, when they reached a peak 

of $147/bbl in May 2008. Following the global financial crisis, there was a significant 

decline in crude oil prices during the second half of 2008 when oil prices plunged to 
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2010 but they are still lower than the historical highest level of $147/bbl. Moreover, 

both graphs of nominal and real crude oil prices reveal that significant increase in 

fluctuation of the crude oil price after 2000. 

Energy derivatives contracts and markets have been developed since the early 

1970s to provide market participants with instruments to manage the risk exposure, 

trade energy commodities, speculate on energy prices or diversify their investment 

portfolios. Futures, Forwards, Swaps and Options are the main derivatives contracts 

used by traders and participants in the energy market. There are a number of exchanges 

offer energy futures and option contracts including CME (NYMEX) in New York, 

ICE in London, TOCOM in Tokyo, SGX in Singapore, DMX in Dubai, EEX in 

Leipzig, amongst others. Apart from energy derivatives traded in organised exchanges 

such, there is a very active OTC market for energy derivatives (e.g. forwards, swaps, 

swaptions, and other structured derivatives) for which the exact trading volume is not 

available. 

The financialisation of energy commodities has also contributed to the growth 

of trade in energy derivatives as more and more investors, trading houses, hedge funds 

and financial institutions realised the potential of energy commodities as an asset class 

for both speculation and diversification (Irwin and Sanders, 2011; Basak and Pavlova, 

2016). As a result, the global trade in energy derivatives has increased substantially 

over the last two decades which made this market the largest amongst all commodity 

derivatives (Agricultural, Metal, Livestock, etc.). 

 A forward contract is an agreement allowing two parties to trade a contracted 

amount of underlying asset (i.e. crude oil) in the future at a fixed price agreed on today. 

A futures contract is a derivative contract similar to a forward contract in providing 

the same function in terms of price exposure. However, the two contracts differ in two 

main aspects. Firstly, futures contracts are exchange traded standardised contracts in 

respect to the size, maturity, the underlying asset and settlement, whereas, forwards 

contracts are over-the-counter agreements, where the contract size, maturity, the 

underlying asset and settlement is determined through negotiation between the buyers 

and sellers. Even though, many of forward contracts in the energy market are 

nowadays standardised to facilitate the negotiation process and save time. The other 

difference between futures and forward contracts is that all futures contracts are 
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cleared through a clearing process by a clearing house, which eliminates any 

counterparty risk default risks; whereas, forward contracts ate OTC and carry 

significant counterparty risk. Nevertheless, clearing houses begun offering clearing 

facilities for forward contracts in recent years so participants in forward market for 

energy commodities can also eliminate any counterparty risk.  

 One theory pricing futures or forward contracts is cost of carry model, firstly 

formalised by Kaldor (1939) and Working (1948, 1949), which formulates the forward 

price as the sum of the spot price and net cost of carry over a convenient yield. Net 

cost of carry is the amount of storage cost, interest expense, insurance expense over 

any dividend yield, and a convenient yield is the implied benefit of holding the 

physical asset between present time and the maturity. If cost of carry theory does not 

hold, an arbitrage opportunity may exist. For example, when the actual forward price 

is lower than the theoretical price, one can take a long position of the forward contract, 

and a short position of the spot asset. At the maturity of the forward contract, the risk-

free profit is the spot price minus the dividend yield, the convenient yield and the 

forward price given no counterparty risk. In addition, the cost of carry theory also links 

the contracts for the same commodities across different maturities, because they are 

all related to spot price of the commodity. Nonetheless, the difference in the maturity 

also causes inconsistent cost of carry and convenient yields, so the theoretical price 

for the same commodity but different maturity contracts is still not identical.   

 Futures and forward contracts are most frequently used instruments for the 

purpose of hedging and speculation in energy market. Hedgers in energy markets 

utilise energy futures and forward contracts to reduce or eliminate their price risk 

exposure, by locking into a price in advance of the physical transactions. For example, 

if a refinery is expecting to produce and sell 1000 barrels of gasoline in two months, 

they can sell (take a short position) one gasoline futures in order to hedge against the 

potential decline in gasoline prices and guarantee the selling price of its product. 

However, this hedging strategy also eliminates the possibility of any gain should there 

be any increase in gasoline prices.  

 In contrast to hedgers, speculators trade energy futures and forward contracts 

in order to profit from changes in price of futures and forward contracts. In fact, futures 

and forward contracts provide a great opportunity for speculators to trade in energy 
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markets without having any physical commitments. In addition, energy futures and 

forward contracts allow speculators to trade and profit from both rising and falling 

prices. Speculators take long or short positions based on their view and predication of 

future price movements.  For instance, a speculator who expects a rise in gasoline 

prices will take a long position on gasoline futures. Through such a transaction she 

will be exposed to gasoline futures price, and the payoff of the trade is determined by 

the movement of the gasoline price over the holding period of the contract. If over the 

investment period the price of gasoline and consequently price of the futures contract 

increase, the speculator can earn a profit by closing the futures contract. However, if 

over the investment period the price gasoline and consequently price of the futures 

contract fall, the speculator will suffer a loss by closing the futures contract. 

 

1.3 Japan’s Energy Demand and Market  

Japan is one of the largest importers of different types of energy commodities in the 

world. In fact, the lack of domestic energy resources has turned Japan into one of 

largest importers of energy in the world. Based on the EIA statistic in 2015, less than 

4% of total energy consumed in Japan was domestically produced. Japan, as the largest 

liquefied natural gas (LNG) importer, imported 4.0 billion cubic feet of liquefied 

natural gas, which is equal to approximately 101.7 mtoe and accounts for over 99% 

natural gas consumption. Moreover, Japan is also the third largest coal and oil importer, 

importing 210 million metric tonnes of coal and 3.8 mbd of crude oil. The imported 

energy used in different sectors including transportation, electricity generation, 

industrial production as well as residential and commercial consumption as shown in 

Figure 1-7. 

 A large number of Japanese firms are also involved in exploration and 

production of energy resources overseas and provide capital, equipment and 

engineering expertise in different energy projects around the world. In addition, Japan 

is one of the main producers and exporters of the energy equipment and plants. 

Japanese government strongly supports and invests in research and development 

(R&D) in the energy sector through a programme which is dedicated to increase the 

energy security and energy efficiency to reduce the emission.  
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Figure 1-7: Japan’s Energy Consumption by Sector in 2015 

 

    Source: Agency for Natural Resources and Energy, Japan 

 

Figure 1-8: Japan’s Energy consumption by energy type 

 

    Source: BP Statistical Review of World Energy 2016 

  

Figure 1-8 shows historical consumption of different energy commodities in 

Japan’s. Three main observations could be the change in energy mix over time towards 

a more diversified and balanced energy portfolio, the decline in overall energy 

consumption after the 2008 global financial crisis, and sharp reduction in nuclear 

energy consumption after Fukushima accident in 2011. However, petroleum remains 
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gas 22%. In addition, due to the fact that all fusil fuel energy sources are imported, 

prices for other commodities such as natural gas and to a certain extent coal are also 

linked to petroleum prices.  Therefore, the analysis of TOCOM energy market and, in 

particular, crude oil futures contracts becomes more important since the Japanese 

economy can be significantly influenced by the dynamic of energy prices. 

 

1.4 The Tokyo Commodity Exchange (TOCOM) 

Tokyo Commodity Exchange (TOCOM) is established in 1984 when three exchanges, 

namely, Tokyo Textile Exchange, Tokyo Rubber Exchange and Tokyo Gold 

Exchange, merged and became the second Asian exchange offering energy futures 

after Singapore Exchange (SGX). In 5 July 1999, TOCOM listed Kerosene and 

Gasoline futures contract for the first time, and following the successful uptake of the 

two energy futures contracts, Crude oil futures were launched in 10 September 2001. 

Subsequently, in September 2003 TOCOM introduced Gasoil futures contract, 

however, this contract was delisted and reintroduced, but it did not take off as 

expected. Two other energy futures contracts launched on 12 October 2010 are 

Chukyo-gasoline and Chukyo-kerosene futures. These are in fact mini contracts with 

smaller quantities to allow traders to take smaller positions (see Chapter 3 for detail 

discussion on TOCOM energy futures contracts). Very recently, in March 2014, 

TOCOM has launched the intercommunity spread contracts to enable simultaneous 

execution of two legs of crack spread at one price, and is planning to introduce LNG 

and Electricity futures. 

 Among five futures contracts currently traded at TOCOM (excluding gasoil), 

only the crude oil futures are cash-settled, while other contracts are all physically 

delivered according to a specific process outlined by the exchange. All energy futures 

contracts listed on TOCOM are denominated in Japanese Yen (JPY), which offer 

Japanese companies and energy market participants a convenient set of instruments to 

hedge their exposure to energy prices, speculate in energy markets, or use energy 

futures as alternative asset for diversification and exposure to energy prices.   

 A feature of TOCOM energy market is that the exchange imposes the 
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limitation of the number of futures contracts traded by commercial traders5, investment 

trusts 6  and non-commercial traders. On average, a commercial customer or an 

investment trust is allowed to transact twice to five times more futures contracts than 

a non-commercial trader, which may largely decrease the proportion of speculators in 

TOCOM futures markets. Such limitation in trading position of market participants 

can have important consequences on price behaviour and efficiency of the market. 

Interestingly, despite of the difference in the limit of position does between 

commercial and non-commercial traders, non-commercial traders are still the majority 

of TOCOM energy futures trading. However, the position limit has been removed for 

crude oil futures since June 2015, and the crude oil futures was also renamed to Dubai 

crude oil futures. Even though the trading volume does not sharply increase 

immediately after the limit was removed, the historical record of trading volume for 

crude oil future was exceeded in December 2015 and continued to be broken in the 

next two months. The total trading volume for crude oil in 2015 was 3,651,528 

contracts, which was 1 million more than the historical record in 2004, about 

2,284,572 contracts7. 

 The other feature of TOCOM futures market is that even though futures are 

traded in JPY, the foreign trades ratio is surprisingly high, about 50% during the first 

half of 2015. The foreign trades ratio increases gradually since TOCOM extended 

night trading session on 22 September 2010.  

 Figure 1-9 reveals that the foreign trade ratio has increased from 20% in 2011 

to 50% currently. Table 1-1 exhibits the proportion of foreign trades and open interest 

on TOCOM energy futures. It seems that crude oil futures are the most foreign traded 

among three energy futures with 50% foreign trades, while the foreign trades ratios 

for gasoline and kerosene futures are very similar, around 25%. This may be because 

the underlying commodity of crude oil is the middle east crude oil, which was globally 

                                                 

5 Commercial customers are defined by the Commodity Derivatives Act and Articles of Incorporation 

as “Those who, as their line of business, engage in the purchase, sales, intermediary of trades, brokerage 

or agency activity, production, processing or use of Listed Commodity Component Products.” 
6 According to TOCOM’s definition, investment trusts include entities using collective investment 

schemes, such as investment trusts, ETFs, and commodity funds, etc., that are led with the Financial 

Service Agency of Japan or an authority corresponding to the Financial Service Agency in a foreign 

jurisdiction. 
7 http://www.tocom.or.jp/historical/dekidaka.html, September 2016. 

http://www.tocom.or.jp/historical/dekidaka.html


Chapter 1: Introduction to Energy Markets 

14 

traded while the underlying commodities for gasoline and kerosene are domestic 

products. Another noticeable feature in Table 1-1 is that the proportion of foreign 

trades almost doubles that of foreign open interest. For example, the foreign trades 

ratio for crude oil is 50%, but the foreign open interest ratio is just below 25%. 

Intuitively, foreign traders have less motivation to hedge their petroleum assets with 

TOCOM energy futures since all TOCOM futures are traded in JPY. Hedging with 

TOCOM energy futures brings them a new risk exposure from the uncertainty of 

exchange rate, and they need take positions in currency derivatives, such as swaps, to 

minimise this exposure. Hence, they are more likely to trade TOCOM energy futures 

in short-term instead of holding them until settlement, which causes the difference 

between trading and open interest. 

 

Figure 1-9: Foreign customer trades ratio of commodities in TOCOM 

 

 

 

Table 1-1: Trades and open interest of TOCOM energy futures for September 2014 

 Trades  Open interest 

 Oversea Japan Oversea%  Oversea Japan Oversea% 

Gasoline 64,204 199,606 24.3%  6,816 38,922 14.9% 

Kerosene 24,925 73,281 25.4%  5,521 32,889 14.4% 

Crude oil 67,398 66,992 50.2%  7,814 23,538 24.9% 
• Source: Tokyo Commodity Exchange (TOCOM) participation survey 2014 
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1.5 Aims, Objectives and Contributions of the Thesis 

Our research is focused on TOCOM energy futures market, which is an important 

market for commodities influencing the Japanese economy and perhaps the global 

energy market. To the best of our knowledge there has not been any study on TOCOM 

energy markets. The only exception is Duong and Kalev (2008) study on the 

Samuelson Hypothesis on 20 different commodity futures including energy futures. 

They find that only volatility of the agriculture futures increases as contracts approach 

maturity. Majority of studies on energy derivatives concentrate on West Texas 

Intermediate (WTI) crude oil, New York Harbour gasoline and heating oil futures 

listed on New York Mercantile Exchange (NYMEX) and the Brent crude oil and 

European Gasoil listed in the Intercontinental Exchange (ICE). Therefore, this study 

is aimed to extend literature to energy futures contracts traded on TOCOM and 

investigate the behaviour and dynamics of their prices. In particular, we study the 

volatility and its relation with trading volume, as well as market microstructure of 

TOCOM energy futures. 

 The starting point of our research is the analysis of dynamics of crude oil, 

kerosene and gasoline futures returns in the form of modelling time-varying volatility 

using high frequency intraday data and estimating the realised volatility of the three 

energy futures contracts. Next, we model and forecast the realised volatilities and 

allow for changes in different state of the market using a regime wwitching approach. 

In addition, we evaluate the performance of different volatility models including non-

parametric methods for risk management applications (VaR estimation).  

 Furthermore, we set up a framework to analyse the market microstructure of 

TOCOM energy futures contracts by investigating the relation between trading 

volume and realised volatility under different market conditions defined by the 

shape/slope of forward curve. To achieve this, we adapt a Transition Structural Vector 

Autoregressive (T-SVAR) model to measure the contemporaneous and lead-lag 

interaction between trading volume and the realised volatility. In addition, we take 

into account the roll-over effect by introducing day-to-rollover to capture the time 

effect of maturity and roll-over of contracts. 
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 Finally, we examine the determinants of BAS components for TOCOM energy 

futures contracts using intraday data. Three types of components are considered in 

choosing the potential determinants, namely adverse-selection costs, inventory-hold 

costs, order processing costs. As it is not possible to obtain the information of number 

of market makers, the level of competition is not included here. Moreover, two 

asymmetric effects of sell-initiated and negative-return transactions are also 

considered in our model. In this respect, we examine the effect of trading volume, 

realised volatility and potential asymmetric impact of trading volume on bid-ask 

spread of energy futures contracts.  

 

1.5.1 Modelling Volatility of Energy Futures Return 

Modelling and estimation of volatility of asset prices has always been a key issue in 

financial econometrics because correct volatility estimates and forecasts are essential 

for risk management, pricing derivatives, trading strategies, as well as portfolio 

optimisation and asset allocation. Therefore, many studies have proposed and 

employed different techniques to estimate time-varying volatility of financial and 

commodity prices (see chapter 2 for detailed discussion on different approach for 

modelling volatility). Generalised Autoregressive Conditional Heteroscedasticity 

(GARCH) models are the most commonly used methodologies to estimate the time-

varying volatility of asset prices based on historical date. An alternative approach is 

the Stochastic Volatility (SV) model, which is based on the argument that both mean 

and variance of returns follow stochastic process. For those assets and commodities 

with active an options market, the volatility of the underlying asset (Implied Volatility, 

IV) can be derived by inverting an option pricing formula (e.g. Black and Scholes, 

1973) for given traded option values model. These three volatility estimation 

approaches are usually used with low-frequency data, namely daily, weekly, and 

monthly. Nevertheless, the increase in the availability of intraday high-frequency 

financial data led to the development of a new concept for estimation of volatility, 

namely Realised Volatility (RV), which utilises information on intraday price 

movement. The daily RV is measured as the sum of the intraday squared returns 

(Andersen et al., 2001a and 2003), and has been argued to be more efficient for 

estimation volatility than daily squared returns (McAleer and Medeiros, 2008). 
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 To further investigate the importance of market conditions on volatility of 

TOCOM energy futures, we employ a flexible regime switching approach to estimate 

the realised volatility of energy futures prices. We follow the Markov Regime 

Switching technique of Hamilton (1989) for estimation of Heterogeneous 

Autoregressive Realised Volatility (HAR-RV) model. The benchmark model is the 

simple (HAR-RV) model proposed by Corsi (2009), which has been argued to have 

best forecasts in WTI crude oil futures among several variation HAR-RV models (Sévi, 

2014). However, Markov Regime Switching HAR-RV (MRS-HAR-RV) approach 

assumes that realised volatility is explained by the weighted average of historical 

volatility, and the weighting changes according the market conditions between current 

and lagged volatilities. Extending the HAR-RV approach to account for changes in 

market condition in estimating realised volatility is expected to produce more accurate 

volatility forecasts compared to alternative approaches such GARCH type or simple 

HAR-RV models. 

 

1.5.2 Trading Volume and Volatility Relation 

There is a large body of literature on the relation between trading activity and price 

behaviour in different financial and commodity markets. Many studies investigate the 

theoretical and empirical relation between trading volume as well as trading volume 

and price volatility using different econometric techniques, sample period and 

frequency. The theoretical foundations of these studies are based on three main 

theories proposed for the relation between trading activity and price behaviour. These 

are: The Mixture of Distribution Hypothesis (MDH) of Clark (1973), Sequential 

Information Arrival Hypothesis (SIAH) of Copeland (1976), and Motivation Driven 

Trade of Wang (1994).  

 The MDH postulates the existence of the contemporaneously positive relation 

between trading volume and price volatility, because it assumes that the trading 

volume and price changes follow a joint distribution and are driven by a single mixing 

variable which is arrival of information. On the other hand, the SIAH suggests a 

positive relation is a lead-lag relationship between trading volume and volatility. The 

SIAH argues that traders receive information gradually and adjust their holding 
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positions based on the arrival of information over time. The gradual adjustment of 

portfolios creates a series of disequilibria and hence the market price evolves and 

reaches a new equilibrium only when the all traders in the market obtained the 

information and readjusted their portfolio. Hence, the speed of the change of market 

prices depends on the rate of the information arrival, and is usually later than the 

change of trading volume because of the existence of private information. Finally, the 

third theory on volume-volatility relation is the Motivation Driven Trade, which 

separates the types of trades into Liquidity Driven Trade (LDT) and Information 

Driven Trade (IDT). Under MDT hypothesis, Liquidity Driven Trades are likely to 

cause a reversal in consecutive returns, which increase the volatility of returns and 

induce a positive relation between volume and volatility. In the contrast to LDT, 

Information Driven Trades tend to create a momentum in consecutive returns, which 

reduces the volatility of returns and implies a negative volume-volatility relation.  

 In Chapter 5 we investigate the relation between trading activity and price 

behaviour of the three energy commodities traded in TOCOM. To achieve this, we use 

the realised volatility obtained using high frequency intraday data and a Structural 

Vector Autoregressive (SVAR) model to measure the contemporaneous and lead-lag 

interaction between trading volume and volatility. We modify the SVAR by including 

a dummy variable to capture the effect of market condition on volume-volatility 

relation, which allows the parameters of the SVAR to be dependent on the slope of 

forward curve, so called T-SVAR. In addition, we take into account the roll-over effect 

by introducing a dummy variable to capture the time effect of maturity and roll-over 

of contracts. 

 

1.5.3 Components and Determinants of Bid-Ask Spread of TOCOM Energy 

Futures 

Bid-Ask spread (BAS) has always been one of crucial topics in financial research 

because it is of concern to several participants in financial market. For market-makers, 

BAS is their potential profit as a compensation of providing liquidity to the market. 

From exchange’s point of view, BAS provides a clue for market design, such as 

whether they should assign a single market-makers, or increase the competition of 
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different market-makers, and the determination of minimum tick size. It is also very 

important for regulators since it can be a tool to measure the fairness of market-

makers’ rent. 

 Four components of BAS have been identified, adverse-selection costs, 

inventory-hold costs, order-processing costs and level of competition (Bagehot, 1971; 

Copeland and Galai, 1983; Glosten and Milgrom, 1985; Glosten and Harris, 1988; 

Stoll, 1989; Bollen et al., 2004). The adverse-selection component is due to the 

existence of informed traders. When market-makers and informed investors possess 

asymmetric information, informed investors can profit by trading on their 

private/superior information, while market-makers provide them liquidity on a loss. 

Therefore, market-makers tend to widen BAS in order to reduce the possibility of 

informed trading and increase the profit traded with other investors. The second 

component, inventory-hold costs, occurs when market-makers’ funds are held to 

markets. This may include the opportunity cost of investing alternative assets and the 

risk of adverse movement of invested assets. The order-processing costs are directly 

related to providing liquidity, including exchange seats, floor space rent, computer 

costs, labour costs, and even the opportunity cost of market-makers’ time. The last 

component, level of competition, is because increases in competition among market-

makers reduce the profit of each market-maker and so does BAS.  

 To investigate the determinants of BAS components for TOCOM energy 

futures markets, we employ a time-series model which considers intraday information 

on three components, namely adverse-selection costs, inventory-hold costs, order 

processing costs. As it is not possible to obtain the information of number of market 

makers, the level of competition is not considered here. Two variables, realised 

volatility and trading volume are included. The former reflects inventory-hold costs, 

while the latter contains information of adverse-selection and order-processing costs. 

Moreover, this study also considers two different the asymmetric effects of trading 

volume on BAS, which are sell-initiated and negative-return transactions.  
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1.6 Summary and Conclusions 

The aim of this study is to focus on a new market for energy derivatives with several 

distinctive characteristics. First, in contrast to NYMEX and ICE energy derivatives 

markets, TOCOM is a more domestic market where crude and products futures 

contracts are traded in Japanese yen. Second, the exchange regulations impose trade 

restriction and position limits for different participants depending on the nature of their 

trade (see Chapter 3 for details). Third, the trading pattern in TOCOM seems to be 

different from other energy and commodity derivatives markets since liquidity or 

trading volume appears to have a positive relation with contract maturity; that is, 

trading volume decreases as contract maturity reduces.       

 In terms of general contributions, this study extends the exiting literature on 

energy futures markets in several dimensions. First, we estimate and forecast realised 

volatility of TOCOM energy futures contracts by adapting a regime switching model 

which takes into account changes in the dynamic of estimated realised volatility. In 

addition, we evaluate the performance of the regime switching realised volatility 

models across maturity of futures contracts using a battery of tests as well as VaR 

metrics. Second, using a T-SVAR model, we investigate the trading activity and 

volatility relation of energy futures contacts and find that while volatility and trading 

volume are contemporaneously related, however, the strength of the relation can vary 

according to the market conditions as indicated by the slope of the forward curve. The 

main justification for such a change in trading activity and price volatility is explained 

using market structure and trading patterns of market participants. Third, the analysis 

of the determinants of components bid-ask spread of energy futures traded in TOCOM 

using high frequency data reveals important information on the impact of return 

volatility, trading volume and potential asymmetric impact of trading volume on bid-

ask spread. In particular, we find that while volatility has appositive impact on bid-ask 

spread as suggested by the literature according to the inventory holding cost, the 

results revealed that trading volume has a negative impact on the BAS of energy 

futures. In addition, the asymmetric impact of sell-initiated transaction has been found 

positive, which indicates BAS is narrowed less when ta trade is sell-initiated. 

 The rest of this research is structured as follows. We begin with the review of 
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relevant literature in Chapter 2, which explains the theories and past empirical studies 

in detail. Chapter 3 presents an introduction of TOCOM energy futures, descriptive 

statistics and a preliminary analysis of data. In Chapter 4, 5 and 6, we present three 

analyses, namely modelling realised volatility, volume-volatility relation, and 

determinants of bid-ask spread components. Chapter 7 concludes. 
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2.1 Introduction 

There has been a significant increase in the number of studies on energy prices and 

markets in recent years due to the importance of the sector to national economies, 

international trade, world geopolitical landscape, and opportunities that energy 

commodities offer to investors. Over the years, researchers have examined different 

aspects of energy commodity prices and energy derivatives markets including the time 

series behaviour of prices, market efficiency and price discovery, risk management 

and hedging effectiveness, market microstructure and liquidly, pricing of derivatives 

contracts, as well as performance of forecasting and trading strategies.   

Amongst different types of energy commodities, crude oil and petroleum 

products have been the focus of many studies as crude oil and petroleum products are 

essential commodities as input for production and manufacturing, fuel for 

transportation and shipping, as well as source of energy for commercial and residential 

use. In addition, crude oil and petroleum products are also used as investment 

commodities which allow investors to diversify their portfolios or benefit from trading 
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these commodities in physical form or under derivatives contracts.   

One particular aspect of a group of studies in the literature has been the 

modelling and forecasting volatility of energy prices as such information can be used 

for different purposes including risk management, asset allocation and investment, and 

derivatives pricing and trading, to name a few. In addition, a number of studies are 

also devoted to examining the market microstructure and in particular the relation 

between trading activities and volatility of energy commodities in futures markets to 

explain the behaviour of investors and their impact on prices. In this chapter, we begin 

by presenting the relevant literature on market microstructure and some application in 

energy market. Afterwards, we discuss different approaches used in the literature for 

modelling volatility of energy prices and returns and their findings. Next, we 

investigate the studies on the return-volume and volatility-volume relations in energy 

markets. Majority of the studies are concentrated in investigating the volatility of 

energy futures markets in the US (NYMEX) and UK (ICE) as the two mature and 

established energy futures exchanges. Finally, the relevant literature on components 

and determinants of BAS is presented. 

 

2.2 Market microstructure and energy market 

Market microstructure provides the insight of the behaviour of market makers and 

other participants. Two main theories are discussed by the literature, namely inventory 

model and information model. Both of them focuses on how market makers set bid 

and ask prices to provide liquidity and meanwhile prevent themselves from failure. In 

the following, theoretical models of inventory effect and information effect are 

presented. Then, the empirical literature for examining two models and the discussion 

in energy market are discussed. 

 

2.2.1 Inventory model 

Market makers play an important role in the literature of market microstructure, who 

adjust bid and ask prices based on the change in market condition and mainly earn the 
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bid-ask spread as the return for providing liquidity to markets. Demsetz (1968) argues 

that the bid-ask spread is determined by waiting cost and level of competition in 

addition to other direct costs such as transaction fee and commission to brokers. 

Waiting cost is defined as the cost incurs for waiting to trade with any immediate 

incoming orders. Thus, any trader demands a quick trading have to pay higher price 

as the compensation to those who stand ready and wait to trade. 

Earlier studies explaining the intraday variation in bid-ask spread mainly focus 

on the role of inventory, such as Smidt (1971) and Garman (1976). Smidt (1971) 

suggests that market makers reduce the bid prices to accumulate their inventory when 

there is an excess of supply, while increase the ask prices to dispose of their inventory 

when there is an excess of demand. Garman (1976) proposes the theoretical model of 

market microstructure based on the relation between the market maker’s inventory and 

quotes. The model is set to be a one single monopolistic market maker who processes 

all trading, and sets the bid and ask prices. The market maker has finite cash and stock 

inventory, and fails to provide service by either cash or stock depletion. Garman’s 

model suggests that given the inventory is assumed as a random walk with zero drift, 

the market maker will eventually fail, and the probability of failure and the length to 

failure are both related to the market maker’s inventory level. This implies the 

importance of the market maker’s inventory, so the market maker will reluctantly 

change inventory unless the price significantly declines. 

Amihud and Mendelson (1980) extend Garman’s model by introducing the 

states of the market maker’s stock inventory level, meaning the market maker can only 

take limited short or long position. This model shows that the price policy of market 

maker is to maintain a preferred inventory position by adjusts his quoted prices If the 

inventory level is away from the preferred inventory position, the market maker quotes 

prices to draw his inventory level back to the preferred one. Another extension of the 

inventory model is proposed by Madhavan and Smidt (1993). In the setting of 

Madhavan and Smidt’s model, the market maker is both a dealer who provides 

liquidity to the market and an investor who invests for his own account. Moreover, 

their model incorporates both inventory effect and information effect, and allows the 

preferred inventory level to change over time. Their empirical evidence shows that 

allowing time-varying preferred inventory level improves the goodness of fit from 2% 
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to 18% on average, and produce the more reasonable inventory half-life from 49.7 

trading days to 7.3 trading days. Hence, instead of targeting an unchanged long-term 

inventory level, the market maker tends to quote prices that leads his inventory to a 

time-varying preferred level. 

 

2.2.2 Information model 

More recently studies pay attention to the behaviour of different types market 

participants in response to the arrival and dissemination of information under an 

imperfection market. Bagehot (1971) firstly distinguish market traders into three 

different categories, namely informed, uninformed and noise traders, based on their 

motivation for trading. Informed traders possess private information, while 

uninformed traders possess information that they believe it is private but, in fact, is 

not. Noise traders transact due to liquidity need such as adjustment of their portfolio. 

As market makers are responsible to provide liquidity to the market, they always lose 

money trading with informed traders. As a result, market makers need to set up a 

positive spread that covers the informational component, which is also called adverse-

selection component in Section 2.5, in order to regain the profit from the other two 

types (Copeland and Galai, 1983).  

 Glosten and Milgrom (1985) develop the information model in a dealership 

market with informed traders and uninformed traders, defined as purely liquidity 

traders here. In their model, the expectation value from the market maker and informed 

traders will eventually fully converge, because the market maker learns the correct 

price by observing the order flow. In addition, the bid-ask spread is widened when the 

ratio of informed traders to uninformed traders increases since the rise in the ratio 

indicates higher probability of adverse selection. Easley and O'Hara (1987) extend 

Glosten and Milgrom’s model by considering the market maker’s pricing policy in 

response to the trade size. In particular, since informed traders compete with each other, 

they are more likely to trade in large size in order to maximise their profit. Therefore, 

the market maker can set higher spread to the large quantity of trades than to the small 

one. 
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  On the contrast to Easley and O'Hara’s model, Kyle (1985) proposes a model 

with a single trader who possesses the monopolistic private information and trade on 

it in order to maximise his profit. Similar to other information models, the market 

maker updates his belief of the price by observing the order flow from informed and 

uninformed traders, and the market price eventually reflect all available information. 

Moreover, Kyle’s model suggests that the trading activity of the inform trader becomes 

more aggressive when the liquidity from uninformed traders are larger, since the 

market maker can regain more profit from the larger quantity of uninformed trading. 

Admati and Pfleiderer (1988) expand Kyle’s model by allowing discretionary 

uninformed traders, who can choose the trading time of the day and the competition 

between informed traders. Their model suggests that discretionary liquidity trading 

tends to be concentrated, especially in the period closer to the realisation of their 

demand. In addition, it is consistent with Kyle’s model that informed trading is more 

active when liquidity trading is in concentration.  

 

2.2.3 Empirical evidence 

Both inventory and information effect are examined by several empirical studies. 

French and Roll (1986) investigate the daily returns of all common stocks on the New 

York and American Stock Exchange, and find the variance of returns during trading 

hours is much higher than that during non-trading hours. They examine three possible 

causes of this phenomenon: 1) the high variance during trading hours is caused by 

public information because public information is observed during business hours; 2) 

the high variance during trading hours is caused by private information because private 

information only affects prices through informed trading; 3) the high variance during 

trading hour is caused by trading process (mispricing) itself. By comparing weekday 

holidays returns with single-calendar-day returns, they distinguish public information 

from private information. Since public information is still available in other markets 

during weekday holidays, the variance of weekday holidays returns is expected to 

approximately double that of single-calendar-day returns if the variance is mainly 

driven by the public information. Their result shows that the variance of weekday 

holidays returns is only 14.5% higher than that of single-calendar-day returns, which 

implies that the variance of returns is mainly caused by the flow of private information. 
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 Hasbrouck (1988) studies quotes and trades data on NYSE to examine the 

inventory and information effects. His result suggests that trades are negatively 

autocorrelated for low-volume stocks but not for high-volume stocks, which indicates 

the inventory effect does not always exist. In addition, the impact of trades on quotes 

revision seems insignificant. With respect to the information effect, their evidence 

shows that the persistence impact of trade quotes is strong, and more information is 

conveyed by large trades. Hasbrouck (1991a) further uses a vector autoregressive 

system to investigate the interaction between trades and quotes revision. The empirical 

result supports the existence of information effect and inventory control effect, and 

shows that large trades usually widen the bid-ask spread, which also increases price 

impacts. Moreover, Hasbrouck (1991b) decomposes the variance of efficient price into 

public information component and private information component, so called trade-

uncorrelated and trade-correlated component. By studying firms listed on New York 

and American Stock Exchange, he finds that the trade informativeness, defined as the 

efficient price variance attributable to trades, is larger for smaller capitalisation stocks, 

and 34 percent of efficient variance attributes to trades. 

 Engle (2000) incorporate durations, defined as the waiting time between the 

arrival of two successive transactions and modelled by the ACD model (Engle and 

Russell, 1998), into a GARCH framework to investigate the impact of trade timing on 

price volatility. This study investigates 52,144 IBM stock transactions, and finds that 

both expected and observed duration is negatively related to the price volatility 

because the long duration indicates no news comes to markets. In addition, the 

evidence also suggests the greater bid-ask spread and trading volume indicates the rise 

in the price volatility. Moreover, Dufour and Engle (2000) investigate the impact of 

duration under Harbrouck’s VAR framework for 144 stocks on NYSE. Their findings 

show that the shorter the duration is, the higher the quotes revision and the 

autocorrelation of trades are, which indicates the high trading activity implies the great 

price impact and the concentrated trades. In the connection to the results of Hasbrouck 

(1991a), high trading activity (low duration), wider bid-ask spreads, large price impact 

and large trade size are bound together. Therefore, the duration and trade size may 

provide other market participants, such as uninformed traders and market makers, a 

hint of the presence of informed trading. More recently, Manganelli (2005) analyses 

10 stocks on NYSE to examine three hypotheses: 1) the trading volume is in cluster; 
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2) the greater trading activity coincides with a high number of informed traders; 3) the 

price variance of high trading activity stocks converges to long-run equilibrium faster 

than that of low trading ones. His results show that the trades clustering exists for all 

stocks, and autocorrelation in trading volume is stronger for more frequently trading 

stocks. In addition, the duration is negatively related to the price variance, while the 

trading volume is positively related to the price variance. Because the positive relation 

between volume and variance indicates trading is information driven, the low duration 

(high trading activity) coincides a high proportion of informed trading. With regards 

to the last hypothesis, the average time taken to absorb shocks for low duration stocks 

is less than that for high duration stocks, which confirms the hypothesis. 

 

2.2.4 Microstructure in energy futures market 

One major difference between financial futures and commodity futures is the 

underlying assets. The underlying of financial futures are financial assets, such as 

stocks, bonds, interest rates or currency whereas that of commodity futures are 

physical assets, such as petroleum, agriculture products and metals. The prices of 

physical assets are determined by the supply and demand function of both the cash 

market, which is for instant purchases or sales, and storage market, which is for the 

inventory held by producers and consumers (Pindyck, 2001). Nonetheless, for most 

financial assets, the impact of storage costs can be negligible. Pindyck (2001) also 

points out that the existence of the storage market may also smooth the fluctuations of 

commodity prices. For example, if there is an excess of demand, the producers can use 

their inventory to fulfil the (expected) increase in consumptions so that the fluctuations 

in the market can be reduced. 

 Even though the theory of storage can explain the dynamics of storable 

commodities spot and futures prices, the impact of storage on the microstructure is 

limited because futures are still more related to financial assets. However, 

Vansteenkiste (2011) investigates WTI futures prices by two aspects, namely 

fundamental, which is implied by cost-of-carry theory, and market microstructure. The 

results show that if the fundamental volatility is high, only commercial traders would 

enter the market. However, if oil demand volatility decreases or unexpected oil shocks 
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happens, non-commercial traders would participate the market. This is consistent to 

the main motivation for trading of commercial and non-commercial traders, since 

commercial traders hedge especially when the underlying market is volatile while non-

commercial traders earn profit thorough trading on information. This study implies 

that even though the theory of cost-of-carry does not directly affect the market 

microstructure, it still has indirect impact on market microstructure, such as the 

component of the participants. Moreover, the information effect in energy market is 

also examined by analysing the relation between volume and volatility. In section 

2.4.4, literature discussing the volume-volatility relation in both daily and intraday 

frequency analyses are presented in detail. 

   

2.3 Modelling Volatility of Energy Futures Return 

The issue of modelling the dynamics of volatility of energy prices and returns has been 

of interest to researchers for many years. This is because variation in energy prices 

can have significant effect on income of producers, costs and expenses of consumers, 

as well as investment portfolios of traders in energy markets. Therefore, different 

approaches have been proposed and employed to capture the dynamics of volatility of 

energy prices and returns. In what follows we classify and present the studies on 

modelling volatility of energy prices according to the approach used, and discuss their 

findings and the pros and cons of each method. 

 

2.3.1 Autoregressive Conditional Heteroscedasticity models 

Following the pioneering study of Engle (1982) on modelling the dynamics of the 

second moment of a time series using Autoregressive Conditional Heteroscedasticity 

(ARCH), a large number of studies are devoted to examine and model the time varying 

conditional volatility of economic and financial series including stock returns, 

commodity futures prices, exchange rates, inflation, interest rates and other financial 

and economic variables (see Bera and Higgins, 1992, Bollerslev et al., 1992, Engle 

and Ng, 1993, and Teräsvirta, 2006 for detailed reviews of applications and extensions 
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of ARCH-type models).  

At the same time, a number of the studies focus on the specification of these 

models in capturing the stylised facts of asset prices and returns including leverage 

effect, non-normality, time-varying skewness and kurtosis, and structural breaks and 

regime shifts. For instance, Engle and Ng (1993) argue that the impact of shocks on 

volatility can vary depending on their sign and magnitude. In this respect, they propose 

a series of diagnostic tests for volatility models, which examine the effects of shocks 

on volatility.8 To account for asymmetric effects of shocks on volatility, Glosten et al. 

(1993) and Nelson (1991) propose the Threshold GARCH (TGARCH) and 

Exponential GARCH (EGARCH) specifications, respectively, to capture asymmetric 

response of volatility to positive and negative shocks. 

Different specifications of GARCH model have also been widely employed to 

model and forecast volatility of energy prices as it has been shown that GARCH 

specification is able to capture the long memory property in crude oil market. Apart 

from the standard GARCH model, Asymmetric GARCH (AGARCH) and Integrated 

GARCH (IGARCH) are also applied to model volatility of crude oil and petroleum 

prices. For instance, Sadorsky (2006) examines the forecasting performance of 

GARCH and Threshold GARCH (TGARCH) type models in predicting volatility of 

daily oil prices concludes that no one model is the best predictor. Narayan and Narayan 

(2007) found the evidence supporting the asymmetric effect of shocks on the volatility 

by EGARCH. They argue that this approach is more appropriate as it can address 

deviations from normality. Hou and Suardi (2012) show that nonparametric GARCH 

models can produce better forecasts of crude oil futures return volatility compared to 

parametric GARCH models. This is expected because of the deviation of the oil price 

distribution from normality and the existence of excess kurtosis as observed by Chan 

et al. (2007). Fan et al. (2008) propose a Generalised Error Distribution (GED) 

GARCH approach to estimate Value-at-Risk of WTI and Brent crude oil prices, while 

Giot and Laurent (2003) employ a APARCH model with skewed Student-t distribution 

to model the conditional variance, and then to estimate the VaR for metal, energy and 

                                                 

8 These tests are the sign bias, size bias, and the joint test. The sign bias tests the asymmetry response 

of volatility to shocks with different signs, whereas the size bias tests the response of volatility to 

shock with different magnitude, and the joint test is used to investigate the existence of both effects. 
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agricultural commodities.  

Moreover, Cheong (2009) and Kang et al. (2009) discuss modelling and 

forecasting volatility in three crude oil markets (Brent, Dubai, and West Texas 

Intermediate, WTI) using different types of GARCH models. For instance, Kang et al. 

(2009) find that the CGARCH and FIGARCH models are better equipped to capture 

persistence in volatility and provide superior performance in out-of-sample volatility 

forecasts compared to the GARCH and IGARCH models. Mohammadi and Su (2010) 

also investigate the out-of-sample performance of different GARCH specifications 

(GARCH, EGARCH, APARCH and FIGARCH) in forecasting volatility of spot 

prices for eleven international crude varieties. They report that the forecasting 

performances of the models are mixed, but APARCH model seem to marginally 

perform better.  Moreover, Wei et al. (2010) employ the Superior Predictive Ability 

(SPA) test to compare different specifications of GARCH models, and conclude that 

no particular GARCH model outperforms other models and researchers should find 

the optimal model depending on the purpose of the modelling exercise. For instance, 

linear GARCH models are suitable for forecasting short-run volatility (less than 1 

year) whereas non-linear models can produce better forecasts for long-term (more than 

1 year).  

In a recent study Chkili et al. (2014) find that in-sample and out-of-sample 

volatility of commodity returns (including NYMEX WTI crude oil and Natural Gas 

futures) can be better described by nonlinear volatility models such as FIAPARCH 

which accommodates the long memory and asymmetry features of commodity price 

volatility. They also report that the FIAPARCH model performs better in estimating 

the VaR forecasts for both short and long trading positions. Furthermore, the bivariate 

GARCH models have also been developed to forecast variance and covariance of spot 

and futures prices for determination of hedge ratios. For instance, Chang et al. (2010), 

Chang et al. (2010), Wang and Wu (2012) and Efimova and Serletis (2014) provide 

evidence that multivariate GARCH model can forecast crude oil return volatility better 

than univariate models.   

In another extension of GARCH models, Fong and See (2002) highlight the 

importance of market condition or regimes in dynamics of volatility of energy prices. 

By employing a Regime Switching GARCH model, Fong and See (2002) show that 
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regime shifts are present in the crude oil price volatility and dominate GARCH effects. 

Based on the same argument, Alizadeh et al. (2008) employ Bivariate Regime 

Switching GARCH (MRS-GARCH) models to examine the hedging effectiveness of 

WTI Crude Oil, Heating Oil, and Gasoline futures contracts traded in NYMEX. Using 

in- and out-of-sample tests,  Alizadeh et al. (2008) report that regime switching hedge 

ratios are generally perform better than other dynamic hedge ratios including 

multivariate GARCH models.  

Alizadeh and Talley (2009) and Nomikos and Pouliasis (2011) also argue that 

the dynamics of volatility can be different depending on prevailing market conditions. 

Alizadeh and Talley (2009) use the slope of forward curve as proxy for market 

condition and report that the dynamics of volatility of four NYMEX energy futures 

(WTI crude oil, Gasoline, Heating oil and Natural Gas) can vary under conango and 

backwardation states. They also report a quadratic relation between the slope of 

forward curve and the volatility of energy futures prices. Nomikos and Pouliasis 

(2011) use different GARCH specifications including a Markov Regime Switching 

GARCH (MRS-GARCH) model and a Mix-GARCH9 model to examine the volatility 

of four energy futures (NYMEX WTI crude oil, and Heating oil, and ICE Brent crude 

and Gasoil). They report that a two state regime MRS-GARCH and Mix-GARCH 

models explain the in-sample volatility of energy futures better than alternative 

GARCH specifications, however, their out-of-sample forecast are somehow mixed.   

 

2.3.2 Implied Volatility 

Although GARCH type models are able to capture the long memory property of 

volatility, the lack of forecast accuracy of GARCH models has been pointed out in 

several studies including Figlewski (1997) and Poon and Granger (2003). Cabedo and 

Moya (2003) and Sadeghi and Shavvalpour (2006) point out that because of high 

persistence in GARCH models, they tend to overestimate the variance which in turn 

results in inaccurate forecast of variance and inefficient VaR estimates. An alternative 

                                                 

9 The Mix-GARCH model proposed by Vlaar and Palm (1993) differs from the MRS-GARCH model 

in the definition of regime probabilities. In the Mix-GARCH the overall regime probability over the 

total sample is considered. 
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approach to estimate the volatility of financial assets is to use the Implied Volatility 

based on traded option values proposed by Latane and Rendleman (1976) and Beckers 

(1981). Implied Volatility (IV) estimates are obtained by inverting a closed form 

option pricing formula such as Black and Scholes (1973) using traded option premia 

on the underlying asset.  

Day and Lewis (1993) compare the forecasting performance of GARCH and 

EGARCH models with the IV of option prices on NYMEX WTI crude oil futures over 

the period November 1986 to March 1991. They report that volatility forecasts based 

on IV outperform the forecast produced by complicated GARCH models. Jorion 

(1995) and Fleming et al. (1995) also find evidence suggesting that IV is a better 

predictor of volatility in currency and stock markets, respectively. Szakmary et al. 

(2003) examine 35 options on futures, and reports that implied volatilities perform 

marginally better than historical and GARCH type volatilities in predicting volatility 

of futures prices.   

Despite the extensive empirical evidence in favour of implied volatility across 

different markets (Christensen and Prabhala, 1998, Ederington and Guan, 2002, Giot, 

2003, and Pong et al. 2004), a few studies argue that implied volatility is an inefficient 

and biased estimate of realised volatility. For instance, Lamoureux and Lastrapes 

(1993) and Canina and Figlewski (1993) studies on stock market, find that implied 

volatility is a biased estimate of volatility. For instance, Canina and Figlewski (1993) 

examine the performance of IV of options on S&P 500 index futures contract and 

argue that that along with investors' perception of future volatility, an option's market 

price also reflects the net effect of many other factors that influence option supply and 

demand but are not in the closed form option pricing model. In addition, liquidity 

considerations, interaction between the OEX option (options on S&P100 index) and 

the (occasionally mispriced) S&P 500 index futures contract, and investors’ 

preferences for particular payoff patterns could also contribute to inaccuracy of 

implied volatilities derived from market traded option values. Engle and Rosenberg 

(2000) point out that the methodological issues such as sample selection bias could be 

a reason for the implied volatility to be a biased estimator of volatility. However, 

Neely (2009) provides evidence to reject such an argument for IV in foreign exchange 

market, and argues that IV is the conditional expectation of RV (that is, unbiased 
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predictor of future volatility) only under fairly stringent assumptions and the IV bias 

exist because it is not economically significant to be arbitraged away.  

Furthermore, Agnolucci (2009) points out that although the GARCH estimate 

outperforms the implied volatility in NYMEX crude oil options on futures, however, 

there is still value in the implied volatility as the information contained in the IV 

forecasts is not contained in those obtained by using time series models. In a recent 

paper, Haugom et al. (2014) also argue that including the Crude Oil Implied Volatility 

Index (OVX), reported by CBOE, in models based on realised volatility measures can 

significantly improve the predictive power of daily and weekly volatility forecasts.   

 

2.3.3 Realised Volatility Models 

A number of recent studies suggest that high-frequency data are useful for estimating 

and predicting future volatility as intraday movements in prices is less subject to 

measurement error compared to price observations at lower frequency, Andersen and 

Bollerslev (1998). In this approach, an unbiased estimator of volatility, known as 

realised volatility (RV), can be estimated using the squared values of intraday returns. 

Therefore, considering the intraday returns series, ri,t , can be constructed by dividing 

each day into M equidistant intraday periods, then the realised volatility of day t for a 

portfolio of assets can be measured as RV𝑡 = √∑ 𝑟𝑖,𝑡
2𝑀

𝑖=1  (see 4.3.1 for detailed 

explanation on RV). Under the assumption that returns are independent with a zero 

mean, RV𝑡
2 is an unbiased estimator of the true variance. Andersen et al. (2001a) and 

Andersen et al. (2003) propose different time-series models for estimation realised 

volatility with high-frequency data. Barndorff-Nielsen and Shephard (2004), 

Andersen et al. (2007), and Barndorff-Nielsen and Shephard (2007) further argue the 

importance of accounting for jumps in estimation of realised volatility. Andersen et 

al. (2006) and McAleer and Medeiros (2008) provide a thorough survey of studies on 

the estimation and applications of realised volatility.  

In the energy sector, the first study employing the realised volatility approach 

to estimate the volatility of sweet crude oil is Martens and Zein (2004), and followed 
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by Wang et al. (2008) investigating NYMEX crude oil and natural gas futures prices. 

They suggest that RV is an appropriate measure of volatility in both crude oil and 

natural gas market as well the Realised Correlation between the futures prices of the 

two commodities. Wei (2012) examines the crude oil futures traded in Shanghai 

Futures Exchange (SHFE), and argues that the RV and the stochastic volatility (SV) 

models are able to produce more accurate volatility forecasts compared to GARCH 

models. 

In a recent study, Sévi (2014) employs intraday data to forecast the volatility 

of WTI crude oil futures for 1- to 66-day horizon using a variety of models based on 

the decomposition of realized variance into its positive or negative part (semivariances) 

and its continuous or discontinuous part (jumps). Considering eleven Heterogenous 

Autoregressive (HAR) models proposed in the literature (Andersen et al. 2007, Corsi, 

2009, Chen and Ghysels, 2010, and Patton and Sheppard 2015), Sévi (2014) reports 

that the model with independent squared jump has best forecast in-sample, but does 

not improve significantly the out-of-sample forecast. Haugom et al. (2014) also 

analyse the realised volatility of WTI crude oil futures, and employ an augmented 

HAR-RV model of Corsi (2009) which incorporates implied volatility (CBOE Crude 

Oil Volatility Index as a proxy) and other market variables including trading volume, 

open interest, daily returns, bid-ask spread and the slope of the futures curve. Their 

forecasting results reveal that incorporating the IV (Crude Oil ETF Volatility Index, 

OVX) can significantly improve the short term (daily and weekly) volatility forecasts, 

while including the other market variables improves the long term (monthly) volatility 

forecasts. 

 

2.3.4 Stochastic Volatility Models 

A recent approach in modelling and estimating volatility is based on the concept that 

volatility of asset prices can behave stochastically. This led to the introduction of the 

family of stochastic volatility models where the variance is decomposed into 

deterministic and stochastic parts. For instance, Taylor (2008) proposes a basic 

logarithmic Autoregressive Stochastic Volatility (ARSV). However, a model which 

has been used and discussed extensively in the literature especially for derivatives 
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pricing is Heston’s (1993) stochastic volatility model where the volatility is assumed 

to follow a mean-reverting process. 10 While different processes can be used to explain 

the mean, for instance mean-reversion (MR) or mean-reversion jump diffusion 

(MRJD) processes, most studies in the literature assume a MR type process for 

volatility to ensure variance process remain stationary. 

The empirical application of stochastic volatility models has been limited 

mainly due to the difficulties involved in their estimation. The major problem is that 

the likelihood function is hard to evaluate, despite the introduction of several new 

estimation methods in the literature in recent years (see Broto and Ruiz (2004) for a 

detailed survey and discussion of stochastic volatility estimation methods). However, 

the stochastic volatility models tend to exhibit a lower degree of persistence compared 

to the GARCH model which can result in better volatility predations. 

Larsson and Nossman (2011) use four affine jump diffusion stochastic volatility 

models (namely Jump Diffusion, Stochastic Volatility, Stochastic Volatility with 

Jumps, and Stochastic Volatility with Correlated Jumps) to study WTI crude oil spot 

price dynamics during the period May 1989 to May 2009. Their results provide 

support for a stochastic volatility model with correlated jumps in both prices and 

volatility (SVCJ) as the SVCJ model outperforms the others in terms of a superior fit 

to data. In a recent paper, Chiarella et al. (2013) propose a multifactor stochastic 

volatility model within the Heath et al. (1992) framework which captures the main 

characteristics of the volatility structure of NYMEX crude oil futures including the 

hump shape in the term structure of volatility. They report evidence on the existence 

of three volatility factors, two of which tend to exhibit a hump. Finally, using hedge 

ratios implied by their proposed unspanned hump-shaped stochastic volatility model, 

they report that hedging performance of the proposed model is better than a model 

with only exponential decaying volatility term structure.  

                                                 

10  Heston’s (1993) stochastic volatility model has the following specification

dwVdtVVdV   )( , where dt is an infinitesimal fraction of time, V is volatility (variance), dw 

is a random variables, V  is the long term variance,  is a coefficient which determines the fluctuation 

in the variance (the standard deviation of the variance). The absolute volatility of the variance is V
. 
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2.4 Trading Volume and Volatility Relation 

The relationship between trading volume, price change and volatility has been widely 

investigated in many financial and economic studies. There are a number of reasons 

for such an interest in discovering the true nature of the relationship both in theoretical 

and practical terms. A large number of studies have been devoted to examine the 

trading volume and price relationship in different markets, using different sample 

period and functional forms. The general consensus is that there is a positive 

relationship between trading volume and price change in financial and commodity 

markets. A number of theoretical frameworks have been proposed to explain the 

positive relation between trading activity and price change including Mixture of 

Distribution Hypothesis (MDH) by Clark (1973), the Sequential Information Arrival 

Hypothesis (SIAH) by Copeland (1976), Motivation Driven Trades by Wang (1994) 

and Llorente et al. (2002). In addition, the relation between trading volume and price 

volatility has been the subject of many studies and the overall empirical evidence 

suggests that there is a positive relation between trading activity and market volatility 

in different markets (e.g. Lamoureux and Lastrapes, 1990, Najand and Yung, 1991, 

Bessembinder and Seguin, 1993, Foster, 1995, Moosa and Silvapulle, 2000, Moosa et 

al., 2003, Chevallier and Sevi, 2012, Halova, 2012, and among others).  

 

2.4.1 Mixture of Distribution Hypothesis 

The Mixture of Distribution Hypothesis of Clark (1973) postulates that price change 

and trading volume follow a joint probability distribution; hence, price change and 

trading volume are positively correlated as they jointly depend on a common 

underlying variable, which is normally interpreted as the random flow of information 

to the market. The MDH also assumes that all traders receive and react (e.g. trades) to 

the information simultaneously. Evidence in support of MDH is provided by Epps and 

Epps (1976) who examine 20 stocks on the New York Stock Exchange (NYSE). They 

prove MDH by using transaction volume as the mixing variable. Tauchen and Pitts 

(1983) model the joint distribution of volume and squared price change for 90-day T-

bills futures and report consistent results with MDH. Other studies utilise the 

Generalised Autoregressive Conditional Heteroscedasticity (GARCH) model by 
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Engle (1982) and Bollerslev (1986) to investigate the volume-volatility relation as the 

return distribution of financial assets is usually time-varying. For instance, Lamoureux 

and Lastrapes (1990) find a positive contemporaneous relationship between trading 

volumes and return variance in 20 S&P500 stocks, which is in line with MDH. 

Moreover, Najand and Yung (1991) and Rahman et al. (2002) report a positive 

volume-volatility relationship in both the Treasury-bond futures market and the 

NASDAQ 100 index. More interestingly, Lamoureux and Lastrapes (1990) find that 

the persistence of lagged square residual becomes much weaker when trading volume 

is included in the variance equation. 

However, including trading volume as a variable in the GARCH model is 

argued to be inappropriate by Fleming et al. (2006), since volume should be 

endogenous to volatility according to MDH. Therefore, simultaneity bias may incur if 

the GARCH model is estimated. To overcome the problem of simultaneity, studies 

employ the Generalised Method of Moment (GMM) to analyse the volume-volatility 

relationship. For instance, Foster (1995) on the Brent and WTI crude oil market, Wang 

and Yau (2000) on the S&P500 index, Deutsche Mark, and silver and gold futures, 

and Lee and Rui (2002) on the US, UK, and Japanese stock markets, all provide 

evidence of contemporaneously positive volume-volatility relationships. More 

recently, Hussain (2011) investigated the volume-volatility relationship for the DAX 

30 stock index considering the effect of expected and unexpected trading volume on 

the volatility of the index. He finds a positive relationship between unexpected trading 

volume and return volatility with certain asymmetric effect; that is, a positive change 

in trading volume can increase return volatility more than a negative change in volume 

can. 

 

2.4.2 Sequential Information Arrival Hypothesis 

Sequential Information Arrival Hypothesis (SIAH), proposed by Copeland (1976) and 

discussed further in Jennings et al. (1981), explains the positive relationship between 

price changes and volume as a consequence of random arrival but gradual 

dissemination of information in the market. Therefore, informed traders who receive 

the information first, rebalance their portfolios accordingly, which results in shifts in 
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supply and demand in the market and a series of transitory equilibria. Once the 

information is fully absorbed by all traders, informed and uninformed, then the new 

equilibrium is reached. This sequential dissemination of information initiates 

transactions at different price levels during the day, the number of which increases 

with the rate of information flow to the market. Consequently, both trading volume 

and movement in price increase as the rate of arrival of information to the market 

increases which implies the existence of a positive relationship between the trading 

activity and price variability.  

SIAH implies a lead-lag relationship between trading volume and price 

volatility, and several empirical papers provide evidence in support of such a 

relationship in different financial and commodity markets. Smirlock and Starks (1988) 

study 300 S&P 500 companies, and find the existence of a lead-lag relation between 

absolute price change and trading volume. Using 5-minute intraday data and an 

EGARCH specification, Darrat et al. (2003) investigate the volume-volatility relation 

in the Dow Jones Industrial Average (DJIA) index. Their results reveal a weak 

contemporaneous relationship but a strong lead-lag relationship between the volume 

and volatility of DJIA, which is in line with SIAH. Darrat et al. (2007) argue that SIAH 

can be tested only in periods when the news is public. They examine the dynamic 

relation between intraday trading volume and the return volatility of large and small 

NYSE stocks using two partitioned samples, with and without identifiable public 

news. Their results reveal a bi-directional Granger-causality between volume and 

volatility when information is public, as hypothesized by SIAH. However, in periods 

when there is no public news, only trading volume Granger-causes volatility. Darrat 

et al. (2007) relate the latter to behavioural models like the overconfidence and biased 

self-attribution model by Daniel et al. (1998). 

Generally speaking, the MDH and the SIAH both suggest existence of a 

positive relation between trading volume and price volatility. Nevertheless, they differ 

in the symmetry of the flow of information to the market. The MDH assumes all 

traders and market participants receive the random information simultaneously, so the 

volume-volatility relation is contemporaneous. On the other hand, the SIAH assume 

that the information arrives randomly but reaches different traders sequentially. As a 

result, changes in trading volume precede price movements. In other words, the trading 
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volume is supposed to lead the price change and volatility under the SIAH hypothesis. 

Strangely enough, these two hypotheses do not seem to be mutually exclusive. 

The literature providing evidence in support of MDH also reveals lead-lag relationship 

between volume and volatility. Foster (1995), Wang and Yau (2000) and Hussain 

(2011) find that the lagged trading volume also explains the contemporaneous return 

or price volatility using a VAR setting and the GMM estimation technique, even 

though the sign of coefficient is not always positive. Lee and Rui (2002) shows the 

positive feedback effect in the trading volume and volatility relation in US, UK and 

Japan stock markets, while trading volume in the US even Granger-causes UK and 

Japan financial markets.  

 

2.4.3 Trader Types and Volume-Volatility Relation 

Wang (1994) and Llorente et al. (2002) argue that volume and return dynamics depend 

on the motivation behind the trade. For instance, Wang (1994) discusses two different 

hypotheses, namely Liquidity Driven Trade (LDT) and Information Driven Trade 

(IDT) hypotheses.  Under the LDT hypothesis, a reversal in consecutive returns is 

likely if the trading by informed traders is driven by changes of investment 

opportunities outside the market. In this case, trading volume will contribute positively 

to the subsequent volatility. Under the IDT hypothesis, it is argued that the momentum 

in consecutive returns is a consequence of the informed investors’ trade due to better 

private information. This is because when a subset of informed investors sells (buys) 

because they have unfavourable (favourable) private information; the asset price 

decreases (increases), reflecting the negative (positive) private information about its 

payoff. Since this information is usually only partially incorporated into the price at 

the beginning, the negative (positive) return in the current period will be followed by 

another negative (positive) return in the next period. Thus, this trading volume leads 

to lower subsequent volatility since these two period returns tend to be of the same 

sign, which means that high trading volume will be followed by a low volatility; that 

is, trading volume and subsequent volatility are negatively related. Llorente et al 

(2002) also show that “hedging trades”, which are liquidity-driven trades, generate 

negatively auto-correlated returns, while “speculative trades”, which are information-
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driven trades, generate positively auto-correlated returns.  

 

2.4.4 Evidence from energy markets 

Serletis (1992) studies the relation between trading volume and the volatility of crude 

oil futures contracts traded in NYMEX during the period from January 1987 to July 

1990, allowing for maturity effect. Although he finds that crude oil futures prices 

become more volatile and trading volume increases as futures contracts approach, the 

results of causality tests reveal that just as volatility does not affect trading volume, 

trading volume has little effect on volatility. Herbert (1995) examines the relation 

between the trading volume and price volatility of natural gas futures contracts 

considering the time to maturity, and reports that a) the volume of trade rather than 

maturity explains the variance of the volatility, and b) that of trading volume can 

explain price volatility but price volatility has much less of an influence on trading 

activity. Moosa et al. (2003) present empirical evidence of temporal asymmetry in the 

price-volume relationship in the crude oil futures market. They use 3- and 6-month 

futures prices and trading volumes, and find that the price-volume relationship is 

bidirectional and asymmetric, since the effect of negative price and volume changes 

is stronger than that of positive price and volume changes.   

More recently and with the availability of intraday data, a number of studies 

investigate the volume and volatility relationship using high frequency observations. 

For instance, Ripple and Moosa (2009) use a range-based volatility measure and 

examine the effect of intra-day trading volume and open interest on crude futures 

contracts. They report the positive and significant role for trading volume in the 

determination of volatility as well as the importance of the open interest, which has a 

significant negative effect. Chevallier and Sévi (2012) investigate the relationship 

between trading volume and price volatility in the crude oil and natural gas futures 

markets using various measures of realized volatility. They report existence of a 

contemporaneous and largely positive relationship between trading volume and price 

change. They also argue that the volatility-volume relationship is symmetric in relation 

to positive and negative realized semivariance, in the sense that the information 

content of negative realized semivariance is higher than for positive realized 
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semivariance. Halova (2012) also examines the intraday volume and volatility 

relationship in the crude oil and natural gas futures markets using high frequency data. 

Based on a series of Granger-causality tests using conditional and absolute volatility 

measures, she reports that trading volume seems to drive volatility, which supports the 

SIAH.  

In the electricity market, Gianfreda and Renò (2012) investigate the trading 

volume and spot price volatility relation in four European markets. They employ both 

GARCH model and realised volatility estimate and report that there is limited 

interaction between volume volatility of spot electricity prices when price spikes are 

accounted for. They argue that the lack of trading based on superior information since 

there is limited speculative trade in the spot electricity market. 

Overall, the results of the previous literature point to the existence of a positive 

relationship between price volatility and trading volume in different financial and 

commodity markets. Additionally, there is evidence that a causal relationship exists 

between trading volume and price changes although the direction of causality seems 

to differ depending on the period and the market under investigation. One reason for 

such discrepancy in reported results could be that the relation between trading activity 

and price change can be dependent on market condition and trading behaviour of 

agents. Therefore, this study aims to fill this gap by investigating the trading activity, 

price change and volatility relationship in the TOCOM energy complex (crude oil, 

gasoline and kerosene) under different market conditions as indicated by the slope of 

forward curve. In particular, we use volatility estimates based on RV and a SVAR 

framework to examine whether there is any asymmetry in the volume-price relation 

under different market conditions. We also investigate whether market conditions in 

the form of the slope of forward curve can explain the trading behaviour of market 

participants. 

 

2.4.5 Structural Vector Autoregressive model (SVAR) 

As discussed in section 2.4.1, utilising GARCH to investigate the contemporaneous 

relation between trading volume and volatility may result in the simultaneity issue 
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(Fleming et al., 2006). Literature (Foster, 1995; Wang and Yau (2000); Lee and Rui 

(2002), and among others) employs GMM as a solution to avoid possible problems 

due to the simultaneity bias, such as inconsistent estimator and heteroskedasticity in 

covariance matrix, when analysing the contemporaneous volume-volatility relation. 

An alternative to GMM is structural Vector autoregressive model (SVAR) proposed 

by Sims (1980). Under Vector Autoregressive model (VAR) system, all variables are 

treated as endogenous and modelled by the equations in the system. 

One crucial issue of the estimation of SVAR is the identification because the 

parameters of a SVAR is hardly identified without restrictions on structural parameters.  

Rothenberg (1971) provides the necessary number of restrictions for a SVAR to be 

identified, which is equal to 𝑛×(𝑛 − 1)/2, where n is the number of endogenous 

variables. Two classes of restrictions are utilised in the literature. The first one is linear 

restrictions on the parameters of both contemporaneous and lagged variables. This 

kind identification scheme can be triangular or non-triangular restrictions. The 

triangular linear restriction, also known as recursive or Choleski identification scheme, 

usually has a lower triangular matrix of contemporaneous parameters. For example, 

let us consider a simultaneous system with three endogenous variables, 𝑥𝑡 , 𝑦𝑡 and 𝑧𝑡, 

there are nine contemporaneous coefficients to estimate without restrictions, shown as 

below. 

[

𝑒𝑥

𝑒𝑦

𝑒𝑧

] = [

𝑎𝑥𝑥 𝑎𝑥𝑦 𝑎𝑥𝑧

𝑎𝑦𝑥 𝑎𝑦𝑦 𝑎𝑦𝑧

𝑎𝑧𝑥 𝑎𝑧𝑦 𝑎𝑧𝑧

] [

𝜀𝑥

𝜀𝑦

𝜀𝑧

] , 

where 𝑒𝑥, 𝑒𝑦 and 𝑒𝑧 are the structural disturbance, and 𝜀𝑥, 𝜀𝑦 and 𝜀𝑧 are the residuals 

in the reduced form VAR. A triangular restriction reduces the number of 

contemporaneous parameters from nine to six, which can be expressed as 

[

𝑒𝑥

𝑒𝑦

𝑒𝑧

] = [

𝑎𝑥𝑥 0 0
𝑎𝑦𝑥 𝑎𝑦𝑦 0
𝑎𝑧𝑥 𝑎𝑧𝑦 𝑎𝑧𝑧

] [

𝜀𝑥

𝜀𝑦

𝜀𝑧

]. 

The restrictions imply that the variable  𝑥𝑡 is not affected by the innovations of the 

variable  𝑦𝑡  and  𝑧𝑡 , and the variable  𝑦𝑡  is not affected by the innovation of the 

variable  𝑧𝑡. Moreover, it is clear that the order of variables in the SVAR with the 
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triangular restriction is importance since it decides whether the innovations have 

impact on the variables. Christiano et al. (1996) employ a recursive SVAR to 

investigate the impact of the monetary policy shocks on the U.S. economy, and assume 

that the monetary policy is affected by the shocks of real GDP, the GDP deflator, and 

an index of sensitive commodity prices. Kilian (2009) differentiates the shocks in 

crude oil market into three types, namely supply shock, aggregate demand shock, and 

oil-market specific demand shock, and investigate the impact of global crude oil 

market shocks on US economy. He provides evidence in support of the response of 

real GDP growth and CPI inflation to crude oil supply and aggregate demand shocks. 

However, the assumptions for the recursive identification scheme can be controversial, 

so Sims (1986), Bernanke (1986) and Blanchard and Watson (1986) suggest an 

alternative to the recursive restrictions, which is so called the non-triangular 

identification. Even though the contemporaneous parameters matrix of non-triangular 

identification scheme can have non-recursive restrictions, the minimum number of 

restriction still need to address the requirement of 𝑛×(𝑛 − 1)/2.  

The second type of restrictions is a non-linear restriction, which includes the 

restriction on contemporaneous parameters and short-run or long-run impulse 

function. As the impulse function is non-linear transformation of the contemporaneous 

parameters, the restrictions on the impulse function naturally result in non-linear 

restrictions on contemporaneous parameters. Blanchard and Quah (1989) investigate 

the causes of the unemployment level and GNP dynamics by a SVAR with non-linear 

restrictions, which prevent any long-run effect from demand disturbances to both 

unemployment and GNP. They find that the impact of demand disturbances on 

unemployment and GNP is a hump-shaped curve, which disappears in two to three 

years. However, the effect of supply disturbances on GNP peaks at the second year 

and levels off after the fifth year. Clarida and Gali (1994) investigate the impact of 

supply, demand and money shocks on relative output, real exchange rate and national 

price level through a SVAR with long run restrictions. They find that the majority of 

the variance of exchange rate fluctuations is explained by the shocks of demand for 

real money balance, while the shocks of supply only explain little. 
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2.5   Components and Determinants of Bid-Ask Spread of TOCOM 

Energy Futures 

Bid-Ask spread (BAS) has always been one of crucial topics in financial research 

because it is of concern to several participants in financial market. For market-makers, 

BAS is their potential profit as a compensation of providing liquidity to the market. 

From exchange’s point of view, BAS provides a clue for market design, such as 

whether they should assign a single market-makers, or increase the competition of 

different market-makers, and the determination of minimum tick size. It is also very 

important for regulators since it can be a tool to measure the fairness of market-

makers’ rent. 

The components of BAS are firstly classified by literature into two different 

types (Bagehot, 1971; Copeland and Galai, 1983; Glosten and Milgrom, 1985; Glosten 

and Harris, 1988), adverse-selection and transitory. The adverse-selection component 

caused by asymmetric information between market-makers and informed investors. 

This cost happens when informed investors trade on their private information, and 

market-makers provide them liquidity on a loss. The transitory component, as 

suggested by the name, it is the costs unrelated to price changes, such as inventory-

hold costs, clearing costs, and/or monopoly profit. Stoll (1989) further decomposes 

BAS into three components, adverse-selection, inventory-hold and order processing 

costs. He finds that the order processing costs account for the largest part of BAS, and 

followed by adverse-selection and inventory-hold costs sequentially. More recently, 

Bollen et al. (2004) add level of competition as an additional component since the 

increase in competition of market-makers reduces the profit of each market-maker and 

so does BAS. 

 

2.5.1 Adverse-selection costs 

Market-makers bear adverse-selection costs when trading with informed investors 

who have better information about the price movement of petroleum than themselves. 

In equilibrium, the loss from trading with informed traders is assumed to be the same 

size of the gain from trading with uninformed traders. The expected loss from trading 
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with informed traders are viewed as adverse-selection costs for market-makers. 

Different proxies for adverse-selection costs have been. For example, Branch and 

Freed (1977) use the number of securities in which a dealer makes a market, because 

the dealer with larger the number of securities is less informed about an individual 

stock. Glosten and Harris (1988) use the concentration of ownership by insiders. A 

corporation with higher concentration has greater probability to trade on their prior 

information, and then results in higher adverse-selection costs. The market value of 

shares outstanding is used by Harris (1994), since the information of a larger firm 

should be more well-known and public, which reduce the probability of adverse-

selection. Easley et al. (1996) use the volume of trading. When the trading volume is 

higher, it implied that the proportion of uninformed traders may be higher than when 

the trading volume is lower. Therefore, the adverse-selection costs are lower. 

 

2.5.2 Inventory-hold costs 

Inventory-hold costs occur when market-makers hold the inventory that they intend to 

supply traders in the market. There are two obvious costs according to holding the 

inventory. The first one is the opportunity costs of fund. Because the fund of market-

makers is held to the inventory, they lose the opportunity to trade on other assets. The 

second cost is the risk of adverse movement. This cost incurs when price moves 

differently to marker-makers’ expectation before they can provide liquidity to other 

investors. Several proxies have been used in literature for inventory-hold costs. For 

example, volatility is the most obvious proxy for the second kind of inventory-hold 

costs, such as Tinic (1972) utilises the standard deviation of price to measure the 

inventory-hold costs, Stoll (1978) uses the logarithm of the return variance, and Harris 

(1994) uses return standard deviation. Trade frequency and the number of shareholders 

are employed by Demsetz (1968) since both of them are viewed to represent 

transaction rate. When transaction rate is higher, market-makers are less likely to bear 

loss from both opportunity cost and risk of adverse movement. 
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2.5.3 Order processing costs 

Order-processing costs are, as the name suggests, the costs directly related to liquidity 

providing, including exchange seat, floor space rent, computer costs, labour costs, and 

even the opportunity costs of market makers’ time. Because they are mostly fixed 

costs, they should be lower when trading volume is higher. As market-makers usually 

provide liquidity for more than one security, the order-processing costs can be reduced 

to a very small amount. In a highly competitive market, BAS may not cover order-

processing costs, and equal to the marginal costs of providing liquidity. Hence, 

literature mainly utilises trading volume, number of transaction or the inverse and 

logarithm of them as proxy of order-processing costs (Tinic, 1972; Tinic and West, 

1972; Tinic and West, 1974; Branch and Freed, 1997; Stoll, 1978; Harris, 1994). 

 

2.5.4 Determinants of BAS 

Two fundamental determinants of BAS have been identified by literature, which are 

trading volume and volatility. In most studies, increases in trading volume usually 

reduce BAS while increases in volatility rise BAS. Wang and Yau (2000) investigate 

S&P 500 index, Deutsche Mark, silver and gold futures, and find a positive relation 

between BAS and price volatility but a negative relation between BAS and trading 

volume. Huang (2004) studies stock index futures on Taiwan Futures Exchange 

(TAIFEX) and Singapore Exchange Derivatives Trading Limited (SGX-DT), and 

finds price level and volatility are two main determinants of BAS components. Price 

level is positively related to both asymmetric information cost and order processing 

cost, and volatility is the same. More recently, Wang et al. (2013) also found similar 

relation between BAS, daily standard deviation of mid-quote and trading volume on 

corn futures on CME. 

However, the direction of impact from trading volume and volatility on BAS is 

not consistent among literature. Chordia et al. (2001) investigate NYSE stocks, and 

find absolute return is negatively related to quoted and effective spread. Brock and 

Kleidon (1992) argue that during the high demand period, such as opening and closing, 

market makers may charge higher price to transact, which leads to a negative relation 
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between volume and spread, which is also suggested by Easley and O’Hara (1992).  

Easley and O’Hara (1992) argue that low trading volume may imply less information 

arrival, so market makers trade with safer investors with lower spread when volume 

reduces. Nonetheless, Johnson (2008) finds no effect of volume on spread but the 

variance of spread in NYSE stocks and US government bond markets. More recently, 

Narayan et al. (2014) studies 734 US stocks listed on NYSE, and their evidences show 

a negative relation between BAS and volatility but a positive relation between BAS 

and trading volume. 

 

2.6 Summary and conclusions 

Generally speaking, the price and return volatility of energy and energy derivatives 

have been modelling by four different approaches. The first one is GARCH type 

models which can capture the property of long memory in energy market, such as 

FIGARCH (Cheong, 2009, and Kang et al., 2009), MRS-GARCH (Fong and See, 

2002, Alizadeh et al., 2008, and Nomikos and Pouliasis, 2011), FIAPAGCH (Wei et 

al., 2010 and Chkili et al., 2014). Due to the advent of energy options, the implied 

volatility is utilised (Agnolucci, 2009). With the availability of high-frequency data, 

the realised volatility in the form of the sum of intraday squared returns provides 

researchers an alternative way to model volatility (Wang et al., 2008, Sévi, 2014). 

Finally, Larsson and Nossman (2011) and Chiarella et al. (2013) model the volatility 

with stochastic process. The first empirical chapter of this thesis proposes a model 

which take into account changes in market condition in the persistence and dynamics 

of realised volatility of TOCOM energy futures contracts. The proposed model 

extends the Heterogeneous Autoregressive model of Realised Volatility (HAR-RV) 

with a Markov Regime Switching approach (MRS). Out-of-sample analyses are also 

performed to assess the performance of volatility prediction and VaR estimation of the 

MRS-HAR-RV model with alternative approaches.  

With respect to volume-volatility relation, three theories are proposed to explain 

the market microstructure, namely Clark’s (1973) MDH, Copeland’s (1976) SIAH, 

and Wang’s (1994) MDT. Several empirical studies on energy market also examine 

the relation between trading volume and volatility. For instance, Herbert (1995) and 
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Moosa et al. (2003) provide significant evidence supporting the strong relation 

between trading volume and volatility, and Ripple and Moosa (2009) and Chevallier 

and Sévi (2012) utilise the realised volatility to examine the relation between trading 

volume and volatility. We extend the literature in this area by investigating the trading 

activity and volatility relation under different market condition utilising the three 

energy futures contracts traded in TOCOM. 

Four components of BAS have been identified, adverse-selection costs, 

inventory-hold costs, order-processing costs and level of competition (Bagehot, 1971; 

Copeland and Galai, 1983; Glosten and Milgrom, 1985; Glosten and Harris, 1988; 

Stoll, 1989; Bollen et al., 2004). The last empirical chapter of this thesis focuses on 

determinants of the BAS in TOCOM energy futures. Due to the lack of detailed 

information of market-makers, we employ select variables in a time-series model, 

which reflect only three types of BAS components (adverse-selection costs, inventory-

hold and order processing costs). In addition, we consider possible asymmetric effect 

of sell-initiated and negative-return transactions.
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3.1  Introduction 

The aim of this chapter is to provide a detailed description of the main energy futures 

contracts traded on TOCOM, namely gasoline, kerosene, crude oil, gasoil, Chukyo-

gasoline and Chukyo-kerosene. The characteristics of these contracts, including 

underlying assets, settlement type, contract month and size, trading hours, delivery 

process, and position limitations of TOCOM energy futures, are presented in detail. In 

addition, comparisons are drawn on contract specifications, position limits and trading 

activities across the energy futures contracts. After reviewing the specifications of 

TOCOM energy futures contracts, we describe our sample selection, variables and 

periodicity. For the purpose of analysis, we utilise two sample sets, one with daily 

frequency and one with intraday or high frequency. We then perform preliminary 

statistical tests to establish the univariate behaviour of prices for TOCOM energy 

futures contracts, including normality, unit root, autocorrelation and 

heteroscedasticity. 
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3.2 Energy Futures on the Tokyo Commodity Exchange (TOCOM) 

The first two energy contracts listed on TOCOM on 5 July 1999 were gasoline and 

kerosene futures. This was a milestone for TOCOM, as the largest Asian commodity 

exchange. Two years later, on 10 September 2001, TOCOM introduced crude oil 

futures, before gasoil futures were introduced on 8 September 2003. This was followed 

by Chukyo-gasoline futures and Chukyo-kerosene futures in 2010. Overall, with the 

exception of gasoil, which is delisted, there are five energy futures contracts currently 

traded on TOCOM. A comparison of the contract specifications and a summary of 

trading rules are presented in Table 3-1.  

Gasoline and kerosene futures are mainly physically delivered contracts. The 

underlying asset of gasoline futures is defined as the regular gasoline of JIS 2202 

Grade in the Tokyo Bay area, while that of kerosene futures is kerosene of JIS K2203 

Grade 1 in the Tokyo Bay area. In addition, both underlying gasoline and kerosene 

cargoes must be refined within Japan or cleared through customs. Both futures 

contracts have the same contract month, trading session, contract size and delivery 

rules, as well as position limits for traders as described below. 

Gasoline and kerosene futures contracts are traded based on six consecutive 

contract months starting from the second month after the month in which the new 

contract is initiated. In other words, the maturity of gasoline and kerosene futures 

contracts are from one month to six months forward from the trading month. For 

example, if today is 4 August, there would be futures contracts ready for delivery in 

September, October, November, December, January, and February. Regarding trading 

hours, TOCOM has two trading sessions – classified as day and night sessions. The 

day session lasts from 8:40 a.m. to 3:15 p.m. Japanese Standard Time (JST), and the 

night session runs from 4:30 p.m. to 5:30 a.m. (JST). The last trading session (day) for 

both gasoline and kerosene futures contracts is the day session on the 25th before the 

current contract month, and the following night session on the same day is the first 

trading day for the new gasoline and kerosene futures contracts. For example, the last 

trading day for the September contract is the day session on 25 August, and the first 

trading day for the March contract is the night session on 25 August. In respect of 

contract size, the deliverable volume per contract is 50 kilolitres (kl), and every 
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delivery must involve at least two contracts, with a 2% tolerance limit volume of 

delivery. 

Over the settlement period, both gasoline and kerosene futures contracts are 

delivered by barges in different locations depending on the seller’s choice. The seller 

has the option to choose refineries or oil tanks which accommodate barges and are 

approved by TOCOM in Tokyo, Kanagawa or Chiba, while the buyer can set the 

delivery date within the contract month. In addition, the buyer must pay gasoline tax 

when taking delivery of gasoline, which is excluded from the contract price, whereas 

delivery cost is included in the contract price. The circuit breaker trigger level is 

decided at the beginning of each clearing period and is based on the settlement price 

of the previous clearing period, which is 5 p.m. of the night session. If it is a new 

month contract, the trigger level depends on the settlement price of the preceding 

contract month. In addition, TOCOM has different position limits for commercial 

traders, investment trusts and non-commercials. Commercial traders are able to trade 

up to 2,000, 3,000 and 5,000 contracts for the 1-month, 2-month and each other 

maturity, respectively, and limits for short and long positions are separate. Non-

commercial customers can only enter into each short or long position for 250, 500, 

and 1,500 contracts of the 1-month, 2-month and each other maturity, respectively. 

For instance, if today is 4 August, a commercial trader can trade at most 5,000 

contracts to be delivered in November while a non-commercial trader can only trade 

a maximum of 1,500 lots for the November contract. 

 Crude oil futures contracts have been listed on TOCOM since 10 September 

2003. There are some notable differences between crude oil and gasoline (or kerosene) 

futures contracts. Firstly, crude oil futures contracts are cash-settled, which means 

there is no physical delivery of cargo. The underlying asset was first introduced as the 

average of Dubai and Oman crude delivered in Japan, and was changed to Dubai crude 

only in June 2015. In addition, both Dubai and Oman crude oil are quoted in US dollar 

per barrel (US$/bbl), while TOCOM crude oil futures contracts are traded in Japanese 

Yen per kilolitre (JPY/kl). Hence, TOCOM uses the following formula for calculation 

of the reference price for spot crude oil (before June 2015), which uses the spot Dollar-

Yen exchange rate.  
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𝑆 =
(𝑃𝐷 + 𝑃𝑂)×0.5×𝐹𝑂𝑅𝐸𝑋

0.1590
 , 

(3.1) 

where S is the spot reference price, PD and PO are the prices of Dubai and Oman crude 

oil provided by Platts, FOREX is the foreign exchange rate (JPY/US$) quoted by the 

Bank of Tokyo-Mitsubishi UFJ, Ltd., and 0.1590 is the conversion rate of barrel to 

kilolitre (1 bbl = 0.1590 kl). Although TOCOM discontinued providing the spot 

reference price after 18 August 2009 because of a license agreement with its data 

provider, final settlement prices are now the monthly average of the spot reference 

price. (See equation  (3.1))                                                         

Secondly, crude oil futures also include six consecutive contract months, but the 

contract months start from the nearby month and continue up to five months ahead 

contract. For instance, if today is 4 August 2014, there would be six tradable contracts 

with maturities in August 2014, September 2014, and up to December 2014. This also 

indicates that the first and the last session of trading are different from those of 

gasoline and kerosene futures. The last trading session of the current contract month 

is the day session of the last business day in the contract month, and the first trading 

day of the new contract month is the night session on the same day. For example, the 

last trading day for the August 2014 contract is the day session on 31 August 2014, 

and the February 2014 contract starts to be traded in the night session on 31 August 

2014. However, there is an exception at the end of the year. If the last trading day of 

the current month is 31 December, the new contract month begins in the day session 

of the business day immediately following the last trading day. The final difference 

between crude oil and product futures contracts relates to position limits. Generally, 

customers can trade more contracts in crude oil futures than gasoline or kerosene 

futures. Commercial traders and investment trusts can hold up to 12,800 crude oil 

futures in each of the contract months for each long and short position, while non-

commercial customers have a traded limit of a maximum of 2,400 contracts. 

Nonetheless, the position limits have been abandoned since June 2015.  

Following crude oil futures, the fourth energy future listed on TOCOM is for 

gasoil futures introduced on 8 September 2003. However, gasoil futures were 

suspended during the period from February 2006 to May 2010 because of quiet trading 

activity. With an increase in the volatility of the gasoil market, demand for hedging 
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with futures also arose. Therefore, TOCOM reopened transactions of gasoil futures on 

6 May 2010, but trading activity continues to be very limited. 

Two relatively new contracts launched by TOCOM on 12 October 2010 are 

Chukyo-gasoline and Chukyo-kerosene futures. They are also mainly physically 

delivered contracts, with underlying assets being the regular gasoline of JIS K2202 

Grade 2 (excluding E3-gasoline, gasoline with 3% ethanol content) and kerosene of 

JIS K2203 Grade 1 in the Aichi area. As with gasoline and kerosene futures, the 

underlying products must be refined within Japan or cleared through customs. The 

contract months and trading sessions of Chukyo-gasoline and Chukyo-kerosene 

futures are exactly the same as those of gasoline and kerosene futures, but the contract 

size, delivery rules and position limits are different. For instance, every Chukyo-

gasoline/kerosene futures contract contains 10 kl gasoline/kerosene, and every 

delivery involves one contract: namely 10 kl per delivery with a 2% tolerance limit in 

delivered volume. The delivery process of Chukyo-gasoline and Chukyo-kerosene is 

by tanker trucks. The seller has the right to choose any oil tank appointed by TOCOM 

within Shiomi-cho, Minato-ku, Nagoya, Aichi and Tobishima-mura, Ama-gun, and 

Aichi as delivery points. On the other hand, the buyer can decide the transaction date. 

In addition, the buyer of Chukyo-gasoline futures must pay gasoline tax when delivery 

is taken, because it is not included in the contract price. In terms of position limits, 

there are relatively fewer restrictions in trading Chukyo-gasoline and Chukyo-

kerosene. For both futures, non-commercial traders can take long or short positions up 

to a maximum of 300 contracts for the current contract month: 600 contracts for the 

second contract month and 3,600 contracts for each of the future contract months. On 

the other hand, commercial traders and investment trusts can trade up to 1,500, 3,000 

and 6,000 contracts for the current, second, and each of the other contract months, 

respectively. 

Overall, only one out of six energy futures traded on TOCOM is of a cash-settled 

type, crude oil futures, while the others are physically delivered. Hence, the contract 

month, the first and last trading day of crude oil futures, is also different from other 

energy futures. In addition, although discrimination in the limitation of holding 

positions for commercial and non-commercial customers may be designed to protect 

TOCOM from the disturbance of potential speculative traders, non-commercial traders 
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are still the majority of TOCOM energy market participants. Thus, the prevention of 

speculator’s distortion may be limited. 
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Table 3-1: Comparison of six TOCOM energy commodities 

Specification Gasoline Kerosene Gasoil Chukyo-gasoline Chukyo-kerosene Crude oil 

First listed day July 5, 1999 July 5, 1999 September 8, 2003 October 12, 2010 October 12, 2010 September 10, 2001 

Transaction type Physical delivery Physical delivery Physical delivery Physical delivery Physical delivery Cash settled 

Underlying/ 

Standard 

Regular gasoline of 

JIS K2202 Grade 2 

(Tokyo Bay area) 

Kerosene of JIS 

K2203 Grade 1 

(Tokyo Bay area) 

Gasoil JIS K2204 

(three qualities) 

Regular gasoline of 

JIS K2202 Grade 2 

(Aichi area)a 

Kerosene of JIS 

K2203 Grade 1 (Aichi 

area) 

Middle East crude oil 

(the average of Dubai 

and Oman) 

Contract unit 50 kl 50 kl 50 kl 10 kl 10 kl 50 kl 

Delivery unit 100 kl 100 kl 100 kl 10 kl 10 kl N/A 

 

Contract month 

6 consecutive months 

(from second month) 

6 consecutive months 

(from second month) 

6 consecutive months 

(from second month) 

6 consecutive months 

(from second month) 

6 consecutive months 

(from second month) 

6 consecutive months 

(from current month) 

Last trading day Day session on 25th Day session on 25th Day session on 25th Day session on 25th Day session on 25th 
Day session on the 

last business day 

First trading day Night session on 25th Night session on 25th Night session on 25th Night session on 25th Night session on 25th 
Night session on the 

last business day b 

Limitation 

position: 

commercials c 

Contract month: 2,000 contracts 

2nd contract month: 3,000 contracts 

Other contract months (each): 5,000 contracts 

Current contract month: 1,500 contracts  

2nd contract month: 3,000 contracts 

Other contract months (each): 6,000 contracts 

Each contract month: 

12,800 contracts 

Limitation 

position: 

non-

commercials 

Contract month: 250 contracts 

2nd contract month: 500 contracts 

Other contract months (each): 1,500 contracts 

Current contract month: 300 contracts  

2nd contract month: 600 contracts 

Other contract months (each): 3,600 contracts 

Each contract month: 

2,400 contracts 

a E3, 3% ethanol gasoline, is exclusive. 
b If the last business day is the end of the year, the first trading day is the day session of the first business day of the next year. 
c This includes investment trusts. 
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3.3 Sample Selection, Descriptive Statistics and Preliminary 

Analysis 

Considering that the series of gasoil futures is discontinuous between 2006 and 2010, 

and given the very low trading activities of Chukyo-gasoline and Chukyo-kerosene, 

we concentrate analysis on gasoline, kerosene and crude oil futures only, which have 

a relatively long and continuous sample size and higher trading activities. Moreover, 

in this study, we utilise both daily and intraday data. Daily observations are mainly 

used for analysing Value at Risk (VaR) in Chapter 4, whereas intraday data is used to 

estimate realised volatility, investigate the relation between return volatility and 

trading volume, and to analyse determinants of bid-ask spread (BAS). 

 

3.3.1 Daily Data 

Our daily sample data begins on 22 September 2010 and continues until 30 October 

2015, which totals approximately 1253 daily observations. Although data are available 

from January 1999 for gasoline and kerosene futures, and from 3 December 2001 for 

crude oil futures, the beginning date of the sample is chosen to be 22 September 2010 

for two reasons. Firstly, the night trading session was extended from 6 hours (17:00-

23:00) to 11 hours (17:00-4:00) on 22 September 2010 in order to attract more foreign 

trades to TOCOM. Therefore, the potential participation of a new type of investor may 

have changed the market structure. Secondly, energy markets experienced a sharp rise 

and drop around 2008 due to the financial crisis. Choosing the beginning date as 22 

September 2010 can also avoid possible structural changes in the TOCOM energy 

futures market. Data is acquired from the TOCOM website (http://www.tocom.or.jp). 

In order to compare the results across the term structure, six maturities futures are 

included in the sample, namely 1- to 6-month gasoline and kerosene futures and 

nearby- to 5-month crude oil futures, which is a total of 18 futures. 

 Figure 3-1 presents the historical prices for gasoline, kerosene and crude oil 

futures over the sample period. It is evident that all of the three futures prices across 

different contract months move closely, and exhibit similar dynamics to those of spot 

prices for crude oil (Figure 1-6 in Chapter 1). The spot and futures prices for oil and 

http://www.tocom.or.jp/
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energy commodities peaked at the end of 2012 and remained stable for about two years 

until sharply dropping at the end of 2014. Even though they recovered to relatively 

high levels at the beginning of 2015, prices declined again in the second half of 2015.  

 The other noticeable characteristic of TOCOM energy futures contracts is the 

difference in the volume of trading across different contact months. Surprisingly, it 

seems that trading volume is positively related to contracts maturity (see Figure 3-2 

and Panel A of Table 3-3), which is in contrast to what is observed in other energy 

futures markets, where trading volume increases as maturity approaches. For example, 

the descriptive statistics of nearby- to 5-month WTI futures on NYMEX (Table 3-4) 

shows a positive relation between trading volume and maturity. The main reason for 

this paradox is because the limits in trading contracts with longer than 5 or 6 month 

maturities. Therefore, hedgers who need to hedge their exposure for longer than 5 or 

6 months, adapt a stack and roll strategy using futures contracts with 5 or 6 month to 

maturity. Other traders also trade on the longest contracts because of their higher 

liquidly, which result in build-up of liquidity in the longer-term contracts.  

Another feature shown in Figure 3-2 is that the trading volume of crude oil 

futures has constantly increased since the fourth quarter of 2014. There are two 

possible reasons. Firstly, the oil prices sharply declined since the mid of 2014, which 

may increase the demand of hedging from oil producer and exploration companies. 

Based on Figure 1-9 and Table 1-1, the foreign trades ratio increased to over 50% after 

September 2014, which may also indicate the possibility of the increase in foreign 

hedgers. Secondly, the limit on the position of trading crude oil futures has been 

removed since June 2015, which provides motivation for both hedgers and speculators 

to engage in TOCOM market. 

The descriptive statistics reported in Table 3-2 reveal that TOCOM energy 

futures prices generally have negative skewness and low coefficients of kurtosis, and 

that there is not much difference between contracts with different maturity. However, 

TOCOM energy futures returns exhibit different statistical properties, being 

negatively skewed but with excess kurtosis. This implies that negative and extreme 

returns are more likely to be observed than positive and normal cases. The results of 

the augmented Dickey-Fuller (ADF) unit root tests reported in Table 3-2 cannot reject 

the null hypothesis of the existence of unit root for all three TOCOM energy futures 
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prices. However, the results of the ADF test support that the TOCOM energy futures 

return is all stationary series. Hence, we can conclude that TOCOM energy futures 

prices are all non-stationary and integrated of order one, I(1). Furthermore, Ljung and 

Box (1978)’s Q statistic is performed to examine the autocorrelation function for the 

first 22 lags. The number of lags for Q statistic is chosen as 22 because it provides a 

potential comparison of the persistence between returns and volatility. Corsi (2009) 

indicates that realised volatility is highly persistent, and can be explained by at least 

up to 1-month lagged realised volatility. Therefore, choosing 22 as the number of lags 

for Q statistic may allow us to test the difference in the persistence between return and 

realised volatility. The results in Table 3-2 show the significance in the Q statistic on 

the first 22 lags of the autocorrelation function in both energy futures prices and 

returns, which suggests that both series are autocorrelated. 

Table 3-3 reveals the descriptive statistics of daily trading volume and the 

number of transactions. Comparing the mean of trading volume and number of 

transactions, it is clear that the trading volume per transaction is quite small. For 

example, for 5-month crude oil futures, it is only 1.6 contracts per transaction. In 

addition, by dividing trading hours per day by the number of transactions per day, the 

frequency between trades can also be calculated. Based on the given day and night 

trading session, the trading hours are 63900 seconds per day, so the average frequency 

of transaction is 15.46 seconds for the most frequently traded contract, 6-month 

gasoline futures. This implies that the choice of sampling frequency may be lower for 

TOCOM energy futures than for futures on other energy exchanges (see discussion in 

Section 3.3.2).  

Moreover, there is differences in the levels of kurtosis of trading volume across 

maturities. The magnitude of kurtosis increases as contract maturity decreases. For 

example, the kurtosis of 6-month gasoline futures is 5.5755, whereas that of 1-month 

ones is 36.9432. This indicates that for shorter maturity contracts, the trading activity 

is relatively quiet, but the volume per transaction is much more extreme. This pattern 

is confirmed by the figures shown in Panel A and Panel B of Table 3-3. For instance, 

the average trading volume per transaction is 1.6 for 5-month crude oil futures, but 2 
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for nearby-month crude oil futures11. Nonetheless, with respect to autocorrelation and 

the existence of unit root, the trading volume and the number of transactions show the 

similar pattern. It is evident that both trading volume and the number of transactions 

are highly autocorrelated based on Q statistics with 22 lags. However, the results of 

ADF test suggest that the trading volume and the number of transactions are not 

stationary for some kerosene and crude oil futures. Hence, there is a potential concern 

of spurious regression when the relation between trading volume and realised is 

analysed, and more details are discussed in Section 5.4. 

 

  

                                                 

11 The kurtosis of trading volume for WTI futures shown in Table 3-4 also confirm that the kurtosis is 

higher for less liquid contracts. 
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Figure 3-1: Historical daily futures prices of three TOCOM energy futures 
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Figure 3-2: Historical daily trading volume of three TOCOM energy futures 
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Table 3-2: Descriptive statistics and preliminary tests for prices and returns 
Gasoline 

 1-month 2-month 3-month 4-month 5-month 6-month 

Panel A: Price 

Mean 68426.0 68136.3 67843.0 67630.5 67523.2 67513.4 

Std. 9708.2 9638.3 9513.6 9341.1 9156.0 8990.6 

Skewness -0.1795 -0.1728 -0.1559 -0.1444 -0.1203 -0.0929 

Kurtosis 2.1980 2.1360 2.0539 2.0116 1.9709 1.9422 

Q(22) 23197.4 a 23204.7 a 23170.2 a 23199.8 a 23200.7 a 23244.5 a 

ADF -1.9337 -1.9177 -1.7918 -1.8028 -1.7447 -1.7178 

KW 0.2616 0.2303 0.2245 0.2183 0.2166 0.2117 

Panel B: Return (annualised) 

Mean -1.13% -0.78% -0.58% -0.20% 0.15% 0.18% 

Std. 0.2270 0.2286 0.2286 0.2286 0.2302 0.2302 

Skewness -0.5506 -0.4537 -0.5134 -0.4907 -0.4533 -0.4131 

Kurtosis 6.8994 6.2788 6.6244 6.5178 6.5040 6.4346 

Q(22) 42.4111 a 45.5585 a 40.5444 a 33.3127 a 27.1030 a 26.5008 a 

ADF -6.4899 a -6.5061 a -6.8552 a -6.8969 a -6.9981 a -7.0970 a 

KW 13.1815 b 12.5082 b 9.9383 b 9.0218 7.2439 5.8408 

Kerosene 

 1-month 2-month 3-month 4-month 5-month 6-month 

Panel A: Price 

Mean 68165.0 68158.9 68108.2 68022.6 67953.9 67913.4 

Std. 9849.5 9606.2 9407.4 9294.9 9281.2 9323.8 

Skewness -0.3548 -0.2985 -0.2517 -0.2251 -0.2130 -0.2315 

Kurtosis 2.1925 2.1804 2.1708 2.1510 2.1567 2.1679 

Q(22) 23492.1 a 23405.7 a 23277.4 a 23174.0 a 23001.6 a 22854.0 a 

ADF -1.8075 -1.7101 -1.6454 -1.5867 -1.5922 -1.6437 

KW 0.2204 0.2495 0.2311 0.2446 0.2100 0.1940 

Panel B: Return (annualised) 

Mean -1.81% -1.84% -2.02% -2.55% -2.92% -2.65% 

Std. 0.2254 0.2270 0.2302 0.2318 0.2365 0.2413 

Skewness -0.4723 -0.5613 -0.5382 -0.5090 -0.4960 -0.4727 

Kurtosis 8.1421 8.0342 8.0072 8.0045 7.8825 8.1462 

Q(22) 39.7738 a 42.8056 a 43.6274 a 45.0068 a 46.8630 a 46.5762 a 

ADF -6.7955 a -6.9604 -7.1098 a -7.0791 a -7.0581 a -7.0420 a 

KW 6.6494 9.7124 b 9.7734 b 12.4988 b 10.4946 b 4.4839 

Crude oil 

 nearby-m. 1-month 2-month 3-month 4-month 5-month 

Panel A: Price 

Mean 55495.4 55272.4 55146.4 55067.2 55012.8 54981.9 

Std. 9618.5 9561.4 9363.8 9162.3 8955.3 8748.7 

Skewness -0.3696 -0.3525 -0.3205 -0.2904 -0.2581 -0.2268 

Kurtosis 2.2075 2.2308 2.1857 2.1494 2.1131 2.0825 

Q(22) 23886.1 a 23460.1 a 23434.9 a 23405.7 a 23384.9 a 23324.6 a 

ADF -1.6489 -1.5492 -1.5507 -1.5374 -1.5368 -1.5304 

KW 0.1718 0.2003 0.1987 0.2001 0.1938 0.2016 

Panel B: Return (annualised) 

Mean -3.02% -3.38% -3.07% -2.95% -2.77% -2.60% 

Std. 0.2476 0.3000 0.2969 0.2921 0.2889 0.2857 

Skewness -1.3702 -0.4192 -0.4131 -0.4470 -0.4610 -0.4344 

Kurtosis 19.8075 8.8096 8.6320 8.6275 8.5339 8.3298 

Q(22) 61.5804 a 56.1335 a 65.8989 a 58.6773 a 61.9948 a 60.7493 a 

ADF -6.4992 a -7.1554 a -7.1290 a -7.1493 a -7.1011 a -7.1382 a 

KW 8.9103 6.6706 5.4759 5.2433 5.1530 4.8786 
• a and b indicate rejection at the 1% and 5% significance levels. nearby-m. stands for nearby-month contracts. Std. is the 

standard deviation. Q(22) is Q-statistic with 22 lags. ADF is the augmented Dickey-Fuller test statistic. The sample period 

is from 22 September 2010 to 30 October 2015. KW is the Kruskal-Wallis statistic, which follows χ4
2. 
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Table 3-3: Descriptive statistics and preliminary tests for daily trading volume and 

the number of transactions 

Gasoline 

 1-month 2-month 3-month 4-month 5-month 6-month 

Panel A: Trading volume 

Mean 265.862 205.051 258.757 405.626 1524.745 6211.321 

Std. 260.389 172.996 192.295 299.628 1328.784 2697.353 

Skewness 4.578 6.789 3.493 4.388 2.671 1.172 

Kurtosis 36.959 100.793 26.511 44.499 12.701 5.587 

Q(22) 299.652 a 1048.847 a 1337.937 a 1210.215 a 1167.047 a 2236.680 a 

ADF -4.180 a -4.502 a -4.699 a -4.858 a -4.484 a -4.327 a 

KW 10.8283 a 17.5892 a 7.7404 1.8884 1.9172 9.3888 

Panel B: Number of transactions 

Mean 116.46 146.39 206.62 330.53 1096.55 4132.65 

Std. 61.80 81.33 121.76 200.20 882.57 1784.86 

Skewness 1.4889 1.4259 1.9976 2.5507 2.6886 1.2909 

Kurtosis 6.5111 6.2202 10.9215 18.8992 13.0613 5.8810 

Q(22) 742.30 a 1687.16 a 1671.20 a 1123.98 a 1066.06 a 2452.07 a 

ADF -4.9835 a -3.8886 a -4.2950 a -4.7311 a -4.2145 a -4.0877 a 

KW 18.6666 a 9.9262 b 10.8702 b 2.0817 2.0199 9.4477 

Kerosene 

 1-month 2-month 3-month 4-month 5-month 6-month 

Panel A: Trading volume 

Mean 292.280 192.476 207.956 279.471 685.609 1510.005 

Std. 336.346 165.814 173.547 222.193 576.501 857.977 

Skewness 3.265 3.064 3.676 4.623 2.546 2.637 

Kurtosis 16.897 22.281 31.725 51.332 13.424 22.071 

Q(22) 1252.777 a 3059.868 a 1881.688 a 1384.745 a 2106.877 a 4771.246 a 

ADF -2.720 -3.104 -4.969 a -5.369 a -3.637 b -3.697 b 

KW 3.7835 6.4737 12.8288 a 2.8457 1.0560 5.5717 

Panel B: Number of transactions 

Mean 110.00 128.08 156.18 221.80 497.20 1088.05 

Std. 65.47 83.63 95.68 138.74 366.67 545.27 

Skewness 1.3186 1.4726 1.4189 2.2287 2.3031 1.7971 

Kurtosis 6.0603 6.0731 6.5753 15.1809 11.0347 10.7561 

Q(22) 3238.37 a 3348.19 a 2500.69 a 1376.11 a 1775.05 a 4050.27 a 

ADF -3.2778 -3.3928 -4.0735 a -4.8360 a -3.6669 b -3.6155 b 

KW 1.8283 8.2766 11.3851 a 2.9437 1.2187 7.6181 

Crude oil 

 nearby-m. 1-month 2-month 3-month 4-month 5-month 

Panel A: Trading volume 

Mean 61.089 113.265 164.186 290.953 1340.777 4059.605 

Std. 83.378 105.965 149.644 288.330 1991.702 2945.363 

Skewness 5.593 3.386 2.833 2.925 3.699 2.410 

Kurtosis 54.024 25.080 16.308 13.965 19.147 10.312 

Q(22) 161.954 a 354.202 a 590.865 a 2040.016 a 4818.851 a 9499.131 a 

ADF -5.045 a -5.243 a -4.508 a -3.252 -1.428 -1.742 

KW 1.9740 5.8465 8.7236 5.5047 0.8976 13.4031 a 

Panel B: Number of transactions 

Mean 29.08 76.12 113.15 200.61 717.03 2444.16 

Std. 30.04 59.61 93.35 183.13 880.63 1606.34 

Skewness 2.4286 1.9607 2.9154 3.0134 3.9517 1.9641 

Kurtosis 12.7845 8.6050 18.1243 15.2057 25.2731 7.4058 

Q(22) 763.53 a 778.41 a 1098.59 a 2797.34 a 3282.31 a 10918.48 a 

ADF -5.4376 a -5.0636 a -4.6767 a -3.1590 -2.0517 -2.3751 

KW 0.5544 7.9112 8.1902 7.1998 0.9825 11.6321 b 
• a and b indicate rejection at the 1% and 5% significance levels. nearby-m. stands for nearby-month contracts. Std. is the 

standard deviation. Q(22) is Q-statistic with 22 lags. ADF is the augmented Dickey-Fuller test statistic. The sample period 

is from 22 September 2010 to 30 October 2015. KW is the Kruskal-Wallis statistic, which follows χ4
2. 
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Table 3-4: Descriptive statistics and preliminary tests for daily trading volume of 

WTI futures 
 nearby-m. 1-month 2-month 3-month 4-month 5-month 

Mean 275485.4 134731.4 57819.5 35645.8 24987.0 17782.8 

Std. 111091.3 81900.0 27728.7 22054.7 18040.4 15272.6 

Skewness 0.2478 1.4691 1.2864 1.9091 2.5071 2.2666 

Kurtosis 3.9124 5.8101 5.8552 7.7156 12.7021 8.9764 

Q(22) 2478.56 a 2408.97 a 3011.24 a 4152.85 a 3560.46 a 4175.14 a 

ADF -5.6037 a -7.8257 a -6.0609 a -6.5949 a -7.1013 a -7.5957 a 
• a and b indicate rejection at the 1% and 5% significance levels. nearby-m. stands for nearby-month contracts. Std. is the 

standard deviation. Q(22) is Q-statistic with 22 lags. ADF is the augmented Dickey-Fuller test statistic. The sample period 

is from 22 September 2010 to 30 October 2015. 

 

3.3.2 High-frequency Data 

With the availability of tick data for TOCOM energy futures, this research will use 

high-frequency data to measure the daily realised volatility of energy futures prices. It 

is argued that high-frequency data may have disturbance because of microstructure 

features, such as price discreteness (see Harris, 1990, 1991), a periodical volatility 

pattern, nonsynchronous trading, etc., which may affect the measure of realised 

volatility based on intraday data (Andersen and Bollerslev, 1998). To overcome this 

issue, most studies on energy prices resample high-frequency data into a 5-minute 

horizon. For instance, Wang et al. (2008) measure the realised volatility of NYMEX 

light, sweet crude oil, and Henry-Hub natural gas futures with 5-minute frequency 

returns. In addition, Chevallier and Sévi (2012) choose to resample data into 5-minute 

frequency, and measure the realised volatility of WTI front-month futures returns. 

They find that the use of 5-minute frequency data eliminates microstructure noise, and 

still preserves the information in intraday data.  

However, the TOCOM market is less liquid compared with other markets as 

discussed in Section 3.3.1. Therefore, extra care must be taken when deciding the 

optimal sample intervals. This study employs two approaches to find the optimal 

sampling frequency. First, Bandi and Russell (2008) propose an approximation to 

determine the optimal number of intervals per day (𝑀∗) and then the optimal fixed 

interval frequency (∆∗). The optimal number of intervals is defined as 

𝑀∗ = {
ℎ𝑄

[𝐸(𝑒2)]2
}1/3, (3.2) 
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where ℎ is the fixed trading period (one day here), 𝑄 is integrated quarticity of returns, 

and 𝐸(𝑒2) is the second moment of microstructure noise. An estimator of integrated 

quarticity provided by Barndorff-Nielsen and Shephard (2002a) is �̂� =
𝑀

3ℎ
∑ 𝑟𝑗

4𝑀
𝑗=1  , 

which is consistent with an absence of microstructure noise. However, microstructure 

noise is inevitable, so an estimate of integrated quarticity is arrived at via 15-minute 

interval samples to minimise the bias between 𝑄 and �̂�, as suggested by Bandi and 

Russell (2008). The second moment of microstructure noise is estimated by 𝐸(𝑒2) =

1

𝑀
∑ 𝑟𝑗

2𝑀
𝑗=1  using 1-minute interval samples, since 

1

𝑀
∑ 𝑟𝑗

2𝑀
𝑗=1  converges in probability 

to the population moment for large 𝑀. Moreover, they also offer an estimator for MSE 

of realised volatility with MA(1) microstructure noise across different sampling 

frequencies shown as below. 

𝑀𝑆𝐸𝑀𝐴 =
2ℎ

𝑀
𝑄 + 𝑀𝑏 + 𝑀2𝑎 + 𝑐, 

𝑎 = [𝐸(𝑒2)]2, 

𝑏 = 𝐸(𝑒4) + 2𝐸(𝑒2𝑒−1
2 ) − 3[𝐸(𝑒2)]2, 

𝑐 = 4𝐸(𝑒2)𝑉 − 2𝐸(𝑒2𝑒−1
2 ) + 2[𝐸(𝑒2)]2. 

(3.3) 

 

where 𝑉 is integrated variance, �̂� = ∑ 𝑟𝑗
2𝑀

𝑗=1 , estimated by realised variance using a 

15-minute interval sample, and the fourth moments of microstructure noise are 

estimated by 𝐸(𝑒4) =
1

𝑀
∑ 𝑟𝑗

4𝑀
𝑗=1  using 1-minute interval samples. The second 

approach is volatility signature plot, which illustrates averages of realised volatility 

against different corresponding sampling frequency. The optimal frequency is chosen 

as after which average of realised volatility becomes stable, which indicates 

microstructure noise is reduced to a certain level. 

 Table 3-5 shows that 2-minute and 5-minute interval yield the lowest MSE, 

and are supposed to be the optimal sampling frequency according to Bandi and Russell 

(2008)’s approximation. However, the signature plots (Figure 3-3) reveal that both 2-

minute and 5-minute sampling realised volatility are still unstable, which may be 

because the assumption that unobserved microstructure noise is MA (1) process does 

not hold for TOCOM energy futures market. Therefore, instead of using 2- or 5-minute 
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sampling frequency, our high-frequency data is sampled with 15-minute interval, since 

realised volatility seems stabilised from 15-minute sampling frequency for most 

futures. This might seem a lower frequency than other studies which use a 5-minute 

interval; however, given the transaction volume and frequency of trading in TOCOM 

energy futures, it is a reasonable sampling interval. In addition, Liu et al. (2015) also 

suggest that while 5-minute sampling interval is used for moderately liquid assets, it 

is more appropriate to use 15-minute to one-hour interval for less liquid assets. Hence, 

realised volatility for TOCOM energy futures estimated by 15-minute interval should 

be the optimal frequency. Figure 3-4 presents the prices of tick-by-tick and 15-minute 

frequency samples for 5-month crude oil futures on 1 Aug 2014. It is evident that the 

price of 15-minute samples moves very closely with that of tick-by-tick samples, and 

is smoother at the beginning of the market; as a result, we believe that the realised 

volatility measured with 15-minute interval samples should be able to maintain the 

stylised facts of energy futures, reflect market information, and eliminate 

microstructure noise.  

Table 3-6 presents the descriptive statistic of annualised realised volatility, 

sampled in 15-minute intervals and measured as the sum of intraday squared returns. 

According to the literature (Andersen et al., 2001a; Andersen et al., 2003; Andersen 

et al., 2006; McAleer and Medeiros, 2008; among others), the realised volatility has 

been characterised by higher persistence and long-memory process. It is of our interest 

to investigate the autocorrelation of realised volatility on TOCOM energy futures. The 

autocorrelation function with 1, 5 and 22 lags (ACF1, ACF5 and ACF22) shows a 

couple interesting features of TOCOM energy futures. Firstly, the speed of the decline 

in autocorrelation is faster than implied by literature. For instant, Fuertes and Olmo 

(2013) study stocks, exchange rates, bonds and gold markets, and find the 

autocorrelation only slightly reduces after 5 periods. Secondly, Despite the quick 

speed of autocorrelation reducing, the values of ACF5 still indicate the rejection of 

non-autocorrelation, while those of ACF22 does not. For gasoline and kerosene, only 

the realised volatility of highly liquid futures has significant 22-lag ACF. However, 

except nearby-month and 3-month maturity, the ACF of the realised volatility is 

significant for crude oils futures. Even though this may generate the doubt of 

employing Corsi’s HAR-RV to model the realised volatility of TOCOM energy 

futures, the significant values of Q statistic with 22 lags still suggest that the realised 
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volatility is highly autocorrelated up to 1 month for all TOCOM energy futures.  

 

Table 3-5: Comparison of MSE of realised volatility for different sampling frequency  

 Gasoline 

 1-month 2-month 3-month 4-month 5-month 6-month 

1-minute 5.75E-07 4.59E-07 3.97E-07 3.51E-07 3.57E-07 4.75E-07 

2-minute 3.90E-07 3.85E-07 3.63E-07 3.35E-07 3.17E-07 3.20E-07 

5-minute 4.56E-07 4.27E-07 3.27E-07 3.06E-07 3.12E-07 4.80E-07 

10-minute 4.41E-07 4.37E-07 3.49E-07 3.28E-07 3.28E-07 3.37E-07 

15-minute 4.32E-07 4.06E-07 3.68E-07 3.35E-07 3.28E-07 5.27E-07 

20-minute 4.50E-07 4.66E-07 3.63E-07 3.41E-07 3.43E-07 3.87E-07 

25-minute 4.35E-07 4.71E-07 3.87E-07 3.50E-07 3.40E-07 4.02E-07 

30-minute 4.76E-07 4.85E-07 4.22E-07 3.82E-07 3.77E-07 4.48E-07 

 Kerosene 

 1-month 2-month 3-month 4-month 5-month 6-month 

1-minute 8.73E-07 4.89E-07 5.16E-07 4.55E-07 4.31E-07 4.27E-07 

2-minute 7.18E-07 4.12E-07 4.50E-07 3.84E-07 3.93E-07 4.16E-07 

5-minute 7.45E-07 4.71E-07 4.76E-07 4.45E-07 4.34E-07 4.21E-07 

10-minute 7.50E-07 4.95E-07 5.01E-07 4.62E-07 4.59E-07 4.41E-07 

15-minute 7.52E-07 4.95E-07 4.99E-07 4.37E-07 4.75E-07 4.64E-07 

20-minute 8.02E-07 5.23E-07 5.11E-07 4.81E-07 4.91E-07 4.75E-07 

25-minute 7.97E-07 5.25E-07 5.54E-07 4.72E-07 5.38E-07 5.03E-07 

30-minute 8.35E-07 5.58E-07 5.60E-07 5.04E-07 5.54E-07 5.28E-07 

 Crude oil 

 nearby-m. 1-month 2-month 3-month 4-month 5-month 

1-minute 1.99E-06 1.16E-06 1.23E-06 1.40E-06 1.11E-06 1.14E-06 

2-minute 1.47E-06 1.24E-06 1.27E-06 1.26E-06 9.56E-07 9.40E-07 

5-minute 2.00E-06 1.22E-06 1.29E-06 1.34E-06 1.01E-06 1.01E-06 

10-minute 2.03E-06 1.38E-06 1.42E-06 1.40E-06 1.07E-06 1.05E-06 

15-minute 2.18E-06 1.37E-06 1.44E-06 1.31E-06 1.05E-06 1.03E-06 

20-minute 2.33E-06 1.55E-06 1.54E-06 1.53E-06 1.16E-06 1.13E-06 

25-minute 2.44E-06 1.56E-06 1.54E-06 1.45E-06 1.13E-06 1.10E-06 

30-minute 2.55E-06 1.61E-06 1.64E-06 1.56E-06 1.21E-06 1.18E-06 
• nearby-m. denotes nearby-month contract. MSE of estimated realised volatility is calculated by (3.3). The lowest MSE of 

realised volatility is in bold. 
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Figure 3-3: Realised volatility under different sampling frequency for three TOCOM 

energy futures 
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Figure 3-4: The tick-by-tick and 15-minute sampling price of crude oil futures 
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Table 3-6: Descriptive statistics and preliminary tests for daily realised volatility 
Gasoline 

 1-month 2-month 3-month 4-month 5-month 6-month 

Mean 0.0592 0.0512 0.0495 0.0500 0.0512 0.0484 

Std. 0.0889 0.0865 0.0842 0.0797 0.0793 0.0990 

Skewness 4.9216 10.5160 11.2357 12.5324 13.6389 21.9423 

Kurtosis 37.8911 198.2678 217.3890 268.3630 307.2535 639.4619 

ACF1 0.2508 0.2983 0.2790 0.2952 0.3071 0.7136 

ACF5 0.1561 0.0939 0.1132 0.1216 0.1560 0.3875 

ACF22 0.0424 0.0322 0.0437 0.0530 0.0693 0.2236 

Q(22) 413.7169 a 484.2097 a 521.1716 a 528.0508 a 699.8308 a 231.9596 a 

ADF -4.9741 a -5.2210 a -5.4466 a -5.1155 a -5.0418 a -5.4065 a 

KW 3.8762 5.5321 4.2410 6.0885 2.4609 2.6041 

Kerosene 

 1-month 2-month 3-month 4-month 5-month 6-month 

Mean 0.0586 0.0485 0.0489 0.0492 0.0514 0.0535 

Std. 0.1262 0.0950 0.0951 0.0893 0.0928 0.0922 

Skewness 14.3429 12.4605 14.9452 15.9391 18.1506 16.0226 

Kurtosis 284.1241 254.8750 346.0088 393.0574 483.0959 394.4081 

ACF1 0.1980 0.1888 0.3006 0.2279 0.2068 0.2658 

ACF5 0.1281 0.0953 0.1028 0.1049 0.1034 0.1430 

ACF22 0.0165 0.0352 0.0343 0.0403 0.0463 0.0679 

Q(22) 256.1135 a 321.3244 a 389.8241 a 450.4213 a 416.6683 a 596.0530 a 

ADF -5.4460 a -5.2532 a -5.3402 a -5.0615 a -4.8775 a -4.8682 a 

KW 6.9305 3.1638 0.9244 2.5814 4.7067 3.1922 

Crude oil 

 nearby-m. 1-month 2-month 3-month 4-month 5-month 

Mean 0.0637 0.0759 0.0766 0.0750 0.0771 0.0751 

Std. 0.1987 0.1542 0.1634 0.1564 0.1417 0.1400 

Skewness 11.2731 13.5571 12.7545 17.4678 16.6099 16.9713 

Kurtosis 186.2509 298.2578 250.0441 450.7457 416.1393 429.1186 

ACF1 0.1744 0.4377 0.4012 0.2198 0.2686 0.2547 

ACF5 0.0406 0.1876 0.2836 0.0819 0.1620 0.1546 

ACF22 0.0534 0.1038 0.1197 0.0428 0.0772 0.0679 

Q(22) 137.5266 a 417.8199 a 487.8208 a 437.1057 a 623.2719 a 540.4901 a 

ADF -5.1707 a -4.7753 a -5.0058 a -4.8888 a -4.7563 a -4.9112 a 

KW 2.8630 2.6712 1.2938 1.3589 4.2200 3.0522 
• a and b indicate rejection at the 1% and 5% significance levels. nearby-m. stands for nearby-month contracts. Std. is the 

standard deviation. ACFi is the autocorrelation function with i lags, and the 95% confidence interval is [-0.0565,0.0565]. 

Q(22) is Q-statistic with 22 lags. ADF is the augmented Dickey-Fuller test statistic. The sample period is from 22 

September 2010 to 30 October 2015. KW is the Kruskal-Wallis statistic, which follows χ4
2. 

 

3.3.3 Daily and Intraday Seasonality 

The seasonality is also an important issue on the discussion of petroleum market. 

Ewing et al. (2006) analyse three US petroleum futures and spot prices, namely crude 

oil, heating oil and gasoline, and find that heating oil and gasoline display daily 

seasonal behaviour but crude oil does not. Auer (2014) investigates daily seasonality 

on returns and volatility for Brent crude oil, and suggests that the volatility is higher 

on Monday than on the other weekdays, but returns are lower on Monday. Therefore, 

it is crucial to check whether the seasonality exists in TOCOM energy futures. 
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Kruskal-Wallis test is employed to examine the potential daily seasonality in TOCOM 

energy futures. The test is implemented by firstly dividing the sample into five groups, 

namely Monday, Tuesday, Wednesday, Thursday and Friday, and then testing whether 

the median of each group is equal. The last row of each panel in Table 3-2, 3-3 and 3-

6 shows the result of Kruskal-Wallis (KW) test for daily prices, returns, trading 

volume, the number of transactions and realised volatility. The KW statistics indicate 

that there is no seasonality in futures prices, while the returns of three gasoline and 

four kerosene contracts show significantly daily seasonality. Figure 3-5 presents the 

average level of returns on weekdays. It is clear that the returns are negative on 

Monday and Tuesday, positive on Wednesday and Thursday, and slightly decrease on 

Friday. This finding is similar to the evidence reported in Auer (2014) that suggests 

lower return on Monday. 

 Moving to the seasonality of trading volume, according to Figure 3-2, it seems 

like the seasonality in trading volume exists. Surprisingly, the results of KW test are 

only significant for two gasoline, one kerosene and one crude oil futures. Figure 3-6  

presents the average trading volume on each weekday. Due to the dramatic difference 

in the magnitude of trading volume, only two contracts are presented in the figures for 

a convenient comparison. One contract shows significant seasonality (orange line) 

whereas the other one does not (green line). It appears that, for the seasonal one, the 

trading volume is more like to increase on Thursday and decrease to approximately 

the level on the other weekdays. However, the trend of trading volume for the non-

seasonal one is rather smooth, except the 4-month crude oil. The results of KW tests 

for the number of transactions is similar to trading volumes, which is expected since 

these two variables are highly correlated. Given the existence of the seasonality in 

trading volume for some contracts, one may expect to see the same trend in realised 

volatility. Nonetheless, the results of KW tests show no significance for the realised 

volatility of all TOCOM energy futures, which suggests no evidence to support the 

daily seasonality on the realised volatility. Figure 3-7reveals the average realised 

volatility from Monday to Friday. Compared with the pattern of returns across 

weekday, the trend of realised volatility is much stable with no dramatic movements. 

However, it is noticeable that a slight increase in the realised volatility occurs on 

Friday across all commodities and maturities. In addition, the realised volatility of 

shortest maturity futures seems to move in a slightly seasonal pattern; that is, it 
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increases on Tuesday and decreases to an even lower on Wednesday. However, the 

difference may be too small to be significant.  

 

Figure 3-5: The average level of returns across weekdays 
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Figure 3-6: The average level of trading volume across weekdays  
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Figure 3-7: The average level of realised volatility across weekdays  
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Having discussed daily seasonality, the intraday seasonality should also be 

considered because realised volatility is estimated based on intraday data and the 

intraday relation between BAS and determinants is analysed in Chapter 6. Wood et al. 

(1985) investigate the minute-by-minute data on NYSE stocks, and find that the 

returns and standard deviation are much higher at the first 30 minutes after the opening 

and at the end of trading hours. Harris (1986) analyses all available transactions of 

common stocks on NYSE to investigate the intraday pattern, and obtains the similar 

result as Wood et al. (1985) do. The returns increase within the first 45 minutes and 

remain stable until the rise at the last 20 minutes before closing. 

Kruskal-Wallis test is performed to examine the intraday seasonality of six 

different variables, price, returns, trading volume, the number of transactions, realised 

volatility and effective bid-ask spread (BAS). The effective BAS is estimated by the 

twice absolute difference between the logarithm of price and mid-quote, shown as 

below. 

BAS𝑡 = 2| ln(𝑃𝑡) − ln(𝑀𝑖𝑑𝑡) |, 
(3.4) 

where 𝑃𝑡  is the transaction price and 𝑀𝑖𝑑𝑡 is the average of bid and ask prices, so 

called mid-quote. The BAS in this study is estimated by high-frequency data, and the 

descriptive statistic of effective bid-ask spread is presented in Table 3-7. By comparing 

the mean of effective BAS across maturities, it is found that the magnitude of effective 

BAS is much higher for lower maturity contracts than for higher maturity contracts. It 

is reasonable since BAS has been associated to liquidity and utilised as a measure of 

liquidity in the literature. (Amihud and Mendelson, 1986; Eleswarapu and Reinganum, 

1993; Chordia et al., 2000). Therefore, as the liquidity of futures increases, the BAS 

is expected to reduce. Moreover, across all commodities and maturities, the results of 

22nd order Q statistics and ADF test suggest that BAS is highly autocorrelated and a 

stationary process. 

 With regard to the intraday seasonality, the results of KW test suggest no 

intraday seasonality on the prices whereas the significant intraday seasonality is found 

on other five variables, namely returns, trading volume, the number of transactions, 

realised volatility and effective BAS (see Table 3-8). Figure 3-8 to 3-11 shows the 

intraday dynamics of returns, trading volume, realised volatility and effective BAS.  
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Table 3-7: Descriptive statistics and preliminary tests for effective bid-ask spreads 
Gasoline 

 1-month 2-month 3-month 4-month 5-month 6-month 

Mean 0.2544% 0.1316% 0.0937% 0.0659% 0.0520% 0.0411% 

Std. 0.3343% 0.1293% 0.0861% 0.0607% 0.0385% 0.0320% 

Skewness 5.5435 6.8083 10.7977 30.5807 3.2162 3.0668 

Kurtosis 73.1500 206.4553 605.1400 3588.3096 42.6714 23.0504 

Q(22) 565780.8 a 360443.3 a 246973.3 a 84182.6 a 65327.0 a 66928.2 a 

ADF -61.6345 a -68.1101 a -74.1302 a -106.9390 a -98.1402 a -106.9040 a 

Kerosene 

 1-month 2-month 3-month 4-month 5-month 6-month 

Mean 0.2636% 0.1605% 0.1188% 0.0899% 0.0784% 0.0702% 

Std. 0.4246% 0.1557% 0.1030% 0.0806% 0.0719% 0.0627% 

Skewness 15.6004 7.1029 2.2758 2.8595 6.3699 2.7711 

Kurtosis 500.7587 378.9934 15.3865 25.7424 254.5107 18.1441 

Q(22) 618362.1 a 437287.0 a 382819.7 a 332494.6 a 176750.4 a 153093.8 a 

ADF -53.3770 a -64.0338 a -57.9529 a -66.4464 a -87.2499 a -95.2180 a 

Crude oil 

 nearby-m. 1-month 2-month 3-month 4-month 5-month 

Mean 0.2986% 0.1119% 0.0811% 0.0653% 0.0590% 0.0507% 

Std. 0.4521% 0.1422% 0.0723% 0.0630% 0.0492% 0.0459% 

Skewness 5.4182 26.1674 2.5955 17.3464 5.0679 4.0133 

Kurtosis 52.9679 1726.9011 16.7093 1265.5967 93.9342 34.4219 

Q(22) 873131.9 a 392929.2 a 466071.4 a 202234.2 a 175422.2 a 125407.7 a 

ADF -40.9197 a -59.1149 a -57.4187 a -85.7747 a -85.9552 a -104.9075 a 
• a and b indicate rejection at the 1% and 5% significance levels. nearby-m. stands for nearby-month contracts. Std. is the 

standard deviation. Q(22) is Q-statistic with 22 lags. ADF is the augmented Dickey-Fuller test statistic. The sample period 

is from 22 September 2010 to 30 October 2015.  

 

Beginning with returns, the pattern of day session (9:00 to 15:30) and night session 

(17:00 to 04:00) is distinctive. The intraday returns in day session are higher at both 

opening and closing, which displays a U-shape as suggested by Wood et al. (1985) 

and Harris (1986). However, the intraday returns in night session start to increase in 

the second hour after the opening, and remain stable but with fluctuations. At the 

closing of night session, it appears that the trends of returns are inconsistent across 

commodities and maturities. In addition, the pattern of intraday crude oil futures 

returns is slightly different from that of gasoline and crude oil. For instance, in day 

session, the increase in intraday returns at the beginning is greater than that at the 

closing for crude oil, but it is the opposite for gasoline and kerosene. In night session, 

the fluctuation is more volatile for crude oil, but smoother for the other two 

commodities. Due to the huge difference in the number of trading volumes between 

maturities, only the intraday trading volume of the most liquid contracts is reported. 

The intraday trading volume at day session is also a U-shape curve, which is similar 

to the intraday returns. However, a W-shape curve is observed in the pattern of 

intraday trading volume at night session, which may be due to the difference in time 
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zones. In particular, 5 p.m. JST is 9 a.m. Central European Time (CET), and 22 p.m. 

JST is 9 a.m. Eastern Time (ET). Therefore, the foreign trading may explain the 

increase in intraday trading volume at 5 p.m. and 22 p.m. 

 Intraday realised volatility exhibits similar dynamics of intraday trading 

volume, but with a few differences. In day session, the realised volatility is 

dramatically higher at the opening than in the rest of the day, while only slightly 

increases at the closing. The pattern of intraday realised volatility is more similar to a 

L-shape curve rather than a U-shape. In night session, the increase in the intraday 

realised volatility at closing is not as huge as it is at opening, but there is still a slight 

hump in the middle of trading hours and a small rise at the closing. Compared to the 

dynamic of intraday trading volume at night session, the intraday realised volatility 

exhibits a flatter W-shape curve. Regarding the pattern of intraday effective BAS, the 

difference between day and night session is still found. Due to the difference in the 

level of intraday effective BAS, only the most liquid contracts are shown in Figure 

3-11. The U-shape curve is also observed in the pattern of intraday effective BAS at 

day session, but the increases in the intraday effective BAS at the opening and closing 

are much lower than those in intraday trading volume. Surprisingly, at night session, 

the dynamic of intraday effective BAS exhibits a mirror reflection of the pattern of 

intraday realised volatility. There appears no increase in intraday effective BAS at the 

opening of night session, and the level of intraday BAS remains stable until it rises at 

the trading hours around the closing. In consistent with the pattern of realised volatility 

and trading volume, there is also no hump in the middle of night trading hours. 
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Table 3-8: The results of Kruskal-Wallis tests of six different variables 
Gasoline 

 1-month 2-month 3-month 4-month 5-month 6-month 

Price 0.4820 0.1062 0.0790 0.0781 0.0976 0.1256 

Return 289.01 a 154.49 a 66.83 a 42.12 a 36.15 a 41.55 a 

TV 30243.80 a 28901.03 a 28896.27 a 27042.88 a 21812.15 a 17307.00 a 

NT 25502.37 a 25835.46 a 26736.75 a 26510.61 a 21420.17 a 16947.36 a 

RV 20049.99 a 17109.49 a 14179.41 a 8662.07 a 2111.48 a 2470.77 a 

BAS 2645.45 a 3090.35 a 2895.06 a 2700.02 a 4839.52 a 6493.79 a 

Kerosene 

 1-month 2-month 3-month 4-month 5-month 6-month 

Price 0.1912 0.0474 0.0306 0.0687 0.0959 0.1341 

Return 74.15 a 88.77 a 48.88 a 21.23 30.87 b 29.30 b 

TV 28107.69 a 27241.15 a 27653.95 a 27889.36 a 27812.21 a 28600.90 a 

NT 23881.92 a 23238.05 a 24601.36 a 26026.47 a 27441.39 a 28314.05 a 

RV 20054.31 a 18239.81 a 16667.16 a 14078.84 a 6357.09 a 1622.85 a 

BAS 3943.22 a 5382.02 a 5595.20 a 5099.10 a 7522.54 a 9295.73 a 

Crude oil 

 nearby-m. 1-month 2-month 3-month 4-month 5-month 

Price 0.0664 0.2208 0.2537 0.1914 0.1186 0.1093 

Return 27.38 47.95 a 58.91 a 71.35 a 43.68 a 48.82 a 

TV 11747.32 a 15711.46 a 16160.89 a 16756.86 a 14228.02 a 16496.69 a 

NT 7958.09 a 12474.63 a 13320.74 a 14670.87 a 13093.68 a 13573.06 a 

RV 8972.86 a 11715.77 a 11128.80 a 9480.83 a 3358.94 a 5271.58 a 

BAS 630.83 a 302.62 a 444.31 a 1023.40 a 3267.53 a 5289.20 a 
• a and b indicate rejection at the 1% and 5% significance levels. nearby-m. stands for nearby-month contracts. TV is trading 

volume, NT is the number of transactions, RV is realised volatility and BAS is the effective bid-ask spread. Kruskal-Wallis 

statistic follows χ18
2 . The sample period is from 22 September 2010 to 30 October 2015.  
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Figure 3-8: The average level of 15-minute returns across intraday trading hours  

Gasoline 

 

Kerosene  

  

Crude oil 

 

  

 

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

17 18 19 20 21 22 23 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

M
ea

n
 o

f 
re

tu
rn

s 
(‰

)

Trading hours

1-month 2-month 3-month 4-month 5-month 6-month

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

17 18 19 20 21 22 23 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

M
ea

n
 o

f 
re

tu
rn

s 
(‰

)

Trading hours

1-month 2-month 3-month 4-month 5-month 6-month

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

17 18 19 20 21 22 23 0 1 2 3 4 9 10 11 12 13 14 15

M
ea

n
 o

f 
re

tu
rn

s 
(‰

)

Trading Hours

Nearby-month 1-month 2-month 3-month 4-month 5-month



Chapter 3: Data and Sample Selection 

82 

Figure 3-9: The average level of returns across intraday trading hours 

 

  

 

Figure 3-10: The average level of realised volatility across intraday trading hours  

Gasoline 

  

Kerosene 

 

  

0

50

100

150

200

250

17 18 19 20 21 22 23 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

N
u
m

b
er

 o
f 

co
u
n
tr

ac
ts

Trading Hours

6-month gasoline 6-month kerosene 5-month crude oil

0

0.1

0.2

0.3

0.4

0.5

17 18 19 20 21 22 23 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
ea

li
se

d
 v

o
la

ti
li

ty
 (

%
)

Trading hours

1-month 2-month 3-month 4-month 5-month 6-month

0

0.1

0.2

0.3

0.4

0.5

0.6

17 18 19 20 21 22 23 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
ea

li
se

d
 v

o
la

ti
li

ty
 (

%
)

Trading Hours

1-month 2-month 3-month 4-month 5-month 6-month



Chapter 3: Data and Sample Selection 

83 

Figure 3-10 (Continued): The average level of realised volatility across intraday 

trading hours  

Crude oil 

  

 

Figure 3-11: The average level of effective bid-ask spread across intraday trading 

hours  
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4.1 Introduction 

Modelling and estimating the volatility of asset prices has always been a key issue in 

financial econometrics because correct volatility estimates and forecasts are essential 

for risk management, pricing derivatives, trading strategies, as well as portfolio 

optimisation and asset allocation. The increase in the availability of intraday financial 

data has led to the development of a new concept for estimation of volatility, namely 

realised volatility (𝑅𝑉𝑡), which utilises intraday price movement information. In the 

present study, we consider the impact of different types of market participants on the 

persistence of realised volatility, and incorporate a Markov Regime Switching (MRS) 

technique with a Heterogeneous Autoregressive Model of Realised Volatility (HAR-

RV) to produce one-day ahead forecasts for three Tokyo Commodity Exchange 

(TOCOM) energy futures. The in-sample estimation results suggest MRS-HAR-RV 

can better explain the dynamic of volatility, but seems to improve forecasting accuracy 

only for highly liquid contracts. 
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TOCOM energy futures play an important role in Japan and around the world. 

Firstly, a lack of domestic energy resources has turned Japan into one of the largest 

importers of energy in the world. TOCOM energy futures provide Japanese energy 

participants the most convenient way to hedge their cost or revenue. In addition, the 

trend towards the financialisation of energy commodities has inspired domestic 

investors, trading houses, hedge funds and financial institutions to utilise TOCOM 

energy futures as an asset class for both speculation and diversification12 (Irwin and 

Sanders, 2011, and Basak and Pavlova, 2013). Finally, given the significant increase 

in global trade in energy derivatives over the last two decades, TOCOM energy futures 

are also a potential choice for foreign traders wanting to manage their investment 

portfolio. For all these three different participants, volatility is the most crucial 

parameter because it is involved in planning and implementing all hedging activities, 

speculation, or investment strategies. 

Volatility in energy markets has been characterised as a heterogeneous and 

autoregressive process, so the General Autoregressive Conditional Heteroscedasticity 

(GARCH) and the Heterogeneous Autoregressive Model of Realised Volatility (HAR-

RV) type models are commonly employed to model and forecast volatility. The other 

noticeable property of the volatility of energy commodities is the persistence of lagged 

observations, which points to the use of several long-memory models, such as 

Fractionally Integrated GARCH (FIGARCH), Corsi (2009)’s HAR-RV, and the 

Heston model of stochastic volatility. Although GARCH type models are able to 

capture the long memory property of volatility, the lack of GARCH models’ 

forecasting accuracy has been pointed out in several studies, including by Figlewski 

(1997), Poon and Granger (2003), Cabedo and Moya (2003) and Sadeghi and 

Shavvalpour (2006). In addition, Liu and Wan (2012) and Wei et al. (2010) provide 

evidence that autoregressive type models of realised volatility outperform GARCH 

type models in forecasting volatility. Thus, this paper focuses on a discussion of 

realised volatility models and extends these models to allow for changes in their 

                                                 

12 On the 8th of December 2015, TOCOM announced that the trading volume of crude oil futures is 

55,388 contracts, which is 1.4 of the historical record. In addition, the open interest reached the highest 

record at 58,741 contracts on the 4th of December 2015. 

http://www.tocom.or.jp/news/2015/20151208.html 

http://www.tocom.or.jp/news/2015/20151208.html
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structure using a regime switching approach.    

The motivation of this chapter is based on the influence of order imbalance 

(net buy-initiated or net sell-initiated transactions) on volatility. Theoretical 

microstructure models (e.g. Kyle, 1985; Admati and Pfleiderer, 1988) suggest that net 

order flow causes price movements. Market-makers are assumed to only observe 

trading activities on the market, and to not be able to distinguish information traders 

from liquidity traders. Therefore, when they observe excess buy (sell) order 

imbalance, they increase (decrease) their prices of orders. Several empirical studies 

(Glosten and Harris, 1988; Madhavan et al., 1997; Huang and Stoll, 1997) also find 

that the indicator of buy-initiated or sell-initiated trades can explain the intra-daily 

movements of price and quotes. Moreover, Chan and Fong (2000) study NYSE and 

Nasdaq stocks, and find that their volume-volatility relation becomes weaker 

following the impact of order imbalance. Chordia et al. (2002) have found evidence 

that both contemporaneous and lagged order imbalance have a significant effect on 

returns, while only contemporaneous order imbalance affects volatility (absolute 

return). Given that the storage cost is one of the linkages between spot and futures 

markets for storable commodities, a proportion of order imbalance is associated with 

the storage market. For example, higher storage costs imply a shortage in the supply 

of inventory, and the producers potentially loose one tool to hedge the risk of receiving 

revenue in the future. Therefore, futures are the only mean for them to hedge, and the 

order imbalance can be expanded by their taking position of futures. By contrast, when 

the storage cost is low, the producer has less motivation to use futures as hedging tools, 

and the order imbalance is less likely to increase. Nonetheless, as market makers are 

not able to distinguish liquidity traders and information traders, the volatility always 

increases when a high level of order imbalance appears. 

The design of Corsi (2009)’s HAR-RV intends to capture the long-memory 

property of volatility in a RV setting. However, as stated in the last paragraph, the 

persistence of volatility does not always remain, so Corsi (2009)’s HAR-RV model 

may not be the optimal model with which to capture the dynamics of volatility. This 

paper aims first to introduce a Markov Regime Switching HAR-RV (MRS-HAR-RV) 

model, capturing dynamics in high- and low-volatility regimes. We expect to see that 

long-memory property exists in a low-volatility regime where the order imbalance is 
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lower, whereas persistence vanishes in a high-volatility regime where the order 

imbalance is greater. Following the estimation of MRS-HAR-RV, we examine the 

accuracy of volatility forecasts produced by MRS-HAR-RV in comparison with 

alternative approaches, including Corsi (2009)’s HAR-RV. 

This chapter contributes to the literature in several aspects. First, this is the first 

paper modelling and forecasting of the realised volatility of TOCOM energy futures, 

and all maturity contracts are included in our sample, which allows us to study the 

term structure of TOCOM energy futures. Second, we incorporate a HAR-RV and 

MRS approach to investigate different dynamics of realised volatility in different 

regimes. Third, we find high- and low-volatility regimes of realised volatility of 

TOCOM energy futures based on the average level of realised volatility in each 

regime, as well as the persistence of volatility. Finally, after identifying high- and low-

volatility regimes, we investigate the performance of the regime switching HAR-RV 

model in predicting and estimating VaR in comparison with simple HAR-RV, a 

GARCH (1,1) model, MRS-GARCH (1,1) and Historical Simulation VaR estimates. 

The results suggest that incorporating the state of the market through a regime 

switching approach can improve the predictability of upside volatility forecasts but 

not downside volatility forecasts. 

 

4.2 Literature Review 

A number of recent studies suggest that high-frequency data are useful for estimating 

and predicting future volatility as intraday movements in prices are less subject to 

measurement error than price observations at a lower frequency (Andersen and 

Bollerslev, 1998). In this approach, an unbiased estimator of volatility, known as 

realised volatility (RV), can be arrived at using the squared values of intraday returns. 

For instance, daily realised volatility (RV𝑡
(𝑑)

) is defined as the sum of intraday squared 

returns (Andersen et al., 2001a and 2003), and has been argued to be a more efficient 

estimate of volatility than daily squared returns (McAleer and Medeiros, 2008). Under 

the assumption that returns are independent with a zero mean, RV is also an unbiased 

estimator of true variance. Barndorff-Nielsen and Shephard (2004), Andersen et al. 



Chapter 4: Modelling the Volatility of TOCOM Energy Futures Returns 

89 

(2007), and Barndorff-Nielsen and Shephard (2007) further argue the importance of 

accounting for jumps in the estimation of realised volatility. Andersen et al. (2006) 

and McAleer and Medeiros (2008) provide a thorough survey of studies on the 

estimation and application of realised volatility.  

The first study to employ a realised volatility approach to estimate the volatility 

of energy commodity prices (sweet crude oil) was by Martens and Zein (2004). This 

was followed by Wang et al. (2008), who investigated NYMEX crude oil and natural 

gas futures prices. They suggest that RV is an appropriate measure of volatility in both 

the crude oil and natural gas markets, as well as the realised correlation (RC) between 

the futures prices of the two commodities. Wei (2012) compares the accuracy of 

different volatility models, including six GARCH type models, ARFIMA-RV 

(Autoregressive Fractionally Integrated Moving Average Realised Volatility model) 

and Stochastic Volatility, in forecasting the volatility of fuel oil futures on the 

Shanghai Futures Exchange (SHFE). 

In a recent study, Sévi (2014) employed intraday data to forecast the volatility 

of WTI crude oil futures for a 1- to 66-day horizon using different models based on 

the decomposition of realized variance into its positive or negative part 

(semivariances) and its continuous or discontinuous part (jumps). Considering eleven 

heterogenous autoregressive (HAR) models proposed in the literature (Andersen et al. 

2007, Corsi, 2009, Chen and Ghysels, 2010, and Patton and Sheppard 2011), Sévi 

(2014) reports that the model with independent squared jump has best forecast in-

sample, but does not significantly improve the out-of-sample forecast. Haugom et al. 

(2014) also analyse the realised volatility of WTI crude oil futures, and employ Corsi 

(2009)’s augmented HAR-RV model, which incorporates implied volatility (with the 

CBOE Crude Oil Volatility Index as a proxy) and other market variables, including 

trading volume, open interest, daily returns, bid-ask spread and the slope of the 

forward curve. Their results suggest that incorporating implied volatility (OVX) can 

significantly improve short term (daily and weekly) volatility forecasts, while 

including other market variables improves long term (monthly) volatility forecasts. 

Another branch of literature focuses on changes in the dynamics of price 

volatility under different market conditions. The main approach proposed for taking 

into account market conditions when estimating the time-varying volatility of asset 
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prices is the Markov Regime Switching (MRS) model (Hamilton, 1989). The MRS 

approach has been extended to GARCH models, namely MRS-GARCH, to 

incorporate the effect of regime changes on the dynamics of volatility in GARCH 

models under different regimes (market conditions). For example, Marcucci (2005) 

compares the volatility forecasting performance of several standard GARCH and 

MRS-GARCH models on the S&P100 Index, and finds that MRS-GARCH models 

outperform GARCH models at short horizon (one day to one week). Lee and Yoder 

(2007) apply the MRS-GARCH model to the corn and nickel futures markets and 

report higher, yet insignificant, variance reduction when compared to OLS and single 

regime GARCH hedging strategies; while Alizadeh, et al. (2008) analyse three sets of 

energy commodities data, crude oil, gasoline and heating oil, and also find that the use 

of a MRS-MGARCH model improves hedging performance.  

Given the importance of market conditions and the behaviour of price 

volatility, as well as the benefits of using high frequency intraday data in estimations 

of volatility, we propose a regime switching model which allows for changes in the 

dynamics of RV according to market conditions. In particular, we utilise the MRS-

HAR-RV model to examine if the realised volatility of TOCOM energy futures is 

regime-dependent and to determine whether the MRS-HAR-RV model produces 

superior forecasts compared to Corsi (2009)’s single regime HAR-RV.  

 

4.3 Methodology 

In this section, we discuss the estimation of the realised volatility of energy futures 

prices using high frequency intraday data, and present two forecasting models of 

realised volatility, namely Corsi’s Heterogeneous Autoregressive RV (HAR-RV) and 

its regime switching extension, MRS-HAR-RV. 

 

4.3.1 Estimating Volatility with High-frequency Data 

We begin the discussion with a continuous-time Geometric Brownian process 
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dp
t
=μ

t
dt+σtdwt , (4.1)          

where 𝑝𝑡 is the logarithm of the instantaneous price of TOCOM energy futures, 𝜇𝑡 is 

the time-varying drift term, 𝜎𝑡  is the diffusion parameter and also known as the 

instantaneous volatility of 𝑝𝑡, and 𝑤𝑡 is the standard Brownian motion process. The 

integrated variance of TOCOM energy futures can then be defined as the integral of 

instantaneous variance ( 𝜎𝑡
2 ). For instance, the one-day integrated variance, our 

primary variation of interest, can be expressed as 

𝐼𝑉𝑡
(𝑑)

= ∫ 𝜎𝑠
2𝑑𝑤𝑠

𝑡

𝑡−1𝑑
. (4.2)          

However, the integrated variance, defined by equation (4.2), is by nature a latent 

variable, so we need to find an observable variable in order to estimate volatility.  

With the availability of intraday data, the sum of intraday squared returns, 

known as realised variance, has been utilised as the most common approximation of 

integrated variance. Plenty of literature (Andersen et al., 2001a, 2001b, 2003; 

Barndorff-Nielsen and Shephard, 2002a, 2002b) has shown that the realised variance 

converges to the integrated variance in probability. Hence, this paper follows the same 

approach in estimating realised variance. For instance, the realised variance for a one-

day window[𝑡 − 1𝑑, 𝑡], divided by M Δ-frequency intervals, is estimated by 

𝑅𝑉𝑡
(𝑑)

= ∑ 𝑟𝑡−𝑗×𝛥
2

𝑀−1

𝑗=0

. 
                                      

 (4.3) 

𝑅𝑉𝑡
(𝑑)

 is one-day realised variance, ∆= 1𝑑/𝑀 is the frequency of intervals, 𝑟𝑡−𝑗×𝛥
2  is 

the intraday return at ∆-frequency interval, and M is the number of intervals in one 

day.  

 

4.3.2 The Heterogeneous Autoregressive Realised Volatility Model  

The simple HAR-RV is utilised as the benchmark model in this paper because Sévi 

(2014) suggests that the simple HAR-RV outperforms other alternative models that 
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include jumps in terms of forecasting volatility. Corsi (2009) proposes a HAR-RV to 

forecast realised volatility, which considers the property of long memory in volatility 

and can be simply estimated using OLS. The HAR-RV model forecasts realised 

volatility with lagged realised volatility over different time horizons, namely one-day, 

one-week and one-month RV, shown as equation (4.4) 

RVt+1d
(d)

=𝛽0+β(d)RVt
(d)

+β(w)RVt
(w)

+β(m)RVt
(m)

+εt+1d
(d)

, 

𝜀𝑡+1𝑑
(𝑑)

~𝑁(0, Σ ), 

(4.4) 

where RVt+1d
(d)

 is one-day ahead predicted realised volatility, and εt+1d
(d)

  is the 

unpredicted error term following a normal distribution with zero mean and Σ 

volatility.  Daily realised volatility (𝑅𝑉𝑡
(𝑑)

) is measured as equation (4.3), whilst 

weekly and monthly realised volatility ( RVt
(w)

 and RVt
(m)

) are calculated as the 

average of the aggregate daily realised volatility as equation (4.5). 

𝑅𝑉𝑡
(𝑚,𝑤)

=
1

𝑀
∑ 𝑅𝑉𝑡−𝑖

(𝑑)

𝑀−1

𝑖=0

, 

where {
M=5 for weekly RV(RVt

(w)
)

M=22 for monthly RV(RVt
(m)

)
. 

                                                

 

 

(4.5) 

 

Nonetheless, our benchmark modifies Corsi (2009)’s HAR-RV in two aspects. 

First, following Sévi (2014)’s modification, we avoid the overlapping of realised 

volatility over three different horizons. That is, weekly realised volatility is measured 

as the average of daily realised volatility between 𝑡 − 1  and t−5  , and monthly 

realised volatility is measured as the average of daily realised volatility between 𝑡 − 6 

and 𝑡 − 22, shown as equation (4.6).  
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RVt
(w)

=
1

4
∑ RVt-i

(d)

4

𝑖=1

 

RVt
(m)

=
1

17
∑ RVt-i

(d)

22

𝑖=6

 

                                                

 

 

(4.6) 

Second, according to the Samuelson Hypothesis (Samuelson, 1965), futures 

volatility increases when contracts approach maturity. The days-to-rollover is included 

in Corsi (2009)’s HAR-RV, which is shown below. 

𝑅𝑉𝑡+1𝑑
(𝑑)

= 𝛽0 + 𝛽(𝑑)𝑅𝑉𝑡
(𝑑)

+ 𝛽(𝑤)𝑅𝑉𝑡
(𝑤)

+ 𝛽(𝑚)𝑅𝑉𝑡
(𝑚)

+ 𝛽(𝐷𝑇𝑅)𝐷𝑇𝑅𝑡 +

𝜀𝑡+1𝑑
(𝑑)

, 

𝜀𝑡+1𝑑
(𝑑)

~𝑁(0, Σ ), 

(4.7) 

where DTRt  is the days to rollover date. If the Samuelson Hypothesis holds, the 

volatility rises with a decrease in days-to-rollover, and β(dtr) is then expected to be 

negative and significant. 

 

4.3.3 The Regime Switching HAR-RV 

Considering the type of market participants, we modified the simple HAR-RV by 

incorporating a Markov Regime Switching technique proposed by Hamilton (1989). 

As described in Section 1, the persistence of realised volatility is expected to be higher 

if the market is in high level of order imbalance, but lower if the market is in low level 

of order imbalance. Hence, the coefficient stating the persistence of realised volatility 

should vary based on the states/regimes (𝑠𝑡), shown as 

𝑅𝑉𝑡+1𝑑
(𝑑)

= 𝛽0,𝑠𝑡 + 𝛽𝑠𝑡
(𝑑)

𝑅𝑉𝑡
(𝑑)

+ 𝛽𝑠𝑡
(𝑤)

𝑅𝑉𝑡
(𝑤)

+ 𝛽𝑠𝑡
(𝑚)

𝑅𝑉𝑡
(𝑚)

+ βst
(DTR)

DTRt +

𝜀𝑡+1𝑑,𝑠𝑡
(𝑑)

, 

𝜀𝑡+1𝑑,𝑠𝑡
(𝑑)

~𝑁(0, 𝛴𝑠𝑡 ), 

(4.8) 



Chapter 4: Modelling the Volatility of TOCOM Energy Futures Returns 

94 

where st = {1,2} as we introduce a two-state MRS model, and all parameters (𝛼𝑠𝑡, 

𝛽𝑠𝑡
(𝑑)

, 𝛽𝑠𝑡
(𝑤)

, 𝛽𝑠𝑡
(𝑚)

 and Σ𝑠𝑡) are now state-dependent. The shift of regimes depends on 

the conditional probability matrix in that 

𝑷 = (
Pr (𝑠𝑡𝑡 = 1|𝑠𝑡𝑡−1 = 1) = 𝑝11 Pr (𝑠𝑡𝑡 = 1|𝑠𝑡𝑡−1 = 2) = 𝑝21

Pr (𝑠𝑡𝑡 = 2|𝑠𝑡𝑡−1 = 1) = 𝑝12 Pr (𝑠𝑡𝑡 = 2|𝑠𝑡𝑡−1 = 2) = 𝑝22
) =

(
1 − 𝑝12 𝑝21

𝑝12 1 − 𝑝21
). 

(4.9) 

where 𝑝12 measures the probability of being in state 2 in the current period, given that 

you were in state 1 in the previous period, while 𝑝21 is exactly the opposite transition. 

Based on the conditional transition probability (𝑝12 and 𝑝21), we can calculate the 

unconditional regime probability as 

Pr(𝑠𝑡𝑡 = 1) = 𝑝1,𝑡 =
𝑝21

𝑝12+𝑝21
 ;  Pr(𝑠𝑡𝑡 = 2) = 𝑝2,𝑡 =

𝑝12

𝑝12+𝑝21
. (4.10) 

Moreover, we can now specifically rewrite the MRS-HAR-RV from the equation (4.8) 

to the following 

𝑅𝑉𝑡+1𝑑
(𝑑)

= 𝑝1,𝑡(𝛽0,1 + 𝛽1
(𝑑)

𝑅𝑉𝑡
(𝑑)

+ 𝛽1
(𝑤)

𝑅𝑉𝑡
(𝑤)

+ 𝛽1
(𝑚)

𝑅𝑉𝑡
(𝑚)

+ β1
(dtr)

dtrt + 𝜀𝑡+1𝑑,1
(𝑑)

) + 

(1 − 𝑝1,𝑡)(𝛽0,2 + 𝛽2
(𝑑)

𝑅𝑉𝑡
(𝑑)

+ 𝛽2
(𝑤)

𝑅𝑉𝑡
(𝑤)

+ 𝛽2
(𝑚)

𝑅𝑉𝑡
(𝑚)

+ β2
(dtr)

dtrt + 𝜀𝑡+1𝑑,2
(𝑑)

), 

𝜀𝑡+1𝑑,1
(𝑑)

~𝑁(0, Σ1 ), 𝜀𝑡+1𝑑,2
(𝑑)

~𝑁(0, Σ2 ).  

(4.11) 

 Finally, assuming that the state-dependent residuals follow a normal 

distribution, with mean zero and constant volatility,  Σ1  and Σ2  for the two states 

respectively, the likelihood function for the entire sample is formed as a mixture of 

the probability distribution of the state variable, where:  

𝑓(𝑅𝑉𝑡
(𝑑)

, 𝜃) =
𝑝1,𝑡

√2𝜋Σ1

exp (−
𝜀𝑡,1

(𝑑)2

2Σ1
2 ) +

𝑝2,𝑡

√2𝜋Σ2

exp (−
𝜀𝑡,2

(𝑑)2

2Σ2
2 ) 

  

(4.12) 

with the log-likelihood function as 

𝐿(𝜃) = ∑ 𝑙𝑜𝑔𝑓(𝑅𝑉𝑡
(𝑑)

, 𝜃)𝑇
𝑡=1 , (4.13) 
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where 𝜃 is the vector of parameters to be estimated. The log-likelihood function 𝐿(𝜃) 

is maximised using the BFGS estimation method subject to the constraint that 𝑝1,𝑡 +

𝑝2,𝑡 = 0 and 0 ≤ 𝑝1,𝑡, 𝑝2,𝑡 ≤ 1. 

 

4.4 Description of Data and Preliminary analysis 

We include all contracts of maturity in this chapter, namely 1- to 6-month contracts 

for gasoline and kerosene futures and front- to 5-month contracts for crude oil futures, 

which allows comparison across the term structure. This is very important for 

investigating TOCOM energy futures, because the pattern of TOCOM trading volume 

regarding maturity is surprisingly different from futures exchange.  

Figure 4-1 to 4-6 show the daily log return and realised volatility of gasoline, 

kerosene and crude oil futures across maturities over our sample period. We can 

clearly observe several clusters of log returns in Figure 4-1 to 4-3, which proves the 

heteroscedasticity of the realised volatility. In addition, the clusters in returns also 

match the corresponding high or low level volatility clusters in Figure 4-4 to 4-6. 

Excepting the clusters, several noticeable spikes are also seen in Figure 4-4 to 4-6. The 

most distinct spike occurred on 6 May 2011 when the oil price dropped sharply by 

10% at 11 a.m. ET on 5 May 2011 (12 a.m. JST on 6 May 2011), known as the intraday 

flash crash in oil markets. The other spike took place on 7 May 2012, right after the 

against-austerity party won the legislative election in Greece. Hence, dummies of these 

two events are introduced to control their unexpected and significant effects, and the 

relevant equations (4.7) and (4.8) are then changed into the equations shown below 

𝑅𝑉𝑡+1𝑑
(𝑑)

= 𝛽0 + 𝛽(𝑑)𝑅𝑉𝑡
(𝑑)

+ 𝛽(𝑤)𝑅𝑉𝑡
(𝑤)

+ 𝛽(𝑚)𝑅𝑉𝑡
(𝑚)

+ 𝛽(𝐷𝑇𝑅)𝐷𝑇𝑅𝑡 + 𝛽(𝐷1)𝐷1𝑡 + 𝛽(𝐷2)𝐷2𝑡 + 𝜀𝑡+1𝑑
(𝑑)

, 

𝜀𝑡+1𝑑
(𝑑)

~𝑁(0, 𝛴 ), 

 

(4.14) 

𝑅𝑉𝑡+1𝑑
(𝑑)

= 𝛽0,𝑠𝑡 + 𝛽𝑠𝑡
(𝑑)

𝑅𝑉𝑡
(𝑑)

+ 𝛽𝑠𝑡
(𝑤)

𝑅𝑉𝑡
(𝑤)

+ 𝛽𝑠𝑡
(𝑚)

𝑅𝑉𝑡
(𝑚)

+ 𝛽𝑠𝑡
(𝐷𝑇𝑅)

𝐷𝑇𝑅𝑡 + 𝛽𝑠𝑡
(𝐷1)

𝐷1𝑡 + 𝛽𝑠𝑡
(𝐷2)

𝑑2𝑡 + 𝜀𝑡+1𝑑,𝑠𝑡
(𝑑)

, 

𝜀𝑡+1𝑑,𝑠𝑡
(𝑑)

~𝑁(0, 𝛴𝑠𝑡 ), 

(4.15) 

where 𝐷1𝑡 and 𝐷2𝑡 are dummy variables for spikes on 6 May 2011 and 7 May 2012, 

respectively. Moreover, to examine whether the spikes cause structural change in the 
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realised volatility, the unit root test with break point is performed. The idea of unit 

root with structural break was firstly proposed by Perron (1989) who argues the 

importance between unit root test and structural changes. In particular, a unit root test 

not allowing the structural change caused by unique economic events may be biased, 

and reduce the probability to reject the null hypothesis.  Table 4-1 presents the results 

of the unit root test with structural breaks. It is evident that the realised volatility of all 

TOCOM energy futures is a stationary series. 

Table 3-6 exhibits the autocorrelation function of the first 1, 5 and 22 lags. The 

level of the first and fifth order ACF is high across all contracts, but the 22nd order 

ACF is only significant for highly liquid contracts13. The lack of significance of 22nd 

order ACF may be caused by potential regime switching in the realised volatility since 

the persistence in the high-volatility regime is expected to be lower. However, the 

significance of Ljung and Box (1978)’s Q statistics for the first 22 lags of the 

autocorrelation function indicates that RV of all energy futures are still highly 

autocorrelated at least up to 1 month and confirms the long-memory property of 

realised volatility. 

 

Table 4-1: The results of unit root with structural breaks for realised volatility across 

three TOCOM energy futures 

Gasoline 
1-month 2-month 3-month 4-month 5-month 6-month 

-19.1187 a -19.7509 a -19.8363 a -24.4254 a -17.9797 a -25.5932 a 

Kerosene 
1-month 2-month 3-month 4-month 5-month 6-month 

-27.9097 a -21.2141 a -25.0793 a -26.0246 a -26.7835 a -18.9187 a 

Crude oil 
nearby-m. 1-month 2-month 3-month 4-month 5-month 

-24.7068 a -19.3949 a -26.0456 a -26.5545 a -25.0362 a -25.0108 a 

• a indicates rejection at the 1% significance level. nearby-m. denotes nearby-month. The sample 

period is from 22 September 2010 to 30 October 2015. 

  

                                                 

13 Haugom et al. (2014) and Sévi (2014) investigate WTI crude oil futures on NYMEX, and both find 

that the realised volatility of WTI crude oil futures is highly autocorrelated. Haugom et al. (2014) 

presents Q-statistic to demonstrate that the realised volatility is autocorrelated at least up to 10 lags. 

Sévi (2014) reports a graph of autocorrelation function, which shows the autocorrelation exists at least 

until 35th lag. 
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Figure 4-1: Daily log-return of gasoline futures 
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Figure 4-2: Daily log-return of kerosene futures 
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Figure 4-3: Daily log-return of crude oil futures 
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Figure 4-4: Daily realised volatility of gasoline futures 
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Figure 4-5: Daily realised volatility of kerosene futures 

A
n
n
u
al

is
ed

 r
ea

li
se

d
 v

o
la

ti
li

ty
 (

%
) 

 
Date 

 

0%

20%

40%

60%

80%

100%

120%

140%

160%

180%

2010 2011 2012 2013 2014 2015

1-month

0%

20%

40%

60%

80%

100%

120%

140%

160%

2010 2011 2012 2013 2014 2015

2-month

0%

20%

40%

60%

80%

100%

120%

140%

160%

180%

2010 2011 2012 2013 2014 2015

3-month

0%

20%

40%

60%

80%

100%

120%

140%

160%

180%

2010 2011 2012 2013 2014 2015

4-month

0%

20%

40%

60%

80%

100%

120%

140%

160%

180%

2010 2011 2012 2013 2014 2015

5-month

0%

20%

40%

60%

80%

100%

120%

140%

160%

180%

2010 2011 2012 2013 2014 2015

6-month



 

102 

Figure 4-6: Daily realised volatility of crude oil futures 
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4.5 Empirical Results 

The estimation results of the proposed realised volatility models in- and out-of-sample, 

as well as the relation between order-imbalance and RV over the sample period 

examined, are presented in the following subsections. The in-sample analysis is 

performed over the period from 22 September 2010 to 30 October 2015. 

 

4.5.1 In-sample Analysis 

The benchmark model, HAR-RV, is estimated by the Ordinary Least Square (OLS) 

method for three TOCOM energy futures across six different maturities. The left 

column of Table 4-2 to 4-4 exhibit that realised volatility is significantly affected by all 

one-day, one-week and one-month lagged observations. This indicates the existence of 

the long-memory property of realised volatility, and that the persistence of realised 

volatility can last for at least one month. For most futures, the impacts of one-day and 

one-month lagged realised volatility are greater than that of one-week when looking at 

the magnitude of coefficients. For example, for 5-month crude oil futures, the 

coefficients of one-day and one-month lagged realised volatility are 0.2608 and 0.1547, 

which are approximately double that of the one-week one, 0.1114. In addition, results 

show that days-to-rollover does not explain changes in realised volatility for gasoline 

and kerosene, since the coefficients are insignificant for most gasoline and kerosene 

futures. Two exceptions are 1-month gasoline and kerosene futures. The coefficients 

for these are negative and significant, which is consistent with the Samuelson 

Hypothesis. However, for crude oil futures, there is an effect of days-to-rollover on 

realised volatility, although it is opposite to the Samuelson Hypothesis. For the majority 

of crude oil contracts, the coefficients of days-to-rollover are positive and significant, 

which implies that when time approaches the rollover date (days-to-rollover decreases), 

the level of realised volatility reduces. This finding is in line with evidence from Chen 

et al. (1999) on Nikkei-225 index futures.  

 Moving onto the result of MRS-HAR-RV reported in the right column of Table 

4-2 to 4-4, the different sizes and significances of coefficients confirm that the 

dynamics of the realised volatility of TOCOM energy futures switch between two 
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Table 4-2: Estimation results of simple HAR-RV and MRS-HAR-RV for gasoline futures 

HAR-RV  𝑅𝑉𝑡+1𝑑
(𝑑)

= 𝛽0,1 + 𝛽1
(𝑑)

𝑅𝑉𝑡
(𝑑)

+ 𝛽1
(𝑤)

𝑅𝑉𝑡
(𝑤)

+ 𝛽1
(𝑚)

𝑅𝑉𝑡
(𝑚)

+ 𝛽1
(𝐷𝑇𝑅)

𝐷𝑇𝑅𝑡 + 𝛽1
(𝐷1)

𝐷1𝑡 + 𝛽1
(𝐷2)

𝐷2𝑡 + 𝜀𝑡+1𝑑,1
(𝑑)

,      𝜀𝑡+1𝑑,1
(𝑑)

~𝑁(0, 𝛴1 ) 

MRS-HAR-RV  𝑅𝑉𝑡+1𝑑
(𝑑)

= 𝛽0,𝑠𝑡 + 𝛽𝑠𝑡
(𝑑)

𝑅𝑉𝑡
(𝑑)

+ 𝛽𝑠𝑡
(𝑤)

𝑅𝑉𝑡
(𝑤)

+ 𝛽𝑠𝑡
(𝑚)

𝑅𝑉𝑡
(𝑚)

+ 𝛽𝑠𝑡
(𝐷𝑇𝑅)

𝐷𝑇𝑅𝑡 + 𝛽𝑠𝑡
(𝐷1)

𝐷1𝑡 + 𝛽𝑠𝑡
(𝐷2)

𝐷2𝑡 + 𝜀𝑡+1𝑑,𝑠𝑡
(𝑑)

,      𝑠𝑡 = {1,2}, 𝜀𝑡+1𝑑,𝑠𝑡
(𝑑)

~𝑁(0, 𝛴𝑠𝑡 ) 

 1-month 2-month 3-month 4-month   5-month 6-month 
 HAR-RV MRS-HAR HAR-RV MRS-HAR HAR-RV MRS-HAR HAR-RV MRS-HAR HAR-RV MRS-HAR HAR-RV MRS-HAR 

𝛽0,1 
0.0001*** 5.41E-5*** 4.28E-5** 0.0002*** 5.21E-5*** 0.0003*** 5.04E-5*** 0.0003*** 5.74E-5*** 0.0003*** 7.84E-5*** 0.0003*** 

(2.56E-5) (1.59E-5) (1.67E-5) (7.23E-5) (1.51E-5) (7.20E-5) (1.33E-5) (1.78E-5) (1.09E-5) (1.68E-5) (1.03E-5) (1.33E-5) 

𝛽1
(𝑑)

 
0.1687*** 0.0826** 0.2783*** 0.2800*** 0.3125*** 0.3246** 0.2726*** 0.2075*** 0.2938*** 0.2115*** 0.1286*** 0.0864*** 

(0.0295) (0.0334) (0.0199) (0.0356) (0.0188) (0.1590) (0.0169) (0.0223) (0.0142) (0.0196) (0.0104) (0.0135) 

𝛽1
(𝑤)

 
0.2157*** 0.0852 0.1196*** -0.0549 0.1184*** -0.0374 0.1192*** -0.0460 0.1338*** 0.0262 0.1515*** 0.0623* 

(0.0509) (0.0597) (0.0315) (0.0583) (0.0292) (0.0679) (0.0275) (0.0824) (0.0227) (0.0363) (0.0183) (0.0347) 

𝛽1
(𝑚)

 
0.2465*** 0.2298* 0.1765*** 0.0758 0.1428*** -0.0601 0.1851*** -0.0549 0.1743*** -0.0755 0.1643*** -0.1307*** 

(0.0764) (0.1193) (0.0502) (0.1705) (0.0459) (0.1271) (0.0433) (0.0407) (0.0346) (0.0734) (0.0303) (0.0355) 

𝛽1
(𝐷𝑇𝑅)

 
-2.2612** 21.0914*** 1.5037** 7.8172*** 0.7392 0.8735 0.8328 1.5072 0.1136 -0.5228 -0.0914 -2.1827 

(1.1052) (1.5830) (0.7488) (2.8736) (0.6845) (3.9618) (0.5877) (1.2814) (0.4882) (0.9360) (0.4815) (1.4709) 

𝛽0,2 
 -4.07E-6***  4.81E-5***  3.51E-5***  3.42E-5***  3.00E-5***  2.24E-5*** 

 (3.69E-7)  (5.23E-6)  (1.46E-6)  (2.20E-6)  (1.67E-6)  (1.43E-7) 

𝛽2
(𝑑)

 
 0.0005  0.0334***  0.2269***  0.1725***  0.2732***  0.3108*** 

 (0.0024)  (0.0123)  (0.0038)  (0.0115)  (0.0100)  (0.0084) 

𝛽2
(𝑤)

 
 0.0176***  0.1610***  0.1451***  0.1434***  0.1896***  0.1145*** 

 (0.0034)  (0.0155)  (0.0276)  (0.0112)  (0.0084)  (0.0234) 

𝛽2
(𝑚)

 
 0.0265***  0.1269***  0.1156***  0.1476***  0.1137***  0.2163*** 

 (0.0062)  (0.0142)  (0.0225)  (0.0059)  (0.0075)  (0.0171) 

𝛽2
(𝐷𝑇𝑅)

 
 2.7709***  0.2167  0.2296  0.4337***  0.0502  0.0743 

 (0.2395)  (0.2208)  (0.2412)  (0.1666)  (0.0921)  (0.1212) 

Σ𝑖  
Σ1  Σ2  Σ1  Σ2  Σ1  Σ2  Σ1  Σ2  Σ1  Σ2  Σ1  Σ2  

0.0008*** 3.88E-5*** 0.0004*** 5.80E-5*** 0.0004*** 5.61E-5*** 0.0003*** 5.24E-5*** 0.0002*** 4.28E-5*** 0.0002*** 4.29E-5*** 

𝑝𝑖𝑗  
𝑝12 𝑝21 𝑝12 𝑝21 𝑝12 𝑝21 𝑝12 𝑝21 𝑝12 𝑝21 𝑝12 𝑝21 

0.5964 0.1911 0.4728 0.1058 0.4464 0.0928 0.4329 0.1005 0.3778 0.1086 0.3564 0.0889 

�̅�2 19.07% 45.84% 63.80% 76.46% 68.04% 78.93% 73.61% 81.56% 81.22% 84.38% 89.21% 91.43% 

SBIC 6544.279 7221.092 6911.427 7506.899 6997.52 7587.82 7145.681 7648.697 7322.469 7772.782 7321.122 7833.976 

Q(22) 24.659 32.920* 59.729*** 71.427*** 79.276*** 34.307** 49.683*** 33.247* 127.912*** 64.849*** 290.452*** 70.794*** 

LR 1486.19*** 1255.79*** 1273.49*** 1114.72*** 1022.87*** 1115.05*** 
• Sample period used for estimation is from 21 September 2010 to 22 October 2014. *, ** and *** denote the significance at 10%, 5% and 1% levels, respectively. The figure in parentheses is the standard error of 

coefficient. SBIC is calculated as the log-likelihood value minus the penalty parameters. Q(22) is Q-statistic with 22 lags. LR is the statistic of likelihood ratio test. 
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Table 4-3: Estimation results of simple HAR-RV and MRS-HAR-RV for kerosene futures 
HAR-RV  𝑅𝑉𝑡+1𝑑

(𝑑)
= 𝛽0,1 + 𝛽1

(𝑑)
𝑅𝑉𝑡

(𝑑)
+ 𝛽1

(𝑤)
𝑅𝑉𝑡

(𝑤)
+ 𝛽1

(𝑚)
𝑅𝑉𝑡

(𝑚)
+ 𝛽1

(𝐷𝑇𝑅)
𝐷𝑇𝑅𝑡 + 𝛽1

(𝐷1)
𝐷1𝑡 + 𝛽1

(𝐷2)
𝐷2𝑡 + 𝜀𝑡+1𝑑,1

(𝑑)
,      𝜀𝑡+1𝑑,1

(𝑑)
~𝑁(0, 𝛴1 ) 

MRS-HAR-RV  𝑅𝑉𝑡+1𝑑
(𝑑)

= 𝛽0,𝑠𝑡 + 𝛽𝑠𝑡
(𝑑)

𝑅𝑉𝑡
(𝑑)

+ 𝛽𝑠𝑡
(𝑤)

𝑅𝑉𝑡
(𝑤)

+ 𝛽𝑠𝑡
(𝑚)

𝑅𝑉𝑡
(𝑚)

+ 𝛽𝑠𝑡
(𝐷𝑇𝑅)

𝐷𝑇𝑅𝑡 + 𝛽𝑠𝑡
(𝐷1)

𝐷1𝑡 + 𝛽𝑠𝑡
(𝐷2)

𝐷2𝑡 + 𝜀𝑡+1𝑑,𝑠𝑡
(𝑑)

,      𝑠𝑡 = {1,2}, 𝜀𝑡+1𝑑,𝑠𝑡
(𝑑)

~𝑁(0, 𝛴𝑠𝑡 ) 

 1-month 2-month 3-month 4-month 5-month 6-month 
 HAR-RV MRS-HAR HAR-RV MRS-HAR HAR-RV MRS-HAR HAR-RV MRS-HAR HAR-RV MRS-HAR HAR-RV MRS-HAR- 

𝛽0,1 
0.0001*** 0.0005*** 6.68E-5*** 0.0004*** 6.04E-5*** 0.0003*** 5.97E-5*** 0.0003*** 6.65E-5*** 0.0003*** 6.15E-5*** 0.0003*** 

(1.69E-5) (2.18E-5) (1.77E-5) (3.33E-5) (1.36E-5) (4.37E-5) (1.18E-5) (1.73E-5) (1.15E-5) (2.28E-5) (1.21E-5) (9.38E-5) 

𝛽1
(𝑑)

 
0.1606*** 0.1156** 0.2374*** 0.0626 0.3028*** 0.3158*** 0.2411*** 0.0118 0.1980*** -0.0491 0.2384*** 0.1963*** 

(0.0172) (0.0455) (0.0191) (0.0964) (0.0148) (0.0241) (0.0135) (0.0323) (0.0123) (0.0496) (0.0135) (0.0267) 

𝛽1
(𝑤)

 
0.1188*** 0.0812 0.0921*** 0.0770 0.0666*** -0.1401** 0.0800*** 0.0642 0.0982*** 0.0019 0.1336*** 0.0561* 

(0.0302) (0.0769) (0.0315) (0.0582) (0.0240) (0.0702) (0.0225) (0.0584) (0.0211) (0.0744) (0.0224) (0.0286) 

𝛽1
(𝑚)

 
0.2199*** -0.1545* 0.1275** -0.0486 0.1122*** -0.2330*** 0.1558*** 0.0428 0.1837*** 0.4151*** 0.1763*** -0.0880* 

(0.0503) (0.0830) (0.0540) (0.2401) (0.0405) (0.0214) (0.0377) (0.0805) 6.65E-5*** (0.0994) (0.0352) (0.0518) 

𝛽1
(𝐷𝑇𝑅)

 
-3.2435*** -6.1435*** 0.5564 0.7506 0.7478 3.3479*** 0.7814 -0.3068 0.5476 1.7790 0.3686 0.9196 

(0.7467) (1.3820) (0.8152) (4.6440) (0.6300) (0.3063) (0.5361) (0.9237) (0.5201) (1.1954) (0.5527) (5.0647) 

𝛽0,2 
 5.83E-5***  4.54E-5***  2.84E-5***  3.62E-5***  3.93E-5***  3.21E-5*** 

 (2.20E-6)  (3.31E-6)  (5.13E-6)  (1.51E-6)  (1.87E-6)  (2.67E-6) 

𝛽2
(𝑑)

 
 0.0289***  0.2368***  0.0428***  0.2572***  0.2017***  0.1947*** 

 (0.0077)  (0.0052)  (0.0095)  (0.0080)  (0.0078)  (0.0383) 

𝛽2
(𝑤)

 
 0.0904***  0.0143  0.1460***  0.0789***  0.1219***  0.1213*** 

 (0.0069)  (0.0140)  (0.0062)  (0.0091)  (0.0082)  (0.0090) 

𝛽2
(𝑚)

 
 0.1580***  0.1079***  0.2600***  0.0782***  0.1184***  0.2536*** 

 (0.0094)  (0.0051)  (0.0262)  (0.0075)  (0.0064)  (0.0190) 

𝛽2
(𝐷𝑇𝑅)

 
 -0.7074***  0.2713***  0.2644  0.2626***  0.6054***  -0.1407 

 (0.1242)  (0.0340)  (0.1739)  (0.0977)  (0.0975)  (0.1217) 

Σ𝑖  
Σ1  Σ2  Σ1  Σ2  Σ1  Σ2  Σ1  Σ2  Σ1  Σ2  Σ1  Σ2  

0.0003*** 5.43E-5*** 0.0005*** 5.65E-5*** 0.0003*** 4.90E-5*** 0.0002*** 4.38E-5*** 0.0003*** 5.12E-5*** 0.0003*** 4.16E-5*** 

𝑝𝑖𝑗 
𝑝12 𝑝21 𝑝12 𝑝21 𝑝12 𝑝21 𝑝12 𝑝21 𝑝12 𝑝21 𝑝12 𝑝21 

0.4206 0.1435 0.5254 0.0856 0.4546 0.1155 0.4826 0.1460 0.3781 0.0749 0.3201 0.0943 

�̅�2 70.09% 80.34% 65.41% 74.01% 79.06% 86.89% 82.45% 89.52% 85.21% 88.27% 82.68% 85.33% 

SBIC 6891.60 7385.36 6825.26 7573.75 7074.29 7645.14 7230.00 7684.98 7255.82 7747.40 7199.88 7762.27 

Q(22) 46.254*** 21.140 47.950*** 36.457** 36.697** 30.394 42.948*** 18.556 97.377*** 31.773* 43.258*** 11.127 

LR 1125.23*** 1639.56*** 1240.42*** 1048.55*** 1092.75*** 1247.28*** 
• Sample period used for estimation is from 21 September 2010 to 22 October 2014. *, ** and *** denote the significance at 10%, 5% and 1% levels, respectively. The figure in parentheses is the standard error of 

coefficient. SBIC is calculated as the log-likelihood value minus the penalty parameters. Q(22) is Q-statistic with 22 lags. LR is the statistic of likelihood ratio test. 
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Table 4-4: Estimation results of simple HAR-RV and MRS-HAR-RV for crude oil futures 
HAR-RV  𝑅𝑉𝑡+1𝑑

(𝑑)
= 𝛽0,1 + 𝛽1

(𝑑)
𝑅𝑉𝑡

(𝑑)
+ 𝛽1

(𝑤)
𝑅𝑉𝑡

(𝑤)
+ 𝛽1

(𝑚)
𝑅𝑉𝑡

(𝑚)
+ 𝛽1

(𝐷𝑇𝑅)
𝐷𝑇𝑅𝑡 + 𝛽1

(𝐷1)
𝐷1𝑡 + 𝛽1

(𝐷2)
𝐷2𝑡 + 𝜀𝑡+1𝑑,1

(𝑑)
,      𝜀𝑡+1𝑑,1

(𝑑)
~𝑁(0, 𝛴1 ) 

MRS-HAR-RV  𝑅𝑉𝑡+1𝑑
(𝑑)

= 𝛽0,𝑠𝑡 + 𝛽𝑠𝑡
(𝑑)

𝑅𝑉𝑡
(𝑑)

+ 𝛽𝑠𝑡
(𝑤)

𝑅𝑉𝑡
(𝑤)

+ 𝛽𝑠𝑡
(𝑚)

𝑅𝑉𝑡
(𝑚)

+ 𝛽𝑠𝑡
(𝐷𝑇𝑅)

𝐷𝑇𝑅𝑡 + 𝛽𝑠𝑡
(𝐷1)

𝐷1𝑡 + 𝛽𝑠𝑡
(𝐷2)

𝐷2𝑡 + 𝜀𝑡+1𝑑,𝑠𝑡
(𝑑)

,      𝑠𝑡 = {1,2}, 𝜀𝑡+1𝑑,𝑠𝑡
(𝑑)

~𝑁(0, 𝛴𝑠𝑡 ) 

 nearby-month 1-month 2-month 3-month 4-month 5-month 
 HAR-RV MRS-HAR HAR-RV MRS-HAR HAR-RV MRS-HAR HAR-RV MRS-HAR HAR-RV MRS-HAR HAR-RV MRS-HAR 

𝛽0,1 
-0.0001*** 5.41E-5*** 7.21E-5*** 0.0004*** 7.21E-5*** 0.0005*** 7.21E-5*** 0.0004*** 6.26E-5*** 0.0004*** 6.94E-5*** 0.0003*** 

(3.39E-5) (1.59E-5) (2.25E-5) (7.69E-5) (2.18E-5) (0.0002) (1.71E-5) (2.44E-5) (1.51E-5) (7.76E-5) (1.59E-5) (2.39E-5) 

𝛽1
(𝑑)

 
0.0724*** 0.0826** 0.1433*** 0.1282*** 0.2032*** 0.0708 0.2210*** 0.2076*** 0.2606*** 0.1113** 0.2608*** 0.2255*** 

(0.0207) (0.0334) (0.0156) (0.0112) (0.0156) (0.0959) (0.0116) (0.0365) (0.0113) (0.0455) (0.0118) (0.0125) 

𝛽1
(𝑤)

 
0.0885** 0.0852 0.1172*** 0.1105** 0.0854*** -0.0168 0.0756*** 0.0049 0.1129*** 0.0641* 0.1114*** 0.0528* 

(0.0373) (0.0597) (0.0273) (0.0529) (0.0264) (0.0561) (0.0197) (0.0468) (0.0184) (0.0334) (0.0194) (0.0272) 

𝛽1
(𝑚)

 
0.1950*** 0.2298* 0.1850*** 0.0475 0.1776*** -0.0565 0.1465*** -0.1467** 0.1541*** -0.0790 0.1547*** -0.1007 

(0.0666) (0.1193) (0.0472) (0.2689) (0.0455) (0.1066) (0.0341) (0.0697) (0.0302) (0.1539) (0.0319) (0.0707) 

𝛽1
(𝐷𝑇𝑅)

 
14.0343*** 21.0914*** 2.3447** -0.4638 1.9100* 1.0779 2.1797*** 3.9491*** 1.9675*** 1.8648 1.5408** 1.9333* 

(1.6612) (1.5830) (1.0208) (4.6667) (1.0082) (3.6245) (0.8014) (1.2789) (0.6978) (1.2547) (0.7347) (0.9925) 

𝛽0,2 
 -4.07E-6***  4.78E-5***  3.52E-5***  1.90E-5***  1.41E-5***  3.54E-5*** 

 (3.69E-7)  (7.96E-6)  (1.30E-5)  (2.61E-6)  (5.47E-6)  (2.08E-6) 

𝛽2
(𝑑)

 
 0.0005  0.0246  0.2035***  0.0127  0.2656***  0.2240*** 

 (0.0024)  (0.0156)  (0.0066)  (0.0081)  (0.0009)  (0.0095) 

𝛽2
(𝑤)

 
 0.0176***  0.0502***  0.0945***  0.0980***  0.2680***  0.0894*** 

 (0.0034)  (0.0106)  (0.0205)  (0.0046)  (0.0096)  (0.0073) 

𝛽2
(𝑚)

 
 0.0265***  0.0804*  0.1020***  0.2992***  0.0947***  0.2733*** 

 (0.0062)  (0.0481)  (0.0392)  (0.0089)  (0.0264)  (0.0079) 

𝛽2
(𝐷𝑇𝑅)

 
 2.7709***  1.3677***  1.4789***  1.7384***  1.4438***  0.1631 

 (0.2395)  (0.3796)  (0.4014)  (0.1394)  (0.2889)  (0.1092) 

Σ𝑖  
Σ1  Σ2  Σ1  Σ2  Σ1  Σ2  Σ1  Σ2  Σ1  Σ2  Σ1  Σ2  

0.0008*** 3.88E-5*** 0.0004*** 6.26E-5*** 0.0005*** 8.23E-5*** 0.0003*** 6.55E-5*** 0.0003*** 6.20E-5*** 0.0004*** 5.26E-5*** 

𝑝𝑖𝑗 
𝑝12 𝑝21           

0.5964 0.1911 0.4300 0.1832 0.4294 0.1003 0.3334 0.1111 0.2897 0.0849 0.2868 0.0923 

�̅�2 59.55% 71.17% 76.72% 83.81% 76.89% 81.29% 86.96% 91.39% 88.01% 90.04% 86.75% 89.21% 

SBIC 6157.396 7386.73 6605.319 7119.792 6615.692 7178.596 6838.313 7324.865 6975.095 7446.656 6923.484 7503.817 

Q(22) 34.730** 27.613 73.655*** 74.793*** 38.566** 21.880 89.609*** 41.866*** 98.562*** 48.907*** 88.463*** 29.787*** 

LR 2502.36*** 1162.83*** 1221.59*** 1038.27*** 1046.34*** 1267.85*** 
• Sample period used for estimation is from 21 September 2010 to 22 October 2014. *, ** and *** denote the significance at 10%, 5% and 1% levels, respectively. The figure in parentheses is the standard error of 

coefficient. SBIC is calculated as the log-likelihood value minus the penalty parameters. Q(22) is Q-statistic with 22 lags. LR is the statistic of likelihood ratio test.
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regimes. In general, the coefficients of one-day lagged realised volatility are 

significant in both regime 1 and 2, while the coefficients of one-week and one-month 

realised volatility are not always significant in regime 1. This implies that realised 

volatility is less persistent in regime 1 than in regime 2. Hence, we can infer that 

regime 1 is the high-volatility regime, whereas regime 2 is the low-volatility regime. 

Moreover, we can look at the conditional transition probability and unconditional 

regime probability to further identify the two regimes and their existence. First, based 

on the estimated conditional transition probability (𝑝12 and 𝑝21) in Table 4-2 to 4-4, 

the  𝑝12 (the probability of regime 1 transiting to 2) is generally higher than 0.35 but  

𝑝21 (the probability of a low-volatility regime transiting to a high one) is only between 

0.1 and 0.2. In other words, the switching of regime 1 to regime 2 occurs much more 

frequently than that of regime 2 to regime 1, which indicates that the persistence of 

regime 1 is weaker than that of regime 2. In addition, Table 4-5 shows that the number 

of days when the unconditional regime 1 probability is greater than 0.5 is much lower 

than that when the unconditional regime 2 probability is greater than 0.5, which 

matches the results of the condition transition probability. Based on the different levels 

of persistence in the regimes, we can conjecture that regime 1 is a high-volatility 

regime and regime 2 is a low-volatility regime. This is because the high-volatility 

regime results from large order imbalance between sell- and buy-initiated trades, 

which is a rare case in the market, so the persistence of a high-volatility regime is 

expected to be low. In order to further confirm the identity of regimes, we further 

compare the average level of realised volatility when unconditional regime 1 

probability is greater than 0.5 (𝑝1,𝑡 > 0.5) with that when unconditional regime 2 

probability is greater than 0.5 (𝑝1,𝑡 ≤ 0.5).  According to Table 4-5, the average 

realised volatility in regime 1 (𝑝1,𝑡 > 0.5) is about double that in regime 2 (𝑝1,𝑡 ≤ 0.5), 

which is consistent with our previous conjecture. Therefore, based on the properties 

of regimes, we can now surely confirm the existence of high- and low-volatility 

regimes and identify regime 1 as a high-volatility regime and regime 2 as a low-

volatility one. 

Interestingly, the coefficients of days-to-rollover are very different in the 

magnitude between the two regimes, although their signs are mostly consistent with 

the results of a single regime. The magnitude of coefficients in high-volatility regimes 

is much higher than that in low-volatility regimes, which may be intuitively due to the 
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level of volatility being much greater in high-volatility regimes. The results of 22nd 

order Q-statistic show that the residuals are highly autocorrelated for all contracts, 

even though some residuals of MRS-HAR-RV are not significantly autocorrelated. 

However, the standard errors reported in Table 4-2 to 4-4 are heteroscedasticity and 

autocorrelation consistent estimators, so the significance of autocorrelation has only 

limited impact on the interpretation of the results. Regarding the value of adjusted R-

squared and SBIC, we can find that MRS-HAR-RV has a higher adjusted R-squared 

and better SBIC than HAR-RV does. Furthermore, the results of log-likelihood ratio 

tests confirm the significance of the difference in log-likelihood values between HAR-

RV and MRS-HAR-RV. The in-sample results suggest that MRS-HAR-RV has a 

better ability to capture and explain the dynamic of realised volatility than HAR-RV 

for all three energy futures.  

 

Table 4-5: The average level of volatility in high- and low-volatility regimes in in-

sample 

Gasoline 

 1-month 2-month 3-month 4-month 5-month 6-month 
RV1
̅̅ ̅̅ ̅ 40.84% 33.70% 35.60% 33.06% 30.56% 30.29% 

RV2
̅̅ ̅̅ ̅ 17.72% 16.95% 17.15% 17.41% 18.07% 18.05% 

N1 157 193 142 168 182 145 

N2 824 788 839 813 799 836 

Kerosene 

 1-month 2-month 3-month 4-month 5-month 6-month 
RV1
̅̅ ̅̅ ̅ 35.25% 37.42% 32.16% 31.19% 31.53% 31.26% 

RV2
̅̅ ̅̅ ̅ 16.93% 16.78% 16.69% 17.21% 18.21% 18.25% 

N1 192 108 173 159 141 168 

N2 789 873 808 822 840 813 

Crude oil 

 nearby-m. 1-month 2-month 3-month 4-month 5-month 
RV1
̅̅ ̅̅ ̅ 40.89% 37.51% 39.07% 36.82% 38.55% 35.05% 

RV2
̅̅ ̅̅ ̅ 13.34% 18.68% 20.09% 19.86% 20.35% 21.46% 

N1 222 226 148 189 176 183 

N2 759 755 833 792 805 798 

• Regime 1 (high-volatility regime) is defined as the regime with the estimated unconditional 

regime probability greater than 0.5, and regime 2 (low-volatility regime) is defined as the regime 

with the estimated unconditional regime probability less than or equal to 0.5. RV1
̅̅ ̅̅ ̅ and RV2

̅̅ ̅̅ ̅ are 

the average realised volatility of regime 1 and 2 (high- and low-volatility regimes), respectively. 

N1 and N2 are the numbers of observations in high- and low-volatility regimes, respectively. 
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4.5.2 Out-of-sample Forecasting and Evaluation 

The following MRS-HAR-RV identifies and captures regime switching in the in-

sample estimation. It is in our interest to see whether MRS-HAR-RV can also produce 

a better forecast than the alternative models, namely HAR-RV, GARCH and MRS-

GARCH. The comparison between realised volatility model (MRS-HAR-RV and 

HAR-RV) and conditional volatility model (GARCH and MRS-GARCH) may rise the 

concern of overnight return, since realised volatility is estimated based on open-to-

close data and the overnight return is missed. The difference in the variance during 

trading and non-trading hours has been found by French and Roll (1986), Lockwood 

and Linn (1990), Lockwood and McInish (1990), Masulis and Ng (1995), Gallo 

(2001), and among others. Their evidence shows that the volatility in trading hours is 

greater than in non-trading hours. Several approaches have been used to deal with the 

ignored overnight returns. The first approach calculates the overnight return as the 

difference between close and open price, and adds the squared overnight return to the 

sum of intraday squared returns (Blair et al., 2001; Fong and Martens 2002; Becker et 

al., 2007 and Bollerslev et al., 2009). The other solution is to scale up level of the 

realised volatility in order to cover the 24-hour period (Koopman et al., 2005). Finally, 

Hansen and Lunde (2005) propose an optimal weights for the overnight and the sum 

of intraday squared returns. However, there is also literature that simply ignores the 

overnight return, such as Andersen et al. (2001a), Thomakos and Wang (2003), 

Brownlees and Gallo (2009), Sevi (2014), and among others. This study does not 

consider the impact of overnight returns for two reasons. Firstly, the trading hours in 

TOCOM are 17.5 hours, while the trading hours in the stock exchanges, e.g. NYSE, 

are only 6.5 hours. Therefore, the non-trading time on TOCOM is relatively short, 

only 3.5 hours, which reduces the frequency of information arriving during non-

trading time. Next, the trading session of TOCOM also covers the trading session of 

EU and US exchanges, so most information can still reflect on prices during the trading 

hours of TOCOM. As a result, the impact of overnight return may be not so significant, 

and comparing RV models with GARCH models is plausible. 

 As with most literature on volatility forecasting, we choose the Diebold-

Mariano (DM) test developed by Diebold and Mariano (1995) to examine the forecast 

accuracy of MRS-HAR-RV and the alternatives in out-of-sample. This test requires a 
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loss function that measures the difference between realised volatility and the forecast 

value. In terms of volatility forecast, Qlike loss function is utilised in most studies, and 

Patton (2011) proves Qlike loss function is robust even if realised volatility is an 

imperfect proxy for true volatility. The Qlike loss function is defined as 

𝐿(ℎ𝑡, 𝑅𝑉𝑡) = 𝑙𝑜𝑔(ℎ𝑡) +
𝑅𝑉𝑡

ℎ𝑡
, 

(4.16) 

where ℎ𝑡 is the forecasting value, and 𝑅𝑉𝑡  is the realised variance at time 𝑡. Before 

implementing the DM test, we need to calculate the difference in Qlike loss function 

between two models as 

𝑑𝑡 = 𝐿𝑀𝑅𝑆−𝐻𝐴𝑅−𝑅𝑉(ℎ𝑡, 𝑅𝑉𝑡) − 𝐿𝐴𝐿−𝑅𝑉(ℎ𝑡, 𝑅𝑉𝑡), (4.17) 

where 𝐿𝑀𝑅𝑆−𝐻𝐴𝑅−𝑅𝑉(ℎ𝑡, 𝑅𝑉𝑡) is the Qlike loss function for the MRS-HAR-RV model, 

and 𝐿𝐴𝐿−𝑅𝑉(ℎ𝑡, 𝑅𝑉𝑡)  is for the comparing alternative model. If 𝑑𝑡  is negative, it 

indicates that MRS-HAR-RV has better forecasting ability than the alternative model, 

and vice versa. The DM statistic is then defined as: 

𝐷𝑀 𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐 =
�̅�

√𝑉𝑎𝑟(�̅�)
, (4.18) 

where �̅� is the average of the difference in Qlike loss function, and √𝑉𝑎𝑟(�̅�) is the 

estimator of the corresponding standard deviation of �̅�. The DM statistic follows a 

standard normal distribution, so it is also convenient to implement this test. 

Furthermore, the hypothesis is  

H0: �̅� = 0;  H1: �̅� ≠ 0. 

 

(4.19) 

Hence, if the result rejects the null hypothesis, it means MRS-HAR-RV has better 

predictive ability than the comparing alternative model, given that �̅� is negative. 

 The results of difference in QLike loss function (percentage of MRS-HAR-RV 

lower than alternatives) and DM test are reported in Table 4-6. MRS-HAR-RV seems 

to generally have better performance than GARCH and MRS-GARCH, while the 

comparison with HAR-RV is mixed across three different energy futures and six 

different maturities. Let us begin with gasoline futures. MRS-HAR-RV produces  
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Table 4-6: Results of the Diebold-Mariano test for the comparison of QLike 

between MRS-HAR-RV and three alternative models 
Panel A: Gasoline 

 HAR GARCH MRS-GARCH 

 Change 

(%) 
p-value 

Change 

(%) 
p-value 

Change 

(%) 
p-value 

1-month 0.07% 0.7592 0.85% 0.1712 1.48% 0.0571 
2-month -0.11% 0.4035 1.22% 0.0339 0.26% 0.5583 
3-month -0.05% 0.7356 1.01% 0.0354 1.26% 0.1571 
4-month -0.02% 0.8319 1.19% 0.0176 0.61% 0.0674 
5-month 0.21% 0.1027 1.19% 0.0012 0.85% 0.0063 
6-month 0.64% 0.0167 1.26% 0.0024 0.44% 0.0731 

Panel B: Kerosene 

 HAR GARCH MRS-GARCH 

 Change 

(%) 
p-value 

Change 

(%) 
p-value 

Change 

(%) 
p-value 

1-month 0.03% 0.9249 1.44% 0.1397 0.96% 0.1181 
2-month -0.19% 0.2937 0.66% 0.2822 -0.47% 0.1385 
3-month -0.06% 0.5960 1.24% 0.0361 0.40% 0.2906 
4-month -0.07% 0.6991 0.83% 0.1191 -0.05% 0.8914 
5-month -0.01% 0.9644 0.90% 0.0319 -0.15% 0.5288 
6-month 0.07% 0.4504 1.13% 0.0168 0.19% 0.3725 

Panel C: Crude oil 

 HAR GARCH MRS-GARCH 

 Change 

(%) 
p-value 

Change 

(%) 
p-value 

Change 

(%) 
p-value 

nearby-m. 8.74% 0.0000 6.44% 0.0047 8.97% 0.0621 
1-month -0.50% 0.0476 1.06% 0.2164 0.19% 0.7913 
2-month -0.62% 0.0987 0.36% 0.6820 -0.96% 0.1114 
3-month 0.04% 0.8379 1.07% 0.0826 0.01% 0.9844 
4-month 0.17% 0.2643 1.30% 0.0018 0.36% 0.2406 
5-month 0.18% 0.1822 1.56% 0.0007 0.69% 0.0330 

• The out-of-sample is from 23 October 2014 to 30 October 2015. 

• Percentage change is the difference in QLike loss function, and positive value means MRS-

HAR-RV outperforms the alternative model. 

 

significantly superior forecasting for 6-month gasoline futures, but does not for other 

maturity contracts. Even though values of loss function of MRS-HAR-RV are higher 

than that of HAR-RV for 2- to 4-month gasoline futures, the difference is not 

significant. Regarding kerosene futures, MRS-HAR-RV only have lower value of loss 

function for 1- and 6-month kerosene futures, while differences for all maturities are 

not significant. Therefore, MRS-HAR-RV seems to have no better predictability for 

kerosene futures but also not outperformed by HAR-RV. Finally, the difference in loss 

function between MRS-HAR-RV and HAR-RV for nearby-month crude oil futures is 

positive and significant, whilst that is positive but insignificant for 3- to 5-month 

futures. In addition, the difference is negative for 1- and 2-month crude oil futures. In 
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general, we find that MRS-HAR-RV can produce better but not significant forecasts 

for most longer maturity (highly liquid) contracts, yet is mostly outperformed by 

HAR-RV for contracts that expire in a shorter time in terms of predictability. The 

possible reason for this may be related to liquidity of contracts. For a lowly liquid 

contract, a small amount of order imbalance may have a higher opportunity to impact 

largely on volatility and trigger the switching of regimes because of a relatively low 

trading volume. As a result, it is more difficult to forecast the probability of changing 

in regimes, because new coming information tends to unexpectedly increase the order 

imbalance, and then increase the switching probability to a high-volatility regime. 

Therefore, the forecast of regime probability is more likely to be inaccurate, and leads 

to inaccurate forecasts for low liquidity contracts. 

 In order to further investigate the difference in the predictability of MRS-

HAR-RV and three alternatives, two loss functions are employed, namely Mean 

Absolute Error (MAE) and Mixed Mean Error (MME), defined as follows 

𝑀𝐴𝐸 = |𝑅𝑉𝑡 − ℎ𝑡|, (4.20) 

𝑀𝑀𝐸(𝑂) = 1
𝑅𝑉𝑡 −ℎ𝑡<0

|𝑅𝑉𝑡 − ℎ𝑡| + 1
𝑅𝑉𝑡 −ℎ𝑡>0

√|𝑅𝑉𝑡 − ℎ𝑡|, 
(4.21) 

𝑀𝑀𝐸(𝑈) = 1
𝑅𝑉𝑡 −ℎ𝑡<0

√|𝑅𝑉𝑡 − ℎ𝑡| + 1
𝑅𝑉𝑡 −ℎ𝑡>0

|𝑅𝑉𝑡 − ℎ𝑡|, 
(4.22) 

where 1
𝑅𝑉𝑡 −ℎ𝑡<0

 is the indicator for under-predicted realised variance, and 

1
𝑅𝑉𝑡 −ℎ𝑡>0

 is the indicator for over-predicted realised variance. According to the 

specification, it is obvious that MAE is a symmetric loss function, while MME(O) 

more penalises over-prediction and MME(U) more penalises under-prediction. The 

results of these two loss functions are reported in Table 4-7 to 4-9. In general, the 

results of MAE are very similar to those of QLike, except for minor changes. For 

example, MRS-HAR-RV significantly outperforms HAR-RV for 1-month gasoline 

futures based on MAE comparison, but does not based on QLike comparison. 

Interestingly, the results of MME(O) and MME(U) are quite different, and 

inconsistent with those of QLike and MAE. The comparison of MME(O) and 

MME(U) between MRS-HAR-RV, GARCH and MRS-GARCH is distinct. MRS-

HAR-RV outperforms the other two based on MME(O), but is outperformed by them 

based on MME(U). Turning to the comparison of MME(O) between MRS-HAR-RV 
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and HAR-RV, MRS-HAR-RV has better performance than HAR-RV for most 

gasoline futures, except 6-month ones. However, if we compare MME(U), the results 

are completely opposite, although they lack significance. For kerosene futures, despite 

the fact that the differences are not as significant as we find for gasoline ones, they are 

mostly negative. For crude oil futures, the results are slightly different. MRS-HAR-

RV seems to have better performance than HAR-RV for most crude oil futures, even 

though the differences are not always significant. Overall, it appears that HAR-RV, 

GARCH and MRS-GARCH tends to over-predict realised variance while MRS-HAR-

RV tends to under-predict it. This may be related to the accuracy of forecasting regime 

switching probability. It seems that the probability of switching to a high-volatility 

regime tends to be underestimated. As mentioned in the discussion of QLike 

comparison, this may be the consequence of low liquidity, since for some higher liquid 

contracts, such as 6-month gasoline and 5-month crude oil futures, MRS-HAR-RV 

does not under-predict compared with HAR-RV. However, MRS-HAR-RV 

significantly under-predicts for most lowly liquid futures, such as 2-month gasoline, 

1-month kerosene, and 1- and 2-month crude oil futures. 
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Table 4-7: Results of the Diebold-Mariano test for the comparison of MAE 

between MRS-HAR-RV and three alternative models 
Panel A: Gasoline 

 HAR GARCH MRS-GARCH 

 Change 

(%) 
p-value 

Change 

(%) 
p-value 

Change 

(%) 
p-value 

1-month 3.99% 0.0500 32.56% 0.0014 13.74% 0.0726 
2-month -1.44% 0.4384 48.47% 0.0006 20.90% 0.0064 
3-month -1.94% 0.2088 43.78% 0.0003 15.78% 0.0056 
4-month 0.24% 0.9135 53.30% 0.0002 22.40% 0.0009 
5-month 4.72% 0.0180 57.55% 0.0002 31.73% 0.0005 
6-month 7.00% 0.0452 67.77% 0.0006 27.70% 0.0040 

Panel B: Kerosene 

 HAR GARCH MRS-GARCH 

 Change 

(%) 
p-value 

Change 

(%) 
p-value 

Change 

(%) 
p-value 

1-month -2.65% 0.4853 20.29% 0.0058 1.83% 0.5896 
2-month -1.38% 0.3147 44.59% 0.0009 -0.02% 0.9961 
3-month -1.66% 0.2652 53.06% 0.0001 10.04% 0.0512 
4-month -0.55% 0.7011 54.10% 0.0003 28.40% 0.2176 
5-month -3.84% 0.1697 57.17% 0.0002 4.42% 0.4463 
6-month -0.63% 0.6991 69.05% 0.0006 11.34% 0.0988 

Panel C: Crude oil 

 HAR GARCH MRS-GARCH 

 Change 

(%) 
p-value 

Change 

(%) 
p-value 

Change 

(%) 
p-value 

nearby-m. -3.59% 0.0927 19.53% 0.0003 2.24% 0.6408 
1-month -1.52% 0.4078 66.93% 0.0001 33.71% 0.0044 
2-month -3.52% 0.1592 46.18% 0.0028 12.69% 0.1781 
3-month 1.00% 0.5529 60.63% 0.0005 27.99% 0.0483 
4-month 1.08% 0.6578 74.49% 0.0002 38.86% 0.0079 
5-month 2.77% 0.1929 88.06% 0.0001 40.58% 0.0049 

• The out-of-sample is from 23 October 2014 to 30 October 2015. 

• Percentage change is the difference in MAE loss function, and positive value means MRS-

HAR-RV outperforms the alternative model. 
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Table 4-8: Results of the Diebold-Mariano test for the comparison of MME(O) 

between MRS-HAR-RV and three alternative models 
Panel A: Gasoline 

 HAR GARCH MRS-GARCH 

 Change 

(%) 
p-value 

Change 

(%) 
p-value 

Change 

(%) 
p-value 

1-month 6.85% 0.0796 47.83% 0.0003 10.28% 0.3453 
2-month 6.45% 0.0398 90.90% 0.0000 51.79% 0.0001 
3-month 1.33% 0.6412 92.06% 0.0000 34.41% 0.0000 
4-month 5.77% 0.0833 97.65% 0.0000 49.27% 0.0000 
5-month 11.28% 0.0395 109.26% 0.0000 52.02% 0.0008 
6-month -0.02% 0.9968 140.35% 0.0000 65.71% 0.0000 

Panel B: Kerosene 

 HAR GARCH MRS-GARCH 

 Change 

(%) 
p-value 

Change 

(%) 
p-value 

Change 

(%) 
p-value 

1-month 4.63% 0.2372 66.31% 0.0000 -0.88% 0.9170 
2-month -0.26% 0.9440 112.78% 0.0000 13.88% 0.1536 
3-month -2.34% 0.4794 113.02% 0.0000 26.74% 0.0021 
4-month 4.74% 0.1263 137.37% 0.0000 37.28% 0.0023 
5-month -11.08% 0.0105 119.02% 0.0000 17.35% 0.0903 
6-month 5.68% 0.2424 162.08% 0.0000 39.26% 0.0079 

Panel C: Crude oil 

 HAR GARCH MRS-GARCH 

 Change 

(%) 
p-value 

Change 

(%) 
p-value 

Change 

(%) 
p-value 

nearby-m. -55.34% 0.0000 36.61% 0.0000 9.78% 0.2135 
1-month 7.31% 0.0982 143.32% 0.0000 89.76% 0.0000 
2-month 7.26% 0.1815 117.54% 0.0000 53.24% 0.0006 
3-month 3.04% 0.5043 137.18% 0.0000 85.72% 0.0000 
4-month -6.05% 0.1311 137.86% 0.0000 74.68% 0.0005 
5-month 3.47% 0.5500 172.22% 0.0000 91.81% 0.0001 

• The out-of-sample is from 23 October 2014 to 30 October 2015. 

• Percentage change is the difference in MME(O) loss function, and positive value means 

MRS-HAR-RV outperforms the alternative model. 
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Table 4-9: Results of the Diebold-Mariano test for the comparison of MME(U) 

between MRS-HAR-RV and three alternative models 
Panel A: Gasoline 

 HAR GARCH MRS-GARCH 

 Change 

(%) 
p-value 

Change 

(%) 
p-value 

Change 

(%) 
p-value 

1-month -1.02% 0.6095 -12.52% 0.0233 2.98% 0.6537 
2-month -7.76% 0.0052 -28.17% 0.0000 -18.41% 0.0004 
3-month -3.70% 0.1517 -33.37% 0.0000 -13.27% 0.0303 
4-month -2.11% 0.4318 -26.92% 0.0000 -12.72% 0.0483 
5-month -0.62% 0.8515 -24.73% 0.0002 -4.59% 0.4855 
6-month 6.79% 0.1355 -32.98% 0.0000 -14.65% 0.0058 

Panel B: Kerosene 

 HAR GARCH MRS-GARCH 

 Change 

(%) 
p-value 

Change 

(%) 
p-value 

Change 

(%) 
p-value 

1-month -5.33% 0.0068 -30.94% 0.0000 1.52% 0.7809 
2-month -1.35% 0.6202 -37.91% 0.0000 -9.06% 0.0706 
3-month -1.14% 0.5975 -37.94% 0.0000 -10.66% 0.0110 
4-month -3.74% 0.0955 -43.21% 0.0000 -13.19% 0.0045 
5-month 4.77% 0.1827 -42.56% 0.0000 -8.04% 0.2192 
6-month -5.04% 0.1040 -41.43% 0.0000 -10.71% 0.0458 

Panel C: Crude oil 

 HAR GARCH MRS-GARCH 

 Change 

(%) 
p-value 

Change 

(%) 
p-value 

Change 

(%) 
p-value 

nearby-m. 33.59% 0.0000 -5.44% 0.2399 -6.10% 0.2991 
1-month -5.76% 0.0067 -40.39% 0.0000 -30.33% 0.0000 
2-month -7.71% 0.0094 -36.46% 0.0000 -23.44% 0.0000 
3-month 0.45% 0.8459 -38.09% 0.0000 -31.97% 0.0000 
4-month 5.74% 0.0993 -29.01% 0.0000 -15.43% 0.0063 
5-month 0.69% 0.8361 -32.71% 0.0000 -20.03% 0.0035 

• The out-of-sample is from 23 October 2014 to 30 October 2015. 

• Percentage change is the difference in MME(U) loss function, and positive value means 

MRS-HAR-RV outperforms the alternative model. 
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4.5.3 Application: Value at Risk (VaR) Estimation 

Forecasts of realised volatility can provide insights for market participants seeking to 

understand future market conditions, as well as can be used to quantify market risk 

and make trading decisions. One of the most popular approaches to quantifying market 

risk is VaR, which is the maximum loss for a portfolio given confidence level (1 −  𝑢) 

over a fixed time horizon (k). Therefore, VaR can be defined as 

Pr(𝑟𝑡+1 < 𝑉𝑎𝑅𝑢,𝑡+1|Ω𝑡) = 𝑢, (4.23) 

where  Ω𝑡 is the information given at time t. A direct approach to calculating VaR is 

Historical Simulation (HS) that directly estimates VaR by the percentile of historical 

returns. An alternative estimation of VaR is the product of the u-percentile of assumed 

distribution of returns and the forecasting volatility (standard deviation), and can be 

shown as below 

𝑉𝑎𝑅𝑢,𝑡+1 = 𝐹−1(𝑢)ℎ𝑡+1, (4.24) 

where  𝐹−1(𝑢) is the corresponding 𝑢-percentile (e.g. 0.5%, 1%, 5%) of assumed 

distribution, and  ℎ𝑡+1 is the predicted volatility (squared root of variance) produced 

by one of the proposed models (e.g. HAR-RV, MRS-HAR-RV, GARCH and MRS-

GARCH).   

In our study, we calculate VaR at 99% confidence level (𝑢=1%) since it has been 

employed in most literature, and four approaches are utilised, namely HS, GARCH, 

HAR-RV and MRS-HAR-RV. HS is estimated by a sample period of 250 days (1 year) 

of observations, since the percentile tends to be smoothed and VaR may be 

underestimated if the sample period is too long. GARCH approaches are based on the 

forecasts from GARCH (1,1), and the standard normal percentile is used for the 

estimation of 𝐹−1(𝑢) due to the normality assumption of the GARCH model. Both 

HAR-RV and MRS-HAR-RV approaches employ the forecasts produced in out-of-

sample analysis. However, instead of using standard normal percentile, we use Filtered 

Historical Simulation (FHS) to estimate the corresponding percentile because the 

realised volatility does not match normality assumption and the distribution of returns 

is non-normal (see Table 3-6). FHS is similar to historical simulation, but the 
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percentile is calculated based on filtered historical returns. There are two steps to 

perform FHS, namely creating the filtered historical returns and calculating the 

percentile. The first step of FHS is to generate the filtered historical returns by dividing 

returns by historical standard deviation. Then, the percentile of the filtered historical 

returns is calculated and employed to calculate VaR for the HAR-RV and MRS-HAR-

RV approaches.  

In order to evaluate the accuracy of VaR, a backtesting test must be 

implemented. According to Christoffersen (2012), VaR models passing both 

unconditional coverage (UC) and conditional coverage (CC) log-likelihood ratio (LR) 

tests are considered to be adequate for risk management. The first step of both tests is 

to calculate the percentage proportion of failure (PF), which is the proportion of actual 

returns that exceed the estimated VaR or so-called hit. Therefore, an indicator function 

is defined as follows 

I𝑡+1 = {
1, 𝑖𝑓 𝑟𝑡+1 < 𝑉𝑎𝑅𝑢,𝑡+1|Ω𝑡 

0, 𝑖𝑓 𝑟𝑡+1 ≥ 𝑉𝑎𝑅𝑢,𝑡+1|Ω𝑡
, 

(4.25) 

where I𝑡+1 is the indicator function for violation of VaR. The sum of the indicator 

function over the out-of-sample is counted as total hit numbers, and the proportion of 

hit numbers to total number of out-of-sample represents PF. The VaR estimate is 

considered to be efficient if the following condition is satisfied 

𝐸[I𝑡+1|Ω𝑡] = 𝑢, (4.26) 

that is, on average, (1-PF) is equal to the nominal confidence level. The unconditional 

coverage (UC) test developed by Kupiec (1995), and the independence (IND), and 

conditional coverage tests (CC) proposed by Christoffersen (2012) are designed to 

examine whether PF is indifferent to the tolerance level 𝑝. We first denote 𝜋 as PF 

calculated as 

𝜋 =
𝑁1

𝑁0+𝑁1
, (4.27) 

where 𝑁0 is the total number of indicator being 0 (no violation of VaR), and 𝑁1 is the 

total number of indicator being 1 (violation of VaR). Then, the null hypothesis for the 

unconditional coverage test can be expressed as 
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𝐻0: 𝜋 = 𝑢, (4.28) 

and the LR statistic for the UC test (𝐿𝑅(𝑈𝐶)) can be defined as  

𝐿𝑅(𝑈𝐶) = 2{ln[(1 − 𝜋)𝑁0𝜋𝑁1] − ln [(1 − 𝑢)𝑁0𝑢𝑁1]}~χ1−𝛼,1, (4.29) 

where 𝐿𝑅(𝑈𝐶) follows a chi-square distribution with degree of freedom 1 under given 

significant level 𝛼. If 𝐿𝑅(𝑈𝐶) > χ𝛼,1, 𝐻0 is rejected, this implies that the VaR estimate 

is not efficient. However, an unconditional coverage test only examines whether the 

total PF exceeds nominal tolerance level on average, but does not consider the cluster 

of violation (consecutive violation). An independent test is designed to examine the 

dependence of consecutive violation, and the LR statistic for independent test 𝐿𝑅(𝐼𝑁𝐷) 

can be expressed as 

𝐿𝑅(𝐼𝑁𝐷) = 2{ln[(1 − 𝜋01)𝑁00𝜋01
𝑁01(1 − 𝜋11)𝑁10𝜋11

𝑁11] − ln [(1 − 𝑢)𝑁0𝑢𝑁1]}~χ1−𝛼,1, 

𝜋01 =
𝑁01

𝑁00 + 𝑁01

=
𝑁01

𝑁0

, 𝜋11 =
𝑁11

𝑁10 + 𝑁11

=
𝑁11

𝑁1

 

(4.30) 

where 𝑁𝑖𝑗 for i,j = 0,1 is the number of indicator being i followed by indictor being j, 

and𝜋𝑖𝑗    is the corresponding probability. If i = j = 1, it indicates the occurrence of 

consecutive violation. 𝐿𝑅(𝐼𝑁𝐷) also follows a chi-square distribution with degree of 

freedom 1 under given significant level 𝛼. Finally, the LR statistic for conditional 

coverage test 𝐿𝑅(𝐶𝐶) is defined as the sum of  𝐿𝑅(𝑈𝐶) and 𝐿𝑅(𝐼𝑁𝐷), shown as 

𝐿𝑅(𝐶𝐶) = 𝐿𝑅(𝑈𝐶) + 𝐿𝑅(𝐼𝑁𝐷)~χ1−𝛼,2. (4.31) 

Similarly, 𝐿𝑅(𝐶𝐶) follows a chi-square distribution but with degree of freedom 2 under 

given significant level 𝛼. 

The VaR estimates and backtesting tests are reported in Figure 4-7 to 4-12 and 

Table 4-10 to 4-13. According to the figures, it seems that the VaR from the HS 

approach is smoother and underestimated compared with the other four approaches. 

Regarding the GARCH and MRS-GARCH approaches, the VaR estimates sometimes 

appear to be overestimated when comparing their distance from actual return. The 

VaR estimates from HAR-RV and MRS-HAR-RV are in between those from HS and 

GARCH, and are relatively close to each other.
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Table 4-10: Value at Risk (VaR) for gasoline 
1-month 

 VaR for long position VaR for short position 

 PF 𝐿𝑅(𝑈𝐶) 𝐿𝑅(𝐼𝑁𝐷) 𝐿𝑅(𝐶𝐶) PF 𝐿𝑅(𝑈𝐶) 𝐿𝑅(𝐼𝑁𝐷) 𝐿𝑅(𝐶𝐶) 

HAR-RV 1.60% 0.7691 0.1629 0.9320 0.80% 0.1084 0.0485 0.1569 

MRS-HAR 1.20% 0.0949 0.0973 0.1923 0.40% 1.1765 0.0161 1.1926 

GARCH 4.80% 19.0162 6.2668 25.2830 1.60% 0.7691 0.1629 0.9320 

MRS-G. 5.20% 22.3170 2.0889 24.4059 2.00% 1.9568 0.2453 2.2021 

HS 4.80% 19.0162 6.2668 25.2830 2.00% 1.9568 0.2453 2.2021 

2-month 

 VaR for long position VaR for short position 

 PF 𝐿𝑅(𝑈𝐶) 𝐿𝑅(𝐼𝑁𝐷) 𝐿𝑅(𝐶𝐶) PF 𝐿𝑅(𝑈𝐶) 𝐿𝑅(𝐼𝑁𝐷) 𝐿𝑅(𝐶𝐶) 

HAR-RV 1.20% 0.0949 0.0973 0.1923 0.40% 1.1765 0.0161 1.1926 

MRS-HAR 1.60% 0.7691 0.1629 0.9320 0.80% 0.1084 0.0485 0.1569 

GARCH 4.00% 12.9555 8.5340 21.4895 0.40% 1.1765 0.0161 1.1926 

MRS-G. 3.60% 10.2290 4.6934 14.9225 1.60% 0.7691 0.1629 0.9320 

HS 4.40% 15.8906 7.3228 23.2134 2.40% 3.5554 2.4718 6.0271 

3-month 

 VaR for long position VaR for short position 

 PF 𝐿𝑅(𝑈𝐶) 𝐿𝑅(𝐼𝑁𝐷) 𝐿𝑅(𝐶𝐶) PF 𝐿𝑅(𝑈𝐶) 𝐿𝑅(𝐼𝑁𝐷) 𝐿𝑅(𝐶𝐶) 

HAR-RV 1.20% 0.0949 0.0973 0.1923 0.40% 1.1765 0.0161 1.1926 

MRS-HAR 1.20% 0.0949 0.0973 0.1923 0.40% 1.1765 0.0161 1.1926 

GARCH 4.40% 15.8906 7.3228 23.2134 0.40% 1.1765 0.0161 1.1926 

MRS-G. 5.20% 22.3170 0.2567 22.5737 1.60% 0.7691 0.1629 0.9320 

HS 4.40% 15.8906 7.3228 23.2134 2.00% 1.9568 3.1944 5.1512 

4-month 

 VaR for long position VaR for short position 

 PF 𝐿𝑅(𝑈𝐶) 𝐿𝑅(𝐼𝑁𝐷) 𝐿𝑅(𝐶𝐶) PF 𝐿𝑅(𝑈𝐶) 𝐿𝑅(𝐼𝑁𝐷) 𝐿𝑅(𝐶𝐶) 

HAR-RV 0.80% 0.1084 0.0485 0.1569 0.40% 1.1765 0.0161 1.1926 

MRS-HAR 0.80% 0.1084 0.0485 0.1569 0.80% 0.1084 0.0485 0.1569 

GARCH 3.60% 10.2290 9.9356 20.1647 0.80% 0.1084 0.0485 0.1569 

MRS-G. 5.20% 22.3170 5.3407 27.6577 0.80% 0.1084 0.0485 0.1569 

HS 3.60% 10.2290 1.0797 11.3087 1.60% 0.7691 4.1393 4.9084 

5-month 

 VaR for long position VaR for short position 

 PF 𝐿𝑅(𝑈𝐶) 𝐿𝑅(𝐼𝑁𝐷) 𝐿𝑅(𝐶𝐶) PF 𝐿𝑅(𝑈𝐶) 𝐿𝑅(𝐼𝑁𝐷) 𝐿𝑅(𝐶𝐶) 

HAR-RV 0.00% N/A N/A N/A 0.40% 1.1765 0.0161 1.1926 

MRS-HAR 0.00% N/A N/A N/A 0.40% 1.1765 0.0161 1.1926 

GARCH 3.60% 10.2290 9.9356 20.1647 0.80% 0.1084 0.0485 0.1569 

MRS-G. 4.40% 15.8906 0.5575 16.4481 1.60% 0.7691 0.1629 0.9320 

HS 3.20% 7.7336 0.5963 8.3298 1.60% 0.7691 4.1393 4.9084 

6-month 

 VaR for long position VaR for short position 

 PF 𝐿𝑅(𝑈𝐶) 𝐿𝑅(𝐼𝑁𝐷) 𝐿𝑅(𝐶𝐶) PF 𝐿𝑅(𝑈𝐶) 𝐿𝑅(𝐼𝑁𝐷) 𝐿𝑅(𝐶𝐶) 

HAR-RV 1.60% 0.7691 0.1629 0.9320 0.80% 0.1084 0.0485 0.1569 

MRS-HAR 0.80% 0.1084 0.0485 0.1569 0.80% 0.1084 0.0485 0.1569 

GARCH 3.60% 10.2290 9.9356 20.1647 0.80% 0.1084 0.0485 0.1569 

MRS-G. 3.20% 7.7336 1.4460 9.1795 0.40% 1.1765 0.0161 1.1926 

HS 3.20% 7.7336 0.5963 8.3298 2.40% 3.5554 2.4718 6.0271 

• MRS-HAR denotes MRS-HAR-RV, and MRS-G. denotes MRS-GARCH. VaR is calculated 

based on 250 observations in out-of-sample from 23 October 2014 to 30 October 2015. PF is 

the probability of failures (violations). The LR statistic in bold denotes rejection of each test. 

The critical value for the unconditional coverage and independent test (𝐿𝑅(𝑈𝐶) and 𝐿𝑅(𝑈𝐶)) is 

2.7055, and that for the conditional coverage likelihood ratio test 𝐿𝑅(𝐶𝐶) is 4.6052. 
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Table 4-11: Value at Risk (VaR) for kerosene 
1-month 

 VaR for long position VaR for short position 

 PF 𝐿𝑅(𝑈𝐶) 𝐿𝑅(𝐼𝑁𝐷) 𝐿𝑅(𝐶𝐶) PF 𝐿𝑅(𝑈𝐶) 𝐿𝑅(𝐼𝑁𝐷) 𝐿𝑅(𝐶𝐶) 

HAR-RV 1.60% 0.7691 0.1629 0.9320 0.80% 0.1084 0.0485 0.1569 

MRS-HAR 1.60% 0.7691 0.1629 0.9320 0.80% 0.1084 0.0485 0.1569 

GARCH 2.00% 1.9568 3.1944 5.1512 0.40% 1.1765 0.0161 1.1926 

MRS-G. 1.20% 0.0949 0.0973 0.1923 1.20% 0.0949 0.0973 0.1923 

HS 3.60% 10.2290 9.9356 20.1647 1.60% 0.7691 0.1629 0.9320 

2-month 

 VaR for long position VaR for short position 

 PF 𝐿𝑅(𝑈𝐶) 𝐿𝑅(𝐼𝑁𝐷) 𝐿𝑅(𝐶𝐶) PF 𝐿𝑅(𝑈𝐶) 𝐿𝑅(𝐼𝑁𝐷) 𝐿𝑅(𝐶𝐶) 

HAR-RV 3.20% 7.7336 1.4460 9.1795 0.80% 0.1084 0.0485 0.1569 

MRS-HAR 2.80% 5.4970 0.4618 5.9588 0.80% 0.1084 0.0485 0.1569 

GARCH 1.20% 0.0949 5.4494 5.5443 0.40% 1.1765 0.0161 1.1926 

MRS-G. 1.20% 0.0949 0.0973 0.1923 0.80% 0.1084 0.0485 0.1569 

HS 2.80% 5.4970 6.7930 12.2900 2.40% 3.5554 2.4718 6.0271 

3-month 

 VaR for long position VaR for short position 

 PF 𝐿𝑅(𝑈𝐶) 𝐿𝑅(𝐼𝑁𝐷) 𝐿𝑅(𝐶𝐶) PF 𝐿𝑅(𝑈𝐶) 𝐿𝑅(𝐼𝑁𝐷) 𝐿𝑅(𝐶𝐶) 

HAR-RV 2.80% 5.4970 6.7930 12.2900 0.80% 0.1084 0.0485 0.1569 

MRS-HAR 1.60% 0.7691 0.1629 0.9320 0.80% 0.1084 0.0485 0.1569 

GARCH 1.60% 0.7691 12.2557 13.0248 0.40% 1.1765 0.0161 1.1926 

MRS-G. 3.20% 7.7336 0.5963 8.3298 1.20% 0.0949 0.0973 0.1923 

HS 4.00% 12.9555 8.5340 21.4895 2.40% 3.5554 2.4718 6.0271 

4-month 

 VaR for long position VaR for short position 

 PF 𝐿𝑅(𝑈𝐶) 𝐿𝑅(𝐼𝑁𝐷) 𝐿𝑅(𝐶𝐶) PF 𝐿𝑅(𝑈𝐶) 𝐿𝑅(𝐼𝑁𝐷) 𝐿𝑅(𝐶𝐶) 

HAR-RV 3.20% 7.7336 5.6503 13.3838 0.80% 0.1084 0.0485 0.1569 

MRS-HAR 2.40% 3.5554 0.3449 3.9003 1.20% 0.0949 0.0973 0.1923 

GARCH 1.20% 0.0949 15.6753 15.7702 0.40% 1.1765 0.0161 1.1926 

MRS-G. 2.00% 1.9568 0.2453 2.2021 1.20% 0.0949 0.0973 0.1923 

HS 4.40% 15.8906 7.3228 23.2134 2.80% 5.4970 1.9020 7.3990 

5-month 

 VaR for long position VaR for short position 

 PF 𝐿𝑅(𝑈𝐶) 𝐿𝑅(𝐼𝑁𝐷) 𝐿𝑅(𝐶𝐶) PF 𝐿𝑅(𝑈𝐶) 𝐿𝑅(𝐼𝑁𝐷) 𝐿𝑅(𝐶𝐶) 

HAR-RV 2.40% 3.5554 2.4718 6.0271 0.80% 0.1084 0.0485 0.1569 

MRS-HAR 2.40% 3.5554 0.3449 3.9003 0.80% 0.1084 0.0485 0.1569 

GARCH 0.80% 0.1084 7.5099 7.6183 0.40% 1.1765 0.0161 1.1926 

MRS-G. 1.20% 0.0949 0.0973 0.1923 1.20% 0.0949 0.0973 0.1923 

HS 4.40% 15.8906 3.1898 19.0805 3.60% 10.2290 1.0797 11.3087 

6-month 

 VaR for long position VaR for short position 

 PF 𝐿𝑅(𝑈𝐶) 𝐿𝑅(𝐼𝑁𝐷) 𝐿𝑅(𝐶𝐶) PF 𝐿𝑅(𝑈𝐶) 𝐿𝑅(𝐼𝑁𝐷) 𝐿𝑅(𝐶𝐶) 

HAR-RV 2.40% 3.5554 0.3449 3.9003 1.20% 0.0949 0.0973 0.1923 

MRS-HAR 2.80% 5.4970 0.4618 5.9588 1.20% 0.0949 0.0973 0.1923 

GARCH 1.20% 0.0949 5.4494 5.5443 0.40% 1.1765 0.0161 1.1926 

MRS-G. 1.60% 0.7691 0.1629 0.9320 1.20% 0.0949 0.0973 0.1923 

HS 4.00% 12.9555 3.8824 16.8378 3.60% 10.2290 1.0797 11.3087 

• MRS-HAR denotes MRS-HAR-RV, and MRS-G. denotes MRS-GARCH. VaR is calculated 

based on 250 observations in out-of-sample from 23 October 2014 to 30 October 2015. PF is 

the probability of failures (violations). The LR statistic in bold denotes rejection of each test. 

The critical value for the unconditional coverage and independent test (𝐿𝑅(𝑈𝐶) and 𝐿𝑅(𝑈𝐶)) is 

2.7055, and that for the conditional coverage likelihood ratio test 𝐿𝑅(𝐶𝐶) is 4.6052. 
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Table 4-12: Value at Risk (VaR) for crude oil 
nearby-month 

 VaR for long position VaR for short position 

 PF 𝐿𝑅(𝑈𝐶) 𝐿𝑅(𝐼𝑁𝐷) 𝐿𝑅(𝐶𝐶) PF 𝐿𝑅(𝑈𝐶) 𝐿𝑅(𝐼𝑁𝐷) 𝐿𝑅(𝐶𝐶) 

HAR-RV 5.20% 22.3170 24.4059 46.7230 3.60% 10.2290 11.3087 21.5378 

MRS-HAR 3.60% 10.2290 11.3087 21.5378 2.00% 1.9568 2.2021 4.1590 

GARCH 3.60% 10.2290 14.9225 25.1515 3.20% 7.7336 9.1795 16.9131 

MRS-G. 3.60% 10.2290 10.9775 21.2065 2.40% 3.5554 6.0271 9.5825 

HS 3.20% 7.7336 9.1795 16.9131 0.80% 0.1084 0.1569 0.2653 

1-month 

 VaR for long position VaR for short position 

 PF 𝐿𝑅(𝑈𝐶) 𝐿𝑅(𝐼𝑁𝐷) 𝐿𝑅(𝐶𝐶) PF 𝐿𝑅(𝑈𝐶) 𝐿𝑅(𝐼𝑁𝐷) 𝐿𝑅(𝐶𝐶) 

HAR-RV 2.80% 5.4970 5.9588 11.4558 0.80% 0.1084 0.1569 0.2653 

MRS-HAR 4.40% 15.8906 16.9978 32.8884 2.40% 3.5554 3.9003 7.4556 

GARCH 2.00% 1.9568 2.2021 4.1590 0.40% 1.1765 1.1926 2.3691 

MRS-G. 2.00% 1.9568 2.2021 4.1590 1.20% 0.0949 0.1923 0.2872 

HS 3.60% 10.2290 10.9775 21.2065 4.00% 12.9555 16.8378 29.7933 

2-month 

 VaR for long position VaR for short position 

 PF 𝐿𝑅(𝑈𝐶) 𝐿𝑅(𝐼𝑁𝐷) 𝐿𝑅(𝐶𝐶) PF 𝐿𝑅(𝑈𝐶) 𝐿𝑅(𝐼𝑁𝐷) 𝐿𝑅(𝐶𝐶) 

HAR-RV 2.00% 1.9568 2.2021 4.1590 0.40% 1.1765 1.1926 2.3691 

MRS-HAR 3.20% 7.7336 8.3298 16.0634 1.20% 0.0949 0.1923 0.2872 

GARCH 2.40% 3.5554 6.0271 9.5825 0.40% 1.1765 1.1926 2.3691 

MRS-G. 2.00% 1.9568 2.2021 4.1590 0.80% 0.1084 0.1569 0.2653 

HS 4.00% 12.9555 13.7427 26.6982 3.60% 10.2290 14.9225 25.1515 

3-month 

 VaR for long position VaR for short position 

 PF 𝐿𝑅(𝑈𝐶) 𝐿𝑅(𝐼𝑁𝐷) 𝐿𝑅(𝐶𝐶) PF 𝐿𝑅(𝑈𝐶) 𝐿𝑅(𝐼𝑁𝐷) 𝐿𝑅(𝐶𝐶) 

HAR-RV 2.00% 1.9568 2.2021 4.1590 0.40% 1.1765 1.1926 2.3691 

MRS-HAR 2.00% 1.9568 2.2021 4.1590 0.80% 0.1084 0.1569 0.2653 

GARCH 2.40% 3.5554 6.0271 9.5825 0.40% 1.1765 1.1926 2.3691 

MRS-G. 2.40% 3.5554 6.0271 9.5825 0.40% 1.1765 1.1926 2.3691 

HS 4.00% 12.9555 13.7427 26.6982 3.60% 10.2290 14.9225 25.1515 

4-month 

 VaR for long position VaR for short position 

 PF 𝐿𝑅(𝑈𝐶) 𝐿𝑅(𝐼𝑁𝐷) 𝐿𝑅(𝐶𝐶) PF 𝐿𝑅(𝑈𝐶) 𝐿𝑅(𝐼𝑁𝐷) 𝐿𝑅(𝐶𝐶) 

HAR-RV 2.00% 1.9568 2.2021 4.1590 0.40% 1.1765 1.1926 2.3691 

MRS-HAR 0.40% 1.1765 1.1926 2.3691 0.40% 1.1765 1.1926 2.3691 

GARCH 2.40% 3.5554 6.0271 9.5825 0.40% 1.1765 1.1926 2.3691 

MRS-G. 2.00% 1.9568 2.2021 4.1590 0.40% 1.1765 1.1926 2.3691 

HS 3.60% 10.2290 10.9775 21.2065 3.20% 7.7336 9.1795 16.9131 

5-month 

 VaR for long position VaR for short position 

 PF 𝐿𝑅(𝑈𝐶) 𝐿𝑅(𝐼𝑁𝐷) 𝐿𝑅(𝐶𝐶) PF 𝐿𝑅(𝑈𝐶) 𝐿𝑅(𝐼𝑁𝐷) 𝐿𝑅(𝐶𝐶) 

HAR-RV 1.60% 0.7691 0.9320 1.7012 0.40% 1.1765 1.1926 2.3691 

MRS-HAR 1.60% 0.7691 0.9320 1.7012 0.40% 1.1765 1.1926 2.3691 

GARCH 2.40% 3.5554 6.0271 9.5825 0.40% 1.1765 1.1926 2.3691 

MRS-G. 2.00% 1.9568 2.2021 4.1590 0.80% 0.1084 0.1569 0.2653 

HS 4.00% 12.9555 13.7427 26.6982 3.60% 10.2290 14.9225 25.1515 

• MRS-HAR denotes MRS-HAR-RV, and MRS-G. denotes MRS-GARCH. VaR is calculated 

based on 250 observations in out-of-sample from 23 October 2014 to 30 October 2015. PF is 

the probability of failures (violations). The LR statistic in bold denotes rejection of each test. 

The critical value for the unconditional coverage and independent test (𝐿𝑅(𝑈𝐶) and 𝐿𝑅(𝑈𝐶)) is 

2.7055, and that for the conditional coverage likelihood ratio test 𝐿𝑅(𝐶𝐶) is 4.6052. 
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In order to more carefully examine the accuracy of VaR estimates, we need to 

further check the backtesting results in Table 4-10 to 4-13. For gasoline futures, all 

GARCH, MRS-GARCH and HS approaches fail to pass at least one of the backtesting 

tests, while both HAR-RV and MRS-HAR-RV approaches, by contrast, produce 

efficient VaR for all maturity contracts. Interestingly, for 5-month gasoline futures, it 

seems that both HAR-RV and MRS-HAR-RV may overestimate the value of VaR 

since the PFs are both 0.00%. Moving to kerosene futures, HS and GARCH 

approaches again fail to pass backtesting tests, while, surprisingly, HAR-RV and 

MRS-HAR-RV approaches do not pass the tests for five and four futures, respectively. 

MRS-GARCH performs the best among all models. Finally, for crude oil futures, the 

HS approach fails to pass backtesting tests for gasoline and kerosene, while the 

GARCH approach passes for two contracts, the 1-month and 5-month ones. The rest 

three models perform almost evenly by passing backtesting test for four and three 

(MRS-HAR-RV) contracts  

To sum up, comparing the accuracy of VaR estimates reveals that both HAR-

RV and MRS-HAR-RV can produce more accurate estimates than HS and GARCH 

approaches across commodities and maturities. Nonetheless, even though HAR-RV 

and MRS-HAR-RV approaches can both produce efficient VaR estimates for gasoline 

futures, MRS-GARCH seems to perform better for kerosene futures.  

Figure 4-7: Value at Risk (1%) of 6-month gasoline futures 
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Figure 4-8: Value at Risk (1%) of 6-month kerosene futures 

 

Figure 4-9: Value at Risk (1%) of 6-month crude oil futures 
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volatility is a long-memory process. Nonetheless, by incorporating the MRS approach, 

we find that the persistence and average level of realised volatility switches in two 

different regimes, namely a high- and low-volatility regime. In the low-volatility 

regime, all one-day, one-week and one-month lagged realised volatility individually 

last for most energy futures. By contrast, the impact of one-week and one-month lags 

disappears for some contracts in the high-volatility regime. Moreover, the MRS-HAR-

RV model can capture the dynamics of realised volatility better than HAR-RV, and 

has better goodness-of-fit regarding adjusted R-square and SBIC.  

 In out-of-sample, MRS-HAR-RV outperforms GARCH and MRS-GARCH 

for most TOCOM energy futures, while only has better forecast than HAR-RV for 

longer maturity futures, but not for shorter maturity futures regarding the QLike loss 

function. We conjecture that the lack of liquidity for shorter maturity contracts 

increases the impact of order imbalance on volatility and then also the probability of 

regime switching. Hence, any unexpected increase in order imbalance may lower the 

precision of forecasts of unconditional regime probability, leading to less accurate 

forecasts of realised volatility. We further compare the difference in MAE, MME(O) 

and MME(U), and find MRS-HAR-RV tends to under-predict realised variance, while 

alternative models tend to over-predict. 

In the application of VaR estimation and valuation, both HAR-RV and MRS-

HAR-RV outperform HS and GARCH approaches for all three commodities and 

across six maturities. However, MRS-GARCH seems to perform better for kerosene 

futures, while HAR-RV and MRS-HAR-RV perform better for gasoline futures.
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5.1 Introduction 

Many studies investigate the theoretical and empirical relation between trading 

volume and price volatility using different econometric techniques, sample periods 

and frequencies. The theoretical foundations of these studies are based on three main 

theories proposed to explain the relation between trading activity and price behaviour. 

These are the Mixture of Distribution Hypothesis (MDH) by Clark (1973), the 

Sequential Information Arrival Hypothesis (SIAH) by Copeland (1976), and 

Motivation Driven Trade by Wang (1994). 

MDH postulates the existence of a contemporaneously positive relation between 

trading volume and price volatility, because it assumes that trading volume and price 

changes follow a joint distribution and are driven by a single mixing variable which is 

arrival of information. On the other hand, SIAH suggests a positive relation to be a 

lead-lag relationship between trading volume and volatility. SIAH argues that traders 
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receive information gradually and adjust their holding positions based on the arrival 

of information over time. The gradual adjustment of portfolios creates a series of 

disequilibria and hence the market price evolves and reaches a new equilibrium only 

when all traders in the market have obtained information and readjusted their portfolio. 

Hence, the speed of the change of market prices depends on the rate of information 

arrival, and is usually later than changes in trading volume because of the existence of 

private information. Finally, the third theory on the volume-volatility relation is 

Motivation Driven Trade, which separates types of trades into Liquidity Driven Trade 

(LDT) and Information Driven Trade (IDT). Under the LDT hypothesis, Liquidity 

Driven Trades are likely to cause a reversal in consecutive returns, which increases 

the volatility of returns and induces a positive relation between volume and volatility. 

In contrast to LDT, Information Driven Trades tend to create momentum in 

consecutive returns, which reduces the volatility of returns and implies a negative 

volume-volatility relation.  

Generally speaking, MDH and SIAH both suggest the existence of a positive 

relation between trading volume and price volatility. Nevertheless, they differ in the 

symmetry of the flow of information to the market. MDH assumes all traders and 

market participants receive random information simultaneously, so the volume-

volatility relation is contemporaneous. On the other hand, SIAH assumes that 

information arrives randomly but reaches different traders sequentially. As a result, 

changes in trading volume precede price movements. In other words, the trading 

volume is supposed to lead price change and volatility under the SIAH hypothesis. 

We study the trading activity and price behaviour of the three energy 

commodities traded on TOCOM. To achieve this, we use two approaches. First, we 

utilise a Structural Vector Autoregressive (SVAR) model to measure the 

contemporaneous as well as lead-lag interaction between trading volume and 

volatility. In addition, we take into account the roll-over effect by introducing day-to-

rollover to capture the time effect of maturity and the roll-over of contracts. Second, a 

Transition Structural Vector Autoregressive (T-SVAR) model is developed by 

introducing a dummy variable of backwardation into SVAR. The use of the dummy 

variable allows us to measure the asymmetric effect of market condition 

(backwardation and contango) on the relation between trading volume and volatility. 
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This chapter contributes to the literature in three aspects. First, this is the first 

paper discussing the volatility-volume relation for TOCOM energy futures. The 

distinctive characteristics of TOCOM energy futures, including the domestic nature of 

the market, lower liquidity compared to other energy futures markets, stricter trading 

limits, types of participants, as well as being the only energy futures market in Asia, 

makes it an interesting testing ground. Second, we examine the contemporaneous and 

lead-lag volume-volatility relation across the term structure of futures contracts for 

kerosene, gasoline and crude oil. Third, we examine the role of market conditions as 

defined by the slope of the forward curve in the volume-volatility relations. 

 

5.2 Literature Review 

Evidence in support of MDH is provided by Epps and Epps (1976) who examine 20 

stocks on the New York Stock Exchange (NYSE). They prove MDH by using 

transaction volume as the mixing variable. Tauchen and Pitts (1983) model the joint 

distribution of volume and squared price change for 90-day T-bills futures and report 

consistent results with MDH. Other studies utilise the Generalised Autoregressive 

Conditional Heteroscedasticity (GARCH) model by Engle (1982) and Bollerslev 

(1986) to investigate the volume-volatility relation as the return distribution of 

financial assets is usually time-varying. For instance, Lamoureux and Lastrapes (1990) 

find a positive contemporaneous relationship between trading volumes and return 

variance in 20 S&P500 stocks, which is in line with MDH. Moreover, Najand and 

Yung (1991) and Rahman et al. (2002) report a positive volume-volatility relationship 

in both the Treasury-bond futures market and the NASDAQ 100 index. More 

interestingly, Lamoureux and Lastrapes (1990) find that the persistence of lagged 

square residual becomes much weaker when trading volume is included in the variance 

equation. 

However, including trading volume as a variable in the GARCH model is argued 

to be inappropriate by Fleming et al. (2006), since volume should be endogenous to 

volatility according to MDH. Therefore, simultaneity bias may incur if the GARCH 

model is estimated. To overcome the problem of simultaneity, studies employ the 

Generalised Method of Moment (GMM) to analyse the volume-volatility relationship. 
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For instance, Foster (1995) on the Brent and WTI crude oil market, Wang and Yau 

(2000) on the S&P500 index, Deutsche Mark, and silver and gold futures, and Lee and 

Rui (2002) on the US, UK, and Japanese stock markets, all provide evidence of 

contemporaneously positive volume-volatility relationships. More recently, Hussain 

(2011) investigates the volume-volatility relationship for the DAX 30 stock index 

considering the effect of expected and unexpected trading volume on the volatility of 

the index. He finds a positive relationship between unexpected trading volume and 

return volatility with certain asymmetric effect; that is, a positive change in trading 

volume can increase return volatility more than a negative change in volume can. 

SIAH implies a lead-lag relationship between trading volume and price 

volatility, and several empirical papers provide evidence in support of such a 

relationship in different financial and commodity markets. Smirlock and Starks (1988) 

study 300 S&P 500 companies, and find the existence of a lead-lag relation between 

absolute price change and trading volume. Using 5-minute intraday data and an 

EGARCH specification, Darrat et al. (2003) investigate the volume-volatility relation 

in the Dow Jones Industrial Average (DJIA) index. Their results reveal a weak 

contemporaneous relationship but a strong lead-lag relationship between the volume 

and volatility of DJIA, which is in line with SIAH. Darrat et al. (2007) argue that SIAH 

can be tested only in periods when the news is public. They examine the dynamic 

relation between intraday trading volume and the return volatility of large and small 

NYSE stocks using two partitioned samples, with and without identifiable public 

news. Their results reveal a bi-directional Granger-causality between volume and 

volatility when information is public, as hypothesized by SIAH. However, in periods 

when there is no public news, only trading volume Granger-causes volatility. Darrat 

et al. (2007) relate the latter to behavioural models like the overconfidence and biased 

self-attribution model by Daniel et al. (1998). 

The volatility-volume relation has also been discussed in energy literature. 

Serletis (1992) studies the relation between trading volume and the volatility of crude 

oil futures contracts traded in NYMEX during the period from January 1987 to July 

1990, allowing for maturity effect. Although he finds that crude oil futures prices 

become more volatile and trading volume increases as futures contracts approach, the 

results of causality tests reveal that just as volatility does not affect trading volume, 
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trading volume has little effect on volatility. Herbert (1995) examines the relation 

between the trading volume and price volatility of natural gas futures contracts 

considering the time to maturity, and reports that a) the volume of trade rather than 

maturity explains the variance of the volatility, and b) that of trading volume can 

explain price volatility but price volatility has much less of an influence on trading 

activity. Moosa et al. (2003) present empirical evidence of temporal asymmetry in the 

price-volume relationship in the crude oil futures market. They use 3- and 6-month 

futures prices and trading volumes, and find that the price-volume relationship is 

bidirectional and asymmetric, since the effect of negative price and volume changes 

is stronger than that of positive price and volume changes.  

 

5.3 Methodology 

For the purpose of analysing the volatility of TOCOM energy futures, this paper 

employs the Structural VAR (SVAR) model to investigate the relation between 

volatility and change in volume. In contrast to reduced-from VAR, the SVAR model 

allows for discussion of contemporaneous relations. Furthermore, we include an 

indicator capturing the transition of market conditions to SVAR to investigate the 

asymmetric effect of market conditions on volume-volatility relations, the so-called 

T-SVAR model. 

 

5.3.1 The Structural Vector Autoregressive (SVAR) Approach 

The SVAR model is utilised to investigate the volume-volatility relation due to two 

concerns, the potential simultaneity issue of GARCH-type models and the limitation 

of reduced-form VAR. Analysing the volume-volatility relation under GARCH-type 

models treats conditional volatility as the dependent variable and trading volume as 

the independent variable, so there is an econometrics issue if trading volume is actually 

endogenous. However, VAR-type models treat all variables as exogenous and 

generate endogenously by the system of equations, providing flexibility for the 

analysis of economic time series in multivariate setting (Sims ,1980). In addition, 
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reduced-form VAR, including only lags of variables, can only be used to discuss a 

lead-lag relation between volume and volatility, whilst SVAR, adding the 

contemporaneous variables into the equation, can be used to investigate whether MDH 

holds.  

A bivariate SVAR (1) model with realised volatility and change in volume is 

utilised in this paper, shown as  

𝜎𝑡
2 = 𝑎0 + 𝑎1𝜎𝑡−1

2 + 𝑎2𝑣𝑡−1 + 𝑎3𝑣𝑡 + 𝜑𝜎2𝐷𝑇𝑅𝑡 + 𝜃𝜎2𝑧𝑡
2 + 𝜀𝜎2,𝑡 

𝑣𝑡 = 𝑏0 + 𝑏1𝜎𝑡−1
2 + 𝑏2𝑣𝑡−1 + 𝜑𝑣𝐷𝑇𝑅𝑡 + 𝜃𝑣𝑧𝑡

2 + 𝜀𝑣,𝑡 . 

(5.1) 

𝜀𝜎2,𝑡and 𝜀∆𝑣,𝑡 are disturbance terms with zero covariance, E[𝜀𝑣,𝑡𝜀𝜎2,𝑡] = 0, 𝜎𝑡
2 is the 

realised variance of futures returns at time t, 𝑣𝑡 is change in trading volume at time t 

(see Section 5.4 for further discussion),  𝐷𝑇𝑅𝑡 is the day-to-rollover at time t, and 𝑧𝑡
2 

is the squared slope of forward curve. Moreover, 𝑎0 and 𝑏0 are constant terms for each 

equation, 𝑎1 , 𝑎2 , 𝑏1 , and 𝑏2  are the coefficients of lagged variables, and 𝑎3   is the 

coefficient of contemporaneous trading volume in the realised volatility equation. In 

particular, 𝑎2 measures the lead-lag relation between change in volume and volatility, 

while 𝑎3  measures the contemporaneous relation between change in volume and 

volatility.  

 To identify the structural coefficients, at least 1 restriction needs to be imposed 

on the structural elements (see Section 2.4.5). Therefore, we restrict the coefficient of 

the contemporaneous realised volatility in change in trading volume equation to 0; in 

other words, only the change in volume contemporaneous impacts the realised 

volatility, but not the opposite direction. There are two reasons for this restriction. 

Firstly, according to the information model, market makers change their prices based 

on the order flow observed in the market, which carries the information from traders. 

If the information model holds, the change in prices is a result of the trading activity 

happening to the market. Therefore, the impact direction is expected to be from trading 

volume to realised volatility. Secondly, this chapter aims to investigate the 

dissemination of information into market, so the influence of trading volume on 

realised volatility is the focus. In addition, 𝜑𝜎2 and 𝜑𝑣 are the coefficients capturing 

the effect of rollover, and  𝜃𝜎2 and 𝜃𝑣 measure the impact of the magnitude of the 
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forward curve slope. According to the Samuelson Hypothesis, volatility increases 

when maturity approaches (days to maturity/rollover decreases), so 𝜑𝜎2 is expected to 

be negative. 𝑧𝑡
2 measures the steepness of backwardation or contango. Carlson et al. 

(2007) argue that the relation between the slope of forward curve and volatility is a U-

shape, which means the volatility increases when the forward curve is either positively 

or negatively steeper. Therefore, 𝜃𝜎2  is expected to be positive, which indicates a 

positive relation between the steepness of forward curve and the realised volatility. 

 

5.3.2 The Transition Structural Vector Autoregressive (TSVAR) Approach 

The market condition of futures can be distinguished as either backwardation or 

contango based on the relationship between spot price and futures price. 

Backwardation implies that the market is currently in shortage of supply and less stable 

than contango, which may lead to a stronger volume-volatility relation. Therefore, it 

is in our interest to investigate the relation between volatility and volume change under 

different states of markets. By incorporating equation (5.1) with the indicator of 

market being in backwardation, 𝑆𝑡, the TSVAR(1) is specified as 

𝜎𝑡
2 = 𝑎0 + 𝑎1𝜎𝑡−1

2 + 𝑎2𝑣𝑡−1 + 𝑎3𝑣𝑡 + 𝜑𝜎2𝐷𝑇𝑅𝑡 + 𝜃𝜎2𝑧𝑡
2 

          +𝑆𝑡(𝛿0 + 𝛿1𝜎𝑡−1
2 + 𝛿2𝑣𝑡−1 + 𝛿3𝑣𝑡) + 𝜀𝜎2,𝑡 

𝑣𝑡 = 𝑏0 + 𝑏1𝜎𝑡−1
2 + 𝑏2𝑣𝑡−1 + 𝜑�̂�𝐷𝑇𝑅𝑡 + 𝜃𝑣𝑧𝑡

2 

         +𝑆𝑡(𝜋0 + 𝜋1𝜎𝑡−1
2 + 𝜋2𝑣𝑡−1) + 𝜀𝑣,𝑡 

 𝑆𝑡 = {
1, 𝑧𝑡 > 0
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  . 

(5.2) 

The contemporaneous (lead-lag) volume-volatility relation in contango is measured 

by 𝑎3(𝑎2,), while 𝑎3+𝛿3 (𝑎2+𝛿2) stands for the relation in backwardation. Particularly, 

𝛿2 and 𝛿3 measure the transition effect of market conditions on the lead-lag and the 

contemporaneous relation between volatility and change in volume, respectively. The 

significance of these two coefficients implies the existence of differences in volume-

volatility relations under different states of markets, which is to be expected.  
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5.4 Data 

The sample data consists of all TOCOM energy futures across commodities and 

maturities, and the sample period is from 22 September 2014 to 30 October 2015. 

Table 3-3 and Table 3-6 present descriptive statistics and preliminary tests for trading 

volume and realised volatility. Due to the mixed ADF test results, the unit root tests 

with structural breaks are performed to examine the stationarity of trading volume. 

Table 5-1 presents the unit root tests with structural breaks for trading volume. The 

results suggest that the trading volume is stationary for almost all futures after the 

structural breaks are considered. This may indicate that structural breaks exist in the 

trading volume and may be the cause of failing to reject the null hypothesis of ADF 

test shown in Table 3-3. However, this chapter still uses change in trading volume to 

investigate the volume-volatility relation instead of raw trading volume for three 

reasons. Firstly, the results of the unit root test with structural breaks still suggest that 

1-month kerosene futures are not stationary, so, statistically, change in trading volume 

is also a more suitable variable to use for the analysis of TOCOM energy futures. 

Secondly, change in trading volume can capture the strength in information between 

two periods. For example, an increase in trading volume means the information today 

is much stronger than yesterday and tends to have more impact on price movements 

or volatility. Finally, due to the high autocorrelation of trading volume, changes in 

trading volume can be viewed as a measure of unexpected trading volume, which 

captures new information in the market. Therefore, change in volume is used to discuss 

the volume-volatility relation in this study14. 

 

Table 5-1: The results of unit root with structural breaks for trading volume across 

three TOCOM energy futures 

Gasoline 
1-month 2-month 3-month 4-month 5-month 6-month 

-31.4623 a -14.6107 a -15.8235 a -20.6452 a -4.99375 a -12.2893 a 

Kerosene 
1-month 2-month 3-month 4-month 5-month 6-month 

-3.69905 -6.52732 a -12.4984 a -22.5639 a -17.8077 a -8.41739 a 

Crude oil 
nearby-m. 1-month 2-month 3-month 4-month 5-month 

-21.8849 a -20.058 a -25.9514 a -24.4375 a -5.74109 a -13.9752 a 

• a indicates rejection at the 1% significance level. nearby-m. denotes nearby-month. The sample 

period is from 22 September 2010 to 30 October 2015. 

                                                 

14 Alizadeh and Tamvakis (2016) also use change in volume to discuss the volume-volatility relation of 

four oil futures on NYMEX. 
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Table 5-2: Descriptive statistics and preliminary tests for daily change in trading 

volume 
Gasoline 

 1-month 2-month 3-month 4-month 5-month 6-month 

Mean -0.2149 -0.1278 -0.0815 -0.0168 0.0631 -4.3251 

Std. 312.4046 188.0132 205.5372 283.0687 1341.3979 2313.1926 

Skewness -0.9443 1.9041 0.9632 -0.3735 2.3139 -0.1261 

Kurtosis 27.4158 68.7155 23.9945 36.2685 16.8577 5.8265 

ACF1 -0.3837 -0.3873 -0.3777 -0.3057 -0.2781 -0.2921 

ACF5 0.0042 0.0897 0.1035 0.0385 -0.0199 -0.0181 

ACF22 -0.0532 -0.0534 -0.0095 -0.0036 0.0619 0.0195 

Q(22) 269.3137 226.8248 245.1324 181.9245 136.8723 144.0369 

ADF -52.9753 -53.1967 -52.6084 -48.4829 -47.0403 -47.7632 

KW 20.2603 a 15.7035 a 16.6907 a 3.6957 7.4383 20.6540 a 

Kerosene 

 1-month 2-month 3-month 4-month 5-month 6-month 

Mean -0.4880 -0.2093 -0.3355 -0.4097 -0.4888 -1.3219 

Std. 370.2537 166.3585 179.9694 215.3702 485.5380 718.4511 

Skewness -0.6790 -0.1034 0.5612 -1.6250 1.1623 1.2039 

Kurtosis 16.8991 20.5579 23.2425 46.6787 14.9272 36.8060 

ACF1 -0.4570 -0.4263 -0.3947 -0.3017 -0.2433 -0.3653 

ACF5 0.0273 0.0400 -0.0126 0.0284 0.0339 0.0573 

ACF22 -0.0148 -0.0951 0.0544 0.0630 0.0879 -0.0071 

Q(22) 316.2682 289.6501 223.3786 175.3948 134.8345 219.8618 

ADF -57.9164 -55.7885 -53.7100 -48.3101 -45.3392 -51.8555 

KW 5.9132 9.8712 b 17.2834 a 3.1853 4.7302 10.3223 b 

Crude oil 

 nearby-m. 1-month 2-month 3-month 4-month 5-month 

Mean -0.0088 0.1318 0.0823 0.0176 -0.2157 2.2284 

Std. 106.3994 122.7532 171.3809 287.7755 1412.2971 1839.6882 

Skewness 0.0859 0.0071 -0.0228 0.1421 1.1190 0.1674 

Kurtosis 43.0152 19.9331 11.7339 10.4777 22.1020 7.9401 

ACF1 -0.4785 -0.4140 -0.4065 -0.3383 -0.1525 -0.3001 

ACF5 0.0082 -0.0342 -0.0025 -0.0102 0.0004 -0.1367 

ACF22 -0.0067 0.0322 0.0788 0.0519 0.2076 0.0605 

Q(22) 344.0524 240.7526 243.5733 214.7071 239.3035 203.2752 

ADF -59.5334 -54.9185 -54.4001 -50.2535 -41.2241 -48.1060 

KW 3.7521 4.1582 13.8025 a 6.2497 2.2009 30.8312 a 

• a and b indicate rejection at the 1% and 5% significance levels. nearby-m. stands for nearby-month 

contracts. Std. is the standard deviation. ACFi is the autocorrelation function with i lags, and the 

95% confidence interval is [-0.0565,0.0565]. Q(22) is Q-statistic with 22 lags. ADF is the 

augmented Dickey-Fuller test statistic. The sample period is from 22 September 2010 to 30 

October 2015. KW is the Kruskal-Wallis statistic, which follows χ4
2. 

 

 Table 5-2 reports the descriptive statistics for daily change in trading volume. 

The daily average of change in trading volume is around zero for most contracts, but 

away from zero for highly liquid contracts. With regard to kurtosis, the change in 

trading volume is leptokurtotic for all contracts, which is similar to the property of 

trading volume. Even though the kurtosis also decreases as the maturity increases, the 

pattern seems a bit inconsistent. For example, the kurtosis of 1-month kerosene is 

16.89 while that of 6-month kerosene is 36.81. Regarding the autocorrelation, the first 



Chapter 5: The Relation between Trading Volume and Realised Volatility 

136 

order ACF is significantly from zero, but the results of 5th and 22nd order ACF are 

mixed. Nonetheless, the result of 22nd order Q-statistic shows that change in volume 

is highly autocorrelated at least up to 22 lags. Moreover, the stationarity of change in 

trading volume is confirmed by the result of ADF test. In terms of daily seasonality, 

the result of KW test for change in trading volume shows that only 8 out 18 contracts 

exhibit daily seasonal behaviour, which is similar to that for raw trading volume.  

 

5.5 Empirical Results 

5.5.1 Estimation of Structural Vector Autoregressive (SVAR)  

The estimation results of SVAR for gasoline, kerosene and crude oil futures are shown 

in the left column of Table 5-3 to 5-5. Firstly, we observe the coefficient 𝑎3  in 

measuring the relation between volatility and contemporaneous change in volume. 

The coefficients for most contracts are positive and significant, except for 1- and 3-

month kerosene and 3-month crude oil futures. This implies that realised volatility 

increases with the rise in change in volume, and that MDH may hold in TOCOM 

energy futures markets. Then, we look at the coefficients 𝑎2 in measuring the relation 

between volatility and lagged change in volume. Interestingly, for just more than a 

half of energy futures, the coefficients 𝑎2  are also positive and significant, which 

implies the existence of a link between volatility and lagged change in volume. 

Nonetheless, it seems that the lead-lag relation is weaker than the contemporaneous 

one because the magnitude of coefficients 𝑎2 is relatively smaller than coefficients 𝑎3, 

except in the case of some lowly liquid futures, such as 1-month gasoline and kerosene 

futures. Therefore, it appears that there are two elements affecting realised volatility, 

namely contemporaneous and lagged change in trading volume, and that the former 

has a more significant impact. This result is also in line with the findings of Foster 

(1995), Wang and Yau (2000) and Hussain (2011), who suggest positive and 

significant coefficients of both contemporaneous and lagged volumes. Overall, our 

results suggest the existence of both MDH and SIAH. 

 Turning to the relation between volatility and day-to-rollover (𝜑𝜎2), the results 

are different for three energy commodities. For gasoline and kerosene futures, the 

coefficients 𝜑𝜎2 are generally positive but insignificant. This is consistent with Duong 



Chapter 5: The Relation between Trading Volume and Realised Volatility 

137 

and Kalev (2008), who find that there exists no relation between volatility and days to 

maturity for most commodities, except agriculture. However, the coefficients 𝜑𝜎2 are 

negative and significant for 1-month contracts, but positive and significant for 2- and 

3-month contracts. This implies that the Samuelson Hypothesis only holds for 1-month 

contracts, but that the opposite case occurs for 2- and 3-month contracts. The results 

of crude oil futures are different from that of gasoline and kerosene. For all maturity 

contracts, the coefficients 𝜑𝜎2 are positive and significant, which implies that realised 

volatility decreases when maturity/rollover date approaches. 

 Finally, the relation between volatility and squared slope of forward curve is 

discussed. Interestingly, the coefficients 𝜃𝜎2  of gasoline and crude oil futures are 

similar, while those of kerosene ones are different. The coefficients 𝜃𝜎2 are all positive 

and significant across all maturity contracts for gasoline and crude oil futures, although 

the magnitudes of the coefficients of crude oil are greater than those of gasoline. This 

indicates that realised volatility increases when the slope of the forward curve becomes 

steeper, which means the market is in deeper backwardation or contango. 

 

5.5.2 Estimation of Transition Structural Vector Autoregressive (TSVAR)  

Having discussed the relation between volatility and change in volume, we then 

discuss the impact of the market being in backwardation on the volume-volatility 

relation. However, before the discussion of the asymmetric effect, we notice that the 

significance of 𝑎3 seems have a pattern across maturities based on the results of both 

SVAR and TSVAR. For instance, the coefficients for 3-month kerosene and 2-month 

crude oil futures are insignificant, and that for 3-month gasoline futures is less 

significant (only at 5%) than that for other maturities. Nonetheless, based on the 

descriptive statistics of realised volatility, trading volume and change in trading 

volume, there is no significant difference between 3-month futures and other maturity 

futures. The explanation of this pattern remains a mystery. 

 Regarding the volume-volatility in different market conditions, we firstly look 

at the coefficient 𝛿3 in measuring the difference in the volume-volatility relation under 

backwardation and contango. For gasoline futures, the coefficients 𝛿3  are only 
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significant for 1-month and 2-month contracts, and are all negative. This indicates that 

the volume-volatility relation only becomes weak for 1-month and 2-month gasoline 

futures when the market is in backwardation, but has no change for gasoline futures 

of other maturity periods. The result of kerosene futures is slightly different, the 

coefficients 𝛿3 are negative and significant for most contracts, except 3-month and 5-

month ones. Therefore, the relation between volatility and change in volume under 

backwardation is weaker than that under contango for most kerosene futures. The 

opposite situation is found in the results of crude oil futures. Except nearby-month 

crude oil futures, coefficients 𝛿3 are generally positive but only significant for 2-, 3- 

and 5-month contracts. As a result, the contemporaneous volume-volatility relation 

enhances when the market is in backwardation. 

 The types of energy market participants may explain the difference in the 

impact of backwardation on the volume-volatility for kerosene and crude oil futures. 

Based on statistics from PAJ (Petroleum Association of Japan), more than 90% of 

crude oil is used for refining purposes, and more than 80% of petroleum products are 

sold to domestic energy consumers. Therefore, in Japan, refineries are the major 

participants importing crude oil and selling products to domestic energy consumers. 

As TOCOM energy futures are the most convenient vehicles with which Japanese 

refineries can hedge, the behaviour of refineries plays an important role in the 

activities of TOCOM energy futures markets. Refineries can take a long position in 

crude oil futures to avoid increases in the costs of purchasing crude oil, while taking a 

short position in gasoline/kerosene futures to prevent a drop in the revenue of selling 

products. This indicates that refineries tend to pay more attention to the rise of crude 

oil rather than the decline of gasoline/kerosene futures. As a result, the volume-

volatility relation of crude oil futures is expected to be stronger in backwardation, 

while that of kerosene ones is likely to be stronger in contango. 

 The other crucial coefficient deserving our attention is 𝛿2, which measures the 

difference in the lead-lag relation between volatility and change in volume in 

backwardation. Results show that the coefficients 𝛿2 are generally insignificant for all 

three commodities futures, which may indicate that the market condition does not 

change the lead-lag volume-volatility relation. Two possible reasons may explain this 

result. Firstly, the lead-lag relation is already not as strong as the contemporaneous 
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relation according to the result of SVAR, so a significant transition on weaker lead-

lag relation is not expected. This may be due to the fact that the transition is based on 

current market conditions instead of previous market conditions. As a result, if private 

information is inaccurate or market conditions change in the current period, the lead-

lag relation may be weak. The other reason is related to the cause of lead-lag relation, 

SIAH, which finds that some investors hold and trade on private information before 

the market reflects it, so trading volume is ahead of volatility. Such information-driven 

trading is usually conducted by speculators who can flexibly change the direction of 

their position based on market conditions, so they do not give extra attention to either 

backwardation or contango. As a result, the transition of lead-lag relation is very weak. 

 With respect to diagnostic tests, the results of 22nd order Q-statistic reveal that 

the autocorrelation of residuals in realised volatility and change in volume equation is 

very strong. However, HAC estimators are used for the estimation of standard errors, 

so the interpretation of the results is still valid. Regarding the SBIC, the value of SBIC 

for SVAR is slightly higher than that for TSVAR. It seems like TSVAR does not 

perform better to capture the dynamics of realised volatility and change in volume 

according to the comparison of SBIC, which is in line with the significance of the 

transition coefficients. Except the transition coefficient of contemporaneous change in 

trading volume in realised volatility equation (𝛿3), the rest transition coefficients are 

insignificant. However, the results of the LR test suggest that the increase in log-

likelihood function value from SVAR to TSVAR is significant. 
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Table 5-3: Estimation results for SVAR(1) and T-SVAR(1) for gasoline 

SVAR (1) 
RV equation: 𝜎𝑡

2 = 𝑎0 + 𝑎1𝜎𝑡−1
2 + 𝑎2𝑣𝑡−1 + 𝑎3𝑣𝑡 + 𝜑𝜎2𝐷𝑇𝑅𝑡 + 𝜃𝜎2𝑧𝑡

2 + 𝜀𝜎2,𝑡 

Volume equation: 𝑣𝑡 = 𝑏0 + 𝑏1𝜎𝑡−1
2 + 𝑏2𝑣𝑡−1 + 𝜑𝑣𝐷𝑇𝑅𝑡 + 𝜃𝑣𝑧𝑡

2 + 𝜀𝑣,𝑡 

T-SVAR (1) 
RV equation: 𝜎𝑡

2 = 𝑎0 + 𝑎1𝜎𝑡−1
2 + 𝑎2𝑣𝑡−1 + 𝑎3𝑣𝑡 + 𝜑𝜎2𝐷𝑇𝑅𝑡 + 𝜃𝜎2𝑧𝑡

2 + 𝑆𝑡(𝛿0 + 𝛿1𝜎𝑡−1
2 + 𝛿2𝑣𝑡−1 + 𝛿3𝑣𝑡) + 𝜀𝜎2,𝑡 

Volume equation: 𝑣𝑡 = 𝑏0 + 𝑏1𝜎𝑡−1
2 + 𝑏2𝑣𝑡−1 + 𝜑�̂�𝐷𝑇𝑅𝑡 + 𝜃𝑣𝑧𝑡

2 + 𝑆𝑡(𝜋0 + 𝜋1𝜎𝑡−1
2 + 𝜋2𝑣𝑡−1) + 𝜀𝑣,𝑡 

 Panel A: Realised Volatility Equation (𝜎𝑡
2) 

 1-month 2-month 3-month 4-month 5-month 6-month 

𝑎0 0.0073*** 0.0074*** 0.0051*** 0.0052*** 0.0047*** 0.0049*** 0.0047*** 0.0047*** 0.0042*** 0.0040*** 0.0043*** 0.0039*** 

 (0.0009) (0.0009) (0.0006) (0.0007) (0.0006) (0.0007) (0.0006) (0.0007) (0.0006) (0.0006) (0.0011) (0.0009) 

𝑎1 0.4235*** 0.4372*** 0.4784*** 0.4995*** 0.5353*** 0.5454*** 0.5587*** 0.5823*** 0.6378*** 0.6705*** 0.6041*** 0.6583*** 

 (0.0472) (0.0636) (0.0567) (0.0720) (0.0471) (0.0567) (0.0453) (0.0552) (0.0476) (0.0488) (0.0901) (0.0740) 

𝑎2 0.0483*** 0.0717*** 0.0108* -0.0020 0.0060 0.0035 0.0072 -0.0050 -0.0008 -0.0009 0.0025*** 0.0027*** 

 (0.0116) (0.0130) (0.0062) (0.0142) (0.0078) (0.0081) (0.0055) (0.0059) (0.0007) (0.0009) (0.0005) (0.0007) 

𝑎3 0.0250*** 0.0680*** 0.0344** 0.0701*** 0.0282*** 0.0179** 0.0278*** 0.0288*** 0.0059*** 0.0051*** 0.0066*** 0.0073*** 

 (0.0097) (0.0173) (0.0160) (0.0212) (0.0094) (0.0090) (0.0062) (0.0080) (0.0011) (0.0017) (0.0010) (0.0014) 

𝜑𝜎2  -0.1580 -0.0318 0.4793*** 0.4945*** 0.2688* 0.2878* 0.2110 0.2327 0.0359 0.0508 0.1216 0.1367 

 (0.2470) (0.2473) (0.1590) (0.1554) (0.1621) (0.1619) (0.1497) (0.1488) (0.1278) (0.1274) (0.1185) (0.1172) 

𝜃𝜎2 0.2726** 0.3377*** 0.2700** 0.3122*** 0.2817*** 0.3184*** 0.2216** 0.2524*** 0.1886** 0.2176** 0.1872** 0.2135** 

 (0.1205) (0.1205) (0.1226) (0.1211) (0.1032) (0.1018) (0.0931) (0.0941) (0.0860) (0.0880) (0.0847) (0.0864) 

𝛿0  -0.0006  -0.0003  -0.0004  -2.74E-5  0.0002  0.0005 

  (0.0009)  (0.0008)  (0.0007)  (0.0007)  (0.0007)  (0.0010) 

𝛿1  -0.0367  -0.0405  -0.0215  -0.0452  -0.0596  -0.0929 

  (0.0681)  (0.0789)  (0.0650)  (0.0570)  (0.0577)  (0.0946) 

𝛿2  -0.0285*  0.0171  0.0044  0.0186**  0.0002  -0.0003 

  (0.0162)  (0.0158)  (0.0142)  (0.0078)  (0.0014)  (0.0010) 

𝛿3  -0.0523***  -0.0488*  0.0182  -0.0024  0.0014  -0.0014 

  (0.0179)  (0.0254)  (0.0158)  (0.0107)  (0.0023)  (0.0017) 

Q(22) 238.696*** 214.098*** 314.975*** 254.166*** 302.214*** 231.288*** 333.453*** 263.211*** 385.730*** 251.150*** 344.804*** 324.137*** 

SBIC 7213.408 7204.351 7939.247 7923.657 7941.072 7920.174 7598.606 7578.838 5793.826 5775.413 5168.148 5151.371 

LR 31.8000*** 18.7480*** 8.1300 10.3920 13.1020* 16.3736** 
• Sample period used for estimation is from 21 September 2010 to 30 October 2015. *, ** and *** denote the significance at 10%, 5% and 1% levels, respectively. The figure in parentheses is the standard error of 

coefficient. SBIC is calculated as the log-likelihood value minus the penalty parameters. Q(22) is Q-statistic with 22 lags. LR is the statistic of likelihood ratio test. 
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Table 5-3 (Continued): Estimation results for SVAR(1) and T-SVAR(1) for gasoline 

SVAR (1) 
RV equation: 𝜎𝑡

2 = 𝑎0 + 𝑎1𝜎𝑡−1
2 + 𝑎2𝑣𝑡−1 + 𝑎3𝑣𝑡 + 𝜑𝜎2𝐷𝑇𝑅𝑡 + 𝜃𝜎2𝑧𝑡

2 + 𝜀𝜎2,𝑡 

Volume equation: 𝑣𝑡 = 𝑏0 + 𝑏1𝜎𝑡−1
2 + 𝑏2𝑣𝑡−1 + 𝜑𝑣𝐷𝑇𝑅𝑡 + 𝜃𝑣𝑧𝑡

2 + 𝜀𝑣,𝑡 

T-SVAR (1) 
RV equation: 𝜎𝑡

2 = 𝑎0 + 𝑎1𝜎𝑡−1
2 + 𝑎2𝑣𝑡−1 + 𝑎3𝑣𝑡 + 𝜑𝜎2𝐷𝑇𝑅𝑡 + 𝜃𝜎2𝑧𝑡

2 + 𝑆𝑡(𝛿0 + 𝛿1𝜎𝑡−1
2 + 𝛿2𝑣𝑡−1 + 𝛿3𝑣𝑡) + 𝜀𝜎2,𝑡 

Volume equation: 𝑣𝑡 = 𝑏0 + 𝑏1𝜎𝑡−1
2 + 𝑏2𝑣𝑡−1 + 𝜑�̂�𝐷𝑇𝑅𝑡 + 𝜃𝑣𝑧𝑡

2 + 𝑆𝑡(𝜋0 + 𝜋1𝜎𝑡−1
2 + 𝜋2𝑣𝑡−1) + 𝜀𝑣,𝑡 

 Panel B: Volume Equation (𝑣𝑡) 

 1-month 2-month 3-month 4-month 5-month 6-month 

𝑏0 0.0302*** 0.0276*** 0.0028** 0.0013 0.0023** 0.0021 0.0012 0.0006 -0.0083 -0.0107 0.0610** 0.0669** 

 (0.0034) (0.0030) (0.0013) (0.0014) (0.0011) (0.0014) (0.0017) (0.0025) (0.0079) (0.0162) (0.0259) (0.0261) 

𝑏1 -0.5810*** -0.3505*** -0.1013* 0.0142 -0.2537*** -0.2244*** -0.4729*** -0.3981** -1.6935*** -1.4861 -5.4968*** -5.6655*** 

 (0.1363) (0.1128) (0.0576) (0.0721) (0.0671) (0.0822) (0.1377) (0.1666) (0.5604) (1.2291) (1.9747) (1.8145) 

𝑏2 -0.4649*** -0.5880*** -0.3860*** -0.4505*** -0.3710*** -0.4042*** -0.3011*** -0.3408*** -0.2798*** -0.3348*** -0.2660*** -0.2538*** 

 (0.0308) (0.0624) (0.0352) (0.0410) (0.0360) (0.0433) (0.0524) (0.0626) (0.0244) (0.0349) (0.0299) (0.0366) 

𝜑𝑣 -14.250*** -14.193*** -0.9167 -0.8688 0.4700 0.4870 2.7948*** 2.8325*** 17.7665*** 17.6083*** 1.2222 2.5045 

 (1.3514) (1.3365) (0.6204) (0.6138) (0.4200) (0.4147) (0.6868) (0.6849) (3.2416) (3.2591) (2.2326) (5.6431) 

𝜃𝑣 0.1995 0.2260 -0.0484 -0.0377 0.0207 0.0537 0.1024 0.1441 0.6924 0.7580 2.3025 1.6713 

 (0.2988) (0.3081) (0.0896) (0.1039) (0.1154) (0.1229) (0.1972) (0.2139) (0.9727) (0.9969) (5.6503) (2.3651) 

𝜋0  0.0039  0.0022*  0.0002  0.0008  0.0048  -0.0110 

  (0.0024)  (0.0012)  (0.0014)  (0.0035)  (0.0235)  (0.0295) 

𝜋1  -0.3747**  -0.1864*  -0.0578  -0.1325  -0.4104  0.2123 

  (0.1803)  (0.0995)  (0.1056)  (0.2871)  (1.8383)  (2.5486) 

𝜋2  0.1518*  0.0860  0.0610  0.0614  0.1059**  -0.0221 

  (0.0792)  (0.0591)  (0.0631)  (0.0848)  (0.0494)  (0.0561) 

Q(22) 174.497*** 156.457*** 151.971*** 151.056*** 159.995*** 182.499*** 147.601*** 110.380*** 153.692*** 148.871*** 131.311*** 82.360*** 

SBIC 7213.408 7204.351 7939.247 7923.657 7941.072 7920.174 7598.606 7578.838 5793.826 5775.413 5168.148 5151.371 

LR 31.8000*** 18.7480*** 8.1300 10.3920 13.1020* 16.3736** 
• Sample period used for estimation is from 21 September 2010 to 30 October 2015. *, ** and *** denote the significance at 10%, 5% and 1% levels, respectively. The figure in parentheses is the standard error of 

coefficient. SBIC is calculated as the log-likelihood value minus the penalty parameters. Q(22) is Q-statistic with 22 lags. LR is the statistic of likelihood ratio test. 
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Table 5-4: Estimation results for SVAR(1) and T-SVAR(1) for kerosene 

SVAR (1) 
RV equation: 𝜎𝑡

2 = 𝑎0 + 𝑎1𝜎𝑡−1
2 + 𝑎2𝑣𝑡−1 + 𝑎3𝑣𝑡 + 𝜑𝜎2𝐷𝑇𝑅𝑡 + 𝜃𝜎2𝑧𝑡

2 + 𝜀𝜎2,𝑡 

Volume equation: 𝑣𝑡 = 𝑏0 + 𝑏1𝜎𝑡−1
2 + 𝑏2𝑣𝑡−1 + 𝜑𝑣𝐷𝑇𝑅𝑡 + 𝜃𝑣𝑧𝑡

2 + 𝜀𝑣,𝑡 

T-SVAR (1) 
RV equation: 𝜎𝑡

2 = 𝑎0 + 𝑎1𝜎𝑡−1
2 + 𝑎2𝑣𝑡−1 + 𝑎3𝑣𝑡 + 𝜑𝜎2𝐷𝑇𝑅𝑡 + 𝜃𝜎2𝑧𝑡

2 + 𝑆𝑡(𝛿0 + 𝛿1𝜎𝑡−1
2 + 𝛿2𝑣𝑡−1 + 𝛿3𝑣𝑡) + 𝜀𝜎2,𝑡 

Volume equation: 𝑣𝑡 = 𝑏0 + 𝑏1𝜎𝑡−1
2 + 𝑏2𝑣𝑡−1 + 𝜑�̂�𝐷𝑇𝑅𝑡 + 𝜃𝑣𝑧𝑡

2 + 𝑆𝑡(𝜋0 + 𝜋1𝜎𝑡−1
2 + 𝜋2𝑣𝑡−1) + 𝜀𝑣,𝑡 

 Panel A: Realised Volatility Equation (𝜎𝑡
2) 

 1-month 2-month 3-month 4-month 5-month 6-month 

𝑎0 0.0084*** 0.0082*** 0.0059*** 0.0060*** 0.0054*** 0.0051*** 0.0053*** 0.0053*** 0.0052*** 0.0049*** 0.0050*** 0.0048*** 

 (0.0008) (0.0008) (0.0007) (0.0008) (0.0006) (0.0007) (0.0006) (0.0007) (0.0007) (0.0009) (0.0007) (0.0009) 

𝑎1 0.4398*** 0.4634*** 0.4600*** 0.4588*** 0.5118*** 0.5442*** 0.5358*** 0.5543*** 0.5699*** 0.5964*** 0.6157*** 0.6386*** 

 (0.0523) (0.0627) (0.0577) (0.0597) (0.0454) (0.0491) (0.0462) (0.0527) (0.0556) (0.0694) (0.0535) (0.0685) 

𝑎2 0.0140*** 0.0138 0.0189* 0.0289 0.0135* 0.0210 0.0037 0.0027 -0.0023 -0.0089** 0.0058*** 0.0061** 

 (0.0045) (0.0087) (0.0101) (0.0198) (0.0079) (0.0176) (0.0065) (0.0109) (0.0023) (0.0040) (0.0016) (0.0027) 

𝑎3 0.0109 0.0331*** 0.0242* 0.0567** 0.0140 0.0249 0.0234*** 0.0484*** 0.0103*** 0.0144*** 0.0169*** 0.0243*** 

 (0.0068) (0.0110) (0.0124) (0.0274) (0.0090) (0.0205) (0.0075) (0.0160) (0.0026) (0.0055) (0.0023) (0.0040) 

𝜑𝜎2  -0.8163*** -0.7791*** 0.2854* 0.2897* 0.2873* 0.2748 0.1836 0.1740 0.1641 0.1611 -0.0074 -0.0142 

 (0.2784) (0.2853) (0.1518) (0.1495) (0.1676) (0.1688) (0.1568) (0.1575) (0.1453) (0.1460) (0.1361) (0.1335) 

𝜃𝜎2 0.0605 0.0782 0.0067 0.0230 0.0170 0.0301 0.0071 0.0199 -0.0179 -0.0216 -0.0144 -0.0123 

 (0.0902) (0.0964) (0.0548) (0.0539) (0.0460) (0.0484) (0.0450) (0.0472) (0.0402) (0.0417) (0.0397) (0.0428) 

𝛿0  0.0003  -0.0004  0.0009  0.0003  0.0009  0.0006 

  (0.0009)  (0.0012)  (0.0010)  (0.0009)  (0.0010)  (0.0012) 

𝛿1  -0.0735  0.0040  -0.1096  -0.0624  -0.0802  -0.0635 

  (0.0719)  (0.1065)  (0.0890)  (0.0795)  (0.0867)  (0.0941) 

𝛿2  0.0001  -0.0123  -0.0116  0.0021  0.0104**  -0.0011 

  (0.0097)  (0.0216)  (0.0193)  (0.0132)  (0.0047)  (0.0033) 

𝛿3  -0.0308**  -0.0423*  -0.0173  -0.0369**  -0.0074  -0.0119*** 

  (0.0127)  (0.0255)  (0.0222)  (0.0179)  (0.0066)  (0.0045) 

Q(22) 224.677*** 225.721*** 267.726*** 305.586*** 241.640*** 286.432*** 273.590*** 326.064*** 261.224*** 383.590*** 347.390*** 335.856*** 

SBIC 6992.992 6974.861 8062.349 8044.231 8062.197 8046.397 7875.406 7861.353 6935.199 6918.439 6534.392 6517.298 

LR 13.6000* 13.6920* 18.3280** 21.8200*** 16.4060** 15.7397** 
• Sample period used for estimation is from 21 September 2010 to 30 October 2015. *, ** and *** denote the significance at 10%, 5% and 1% levels, respectively. The figure in parentheses is the standard error of 

coefficient. SBIC is calculated as the log-likelihood value minus the penalty parameters. Q(22) is Q-statistic with 22 lags. LR is the statistic of likelihood ratio test. 
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Table 5-4 (Continued): Estimation results for SVAR(1) and T-SVAR(1) for kerosene 

SVAR (1) 
RV equation: 𝜎𝑡

2 = 𝑎0 + 𝑎1𝜎𝑡−1
2 + 𝑎2𝑣𝑡−1 + 𝑎3𝑣𝑡 + 𝜑𝜎2𝐷𝑇𝑅𝑡 + 𝜃𝜎2𝑧𝑡

2 + 𝜀𝜎2,𝑡 

Volume equation: 𝑣𝑡 = 𝑏0 + 𝑏1𝜎𝑡−1
2 + 𝑏2𝑣𝑡−1 + 𝜑𝑣𝐷𝑇𝑅𝑡 + 𝜃𝑣𝑧𝑡

2 + 𝜀𝑣,𝑡 

T-SVAR (1) 
RV equation: 𝜎𝑡

2 = 𝑎0 + 𝑎1𝜎𝑡−1
2 + 𝑎2𝑣𝑡−1 + 𝑎3𝑣𝑡 + 𝜑𝜎2𝐷𝑇𝑅𝑡 + 𝜃𝜎2𝑧𝑡

2 + 𝑆𝑡(𝛿0 + 𝛿1𝜎𝑡−1
2 + 𝛿2𝑣𝑡−1 + 𝛿3𝑣𝑡) + 𝜀𝜎2,𝑡 

Volume equation: 𝑣𝑡 = 𝑏0 + 𝑏1𝜎𝑡−1
2 + 𝑏2𝑣𝑡−1 + 𝜑�̂�𝐷𝑇𝑅𝑡 + 𝜃𝑣𝑧𝑡

2 + 𝑆𝑡(𝜋0 + 𝜋1𝜎𝑡−1
2 + 𝜋2𝑣𝑡−1) + 𝜀𝑣,𝑡 

 Panel B: Volume Equation (𝑣𝑡) 

 1-month 2-month 3-month 4-month 5-month 6-month 

𝑏0 0.0320*** 0.0319*** 0.0030*** 0.0022** 0.0004 -0.0004 -0.0011 -0.0024* -0.0064** -0.0084** 0.0142** 0.0126* 

 (0.0030) (0.0032) (0.0009) (0.0009) (0.0008) (0.0009) (0.0011) (0.0013) (0.0028) (0.0033) (0.0064) (0.0071) 

𝑏1 -0.1734* -0.1595 -0.1602*** -0.0919** -0.1037** -0.0214 -0.1815** -0.0648 -0.4940** -0.2652 -1.3650*** -1.1860** 

 (0.1032) (0.1143) (0.0486) (0.0464) (0.0520) (0.0573) (0.0853) (0.0822) (0.2013) (0.2242) (0.4181) (0.4820) 

𝑏2 -0.5087*** -0.5416*** -0.4229*** -0.5399*** -0.3922*** -0.4805*** -0.3049*** -0.4105*** -0.2514*** -0.2121*** -0.3520*** -0.3005*** 

 (0.0206) (0.0413) (0.0404) (0.0994) (0.0297) (0.0528) (0.0586) (0.0495) (0.0526) (0.0822) (0.0474) (0.0343) 

𝜑𝑣 -18.381*** -18.407*** -0.6674* -0.6583* 0.5101 0.5263 1.9601*** 1.9842*** 7.6713*** 7.5729*** 0.1114 1.8067 

 (1.5944) (1.5806) (0.3816) (0.3749) (0.3538) (0.3554) (0.4075) (0.4217) (1.1963) (1.2027) (0.2908) (1.5499) 

𝜃𝑣 -0.0861 -0.0892 -0.0036 -0.0124 -0.0040 0.0029 0.0681 0.0584 0.1268 0.1097 1.9469 0.0739 

 (0.1971) (0.2138) (0.0602) (0.0607) (0.0585) (0.0712) (0.0983) (0.1120) (0.3288) (0.3476) (1.5642) (0.3413) 

𝜋0  0.0003  0.0019  0.0026  0.0039  0.0082  0.0073 

  (0.0037)  (0.0013)  (0.0020)  (0.0039)  (0.0066)  (0.0104) 

𝜋1  -0.0283  -0.1886*  -0.2640  -0.3734  -0.7979  -0.6525 

  (0.2685)  (0.1116)  (0.1761)  (0.3291)  (0.4945)  (0.8371) 

𝜋2  0.0467  0.1549  0.1283*  0.1498  -0.0704  -0.0822 

  (0.0581)  (0.1080)  (0.0740)  (0.1063)  (0.0962)  (0.0650) 

Q(22) 163.196*** 173.454*** 150.625*** 154.718*** 180.466*** 160.124*** 109.625*** 136.588*** 148.398*** 151.380*** 82.315*** 129.209*** 

SBIC 6992.992 6974.861 8062.349 8044.231 8062.197 8046.397 7875.406 7861.353 6935.199 6918.439 6534.392 6517.298 

LR 13.6000* 13.6920* 18.3280** 21.8200*** 16.4060** 15.7397** 
• Sample period used for estimation is from 21 September 2010 to 30 October 2015. *, ** and *** denote the significance at 10%, 5% and 1% levels, respectively. The figure in parentheses is the standard error of 

coefficient. SBIC is calculated as the log-likelihood value minus the penalty parameters. Q(22) is Q-statistic with 22 lags. LR is the statistic of likelihood ratio test. 
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Table 5-5: Estimation results for SVAR(1) and T-SVAR(1) for crude oil 

SVAR (1) 
RV equation: 𝜎𝑡

2 = 𝑎0 + 𝑎1𝜎𝑡−1
2 + 𝑎2𝑣𝑡−1 + 𝑎3𝑣𝑡 + 𝜑𝜎2𝐷𝑇𝑅𝑡 + 𝜃𝜎2𝑧𝑡

2 + 𝜀𝜎2,𝑡 

Volume equation: 𝑣𝑡 = 𝑏0 + 𝑏1𝜎𝑡−1
2 + 𝑏2𝑣𝑡−1 + 𝜑𝑣𝐷𝑇𝑅𝑡 + 𝜃𝑣𝑧𝑡

2 + 𝜀𝑣,𝑡 

T-SVAR (1) 
RV equation: 𝜎𝑡

2 = 𝑎0 + 𝑎1𝜎𝑡−1
2 + 𝑎2𝑣𝑡−1 + 𝑎3𝑣𝑡 + 𝜑𝜎2𝐷𝑇𝑅𝑡 + 𝜃𝜎2𝑧𝑡

2 + 𝑆𝑡(𝛿0 + 𝛿1𝜎𝑡−1
2 + 𝛿2𝑣𝑡−1 + 𝛿3𝑣𝑡) + 𝜀𝜎2,𝑡 

Volume equation: 𝑣𝑡 = 𝑏0 + 𝑏1𝜎𝑡−1
2 + 𝑏2𝑣𝑡−1 + 𝜑�̂�𝐷𝑇𝑅𝑡 + 𝜃𝑣𝑧𝑡

2 + 𝑆𝑡(𝜋0 + 𝜋1𝜎𝑡−1
2 + 𝜋2𝑣𝑡−1) + 𝜀𝑣,𝑡 

 Panel A: Realised Volatility Equation (𝜎𝑡
2) 

 nearby-month 1-month 2-month 3-month 4-month 5-month 

𝑎0 -0.0006 4.58E-5 0.0057*** 0.0062*** 0.0056*** 0.0065*** 0.0050*** 0.0058*** 0.0046*** 0.0049*** 0.0048*** 0.0052*** 

 (0.0007) (0.0008) (0.0007) (0.0008) (0.0006) (0.0008) (0.0005) (0.0007) (0.0006) (0.0007) (0.0007) (0.0007) 

𝑎1 0.1563*** 0.2297*** 0.3874*** 0.4239*** 0.4272*** 0.4415*** 0.4739*** 0.4804*** 0.5575*** 0.5847*** 0.5710*** 0.5947*** 

 (0.0421) (0.0686) (0.0513) (0.0590) (0.0443) (0.0674) (0.0443) (0.0588) (0.0456) (0.0452) (0.0527) (0.0469) 

𝑎2 0.0704*** 0.1314** 0.0212 0.0146 0.0274* 0.0594** 0.0019 0.0022 0.0016 0.0023* 0.0041*** 0.0042*** 

 (0.0257) (0.0558) (0.0145) (0.0268) (0.0149) (0.0291) (0.0061) (0.0093) (0.0010) (0.0013) (0.0008) (0.0010) 

𝑎3 0.1484*** 0.2393*** 0.0548*** 0.0316 0.0171 -0.0325 0.0221*** 0.0066 0.0031** 0.0022 0.0065*** 0.0047*** 

 (0.0449) (0.0619) (0.0208) (0.0316) (0.0182) (0.0282) (0.0078) (0.0092) (0.0013) (0.0016) (0.0012) (0.0013) 

𝜑𝜎2  5.1565*** 5.2039*** 1.1234*** 1.1188*** 0.8790*** 0.8747*** 0.9456*** 0.9582*** 0.6758*** 0.6640*** 0.4592*** 0.4594*** 

 (0.4452) (0.4549) (0.2490) (0.2465) (0.2553) (0.2591) (0.2182) (0.2160) (0.1871) (0.1782) (0.1645) (0.1563) 

𝜃𝜎2 1.0783*** 0.8893*** 1.1064*** 0.9938*** 1.0950*** 1.0003*** 1.0257*** 0.9497*** 0.8824*** 0.7948*** 0.7779*** 0.6980*** 

 (0.2491) (0.2367) (0.1316) (0.1349) (0.1767) (0.1809) (0.1702) (0.1727) (0.1480) (0.1400) (0.1450) (0.1326) 

𝛿0  -0.0006  -0.0004  -0.0011  -0.0010  -0.0002  -0.0003 

  (0.0009)  (0.0008)  (0.0008)  (0.0008)  (0.0007)  (0.0007) 

𝛿1  -0.1327*  -0.0712  -0.0221  -0.0176  -0.0470  -0.0405 

  (0.0768)  (0.0534)  (0.0566)  (0.0517)  (0.0452)  (0.0495) 

𝛿2  -0.0975*  0.0136  -0.0546  0.0012  -0.0025  0.0002 

  (0.0586)  (0.0290)  (0.0334)  (0.0128)  (0.0021)  (0.0016) 

𝛿3  -0.1452*  0.0347  0.0836**  0.0310**  0.0028  0.0042* 

  (0.0766)  (0.0427)  (0.0344)  (0.0149)  (0.0028)  (0.0024) 

Q(22) 128.589*** 101.155*** 185.593*** 158.695*** 199.454*** 147.062*** 214.697*** 163.618*** 229.634*** 190.628*** 235.171*** 199.902*** 

SBIC 8108.223 8097.488 8116.587 8097.946 7774.953 7767.928 7265.318 7252.444 5414.851 5399.156 5190.554 5178.641 

LR 28.6000*** 12.6440* 35.8780*** 24.1780*** 18.5360*** 26.0997*** 
• Sample period used for estimation is from 21 September 2010 to 30 October 2015. *, ** and *** denote the significance at 10%, 5% and 1% levels, respectively. The figure in parentheses is the standard error of 

coefficient. SBIC is calculated as the log-likelihood value minus the penalty parameters. Q(22) is Q-statistic with 22 lags. LR is the statistic of likelihood ratio test. 
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 Table 5-5(Continued): Estimation results for SVAR(1) and T-SVAR(1) for crude oil 

SVAR (1) 
RV equation: 𝜎𝑡

2 = 𝑎0 + 𝑎1𝜎𝑡−1
2 + 𝑎2𝑣𝑡−1 + 𝑎3𝑣𝑡 + 𝜑𝜎2𝐷𝑇𝑅𝑡 + 𝜃𝜎2𝑧𝑡

2 + 𝜀𝜎2,𝑡 

Volume equation: 𝑣𝑡 = 𝑏0 + 𝑏1𝜎𝑡−1
2 + 𝑏2𝑣𝑡−1 + 𝜑𝑣𝐷𝑇𝑅𝑡 + 𝜃𝑣𝑧𝑡

2 + 𝜀𝑣,𝑡 

T-SVAR (1) 
RV equation: 𝜎𝑡

2 = 𝑎0 + 𝑎1𝜎𝑡−1
2 + 𝑎2𝑣𝑡−1 + 𝑎3𝑣𝑡 + 𝜑𝜎2𝐷𝑇𝑅𝑡 + 𝜃𝜎2𝑧𝑡

2 + 𝑆𝑡(𝛿0 + 𝛿1𝜎𝑡−1
2 + 𝛿2𝑣𝑡−1 + 𝛿3𝑣𝑡) + 𝜀𝜎2,𝑡 

Volume equation: 𝑣𝑡 = 𝑏0 + 𝑏1𝜎𝑡−1
2 + 𝑏2𝑣𝑡−1 + 𝜑�̂�𝐷𝑇𝑅𝑡 + 𝜃𝑣𝑧𝑡

2 + 𝑆𝑡(𝜋0 + 𝜋1𝜎𝑡−1
2 + 𝜋2𝑣𝑡−1) + 𝜀𝑣,𝑡 

 Panel B: Volume Equation (𝑣𝑡) 

 nearby-month 1-month 2-month 3-month 4-month 5-month 

𝑏0 0.0001 8.36E-5 8.52E-5 0.0002 0.0004 0.0008 -0.0013 -0.0009 -0.0112 -0.0028 0.0138 0.0137 

 (0.0005) (0.0006) (0.0005) (0.0008) (0.0008) (0.0011) (0.0014) (0.0022) (0.0086) (0.0131) (0.0148) (0.0204) 

𝑏1 -0.0473* -0.0207 -0.0969*** -0.1129** -0.1592*** -0.1313 -0.3791*** -0.2839* -1.6961*** -1.8741* -2.9494*** -2.7616* 

 (0.0267) (0.0388) (0.0318) (0.0477) (0.0526) (0.0840) (0.0875) (0.1646) (0.4862) (1.0297) (1.0780) (1.4113) 

𝑏2 -0.4686*** -0.4856*** -0.4147*** -0.3947*** -0.4143*** -0.4177*** -0.3423*** -0.2937*** -0.1643*** -0.1331** -0.2835*** -0.2191*** 

 (0.0396) (0.0553) (0.0355) (0.0390) (0.0312) (0.0436) (0.0328) (0.0458) (0.0425) (0.0539) (0.0358) (0.0552) 

𝜑𝑣 0.2472 0.2477 0.7254*** 0.7388*** 1.0070*** 0.9997*** 3.4681*** 3.3988*** 20.4405*** 20.8706*** 7.6181** 13.6319*** 

 (0.2994) (0.3005) (0.2477) (0.2477) (0.3452) (0.3474) (0.7037) (0.7160) (3.6952) (3.7569) (3.3486) (5.0031) 

𝜃𝑣 -0.0327 -0.0776 0.1186 0.1431 0.2348 0.1418 0.9999*** 0.7528** 3.3518* 3.0997 13.8749*** 7.1979** 

 (0.0944) (0.0956) (0.1379) (0.1567) (0.1811) (0.2127) (0.3060) (0.3706) (1.8430) (2.0848) (5.0560) (3.3698) 

𝜋0  0.0002  -0.0003  -0.0003  3.60E-5  -0.0117  -0.0002 

  (0.0006)  (0.0009)  (0.0011)  (0.0023)  (0.0137)  (0.0233) 

𝜋1  -0.0453  0.0283  -0.0595  -0.1548  0.1702  -0.1734 

  (0.0449)  (0.0535)  (0.0858)  (0.1540)  (0.9733)  (1.5591) 

𝜋2  0.0259  -0.0296  0.0078  -0.0970  -0.1156*  -0.1491** 

  (0.0792)  (0.0613)  (0.0606)  (0.0628)  (0.0669)  (0.0666) 

Q(22) 195.659*** 195.288*** 126.305*** 126.410*** 133.603*** 132.868*** 160.865*** 161.799*** 286.822*** 284.738*** 126.869*** 128.757*** 

SBIC 8108.223 8097.488 8116.587 8097.946 7774.953 7767.928 7265.318 7252.444 5414.851 5399.156 5190.554 5178.641 

LR 28.6000*** 12.6440* 35.8780*** 24.1780*** 18.5360*** 26.0997*** 
• Sample period used for estimation is from 21 September 2010 to 30 October 2015. *, ** and *** denote the significance at 10%, 5% and 1% levels, respectively. The figure in parentheses is the standard error of 

coefficient. SBIC is calculated as the log-likelihood value minus the penalty parameters. Q(22) is Q-statistic with 22 lags. LR is the statistic of likelihood ratio test. 
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5.6 Conclusion 

This chapter first analyses the relation between realised volatility and both current and 

lagged change in volume for three different TOCOM energy futures, gasoline, 

kerosene and crude oil. Among all three energy futures, the relation between change 

in trading volume and realised volatility is very similar but with minor differences. In 

general, the contemporaneous relation is positive and significant between realised 

volatility and contemporaneous change in trading volume, which is consistent with 

most literature. Moreover, the existence of lead-lag relation is also found, so our study 

supports both MDH and SIAH. However, the lead-lag relation is less strong than the 

contemporaneous one. 

Following this, the difference in the volume-volatility between backwardation 

and contango is investigated. After considering the asymmetric effect of market 

conditions, we find that the contemporaneous relation becomes weak for gasoline and 

kerosene, but strong for crude oil. This may be explained by the fact that refineries, as 

the main hedgers on TOCOM, purchase crude oil and sell products, so they are more 

sensitive when crude oil prices go up while product prices fall. Regarding the lead-lag 

relation, it appears that there is no significant difference in the volume-volatility 

relation under different market conditions. 

In addition, the relation between realised volatility and days to rollover appears 

weak for gasoline and kerosene futures. However, the empirical result shows that 

volatility decreases when the date to rollover approaches for crude oil futures, which 

is opposed to the Samuelson Hypothesis. The pattern of trading volume may be the 

reason, because trading volume usually decreases with days to rollover. Moreover, 

realised volatility seems to increase when the forward curve is less flat, namely when 

there is more backwardation or contango.  



Chapter 6: Determinants of Bid-Ask Spread of TOCOM energy futures 

147 

 

 

 

 

 

Chapter 6 Determinants of Bid-Ask Spread of 

TOCOM energy futures 

 

 

 

 

6.1 Introduction 

Bid-ask spread (BAS) has always been a crucial topic in financial research because it 

is of concern to several participants in the financial market. For market-makers, BAS 

represents potential profit as a compensation for providing liquidity to the market. 

From the point of view of the Stock or Commodities Exchange, BAS provides clues 

for market design, such as whether single market-makers should be assigned, or 

competition between different market-makers should be increased, and in the 

determination of minimum tick size. It is also very important for regulators since it 

can be a tool for measuring the fairness of market-makers’ rent. 

Early studies classify the components of BAS into two main types, adverse-

selection and transitory components (Bagehot, 1971; Copeland and Galai, 1983; 

Glosten and Milgrom, 1985; Glosten and Harris, 1988). The adverse-selection 

component is due to the existence of informed traders. When market-makers and 
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informed investors possess asymmetric information, informed investors can profit by 

trading on their private/superior information, while market-makers provide them 

liquidity on a loss. Therefore, market-makers tend to widen BAS in order to reduce 

the possibility of informed trading and increase the profit traded with other investors. 

The second component, transitory costs, contains inventory-hold costs, clearing costs 

and/or monopoly profit that are less related to changes in underlying value. Stoll 

(1989) further decomposes BAS into three components, namely adverse-selection, 

inventory-hold and order processing costs. He finds that order processing costs 

account for the largest part of BAS, followed by adverse-selection and inventory-hold 

costs in turn. More recently, Bollen et al. (2004) have added level of competition as 

an additional component, since increases in competition among market-makers 

reduces the profit of each market-maker and so does BAS. 

Studies into BAS components are usually implemented by cross-sectional 

analysis, but there is also literature analysing BAS via time-series models. Wang and 

Yau (2000) investigate S&P 500 index futures, Deutsche Mark (DM) futures, gold 

futures and silver futures traded in the Chicago Mercantile Exchange (CME) and the 

Commodity Exchange (COMEX), and find a positive relation between BAS and price 

volatility, and a negative relation between BAS and trading volume. Moreover, Huang 

(2004) analyses the determinants of BAS components in the Taiwan Futures Exchange 

(TAIFEX) and Singapore Exchange Derivatives Trading Limited (SGF-DT) under an 

intra-day framework, and suggests that volatility and information are major 

determinants of components, while number of trades is not. 

This chapter employs a time-series approach to investigate the determinants of 

BAS components for TOCOM energy futures markets, instead of investigating the 

components of BAS. This is due to the fact that this research only focuses on TOCOM 

energy futures, so the number of observations (six contracts) is not enough for a cross-

sectional analysis. However, the variables chosen still reflect/contain the determinants 

of three types of components, namely adverse-selection costs, inventory-hold costs, 

and order processing costs. The fourth component, level of competition, is excluded 

since it is not possible to obtain detailed information about market-makers.  

In addition, this study considers two different asymmetric effects of trading 

volume on BAS, which are sell-initiated transactions and negative-return transactions. 
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Prior literature shows that the trading pattern and behaviour of sellers and buyers are 

different. Kraus and Stoll (1972) and Gemmill (1996) suggest that buy blocks (plus 

ticks) have a bigger price impact on average than sell blocks on the New York Stock 

Exchange (NYSE) and the London Stock Exchange. Chan and Lakonishok (1993, 

1995) also find that the block of purchase for a sample of 37 large institutions has a 

much greater price impact than that of sales on the NYSE and the American Stock 

Exchange (AMEX), and that the price impact of sales block is much smaller than that 

indicated by the findings of Kraus and Stoll (1972). More recently, Frino et al. (2008) 

investigate futures on CME, and find large buy trades have a higher permanent price 

impact (information effect), whereas temporary price impact (liquidity effect) is found 

for large sell trades. Therefore, it seems most literature suggests that sell-initiated 

block trading causes a lower and temporary price impact than buy-initiated block 

trading. Consequently, we expected that BAS is lower for sell-initiated trades, as it has 

a lower price impact and lower possibility of being subject to informed trading. 

The dummy of negative-return transactions measures the attitude of market 

participants towards different market conditions, namely upside and downside market 

conditions. Adams and Montesi (1995) show that corporate managers are mostly 

concerned about downside risk. Earlier, Petty and Scott (1981) found that many 

Fortune 500 firms identified risk as the probability of falling below a target return. If 

market-makers are more sensitive to downside market conditions, BAS should be 

widened when a negative-return transaction occurs, and vice versa. However, if 

market-makers are indifferent to upside and downside market conditions, an 

asymmetric effect may not exist. 

This study contributes to the literature in three aspects. First, this is the first 

research to analyse the pattern of bid-ask spread in TOCOM energy markets. Second, 

we consider the potential asymmetric impact of transaction initiation sides (buy- or 

sell-initiated). Finally, the investigation of positive- and negative-return transactions 

allows us to understand market-makers’ preferences for upside and downside risks. 
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6.2 Market-making Costs 

BAS is the payoff earned by market-makers, so should consist of all the possible costs 

incurred when market-makers provide liquidity to the market. According to Bollen et 

al. (2004), there are four main components of BAS, adverse-selection, inventory-hold, 

order processing and competition costs. However, due to lack of information about the 

competition level, this study only considers the first three components. 

 

6.2.1 Adverse-selection Costs 

Market-makers bear adverse-selection costs when trading with informed investors 

who have private information about the price movement of petroleum. In equilibrium, 

the loss from trading with informed traders is assumed to be the same size of the gain 

from trading with uninformed traders. The expected loss from trading with informed 

traders is viewed as adverse-selection costs for market-makers. Different proxies for 

adverse-selection costs have been utilised by literature. For example, Branch and 

Freed (1977) use the number of securities in which a dealer makes a market, because 

a dealer with a larger number of securities is less informed about individual stock. 

Glosten and Harris (1988) use the concentration of ownership among insiders. A 

corporation with a higher concentration has a greater probability of trading on their 

prior information, which then results in higher adverse-selection costs. The market 

value of shares outstanding is used by Harris (1994), since information from a larger 

firm tends to be more well-known and public, which reduces the probability of 

adverse-selection. Easley et al. (1996) use the volume of trading as the proxy for 

adverse-selection cost. They argue that the information for highly traded securities is 

more well-known, so traders are less likely to possess private information that they 

can trade on. By contrast, the less frequently traded security is analysed only by a few 

investors and specialists, so the informed trading has higher probability to happen. 

Hence, high trading volume indicates that the high possibility of uninformed trading 

and low cost of adverse selection, and market makers would require less compensation 

by narrowing the bid-ask spread.  
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6.2.2 Inventory-hold Costs 

Inventory-hold costs occur when market-makers hold the inventory that they intend to 

supply to traders in the market. There are two obvious costs associated with holding 

the inventory. The first is the opportunity cost of funds. If the funds of market-makers 

are held to the inventory, they lose the opportunity to trade on other assets. The second 

cost is the risk of adverse movement. This cost is incurred when price moves 

differently to market-makers’ expectations and before they can provide liquidity to 

other investors. Several proxies have been used in literature for inventory-hold costs. 

For example, volatility is the most obvious proxy for the second kind of inventory-

hold costs. Along this line, Tinic (1972) utilises the standard deviation of price to 

measure inventory-hold costs, Stoll (1978) uses the logarithm of the return variance, 

and Harris (1994) uses return standard deviation. Trade frequency and the number of 

shareholders are employed by Demsetz (1968), since both are viewed to represent the 

transaction rate. When the transaction rate is higher, market-makers are less likely to 

bear losses from either opportunity cost or the risk of adverse movement. 

 

6.2.3 Order-processing Costs 

Order-processing costs are, as the name suggests, the costs directly related to 

providing liquidity, including exchange seats, floor space rent, computer costs, labour 

costs, and even the opportunity cost of market-makers’ time. Because they are mostly 

fixed costs, they tend to be lower when trading volume is high. As market-makers 

usually provide liquidity for more than one security, order-processing costs can be 

reduced to a very small amount. Hence, the literature mainly utilises trading volume, 

number of transactions, or the inverses and logarithms of these as proxies of order-

processing costs (Tinic, 1972; Tinic and West, 1972; Tinic and West, 1974; Branch 

and Freed, 1997; Stoll, 1978; Harris, 1994). In a highly competitive market, BAS may 

not cover order-processing costs, and be equal to the marginal costs of providing 

liquidity. Klock and McCormich (1999) investigate the bid-ask spread of NASDAQ 

stocks, and find negative relation between the number of market makers and the bid-

ask spread. According to the information from TOCOM, the number of designated 
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market makers is five in 201115, but without further information, such as the number 

of futures for each market maker and the market maker’s share for each contract, it is 

difficult to conclude whether TOCOM is a competitive market between market 

makers. 

 

6.3 Methodology 

In this section, two models are introduced. The first one, used as a benchmark model, 

includes the two possible determinants of the traditional three components mentioned 

in the previous section, trading volume and realised volatility, and a dummy capturing 

weekend effect. The other model adds two more intersection of dummies, sell-initiated 

transactions and negative-return transactions, and trading volume. According to the 

discussion in Chapter 5, the endogeneity problem may exist for BAS, realised 

volatility and trading volume. Therefore, a three-equation simultaneous system is 

employed in this chapter, namely BAS, realised volatility and trading volume 

equations. 

 

6.3.1 Model 1: Benchmark Model 

The benchmark model considers possible determinants of BAS components. Firstly, 

we consider adverse-selection costs. Due to the lack of market information and the 

difference between the financial market and energy market, several variables 

mentioned in the last section are unobtainable, such as the number of securities 

(futures here) to which market-makers provide liquidity, the concentration of 

ownership, and the market capitalisation of securities. Therefore, the most suitable 

variable is trading volume, as suggested by Easley et al. (1996). Next, the order-

processing cost is also captured by trading volume in this chapter, because it is 

normally a fixed number and the marginal order-processing costs can be minimised 

when the trading volumes is greater. In addition, literature (Tinic, 1972; Tinic and 

                                                 

15 TOCOM refused to provide further information of designated market makers since it is confidential. 
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West, 1972; Tinic and West, 1974; Branch and Freed, 1997, and among others) also 

uses trading volume as the measure of order-processing costs. Finally, two possible 

variables reflecting inventory-hold costs are considered, namely volatility and traded 

frequency. Volatility measures the possibility of assets held by market makers moving 

reversely. When volatility increases, maker makers have higher probability of losing 

money from holding assets. Trade frequency is defined as the average time of each 

trade arriving, and estimated by dividing the trading time per day by the number of 

transactions per day. Demsetz (1968) points out that the opportunity cost for market 

makers is lower when the trade happens more frequently because high trade frequency 

let market makers quickly disposal of their inventory. However, because trade 

frequency is similar to the inverse of the number of transactions, it is highly correlated 

with trading volume. Therefore, this chapter only considers using return realised 

volatility as the determinant of inventory-hold costs.  

 Due to the potential endogeneity issue between BAS, realised volatility and 

trading volume, a three-equation simultaneous system is employed, namely a trivariate 

SVAR. As discussed in Chapter 5, we have to impose at least 3 restrictions (
3(3−1)

2
) on 

the structural elements. The first restriction is on the impact of realised volatility on 

trading volume, which is also imposed in Chapter 5. The other two restrictions are 

imposed on the impact of contemporaneous BAS on realised volatility and trading 

volume respectively. Beginning with the relation between realised volatility, when 

realised volatility increases, market makers need to widen BAS in order to compensate 

the potential loss from the rise in the probability of prices reversely moving. However, 

when BAS is widened, it does not necessarily increase the BAS since it may be the 

result of the shocks from other components. Therefore, the contemporaneous influence 

of BAS shocks on realised volatility is restricted to zero. Next, with respect to trading 

volume, Kyle (1985) suggests that market makers adjust BAS after observing the 

arrive of order flows, so trading volume is expected to contemporaneously impact 

BAS instead of the opposite. 

 In general, in addition to the lag terms, our model includes two main variables 

as independent variables, realised volatility and trading volume. Realised volatility is 

treated as the determinant of inventory-hold costs, and trading volume is treated as the 

determinant of both adverse-selection costs and order-processing costs. As a result, 
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the benchmark model (Model 1) is presented as  

BAS𝑡 = 𝛼0 + 𝛼1𝜎𝑡 + 𝛼2𝑉𝑡 + 𝛼3𝜎𝑡−1 + 𝛼4𝑉𝑡−1 + 𝛼5𝐵𝐴𝑆𝑡−1 + 𝛼𝑊𝐷𝑡
𝑊 + 𝜀S,𝑡 

𝜎𝑡 = 𝛽0 + 𝛽1𝑉𝑡 + 𝛽2𝜎𝑡−1 + 𝛽3𝑉𝑡−1 + 𝛽4𝐵𝐴𝑆𝑡−1 + 𝛽𝑊𝐷𝑡
𝑊 + 𝜀𝜎,𝑡 

𝑉𝑡 = 𝛾0 + 𝛾1𝜎𝑡−1 + 𝛾2𝑉𝑡−1 + 𝛾3𝐵𝐴𝑆𝑡−1 + 𝛾𝑊𝐷𝑡
𝑊 + 𝜀𝑉,𝑡, 

(6.1) 

where BAS𝑡 is bid-ask spread at time t, 𝜎𝑡 is realised volatility of returns at time t, 𝑉𝑡 

is the trading volume of the transaction at time t, and 𝐷𝑡
𝑊 is the dummy for the first 

transaction after the weekend or holidays. 𝜀S,𝑡,  𝜀𝜎,𝑡, and 𝜀𝑉,𝑡 are the residuals of BAS, 

realised volatility and trading volume equations respectively, and follow normal 

distribution. The weekend dummy is added because we find the first 15-minute 

realised volatility usually increases right after weekends16, which may reflect the large 

amount of information that is generated during weekends. The model is estimated by 

OLS with heteroskedasticity and autocorrelation consistent standard error since slight 

serial correlation and serious heteroscedasticity issues are found. 

 

6.3.2 Model 2: The Asymmetric Effect of Sell-driven and Negative-return 

Transactions on BAS 

Model 2 follows the specifications of Model 1 but considers the symmetric impact of 

sell-driven and negative-return transactions. Two dummy variables for sell-initiated 

and negative-return transactions are included in the equation, shown as 

BAS𝑡 = 𝛼0 + 𝛼1𝜎𝑡 + 𝛼2𝑉𝑡 + 𝛼3𝜎𝑡−1 + 𝛼4𝑉𝑡−1 + 𝛼5𝐵𝐴𝑆𝑡−1 + 𝛼𝑊𝐷𝑡
𝑊 + 

                𝛼𝑆𝑉𝑡𝐷𝑡
𝑆 + 𝛼𝑁𝑉𝑡𝐷𝑡

𝑁 + 𝜀S,𝑡 

𝜎𝑡 = 𝛽0 + 𝛽1𝑉𝑡 + 𝛽2𝜎𝑡−1 + 𝛽3𝑉𝑡−1 + 𝛽4𝐵𝐴𝑆𝑡−1 + 𝛽𝑊𝐷𝑡
𝑊 + 𝜀𝜎,𝑡 

𝑉𝑡 = 𝛾0 + 𝛾1𝜎𝑡−1 + 𝛾2𝑉𝑡−1 + 𝛾3𝐵𝐴𝑆𝑡−1 + 𝛾𝑊𝐷𝑡
𝑊 + 𝜀𝑉,𝑡, 

𝐷𝑡
𝑆 = {

1, 𝑠𝑒𝑙𝑙 𝑖𝑛𝑖𝑡𝑖𝑎𝑡𝑒𝑑 𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, 

𝐷𝑡
𝑁 = {

1, 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑟𝑒𝑡𝑢𝑟𝑛 𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, 

(6.2) 

                                                 

16 The increase in the realised volatility is only found in the first 15-minute interval. With regard to the 

average level of realised volatility after weekend, there is no significant increase as suggested by Table 

3-6. 
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where 𝐷𝑡
𝑆 is the indicator of sell-initiated transaction at time t, and 𝐷𝑡

𝑁 is the indicator 

of negative-return transaction at time t. Because the main focus of this chapter is BAS, 

the intersection of dummies and trading volume is not considered in other two 

equations, namely realised volatility and trading volume. The classification of buy- or 

sell-initiated transactions is based on Lee and Ready (1991). Two different cases are 

considered. First, when the transaction prices are between bid and ask prices, we 

compare the transaction price with prevailing bid and ask prices between current and 

previous transactions.17 If the transaction price is above or at ask price, it is classified 

as a buy-initiated transaction. If the transaction price is below or at bid price, it is 

classified as a sell-initiated transaction. Second, if the transaction price is within the 

range of bid and ask prices and different from the previous transaction price, this 

transaction is classified as buy (sell)-initiated trade when it is higher (lower) than the 

previous transaction price, which is also called up/plus (down/minus) tick. If the 

transaction price is exactly the same as the previous transaction price, called a zero 

tick, it is then classified as the same type of trade as the previous one. 

  In equation (6.2), 𝛼𝑆 measures the difference in the impact of trading volume 

on BAS between sell- and buy-initiated transactions. Since the expected sign of 𝛼2 is 

negative, positive 𝛼𝑆  indicates that an increase in trading volume reduces market-

makers’ costs to a lower extent when the transaction is sell-initiated. According to 

Frino et al. (2008), one expects that 𝛼𝑆 is negative because sell-initiated trades tend to 

have a lower price impact and are more likely to be uninformed trading, which reduces 

the market-makers’ costs. As a result, market-makers require less compensation for 

sell-initiated transactions than buy-initiated ones. Besides that, 𝛼𝑁  measures the 

impact of negative-return transactions. The sign and significance of 𝛼𝑁 is uncertain 

and dependent on market-makers’ risk preferences. If market-makers are sensitive to 

downside risk, 𝛼𝑁  is expected to be positive as it implies they require more 

compensation (widen BAS) for downside risk, and vice versa. However, if market-

makers are indifferent to risk on both sides, 𝛼𝑁 is expected to be insignificant.  

                                                 

17 Lee and Ready (1999) compare the transaction price with prevailing bid and ask prices within the last 

five seconds in order to confirm the validity of bid and ask prices. However, liquidity in TOCOM is 

relatively lower than NYSE stocks, so we compare the transaction price only with the bid and ask prices 

of current and previous trades. The appendix gives examples of the identification procedure in detail. 
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6.4 Data 

6.4.1 Description of Data 

Our sample data consists of intraday bid, ask and transaction prices of TOCOM energy 

futures for the period from 22 September 2010 to 30 October 2015, acquired from 

Tomson Reuter Tick History. The main reason for using 15-minute samples instead of 

daily samples is that the aggregate of buy/sell-initiated transactions may contain less 

information about trade sides, as the size of net trading volume (sell-initiated over buy-

initiated volume) is ignored when a dummy is used. For example, a low positive net 

trading volume is also recognised as a sell-initiated transaction, but actually has much 

less impact on BAS, which may lower the impact of sell-initiated transactions. When 

the aggregation interval is shortened, i.e. there is a higher-frequency sample, this issue 

can be reduced. 

In this chapter, only the most liquid two contracts of each commodity are 

included, namely 5- to 6-month contracts for gasoline and kerosene futures and 4- to 

5-month contracts for crude oil futures. The lack of valid observations for other lowly 

liquid contracts is the main reason for the sample selection. The most liquid two 

futures have at least two-third valid observations of the total sample, while the other 

contracts do not.  

 

6.4.2 Estimation of Bid-ask Spread 

Bid-ask spread is usually estimated by two approaches, quoted relative spread and 

effective relative spread. Quoted relative spread is the ratio of the difference in bid and 

ask price to mid quote, and can be expressed as  

BAS𝑡 =
𝐴𝑠𝑘𝑡 − 𝐵𝑖𝑑𝑡

𝑀𝑖𝑑𝑡
, 𝑀𝑖𝑑𝑡 =

𝐴𝑠𝑘𝑡 + 𝐵𝑖𝑑𝑡

2
, 

(6.3) 

where 𝐵𝑖𝑑𝑡 is the bid price at time t, 𝐴𝑠𝑘𝑡 is the ask price at time t, and  𝑀𝑖𝑑𝑡 is the 

mid quote at time t. Effective relative spread is proposed by Huang and Stoll (1994), 

which suggests the difference between price and mid quote is one-half of effective 

spread. Consequently, effective relative spread is calculated as  
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BAS𝑡 = 2| ln(𝑃𝑡) − ln(𝑀𝑖𝑑𝑡) |, (6.4) 

where 𝑃𝑡 is the transaction price.  

Glosten and Harris (1988) have shown the difference between quoted spread 

and effective spread to be the adverse-selection cost. Effective spread is the amount 

market-makers’ can earn from informed investors while quoted spread is the amount 

earned from uninformed investors. The concept is based on an immediate buy/sell 

combination conducted by informed traders. Assume informed traders buy futures at 

time t and sell immediately at time t+1. The ask and bid prices should rise following 

the purchase (t+1) according to Stoll (1989), given that spread is determined by either 

inventory-hold costs or adverse-selection costs. The informed trader can then sell 

futures at a higher bid price at time t+1, which causes a lower rent to be earned by 

market-makers. In general, effective spread is usually lower or equal to quoted spread. 

This thesis only focuses on the determinants of effective spread for two reasons. 

Firstly, the major participants of TOCOM energy futures are non-commercial traders, 

who are potentially informed traders and more likely to conduct immediate buy/sell 

combinations. Secondly, compared with quoted spread, effective spread can represent 

the rent received by market-makers more precisely since both bid/ask prices may 

change following a purchase or sale of futures. 

 

6.4.3 Descriptive Statistics 

Descriptive statistics of effective BAS are reported in Table 3-7. In addition to the 

positive relation between maturity and effective BAS, it appears a pattern of effective 

BAS across commodities. The average effective BAS of kerosene is highest, followed 

by crude oil and gasoline in turn. One possible explanation for the difference in 

effective BAS among the three commodities is related to trading volume, since the 

effective BAS of higher liquid futures (higher trading volume) is expected to be lower 

than that of lower ones (lower trading volume). According to Table 3-3, the trading 

volume of gasoline futures is much higher than kerosene and crude oil, so the effective 

BAS of gasoline is expected to be lower than that of the other two commodities. 
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 Table 6-1: The average level of five variables for intraday sell- and buy-

initiated transactions 
Panel A: Gasoline 

 5-month 6-month 

 Buy Sell Buy Sell 

Effective BAS 0.0504% 0.0505% 0.0399% 0.0401% 

Realised volatility 0.1247% 0.1283% 0.1122% 0.1148% 

Trading volume 24.4133 28.0291 90.8199 95.6839 

The size of blocks 129.5891 133.9311 341.4410 347.5365 

The number of blocks 47.72% 52.28% 48.45% 51.55% 

Panel B: Kerosene 

 5-month 6-month 

 Buy Sell Buy Sell 

Effective BAS 0.0699% 0.0700% 0.0660% 0.0656% 

Realised volatility 0.1392% 0.1377% 0.1259% 0.1254% 

Trading volume 14.6085 15.8319 24.0306 26.6557 

The size of blocks 82.5812 80.6542 120.2769 119.6170 

The number of blocks 48.24% 51.76% 48.50% 51.50% 

Panel C: Crude oil 

 4-month 5-month 

 Buy Sell Buy Sell 

Effective BAS 0.0567% 0.0567% 0.0487% 0.0491% 

Realised volatility 0.1668% 0.1657% 0.1389% 0.1428% 

Trading volume 25.6603 29.6464 58.5859 64.3703 

The size of blocks 175.1726 177.8171 276.6321 292.0971 

The number of blocks 45.95% 54.05% 49.00% 51.00% 

• Effective BAS is the average effective bid-ask spread. Realised volatility is the average return 

realised volatility in each 15-minute interval. Trading volume is the average trading volume 

in each 15-minute interval. The definition of block trading is the trading volume that exceeds 

the 90th percentile of total trading volume. The size of blocks is the average trading volume of 

each block trading. The number of blocks is the ratio of the number of sell-/buy-initiated 

block transactions to the number of total block transactions.  

  

 Furthermore, it is of our interest to examine the difference in the dynamics of 

sell- and buy-initiated transaction. The comparison of five basic variables between 

intraday sell- and buy-initiated transactions is reported in Table 6-1, including average 

effective BAS, realised volatility, average trading volume, trading volume in each 

block trading, and the ratio of the number of block transactions to the total number of  

transactions. Several differences between intraday sell- and buy-initiated transactions 

can be noticed. Firstly, it seems that the average effective BAS is higher when the 

transaction is sell-initiated, apart from in the case of 6-month kerosene futures, 

although the magnitude of the difference is not large. Secondly, the average return 

realised volatility of sell-initiated transactions is greater than that of buy-initiated ones 

for 3 out of 6 contracts, namely 5-month and 4-month gasoline and 5-month crude oil 

futures. Next, the average trading volume of intraday sell-initiated transactions also 

seems to be greater than that of intraday buy-initiated ones. Finally, we compare the 
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difference in the pattern of sell- and buy-initiated block trading. The block trading is 

defined as transactions with trading volumes over the 90th percentile of total trading 

volumes. The results show that the average trading volume of sell-initiated block 

transactions is larger than that of buy-initiated ones, which may imply that the 

information carried by sell-initiated transactions is greater than by buy-initiated 

transactions. In addition, block trading is more likely to happen when the transaction 

is sell-initiated. For example, for 5-month crude oil futures, 51% of block transactions 

are sell-initiated while 49% are buy-initiated. Overall, compared with buy-initiated 

transactions, sell-initiated transactions are characterised by high effective BAS, high 

trading volume, and high possibility of block trading. 

 

6.5 Empirical Results 

6.5.1 Estimation results of the benchmark (Model 1) 

The results of Models 1 to 2 are reported in Table 6-2 to 6-4. The first column of the 

result of each contract shows the estimated coefficients of Model 1. Regarding the 

BAS equation, it appears that all coefficients are significant for all futures. The 

coefficients of contemporaneous realised volatility (𝛼1) are positive for all futures, 

which is consistent with expectations because market-makers tend to widen BAS to 

avoid potential losses caused by increasing volatility. Regarding the coefficients of 

contemporaneous trading volume ( 𝛼2 ), the results are negative, which is also 

consistent with expectations. The coefficients are expected to be negative since 1) 

adverse-selection costs should be lower when volume is high because the increase in 

volume will increase the probability of uninformed trading; 2) order-processing costs 

should be amortised by a higher number of trading volumes. With regard to the lagged 

variables, the coefficients of lagged realised volatility and trading volume (𝛼3 and 𝛼4)  

are all significant, and the direction of them is consistent with the contemporaneous 

coefficients. Interestingly, the coefficients of weekend dummy (𝛼𝑊) are negative. 

Intuitively, one would expect the coefficient to be positive because there is a large 

amount of information that is not reflected in markets during weekends. However, as 

realised volatility is included in Model 1, the impact of increasing volatility caused by 

a large amount of information should also be controlled by 𝛼1. Consequently, the 
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negative 𝛼𝑊 may be explained by other reasons. One explanation is the increase in 

demand of trading on Monday or the first trading day right after weekends or holidays. 

In order to adjust the holding position of futures responding to information during 

weekends and holidays, market participants tend to trade quickly at the opening of the 

market. Figure 6-1 shows average numbers of transactions for the first 15-minutes 

interval among 5 weekdays and the dates of our weekend dummy. It appears that the 

numbers of transactions for the first 15-minutes interval on Monday and weekend 

dummy being 1 are much higher than that on the other weekdays. Therefore, market 

makers are likely to lower BAS so that traders can be attracted to transact with them.  

 Move to the results of realised volatility and trading volume equation, it seems 

that the estimation results are not exactly similar to the findings in Chapter 5. Although 

the positive contemporaneous relation between realised volatility and trading volume 

is found, but the lead-lag impact of trading volume on realised volatility appears to be 

negative. However, Darrat et al. (2007) also find the negative intraday causality from 

trading volume to realised volatility. They provide the explanation that the increase in 

trading volume is a result of assets being mispriced and contemporaneously causes the 

rise in volatility, which leads to a sequential decrease in volatility after the price reverts 

the fundamental value. This may only be observed in high-frequency data, since the 

price should convert a rational value at the end of trading day to eliminate any arbitrage 

opportunities at the opening in the other day. Regarding the coefficients of lagged 

BAS on realised volatility and trading volume, the results are consistent with the 

inverse impacts. The increase in BAS sequentially increases the realised volatility but 

decreases the trading volume since the wider BAS can cause the greater price change 

and is less attractive for market participants. In addition, the coefficients of weekend 

dummy (𝛽𝑊 and 𝛾𝑊) indicates that the realised volatility and trading volume of the 

first 15-minute interval are greater after a longer non-trading hours (Monday or after 

holidays). This finding is in line with the argument in the last paragraph. Due to the 

large information to digest after a long non-trading time, the trading activity sharply 

increases, which increases realised volatility but decreases bid-ask spread. 
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6.5.2 Estimation results of the asymmetric model (Model 2) 

The second column reveals the results of Model 2, and the discussion only focuses on 

the BAS equation in this section since the intersection terms are only added to the BAS 

equation. The coefficients 𝛼𝑆, measuring the difference in the impact of volume on 

BAS between buy- and sell-initiated transactions, are mostly positive and significant 

as expected, except in the cases of 6-month kerosene futures. This indicates that 

market-makers require more compensation when sell-initiated transactions occur. 

Since trading volume reflects both adverse-selection and order-processing costs, we 

discuss the asymmetric effect of these two aspects, namely order-processing costs and 

adverse-selection costs. Beginning with order-processing costs, BAS should be 

narrowed when trading volume is greater because the transaction fee per trading 

volume is reduced. However, the marginal effect of an increase in trading volume 

reducing order-processing costs should diminish with increases in the trading volume. 

A comparison of trading volume between buy- and sell-initiated transactions shows 

that the trading volume of sell-initiated transactions is significantly higher than that of 

buy-initiated ones (see Table 6-1). Therefore, the marginal effect of sell-initiated 

trading volume amortising order-processing costs is lower than the buy-initiated one.  

 Turning to adverse-selection costs, a higher trading volume implies a 

potentially lower proportion of informed trading, as do adverse-selection costs and 

BAS. Nonetheless, the result of a positive 𝛼𝑆  suggests that even though the sell-

initiated trading volume is higher than the buy-initiated, adverse-selection costs 

increase. A possible explanation for this is that the sell-initiated trading volume is 

more likely to be information-driven rather than liquidity-driven trading, which is 

opposed to the argument of Frino et al. (2008). Holthausen et al. (1987) and Gemmill 

(1996) propose a procedure to measure the permanent effect of a transaction, which 

decomposes total price effect into permanent and liquidity effects, as shown below 

Total price effect = | ln(𝑃𝑡) − ln(𝑃𝑏) |, 

Temporary effect = | ln(𝑃𝑡) − ln(𝑃𝑎) |, 

Permanent effect = | ln(𝑃𝑎) − ln(𝑃𝑏) |, 

(6.5) 

where 𝑃𝑡 is the transaction price, 𝑃𝑏 is the price 15 minutes before the transaction and 
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𝑃𝑎   is the price 15 minutes after the transaction. Table 6-5 shows the results of 

permanent price impact between buy- and sell-initiated transactions. It is evident that 

the permanent price impact of sell-initiated trades is significantly higher than that of 

buy-initiated ones, except in the cases of 6-month gasoline and 5-month crude oil, 

although the differences in the values of sell-initiated over buy-initiated transactions 

are all positive. Consequently, sell-initiated trading may have a higher proportion of 

informed trading than buy-initiated, leading to higher adverse-selection costs for sell-

initiated transactions. 

The other asymmetric effect in Model 2 is the negative-return transaction, 

measured by the coefficients 𝛼𝑁. The estimated coefficients are only significant for 5-

month gasoline and 6-month kerosene, although the sign for the former is negative, 

and that for the latter is positive. Insignificance may indicate that market makers are 

indifferent between upside and downside market conditions, so the impact of trading 

volume on BAS remains the same level for positive- and negative-turn. In terms of the 

autocorrelation of residuals, Ljung-Box test is performed with 22 lags. The results of 

22nd order Q statistic suggest that the serial correlation is strong, so all the standard 

error is estimated by the HAC approach. Regarding the comparison of SBIC between 

Model 1 and Model 2, it seems like including two intersection terms does not provide 

more explanation to the model. This may be because, despite the significant 

asymmetric effect of sell-initiated volume on BAS, it is still included in the impact of 

trading volume, leading to a limited increase in SBIC. However, the results of LR test 

still suggest the importance of including these dummy variables, since most of them 

is significant under 5% level.  

 

 



Chapter 6: Determinants of Bid-Ask Spread of TOCOM energy futures 

163 

Table 6-2: Results of two SVAR models with effective BAS for gasoline futures 
Model 1: 
BAS𝑡 = 𝛼0 + 𝛼1𝜎𝑡 + 𝛼2𝑉𝑡 + 𝛼3𝜎𝑡−1 + 𝛼4𝑉𝑡−1 + 𝛼5𝐵𝐴𝑆𝑡−1 + 𝛼𝑊𝐷𝑡

𝑊 + 𝜀S,𝑡 

𝜎𝑡 = 𝛽0 + 𝛽1𝑉𝑡 + 𝛽2𝜎𝑡−1 + 𝛽3𝑉𝑡−1 + 𝛽4𝐵𝐴𝑆𝑡−1 + 𝛽𝑊𝐷𝑡
𝑊 + 𝜀𝜎,𝑡 

𝑉𝑡 = 𝛾0 + 𝛾1𝜎𝑡−1 + 𝛾2𝑉𝑡−1 + 𝛾3𝐵𝐴𝑆𝑡−1 + 𝛾𝑊𝐷𝑡
𝑊 + 𝜀𝑉,𝑡 

Model 2: 
BAS𝑡 = 𝛼0 + 𝛼1𝜎𝑡 + 𝛼2𝑉𝑡 + 𝛼3𝜎𝑡−1 + 𝛼4𝑉𝑡−1 + 𝛼5𝐵𝐴𝑆𝑡−1 + 𝛼𝑊𝐷𝑡

𝑊 + 𝛼𝑆𝑉𝑡𝐷𝑡
𝑆 + 𝛼𝑁𝑉𝑡𝐷𝑡

𝑁 + 𝜀S,𝑡 

𝜎𝑡 = 𝛽0 + 𝛽1𝑉𝑡 + 𝛽2𝜎𝑡−1 + 𝛽3𝑉𝑡−1 + 𝛽4𝐵𝐴𝑆𝑡−1 + 𝛽𝑊𝐷𝑡
𝑊 + 𝜀𝜎,𝑡 

𝑉𝑡 = 𝛾0 + 𝛾1𝜎𝑡−1 + 𝛾2𝑉𝑡−1 + 𝛾3𝐵𝐴𝑆𝑡−1 + 𝛾𝑊𝐷𝑡
𝑊 + 𝜀𝑉,𝑡 

 5-month 6-month 

 Model 1 Model 2 Model 1 Model 2 

𝛼0 0.0444*** 0.0445*** 0.0481*** 0.0482*** 

 (0.0007) (0.0007) (0.0010) (0.0010) 

𝛼1 3.7865*** 3.7861*** 3.0753*** 3.0743*** 

 (0.2669) (0.2668) (0.3267) (0.3269) 

𝛼2 -0.0025*** -0.0025*** -0.0031*** -0.0032*** 

 (0.0001) (0.0001) (0.0002) (0.0002) 

𝛼3 2.2423*** 2.2421*** 2.5237*** 2.5242*** 

 (0.1614) (0.1616) (0.2356) (0.2353) 

𝛼4 -0.0022*** -0.0022*** -0.0027*** -0.0027*** 

 (0.0001) (0.0001) (0.0002) (0.0002) 

𝛼5 0.1870*** 0.1870*** 0.2221*** 0.2222*** 

 (0.0096) (0.0096) (0.0086) (0.0086) 

𝛼𝑊 -0.0329*** -0.0329*** -0.0329*** -0.0329*** 

 (0.0026) (0.0026) (0.0023) (0.0023) 

𝛼𝑆  0.0002**  9.72E-5* 

  (0.0001)  (5.75E-5) 

𝛼𝑁  -0.0002*  1.92E-5 

  (0.0001)  (5.71E-5) 

𝛽0 0.0005*** 0.0005*** -0.0007*** -0.0007*** 

 (0.0133) (0.0133) (0.0173) (0.0173) 

𝛽1 0.0003*** 0.0003*** 0.0005*** 0.0005*** 

 (3.7205) (3.7205) (2.7977) (2.7977) 

𝛽2 0.1754*** 0.1754*** 0.1427*** 0.1427*** 

 (0.0049) (0.0049) (0.0040) (0.0040) 

𝛽3 -0.0002*** -0.0002*** -0.0002*** -0.0002*** 

 (0.1477) (0.1477) (0.1394) (0.1394) 

𝛽4 0.0072*** 0.0072*** 0.0086*** 0.0086*** 

 (0.0668) (0.0668) (0.0512) (0.0512) 

𝛽𝑊 0.0034*** 0.0034*** 0.0036*** 0.0036*** 

 (2.09E-5) (2.09E-5) (3.58E-5) (3.58E-5) 

𝛾0 1.1247*** 1.1247*** 1.5258*** 1.5258*** 

 (7.11E-6) (7.11E-6) (9.81E-6) (9.81E-6) 

𝛾1 -24.3544*** -24.3544*** 4.6151* 4.6151* 

 (0.0109) (0.0109) (0.0070) (0.0070) 

𝛾2 0.5686*** 0.5686*** 0.6203*** 0.6203*** 

 (6.47E-6) (6.47E-6) (7.23E-6) (7.23E-6) 

𝛾3 -1.7650*** -1.7650*** -0.1628 -0.1628 

 (0.0003) (0.0003) (0.0003) (0.0003) 

𝛾𝑊 2.6691*** 2.6691*** 2.2337*** 2.2337*** 

 (0.0005) (0.0005) (0.0006) (0.0006) 

𝑄(22)𝐸𝐵𝐴𝑆 5498.54*** 5503.88*** 8054.85*** 8055.77*** 

𝑄(22)𝜎𝑡
 5436.83*** 5436.83*** 4213.81*** 4213.81*** 

𝑄(22)𝑉𝑡
 5897.06*** 5897.06*** 4741.19*** 4741.19*** 

SBIC 386778.46 386770.10 496228.37 496219.67 

LR 5.566* 5.171* 
• The sample period is from 22 September 2010 to 30 October 2015. *, ** and *** denote the significance at 10%, 5% and 

1% levels, respectively. SBIC is calculated as the log-likelihood value minus the penalty parameters. Q(22) is Q-statistic 

with 22 lags. LR is the statistic of likelihood ratio test. Due to heteroskedasticity and serial correlation problem, 

heteroskedasticity and autocorrelation consistent (HAC) standard errors are used here. 
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Table 6-3: Results of two SVAR models with effective BAS for kerosene futures 
Model 1: 
BAS𝑡 = 𝛼0 + 𝛼1𝜎𝑡 + 𝛼2𝑉𝑡 + 𝛼3𝜎𝑡−1 + 𝛼4𝑉𝑡−1 + 𝛼5𝐵𝐴𝑆𝑡−1 + 𝛼𝑊𝐷𝑡

𝑊 + 𝜀S,𝑡 

𝜎𝑡 = 𝛽0 + 𝛽1𝑉𝑡 + 𝛽2𝜎𝑡−1 + 𝛽3𝑉𝑡−1 + 𝛽4𝐵𝐴𝑆𝑡−1 + 𝛽𝑊𝐷𝑡
𝑊 + 𝜀𝜎,𝑡 

𝑉𝑡 = 𝛾0 + 𝛾1𝜎𝑡−1 + 𝛾2𝑉𝑡−1 + 𝛾3𝐵𝐴𝑆𝑡−1 + 𝛾𝑊𝐷𝑡
𝑊 + 𝜀𝑉,𝑡 

Model 2: 
BAS𝑡 = 𝛼0 + 𝛼1𝜎𝑡 + 𝛼2𝑉𝑡 + 𝛼3𝜎𝑡−1 + 𝛼4𝑉𝑡−1 + 𝛼5𝐵𝐴𝑆𝑡−1 + 𝛼𝑊𝐷𝑡

𝑊 + 𝛼𝑆𝑉𝑡𝐷𝑡
𝑆 + 𝛼𝑁𝑉𝑡𝐷𝑡

𝑁 + 𝜀S,𝑡 

𝜎𝑡 = 𝛽0 + 𝛽1𝑉𝑡 + 𝛽2𝜎𝑡−1 + 𝛽3𝑉𝑡−1 + 𝛽4𝐵𝐴𝑆𝑡−1 + 𝛽𝑊𝐷𝑡
𝑊 + 𝜀𝜎,𝑡 

𝑉𝑡 = 𝛾0 + 𝛾1𝜎𝑡−1 + 𝛾2𝑉𝑡−1 + 𝛾3𝐵𝐴𝑆𝑡−1 + 𝛾𝑊𝐷𝑡
𝑊 + 𝜀𝑉,𝑡 

 5-month 6-month 

 Model 1 Model 2 Model 1 Model 2 

𝛼0 0.0711*** 0.0711*** 0.0643*** 0.0643*** 

 (0.0021) (0.0021) (0.0013) (0.0013) 

𝛼1 5.8488*** 5.8584*** 5.5418*** 5.5407*** 

 (0.7397) (0.7378) (0.8214) (0.8248) 

𝛼2 -0.0082*** -0.0088*** -0.0082*** -0.0085*** 

 (0.0004) (0.0005) (0.0004) (0.0004) 

𝛼3 2.6088*** 2.6064*** 2.4209*** 2.4203*** 

 (0.3509) (0.3470) (0.2932) (0.2909) 

𝛼4 -0.0032*** -0.0032*** -0.0033*** -0.0033*** 

 (0.0004) (0.0004) (0.0003) (0.0003) 

𝛼5 0.2419*** 0.2417*** 0.2282*** 0.2282*** 

 (0.0208) (0.0207) (0.0148) (0.0148) 

𝛼𝑊 -0.0648*** -0.0643*** -0.0642*** -0.0640*** 

 (0.0074) (0.0073) (0.0062) (0.0062) 

𝛼𝑆  0.0011***  8.25E-5 

  (0.0004)  (0.0002) 

𝛼𝑁  0.0002  0.0005** 

  (0.0004)  (0.0002) 

𝛽0 0.0006*** 0.0006*** 0.0004*** 0.0004*** 

 (0.0263) (0.0263) (0.0268) (0.0268) 

𝛽1 0.0002*** 0.0002*** 0.0003*** 0.0003*** 

 (7.3488) (7.3488) (6.7203) (6.7203) 

𝛽2 0.1210*** 0.1210*** 0.1091*** 0.1091*** 

 (0.0088) (0.0088) (0.0075) (0.0075) 

𝛽3 -0.0001*** -0.0001*** -0.0001*** -0.0001*** 

 (0.1996) (0.1996) (0.2371) (0.2371) 

𝛽4 0.0058*** 0.0058*** 0.0073*** 0.0073*** 

 (0.1400) (0.1400) (0.1403) (0.1403) 

𝛽𝑊 0.0050*** 0.0050*** 0.0057*** 0.0057*** 

 (4.34E-5) (4.34E-5) (4.81E-5) (4.81E-5) 

𝛾0 1.0940*** 1.0940*** 1.2660*** 1.2660*** 

 (1.38E-5) (1.38E-5) (1.49E-5) (1.49E-5) 

𝛾1 -15.8057** -15.8057** -15.7270** -15.7270** 

 (0.0228) (0.0228) (0.0240) (0.0240) 

𝛾2 0.4898*** 0.4898*** 0.5516*** 0.5516*** 

 (1.28E-5) (1.28E-5) (1.31E-5) (1.31E-5) 

𝛾3 -1.6233*** -1.6233*** -2.2143*** -2.2143*** 

 (0.0004) (0.0004) (0.0004) (0.0004) 

𝛾𝑊 2.6626*** 2.6626*** 2.8380*** 2.8380*** 

 (0.0013) (0.0013) (0.0014) (0.0014) 

𝑄(22)𝐸𝐵𝐴𝑆 887.14*** 888.27*** 903.18*** 904.67*** 

𝑄(22)𝜎𝑡
 296.67*** 296.67*** 512.93*** 512.93*** 

𝑄(22)𝑉𝑡
 956.63*** 956.63*** 1004.17*** 1004.17*** 

SBIC 93014.18 93009.16 111637.59 111630.69 

LR 9.711*** 6.109** 
• The sample period is from 22 September 2010 to 30 October 2015. *, ** and *** denote the significance at 10%, 5% and 

1% levels, respectively. SBIC is calculated as the log-likelihood value minus the penalty parameters. Q(22) is Q-statistic 

with 22 lags. LR is the statistic of likelihood ratio test. Due to heteroskedasticity and serial correlation problem, 

heteroskedasticity and autocorrelation consistent (HAC) standard errors are used here. 
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Table 6-4: Results of two SVAR models with effective BAS for crude oil futures 
Model 1: 
BAS𝑡 = 𝛼0 + 𝛼1𝜎𝑡 + 𝛼2𝑉𝑡 + 𝛼3𝜎𝑡−1 + 𝛼4𝑉𝑡−1 + 𝛼5𝐵𝐴𝑆𝑡−1 + 𝛼𝑊𝐷𝑡

𝑊 + 𝜀S,𝑡 

𝜎𝑡 = 𝛽0 + 𝛽1𝑉𝑡 + 𝛽2𝜎𝑡−1 + 𝛽3𝑉𝑡−1 + 𝛽4𝐵𝐴𝑆𝑡−1 + 𝛽𝑊𝐷𝑡
𝑊 + 𝜀𝜎,𝑡 

𝑉𝑡 = 𝛾0 + 𝛾1𝜎𝑡−1 + 𝛾2𝑉𝑡−1 + 𝛾3𝐵𝐴𝑆𝑡−1 + 𝛾𝑊𝐷𝑡
𝑊 + 𝜀𝑉,𝑡 

Model 2: 
BAS𝑡 = 𝛼0 + 𝛼1𝜎𝑡 + 𝛼2𝑉𝑡 + 𝛼3𝜎𝑡−1 + 𝛼4𝑉𝑡−1 + 𝛼5𝐵𝐴𝑆𝑡−1 + 𝛼𝑊𝐷𝑡

𝑊 + 𝛼𝑆𝑉𝑡𝐷𝑡
𝑆 + 𝛼𝑁𝑉𝑡𝐷𝑡

𝑁 + 𝜀S,𝑡 

𝜎𝑡 = 𝛽0 + 𝛽1𝑉𝑡 + 𝛽2𝜎𝑡−1 + 𝛽3𝑉𝑡−1 + 𝛽4𝐵𝐴𝑆𝑡−1 + 𝛽𝑊𝐷𝑡
𝑊 + 𝜀𝜎,𝑡 

𝑉𝑡 = 𝛾0 + 𝛾1𝜎𝑡−1 + 𝛾2𝑉𝑡−1 + 𝛾3𝐵𝐴𝑆𝑡−1 + 𝛾𝑊𝐷𝑡
𝑊 + 𝜀𝑉,𝑡 

 5-month 6-month 

 Model 1 Model 2 Model 1 Model 2 

𝛼0 0.0442*** 0.0443*** 0.0336*** 0.0336*** 

 (0.0009) (0.0009) (0.0008) (0.0008) 

𝛼1 2.4341*** 2.4329*** 0.3143*** 0.3141*** 

 (0.2327) (0.2334) (0.0126) (0.0126) 

𝛼2 -0.0038*** -0.0041*** -0.0042*** -0.0043*** 

 (0.0002) (0.0002) (0.0002) (0.0002) 

𝛼3 1.5024*** 1.5035*** 0.2545*** 0.2544*** 

 (0.1163) (0.1159) (0.0110) (0.0110) 

𝛼4 -0.0004** -0.0004** -0.0013*** -0.0013*** 

 (0.0002) (0.0002) (0.0002) (0.0002) 

𝛼5 0.2598*** 0.2598*** 0.3018*** 0.3018*** 

 (0.0135) (0.0135) (0.0111) (0.0111) 

𝛼𝑊 -0.0270*** -0.0270*** -0.0391*** -0.0391*** 

 (0.0031) (0.0031) (0.0030) (0.0030) 

𝛼𝑆  0.0004***  0.0002** 

  (0.0001)  (7.81E-5) 

𝛼𝑁  0.0002  0.0001 

  (0.0001)  (7.87E-5) 

𝛽0 0.0008*** 0.0008*** 0.0148*** 0.0148*** 

 (0.0156) (0.0156) (0.0166) (0.0166) 

𝛽1 0.0002*** 0.0002*** 0.0040*** 0.0040*** 

 (3.6692) (3.6692) (0.2499) (0.2499) 

𝛽2 0.1989*** 0.1989*** 0.2210*** 0.2210*** 

 (0.0070) (0.0070) (0.0042) (0.0042) 

𝛽3 -0.0001*** -0.0001*** -0.0017*** -0.0017*** 

 (0.1382) (0.1382) (0.1271) (0.1271) 

𝛽4 0.0068*** 0.0068*** 0.0712*** 0.0712*** 

 (0.0892) (0.0892) (0.0587) (0.0587) 

𝛽𝑊 0.0047*** 0.0047*** 0.0235*** 0.0235*** 

 (2.95E-5) (2.95E-5) (0.0003) (0.0003) 

𝛾0 1.1057*** 1.1057*** 1.3507*** 1.3507*** 

 (9.69E-6) (9.69E-6) (7.50E-5) (7.50E-5) 

𝛾1 -16.0311*** -16.0311*** -1.0583*** -1.0583*** 

 (0.0163) (0.0163) (0.0052) (0.0052) 

𝛾2 0.4852*** 0.4852*** 0.6012*** 0.6012*** 

 (8.23E-6) (8.23E-6) (6.87E-5) (6.87E-5) 

𝛾3 -0.2260 -0.2260 0.2898** 0.2898** 

 (0.0004) (0.0004) (0.0020) (0.0020) 

𝛾𝑊 2.0134*** 2.0134*** 2.3966*** 2.3966*** 

 (0.0007) (0.0007) (0.0027) (0.0027) 

𝑄(22)𝐸𝐵𝐴𝑆 9991.67*** 9986.74*** 13124.91*** 13130.84*** 

𝑄(22)𝜎𝑡
 3475.85*** 3475.85*** 8158.18*** 8158.18*** 

𝑄(22)𝑉𝑡
 6419.71*** 6419.71*** 6946.80*** 6946.80*** 

SBIC 281565.67 281560.84 247357.63 247351.18 

LR 12.247*** 9.634*** 
• The sample period is from 22 September 2010 to 30 October 2015. *, ** and *** denote the significance at 10%, 5% and 

1% levels, respectively. SBIC is calculated as the log-likelihood value minus the penalty parameters. Q(22) is Q-statistic 

with 22 lags. LR is the statistic of likelihood ratio test. Due to heteroskedasticity and serial correlation problem, 

heteroskedasticity and autocorrelation consistent (HAC) standard errors are used here. 
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Figure 6-1: Comparison of number of transactions at the first 15 minutes across weekdays for six futures 
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• Wkd denotes to the case that the dummy of weekend is 1, which includes all dates right after weekend and holidays. Mon., Tue., Wed., Thr., Fri. denote 

Monday, Tuesday, Wednesday, Thursday and Friday. 
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Table 6-5: Comparison of the permanent price impact of three futures for two 

maturities 
Panel A: Gasoline 

 5-month 6-month 

 Buy Sell Buy Sell 

Permanent price impact 0.065% -0.070% 0.081% -0.083% 

T-Statistic 2.4973*** 1.1945 

Panel B: Kerosene 

 5-month 6-month 

 Buy Sell Buy Sell 

Permanent price impact 0.061% -0.067% 0.066% -0.071% 

T-Statistic 2.2027*** 2.5716*** 

Panel C: Crude oil 

 4-month 5-month 

 Buy Sell Buy Sell 

Permanent price impact 0.068% -0.069% 0.072% -0.076% 

T-Statistic 0.5607 2.3407*** 

• The sample period is from 22 September 2010 to 30 October 2015. *, ** and *** denote the 

significance at 10%, 5% and 1% levels, respectively. Permanent price impact is calculated as 

the log-return of price before and after trades. 

 

6.5.3 Analysis with Quoted Bid-Ask Spread 

To confirm the robustness of the analysis, we perform again the analysis with quoted 

BAS, defined as equation (6.3). The descriptive statistic of quoted BAS is reported in 

Table 6-6. One main difference between effective BAS (see Table 3-7) and quoted 

BAS is that the average effective BAS is slightly lower than the average quoted BAS. 

Because transaction prices are usually between bid and ask prices, the effective BAS, 

calculated as twice of the difference between price and mid-quote, is expected to be 

narrower than the quoted BAS, calculated as the difference between bid and ask prices. 

Regarding the autocorrelation and stationarity, the results of Q-statistic with 22 lags 

and ADF test suggest that quoted BAS is highly autocorrelated and stationary, which 

is similar to the properties of effective BAS. 

 The empirical results of two SVAR models, namely model 1 and model 2, are 

reported in Table 6-7 to 6-9. With regard to the benchmark model, even though we 

can still observe slightly difference in the magnitude, the significance and the sign of 

coefficients in the results with quoted BAS are the consistent with the effective BAS. 

This confirms the use of realised volatility and trading volume as the determinants of 

BAS, and the positive relation between realised volatility and BAS and the negative 

relation between trading volume and BAS. Move to the results of the asymmetric 
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model, even though the coefficients of the sell-initiated intersection term are still 

positive except 6-month kerosene, but the significance and the magnitude drop for 6-

month gasoline and crude oil compared with the results of effective BAS. The 

explanation is that effective BAS measures the rent received from informed traders 

while the quoted BAS measures the rent received from uninformed traders (Glosten 

and Harris, 1988). Therefore, the effective BAS is more sensitive to the increase in the 

probability of informed trading, while the quoted BAS is less sensitive. However, the 

coefficients of negative-return intersection term become positive and significant for 5-

month kerosene and crude oil futures, which is consistent with the finding of Estrada 

(2007) who suggests that the market participants are more sensitive to downside risk 

measure rather than the overall risk measure. 

 In terms of the diagnostic tests, the 22nd order Q statistic suggests the residuals 

of all contracts are highly correlated, which is consistent with the results of effective 

BAS. Therefore, all standard errors are still HAC estimators. The results of LR tests 

suggest the joint significance of both intersection terms, namely sell-initiated 

transactions and negative-return transactions. Overall, the empirical finding with 

quoted BAS are similar to effective BAS, but with slight difference in the significance 

of the asymmetric coefficients.  
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Table 6-6: Descriptive statistics and preliminary tests for quoted bid-ask spreads 

Gasoline 

 1-month 2-month 3-month 4-month 5-month 6-month 

Mean 0.2685% 0.1459% 0.1081% 0.0755% 0.0552% 0.0420% 

Std. 0.3769% 0.1363% 0.0907% 0.0633% 0.0387% 0.0312% 

Skewness 7.2125 6.5857 10.1433 33.4748 6.2636 3.5396 

Kurtosis 108.6143 211.0780 534.2364 3985.2150 251.2490 41.7848 

Q(22) 663837.0 a 383381.3 a 275656.0 a 93663.6 a 67758.7 a 69980.9 a 

ADF -56.6209 a -64.5645 a -67.7466 a -99.3490 a -94.6675 a -102.6660 a 

Kerosene 

 1-month 2-month 3-month 4-month 5-month 6-month 

Mean 0.2811% 0.1772% 0.1370% 0.1046% 0.0851% 0.0728% 

Std. 0.4670% 0.1643% 0.1111% 0.0869% 0.0738% 0.0628% 

Skewness 16.2084 6.5875 2.2897 2.9099 8.4958 2.8784 

Kurtosis 484.8044 345.6907 19.2411 25.4043 493.6108 19.7851 

Q(22) 640342.9 a 457031.5 a 412446.4 a 376354.2 a 193434.5 a 160516.4 a 

ADF -51.5495 a -60.7393 a -53.0654 a -60.2469 a -84.3190 a -92.1419 a 

Crude oil 

 nearby-m. 1-month 2-month 3-month 4-month 5-month 

Mean 0.3051% 0.1285% 0.0981% 0.0794% 0.0655% 0.0528% 

Std. 0.4525% 0.1489% 0.0791% 0.0660% 0.0495% 0.0451% 

Skewness 5.0565 25.0261 2.5304 20.7353 5.6443 3.9485 

Kurtosis 46.3623 1601.8396 16.7432 1843.7884 116.0780 32.0555 

Q(22) 876127.0 a 374912.4 a 500252.9 a 215295.7 a 177372.7 a 132059.3 a 

ADF -40.4521 a -59.9093 a -51.9935 a -79.9660 a -80.3987 a -99.7827 a 
• a and b indicate rejection at the 1% and 5% significance levels. nearby-m. stands for nearby-month contracts. Std. is the 

standard deviation. Q(22) is Q-statistic with 22 lags. ADF is the augmented Dickey-Fuller test statistic. The sample period 

is from 22 September 2010 to 30 October 2015.  
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Table 6-7: Results of two SVAR models with quoted BAS for gasoline futures 
Model 1: 
BAS𝑡 = 𝛼0 + 𝛼1𝜎𝑡 + 𝛼2𝑉𝑡 + 𝛼3𝜎𝑡−1 + 𝛼4𝑉𝑡−1 + 𝛼5𝐵𝐴𝑆𝑡−1 + 𝛼𝑊𝐷𝑡

𝑊 + 𝜀S,𝑡 

𝜎𝑡 = 𝛽0 + 𝛽1𝑉𝑡 + 𝛽2𝜎𝑡−1 + 𝛽3𝑉𝑡−1 + 𝛽4𝐵𝐴𝑆𝑡−1 + 𝛽𝑊𝐷𝑡
𝑊 + 𝜀𝜎,𝑡 

𝑉𝑡 = 𝛾0 + 𝛾1𝜎𝑡−1 + 𝛾2𝑉𝑡−1 + 𝛾3𝐵𝐴𝑆𝑡−1 + 𝛾𝑊𝐷𝑡
𝑊 + 𝜀𝑉,𝑡 

Model 2: 
BAS𝑡 = 𝛼0 + 𝛼1𝜎𝑡 + 𝛼2𝑉𝑡 + 𝛼3𝜎𝑡−1 + 𝛼4𝑉𝑡−1 + 𝛼5𝐵𝐴𝑆𝑡−1 + 𝛼𝑊𝐷𝑡

𝑊 + 𝛼𝑆𝑉𝑡𝐷𝑡
𝑆 + 𝛼𝑁𝑉𝑡𝐷𝑡

𝑁 + 𝜀S,𝑡 

𝜎𝑡 = 𝛽0 + 𝛽1𝑉𝑡 + 𝛽2𝜎𝑡−1 + 𝛽3𝑉𝑡−1 + 𝛽4𝐵𝐴𝑆𝑡−1 + 𝛽𝑊𝐷𝑡
𝑊 + 𝜀𝜎,𝑡 

𝑉𝑡 = 𝛾0 + 𝛾1𝜎𝑡−1 + 𝛾2𝑉𝑡−1 + 𝛾3𝐵𝐴𝑆𝑡−1 + 𝛾𝑊𝐷𝑡
𝑊 + 𝜀𝑉,𝑡 

 5-month 6-month 

 Model 1 Model 2 Model 1 Model 2 

𝛼0 0.0457*** 0.0458*** 0.0480*** 0.0481*** 

 (0.0007) (0.0007) (0.0010) (0.0010) 

𝛼1 3.5322*** 3.5309*** 2.9555*** 2.9543*** 

 (0.2636) (0.2636) (0.3174) (0.3176) 

𝛼2 -0.0019*** -0.0020*** -0.0031*** -0.0032*** 

 (0.0001) (0.0001) (0.0002) (0.0002) 

𝛼3 2.3172*** 2.3169*** 2.4344*** 2.4344*** 

 (0.1518) (0.1519) (0.2225) (0.2221) 

𝛼4 -0.0024*** -0.0024*** -0.0026*** -0.0026*** 

 (0.0001) (0.0001) (0.0002) (0.0002) 

𝛼5 0.2029*** 0.2029*** 0.2366*** 0.2367*** 

 (0.0102) (0.0102) (0.0091) (0.0091) 

𝛼𝑊 -0.0321*** -0.0321*** -0.0332*** -0.0332*** 

 (0.0025) (0.0025) (0.0021) (0.0021) 

𝛼𝑆  0.0002**  5.63E-5 

  (0.0001)  (5.48E-5) 

𝛼𝑁  -0.0001  6.16E-5 

  (0.0001)  (5.48E-5) 

𝛽0 0.0004*** 0.0004*** -0.0007*** -0.0007*** 

 (0.0139) (0.0139) (0.0175) (0.0175) 

𝛽1 0.0003*** 0.0003*** 0.0005*** 0.0005*** 

 (3.6662) (3.6662) (2.7561) (2.7561) 

𝛽2 0.1733*** 0.1733*** 0.1411*** 0.1411*** 

 (0.0049) (0.0049) (0.0040) (0.0040) 

𝛽3 -0.0002*** -0.0002*** -0.0002*** -0.0002*** 

 (0.1570) (0.1570) (0.1451) (0.1451) 

𝛽4 0.0078*** 0.0078*** 0.0090*** 0.0090*** 

 (0.0670) (0.0670) (0.0511) (0.0511) 

𝛽𝑊 0.0034*** 0.0034*** 0.0036*** 0.0036*** 

 (2.20E-5) (2.20E-5) (3.69E-5) (3.69E-5) 

𝛾0 1.1471*** 1.1471*** 1.5339*** 1.5339*** 

 (7.13E-6) (7.13E-6) (9.82E-6) (9.82E-6) 

𝛾1 -22.9080*** -22.9080*** 5.2500* 5.2500* 

 (0.0107) (0.0107) (0.0070) (0.0070) 

𝛾2 0.5678*** 0.5678*** 0.6195*** 0.6195*** 

 (6.42E-6) (6.42E-6) (7.23E-6) (7.23E-6) 

𝛾3 -2.0804*** -2.0804*** -0.3027** -0.3027** 

 (0.0003) (0.0003) (0.0003) (0.0003) 

𝛾𝑊 2.6801*** 2.6801*** 2.2416*** 2.2416*** 

 (0.0005) (0.0005) (0.0006) (0.0006) 

𝑄(22)𝐸𝐵𝐴𝑆 6247.17*** 6254.11*** 8487.72*** 8487.19*** 

𝑄(22)𝜎𝑡
 5070.19*** 5070.19*** 3977.35*** 3977.35*** 

𝑄(22)𝑉𝑡
 5854.30*** 5854.30*** 4752.88*** 4752.88*** 

SBIC 388901.83 388893.09 499294.87 499286.14 

LR 4.802* 5.1* 
• The sample period is from 22 September 2010 to 30 October 2015. *, ** and *** denote the significance at 10%, 5% and 

1% levels, respectively. SBIC is calculated as the log-likelihood value minus the penalty parameters. Q(22) is Q-statistic 

with 22 lags. LR is the statistic of likelihood ratio test. Due to heteroskedasticity and serial correlation problem, 

heteroskedasticity and autocorrelation consistent (HAC) standard errors are used here. 
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Table 6-8: Results of two SVAR models with quoted BAS for kerosene futures 
Model 1: 
BAS𝑡 = 𝛼0 + 𝛼1𝜎𝑡 + 𝛼2𝑉𝑡 + 𝛼3𝜎𝑡−1 + 𝛼4𝑉𝑡−1 + 𝛼5𝐵𝐴𝑆𝑡−1 + 𝛼𝑊𝐷𝑡

𝑊 + 𝜀S,𝑡 

𝜎𝑡 = 𝛽0 + 𝛽1𝑉𝑡 + 𝛽2𝜎𝑡−1 + 𝛽3𝑉𝑡−1 + 𝛽4𝐵𝐴𝑆𝑡−1 + 𝛽𝑊𝐷𝑡
𝑊 + 𝜀𝜎,𝑡 

𝑉𝑡 = 𝛾0 + 𝛾1𝜎𝑡−1 + 𝛾2𝑉𝑡−1 + 𝛾3𝐵𝐴𝑆𝑡−1 + 𝛾𝑊𝐷𝑡
𝑊 + 𝜀𝑉,𝑡 

Model 2: 
BAS𝑡 = 𝛼0 + 𝛼1𝜎𝑡 + 𝛼2𝑉𝑡 + 𝛼3𝜎𝑡−1 + 𝛼4𝑉𝑡−1 + 𝛼5𝐵𝐴𝑆𝑡−1 + 𝛼𝑊𝐷𝑡

𝑊 + 𝛼𝑆𝑉𝑡𝐷𝑡
𝑆 + 𝛼𝑁𝑉𝑡𝐷𝑡

𝑁 + 𝜀S,𝑡 

𝜎𝑡 = 𝛽0 + 𝛽1𝑉𝑡 + 𝛽2𝜎𝑡−1 + 𝛽3𝑉𝑡−1 + 𝛽4𝐵𝐴𝑆𝑡−1 + 𝛽𝑊𝐷𝑡
𝑊 + 𝜀𝜎,𝑡 

𝑉𝑡 = 𝛾0 + 𝛾1𝜎𝑡−1 + 𝛾2𝑉𝑡−1 + 𝛾3𝐵𝐴𝑆𝑡−1 + 𝛾𝑊𝐷𝑡
𝑊 + 𝜀𝑉,𝑡 

 5-month 6-month 

 Model 1 Model 2 Model 1 Model 2 

𝛼0 0.0732*** 0.0733*** 0.0639*** 0.0639*** 

 (0.0022) (0.0022) (0.0015) (0.0015) 

𝛼1 5.6865*** 5.6916*** 5.4338*** 5.4325*** 

 (0.7246) (0.7248) (0.8156) (0.8180) 

𝛼2 -0.0073*** -0.0081*** -0.0080*** -0.0082*** 

 (0.0004) (0.0005) (0.0004) (0.0004) 

𝛼3 2.6382*** 2.6399*** 2.3053*** 2.3048*** 

 (0.3689) (0.3642) (0.2930) (0.2913) 

𝛼4 -0.0036*** -0.0036*** -0.0032*** -0.0032*** 

 (0.0004) (0.0004) (0.0003) (0.0003) 

𝛼5 0.2541*** 0.2540*** 0.2400*** 0.2401*** 

 (0.0213) (0.0212) (0.0162) (0.0163) 

𝛼𝑊 -0.0694*** -0.0687*** -0.0651*** -0.0649*** 

 (0.0076) (0.0076) (0.0064) (0.0065) 

𝛼𝑆  0.0010***  -7.15E-5 

  (0.0003)  (0.0002) 

𝛼𝑁  0.0006*  0.0005** 

  (0.0004)  (0.0002) 

𝛽0 0.0006*** 0.0006*** 0.0004*** 0.0004*** 

 (0.0275) (0.0275) (0.0272) (0.0272) 

𝛽1 0.0002*** 0.0002*** 0.0003*** 0.0003*** 

 (7.2062) (7.2062) (6.6910) (6.6910) 

𝛽2 0.1199*** 0.1199*** 0.1095*** 0.1095*** 

 (0.0088) (0.0088) (0.0075) (0.0075) 

𝛽3 -0.0001*** -0.0001*** -0.0001*** -0.0001*** 

 (0.2065) (0.2065) (0.2408) (0.2408) 

𝛽4 0.0060*** 0.0060*** 0.0073*** 0.0073*** 

 (0.1409) (0.1409) (0.1405) (0.1405) 

𝛽𝑊 0.0050*** 0.0050*** 0.0057*** 0.0057*** 

 (4.52E-5) (4.52E-5) (4.84E-5) (4.84E-5) 

𝛾0 1.1146*** 1.1146*** 1.2741*** 1.2741*** 

 (1.38E-5) (1.38E-5) (1.49E-5) (1.49E-5) 

𝛾1 -14.6533** -14.6533** -15.2398** -15.2398** 

 (0.0226) (0.0226) (0.0240) (0.0240) 

𝛾2 0.4890*** 0.4890*** 0.5509*** 0.5509*** 

 (1.28E-5) (1.28E-5) (1.31E-5) (1.31E-5) 

𝛾3 -1.7682*** -1.7682*** -2.2946*** -2.2946*** 

 (0.0004) (0.0004) (0.0004) (0.0004) 

𝛾𝑊 2.6748*** 2.6748*** 2.8464*** 2.8464*** 

 (0.0013) (0.0013) (0.0014) (0.0014) 

𝑄(22)𝐸𝐵𝐴𝑆 868.51*** 871.28*** 971.04*** 971.87*** 

𝑄(22)𝜎𝑡
 270.95*** 270.95*** 511.52*** 511.52*** 

𝑄(22)𝑉𝑡
 945.79*** 945.79*** 1003.37*** 1003.37*** 

SBIC 93265.27 93261.61 111734.63 111727.00 

LR 12.424***  4.646* 
• The sample period is from 22 September 2010 to 30 October 2015. *, ** and *** denote the significance at 10%, 5% and 

1% levels, respectively. SBIC is calculated as the log-likelihood value minus the penalty parameters. Q(22) is Q-statistic 

with 22 lags. LR is the statistic of likelihood ratio test. Due to heteroskedasticity and serial correlation problem, 

heteroskedasticity and autocorrelation consistent (HAC) standard errors are used here. 
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Table 6-9: Results of two SVAR models with quoted BAS for crude oil futures 
Model 1: 
BAS𝑡 = 𝛼0 + 𝛼1𝜎𝑡 + 𝛼2𝑉𝑡 + 𝛼3𝜎𝑡−1 + 𝛼4𝑉𝑡−1 + 𝛼5𝐵𝐴𝑆𝑡−1 + 𝛼𝑊𝐷𝑡

𝑊 + 𝜀S,𝑡 

𝜎𝑡 = 𝛽0 + 𝛽1𝑉𝑡 + 𝛽2𝜎𝑡−1 + 𝛽3𝑉𝑡−1 + 𝛽4𝐵𝐴𝑆𝑡−1 + 𝛽𝑊𝐷𝑡
𝑊 + 𝜀𝜎,𝑡 

𝑉𝑡 = 𝛾0 + 𝛾1𝜎𝑡−1 + 𝛾2𝑉𝑡−1 + 𝛾3𝐵𝐴𝑆𝑡−1 + 𝛾𝑊𝐷𝑡
𝑊 + 𝜀𝑉,𝑡 

Model 2: 
BAS𝑡 = 𝛼0 + 𝛼1𝜎𝑡 + 𝛼2𝑉𝑡 + 𝛼3𝜎𝑡−1 + 𝛼4𝑉𝑡−1 + 𝛼5𝐵𝐴𝑆𝑡−1 + 𝛼𝑊𝐷𝑡

𝑊 + 𝛼𝑆𝑉𝑡𝐷𝑡
𝑆 + 𝛼𝑁𝑉𝑡𝐷𝑡

𝑁 + 𝜀S,𝑡 

𝜎𝑡 = 𝛽0 + 𝛽1𝑉𝑡 + 𝛽2𝜎𝑡−1 + 𝛽3𝑉𝑡−1 + 𝛽4𝐵𝐴𝑆𝑡−1 + 𝛽𝑊𝐷𝑡
𝑊 + 𝜀𝜎,𝑡 

𝑉𝑡 = 𝛾0 + 𝛾1𝜎𝑡−1 + 𝛾2𝑉𝑡−1 + 𝛾3𝐵𝐴𝑆𝑡−1 + 𝛾𝑊𝐷𝑡
𝑊 + 𝜀𝑉,𝑡 

 5-month 6-month 

 Model 1 Model 2 Model 1 Model 2 

𝛼0 0.0465*** 0.0465*** 0.0338*** 0.0338*** 

 (0.0012) (0.0012) (0.0008) (0.0008) 

𝛼1 2.0949*** 2.0938*** 0.3007*** 0.3005*** 

 (0.2349) (0.2355) (0.0125) (0.0125) 

𝛼2 -0.0020*** -0.0023*** -0.0038*** -0.0040*** 

 (0.0002) (0.0002) (0.0002) (0.0002) 

𝛼3 1.7428*** 1.7435*** 0.2477*** 0.2476*** 

 (0.1216) (0.1211) (0.0106) (0.0106) 

𝛼4 -0.0010*** -0.0010*** -0.0013*** -0.0013*** 

 (0.0002) (0.0002) (0.0002) (0.0002) 

𝛼5 0.2655*** 0.2656*** 0.3173*** 0.3174*** 

 (0.0164) (0.0164) (0.0106) (0.0106) 

𝛼𝑊 -0.0275*** -0.0275*** -0.0407*** -0.0406*** 

 (0.0031) (0.0031) (0.0029) (0.0029) 

𝛼𝑆  0.0003**  8.27E-5 

  (0.0001)  (7.42E-5) 

𝛼𝑁  0.0002  0.0002*** 

  (0.0001)  (7.53E-5) 

𝛽0 0.0007*** 0.0007*** 0.0145*** 0.0145*** 

 (0.0173) (0.0173) (0.0168) (0.0168) 

𝛽1 0.0002*** 0.0002*** 0.0040*** 0.0040*** 

 (3.5991) (3.5991) (0.2497) (0.2497) 

𝛽2 0.1960*** 0.1960*** 0.2197*** 0.2197*** 

 (0.0070) (0.0070) (0.0043) (0.0043) 

𝛽3 -0.0001*** -0.0001*** -0.0017*** -0.0017*** 

 (0.1651) (0.1651) (0.1283) (0.1283) 

𝛽4 0.0079*** 0.0079*** 0.0743*** 0.0743*** 

 (0.0898) (0.0898) (0.0587) (0.0587) 

𝛽𝑊 0.0047*** 0.0047*** 0.0235*** 0.0235*** 

 (4.50E-5) (4.50E-5) (0.0003) (0.0003) 

𝛾0 1.1210*** 1.1210*** 1.3536*** 1.3536*** 

 (9.61E-6) (9.61E-6) (7.48E-5) (7.48E-5) 

𝛾1 -15.2345*** -15.2345*** -1.0204*** -1.0204*** 

 (0.0164) (0.0164) (0.0052) (0.0052) 

𝛾2 0.4849*** 0.4849*** 0.6008*** 0.6008*** 

 (8.01E-6) (8.01E-6) (6.86E-5) (6.86E-5) 

𝛾3 -0.4544*** -0.4544*** 0.2239* 0.2239* 

 (0.0007) (0.0007) (0.0020) (0.0020) 

𝛾𝑊 2.0223*** 2.0223*** 2.4023*** 2.4023*** 

 (0.0007) (0.0007) (0.0027) (0.0027) 

𝑄(22)𝐸𝐵𝐴𝑆 9793.88*** 9986.74*** 13377.34*** 13384.79*** 

𝑄(22)𝜎𝑡
 3167.17*** 3475.85*** 7978.44*** 7978.44*** 

𝑄(22)𝑉𝑡
 6454.08*** 6419.71*** 6949.67*** 6949.67*** 

SBIC 281142.95 281136.01 249200.12 249194.56 

LR 8.018** 11.419*** 
• The sample period is from 22 September 2010 to 30 October 2015. *, ** and *** denote the significance at 10%, 5% and 

1% levels, respectively. SBIC is calculated as the log-likelihood value minus the penalty parameters. Q(22) is Q-statistic 

with 22 lags. LR is the statistic of likelihood ratio test. Due to heteroskedasticity and serial correlation problem, 

heteroskedasticity and autocorrelation consistent (HAC) standard errors are used here. 
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6.6 Conclusion 

The components of BAS have been a very important issue in financial research. This 

study investigates the determinants of BAS components using two different SVAR 

models. Realised volatility is utilised as a determinant of inventory-hold costs, and 

trading volume is treated as a determinant of both adverse-selection and order-

processing costs. We find that realised volatility is positively related to BAS, while 

trading volume is negatively related to BAS, which is consistent with expectations. In 

addition, the magnitude of BAS right after the weekend seems to be lower than at other 

transaction times, which may be due to increases in trading activity at opening. 

This research further includes dummies of sell-initiated and negative-return 

transactions. The empirical results show that there is an asymmetric impact of trading 

volume on effective BAS. For sell-initiated transactions, increases in trading volume 

reduce effective BAS to a lesser extent, meaning market-makers require more 

compensation for sell-initiated transactions. This is due to the fact that sell-initiated 

transactions seem to have a higher permanent price impact (information effect), which 

indicates the proportion of informed trading for sell-initiated transactions is more 

likely to be higher. Therefore, the adverse-selection costs for market-makers increase, 

and the marginal impact of trading volume reducing effective BAS decreases. 

Moreover, results show that effective BAS is indifferent to positive-return and 

negative-return transactions. This may suggest that market-makers have no preference 

for sensitivity in either upside or downside market conditions. The analysis of quoted 

BAS provides is performed as sensitivity analysis, and its results are similar to 

effective BAS but with slight difference in the significance of the asymmetric effects. 
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APPENDIX 6.A Identification of buy- and sell- initiated 

transactions 

Table 6-10 reports an example of the procedure for identifying buy- and sell-initiated 

transactions. The prices in bold are identified by comparing transaction price with 

prevailing bid and ask prices. For example, the transaction occurring at 03:06:53 on 

20/2/2015 was traded at price JPY 45790, matching the prevailing ask price, so it is 

classified as a buy-initiated transaction. Generally, more than 80% of transactions can 

be identified by this approach, but some transactions still rely on the tick rule for 

identification. For instance, the price of the transaction at 03:06:54 on 20/2/2015 was 

JPY 45810, which is between the best bid and ask prices. As a result, comparing the 

price with prevailing bid and ask prices cannot classify the trading-side of this 

transaction. However, by applying the tick rule/test, one can identify this transaction 

as an uptick (plus tick), and so a buy-initiated transaction. 

 

Table 6-10: Example of identifying buy- and sell-initiated transactions 

Time Bid Ask Price Sell/Buy 

20/02/2015 03:06:50 45750    

20/02/2015 03:06:50 45740    

20/02/2015 03:06:52 45750    

20/02/2015 03:06:52  45780   

20/02/2015 03:06:53 45760    

20/02/2015 03:06:53  45790   

20/02/2015 03:06:53   45790 Buy 

20/02/2015 03:06:53   45790 Buy 

20/02/2015 03:06:54 45800 45820   

20/02/2015 03:06:54   45810 Buy 

20/02/2015 03:06:54   45820 Buy 

20/02/2015 03:06:54 45790    

20/02/2015 03:06:54  45810   

20/02/2015 03:06:55   45790 Sell 
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7.1 Summary and Conclusions 

TOCOM, as the primary exchange of energy futures in Japan, is the major hedging 

tool for domestic refineries, crude oil exploration companies, and other petroleum 

consumers. In addition, it is also an alternative investment platform for domestic 

institutional and retail investors and international investment banks. The properties of 

TOCOM energy futures have been found to be different from petroleum futures traded 

on other exchanges. Chapters 1 and 3 illustrate the major differences, such as in terms 

of trading volume patterns across term structures, lower liquidities, lower sizes of 

trading volume in each transaction, and conflicts between the use of local currency 

and high foreign participation rates. All these natures of TOCOM show the importance 

of exploring this less investigated market, and providing both domestic and foreign 

TOCOM participants a means to design hedging and trading schemes. 

With the fast development of high-frequency trading and the recent 
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financialisation of commodities futures, the dynamic of petroleum futures not only 

depends on fundamental value itself, but also intraday trading behaviours. Therefore, 

analysis based on high-frequency data provides energy futures participants a tool with 

which to measure market volatility patterns and to understand the behaviour and 

preference of other participants and intraday trading patterns, in order to develop a 

more efficient risk management scheme and trading strategies. The following section 

reviews the main findings of this thesis. Next, a direction for potential research into 

futures is discussed. 

 

7.1.1 Risk Management 

With the availability of intraday data, the realised volatility (sum of intraday square 

returns) can be more accurately estimated and utilised to enhance the efficiency of risk 

management. Chapter 4 addresses the modelling of realised volatility by incorporating 

a regime switching technique and the HAR-RV model. Corsi (2009)’s HAR-RV 

model is one of the most popular realised volatility models, as it considers the long-

memory property of realised volatility. However, when there appears a strong order 

imbalance (the difference in trading volume between sell and buy transactions) in the 

market, market-makers are forced to move their prices accordingly. As a result, prices 

tend to move volatilely, causing a high level of volatility, even though they may 

recover with shrinks in order imbalance. Given the existence of intraday price 

pressures on market-makers, RV is considered as regime-dependent in this paper, and 

a regime switching technique is applied to capture this regime-dependent property 

(MRS-HAR-RV). 

 The empirical results of in-sample suggest the existence of high- and low-

volatility regimes. For a high-volatility regime, the persistence of RV is weaker and 

the occurrence of a high-volatility regime is less frequent. The opposite property of 

RV is found for a low-volatility regime. However, MRS-HAR-RV seems neither to 

outperform traditional HAR-RV in out-of-sample nor to be outperformed based on the 

symmetric loss function, QLike and MAE. In addition, the prediction of MRS-HAR-

RV seems to be better for highly liquid futures. This may be because it requires a lower 

level of order imbalance to trigger the switching for lowly liquid futures than highly 
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liquid ones. According to the results of comparison of asymmetric loss function, 

MME(O) and MME(U), it appears that MRS-HAR-RV tends to under-predict 

volatility, while alternative models (HAR-RV, GARCH, MRS-GARCH) over-predict 

volatility. Then, an application of VaR is conducted. The results of VaR are not 

consistent for three energy futures. MRS-HAR-RV performs the best for gasoline 

futures, but fails to outperform other models for kerosene and crude oil futures. In 

general, two different regimes are identified, suggesting that consideration of different 

regimes is necessary, although it may require some adjustment to the prediction of 

volatility using MRS-HAR-RV (discussed in Section 7.2). 

 

7.1.2 Dissemination of Information to the Market 

Having identified the regime-dependent property of realised volatility, Chapter 5 

examines the relation between trading volume and realised volatility. The two most 

popular theories explaining the volume-volatility relation are MDH and SIAH. MDH 

supports a contemporaneously positive relation, while SIAH suggests a lead-lag 

positive relation. In order to avoid the possible simultaneity issue of the GARCH 

framework, the SVAR technique is applied in this thesis. Moreover, considering 

market participants’ sensitivity to market information under different market 

conditions, backwardation and contango, a dummy variable is incorporated with 

SVAR, the so-called T-SVAR. Theoretically, energy participants are supposed to be 

more sensitive when the market is in backwardation, because backwardation implies 

a shortage of supply in the market and a higher possibility of a more volatile market. 

 Analysis of SVAR suggests both MDH and SIAH are held in the TOCOM 

energy futures market, whereas it seems that evidence supports the MDH being 

stronger than SIAH. This may indicate that even though most information is 

contemporaneously reflected into the market, there is still some information 

incorporated into price at a later time point. When the dummy of backwardation is 

included into SVAR, the results of SVAR show that kerosene futures participants are 

less sensitive, crude oil futures participants are more sensitive, and gasoline futures 

participants are indifferent. The principal consumer of petroleum in Japan being 

refineries may provide an explanation for the difference in the asymmetric effect of 
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kerosene and crude oil futures. As a refinery, the cost is from the purchase of crude 

oil, while the revenue is the sales of product oil, such as kerosene. Therefore, they are 

likely to be more sensitive when crude oil price rises (crude oil market in 

backwardation) and when kerosene price declines (kerosene in contango), which 

causes the asymmetric effect shown in our empirical results. Overall, MDH and SIAH 

are found in TOCOM energy futures markets, while MDH seems to be the major way 

of dissemination. The volume-volatility relation is stronger under backwardation for 

crude oil futures but weaker for kerosene futures. 

 

7.1.3 Determinants of Bid-ask Spread (BAS) 

Chapter 6 discusses possible determinants of bid-ask spread (BAS) using relevant 

variables linking the three components of BAS, inventory-hold, adverse-selection and 

order-processing costs. Realised volatility and trading volume are two important 

variables in this analysis, because realised volatility reflects that the inventory-hold 

cost and trading volume is related to adverse-selection and order-processing costs. 

Furthermore, the asymmetric effect of sell-initiated and negative-return transactions is 

considered. Sell-initiated transactions tend to have a lower and temporary price impact 

than buy-initiated ones, so market-makers are likely to require less compensation for 

them, leading to a lower BAS. In addition, market-makers’ preference for market 

conditions (up or down) can also affect the bid and ask prices set by them. If they are 

more sensitive to downside risk, they require more compensation for negative-return 

transactions by widening BAS, and vice versa. Analysis is implemented under a high-

frequency framework, so only the two most liquid contacts are utilised because the 

valid sample of other maturities is not sufficient. 

 The evidence shows that realised volatility, trading volume and lagged BAS 

can partially explain the dynamic of BAS, even though there is still a large proportion 

not explained by these variables. Realised volatility is positively related to BAS, and 

trading volume is negatively related to BAS, which matches our assumption of their 

relation to these three components. Specifically, increases in realised volatility raise 

inventory-hold costs, while increases in trading volume lower both adverse-selection 

and order-processing costs. The asymmetric effect of sell-initiated transactions is 
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found, but the sign is not as predicted by relevant literature. The reason for this is that 

the permanent price impact (information effect) of sell-initiated transactions is found 

to be higher than that of buy-initiated ones, implying that the proportion of informed 

trading is higher for sell-initiated transactions. Consequently, market-makers require 

more compensation for sell-initiated transactions, and the marginal effect of trading 

volume reducing BAS becomes less. Finally, the asymmetric effect of negative-return 

transactions is not found, indicating that market-makers may have no particular 

preference for upside or downside risk. Generally speaking, realised volatility and 

trading volume are determinants of intraday BAS, and the asymmetric impact of 

trading volume on BAS exists for sell-initiated transactions, since sell-initiated 

transactions are more likely to be informed trading. 

 

7.2 Further Research 

The three levels of analysis undertaken in this thesis reveal different asymmetric 

effects in TOCOM energy futures markets. Moreover, the last two chapters show that 

the properties of TOCOM are special and different from other futures markets, such 

as in terms of the strength of relation between volume and volatility across term 

structure, the asymmetric effect of backwardation for kerosene futures, and the higher 

permanent price impact for sell-initiated transactions. They all provide TOCOM 

participants a better understanding of the market patterns and components of traders. 

Further research should focus on 1) increasing the accuracy of predictions, 2) the 

potential impact of foreign exchange rates, 3) cointegration between the three energy 

futures and 4) the linkage between TOCOM energy futures and the Japanese equity 

market. 

 First of all, even though MRS-HAR-RV identifies two regimes, and has higher 

explanatory power than other models, it fails to outperform in forecasting. The Markov 

Regime Switching model has been criticised for a lack of predictive ability due to the 

instability of parameters across different samples. Boot and Pick (2014) propose an 

optimal forecasting approach for the Markov Regime Switching model, which uses 

weighted MRS parameters to produce predicted value. By using weighted optimal 

parameters, the influence of low quality parameters tends to be minimised, causing a 
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better prediction. 

 Secondly, two reasons motivate the investigation of the impact of foreign 

exchanges. Regarding foreign trades, all futures traded in TOCOM are dominated by 

the local currency, Japanese Yen. However, it has a relatively high foreign trade ratio, 

especially for crude oil futures. Hence, it is in our interest to investigate whether 

exchange rates affect the behaviour of foreign trade and TOCOM markets, such as by 

including the realised volatility of foreign exchange rates into MRS-HAR-RV, and 

investigating the relation between the BAS of TOCOM energy futures and the realised 

volatility of exchange rates. Turning to domestic participants, even though most 

product oils are for domestic use, refineries still pay USD to import crude oil as a raw 

material. As a result, the exchange rate should also affect the decisions of domestic 

consumers. For example, if the exchange rate drops, the cost of importing crude also 

declines, and refineries may then lower their hedging position. 

Thirdly, the cointegration of three TOCOM energy futures may exist, as both 

gasoline and kerosene are refined products of crude oil. However, it is not guaranteed 

that gasoline and kerosene are also cointegrated. The existence of cointegration 

between gasoline and kerosene may depend on the purpose of using and the time of 

using. For example, if they are substitutes, the cointegration may be weak, but if they 

are complementary, they may be strongly cointegrated. In addition, due to a high 

foreign trade ratio, cointegration may not fully depend on physical linkage between 

these commodities, but be influenced by the behaviours of overseas investors. 

 Finally, correlation between TOCOM energy futures and the Japanese stock 

market may be an issue worthy of investigation due to the increase in the 

financialisation of commodities futures. In addition, Japan’s economy relies heavily 

on the import of crude oil, which also suggests the possibility of linkage. In addition, 

several pieces of literature (Kilian and Park, 2009; Narayan and Sharma, 2011; Creti 

et al., 2013; Cunado and Grecia, 2014) have found linkage between stock and 

petroleum markets in different markets, such as the NYSE, S&P 500 and other 

European oil importing countries. It is interesting to compare the differences between 

Japan and other countries when it comes to the linkage between TOCOM energy 

futures markets and the Japanese equity market. 
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