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Abstract 
 

Perceptual decision-making describes the process of choosing one of at least 
two response alternatives based on sensory evidence. This sensorimotor 
process underlies a range of human behaviours and has been studied 
extensively by both psychologists and neuroscientists. There is now a 
consensus, that perceptual decision-making can be explained by sequential 
sampling models, which assume that we make decisions by accumulating 
sensory evidence over time until a decision threshold is reached and the 
response is executed. Although these models are designed to explain 
behavioural data, the accumulation-to-bound processes they predict have 
recently been shown to occur in the brain. In this project, we set out to explore 
these neural correlates of decision-making in the human brain by combining 
mathematical modelling with neuroimaging. We fitted sequential sampling 
models to human decision-making data collected in a number of paradigms and 
directly compared the associated accumulation profiles with neural signals, 
which were generated either by using electroencephalographic (EEG) 
recordings or through transcranial magnetic stimulation (TMS). We found that 
decision-related accumulation profiles can be observed using a parietal EEG 
signal, namely the event-related potential centroparietal positivity (CPP). 
Additionally, we showed that accumulation is fed forward to the motor system, 
where it can be measured using TMS-induced motor evoked potentials. We 
demonstrated that, under a number of manipulations, namely difficulty, 
response speed instructions, non-stationary evidence, decision biases, and 
number of alternatives, these signals display profiles similar to those predicted 
by sequential sampling models. Our findings support the notion that sequential 
sampling occurs in the human brain and demonstrate that a model-based 
approach in which sequential sampling models and neuroimaging are combined 
and inform each other, can shed light on the underlying mechanisms of human 
perceptual decision-making. 
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1. General Introduction  

 

The ability to use information from the environment to quickly choose between 

two or more alternatives and guide our actions is a crucial part of human 

cognition. Whether we need to decide if it is safe to cross a road or which queue 

to join at the till, we constantly use sensory evidence to select appropriate motor 

responses countless times every day. In fact, it could be argued that virtually all 

human behaviour is based on perceptual decisions. The term ‘perceptual 

decision’ has been used for several decades and describes any decision (i.e. 

any choice between two or more alternatives) which is performed relatively 

quickly (typically within 1000 to 2000 ms) and is made based on sensory 

evidence (Krulee, Podell, & Ronco, 1954; Newsome, Britten, & Movshon, 1989; 

Ulehla, 1966). 

 

Due to its central role in human cognition, a large body of research, in the fields 

of both psychology and neuroscience, has been dedicated to the understanding 

of perceptual decision-making, and a number of accounts have been suggested 

to explain the underlying mechanisms of how we make these decisions.  

 

1.1. Sequential Sampling Models 

 

One particularly influential concept in the field of perceptual decision-making 

has been that of sequential sampling models. This term describes a family of 

computational models which have a number of assumptions in common, at the 

core of which is the notion that perceptual decisions are made by sequentially 

integrating sensory stimuli and extracting decision-relevant information about 

the nature of the stimulus. This sensory evidence is accumulated over time and 

compared against a decision threshold. Once this threshold is reached, a 

decision is made and the appropriate response is initiated. While all sequential 

sampling models share the basic notion that sensory evidence is accumulated 

until a threshold is reached, there are a number of models that differ in 

important aspects, including complexity or the extent to which they are 
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neurophysiologically plausible. One aspect in which models within this 

framework differ is the nature of their stopping rule, which distinguishes 

between two types of models: random-walk models with a relative stopping rule, 

and accumulator models with an absolute stopping rule (Smith & Ratcliff, 2004).  

1.1.1.  Random-walk Models 

Random-walk models typically assume that, in a binary decision, evidence for 

both alternatives is integrated in a single accumulator. The accumulation 

process begins at a starting point located midway between two thresholds, each 

associated with one of the response alternatives, and evidence is accumulated 

to a single total, with evidence in favour of alternative ‘M’ reflecting evidence 

against alternative ‘N’. 

 

One example of a random-walk model is the Diffusion model, which is arguably 

the most commonly applied of all sequential sampling models (Ratcliff, 1978; 

Ratcliff & McKoon, 2008; see Figure 1.1). In this model, a single accumulator 

with a threshold at a distance of a/2 to either side of the starting point z, which is 

drawn from a uniform distribution with the range Sz, accumulates evidence over 

time according to a Wiener diffusion process. The accumulation profile is 

determined by the drift rate, which is drawn from a normal distribution with the 

mean v and the standard deviation η, as well as within-trial variability σ2. 

Therefore, when the process is discretised, the accumulation at a certain time 

point corresponds to the sum of the information at the previous time point, a 

systematic amount of information I and Gaussian noise with mean 0 and 

standard deviation σ. 

 𝑑𝑥 =  𝐼 + 𝑁(0, 𝜎2) (1.1.) 

The reaction time (RT) is defined by the time taken for the accumulation to 

reach the threshold, plus a non-decision time Ter which is uniformly distributed 

with a range of STer and accounts for any time used for sensory encoding and 

motor processing before and after the accumulation process respectively. 
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Figure 1.1: Diffusion model: a random-walk model in which accumulation begins at a starting point z and 
continues at an average rate v, towards one of two boundaries, each associated with a given response. 
The time taken to reach the boundary plus a non-decision time Ter determine the reaction time (RT). 
Additionally, the model assumes inter-trial variability, as z and Ter have a uniform distribution with the 
ranges Sz and STer, and v is normally distributed with the standard deviation η. Note that accumulation can 
also follow a downward trajectory (dotted line), depending on which alternative receives more evidence.  

 

The Diffusion model is one of the most prominent sequential sampling models 

and has been shown to account for behavioural data in a variety of paradigms, 

primarily in the context of perceptual decision-making tasks, such as lexical 

decision-making (Ratcliff, Gomez, & McKoon, 2004; Ratcliff, Thapar, & McKoon, 

2010), and discriminations of brightness (Ratcliff & Rouder, 1998), direction 

(Ratcliff & McKoon, 2008), and orientation (Smith, Ratcliff, & Wolfgang, 2004), 

but has also been shown to account for RT distributions in value-based 

decisions (Krajbich & Rangel, 2011; Milosavljevic, Malmaud, & Huth, 2010), 

reinforcement learning (Frank et al., 2015), and memory tasks (Ratcliff, Thapar, 

& McKoon, 2004).  

 

However, one of the major limitations of the Diffusion model is that, in its 

original form, it can only account for binary decisions and cannot be extended to 

choices with several alternatives. Since in a binary decision, evidence for both 

alternatives is integrated in a single accumulation process, it is not obvious how 

this model could account for more than two choices. A number of solutions have 

been suggested, most of which split the accumulation into several diffusion 

processes, each racing towards a boundary. This approach allows for the 

addition of an arbitrary number of processes. However, it does not follow the 

original assumptions as the inhibition between competing alternatives is lost 
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and has to be added to the model so that evidence added to one accumulator is 

subtracted from the other (Ratcliff, Smith, Brown, & McKoon, 2016). 

 

Additionally, the Diffusion model has been criticised for not being 

neurophysiologically plausible as it assumes that accumulation can occur with 

both a positive and a negative mean slope. In its original formulation, the 

Diffusion model was designed to account for behavioural data and did not claim 

to model neural processes. However, more recent research makes increasing 

use of sequential sampling models to explore neural correlates of decision-

making. Accumulation-to-bound processes like those predicted by sequential 

sampling models are now assumed to describe the activity of neural populations 

during decision-making (Smith & Ratcliff, 2004). Since this activity cannot drop 

below zero, or more specifically, can only drop to a limited extent based on the 

level of baseline activity, models which assume only positive accumulation are 

more appropriate to explain neural activity (Usher & McClelland, 2001). Overall, 

while the Diffusion model can account well for behavioural data in a range of 

decision-making tasks, it struggles to extend to more complex applications 

which are becoming increasingly relevant in the perceptual decision-making 

literature. 

1.1.2.  Accumulator Models 

The second type of sequential sampling model, namely the accumulator model, 

distinguishes itself from random-walk models primarily due to its absolute 

stopping rule. These models assume one accumulator for each response 

alternative, so that in a binary choice, evidence is accumulated in two separate 

totals. Both accumulators race towards a common threshold and the response 

is determined depending on which accumulator reaches the threshold first. 

Since accumulator models assume a separate accumulation process for each 

response alternative, they can easily be extended to decisions with any number 

of alternatives by simply adding accumulators. 

 

In a typical accumulator model, such as what we refer to as a race model, the 

integration of evidence in each accumulator starts at a starting point z, drawn 
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from a uniform distribution with range Sz, and accumulates towards a threshold 

A. The rate at which the evidence accumulates differs across accumulators and 

is given by the drift rates vm and vn for accumulators associated with response 

‘M’ and ‘N’ respectively, as well as noise σ2 (see Figure 1.2). The RT is defined 

by the time taken for the first accumulator to reach the threshold as well as a 

non-decision time Ter, drawn from a uniform distribution with the range STer. At 

each point in time, a given accumulator m accumulates the input evidence 

supporting its alternative Im, as well as noise so that the quantity accumulated at 

each time point is described by: 

 𝑑𝑥𝑚 =  𝐼𝑚 + 𝑁(0, 𝜎2) (1.2.) 

To remain physiologically plausible, this accumulation process is usually 

restricted to positive values at each time step.  

 𝑥𝑚(𝑡 + 1) = max (0, 𝑥𝑚(𝑡) +  𝑑𝑥𝑚) (1.3.) 

 

  

Figure 1.2: Race model: an accumulator model in which evidence for each alternative is accumulated in a 
separate accumulator. In both accumulators, accumulation begins at a starting point z (drawn from Sz) and 
accumulates at a rate v (one for each accumulator) towards a threshold A. The response time is 
determined by the time required for the fastest accumulator to reach A, plus a non-decision time Ter (drawn 
from STer). 

One of the most prominent examples of an accumulator model is the leaky 

competing accumulator model (LCA; Usher & McClelland, 2001). This model 

was designed to be as neurophysiologically plausible as possible and includes 

a leakage parameter, based on the finding that neural excitatory input currents 

decay over time (Abbott, 1991; Hodgkin & Huxley, 1990; Stein, 1967). Although 

this effect is decreased by recurrent self-excitation in populations of neurons, 

Usher and McClelland (2001) argued that his passive decay means that 

information is not integrated perfectly and that leaky integrators are a more 

physiologically plausible model of evidence accumulation. Additionally, the LCA 
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also implements physiological evidence suggesting lateral inhibition between 

neuronal populations (Desimone, 1998; Reynolds, Chelazzi, & Desimone, 

1999), by including a parameter for mutual inhibition between accumulators 

(see Figure 1.3).  

 

The model assumes that the integration of evidence in each accumulator starts 

at a starting point z, and races towards a threshold A. The quantity accumulated 

at each time point for a given accumulator m is therefore defined by the 

evidence input Im (as described above, Im and In are determined by the drift 

rates vm and vn for accumulators associated with response ‘M’ and ‘N’ 

respectively), the leakage over time k, inhibition from the other accumulator β, 

and noise σ2:  

  𝑑𝑥𝑚 =  𝐼𝑚 − 𝑘 𝑥𝑚 − 𝛽𝑥𝑛 + 𝑁(0, 𝜎2)  (1.4.) 

In line with a typical accumulator model and to further strengthen the neural 

plausibility of the LCA, a threshold function is added to prevent accumulation 

from dropping below zero. 

 𝑥𝑚(𝑡 + 1) = max (0, 𝑥𝑚(𝑡) + 𝑑𝑥𝑚) (1.5.) 

Like most other models, the LCA defines the RT of a given decision by the sum 

of time taken to reach the threshold and a non-decision time Ter.

  

Figure 1.3: Leaky competing accumulator (LCA) model: Left: An accumulator model in which evidence for 
each alternative is accumulated in a separate accumulator. The accumulators start at a starting point z and 
race towards a threshold A, at rates of vm and vn. Right: Unlike the race model presented in Figure 1.2, the 
accumulators ∑m and ∑n are not independent but inhibit each other (inhibition defined by β), and 
accumulated evidence input (I) is subject to leakage (k) over time. The response time is determined by the 
time required for the fastest accumulator to reach A, plus a non-decision time Ter. 

 

The LCA has been shown to accurately describe perceptual decision-making in 

tasks such as length or motion discriminations (Gao, Tortell, & McClelland, 

2011; Usher & McClelland, 2001), lexical decisions (Dufau, Grainger, & Ziegler, 
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2012), and value-based choices (Bogacz, Usher, Zhang, & McClelland, 2007), 

as well as choices with more than two alternatives (Niwa & Ditterich, 2008; 

Tsetsos, Usher, & Chater, 2010; Tsetsos, Usher, & McClelland, 2011). 

 

However, the complexity of the LCA compared to other, more commonly used 

sequential sampling models, while increasing the biological plausibility of the 

model, also entails disadvantages, as it does not have a known likelihood 

function, which implies that the model can only be fitted through the slow 

process of simulating data for each proposed set of parameters (Turner & 

Sederberg, 2014). Additionally, since the LCA has a relatively large number of 

parameters which, although conceptually different, have similar effects on the 

simulated RT, there can be a trade-off between them (in particular between 

inhibition and leakage) which makes it difficult to recover accurate parameters, 

suggesting that the model may be formally non-identifiable (Miletic, Turner, 

Forstmann, & Van, 2017). Nevertheless, the LCA is a commonly applied model 

and is particularly useful for accounting for more complex decisions, as well as 

for linking sequential sampling to neural processes. 

 

1.2. Neural Correlates of the Decision 

Variable 

 

Sequential sampling models were originally developed to account for RT and 

accuracy data and although some models, like the LCA, were designed to be 

physiologically plausible, the sequential sampling framework does not claim and 

was not developed to model neurobiology. Nevertheless, several neural signals 

have now been suggested to display characteristics of accumulation profiles 

similar to those predicted by sequential sampling models. Researchers now 

routinely explore the notion that sequential sampling occurs in the brain and 

reflects the neural mechanism underlying perceptual decision-making. 

 

There are a number of characteristics that identify a signal as a correlate of the 

decision variable, i.e. as a signal reflecting the accumulation-to-bound process 
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as defined by sequential sampling models. The most fundamental ones include 

the assumption that the signal should display overall accumulation-to-bound 

dynamics, i.e. it must build up over the course of the decision-making process, 

and peak at the time of response. Specifically, the peak amplitude should reach 

a stereotyped level which is constant across decisions, indicating the crossing 

of a set threshold. Additionally, a neural correlate of decision-making should co-

vary with the intensity of the physical stimulus. Decisions in which the quality of 

the sensory evidence is high (i.e. easy decisions) are, on average, associated 

with high drift rates and should therefore lead to steeper mean slopes in the 

neural signal and shorter RTs. There are a number of neural signals which have 

been suggested to meet these criteria and reflect an accumulation-to-bound 

process similar to the one predicted by sequential sampling models. 

 

1.2.1.  Neural Activity in Non-human Primates 

Neurophysiological research in non-human primates has been particularly 

successful at identifying such signals. This research provides rich data as it 

primarily makes use of single-unit recording, in which a microelectrode is 

inserted into the brain in order to record both spatially and temporally highly 

specific voltage changes, a method which is rarely applied in humans. A typical 

experiment exploring the decision-making process involves single-cell recording 

in behaving monkeys who engage in binary perceptual decisions and indicate 

their choices using saccadic eye-movements. A particularly commonly used 

perceptual decision-making task is the random dot motion task (see Figure 1.4). 

In this task, an array of moving dots is displayed on a screen, a proportion of 

which moves coherently in one direction while the remaining dots move in 

random directions. The monkey is trained to indicate the direction of the 

coherent motion by making a saccade into the same direction (Gold & Shadlen, 

2000; Newsome et al., 1989; Palmer, Huk, & Shadlen, 2005). 
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Figure 1.4: Typical decision-making experiment with non-human primates: after a fixation cross, the 
monkey is presented with a random dot motion task. In this task, a proportion of dots (here: 70%) move 
either to the left or to the right (here: right) while the rest of the dots move in random directions. The 
monkey identifies the direction of the perceived motion and indicates its response by making a saccadic 
eye-movement towards a target in the direction of the detected motion. 

 

A number of structures have been found to be recruited during these saccadic 

decisions. The middle temporal area (MT) is associated with the detection of 

visual motion, while the lateral intraparietal area (LIP), the frontal eye field 

(FEF), and the superior colliculus (SC) are associated with the control and the 

initiation of eye movements (Bruce & Goldberg, 1985; Maunsell & van Essen, 

1983; Segraves, 1992; Shadlen & Newsome, 1996). The firing rates of neurons 

in each of these areas have been associated with decision-related 

accumulation. For example, MT activity has been correlated with behavioural 

choice, i.e. a high firing rate in a given directionally selective MT neuron was 

shown to be related to an increased probability of the choice of that direction 

(Britten, Newsome, Shadlen, Celebrini, & Movshon, 1996). However, this 

relationship was found to be weak, and it has since been concluded that MT 

activity may represent the evidence, i.e. the input into the decision 

accumulators, rather than the decision variable itself (Ditterich, Mazurek, & 

Shadlen, 2003). 

 

Activity in the FEF, which, like the SC and the LIP, is innervated by MT and 

controls the selection of visual targets as well as the appropriate saccadic 

movements (Schall, 2002, Bruce & Goldberg, 1985), has been found to predict 

responses by reaching a stereotyped maximum, suggesting accumulation-like 

dynamics (Hanes & Schall, 1996). Microstimulation studies have further 

supported the role of FEF activity as a correlate of decision-making (Gold & 

Shadlen, 2000), but only when a specific motor response is associated with 

each choice (Gold & Shadlen, 2003). Similar dynamics have been reported for 
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neuronal activity in the SC, which has been associated with dynamics simulated 

by the Diffusion model (Ratcliff, Cherian, & Segraves, 2003). 

 

Similarly, a number of studies have suggested that activity in the LIP shows 

characteristics of the accumulation process predicted by sequential sampling 

models. Shadlen and Newsome (1996) recorded the activity of LIP neurons 

during a motion discrimination task and found that a subset of these neurons 

appeared neither sensory nor motor, but rather reflected the integration of 

decision-relevant sensory evidence. In a later study, the authors found that LIP 

activity predicted the saccadic eye movement the monkey used to indicate its 

decision, in both correct and incorrect trials. In those trials in which the motion 

was towards the response field of the LIP neurons, their activity built up over the 

course of the motion viewing and peaked at the time of the saccade. 

Additionally, the authors found that the magnitude of the build-up was 

dependent on the strength of the viewed motion, and concluded that these 

neurons accumulate sensory evidence to select an appropriate saccadic eye 

movement (Shadlen & Newsome, 2001). In a series of experiments, Shadlen 

and his colleagues strengthened this conclusion as they confirmed further 

characteristics of the decision variable to be consistent with LIP activity. For 

example, Huk and Shadlen (2005) found that briefly perturbing the strength of 

the decision-relevant evidence had a lasting impact, not only on the overt 

decision but also on the activity of LIP neurons, thereby supporting its role as 

the time integral of the sensory evidence. It was further found that LIP activity 

indicated the completion of the decision when it reached a stereotyped 

threshold (Roitman & Shadlen, 2002), even when further information was 

available (Kiani, Hanks, & Shadlen, 2008), that LIP activity may also reflect 

decision certainty (Kiani & Shadlen, 2009), and that it is linked to the speed-

accuracy trade-off (Hanks, Kiani, & Shadlen, 2014). Activity in the LIP is 

therefore generally viewed as a neural substrate of the accumulation process 

suggested by sequential sampling models. 

 

While research with non-human primates has provided valuable insights into the 

underlying mechanisms of perceptual decision-making, and has important 

advantages over research with human subjects, primarily due to the possibility 
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of employing invasive methods to record neural activity with great temporal and 

spatial resolutions, there are also clear limitations associated with animal 

research. While neurophysiological recordings in monkeys can give a unique 

insight into brain activity at a neuronal level, it provides no information about 

system-level activation. Since single-cell recordings can only measure changes 

at the targeted site while being blind to activity in even closely surrounding 

areas, this may give a false impression of the spatial selectivity of the neural 

substrates measured in this way. Additionally, monkeys have to be trained for a 

prolonged period of time in order to successfully perform even simple decision-

making tasks, such as motion discrimination tasks. This research is therefore 

limited to comparatively simple designs with arguably low ecological validity. 

Importantly, there are limitations in the interpretability of monkey data as, 

besides anatomical differences between monkeys and humans, the monkey’s 

behaviour may also differ as over-training may cause durable task-specific 

sensorimotor mappings which may cause monkeys to perform differently than 

they would in a spontaneous perceptual decision. Therefore, it is crucial to 

explore human perceptual decision-making directly. 

 

1.2.2.  Activity in the Human Brain 

Several lines of research have been dedicated to exploring perceptual decision-

making and identifying potential neural correlates of the decision variable in the 

human brain. There are a number of methodologies available to study human 

brain activity, each providing different insights but also different limitations to 

explore decision-making. 

1.2.2.1. Functional Magnetic Resonance Imaging  

One method which is commonly used to study human decision-making is 

functional magnetic resonance imaging (fMRI). Blood oxygenation level 

dependent (BOLD) fMRI is a non-invasive neuroimaging technique which 

measures brain activity by detecting local changes in blood oxygenation. As a 

given brain area becomes active, blood flow increases which in turn changes 

the ratio of oxyhaemoglobin to deoxyhaemoglobin. fMRI exploits the fact that 
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these two proteins have different magnetic properties in order to detect these 

local increases in relative blood oxygenation (Matthews & Jezzard, 2004). 

 

Functional imaging-based approaches have been useful in decision-making 

research as this method has a very high spatial resolution on a system-wide 

level and allows researchers to identify discrete brain structures as well as 

whole networks involved in different cognitive processes. This has been used to 

identify a number of brain regions involved in perceptual decision-making. For 

example, the pre-supplementary motor area and the striatum have been 

associated with decisions under time pressure (Forstmann et al., 2008, 2010), 

while it has been suggested that the ventromedial prefrontal cortex is involved 

in the processing of decision biases (Chen, Jimura, White, Maddox, & Poldrack, 

2015; Lopez-Persem, Domenech, & Pessiglione, 2016). 

 

A number of brain areas have also been suggested to be directly involved in the 

accumulation of decision-related evidence, and arguably resemble the decision 

variable. For example, Heekeren, Marrett, Bandettini, and Ungerleider (2004), 

found characteristics of a decision-related accumulation process in the left 

dorsolateral prefrontal cortex (DLPFC), as greater activity was observed during 

easy compared to hard decisions. Other researchers have suggested the 

inferior frontal sulcus (Noppeney, Ostwald, & Werner, 2010), the right insula 

(Ho, Brown, & Serences, 2009), as well as inferior temporal, frontal, and parietal 

regions (Ploran et al., 2007; Tosoni, Galati, Romani, & Corbetta, 2008) to be 

involved in the decision-related accumulation of evidence. In a review of studies 

which combined fMRI approaches with sequential sampling models, Mulder, 

van Maanen, and Forstmann (2014) identified a frontoparietal network as 

associated with evidence accumulation. However, the authors also noted large 

variations in identified regions.  

 

It is important to note that fMRI measures brain activity indirectly through 

changes in blood oxygenation, which respond slowly compared to 

electrophysiological signals. This low temporal resolution implies that signals 

have to last several seconds to be detected by fMRI, which makes it difficult to 

observe the dynamics of fast perceptual decisions, which usually do not take 
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longer than one second. To identify signals which may represent evidence 

accumulation, fMRI research therefore relies on a number of assumptions, 

which can make the interpretation of findings problematic. Specifically, it 

remains unclear how decision variable signals such as those identified in non-

human primates would translate into BOLD response patterns. One particularly 

controversial assumption has been made by studies which claim that, since 

easier decisions are associated with steeper accumulation, the amplitude of the 

BOLD response in an accumulation-related region should be greater for easy 

compared to hard trials (Heekeren et al., 2004). Other authors have made the 

opposite assumption and argue that, given that activity falls off after a response 

is made, prolonged activity in hard decisions leads to a greater total activity and 

therefore a larger BOLD signal (Ho et al., 2009).  

 

Although there seems to be a consensus regarding the involvement of frontal 

and parietal structures in the decision-related accumulation of evidence (Mulder 

et al., 2014), methodological inconsistencies and the associated large variety of 

brain regions suggested to be involved in accumulation make an interpretation 

difficult. Overall, fMRI provides the best spatial resolution in human imaging 

studies and is a useful tool to identify which brain regions are associated with 

decision-making. However, its comparatively poor temporal resolution makes 

fMRI less suitable to explore the dynamics of a decision variable which changes 

on a millisecond timescale. 

1.2.2.2. Electroencephalography and Magnetoencephalography 

An alternative to fMRI research is provided by electroencephalographic (EEG) 

and magnetoencephalographic (MEG) recordings. These techniques do not 

offer the same spatial resolution as fMRI data and are not able to identify 

specific brain regions. However, their high temporal resolution, which allows for 

the measurement of brain activity on a millisecond-by-millisecond basis, makes 

them a more appropriate choice to directly track decision variable signals which 

can build up and reach their maximum within hundreds of milliseconds.  

 

EEG is a non-invasive technique, which, unlike fMRI, directly measures 

electrical activity in the brain, using electrodes on the scalp. A given individual 
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neuron receives and sends signals which are primarily electrical in nature. The 

neuron’s electrical activity is comprised mainly of action potentials and 

postsynaptic potentials. Action potentials are discrete voltage spikes which are 

triggered in the cell body and travel, unchanged in amplitude, along the axon to 

the axon terminals where they cause the release of neurotransmitters into the 

synaptic cleft. When these neurotransmitters bind to the postsynaptic neuron, 

they alter the ion permeability of the membrane which leads to graded changes 

in voltage, called postsynaptic potentials. Both postsynaptic potentials and 

action potentials of individual neurons are far too small to be picked up by 

electrodes placed on the scalp. However, in the cerebral cortex, large numbers 

of pyramidal cells are oriented perpendicular to the cortical surface. Therefore, 

when a population of cells is active, postsynaptic potentials, which are more 

durable than action potentials, summate and can be recorded from the scalp. 

Typically, a total of 64 electrodes are placed on the scalp according to a 10-20 

system (Jasper, 1958), which defines the location of the electrodes based on 

the distance between adjacent electrodes as either 10% or 20% of the front-

back of left-right distance of the skull (although other systems, such as the 

equidistant montage, are also commonly used).  

 

One of the most commonly applied ways to analyse EEG data is to segment it, 

time-lock each segment to a specific event, typically the stimulus onset, and 

take the mean of all segments in order to average out any activity which is not 

time-locked and therefore arguably not functionally related to the event. The 

resulting waveform is referred to as an event-related potential (ERP) and can be 

defined as a set of potential changes in response to a specific experimental 

variable (Donchin & Heffley, 1978). Alternatively to its temporal form, a Fourier 

transform can be used to analyse EEG data with regards to its spectral 

components. The Fourier transform is based on the notion that any waveform 

can be decomposed into a number of sinusoidal functions of different 

frequencies. In the context of EEG, the data are typically represented as a set 

of oscillations and interpreted in the context of a number of predefined 

frequency bands, namely the delta (< 4 Hz), theta (4-8 Hz), alpha (8-14 Hz, 

although low alpha frequencies are sometimes referred to as mu), beta (14-31 

Hz), and gamma (> 31 Hz) bands.  
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MEG measures brain activity in a similar way to EEG and produces comparable 

data. However, instead of measuring electrical activity, it records magnetic 

fields produced by electrical currents. This can be advantageous as magnetic 

fields are less influenced by passing through the skull and other tissues. 

Nevertheless, MEG and EEG record very similar data which are commonly 

analysed in the same way, providing similar insights. Note that, in the following, 

we often refer only to EEG (primarily because it is the method we chose in this 

project), but the same signals and conclusions largely apply to MEG data. 

 

A range of studies using both EEG and MEG have been conducted to explore 

decision-making. For example, a series of experiments by Philiastides and 

colleagues, who used face-car discrimination tasks, identified an early (170 ms) 

and a late (300 ms) ERP component as decision-relevant (Philiastides, Ratcliff, 

& Sajda, 2006; Philiastides & Sajda, 2007; Philiastides & Sajda, 2006). 

However, these components were interpreted as reflecting processes which 

occur prior to accumulation itself (Ratcliff, Philiastides, & Sajda, 2009). 

Additionally, results from regressor-based approaches have suggested, for 

example, that evidence accumulation correlates with spectral power in the theta 

band (van Vugt, Simen, Nystrom, Holmes, & Cohen, 2012), and that the 

encoding of decision-relevant evidence fluctuates with parietal oscillations in the 

delta band (Wyart, de Gardelle, Scholl, & Summerfield, 2012). 

 

In the search for M/EEG correlates of the decision variable, a number of studies 

have explored signals which are associated with motor preparation. Contrary to 

previous formulations which assumed that response preparation followed the 

decision formation in a serial fashion (Donders, 1969; Sternberg, 1969), there is 

now considerable converging evidence to suggest that sensorimotor decisions 

can be observed in the same brain regions which prepare and execute the 

motor response, both from research using neurophysiological methods in non-

human primates (Cisek & Kalaska, 2005; Romo, Hernandez, & Zainos, 2004), 

and human EEG signals (Donner, Siegel, Fries, & Engel, 2009; Kelly & 

O’Connell, 2013). These findings suggest that the level of accumulation at any 
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given time is continuously fed forward into the motor system and reflected in the 

level of response preparation.  

 

This has led to the suggestion that event-related desynchronisation (ERD) in 

the beta frequency may correlate with decision-related accumulation (Donner et 

al., 2009). Oscillations of this frequency are known to decrease in power over 

the premotor cortex, primarily contralateral to the response, when a motoric 

response is prepared (Doyle, Yarrow, & Brown, 2005; Jasper & Penfield, 1949; 

Pfurtscheller, 1981; Zaepffel, Trachel, Kilavik, & Brochier, 2013). Since this 

signal is known to reflect the preparation of a motoric response, it should also 

reflect the decision-related accumulation of evidence, assuming that the 

decision variable is visible in the motor system. Donner et al. (2009) were able 

to demonstrate this by recording MEG during a random dot motion task. They 

found that activity in the beta frequency displayed a ramp-like profile, similar to 

the gradual build-up predicted by sequential sampling models and that this 

activity predicted the decision several seconds prior to the response. The 

significance of beta ERD in decision-making has since been supported in a 

number of studies, reporting its sensitivity to uncertainty (Tzagarakis, Ince, 

Leuthold, & Pellizzer, 2010), and bias (de Lange, Rahnev, Donner, & Lau, 

2013), as well as its reaching of a stereotyped maximum before the response 

(Kubanek, Snyder, Brunton, Brody, & Schalk, 2013).  

 

Another EEG signal which has a known link to motor preparation and has been 

suggested to reflect accumulation is the lateralised readiness potential (LRP), 

an ERP component, recorded over the motor cortex (Ikeda & Shibasaki, 1992; 

Kornhuber & Deecke, 1965). The LRP is the lateralised part of the slow 

negativity which is observed during the preparation of a limb movement, which, 

like beta ERD, is stronger on the hemisphere contralateral to the movement, 

and has more recently been linked to decision-making (Noorbaloochi, Sharon, & 

McClelland, 2015; Rinkenauer, Osman, Ulrich, Muller-Gethmann, & Mattes, 

2004). Importantly, it has also been suggested that the LRP closely follows an 

accumulation profile as predicted by sequential sampling models (Kelly & 

O’Connell, 2013; Polanía, Krajbich, Grueschow, & Ruff, 2014). 
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However, it is important to note that both signals, beta ERD and LRP, are 

signals of motor preparation and can only track the decision formation if the 

decision is associated with a specific motor response. Decisions which do not 

require overt, typically hand, movements, as well as decisions in which the 

stimulus-response mapping is not known during the accumulation process, 

cannot be explored using these signals (O’Connell, Dockree, & Kelly, 2012; 

Twomey, Kelly, & Connell, 2016). This dependence on the associated response 

demonstrates that these motor preparation signals can, at best, reflect a down-

stream process similar to accumulation, but that the accumulation process itself 

occurs in a different brain region.  

 

One signal which has been proposed to reflect accumulation itself is an ERP 

component called centroparietal positivity (CPP; O’Connell et al., 2012). As the 

name suggests, this ERP is recorded over parietal electrodes and shows a 

large, slow positivity, which has been suggested to reflect the decision-related 

accumulation of evidence. O’Connell et al. (2012) used a gradual target 

detection task and found that the CPP displayed a profile which built up 

gradually over the course of the decision, before reaching a stereotyped 

maximum which predicted the response time. In a follow-up study using a 

random dot motion task with different levels of difficulty (i.e. different levels of 

motion coherence) it has also been shown that the rate at which the build-up 

occurs depends on the quality of the sensory evidence, further supporting the 

CPP’s role as a decision variable signal (Kelly & O’Connell, 2013; O’Connell et 

al., 2012; see Figure 1.5). Importantly, the authors were able to fully dissociate 

the CPP from other EEG signals which are associated with sensory and motor 

processing, and found that, unlike sensory signals, the CPP displays the 

accumulation profile only when the sensory evidence is decision-related, and, 

unlike motor signals, does so even when no motor response is required 

(O’Connell et al., 2012; Twomey et al., 2016). Additionally, the CPP has been 

shown to display the same waveform in both visual and auditory decision-

making. Together, these findings suggest that the CPP provides insight into the 

decision-related accumulation of evidence, independent of modality or stimulus-

response mappings. 
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Figure 1.5: CPP (Kelly & O’Connell, 2013): from left to right: stimulus-locked CPP, response-locked CPP, 
and ERP topography. Waveforms in different colours are associated with different levels of difficulty (20%, 
35%, 50%, and 70% coherence in a random dot motion task). The CPP builds up at a rate which depends 
on the level of difficulty and peaks at a stereotyped maximum at the time of response. The topoplot on the 
right shows the centroparietal location of the positivity (figure slightly edited from Kelly and O’Connell 
(2013)). 

Note that the CPP has been suggested to be equivalent to the P300, a well-

researched sensory-evoked centroparietal, positive ERP component which 

peaks between 300 and 600 ms after the onset of a task-relevant stimulus 

(Sutton, Braren, Zubin, & John, 1965; Twomey, Murphy, Kelly, & O’Connell, 

2015). Although the P300 has been researched in the context of decision-

making before, its exact functional relevance remained unclear, with most 

researchers merely arguing its involvement in stimulus processing 

(Nieuwenhuis, Aston-Jones, & Cohen, 2005; Pritchard, 1981). Although it is not 

yet clear whether all characteristics observed in studies utilising the P300 are 

consistent with accumulation-to-bound processes (Summerfield & Tickle, 2015), 

its potential equivalence with the CPP provides an interesting new perspective. 

 

Although there is compelling evidence to suggest that the CPP is indeed an 

electrophysiological marker of evidence accumulation, alternative 

interpretations of the findings have been proposed. One contentious issue is 

that the CPP only predicts the time of the decision, but not the outcome, i.e. 

based on the CPP alone, choices for one alternative are indistinguishable from 

choices for another alternative. This led to the suggestion that the CPP may not 

reflect evidence accumulation, but rather confidence in the decision, as a 

decision variable is expected to predict the decision outcome, while confidence 

in the decision is non-selective (Urai & Pfeffer, 2014). However, it is important to 

note that the nature of EEG recordings does not allow us to distinguish between 

the activities of populations of neurons in close spatial proximity to each other. If 
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we hypothesise that a process close to that proposed by sequential sampling 

models is indeed taking place in centroparietal regions, an assumption which, 

due to its limited spatial resolution cannot be confirmed by EEG, we might 

assume that in a binary choice, there are two pools of neurons, one 

accumulating the evidence for each alternative. Even in this case of a true 

decision variable in centroparietal regions, volume conduction would lead EEG 

electrodes to record a summation of both accumulators, resulting in a signal not 

dissimilar to the CPP.  

1.2.2.3. Transcranial Magnetic Stimulation 

Recently, a third approach to explore neural dynamics during decision-making 

in the human brain, namely transcranial magnetic stimulation (TMS), has 

become more relevant. TMS is a form of brain stimulation which can be used to 

disrupt activity in a given brain area and thereby identify its function. For 

example, Philiastides, Auksztulewicz, Heekeren, and Blankenburg (2011) used 

this approach to identify the DLPFC as a relevant region in the decision-making 

process. However, this TMS method can only provide insight into the 

involvement of a given brain region, and cannot track an evolving accumulation 

process over time. 

 

Therefore, a different approach has recently been suggested. This approach 

uses TMS in order to measure the build-up of response preparation during 

decision-making. When TMS is applied over the motor cortex, it can induce 

electrical responses in the muscle associated with the stimulated region, called 

motor evoked potentials (MEPs). These responses were first observed during 

the 1980s using a technique called transcranial electric stimulation, which had 

similar effects to TMS, but large practical limitations, primarily because brief 

high-voltage electric shocks on the scalp made the procedure painful (Merton & 

Morton, 1980; Merton, Hill, Morton, & Marsden, 1982). Shortly thereafter, 

Barker, Jalinous, and Freeston (1985) developed TMS, in which a coil of wire is 

connected to an electrical capacitance, which, when discharged, causes a brief, 

large current pulse in the coil. This current causes a magnetic field oriented 

perpendicular to the coil, which in turn causes an electric field leading to current 

flows parallel to the coil in any conductive structures in close proximity. When 
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the coil is placed on the scalp, the magnetic field is only minimally impeded by 

the skull and is therefore able to produce currents in the brain. When a TMS coil 

is placed over the motor cortex and a current is produced in the primary motor 

cortex (M1), it can elicit contractions in contralateral, typically hand, muscles 

(Barker et al., 1985; Rothwell, Day, Thompson, Dick, & Marsden, 1987). 

 

Importantly, the magnitude of these contractions can give insight into the level 

of motor preparation in M1 and adjacent premotor areas, as the MEP amplitude 

is a direct indicator of corticospinal excitability (Bestmann et al., 2008; Hadar, 

Makris, & Yarrow, 2012; Kiers, Fernando, & Tomkins, 1997). It has now been 

suggested that this measure of motoric preparation can be used to track the 

decision variable (Hadar, Rowe, Di Costa, Jones, & Yarrow, 2015). This claim is 

based on the same arguments that support tracking of motor-related EEG 

signals, such as the LRP, as a correlate of the decision variable, i.e. that 

response-related motoric activation does not follow the decision formation in a 

serial fashion as previously suggested (Donders, 1969; Sternberg, 1969), but 

instead occurs throughout the decision-making process, with accumulation 

constantly being fed forward into the motor system (Coles, Gratton, Bashore, 

Eriksen, & Donchin, 1985; Gluth, Rieskamp, & Büchel, 2013; Hadar et al., 2012; 

Michelet, Duncan, & Cisek, 2010; Servant, White, Montagnini, & Burle, 2015). 

Together, these findings imply that the level of accumulation for a given 

alternative at any given time point is reflected in the level of preparation of the 

corresponding response, which can be measured using recordings of MEPs. 

 

Supporting this claim, Michelet et al. (2010) explored MEPs during an Eriksen 

flanker task, in which arrows indicating the appropriate response were either 

presented alone or surrounded either by congruent arrows which pointed in the 

same direction as the target arrow, or incongruent arrows, which pointed in the 

opposite direction and had to be ignored. TMS was applied at a number of time 

points throughout the decision-making process. It was found that, when the 

target arrow was not surrounded by incongruent arrows, the MEP size in the 

responding muscle increased over the course of the decision while the MEP 

size in the non-responding muscle decreased. In the incongruent condition, on 

the other hand, the same pattern was preceded by an initial increase in the non-
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responding muscle. These findings suggest that MEP size reflects accumulation 

as it not only increases over the course of the decision but also dynamically 

tracks the evolution of the decision in incongruent trials. Importantly, the authors 

also found that MEP amplitudes reached a constant maximum immediately prior 

to the response across conditions, suggesting an accumulation-to-bound 

dynamic similar to the one predicted by sequential sampling models. Similarly, 

Klein-Flugge and Bestmann (2012) found that the difference in MEP amplitudes 

in the responding muscle compared to the non-responding muscle predicted the 

decision prior to the completion of the decision formation, and Klein, Olivier, and 

Duque (2012) found that MEP amplitudes were sensitive to decision biases, 

further supporting the potential role of corticospinal excitability as a correlate of 

the decision variable. 

 

One limitation of using MEP amplitudes to track the accumulation process in 

this way is that stimulation can only occur at discrete time points and only one 

MEP at one time point can be retrieved from each decision-making process, 

which makes it difficult to reveal the continuous dynamics of a decision variable. 

Hadar et al. (2015) addressed this limitation. In a perceptual discrimination task 

in which participants were asked to categorise faces as either male or female, 

TMS pulses were applied at random time points throughout the decision-making 

process. Although only one MEP could be sampled per trial, MEPs from all trials 

were pooled, sorted by latency, and smoothed using a Gaussian kernel, 

allowing the authors to recover a continuous time-varying MEP signal, 

comparable to an ERP component. It was found that more difficult 

categorisations were associated with longer motoric activity in the responding 

muscle than easier ones. The authors also fitted a Diffusion model to their data 

and identified similarities between the simulated accumulation profile based on 

the model and the MEP signal, further supporting the conclusion that the MEP 

signal reflects decision-related accumulation. 

 

This methodology to use TMS to induce MEPs and measure their amplitude as 

a correlate of decision-making is an interesting new approach to explore 

decision-making. However, to date, only a small number of studies have 

explored this MEP signal, and more research is needed to validate its role as a 
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decision variable. Nevertheless, it provides advantages over more established 

EEG or fMRI methods due to its spatial and temporal resolution. TMS methods 

provide great temporal resolution, although it is important to note that this is 

limited by the number of stimulations and their timing. Additionally, while EEG 

provides little information about the anatomical structures producing recorded 

signals, we can be confident that MEPs reflect activation in M1, and potentially 

also in premotor structures (Ahdab, Ayache, Brugières, Farhat, & Lefaucheur, 

2016). However, its motor-specificity also implies that the MEP method can only 

give insight into decisions which involve a motor response, which limits its 

applicability. Nonetheless, initial findings suggest that it is a promising new 

method to track decision-making. 

 

1.3. Model-based Analysis of Neural Signals 

 

As outlined above, perceptual decision-making has been studied extensively in 

the fields of experimental psychology, mathematical psychology, and cognitive 

neuroscience, each focusing on behavioural data, formal models, and neural 

data respectively, and contributing to our understanding of decision processes. 

More recently, however, the importance of combining all three approaches to 

gain better insights into perceptual decision-making has become increasingly 

apparent. This triangulation of methods (sometimes referred to as model-based 

cognitive neuroscience; Forstmann, Wagenmakers, Eichele, Brown, & 

Serences, 2011) provides several obvious advantages over traditional 

approaches. For example, mathematical models can break a complex cognitive 

process into several separate mechanisms, which are easier to test using 

neural data. An example of this is the introduction of bias in decision-making. 

Biased decisions are known to lead to faster RTs (Hick, 1952), but it is not clear 

how this difference in RT could be achieved in the brain, as possibilities include 

that sensory evidence which supports an existing bias could be integrated faster 

due to an attentional bias, or that decision processes could remain unchanged 

while only the biased response is prepared and therefore executed faster. 

Mathematical models, on the other hand, predict that biases are implemented 
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by reducing the amount of evidence required to form the decision (Bode et al., 

2012; Gao, Zheng, & Wang, 2010; Leite & Ratcliff, 2011). Applying this 

knowledge to neuroimaging data allows for clear, testable predictions, and 

therefore greater insights into perceptual decision-making in the brain. 

 

Conversely, neural data can be used to inform mathematical models. An 

example of this has been highlighted by Ditterich (2010), who set out to 

evaluate a variety of sequential sampling models and their ability to account for 

behavioural data in decisions with multiple alternatives. He found that a number 

of different models explained the data equally well while assuming different 

underlying mechanisms. However, it was emphasised that this does not render 

these models indistinguishable, as, while they make similar behavioural 

predictions, their internal dynamics displayed marked differences, necessitating 

the comparison to neural data to identify the best model. 

 

To date, the majority of neuroimaging studies which explore perceptual 

decision-making, including those that aim to identify neural correlates of the 

decision variable, have not made use of this inter-disciplinary approach. While 

virtually all studies reported thus far have explored and evaluated neural signals 

in the context of the sequential sampling model framework, the vast majority of 

these studies have relied solely on conceptual predictions made by these 

models without applying them directly. fMRI research is arguably an exception 

as it commonly applies sequential sampling models and uses variations in 

model parameters to identify brain regions associated with accumulation (for a 

review, see Mulder et al., 2014). However, as outlined above, fMRI is not a 

suitable method to directly track the dynamically evolving decision variable. 

 

M/EEG methods, on the other hand, are more useful to identify neural 

correlates of the accumulation process but have rarely been combined with 

mathematical modelling. Of course, any study exploring potential neural 

substrates of the decision variable, which is defined only by sequential sampling 

models, necessarily does so in the context of these models. However, many 

studies do not fit sequential sampling models to their data and instead, rely on a 
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conceptual understanding of the models to make solely intuitive predictions 

which are then tested using neural data. 

 

For example, it is well-established that accumulation, as described by 

sequential sampling models, builds up gradually over the course of the decision 

and peaks at the time of response. Additionally, it has repeatedly been 

demonstrated that task difficulty, i.e. the quality of the sensory information 

during a perceptual decision, influences the drift rate in sequential sampling 

models, with easier decisions being associated with steeper accumulation 

profiles (Donkin, Averell, Brown, & Heathcote, 2009; Ratcliff & McKoon, 2008; 

Ratcliff & Rouder, 1998). These concepts have been used in a number of 

neuroimaging studies to identify neural correlates of the decision variable based 

on their shape, and without applying the models directly (Donner et al., 2009; 

O’Connell et al., 2012; Twomey et al., 2016). 

 

While this approach has been successfully adding to our understanding of 

perceptual decision-making in the brain, it is difficult to apply to more complex 

designs. In simple and fast binary decisions based on stationary evidence, it is 

comparatively easy to predict the shape of the accumulation process, and the 

manipulation of decision difficulty has consistently been shown to have the 

same impact on the accumulation profile. However, more recently, research is 

moving on to more complex, more ecologically valid designs, as both 

neuroscience and modelling studies have showed increasing interest in designs 

including decisions under different levels of speed pressure, decision biases, 

and decisions with multiple alternatives (Bogacz, Wagenmakers, Forstmann, & 

Nieuwenhuis, 2010; Churchland, Kiani, & Shadlen, 2008; Mulder, 

Wagenmakers, Ratcliff, Boekel, & Forstmann, 2012; Summerfield & de Lange, 

2014; Tsetsos et al., 2011). 

 

To study these more complex forms of perceptual decision-making, the 

collaboration of disciplines is crucial. This is particularly important when neural 

data is used to explore the decision variable. With increasing complexity in the 

design, and importantly, increasing complexity in sequential sampling models, 

implementing nonlinearities such as inhibition between alternatives, it becomes 
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increasingly difficult to make intuitive predictions about the profile of the 

decision variable. With complex relationships between parameters, different, 

equally likely models can predict qualitatively different accumulation profiles 

which cannot be predicted by conceptual reasoning alone (Ditterich, 2010).  

 

Additionally, even a specific model can make different predictions depending on 

how a specific paradigm is implemented. With the exception of the manipulation 

of difficulty, most experimental manipulations of decision-making can be 

explained by a given model in a number of different ways. An example of this is 

the implementation of response caution, which is modelled by varying the 

amount of evidence that needs to be accumulated to reach a decision (Brown & 

Heathcote, 2008; Marshall, Bogacz, & Gilchrist, 2012). While sequential 

sampling models, by convention, vary the decision threshold to achieve this 

effect, varying the starting point instead would lead to mathematically equivalent 

results, while producing different accumulation profiles. Therefore, it is important 

for studies investigating neural correlates of decision-making using complex 

designs to directly apply models to their data, rather than merely using the 

sequential sampling model framework as a basis for intuitive hypotheses. 

 

A number of ways have been suggested to combine neuroimaging and 

sequential sampling models. For example, studies have fitted models to RT 

data and compared the resulting parameter values to specific properties in the 

signal (Gluth et al., 2013; Kelly & O’Connell, 2013). An arguably more 

informative approach is to use the estimated parameters to simulate the 

corresponding mean accumulation profile and directly compare its shape to the 

trajectory of the neural signal (Hadar et al., 2015; Twomey et al., 2015). 

Although this approach has been implemented in only a small number of 

studies to date, it allows for a direct comparison of the whole waveform with 

model predictions, without requiring speculations about the decision variable, 

and allows for a better evaluation of neural correlates of accumulation.  
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1.4. Current Project 

 

In the light of this research, we set out to explore human perceptual decision-

making and improve our understanding of sequential sampling in the human 

brain. Although perceptual decision-making has been researched for decades 

and in several disciplines, a number of questions remain unanswered, and a 

consensus regarding the neural mechanism underlying, particularly human, 

decision-making is yet to be reached. We therefore aimed to explore human 

brain activity during sensorimotor choices, shed light on some of the remaining 

questions, and improve our understanding of decision-making mechanisms. 

 

Firstly, we aim to address the basic question of whether the accumulation 

process described by sequential sampling models (a mathematical abstraction) 

occurs concretely in the human brain. Sequential sampling models make no 

claims regarding neural processes and are instead designed to account only for 

behavioural data. Nevertheless, a large body of research has confirmed that 

accumulation-like processes can be tracked using firing rates of neurons in 

oculomotor structures in non-human primates. However, a similar consensus 

has not been reached regarding the human brain. Although we can speculate 

that neural processes in non-human primates are similar to those in the human 

brain, this speculation is questionable as monkeys require prolonged training to 

complete decisions which humans perform after simple instructions, which may 

lead to differences in sensorimotor mappings between humans and monkeys. 

 

Nevertheless, neural correlates of the decision variable in the human brain have 

only recently become a topic of interest, not least because researchers are 

limited by the methodologies available for human research, and cannot track 

neural firing rates the way researchers can in non-human primates. Given the 

most commonly used methods of neuroimaging in humans, namely fMRI and 

M/EEG, researchers have to choose between good spatial and temporal 

resolution. While a high spatial resolution is important to identify structures 

involved in decision-making, a high temporal resolution is crucial to track the 

very fast evolving decision-variable, making M/EEG methods the most suitable 
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approach to study accumulation in the human brain. However, although this 

method has been used in this context for several years, and a number of 

signals have been proposed to be relevant, there is no consensus regarding 

which signal best reflects decision-related accumulation.  

 

Overall, human research appears to lag behind research in non-human 

primates, in which a link between sequential sampling models and neural 

activity has already been established. We therefore aim to answer the primary 

question whether sequential sampling occurs in the human brain. We 

hypothesised that accumulation-to-bound dynamics like those predicted by 

sequential sampling models occur in the human brain and can be observed 

using EEG and TMS methods. 

 

Secondly, given that decision-related accumulation can be tracked in the human 

brain we addressed the question of which signal best describes this process. In 

particular, we tested two signals which we deemed most promising, namely 1) 

the CPP and 2) the MEP signal reflecting excitability of motor areas. The CPP is 

of particular interest as claims have been made that it tracks the decision-

related accumulation process directly and independently of sensory or motor 

processes (O’Connell et al., 2012). However, to date, it is not well-established 

and has not been tested under a large variety of manipulations. Additionally, it 

tracks accumulation as a whole and is not able to distinguish between response 

alternatives. 

 

For the MEP signal, on the other hand, the claim is not that it displays 

accumulation directly, but instead, that it reflects a down-stream representation 

in the form of response preparation. We used a TMS method to generate 

smoothed MEP signals to track accumulation in the motor system, following the 

same approach as Hadar et al. (2015). This signal is not well-established but 

may be a promising tool, as its high temporal resolution implies that it can track 

the decision variable, without being limited in its spatial resolution like M/EEG 

signals. This implies that, to our knowledge, it is the only signal which allows us 

to track the evolution of individual responses in humans with more than two 

alternatives (there are EEG signals which reflect motor preparation and can be 
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used to track individual responses, but the very low spatial resolution of this 

method limits this to binary decisions).  

 

Therefore, by exploring the question of which signals in the human brain track 

the decision-related accumulation of evidence, we not only tested the 

usefulness of different EEG signals, and in particular the CPP, but also explored 

whether accumulation is fed forward into motor systems. We hypothesised on 

the one hand, that the CPP can be used to track the decision variable, 

suggesting a parietal locus of accumulation, but on the other hand, that down-

stream accumulation can also be observed in motor areas which are related to 

the preparation of the response and can be tracked using MEP signals. 

 

Thirdly, having established the validity of the chosen neural substrates of the 

decision variable, we explored the question of how the accumulation process 

reacts to a number of manipulations. Specifically, in the following chapters we 

tested the effect of the speed-accuracy trade-off, difficulty, non-stationary 

evidence, decision biases, and multiple alternatives on the neural accumulation 

profile. Each of these manipulations represents a step towards ecological 

validity as in everyday decisions we rarely choose between two well-defined 

and opposite alternatives the way decision-making is commonly operationalised 

in the lab. Some of these manipulations, such as the speed-accuracy trade-off 

have previously been explored but conclusions remain controversial (Hawkins, 

Wagenmakers, Ratcliff, & Brown, 2015; Heitz, 2014), while others, such as 

multi-alternative decision-making, have, to our knowledge, not yet been 

explored in the human brain. We hypothesised that the neural correlates of the 

decision variable are sensitive to these manipulations and display changes in 

their profile which are consistent with sequential sampling model parameter 

changes which explain the associated behavioural differences. 

 

Fourthly, intertwined with these previous questions but perhaps of greatest 

importance, we address the question of exactly how similar the neural 

substrates of accumulation are to the accumulation predicted by sequential 

sampling models. As discussed in section 1.3, the evaluation of neural 

accumulation signals based on conceptual reasoning can only be informative 
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for basic paradigms. In order to understand the underlying mechanisms of 

perceptual decision-making, we need to make use of both neuroimaging and 

sequential sampling models. We therefore combined these approaches by 

fitting sequential sampling models to behavioural data and using the resulting 

parameter values to simulate accumulation profiles and directly compare them 

to the associated neural signals. In this way we set out to not only evaluate 

neural signals, but also, in return, to inform sequential sampling models, and 

gain a more holistic understanding of decision-making mechanisms. We 

hypothesised that the waveforms of both the CPP and the MEP signal would 

display strong qualitative similarities to the simulated accumulation profile 

predicted by sequential sampling models. 

 

Overall, we explored human perceptual decision-making using both neurometric 

measures and sequential sampling modelling of behavioural data. We report 

our findings using the following structure. In Chapter 2, we explored the impact 

of the speed-accuracy trade-off on perceptual decision-making. In two 

experiments, we compared the predictions made by a race model to both the 

CPP, and an MEP signal. Since both neurometric signals contradicted model 

predictions in the same way, we proposed a novel implementation of the speed-

accuracy trade-off in sequential sampling models which is able to account for 

both behavioural and neural findings. Since the shape of the CPP in Chapter 2 

did not support the traditional implementation of the speed-accuracy trade-off in 

sequential sampling models, in Chapter 3 we tested the CPP’s role as a 

correlate of accumulation using a more well-established manipulation, namely 

difficulty, and compared it to other EEG signals which have previously been 

suggested to reflect the decision variable. We concluded that the CPP does, in 

fact, reflect accumulation better than a number of other EEG signals. To further 

test the role of the CPP in decision-making, and test the effects of a range of 

conditions, in Chapter 4, we explored its shape using less commonly used 

manipulations, namely decisions with non-stationary evidence and biased 

decisions, and directly compared the resulting waveforms to simulated mean 

accumulation paths. Finally, in Chapter 5, we explored decision-making with 

multiple alternatives. To this end, we chose a TMS method due to its greater 

spatial selectivity compared to EEG measures. Using this method, we were able 
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to track the evolution of each of four response alternatives, which displayed 

great similarities with decision variable simulations made using the LCA model. 

We conclude in Chapter 6 and discuss the role of both of the neural correlates 

of the decision variable used here. We emphasise the importance of combining 

approaches from different disciplines in order to gain insights into human 

decision-making. 
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2. Exploring Neural Correlates of Decision-

Making under Speed/Accuracy Instructions 

 

Every day, we are faced with countless decisions, each requiring an appropriate 

compromise between speed and accuracy. Striving for accuracy necessitates 

lengthy deliberation, but environmental time pressures may force us to make 

quick, more error-prone decisions. This relationship, referred to as the speed-

accuracy trade-off (SAT, Garrett, 1922; Hick, 1952; Wickelgren, 1977), has 

been demonstrated in a number of settings and appears to be a ubiquitous 

finding across experimental tasks and even species (Chittka, Dyer, Bock, & 

Dornhaus, 2003; Heitz & Schall, 2012; Ivanoff, Branning, & Marois, 2008).  

 

The majority of research investigating the SAT has done so in the context of 

perceptual decision-making, partly because these comparatively simple, quick 

decisions allow for a great level of control in experimental settings, but 

importantly also because mathematical models of perceptual decision-making 

offer useful explanations for behavioural findings associated with the SAT. 

Perceptual decisions describe choices that are relatively fast (usually < 1000 

ms) and based on sensory evidence (Newsome et al., 1989). According to a 

group of models called sequential sampling models, we make these decisions 

by accumulating sensory evidence over time, until a set decision threshold is 

reached. Once the threshold is reached, we make the decision and initiate the 

motor response associated with it.  

 

Importantly, these accumulation-to-bound models are able to explain the shifts 

in behavioural data that are associated with the SAT, by simply adjusting the 

threshold parameter. A low threshold implies that less evidence needs to be 

accumulated to make a decision, which leads to faster, but also more error-

prone decisions, as less evidence is accumulated and therefore less noise is 

averaged out. A high threshold, on the other hand, means that more evidence 

needs to be accumulated to reach a decision, which leads to longer reaction 

times (RTs) and fewer errors. With this simple threshold adjustment, sequential 

sampling models are able to account for accuracy rates and RT distributions for 



43 
 

correct and incorrect decisions in SAT tasks (Bogacz, Brown, Moehlis, Holmes, 

& Cohen, 2006; Brown & Heathcote, 2008; Smith & Ratcliff, 2004; Usher & 

McClelland, 2001).  

  

Although sequential sampling models were designed to explain behavioural 

decision-making data and do so successfully, there is now substantial evidence 

from neural data to support their validity. Signals which display characteristics of 

the accumulation process predicted by sequential sampling models have been 

identified in electrophysiological data from non-human primates (Gold & 

Shadlen, 2000; Shadlen & Newsome, 1996, 2001) as well as 

electroencephalographic (EEG) /magnetoencephalographic (MEG) and 

functional resonance imaging (fMRI) recordings of human decision-making 

(Donner et al., 2009; Forstmann et al., 2008; O’Connell et al., 2012). The 

observation that the processes described by sequential sampling models 

closely resemble neural signals led to the testable prediction that threshold 

differences should be observable in neuroimaging data of SAT tasks.  

 

A number of studies have attempted to explore the neural mechanisms of the 

SAT and test this hypothesis. The results have been mixed. There is, in fact, 

some evidence to support the role of the decision threshold as the neural 

mechanism to control the SAT. For example, van Veen, Krug, and Carter (2008) 

used fMRI to measure their participants’ brain activity while they performed a 

Simon task (i.e. a task in which participants are presented with a square 

appearing left or right of the fixation cross and asked to respond to its colour, 

while ignoring its location) under instructions to emphasise either response 

speed or accuracy. They found an increase in baseline activity under speed 

instructions compared to accuracy instructions in a network of brain areas 

associated with decision-making, including premotor areas, the basal ganglia, 

the thalamus, the dorsolateral prefrontal cortex and the parietal cortex.  

 

It is important to note that although sequential sampling models generally speak 

of a modulation of the threshold to explain SAT findings, the modulation of the 

baseline level of activity is mathematically equivalent to this claim. In fact, while, 

by convention, these models mention a threshold difference, sequential 
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sampling models are only able to predict a modulation in the baseline-threshold 

distance, but cannot give insight into whether this modulation is caused by a 

difference in baseline, threshold, or an interaction of the two, based on 

behavioural data alone. Therefore, van Veen et al. (2008) interpreted their 

findings of an increased baseline under speed instructions to support 

predictions of sequential sampling models.  

 

Two further fMRI studies showed these increased levels of baseline activity in a 

number of areas, including the pre-supplementary motor area, for decisions 

under time pressure (Forstmann et al., 2008; Ivanoff et al., 2008; see Bogacz et 

al., 2010 for a review). Similarly, Wenzlaff, Bauer, Maess, and Heekeren (2011) 

found that speed stress led to higher activity in supplementary motor areas, as 

well as lower activation of the dorsolateral prefrontal cortex, using MEG. 

Together, these studies support sequential sampling models, not only by 

showing a modulation of baseline-threshold difference in the context of SAT, but 

also by identifying pre-motor areas, rather than sensory or primary motor areas, 

as the source of this modulation, supporting the claim that SAT mechanisms 

work at the level of the decision-making, not the level of encoding or motor 

execution (Bogacz et al., 2010). 

  

Although initial fMRI findings are promising, other studies were not able to show 

a clear modulation of the baseline-threshold distance. Heitz and Schall (2012) 

trained macaque monkeys to perform a visual search task under either speed or 

accuracy pressure and recorded activity from frontal eye field (FEF) neurons, 

the firing rates of which have previously been associated with sequential 

sampling models (e.g. Gold & Shadlen, 2003). Their results suggest that the 

description of the SAT provided by sequential sampling models is incomplete as 

they identified several widespread changes associated with an emphasis on 

speed or accuracy. Specifically, they found that FEF activity during speed trials 

was not only raised during the baseline but also at the time of response, a 

finding which is inconsistent with traditional sequential sampling models. In a 

follow-up study, these results were strengthened, demonstrating that the SAT is 

a multifaceted phenomenon, associated with extensive and widespread 

modulations in activity (Heitz & Schall, 2013).  
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Similar studies were conducted with a focus on neurons in the lateral 

intraparietal area (LIP). Like FEF activity, firing rates of LIP neurons have 

previously been shown to display characteristics of the decision variable, i.e. the 

accumulation profile predicted by sequential sampling models, and may 

therefore be expected to show threshold differences (Paré & Wurtz, 2001; 

Shadlen & Newsome, 1996, 2001). However, a comparison of LIP activity in 

speed and accuracy regimes during a random dot motion task revealed no 

modulation in threshold levels (Hanks et al., 2014). Instead, additional 

evidence-independent activity was observed in the speed regime compared to 

the accuracy regime. This stronger activity was present from the beginning of 

the decision formation, thereby supporting previous fMRI findings (Forstmann et 

al., 2008; Ivanoff et al., 2008; van Veen et al., 2008). However, Hanks et al. 

(2014) showed that this stronger, speed-related, evidence-independent activity 

persisted throughout the decision-making process, suggesting that the initial 

difference in activation between the two regimes is not indicative of a pure 

modulation of the baseline-threshold distance, but rather due to an added 

urgency signal. A model with an urgency signal was also used by Thura and 

Cisek (2016) to explain their findings which indicated higher baseline activity as 

well as higher gain, but similar threshold levels in decision-related cells in speed 

compared to accuracy conditions. 

  

In fact, the concept of an evidence-independent urgency signal has been a 

recurring theme throughout the SAT and sequential sampling model literature 

(Cisek, Puskas, & El-Murr, 2009; Hawkins, Forstmann, Wagenmakers, Ratcliff, 

& Brown, 2015; Milosavljevic et al., 2010; Thura, Beauregard-Racine, Fradet, & 

Cisek, 2012). It describes the idea that the accumulation of evidence is inflated 

by the addition of a signal which increases over time and ensures that a 

decision is made, even when no evidence is available. This urgency signal may 

increase faster under speed instructions compared to accuracy instructions, 

leading to faster, more error-prone responses, as the decision threshold is 

reached with less evidence. Note that this urgency signal is equivalent to the 

concept of collapsing bounds, which assumes that accumulation remains 

dependent on evidence alone throughout, but the decision thresholds are 
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dynamic and decrease towards the baseline over time, to ensure decision 

formation. However, it is important to note that standard sequential sampling 

models, without the addition of an urgency signal, have been supported across 

a large variety of paradigms, while there is only limited evidence to support 

models that do include this dynamic feature (see Hawkins et al., 2015 for a 

review). In fact, several studies were unable to support the concept of an 

urgency signal, suggesting instead that standard sequential sampling models 

can fully account for all behavioural data, including SAT data (Balci et al., 2011; 

Karsilar, Simen, Papadakis, & Balci, 2014).  

  

Nevertheless, a recent study found support for an urgency signal as the driving 

force behind the SAT, by using EEG to record human brain activity during a 

random dot motion task under free response and deadline conditions (Murphy, 

Boonstra, & Nieuwenhuis, 2016). In this study, desynchronisation in the mu 

frequency band (8-14 Hz) was explored as a decision-related motor signal and 

results showed that, in the deadline condition, this signal was elevated towards 

the threshold (i.e. towards activity levels at response). While they showed that 

contralateral mu power at the time of the response remained the same across 

both conditions, indicating a common threshold, they found lower bilateral mu 

power prior to the stimulus onset, as well as lower ipsilateral power at the 

response in the deadline condition, suggesting the influence of an urgency 

signal. Further, Murphy et al. (2016) used measurements of pupil diameter to 

show that this urgency may be caused by a modulation of neural gain. 

 

Together, these findings question the idea that the adjustment of the threshold 

in a sequential sampling process underlies the SAT on a neural level. While 

there is an overwhelming amount of evidence suggesting that the behavioural 

effects associated with the SAT are best accounted for by a change in threshold 

(Balci et al., 2011; Brown & Heathcote, 2008; Karsilar et al., 2014; Ratcliff & 

McKoon, 2008; Smith & Ratcliff, 2004; Usher & McClelland, 2001), neural data 

suggest that less specific changes are associated with the SAT, with most 

studies reporting a change in both baseline activation and gain.  
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In the light of this literature, and in particular the paucity of studies addressing 

the time-varying neurometric correlates of the SAT in humans, we set out to 

explore the neural mechanisms underlying the SAT in the context of sequential 

sampling models. In two experiments, we asked human subjects to complete a 

random dot motion task, while we recorded decision-related neural activity by 

either using EEG to record a centroparietal component which has previously 

been suggested to reflect accumulation, or transcranial magnetic stimulation 

(TMS) to record motor preparation. During the task, we manipulated the 

decision strategies by using ‘speed’ and ‘accuracy’ instructions, to explore their 

effects on the neural data. In addition, we manipulated the difficulty of the task 

as the impact of this manipulation has been researched extensively and it is 

well-established that both accumulation profiles predicted by sequential 

sampling models and neural correlates of decision-making vary in build-up rate 

as a result of varying difficulty. By fitting a sequential sampling model to the 

behavioural decision-making data and directly comparing the resulting model 

predictions to these neural signals, we aimed to gain new insights into the 

underlying mechanisms of the SAT.  

 

In order to address the inconsistencies between the modelling and 

neuroimaging literature, we used two types of models, one of which used the 

typically reported variation in parameters to account for the SAT (i.e. varying 

threshold parameters across SAT conditions), and one in which we 

implemented a global modulation in activity. Specifically, we used the 

parameters estimated using varying thresholds as they have been shown to 

account well for behavioural data, and, without affecting the model fit, rescaled 

them to transfer the difference in thresholds over speed and accuracy regimes 

to all other parameters, modelling a widespread change in activity which has 

previously been reported in neural data (Heitz & Schall, 2012, 2013; Murphy et 

al., 2016). By directly comparing the predicted accumulation profiles of both 

models with two neural correlates of decision-making, we explored the 

mechanisms underlying decision-making in the context of the SAT and found 

evidence suggesting that the SAT is implemented in the human brain via a form 

of global gain modulation. 
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2.1. Experiment 1: EEG 

 

EEG is a particularly suitable method to track perceptual decision-making in 

humans, since its high temporal resolution allows us to track the dynamically 

changing decision variable. To date, studies which used human EEG to directly 

test SAT mechanisms in the context of sequential sampling models are sparse. 

There are however, a number of EEG studies using human scalp potentials to 

explore the mechanisms of the SAT in a serial processing framework, where the 

locus of the SAT is placed on sensory, decision, or motor processes, which are 

thought of as non-overlapping intervals (Donders, 1969; Sternberg, 1969).  

 

For example, studies focussing on the lateralised readiness potential (LRP), an 

event-related potential (ERP) indicating preparation of motor activity, measured 

the stimulus-LRP onset, and the LRP onset-response intervals separately in 

order to identify differences in sensory and motor processes respectively. These 

studies found that both LRP stages decrease in duration under speed 

instructions, suggesting both a sensory and motor locus of the SAT (Osman et 

al., 2000; Rinkenauer et al., 2004). Interestingly, by suggesting that post-

decisional motor stages are affected by the SAT, these studies questioned the 

claim that the SAT is explained by a baseline-threshold difference alone. 

However, the notion of serial processing has since been rejected (Hadar, et al., 

2015; see Experiment 2). Additionally, note that the LRP has previously been 

suggested to display characteristics of the accumulation profile predicted by 

sequential sampling models (Kelly & O’Connell, 2013) and, although not directly 

tested, does not seem to show an amplitude difference between SAT regimes 

at the time of response, further questioning the threshold effect (Osman et al., 

2000; Rinkenauer et al., 2004).  

 

Similarly, Osman et al. (2000) explored the ERP component P300, which may 

be equivalent to the centroparietal positivity (CPP), a component that has been 

shown to reflect the accumulation of evidence as suggested by sequential 

sampling models (Kelly & O’Connell, 2013; O’Connell et al., 2012; Twomey et 

al., 2015). In fact, like LIP firing rates in non-human primates, the CPP in the 
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human EEG has been shown to display accumulation-to-bound characteristics 

and described as the decision variable. For example, it has been demonstrated 

that the slope of the CPP scales with the strength of sensory evidence and 

predicts RT, and that its amplitude reaches a stereotyped level at response 

time, suggesting a fixed decision threshold (Kelly & O’Connell, 2013; O’Connell 

et al., 2012). Although Osman et al. (2000) explored the P300 under SAT 

conditions and found similar patterns as those observed in the LRP, they only 

tested peak latencies, to explore sensory and motor parts of the decision-

making process and did not explore the P300 as a potential neural substrate of 

a decision variable. The effects of the SAT on the P300 were also explored by 

Perri, Berchicci, Spinelli, and Di Russo (2014), who found that fast compared to 

slow decisions led to an earlier and larger P300. However, in this study, no SAT 

instructions were given, and trials were divided into four different speed and 

accuracy conditions post hoc, which makes it difficult to compare findings. To 

our knowledge, the CPP has not been directly used to explore the effects of 

SAT on the decision variable. 

 

In Experiment 1, we therefore set out to test the impact of SAT instructions on 

the CPP. As described above, we compared the resulting waveforms to two 

different models, one which makes use of a variation in the threshold parameter 

to model the SAT, and one which assumes a more global change in activity. We 

evaluated the resulting decision variables in the light of the CPP.  

 

2.1.1.  Methods  

2.1.1.1. Participants 

We recruited a total of 26 participants (nine males), with a mean age of 29.81 

(SD = 7.24). According to criteria that were established prior to the experiment, 

participants were excluded if they were unable to reach a calibrated coherence 

level of less than 90% for either of the difficulty conditions (see section 

2.1.1.2.2). On this basis, we excluded three participants prior to the main 

experiment. The remaining sample consisted of 23 participants (eight males) 

with a mean age of 29.39 (SD = 7.47), each of which participated in a single 
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two-hour session, completing 800 trials. Participants were recruited using poster 

advertisements and word of mouth, resulting in a sample which was primarily 

made up of students and staff at City, University of London. All participants 

were paid £8 per hour and an additional reward for task performance (up to £4 

per session). The experiment was approved by the City, University of London 

Psychology Department Ethics Committee. 

2.1.1.2. Stimuli and Procedure 

2.1.1.2.1. Stimuli and Experiment Setup 

Participants completed a random dot motion task, in which they were presented 

with an array of moving dots. In each trial, a proportion of the dots moved 

coherently in one direction (either up or down) while the rest of the dots moved 

in random directions. Participants were asked to indicate the direction of the 

coherent motion. Trial difficulty was manipulated by varying the proportion of 

dots moving coherently, with larger coherence levels leading to easier 

decisions. 

 

The task was displayed on a cathode ray tube screen (size: 41 cm x 30 cm), 

operating at a refresh rate of 85 Hz and a resolution of 1240 x 786 pixels. 

Participants were seated at a distance of 100 cm from the screen. In order to 

indicate their decision, participants held a digital response button interfaced via 

a 16 bit A/D card (National Instruments X-series PCIe-6323, sample rate 

100,000 Hz) in each hand, and were instructed to press the right button to 

indicate the ‘up’ response, and the left button to indicate the ‘down’ response. 

 

In each trial, a total of 300 white dots, 0.04 x 0.04 degrees visual angle (dva) in 

size, were displayed within a 5 dva circular aperture on a black background. A 

fixation cross (size: 0.33 x 0.33 dva) was located in the centre of the stimulus. 

All dots moved at a speed of 3.3 dva per second. While coherent dots moved 

either up or down, depending on the trial, the direction in which random dots 

moved was randomly selected for each dot and each frame. The position of all 

dots was randomised every five frames. 
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The trial procedure is displayed in Figure 2.1. Initially, participants were 

presented with a fixation cross for 500 ms (plus a jitter of up to 1000 ms, drawn 

from a uniform distribution). Then, 100% of the dots moved randomly for 1000 

ms (plus a jitter of up to 1500 ms, drawn from a truncated gamma distribution 

with shape parameter 1 and scaling parameter 150)1. Since the onset of moving 

dots on the screen is likely to induce visual evoked potentials (VEPs) in the 

EEG, which may interfere with the recording of the CPP, this interval of random 

motion was introduced so that any VEPs occur before the stimulus onset (i.e. 

onset of coherent motion). This random motion was followed by the onset of 

coherent motion, when a proportion of dots started moving coherently either 

upwards or downwards, for up to 2000 ms, or until the response. Feedback was 

provided after each trial (see section 2.1.1.2.3). All stimuli were written in Matlab 

(The Mathworks, Natick, U.S.A.), using the Psychtoolbox extension (Brainard, 

1997; Kleiner et al., 2007; Pelli, 1997) and run on a PC.  

  

In this experiment, difficulty (easy, hard), direction (up, down), and instructions 

(speed, accuracy) were manipulated. The ‘speed’ and ‘accuracy’ conditions 

were blocked, while all other conditions were randomly intermixed. The order of 

the SAT blocks was counterbalanced across participants. Each participant 

completed a minimum of 100 practice trials. Practice trials started with a 

coherence level of 90%, i.e. 90% of dots moved in one direction while only 10% 

moved randomly, and became progressively more difficult.  

2.1.1.2.2. Difficulty Calibration 

Once participants felt comfortable with the task, they completed a total of 

200 staircase trials to calibrate the level of difficulty appropriate for the ‘easy’ 

and ‘hard’ conditions for each participant individually. To this end, we used the 

QUEST staircase procedure, implemented in Psychtoolbox, which estimated 

the coherence levels at which each participant responded correctly in 75% and 

95% of trials (Watson & Pelli, 1983). These coherence levels were then used for 

the ‘hard’ and ‘easy’ conditions respectively. The stimulus presentation time 

                                                
1 A gamma distributed fore period with a shape parameter of 1 was chosen as it is associated 
with a uniform hazard function (Luce, 1986). 
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was reduced from 2000 ms to 1300 ms, and no feedback was provided during 

staircase trials. If a participant’s performance led to estimated ‘easy’ and ‘hard’ 

coherence levels of more than 90%, the participant was excluded from the 

experiment. This procedure resulted in a mean coherence of 30.63% (SD = 

18.69) for ‘hard’ trials, and 67.67% (SD = 28.23) for ‘easy’ trials.  

2.1.1.2.3.  SAT Instructions 

In order to enforce the SAT manipulations, participants were instructed to react 

as fast/accurately as possible in half of the trials. Additionally, feedback was 

provided after each trial to either reward participants (display of the word 

‘Correct’ and a small monetary reward, adding up to a maximum of £4 per 

participant) for fast and correct/correct responses in ‘speed’/ ‘accuracy’ trials, or 

provide negative feedback with the words ‘TOO SLOW’ or ‘INCORRECT’ in 

green letters on a red screen when the instructions were not followed. The inter-

trial interval was increased by 1000 ms after each trial with negative feedback. 

Neutral feedback (no monetary reward, but a neutral screen with the words 

‘incorrect’ or ‘too slow’) was shown when participants responded fast but 

incorrectly in the ‘speed’ condition or accurately but very slowly in the ‘accuracy’ 

condition. Whether a response was too slow or not was determined by a 

variable deadline which was initially set to 600 ms for the ‘speed’ and 1000 ms 

for the ‘accuracy’ condition. To optimise performance, the deadlines varied 

between 450 and 750 ms (‘speed’) and between 700 and 1300 ms (‘accuracy’) 

and were adjusted using separate QUEST staircase procedures, targeting 

accuracy levels of 75% for ‘speed’, and 90% for ‘accuracy’ conditions. 

Feedback was also provided when participants responded before the onset of 

the coherent motion (‘too fast’). 
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Figure 2.1: Random dot motion task trial procedure: after the presentation of a fixation cross, randomly 
moving dots were displayed on the screen for a minimum of 1000 ms. Then, a proportion of dots (defined 
by the level of coherence) moved coherently either up or down (here: up) and remained in this motion for 
up to 2000 ms or until the response. Each trial was followed by feedback after a short delay. Note that the 
size and number of dots have been adjusted for illustration. 

 

2.1.1.3.  EEG Recording and Pre-processing 

Continuous EEG was recorded using 64 active electrodes, placed equidistantly 

on the scalp (EasyCap, M10 Montage) and referenced to the right mastoid. 

Using a BrainAmp amplifier (BrainProducts), data were recorded at a sampling 

rate of 1000 Hz and band-pass filtered from 0.016 – 1000 Hz. The data were 

then pre-processed and analysed using custom scripts in Matlab (The 

Mathworks, Natick, U.S.A.), drawing on functions from the EEGLAB 

toolbox (Delorme & Makeig, 2004). 

 

EEG data were re-referenced to the average reference and filtered at 0.1 (low 

cut-off) and 45 Hz (high cut-off), using a Hamming windowed finite impulse 

response filter. To improve the signal-to-noise ratio, we initially visually 
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inspected the data to remove large muscle artifacts before applying 

independent component analysis to remove eye blink components. Any 

remaining artifacts were removed manually during a second visual inspection. 

Afterwards, spherical spline interpolation was used to reconstruct noisy 

channels, which were identified and rejected during the first visual inspection.  

 

In line with the procedures used in previous CPP studies (Kelly & O’Connell, 

2013; O’Connell et al., 2012), the data were converted to current source density 

(CSD) estimates to increase spatial selectivity. The CSD transformation was 

applied using the CSD toolbox, which uses a spherical spline algorithm, with the 

spline interpolation constant m set to its default value (m = 4; Kayser & Tenke, 

2006). 

 

2.1.1.4. ERP Analysis 

For the ERP analysis, we extracted both stimulus-locked (-200 to 2000 ms, 

relative to motion onset) and response-locked (-1000 to 100 ms, relative to the 

button press) epochs. All epochs were baseline corrected to the average over a 

200 ms period preceding the motion onset. In order to collapse over ‘up’ and 

‘down’ trials, the ERP topography of correct ‘up’ trials and incorrect ‘down’ trials 

(right button presses) was mirrored along the midline (i.e. activity recorded in 

electrodes on the left hemisphere was now associated with electrodes on the 

right hemisphere), so that all motor preparation appeared in the right 

hemisphere. Although this step was not strictly necessary to analyse the CPP, 

which is recorded from the midline, this mirroring allows for a better visualisation 

of activation across the scalp. The appropriate electrode to generate the CPP 

waveform was chosen individually, by visually inspecting each participant’s 

averaged ERP topography to identify the centroparietal region of maximum 

amplitude (chosen electrodes: 1, 5, or 14, roughly equivalent to electrodes Cz, 

CPz, and Pz in the 10-20 system; see Figure 2.4). The activity in the selected 

electrodes was averaged for each condition and for stimulus and response-

locked signals separately. Only correct trials were used in the ERP analysis. 
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In line with Kelly and O’Connell (2013), we measured the slope of the CPP for 

each participant, by fitting a straight line to the waveform from 200 to 350 ms in 

the stimulus-locked, and -250 to -100 ms in the response-locked data. 

Additionally, we compared the amplitudes of the ERP across different 

conditions at each time point between 0 and 1000 ms in the stimulus-locked 

and between -1000 and 0 ms in the response-locked data, using false discovery 

rate (FDR) controlled ANOVAs (Benjamini & Hochberg, 1995). In this 

procedure, the uncorrected p-values are sorted from lowest to highest (pi refers 

to the ith lowest value out of m total p-values). The largest i for which 𝑝𝑖 <

(
𝑖

𝑚
) ∝ is identified and all p-values associated with is smaller or equal to the 

identified i are considered significant. 

2.1.1.5. Model 

We chose a race model to account for the behavioural data (Brown & 

Heathcote, 2008; Usher & McClelland, 2001). This model makes few 

assumptions about the decision-making process (e.g. it does not assume 

inhibition between accumulators) while still remaining somewhat physiologically 

plausible (e.g. it assumes noisy, positive accumulation; Brown & Heathcote, 

2008; Usher & McClelland, 2001). According to this model (see Figure 2.2), a 

binary choice like the one used here is simulated using two accumulators, one 

associated with the correct, and one associated with the incorrect alternative. 

Both accumulators race towards a common decision threshold A and whichever 

accumulator reaches the threshold first determines the response.  

 

Each accumulation process begins at a starting point z, drawn from a uniform 

distribution between 0 and the starting point parameter Sz. The profile of the 

accumulation process is determined by the drift rate v which determines the 

input I and the mean slope of the accumulation, as well as random noise N, 

drawn from a normal distribution with mean 0 and standard deviation σ, so that 

the quantity accumulated at each time point in accumulator m is described by: 

 𝑑𝑥𝑚 =  𝐼𝑚 + 𝑁(0, 𝜎2) (2.1.) 
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Additionally, the accumulation process is restricted to positive values in order to 

remain physiologically plausible:  

 𝑥𝑚(𝑡 + 1) = max (0, 𝑥𝑚(𝑡) +  𝑑𝑥𝑚)  (2.2.) 

The response time is defined as the time taken for the first accumulator to reach 

the threshold A plus a non-decision time which accounts for the duration of 

sensory and motor processing before and after the accumulation process 

respectively and is drawn from a uniform distribution with the width STer and the 

centre Ter.  

 

In a standard race model for a binary decision, this leads to a total of seven 

parameters (A, Sz, vcorrect, vincorrect, Ter, STer, σ2). One parameter is chosen as a 

scaling parameter and fixed to an arbitrary value, resulting in a total of six free 

parameters. 

 

  
Figure 2.2: Race model: in a choice between two alternatives, two accumulators (one associated with the 
correct and one with the incorrect alternative) race towards a common threshold A. Each accumulation 
profile begins at a point randomly drawn from a uniform distribution between 0 and Sz and increases at a 
rate defined by the associated drift rate parameter (vcorrect/vincorrect for the correct/incorrect accumulator 
respectively), as well as noise. The modelled reaction time consists of the time taken for the first 
accumulator to reach A, as well as a non-decision time Ter, which accounts for sensory and motor 
processes. 

2.1.1.5.1. Standard Model 

To apply this model to the data set in this experiment, we added drift rate 

parameters to account for the different difficulty conditions (v-easycorrect, v-

easyincorrect, v-hardcorrect, v-hardincorrect). This implementation of difficulty is well-

established and has been validated using both behavioural and neural data 

(Mulder et al., 2014; Ratcliff & McKoon, 2008; Ratcliff & Rouder, 1998; Roitman 

& Shadlen, 2002; Twomey et al., 2015). In order to explain differences due to 
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SAT instructions, we added a threshold parameter. The threshold for ‘accuracy’ 

trials Aaccuracy acted as a scaling parameter and was fixed to 1, while the 

threshold for the ‘speed’ condition, Aspeed, was free to vary. We tested a total of 

three different models: one in which all remaining parameters were fixed across 

conditions (Model 1), one in which the starting point parameter Sz was free to 

vary across SAT conditions (Model 2), and one in which the non-decision time 

parameter Ter was free to vary across SAT conditions (Model 3; see Table 2.1). 

 

Each model was fitted to the pooled RT data2 (RTs faster than 180 ms or slower 

than 2000 ms (6.08%) were discarded). For each condition, RTs were simulated 

(in 10 ms time steps) based on the equations (2.1.) and (2.2.) and compared to 

RT data using Quantile Maximum Probability Estimation (Heathcote, Brown, & 

Mewhort, 2002). Parameter values were adjusted using a differential evolution 

algorithm implemented in Matlab (The Mathworks, Natick, U.S.A.; Price, Storn, 

& Jouni, 2005). 

 

In order to compare the three models, we calculated the Bayesian information 

criterion (BIC, Schwarz, 1978) as well as the Akaike information criterion (AIC; 

Akaike, 1977). These measures describe the goodness of fit by considering 

both the likelihood of the model and the number of parameters, penalising 

complex models to resolve the problem of overfitting. The model with the best fit 

was then used to predict accumulation profiles. 

 

2.1.1.5.2. Rescaled Model 

Although the SAT is typically implemented through a change in threshold as 

described above, more recent evidence suggests that behavioural changes due 

to SAT instructions are in fact caused by a more global change in activity (Heitz 

& Schall, 2012; Lo, Wang, & Wang, 2015; Murphy et al., 2016; Perri et al., 

2014). We implemented this global gain modulation using a ‘rescaled’ model. 

For this, we used the best-fitting model described above and computed a new 

                                                
2 Note that the same analysis was repeated with normalised RT and EEG data and led to 
qualitatively identical results (see Appendix 7.1). 
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set of parameters for the ‘speed’ condition by simply dividing all parameters 

(apart from Ter and STer) by Aspeed. This results in a model in which the threshold 

for both SAT conditions is 1 and the original difference between conditions is 

transferred onto all other parameters, modelling a global gain modulation. This 

rescaled model is mathematically equivalent to the standard model, but 

assumes different underlying processes and predicts a different accumulation 

path.  

2.1.1.5.3. Model Prediction  

EEG is recorded from the scalp, and can therefore only measure the sum of all 

electrical brain activity underneath each electrode. Since we assume that each 

accumulation process occurs in a population of neurons in spatial proximity, we 

argue that an ERP recorded from the scalp above these neural populations, like 

the CPP, reflects the sum of both accumulators.  

 

We chose the best-fitting model based on the BIC value and simulated 20,000 

accumulation paths in 10 ms time steps. In order to create a signal similar to the 

CPP, accumulation profiles from the correct and incorrect accumulator 

associated with correct responses were summed and baseline corrected by 

subtracting the first data point from the entire accumulation profile. The resulting 

profiles were averaged for each condition separately and locked once to the 

stimulus and once to the response. Since the stimulus-locked signal includes 

varying time spans of post-decision stages, and we can only speculate about 

the behaviour of the accumulator after the response, we removed simulated 

trials from averaging after the response (i.e. after the crossing of the threshold 

plus Tr; see below).  

 

Since we averaged over all simulated accumulation traces per condition, we re-

computed the CPP as an average rather than a grand average to compare the 

simulated accumulation profiles to the EEG signal. We also downsampled the 

CPP to 10 ms time steps and removed trials from the average once they 

reached their corresponding RT, to match the simulations. 
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In order to simulate the non-decision time in the model predictions, we added a 

brief sensory delay before the onset of the accumulation as well as a motor 

delay in which accumulation continued after the threshold was reached. We 

assume that this continuation of accumulation after the threshold is necessary 

as the participants continue to see the stimulus, and arguably continue to 

accumulate, during the brief period of time in which the threshold is reached but 

the button is not yet press. Since we fitted the non-decision time parameter Ter 

which contains the time interval for both sensory and motor processes, we 

divided it into Te and Tr. The optimal division of Ter into these components was 

determined by calculating the mean squared error between the (re-computed) 

CPP and the simulated mean accumulation per condition, and using a 

differential evolution algorithm (Price et al., 2005) to minimise the mean squared 

error. The same procedure was used to match the arbitrary scale of the 

accumulation profile to the CPP’s. Note that this optimisation of the scale and 

non-decision time division was performed separately for the standard and the 

rescaled model. 

2.1.1.5.4. Bootstrap Comparison 

We then used a bootstrap procedure to compare the similarity of the neural 

signal and the model prediction between the standard and the rescaled model. 

In each of 1999 iterations, RT data were resampled with replacement within 

each condition (‘speed easy’, ‘speed hard’, ‘accuracy easy’, ‘accuracy hard’). 

The resampled RT data sets were then used to fit the standard race model (the 

best-fitting model identified in section 2.1.1.5.1). To estimate the best-fitting 

parameters, a simplex algorithm (Lagarias, Reeds, Wright, & Wright, 1998), with 

the parameters obtained using the original data set as starting values, was used 

due to its relatively short computation time. The resulting parameters were then 

‘rescaled’ in the same way as described in section 2.1.1.5.2. We then generated 

simulated accumulation profiles for both the standard and the rescaled model 

(as described in section 2.1.1.5.3). The predictions of each of the models were 

compared to the corresponding CPP (i.e. to the CPP generated using the same 

trials which were resampled to generate the resampled RT distribution) and the 

mean squared error was computed for each model. As for the original data (see 

section 2.1.1.5.3), the simulation of each iteration was adjusted to match the 
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corresponding CPP by fitting the scale and the proportion of sensory and motor 

delay using a differential evolution algorithm. The difference in mean squared 

error between the rescaled and the standard model of each iteration was then 

used to form a distribution around the difference in mean squared error between 

the models associated with the original data. We estimated the bias-corrected 

and accelerated (BCa) confidence interval and rejected the null hypothesis that 

both models resemble the CPP equally well if this interval did not include 0. 

2.1.2.  Results 

2.1.2.1. Behavioural Results 

In order to test the effects of difficulty and SAT instructions, data were collapsed 

over ‘up’ and ‘down’ trials. Trials with very short (< 180 ms) and very long (>= 

2000 ms) RTs were excluded from the analysis (6.08% of trials). The remaining 

data are displayed in Figure 2.3. 

 

To explore differences in correct RT, a ‘Difficulty’ (‘easy’/ ‘hard’) x ‘Instruction’ 

(‘speed’/ ‘accuracy’) ANOVA was conducted, and revealed a significant main 

effect of ‘Difficulty’, F(1, 22) = 120.12, p < .001, ηp
2 = .85, a significant main 

effect of ‘Instruction’, F(1, 22) = 102.77, p < .001, ηp
2 = .82, as well a significant 

interaction effect, F(1, 22) = 36.47, p < .001, ηp
2 = .62. As expected, RTs were 

faster in the ‘speed’ condition (M = 522 ms) compared to the ‘accuracy’ 

condition (M = 673 ms) in both ‘easy’, t(22) = -8.72, p < .001, and ‘hard’, t(22) = 

-9.74, p < .001, trials. RTs were also faster in ‘easy’ (M = 527 ms) compared to 

‘hard’ (M = 668 ms) trials, an effect which was seen more strongly in the 

‘accuracy’ condition, t(22) = 10.02, p = < .001, than in the ‘speed’ condition, 

t(22) = 9.85, p < .001. 
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Figure 2.3: Behavioural results: reaction time (left) and accuracy scores (right) for each condition. Error 
bars indicate 95% Confidence Interval. ** indicates p < .001. 

 

To explore these effects in the accuracy data, a generalised linear mixed-effects 

model with a logistic link function and binomial data model was used to account 

for the non-normal distribution. Using the ‘fitglme’ function in Matlab (The 

Mathworks, Natick, U.S.A.), parameter estimates were based on a maximum 

likelihood method using Laplace approximation. In this model, we used the 

‘maximal’ random effects structure (Barr, Levy, Scheepers, & Tily, 2014), i.e. 

both manipulations, ‘Instruction’ and ‘Difficulty’, and their interaction were 

included as fixed effects, and both manipulations and their interactions within 

each participant were included as random effects (Wilkinson notation: 

Accuracy ~ 1 + Instruction*Difficulty + (1 + 

Instruction*Difficulty | Participant))3. Both ‘Difficulty’, t(88) = 

4.68, p < .001, and ‘Instruction’, t(88) = 7.76, p < .001, were significant 

predictors, with higher accuracies observed in ‘easy’ (M = 85%) compared to 

                                                
3 The dispersion parameter of the model, φ = .44, was calculated by dividing the sum of squared 
Pearson residuals by the residual degrees of freedom (Venables & Ripley, 2002), and indicates 
that there was no issue with overdispersion. 
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‘hard’ (M = 78%) trials and in ‘accuracy’ (M = 86%) compared to ‘speed’ (M = 

77%) trials. The interaction between ‘Difficulty’ and ‘Instruction’ was not 

significant (p > .05). 

 

2.1.2.2. ERP Results 

The CPP is displayed in Figure 2.4. ‘Difficulty’ (‘easy’/ ‘hard’) x ‘Instruction’ 

(‘speed’/ ‘accuracy’) ANOVAs were conducted to explore the effects of the 

manipulations on the build-up rate of the CPP. We found that, in both the 

stimulus-locked, and the response-locked waveforms, there was a significant 

main effect of ‘Difficulty’ F(1, 22) = 14.70, p = .001, ηp
2 = .40, F(1, 22) = 9.06, p 

= .006, ηp
2 = .29, with a higher slope in ‘easy’ compared to ‘hard’ trials. There 

was no main effect of ‘Instruction’, and no interaction effect in either of the time 

alignments (p > .26).  

 

Similarly, we used FDR-controlled ANOVAs to explore the CPP amplitude at 

each time step and found a main effect of ‘Difficulty’, with higher amplitudes in 

the ‘easy’ compared to the ‘hard’ conditions between 263 and 640 ms in the 

stimulus-locked CPP (corrected p < .049). Again, we found no main effect of 

‘Instruction’ and no interaction effect in the stimulus-locked CPP, and no effects 

were seen in the response-locked data (corrected p > .09). 
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Figure 2.4: CPP results: stimulus-locked (left) and response-locked (right) CPP waveform for each 
condition. Vertical lines indicate mean RT for each condition. Note that mean RTs may differ slightly from 
those displayed in Figure 2.3, as only trials which were used to generate the waveform were included to 
calculate mean RTs. Grey dots at the bottom of the waveform indicate a significant main effect of 
‘Difficulty’. The bottom right panel shows the topography of the ERP, averaged over the stimulus-locked 
time interval of 0 to 1000 ms. Electrodes used to generate CPP waveforms are highlighted. 

 

2.1.2.3. Model Results 

We fitted three different race models to the RT data and compared their 

goodness of fit using the BIC (Schwarz, 1978; see Table 2.1). The best (lowest) 

BIC was associated with Model 2, a model in which drift rate varied across 

difficulty conditions, and both the threshold and the starting point distribution 

varied across SAT conditions. The parameters for this model, as well as its 

rescaled version are displayed in Table 2.2. 
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Table 2.1: Model Comparison: BIC and AIC values for each model and each experiment (best BIC and 
AIC values in bold). 

  
Model

  
  

Number of 
parameters 

Parameters 

Experiment 1  Experiment 2  

BIC AIC BIC AIC 

Model 
1 

9 

v-easycorrect, v-easyincorrect,  
v-hardcorrect, v-hardincorrect,  

Aspeed, 
Sz, Ter, STer, σ2 

62,466 62,398 44,933 44,868 

Model 
2 

10 

v-easycorrect, v-easyincorrect,  
v-hardcorrect, v-hardincorrect, 

Aspeed, 

Sz-speed, Sz-accuracy, 
Ter, STer, σ2 

62,464 62,389 44,932 44,859 

Model 
3 

10 

v-easycorrect, v-easyincorrect,  
v-hardcorrect, v-hardincorrect, 

Aspeed, 

Ter-speed, Ter-accuracy, 
Sz, STer, σ2 

62,479 62,404 44,937 44,865 

 

 

Table 2.2: Estimated parameter values for the chosen model (Model 2) and its rescaled version: note that 
the response threshold A in the ‘accuracy’ condition was set to 1 as a scaling parameter. 

Parameters 
Standard Model: 

parameter values per 
SAT Instruction 

Rescaled Model: 
parameter values per 

 SAT Instruction 

 accuracy speed accuracy speed 

Starting point variability (SZ) 0.319 0.541 0.319 0.664 

Response threshold (A) 1 0.815 1 

Non-decision time (Ter) 0.257 0.257 

Non-decision time variability 
(STer) 

0.229 0.229 

Diffusion constant (σ2) 0.785 0.785 0.964 

Drift rate  
(v) 

correct 
easy 2.475 2.475 3.038 

hard 1.350 1.350 1.656 

incorrect 
easy 0.253 0.253 0.310 

hard 0.054 0.054 0.066 

 

The estimated parameters of the standard model show that, as expected, 

higher drift rates were associated with ‘easy’ compared to ‘hard’ conditions, and 

lower thresholds were associated with ‘speed’ rather than ‘accuracy’ conditions. 

Additionally, higher starting point variability was estimated for the ‘speed’ 

condition, further decreasing the average baseline-threshold distance. In the 

rescaled parameters on the other hand, the threshold is equal in both 

conditions, while the difference between SAT conditions is passed on to all 
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other parameters (see Table 2.2). Note that the two models are nevertheless 

mathematically equivalent and produce the same fit to the RT data. 

 

Figure 2.5 displays the quality of the model fit, which is identical for both the 

standard and rescaled model. The RT distribution is summarised by five 

quantile estimates (from left to right: 10%, 30%, 50%, 70%, 90%) for each 

condition separately, and the RT (x-axis) and proportion of data (y-axis) for 

each quantile is shown for both the empirical (circles) and simulated (lines and 

crosses) data. The overlap between empirical and modelled quantiles indicates 

that the model fitted the data well. The mean difference between predicted and 

recorded RT quantiles was approximately 15 ms for correct responses, 

confirming that the model was able to account for the RT data.  
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Figure 2.5: Model fit: quantiles estimated from behavioural data (circles) and Model 2 simulations (crosses 
and lines) for easy (top) and hard (bottom) decisions. For each condition, correct (thick) and incorrect (thin) 
quantiles are displayed separately. Note that the model fit is identical for the standard and the rescaled 
race model. 

 

The simulated accumulation profile associated with the standard and the 

rescaled model parameters are displayed in Figure 2.6 b) and c) respectively. In 

both models, ‘hard’ profiles accumulate to a lower amplitude than ‘easy’ ones. 

However, there are marked differences between the standard and rescaled 

model in the way they predict the profiles associated with different SAT 

instructions. The standard race model predicts ‘accuracy’ profiles that 

accumulate much higher than ‘speed’ profiles in both stimulus-locked and 

response-locked signals. In the rescaled profiles on the other hand, like in the 

CPP waveforms (Figure 2.6 a), this difference is smaller in the response-locked 

signal and absent in the stimulus-locked profiles. The similarity of the rescaled 

model with the CPP was confirmed by a bootstrap procedure which showed that 



67 
 

the mean squared errors between the ERP and the simulation were significantly 

lower for the rescaled model than the standard model (p < .05). 

 

 

Figure 2.6: Decision variable (empirical and simulated): a) stimulus-locked (left) and response-locked 
(right) CPP for each condition. Note that the CPP here is a pooled average rather than a grand average 
and therefore differs from Figure 2.4. Additionally, the waveform has been low-pass filtered with a cut-off of 
5 Hz for display only. b) stimulus-locked (left) and response-locked (right) accumulation profiles (correct 
and incorrect accumulator summed) per condition as predicted by the standard race model. c) stimulus-
locked (left) and response-locked (right) accumulation profiles (correct and incorrect accumulator summed) 
per condition as predicted by the rescaled race model. 
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2.1.3.  Discussion Experiment 1 

In Experiment 1, we set out to test the CPP under SAT instructions, as well as 

test its similarity to two sequential sampling models representing two different 

implementations of the SAT. To this end, we recorded human EEG during a 

motion discrimination task with two levels of difficulty, and two different 

instructions, one emphasising response speed (‘speed’), and one emphasising 

accuracy (‘accuracy’). We found that these manipulations had the expected 

behavioural effects, with faster and more accurate decisions in ‘easy’ compared 

to ‘hard’ trials, and faster and less accurate decisions in ‘speed’ compared to 

‘accuracy’ trials. 

 

We chose to explore the CPP, as it has previously been suggested as a neural 

correlate of the decision variable (Kelly & O’Connell, 2013; O’Connell et al., 

2012). In line with this notion, we found that the CPP built up over the course of 

the decision, before peaking at the response. Additionally, we found that the 

build-up had a steeper slope in ‘easy’, compared to ‘hard’ decisions, a typical 

finding for decision variables (Brown & Heathcote, 2008; Kelly & O’Connell, 

2013; Ratcliff & McKoon, 2008; Roitman & Shadlen, 2002), supporting the role 

of the CPP as a neural correlate of decision-making. However, we observed no 

difference between waveforms associated with ‘speed’ and ‘accuracy’ trials. 

Since a difference in threshold would arguably translate into a difference in 

peak amplitudes in a neural substrate of the decision variable, this finding 

questions either the validity of the CPP as a neural correlate of the decision 

variable, or the validity of a variation in threshold as an explanation for the SAT. 

 

To resolve this issue, two models with different implementations of the SAT 

were tested. A standard model which implemented a variation in threshold was 

associated with simulated accumulation profiles which displayed an amplitude 

difference between ‘speed’ and ‘accuracy’ conditions, and did not replicate the 

pattern observed in the CPP. The second model was a rescaled model which 

was mathematically identical to the standard model but transferred the 

difference in threshold onto other parameters, modelling a global change in 
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activity. The accumulation profiles predicted by this model were markedly more 

similar to the patterns shown in the CPP. 

 

These findings suggest that the rescaled model provided a better account of the 

neural data than the standard model, indicating that the SAT may be 

implemented in the brain by a global change in activity (i.e. a change in both 

signal and noise). However, an alternative interpretation of these findings is that 

the SAT is in fact implemented in the brain via a specific change in the decision 

threshold, and that the CPP is not a valid neural substrate of the decision 

variable. Since there is relatively little research supporting the CPP’s role as a 

decision-related signal, we additionally explored a different neural correlate of 

the decision variable to shed light on the underlying mechanisms of the SAT. 

2.2. Experiment 2: TMS 

Experiment 1 indicated that sequential sampling models which vary in threshold 

in order to account for the SAT may paint an oversimplified picture of the neural 

mechanisms underlying this phenomenon. However, this finding is based on the 

validity of the CPP as a neural substrate of decision-making. In Experiment 2, 

we therefore set out to test the same paradigm using a different neural correlate 

of the decision variable. 

 

One neurometric signal which has been suggested to display a decision-

relevant accumulation of evidence is activity in the primary motor cortex (M1). 

Contrary to the assumption of serial processing (Donders, 1969; Sternberg, 

1969), researchers have now suggested that response preparation occurs 

throughout the decision-making process, with the status of the accumulation 

process being continuously fed forward into the motor system (Coles et al., 

1985; Gluth et al., 2013; Michelet et al., 2010). This implies that the progress of 

the accumulation of evidence can be tracked via the level of response 

preparation, reflected in the level of M1 activity. This concept has been used to 

track the decision variable using motor-related EEG signals, such as the LRP 

and event-related desynchronisation in the beta frequency band over motor 

areas (Donner et al., 2009; Kelly & O’Connell, 2013). A different approach to 



70 
 

track the excitability of M1 and adjacent premotor areas is the use of TMS 

(Bestmann et al., 2008; Hadar et al., 2012; Hadar et al., 2015; Kiers et al., 

1997). When TMS is applied over the motor cortex, electrical responses called 

motor evoked potentials (MEPs), the amplitudes of which scale with the level of 

corticospinal excitability, can be observed in the muscle corresponding to the 

stimulated brain area (Barker et al., 1985; Merton & Morton, 1980; Merton et al., 

1982). Like accumulation signals, MEP amplitudes recorded in the responding 

muscle have been shown to increase over the course of perceptual decisions 

before reaching a threshold-like maximum at the time of response (Michelet et 

al., 2010). 

 

Importantly, Hadar et al. (2015) used a Gaussian smoothing kernel to generate 

a continuous MEP signal to track corticospinal excitability during a decision-

making task, and suggested that this signal resembles a neural correlate of the 

decision variable. They found that effector-specific motoric activation built up 

during the decision-making process, and reported marked similarities between 

predictions made by a sequential sampling model and the MEP signal, 

supporting its validity as a correlate of decision-making. Specifically, they found 

that motoric activation was longer in hard compared to easy decisions. This is 

based on the notion that, if the MEP signal is purely motor-related, and the 

response preparation and execution follows the decision-making process 

serially (Donders, 1969; Sternberg, 1969), the stimulus-locked signal should 

show a difference in amplitude between the responding muscle and the non-

responding muscle earlier in easy than in hard trials (due to longer decision-

making processes in hard trials), while the response-locked signal should show 

this difference at the same latency regardless of task difficulty. Instead however, 

the findings were reversed relative to this prediction, with hard decisions 

onsetting earlier in the response-locked but not the stimulus-locked signal (i.e. 

the latency at which the responding muscle first displayed higher amplitudes 

than the non-responding muscle was similar across difficulty conditions in the 

stimulus-locked signal, but different in the response-locked signal, with hard 

trials displaying the divergence for longer). This indicated that the decision-

making process began at a similar time but took longer in hard than in easy 

conditions (Hadar et al., 2015). Although these findings suggest that the MEP 
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signal is a promising candidate as a neural substrate of the decision variable, 

this signal has, to our knowledge, only been tested in the context of a difficulty 

manipulation and has not been used to explore the SAT. 

 

Experiment 2 therefore set out to test the MEP signal under SAT instructions. 

Like in Experiment 1, we asked participants to complete a random dot motion 

task with varying difficulties and SAT instructions while recording their MEPs. 

Again, we used two models, a standard model with a variation in threshold and 

a rescaled model implementing a global change, to account for the behavioural 

data. We compared their accumulation profiles to the MEP signal in order to 

explore the neural mechanisms underlying the SAT. 

 

2.2.1.  Methods 

2.2.1.1. Participants 

An opportunity sample of 22 participants (nine males), primarily students and 

staff at City, University of London were recruited for the TMS study. Four 

participants were unable to successfully complete the practice task (like in 

Experiment 1, an unsuccessful performance was defined as reaching a 

calibrated coherence level of > 90% for both ‘easy’ and ‘hard’ conditions; see 

section 2.1.1.2.2)4, and did not complete the experiment. The remaining 18 

participants (11 female), with a mean age of 29.82 (SD = 8.38), each took part 

in three sessions, each lasting between 2 and 2.5 hours, with the exception of 

one participant who withdrew from the study after two sessions. Three of the 

participants were researchers in the current project. All other participants were 

paid £8 per hour and an additional reward for task performance (up to £4 per 

session). In line with ethics procedures at City, University of London each 

participant received an email describing the potential risks associated with TMS 

at least 24 hours prior to the experiment, and completed a medical screening 

questionnaire to ensure their safety. 

  

                                                
4 The remaining participants reached average calibrated coherence levels of 23.81% (SD = 
19.08) in the ‘hard’ condition and 65.41% (SD = 30.91) in the ‘easy’ condition. 
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2.2.1.2. Stimuli and Procedure 

In this experiment, we used a random dot motion task, identical to the one 

described in Experiment 1 (see section 2.1.1.2). However, instead of holding a 

response button in each hand in order to indicate their decision, participants 

held two digital response buttons in their right hand. One button was placed 

between the thumb and index finger and required a ‘pinch’ response, 

contracting the first dorsal interosseous (FDI) muscle. The second button was 

placed on a plastic cylinder in the palm of the hand and required a ‘grasp’ 

response, contracting the abductor digiti minimi (ADM) muscle (see Figure 2.7). 

The pinch and grasp buttons indicated ‘up’ and ‘down’ responses respectively. 

 

In each session, a total of 432 planned trials were completed. To ensure the 

required frequency of TMS pulses (< .2 Hz), TMS-free trials were added during 

the session, leading to an average of 500 trials per session (see section 

2.2.1.3). 

 

2.2.1.3. Stimulation and Recording 

Participants’ muscle activity was recorded using surface electromyography 

(EMG), sampled at 1000 Hz via a 13 bit A/D Biometrics Datalink system 

(version 7.5, Biometrics Ltd., Ladysmith, VA, U.S.A., 2008). We placed 22 mm x 

28 mm surface Ag/AgCL electrodes on the skin above the FDI and the ADM of 

the right hand, as they contribute to the ‘pinch’ and ‘grasp’ responses 

respectively. Reference electrodes were placed at distances of approximately 2 

cm to each of the two active electrodes (see Figure 2.7). Participants were 

instructed to relax their hand muscles in between responses, and the EMG 

signals were passed to two speakers to provide auditory feedback, informing 

participants of any unwanted muscle activation. 
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Figure 2.7: EMG recording setup: Left: palm facing up; Right: palm facing down. Participants held a ‘pinch’ 
response button between their thumb and index finger (1), as well as a response button placed on a plastic 
cylinder in the palm of their hand, requiring a ‘grasp’ response (2). To record the muscle activity associated 
with button presses, EMG electrodes were placed over the FDI (3) and ADM (5). Reference electrodes 
were placed approximately 2 cm away from the active electrodes (4 & 6).  

 

During the experiment, single-pulse TMS was applied using a MagstimRapid2 

biphasic stimulator (Magstim Co. Ltd., Whitland, UK). To induce MEPs in both 

the ADM and the FDI of the right hand, a figure-of-eight coil was positioned on 

the scalp over the left primary motor cortex. The exact location was adjusted for 

each participant individually and the stimulation intensity was set at 

approximately 110% of the resting motor threshold. The resting motor threshold 

was defined as the minimal intensity necessary to elicit an MEP with a peak-to-

peak amplitude of approximately 50 μV in 50% of stimulations.  

  

TMS pulses were planned in 66% of trials, but cancelled if a response had 

already been detected by the time of planned stimulation. In order to ensure a 

good distribution of TMS pulses over the course of the reaction time, TMS trials 

were divided into four equally sized, equiprobable time bins between 5 ms and 

500 ms relative to the onset of the coherent motion in the ‘speed’ condition, and 

between 5 ms and 600 ms in the ‘accuracy’ condition. Within a given bin, the 

exact stimulation time was drawn uniform randomly. Since the experiment 

followed a single-pulse TMS protocol, the stimulation pulses were required to 

occur at a maximal frequency of .2 Hz. If, by chance, a planned pulse followed a 
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previous one after less than 5000 ms, the task was adjusted in several ways. If 

the timespan between the previous and the planned pulse was less than 5000 

ms but more than 4000 ms, the inter-trial interval was increased in order to 

decrease the pulse frequency to < .2 Hz. For scheduled intervals of less than 

4000 ms, the planned trial was replaced with the next planned stimulation free 

trial. If no stimulation free trial remained, random stimulation free trials were 

generated in order to increase the interval between TMS pulses. Due to this 

method, an average of 68.67 (SD = 15.79) trials were added per session. 

 

2.2.1.4. EMG/MEP Pre-processing 

In order to eliminate potential differences in the time required to execute ‘pinch’ 

and ‘grasp’ responses, we recorded the onset of movement (i.e. the onset of 

visible muscular activity in the EMG recording) as a measure of response time 

(EMG RT). To this end, EMG data from both channels, aligned to the onset of 

the coherent motion (stimulus onset) were displayed for each trial and visually 

inspected to manually select the onset of response-related EMG bursts. Visual 

inspection provided no information about the experimental condition of a given 

trial. In TMS trials, MEP amplitudes in both channels (FDI and ADM) of the right 

hand were defined as the difference between the minimal and maximal EMG 

values in a time window of 10 to 40 ms relative to stimulation time. An algorithm 

was used to detect EMG activity prior to the stimulation, in order to discard any 

trials in which there was activity greater than 50 μV peak to peak in a period of 

200 ms preceding the stimulation. These trials, as well as trials in which there 

was partial activation in more than one channel, or trials in which a clear EMG 

onset could not be detected, were excluded from further analysis (23.39% of 

trials). Additionally, trials with very fast (< 100 ms) or very slow (> 1800 ms) 

response onsets (5.12% of trials), trials in which no MEP was visible or in which 

the MEP amplitude could not be accurately detected due to saturation (1.05%), 

and trials in which the response preceded the planned TMS pulse (6.09%) were 

excluded. In total, 35.65% of all trials were discarded, with a total of 17,067 

trials remaining, including 6535 usable TMS trials (57.15% of all planned TMS 

trials were excluded).  
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2.2.1.5. MEP Smoothing 

For each condition, the remaining MEPs from correct trials were pooled across 

sessions and participants. To do this, MEP amplitudes were z-scored 

separately for each session, participant, and muscle, in order to normalise the 

magnitudes of evoked responses. Additionally, TMS latencies as well as EMG 

RTs were expressed as a percentage of their median EMG RT (since TMS 

pulses can affect the response, only EMG RTs of non-TMS trials were used to 

generate the median EMG RT).  

 

The MEPs of each condition were then sorted in time and aligned once to the 

stimulus and once to the response, and smoothed using a Gaussian kernel: 
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(2.3.) 

Where N is the number of MEPs, each of which being associated with a 

magnitude Yi and a normalised time ti. The smoothed signal was calculated in 

time steps of 1% median EMG RT, using a smoothing kernel with a full-width 

half maximum of 5% median EMG RT. 

 

Smoothed signals were generated for stimulus and response-locked data, for 

each condition separately. Additionally, a smoothed MEP signal was generated 

for each condition for the difference between the MEP amplitudes associated 

with the responding and the non-responding muscle, as this signal cancels any 

non-specific spinal influences in the MEP data (see Figure 2.8). Note that since 

only correct trials were used, the responding muscle always refers to the 

muscle making the correct response. 

2.2.1.6. Statistical Analysis 

Two sets of statistical analyses were run on the MEP signal to assess its 

potential role as a correlate of the decision variable. Specifically, we tested 

slope and amplitude differences in the MEP signal between different conditions. 

Using a permutation approach, we compared ‘easy’ and ‘hard’ trials (per SAT 

instruction) as well as ‘speed’ and ‘accuracy’ trials (per difficulty level). In each 

of 1999 iterations, we resampled MEP difference values (responding minus 
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non-responding muscle) across conditions without replacement and randomly 

re-assigned them to new ‘easy’ and ‘hard’, as well as ‘speed’ and ‘accuracy’ 

conditions, and smoothed them to create a new set of waveforms with 90% 

bootstrap BCa confidence intervals for each condition. We then measured the 

slope difference by fitting a straight line to a time interval from 50% to 90% 

median EMG RT in the stimulus-locked, and -50% to -10% in the response-

locked signal of each condition and taking the difference. Adapting established 

cluster permutation approaches for brain-imaging statistical inference (Blair & 

Karniski, 1993; Groppe, Urbach, & Kutas, 2011; Nichols & Holmes, 2001), we 

also measured the amplitude differences between conditions by summing 

across (i.e. forming a cluster statistic for) the adjacent MEP difference values at 

which the confidence interval between the two conditions to be compared 

(either ‘easy’ vs ‘hard’ or ‘speed’ vs ‘accuracy’) did not overlap. 

 

This resulted in a permutation null distribution of slope differences and an 

equivalent distribution of cluster-thresholded amplitude differences (expressed 

in sums of MEP difference values), against which we compared the slope 

difference and amplitude differences (measured in the same way) of the original 

waveforms. If the original values were smaller or larger than 97.5% of the 

values in the relevant null distribution, the difference was considered significant 

at an alpha level of .05. This analysis was conducted separately for ‘easy’ 

compared to ‘hard’ data (once per SAT instruction), for ‘speed’ compared to 

‘accuracy’ data (once per difficulty level), and for stimulus-locked and response-

locked data. 

 

2.2.1.7. Model 

We used three different race models to fit the behavioural data. Since TMS 

pulses can affect the response, only stimulation-free trials were used to analyse 

behavioural data. Unless otherwise specified, the same procedure as described 

in Experiment 1 was used (see section 2.1.1.5). The models were fitted to 

normalised EMG RTs on a group level by pooling across participants. Modelled 

EMG RTs were simulated in 1% median RT based on equations (2.1.) and 

(2.2.). 
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The best-fitting model was rescaled to simulate a global gain modulation and 

both the standard and the rescaled model were used to simulate accumulation 

profiles. For a direct comparison between the simulated accumulation paths and 

the neurometric signal (MEP signal reflecting the difference in amplitude 

associated with responding and non-responding muscles), the simulated 

accumulation was subjected to similar processing as the MEP signal. Based on 

the estimated parameters, we simulated 20,000 accumulation paths for each 

condition and each model (standard and rescaled). Simulated MEP differences 

were computed by subtracting the amplitudes of the incorrect accumulator at 

simulated MEP latencies, which were generated in the same way as stimulation 

latencies during the data collection (see section 2.2.1.3), from the amplitudes of 

the correct accumulator at the same time points. Like in the empirical data set, 

simulated MEP differences were discarded if the decision formation preceded 

the simulated latency. To generate a continuous signal, these simulated data 

points were smoothed in the same way as the empirical MEP values (see 

section 2.2.1.5). This procedure is displayed in Figure 2.8. 

 

Since in this experiment, all analyses are based on EMG RT, rather than the 

time of a button press, we assumed that virtually all of the estimated non-

decision time described sensory processes. We therefore started the 

accumulation profile after a sensory delay given by Ter
5. As in Experiment 1 

(see section 2.1.1.5.3), the arbitrary amplitude of the simulated profile was 

matched to the amplitude of the MEP signal by multiplying its scale by a 

parameter which was estimated using the same differential evolution algorithm 

as described above. 

 

                                                
5 Although a very small proportion of the non-decision time may be categorised as motor 
processing time to account for the brief interval in which the motor signal travels through the 
corticospinal tract, we estimated that this interval lasts only approximately 30 ms (based on 
timings of TMS pulses and MEPs), and argue that this is negligible. 
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Figure 2.8: MEP processing and simulation: MEP amplitudes are recorded from both responding and non-
responding muscles (a). The amplitudes are then z-scored per muscle, participant, and session, pooled, 
and sorted by latency (normalised by individual median EMG RT). A continuous signal is then created for 
each muscle, using a Gaussian smoothing kernel (c). To remove non-specific spinal signals, the same 
smoothing is applied to the difference between simultaneously recorded MEPs (responding minus non-
responding); d). To create model predictions which are comparable to the continuous MEP signal, 
accumulation values from both the correct accumulator (corresponding to the responding muscle) and the 
incorrect accumulator (corresponding to the non-responding muscle) are sampled at simulated TMS times 
(b), and processed in the same way as recorded MEP amplitudes (c & d). 

 

2.2.1.7.1. Model Comparison 

Like in Experiment 1, we then compared the standard and rescaled models 

based on the similarity of their respective accumulation profiles to the neural 

signal using the same bootstrap procedure as described in section 2.1.1.5.4. In 

each iteration, RTs were resampled with replacement within each condition and 

a new set of parameters for the standard race model was estimated and then 

rescaled. Accumulation profiles were then generated for the two new sets of 

parameters (standard and rescaled) and compared to the MEP signals which 
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were re-computed based on similarly resampled MEP differences (MEP signals 

were generated in the same way as described in section 2.2.1.5). Note that, 

while in Experiment 1, the model fit and CPP of each iteration was based on the 

same resampled trials, this was not the case here. Since only TMS trials were 

used to generate the MEP signal, and only stimulation free trials were included 

in the model fit, both sets of trials were resampled independently during the 

bootstrap procedure. 

 

In each iteration, mean squared errors were generated for each prediction 

(standard and rescaled) relative to the MEP signal (note that the amplitude of 

the predictions was scaled to fit the MEP signal in the same way as described in 

section 2.1.1.5.3). The difference in mean squared errors between the standard 

and the rescaled model in each iteration was then used to form a bootstrap 

distribution, and, in combination with the mean squared error difference 

between the models of the original data, the BCa confidence interval was 

estimated. The null hypothesis that both the standard and the rescaled model 

resemble the MEP signal to the same extent was rejected if the BCa confidence 

interval did not include 0. 

 

2.2.2.  Results 

2.2.2.1. Behavioural Results 

Like in Experiment 1, trials remaining after EMG pre-processing were collapsed 

over ‘up’ and ‘down’ trials (see Figure 2.9). A 2 x 2 ANOVA, with the factors 

‘Instruction’ (‘speed’/’accuracy’) and ‘Difficulty’ (‘easy’/’hard’) was used in order 

to explore behavioural differences in correct reaction times. There was a 

significant main effect of ‘Instruction’, F(1, 17) = 26.90, p < .001, ηp
2 = .61, with 

faster responses in the ‘speed’ (M = 406 ms) than in the ‘accuracy’ (M = 469 

ms) condition. There was also a significant main effect of ‘Difficulty’, F(1, 17) = 

62.14, p < .001, ηp
2 = .79, with faster responses in the ‘easy’ (M = 367.75 ms) 

than in the ‘hard’ (M = 507 ms) condition. Additionally, there was a significant 

interaction effect, F(1, 17) = 10.80, p = .004, ηp
2= .39. Follow-up t-tests, to 

explore this interaction, revealed that the difference between ‘easy’ and ‘hard’ 
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RTs was larger in the ‘accuracy’ condition, t(17) = 7.87, p < .001, than in the 

‘speed’ condition, t(17) = 6.83, p < .001. All reported effects are based on EMG 

RTs (time of EMG onset), but results based on response button RTs were not 

qualitatively different (main effect of ‘Instruction’: p < .001, main effect of 

‘Difficulty’: p < .001, interaction effect: p = .011). 

 

Figure 2.9: Behavioural results: reaction time (left) and accuracy scores (right) for each condition. Left 
panel shows both EMG RT (bars) and button RT (dashed lines). Error bars indicate 95% Confidence 
Interval. ** indicates p < .001. 

In order to analyse the non-normally distributed accuracy data, we used a 

generalised linear mixed model (see section 2.1.2.1). Both ‘Instruction’ and 

‘Difficulty’, and the ‘Instruction * Difficulty’ interaction were entered as fixed 

effects, and both manipulations and their interaction within each participant and 

session were included as random effects (Wilkinson notation: Accuracy ~ 1 

+ Instruction*Difficulty + (1 + Instruction*Difficulty | 

Participant) + (1 + Instruction*Difficulty | Session))6. The 

model revealed that ‘Instruction’ was a significant predictor, t(208) = 4.81, p < 

                                                
6 The dispersion parameter of the model, φ = 1.42, was calculated by dividing the sum of 
squared Pearson residuals by the residual degrees of freedom (Venables & Ripley, 2002). 
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.001, with ‘accuracy’ instructions (M = 87%) associated with higher accuracy 

scores than ‘speed’ instructions (M = 81%). Additionally, ‘Difficulty’ was a 

significant predictor, t(208) = 4.57, p < .001, with ‘easy’ trials (M = 88%) 

associated with higher accuracy scores than ‘hard’ trials (M = 79%). The 

‘Instruction * Difficulty’ interaction was not a significant predictor of accuracy, 

t(208) = 1.66, p = .098. 

2.2.2.2.  MEP Results 

MEP signals are displayed in Figure 2.10, which shows that the MEP signal 

associated with the responding (correct) muscle built up over the course of the 

decision in each of the conditions. In line with the hypothesis that these signals 

reflect decision-related accumulation processes, we hypothesised that these 

build-up profiles should differ across conditions. In particular, we expected that 

difficulty would have an impact on the slope of the build-up of the responding 

MEP (relative to the non-responding MEP). 

 

We tested the slope and amplitude of the MEP signal reflecting the difference 

between activation in responding and non-responding muscles. In line with our 

hypotheses, we found that, in the stimulus-locked MEP signal, the build-up 

occurred at a higher slope in ‘easy’ compared to ‘hard’ trials (p < .05 in both the 

‘speed’ and the ‘accuracy’ condition). No difference was observed in the 

response-locked signal (p > .05). We also found a significant difference in MEP 

amplitude between ‘easy’ and ‘hard’ conditions, with the stimulus-locked signal 

displaying higher amplitudes in the ‘easy’ than in the ‘hard’ condition, visible 

from 74% and 81% median EMG RT in the ‘speed’ and ‘accuracy’ conditions 

respectively (p < .05). Again, this difference was not observed in the response-

locked signal. Additionally, we found no significant differences between ‘speed’ 

and ‘accuracy’ conditions in either slope or amplitude of either the stimulus or 

the response-locked MEP signal (all p > .1). 
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Figure 2.10: MEP results: a) stimulus-locked MEP signals for ‘easy’ (left) and ‘hard’ (right), as well as 
‘speed’ (top) and ‘accuracy’ (bottom) trials. Each panel shows both the MEP signal associated with the 
responding muscle (dark) and the non-responding muscle (light). Shaded areas indicate 95% confidence 
interval. b) response-locked MEP signals associated with the responding (dark) and non-responding (light) 
muscle for each condition separately. Shaded areas indicate 95% confidence interval. c) stimulus-locked 
(left) and response-locked (right) MEP signals reflecting the difference between the MEPs associated with 
the responding and non-responding muscles for each condition. 

2.2.2.3. Model Results 

We fitted three race models to our data and compared their fit using BIC values. 

Just like in Experiment 1, we found that Model 2, in which drift rates varied 

across difficulty levels and both thresholds and starting points varied across 
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SAT instructions, provided the best account of the data (see Table 2.1). The 

estimated parameter values, as well as the rescaled parameter values, are 

displayed in Table 2.3. Again, like in Experiment 1, the estimated parameters of 

the standard model indicate higher thresholds and lower starting point variability 

in ‘accuracy’ compared to ‘speed’ conditions, and higher drift rates in ‘easy’ 

compared to ‘hard’ decisions. The rescaled model on the other hand, although 

mathematically equivalent (see Figure 2.11) indicates the same threshold 

across SAT instructions. 

 

Table 2.3: Estimated parameter values for the chosen model (Model 2) and its rescaled version: note that 
the response threshold A in the ‘accuracy’ condition was set to 1 as a scaling parameter. 

Parameters 
Standard Model: 

parameter values per 
SAT Instruction 

Rescaled Model: 
parameter values per 

 SAT Instruction 

 accuracy speed accuracy speed 

Starting point variability (SZ) 0.447 0.523 0.447 0.586 

Response threshold (A) 1 0.893 1 

Non-decision time (Ter) 0.382 0.382 

Non-decision time variability 
(STer) 

0.374 0.374 

Diffusion constant (σ2) 0.499 0.499 0.558 

Drift rate  
(v) 

correct 
easy 1.28 1.28 1.433 

hard 0.634 0.634 0.710 

incorrect 
easy 0.098 0.098 0.109 

hard 0.004 0.004 0.005 

 

  

The quality of the model fit is shown in Figure 2.11. The RT distribution of both 

the empirical (circles) and the simulated (lines and crosses) data are 

summarised by five quantile estimates for each condition separately. The 

overlap between empirical and modelled quantiles indicates that the model 

fitted the data well. The mean difference between predicted and recorded RT 

quantiles was approximately 3.4% median EMG RT for correct responses, 

confirming that the model was able to account for the RT data.  
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Figure 2.11: Model fit: quantiles estimated from behavioural data (circles) and Model 2 simulations 
(crosses and lines) for easy (top) and hard (bottom) decisions. For each condition, correct (thick) and 
incorrect (thin) quantiles are displayed separately. Note that the model fit is identical for the standard and 
the rescaled race model.  

The estimated parameters were then used to simulate accumulation profiles for 

each condition, once for the standard model and once for the rescaled model. 

The resulting profiles are presented in Figure 2.12 b) and c). The accumulation 

profiles show similar patterns as those described in Experiment 1. In both the 

standard and the rescaled model (as well as in the MEP signal), ‘hard’ profiles 

show a slower build-up and lower amplitude than ‘easy’ profiles. The main 

difference between the two sets of predictions, as the rescaling would suggest, 

is the amplitude of the SAT conditions, with ‘accuracy’ profiles showing higher 

amplitudes in both stimulus-locked and response-locked profiles in the 

standard, but not in the rescaled model. This makes the rescaled model visibly 

more similar to the MEP signal than the standard model. 
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This similarity was confirmed by a bootstrap procedure which demonstrated that 

the mean squared error between the model prediction and the MEP signal was 

lower for the rescaled compared to the standard model (p < .05). 

 

 

Figure 2.12: Decision variable (empirical and simulated): a) stimulus-locked (left) and response-locked 
(right) MEP signal (difference between MEPs associated with responding and non-responding muscles) for 
each condition. b) accumulation profile (difference between accumulation profiles predicted by the correct 
and incorrect accumulator) per condition as predicted by the standard race model. c) accumulation profile 
(difference between accumulation profiles predicted by the correct and incorrect accumulator) per 
condition as predicted by the rescaled race model. 
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2.2.3.  Discussion Experiment 2 

In Experiment 2, we set out to test the effects of difficulty (‘easy’, ‘hard’) and 

SAT instructions (‘speed’, ‘accuracy’) on an MEP signal and use the resulting 

waveforms to evaluate two models with different implementations of the SAT. 

Overall, we replicated the findings reported in Experiment 1. We found that 

faster responses were associated with ‘easy’ and ‘speed’ decisions, and more 

accurate responses were associated with ‘easy’ and ‘accuracy’ trials.  

 

Importantly, we found that the MEP signal representing the difference between 

the responding and the non-responding muscle built up over the course of the 

decision, and peaked at the time of response, supporting previous findings 

which suggested this signal as a neural correlate of decision-making (Hadar et 

al., 2015). We further found that the rate at which this build-up occurred 

depended on the difficulty of the decision, with easier decisions associated with 

higher slopes than hard decisions. This pattern was observed in the stimulus-

locked, but not the response-locked data. Although slope differences might be 

expected in both stimulus and response-locked data, due to the different 

alignment of the trials, they are typically more visible in the stimulus-locked 

data, while amplitude differences are more visible in the response-locked data. 

Our findings suggest that ‘easy’ and ‘hard’ trials build up at different rates but 

peak at similar amplitudes. These findings are consistent with evidence-

dependent accumulation-to-bound dynamics and support the role of the MEP 

signal as a correlate of the decision variable. However, like in Experiment 1, we 

found no difference in slope or amplitude between ‘speed’ and ‘accuracy’ 

conditions. 

 

We used the same two models as in Experiment 1 to describe the data, one 

with a threshold variation to explain the SAT, and one rescaled model which 

assumes a global variation in activity. Again, we found that the standard model 

predicted amplitude differences between ‘speed’ and ‘accuracy’ conditions, not 

observed in the MEP signal. The accumulation profile predicted by the rescaled 

model on the other hand, was similar to the pattern observed in the MEP signal. 
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Experiment 2 therefore not only supported the MEP signal as a neural correlate 

of decision-making, but also replicated the findings reported in Experiment 1. 

These findings suggest that the SAT is implemented by a global change in 

activity, rather than a specific modulation of the decision threshold. 

2.3. General Discussion 

 

In this study, we set out to explore the effects of the SAT, as well as difficulty, 

on decision-making, using both human neural data and behavioural modelling. 

In two separate experiments, we recorded participants’ EEG activity and MEP 

amplitudes while they completed a binary motion discrimination task with two 

difficulty levels and under the instructions to either focus on the speed of the 

decision or on its accuracy.  

 

In both experiments, the behavioural data showed the expected patterns, with 

easy decisions leading to faster, more accurate responses than hard trials 

(Kelly & O’Connell, 2013; Roitman & Shadlen, 2002). Additionally, in line with 

previous research (Heitz, 2014; Murphy et al., 2016), we found that decisions 

made under ‘speed’ instructions were associated with faster and more error-

prone responses than those under ‘accuracy’ instructions.  

 

Both manipulations (difficulty and SAT instructions) have previously been 

shown to affect behavioural decision-making in these ways and, importantly, 

have each been explained in the context of sequential sampling models by 

variations in a single parameter. The manipulation of difficulty in particular has 

been researched extensively and explained by the drift rate parameter, with 

easier decisions associated with higher drift rates (i.e. faster build-up rates) than 

hard decisions (Donkin et al., 2009; Mulder et al., 2014; Ratcliff & McKoon, 

2008; Ratcliff & Rouder, 1998). This suggested slope difference has been 

supported by neural evidence, showing that neurometric signals which have 

previously been found to reflect decision-related accumulation processes 

display steeper slopes in easy compared to hard decisions (Gold & Shadlen, 

2000; Palmer et al., 2005; Roitman & Shadlen, 2002). This pattern has also 
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been observed in the CPP (Kelly & O’Connell, 2013; O’Connell et al., 2012), 

and in continuous MEP signals (Hadar et al., 2015). The current study 

supported these findings. We found that easy decisions were associated with 

higher build-up rates than hard decisions in both the CPP and the MEP signal, 

supporting the notion that these signals represent neural correlates of the 

decision variable. 

 

While the impact of difficulty on the slope of the accumulation process has been 

demonstrated extensively in both sequential sampling models and neural 

correlates of the accumulation process (Donkin et al., 2009; Ho et al., 2009; 

Kelly & O’Connell, 2013; Mulder et al., 2014; Ratcliff & McKoon, 2008; Roitman 

& Shadlen, 2002), the impact of the SAT is less clear. Originally, sequential 

sampling models explained the behavioural differences caused by this trade-off 

by adjusting the threshold parameter, with decisions under speed stress being 

associated with a lower threshold (i.e. decision formation with less evidence), 

leading to fast but more error-prone decisions (Bogacz et al., 2006; Brown & 

Heathcote, 2008; Smith & Ratcliff, 2004; Usher & McClelland, 2001). However, 

more recently, this mechanism has been questioned by research exploring 

neural correlates of decision-making. We would expect a threshold difference 

between the conditions to lead to an amplitude difference in any neural 

correlate of the decision variable, with decisions under speed stress displaying 

a lower peak amplitude. However, a number of studies have failed to 

demonstrate this difference, and instead found more widespread changes 

across SAT conditions (Hanks et al., 2014; Heitz & Schall, 2012, 2013). 

 

In line with these more recent findings, the difference in amplitude between SAT 

conditions was not observed in either of the data sets in this study. In fact, we 

found no evidence for any difference between ‘speed’ and ‘accuracy’ conditions 

in either the CPP or the MEP signal, despite large behavioural differences 

between the conditions. It could be argued that in the stimulus-locked signal, 

any amplitude difference induced by threshold differences would be reduced or 

even cancelled out by the increase in amplitude for ‘speed’ trials due to their 

shorter and less variable RTs (given that the amplitude of a single trial peaks at 

the same value at each response, averaging over waveforms with similar RTs 
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will lead to a higher average peak amplitude than averaging over trials with 

more variable RTs). However, this effect should be absent in the response-

locked signal, where each profile is time-locked to the peak, and any threshold 

differences should be clearly visible. In our data, we found no differences in 

either the stimulus or the response-locked profiles, contradicting the notion of a 

difference in the amount of evidence accumulated across SAT conditions.  

 

In order to directly compare the EEG and MEP data to accumulation profiles 

predicted by sequential sampling models, we fitted a race model to the 

behavioural data of each of the experiments. We tested three models, in each 

of which we let the drift rate vary across difficulty levels, and, in line with original 

assumptions of the underlying mechanisms of the SAT, we let the threshold 

vary across SAT conditions. In addition to these parameter variations, we found 

that the best model included a variation of starting point variability across SAT 

conditions in both experiments. This starting point difference, with higher 

starting points in ‘speed’ than in ‘accuracy’ conditions further exaggerated the 

difference in baseline-threshold distance between the conditions. In line with 

previous findings, the model with slope differences across difficulty conditions 

and differences in the baseline-threshold distance across SAT conditions 

accounted well for the behavioural data (Brown & Heathcote, 2008; Smith & 

Ratcliff, 2004). Contrary to the patterns observed in the CPP and MEP data, the 

resulting simulated accumulation profiles showed higher amplitudes for 

‘accuracy’ compared to ‘speed’ profiles in both stimulus-locked and response-

locked simulations of both experiments. 

 

Since similar discrepancies between the notion of a difference in baseline-

threshold distance to account for the SAT and neural correlates of the decision 

variable have been reported previously (Hanks et al., 2014; Heitz & Schall, 

2013; Murphy et al., 2016), we implemented a second type of model to simulate 

accumulation profiles and explain the SAT in a slightly different way. In line with 

a previously suggested alternative explanation to the difference in the baseline-

threshold difference, we suggest that the difference between ‘speed’ and 

‘accuracy’ conditions is induced by a more global gain modulation (Heitz & 

Schall, 2012; Lo et al., 2015; Murphy et al., 2016; Perri et al., 2014; Thura & 
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Cisek, 2016). To implement this global change in activity, we ‘rescaled’ the 

standard race model and adjusted all parameters so that the thresholds for 

‘speed’ and ‘accuracy’ conditions were equal, transferring the estimated 

difference between thresholds onto all other parameters (apart from the non-

decision time parameters), while remaining mathematically equivalent to the 

estimated parameters of the standard model (see section 2.1.1.5.2.). This 

resulted in a model which provides the same fit to the RT data as the original 

model, but assumes different underlying mechanisms, with changes between 

SAT conditions not explained by a threshold difference, but by differences 

between virtually all other parameters, including drift rate and noise parameters, 

modelling a global shift in decision-related brain activity. 

 

Unlike the predictions made by the standard model, simulated accumulation 

profiles of this rescaled model displayed qualitatively similar patterns to those 

observed in both the CPP and the MEP signals. The stimulus-locked profiles of 

all four signals (CPP, MEP signal, and the rescaled model prediction for each 

data set) displayed a slope difference between ‘easy’ and ‘hard’ trials and little 

difference between ‘speed’ and ‘accuracy’ trials. In the response-locked model 

simulations, the amplitude differences between SAT conditions are also 

reduced compared to the predictions of the standard model, showing a closer 

resemblance to the neural signals. Statistical comparisons confirmed the 

greater similarity between the accumulation profiles of the rescaled models and 

the CPP and the MEP signals, demonstrating that the simulations based on the 

rescaled models correspond to the neural signals better than the standard 

model predictions7. These findings support our hypothesis that differences 

induced by SAT instructions may be explained by a global modulation of 

activity, rather than by a shift in a single specific mechanism. 

 

An alternative account for the SAT which does not assume a global modulation 

suggests that an urgency signal is added to the accumulation of evidence, 

                                                
7 However, note that the statistical comparison used here did not involve summary statistics for 
each participant and therefore generated findings which are generalisable only to the population 
from which we sampled. Our inferences therefore only apply to the general population to the 
extent that the observed processes in our sample are shared by the general population. 
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which pushes the accumulation towards the threshold independent of sensory 

evidence and may do so to a greater extent in decisions under speed stress 

(Cisek et al., 2009; Hawkins et al., 2015; Thura et al., 2012). This addition of a 

stronger urgency signal in speeded decisions is not dissimilar to our suggestion 

of a rescaled accumulation process, as the largest impact of the rescaling on 

the accumulation profile arguably stems from the increase in the ‘speed’ drift 

rate. This implies that, though different conceptually, both approaches avoid a 

difference in threshold, primarily by adjusting the slope of the accumulation 

across SAT conditions and may therefore make similar predictions. However, 

the implementation of an urgency signal often requires the addition of several 

parameters to the model to account for the same data. Since large numbers of 

parameters are undesirable, primarily due to the rising risk of overfitting with 

increasing numbers of parameters, we suggest that the rescaled model 

introduced here is a more appropriate account of the SAT. Additionally, it is 

important to note that the concept of urgency is an alternative to the standard 

model which used threshold variations to explain the SAT. The rescaled model 

suggested here on the other hand, is mathematically equivalent to the original 

model which has been confirmed to account for behavioural data in a large 

number of studies, but assumes different underlying mechanisms without 

affecting its robust fit. Nevertheless, the notion of an urgency signal and the 

rescaling suggested here differ primarily conceptually as they assume different 

neural mechanisms, but are likely to provide similar accounts of the data. 

 

Although we argue that the simulated accumulation profiles of the rescaled 

models closely resemble both the MEP signal and the CPP profiles, supporting 

the notion of a global modulation of activity as the underlying mechanism 

explaining the SAT, there are nevertheless small differences between the 

empirical and simulated profiles. There are a number of reasons for these 

differences. Firstly, it is important to note that any model is a simplified 

approximation of a neural mechanism and is unlikely to perfectly simulate any 

given process. This is particularly the case in neural signals which inherently 

have a low signal-to-noise ratio. An ERP such as the CPP is based on the 

recording of the sum of all brain activity in the proximity of a given electrode, 

and although the data are processed and averaged to remove as much noise 
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as possible, a proportion of decision-unrelated activity is likely to remain in the 

data. The quality of the signal is also an issue for the generation of the MEP 

signal. Since we can only sample MEPs from a single time point during each 

trial and discard a large proportion of trials during the pre-processing stages, it 

is difficult to produce enough data to compare the resulting MEP signals with 

model predictions, which can be based on any number of simulations. However, 

it is important to note that these limitations associated with the quality of the 

signal are typical for experiments of this nature (Hadar et al., 2015; O’Connell et 

al., 2012), and we used large numbers of trials in both experiments in order to 

produce interpretable neural signals. 

 

Additionally, the relevance as a decision-related signal of both the CPP and in 

particular the MEP signal has been supported by only a limited number of 

studies. Our interpretation could therefore be criticised as we are suggesting an 

alteration of a well-established model by rescaling its parameters based on a 

less researched neural signal. However, we came to our conclusions primarily 

for two reasons. Firstly, we obtained converging evidence from two 

fundamentally different signals, as both a parietal ERP and a signal of 

corticospinal excitability displayed qualitatively similar findings. Additionally, 

both signals displayed the previously reported modulations for the difficulty 

manipulation, supporting their roles as decision-related signals. Secondly, 

previous research using more established neural correlates of the decision 

variable in non-human primates has shown similar findings, with no threshold 

difference between SAT conditions and has instead found several widespread 

changes in activity (Hanks et al., 2014; Heitz & Schall, 2012, 2013). 

 

Overall, the current study explored the impact of the SAT on two neural 

correlates of the decision variable, one parietal ERP and one MEP signal 

reflecting corticospinal excitability. Although a race model accounted well for the 

behavioural data by varying the threshold across SAT conditions, neither of the 

neural signals displayed the associated amplitude differences. We showed that 

the SAT can instead be explained by a rescaled model which transfers the 

threshold differences onto all other parameters, thereby modelling a global 
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modulation of activity between conditions under ‘speed’ and ‘accuracy’ 

instructions. 
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3. Testing Different Neural Correlates of the 

Decision Variable 

 

Perceptual decision-making has been the focus of a large body of research for 

several decades, receiving attention from a number of fields, including cognitive 

psychology (Ratcliff, 1978) and neuroscience (Gold & Shadlen, 2007). There is 

now a consensus that the way in which we make these quick sensorimotor 

choices can be explained by a family of computational models labelled 

sequential sampling models. These models assume that, in order to make a 

decision, we continuously accumulate sensory evidence towards a fixed 

decision boundary, and execute the appropriate response when the boundary is 

reached (Brown & Heathcote, 2008; Ratcliff & McKoon, 2008; Usher & 

McClelland, 2001). Although there are a number of models within this 

framework which differ in a range of aspects, such as the number of 

accumulators (Brown & Heathcote, 2008; Ratcliff & McKoon, 2008; Smith & 

Ratcliff, 2004), and the assumption of leakage (Brown & Heathcote, 2008; 

Usher & McClelland, 2001), all sequential sampling models share the 

assumption of an accumulation-to-bound process and therefore share a number 

of predictions. 

 

Increasingly, this mathematical modelling of behavioural data is combined with 

neuroimaging approaches to provide converging evidence for sequential 

sampling processes. Although sequential sampling models were originally 

designed to account for behavioural decision-making data and made no claims 

regarding the neural underpinnings of decision-making, a number of neural 

signals have now been found to display the accumulation-to-bound profile 

predicted by these models (Donner et al., 2009; Gold & Shadlen, 2000; Platt & 

Glimcher, 1999). This suggests that sequential sampling models not only 

explain reaction time (RT) data, but may also predict neural processes reflecting 

the accumulation of evidence for decision-making. Therefore, to gain further 

insight into how we make decisions, recent research has been dedicated to 

exploring the potential neural correlates of the decision variable, i.e. the 

accumulation-to-bound dynamics of decision-making.  
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Particular progress regarding neural correlates of decision-making comes from 

research with non-human primates. Single-cell recordings, which are rarely 

used in humans, allow us to measure brain activity with great spatial resolution, 

as well as a very high temporal resolution, crucial in order to track how activity 

evolves over the course of short perceptual decisions. In a typical study, 

monkeys are presented with a binary perceptual decision task and indicate their 

decisions using saccades, while the firing rates of neurons involved in the 

oculomotor decision are recorded (Gold & Shadlen, 2000; Shadlen & Newsome, 

1996, 2001). In this context, it has been shown that firing rates of neurons in the 

lateral intraparietal area (LIP) show characteristics of a neural substrate of 

decision-making, building up in a ramp-like fashion over the course of a 

decision, before reaching a stereotyped level at response time. The slope of the 

build-up depends on the strength of the sensory evidence, with stronger 

evidence leading to a steeper rise, and predicts the monkey’s decision time 

(Roitman & Shadlen, 2002). Similarly, activity in the frontal eye field (Gold & 

Shadlen, 2000; Thompson, Bichot, & Schall, 1997) and superior colliculus 

(Horwitz, Batista, & Newsome, 2004; Paré & Wurtz, 2001) have been shown to 

display characteristics of accumulation-to-bound signals associated with 

sequential sampling models.  

 

While a large amount of research has been dedicated to identifying neural 

correlates of the decision variable in monkeys, and there is now convincing 

evidence that single-cell firing rates, particularly in the LIP, display the same 

profile that is predicted by sequential sampling models (Huk & Shadlen, 2005; 

Paré & Wurtz, 2001; Platt & Glimcher, 1999; Shadlen & Newsome, 1996, 2001), 

research in human decision-making has been progressing more slowly.  

 

Neuroimaging research of human perceptual decision-making has often made 

use of functional magnetic resonance imaging (fMRI), which has led to some 

insights into which brain areas are primarily involved in decision-making, such 

as the dorsolateral prefrontal cortex (Heekeren et al., 2004), the posterior 

parietal cortex (Tosoni et al., 2008), and the intraparietal sulcus (Kayser, 

Buchsbaum, Erickson, & Esposito, 2010). However, due to their low temporal 
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resolution, fMRI techniques do not lend themselves to the tracking of a dynamic 

signal within the course of a decision which takes no longer than 1000 ms. 

Magnetoencephalographic (MEG) and electroencephalographic (EEG) 

approaches on the other hand, have a high temporal resolution, and although 

they give little insight into the structural underpinnings of decision-making, are 

an appropriate method to identify neural substrates of the decision variable in 

the human brain. 

 

A range of studies have made use of these techniques to identify decision-

related signals. For example, in a series of studies, Philiastides and colleagues 

recorded EEG while participants performed a face-car discrimination task and 

used a machine learning approach to identify signals which were able to 

discriminate between the two stimulus categories (Philiastides et al., 2006; 

Philiastides & Sajda, 2006). However, this putatively decision-related signal, 

disappeared when the task switched from a face-car discrimination to a colour 

discrimination, questioning its role as a general-purpose decision variable. The 

component was later interpreted as a post-sensory signal feeding into the 

accumulation process (Philiastides et al., 2006; Ratcliff et al., 2009). In a similar 

study Philiastides, Heekeren, and Sajda (2014) identified an EEG signal which, 

like a decision variable, builds up over the course of the decision, at a rate that 

depends on the signal strength. However, the findings did not suggest that the 

build-ups which differed with the amount of sensory evidence converged to a 

stereotyped level to suggest the reaching of a decision boundary. 

 

Van Vugt et al. (2012) used a regressor-based EEG approach which allowed 

them to search for a correlate of the accumulation profile predicted by a 

sequential sampling model while participants performed a random dot motion 

task. With this approach, they were able to identify oscillatory theta band (4-9 

Hz) power over the parietal lobe as a neural correlate of the accumulation 

process. A similar approach was used by Wyart et al. (2012), who presented 

participants with a series of Gabor patterns and asked them to report the 

average tilt of the patterns. They found that the encoding of evidence fluctuated 

in accordance with delta band (1-3 Hz) oscillations. 
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A different approach to tracking decision-related M/EEG activity, which is 

comparable to the tracking of oculomotor neurons in monkeys, focuses on 

signals which are known to be indicators of motor preparation. Traditional 

theories of decision-making assume serial processing, in which sensory 

encoding, decision formation, and motor execution are separate stages, and 

response selection only occurs after the decision is made (Donders, 1969; 

Sternberg, 1969). However, more recent evidence does not support this 

assumption, indicating instead that motor preparation occurs throughout the 

decision-making process (Coles et al., 1985; Gluth et al., 2013; Hadar et al., 

2012; Selen, Shadlen, & Wolpert, 2012). Therefore, researchers have 

measured effector-specific motor signals to track the decision variable, 

assuming that the evidence accumulation process is constantly fed forward into 

motor areas, so that, as evidence for a given alternative accumulates to a 

certain level, the response associated with the alternative is prepared to the 

same extent. 

 

One signal which is known to be related to motor preparation and has been 

used to track evidence accumulation is the lateralised readiness potential 

(LRP). The LRP is the lateralised portion of a slow, negative potential over 

frontal and central electrodes which precedes voluntary movements of distal 

limbs, called the readiness potential (RP, or Bereitschaftspotential; Kornhuber & 

Deecke, 1965; Vaughan, Costa, & Ritter, 1968). Crucially, this negativity is 

larger in the hemisphere contralateral to the movement, and has been shown to 

arise from the supplementary motor area (Ikeda & Shibasaki, 1992; Lang et al., 

1991). To measure the LRP, a typical study requires participants to respond to 

stimuli with a hand movement on the left or the right side, while EEG activity is 

recorded from electrodes over the left and right motor cortex (usually C3 and 

C4). The resulting EEG signals are then locked to a given event (either stimulus 

onset or response), averaged across trials, and the activity recorded from the 

ipsilateral hemisphere is subtracted from activity of the contralateral 

hemisphere, to generate the LRP waveform.  

 

A number of studies have linked the LRP to decision-making, showing 

differences in the waveform with varying speed/accuracy decision strategies 
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(Rinkenauer et al., 2004) and decision bias (Noorbaloochi et al., 2015), or 

linking it to mechanisms of response caution (van Vugt et al., 2014). However, 

there is also some evidence to suggest that the LRP is a neural correlate of the 

decision variable itself. Polanía et al. (2014) found that the LRP waveform 

closely followed the accumulation profile predicted by sequential sampling 

models in both perceptual and value-based decisions. Kelly and O’Connell 

(2013) also investigated the role of the LRP in decision-making and found that it 

builds up over the course of the decision (although with negative polarity) and 

that its slope depends on the difficulty of the decision. However, these authors 

noted that although the LRP shows characteristics of the decision variable, it 

temporally lags behind a centroparietal component, which they identified to be 

the true neural correlate of the decision variable (see below). Similarly, 

Dmochowski and Norcia (2015) found that the LRP captures some, but not all 

characteristics of a decision variable, as it does not allow for a discrimination 

between fast and slow responses as well as other decision-related components. 

Similar findings have been reported for the RP (Gluth et al., 2013; Schurger, 

Sitt, & Dehaene, 2012). 

 

Another motor-related EEG signal which has commonly been used to study 

perceptual decision-making is the power of beta-band oscillations. It has been 

shown that oscillations in this frequency (typically between 15 and 30 Hz) 

display a clear desynchronisation over the premotor cortex, contralateral to a 

manual response when the response is prepared (Doyle et al., 2005; Jasper & 

Penfield, 1949; Pfurtscheller, 1981; Zaepffel et al., 2013). While there is some 

methodological variation in the way event-related desynchronisation (ERD) 

profiles in the beta band are generated, and in particular which frequency range 

is chosen, a typical study requires participants to make one of two possible 

hand movements (left/right) and records EEG activity from electrodes over the 

contralateral motor cortex. One way in which to assess beta band activity is the 

band power method, in which the EEG signal is band-pass filtered, to remove 

all frequencies that do not fall within the chosen beta range. The resulting signal 

is then locked to a given event (e.g. stimulus onset) and squared to obtain 

power samples, as well as averaged over trials (Pfurtscheller & Lopes, 1999). 

Like the LRP, the decrease in beta power is interpreted as a response 
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preparation signal and, assuming that processing is not serial and motor 

preparation closely follows evidence accumulation, may therefore be used to 

track the decision-making process.  

 

A number of studies have explored the role of beta ERD in decision-making. It 

has been found that desynchronisation increases as decision uncertainty 

reduces (Tzagarakis et al., 2010), and that the latency of the desynchronisation 

is shorter in easy compared to hard decisions, suggesting that the duration of 

motor preparation increases with the duration of the decision formation (Kaiser, 

Lennert, & Lutzenberger, 2007). In line with this finding, Donner et al. (2009) 

suggested that oscillations in the beta frequency may be a neural correlate of 

the decision variable. Using MEG during a human random dot motion task, it 

was found that beta power corresponds to the integral of the sensory evidence 

provided by the visual cortical area MT, and displays integration-to-bound 

dynamics (Donner et al., 2009; Siegel, Engel, & Donner, 2011). This was also 

supported by EEG studies which found that oscillations in the beta band show 

the same accumulation-like profile as expected for a decision variable (i.e. a 

ramp-like profile during a perceptual decision) and reach a stereotyped peak 

before the hand movement that indicates the decision (Kubanek et al., 2013; 

O’Connell et al., 2012). Additionally, unlike sensory signals which show a more 

linear change with increasing stimulus strength, the slope of the change in beta 

power was found to increase over time, indicating that it reflects the temporal 

integration of evidence (O’Connell et al., 2012). De Lange et al. (2013) used 

effector-specific activity in the beta band to explore the effects of prior 

expectations and found that decision bias results in a baseline shift in 

lateralised beta ERD. Since sequential sampling models predict a shift in the 

starting point of the accumulation process to account for biased decisions, this 

finding is in line with the claim that beta ERD may reflect the decision variable.  

 

However, O’Connell et al. (2012) also noted that accumulation-like 

characteristics in beta ERD were only present in decisions involving hand 

movements. Similarly, if a decision is made without advanced knowledge of the 

stimulus-response mapping, no change in motor-related beta activity can be 

observed during the decision (Twomey et al., 2016).  
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This dependence on the response may seem to be an obvious limitation of 

motor-related signals as a read-out of accumulation. Since both the LRP and 

beta ERD are primarily correlates of hand-movement preparation, they are not 

expected to show accumulation-like profiles during decisions which do not 

require these responses, or decisions which are made without knowing which 

response is associated with each alternative. This finding demonstrates that 

what can be observed in these motor-related signals during decisions with 

known stimulus-hand mappings (e.g. Donner et al., 2009) is not a decision-

making process, but is instead likely to occur down-stream from decision areas 

(Wyart et al., 2012). Nevertheless, response-preparation signals may still give 

insight into the accumulation process as evidence suggests that the decision 

state flows continuously to the motor areas (Donner et al., 2009; O’Connell et 

al., 2012). Note also that some of the most useful neural correlates of the 

decision variable in non-human primates track firing rates in oculomotor 

neurons during saccadic decisions, which are arguably equivalent to lateralised 

motor preparation signals in human decision-making requiring hand movements 

(Gold & Shadlen, 2000, 2003). 

 

A different EEG signal which does not have the same limitations as motor-

related activity was proposed by O’Connell et al. (2012). In a series of 

experiments, they recorded human EEG during a visual target-detection task, 

and identified the centroparietal positivity (CPP) as an accumulation-to-bound 

signal. The CPP is a large, positive ERP component recorded over 

centroparietal regions, which displays a number of characteristics of the 

decision variable. It shows a ramp-like increase over the course of the decision 

formation and peaks at a stereotyped level immediately prior to the response. 

By varying the difficulty of the gradual detection task both between and within 

trials, it was also demonstrated that the slope of the decision-related build-up is 

sensitive to the strength of the evidence, with easier decisions (stronger 

evidence) leading to steeper build-up rates, and changes in difficulty within a 

decision leading to changes in slope within the build-up.  
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Importantly, O’Connell et al. (2012) were able to dissociate the CPP from 

signals of both sensory encoding and motor processing. In a task in which the 

evidence increased over time, it was shown that, unlike correlates of sensory 

processing which display a linear build-up as stimulus strength increases, the 

CPP builds up at a rate which increases over the course of the decision, 

indexing the temporal integration of sensory evidence. Additionally, the build-up 

seen in sensory-related signals was shown to remain the same regardless of 

whether the sensory information was task-relevant or not, while the CPP only 

displayed a build-up when the sensory input was attended to make a decision. 

Further, the CPP was shown to display the same accumulation-to bound profile, 

regardless of whether or not the response required hand movements. In a 

follow-up study, it was also shown that, unlike motor signals, the CPP does not 

depend on foreknowledge of the stimulus-response mapping (Twomey et al., 

2016). These findings suggest that the CPP provides a read-out of the decision-

related accumulation of evidence. This notion was also supported by the finding 

that it is unaffected by modality, as auditory decisions were associated with the 

same CPP profiles as decisions based on visual evidence (O’Connell et al., 

2012; Twomey et al., 2015). 

 

However, as reported in Chapter 2, we were not able to demonstrate a 

difference in CPP waveforms between decisions that are made under speed 

stress (i.e. quick and error-prone decisions), and decisions which are made 

following instructions to be as accurate as possible (i.e. slow, accurate 

decisions). Sequential sampling models typically account for the behavioural 

differences of the speed-accuracy trade-off by adjusting the response caution 

parameter (Brown & Heathcote, 2008; Heitz, 2014; Ratcliff & McKoon, 2008). 

This threshold difference between ‘speed’ and ‘accuracy’ trials should be visible 

in the profile of a neural substrate of the decision variable as a difference in 

amplitude. We were not able to support this hypothesis in Chapter 2. Although 

this finding can be accommodated by sequential sampling models and may not 

question the role of the CPP as a neural substrate of the decision variable but 

rather be used to inform the neural implementation of sequential sampling 

models (see Chapter 2), it does raise questions about the CPP and its role. 
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Another limitation of the CPP was raised by Urai and Pfeffer (2014). They note 

that unlike motor-related signals of decision-making, the CPP is not able to 

predict the specific choice a participant is making. The CPP is not effector-

specific and instead, builds up to a threshold in the same way for any response, 

while more established accumulation signals recorded in non-human primates 

display choice-selectivity (e.g. Shadlen & Newsome, 2001). This lack of 

selectivity led to the suggestion that the CPP may in fact display a build-up of 

choice confidence, rather than evidence accumulation (Urai & Pfeffer, 2014). 

Note however, that the comparatively poor spatial resolution of EEG allows for a 

discrimination between choices in motor signals due to the clear lateralisation of 

the motor cortices (i.e. right/left-hand responses can be tracked over the 

left/right hemisphere), but does not allow for a discrimination between 

neighbouring neural populations. It is therefore possible that evidence for 

different alternatives is in fact accumulated in separate neural populations, but 

that what is recorded on the scalp is a summation of activity.  

 

In the light of this research, it becomes apparent that many questions regarding 

neural substrates of decision-making in the human brain, and in particular the 

CPP, are yet to be answered conclusively. In this study, we therefore set out to 

explore potential accumulation-to-bound signals in the human EEG. To do this, 

we explored decisions with differing levels of difficulty. We chose the difficulty 

manipulation not only because it is one of the most commonly used 

manipulations in the field of perceptual decision-making (de Lafuente, Jazayeri, 

& Shadlen, 2015; Ho et al., 2009; Ratcliff & McKoon, 2008; Roitman & Shadlen, 

2002), but also because it is one of the only manipulations that has only one 

possible implementation in sequential sampling models. The behavioural effects 

of many standard manipulations in decision-making research can be explained 

by sequential sampling models in a number of different ways. This is not the 

case for the manipulation of difficulty. Difficulty has strong effects on the 

behavioural data, but, to our knowledge, these changes are explained by a 

difference in drift rate (i.e. the rate at which evidence is accumulated) in virtually 

all approaches using sequential sampling models (Donkin et al., 2009; Mulder 

et al., 2014; Ratcliff & McKoon, 2008; Ratcliff & Rouder, 1998; Voss, 

Rothermund, & Voss, 2004; but see Goldfarb, Leonard, Simen, Caicedo-Nunez, 
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& Holmes, 2014; Teodorescu & Usher, 2013). The drift rate uniquely accounts 

for behavioural differences induced by difficulty changes as it is the only 

parameter which simultaneously influences accuracy and RT in opposing 

directions (i.e. as drift rate increases, accuracy increases while RT decreases; 

see Figure 3.1). Since there is a consensus that the drift rate of the 

accumulation process, at least in part, accounts for behavioural differences due 

to different levels of difficulty, we assume that any neural correlate of the 

decision variable should display a different profile in easy and hard decisions. 

Specifically, we expect a higher slope in the build-up associated with easy 

decisions than with hard decisions (Kelly & O’Connell, 2013; Roitman & 

Shadlen, 2002). In this study, we made use of the data collected in Chapter 2 

(Experiment 1) and tested whether this assumption holds true in the most 

commonly suggested decision-related human EEG signals, namely the CPP, 

the LRP, and beta ERD.  

 

Additionally, we used a bottom-up approach to identify other potential signals 

which may display differences between easy and hard decisions and reflect 

accumulation. Bottom-up approaches which aim to identify signals which 

display characteristics of the decision variable have been used before, for 

example by van Vugt et al. (2012), who used a regressor-based analysis. This 

method has the advantage of being able to identify signals with specific 

characteristics, but identifies such signals regardless of their recording sites, 

which can make their interpretation difficult. Here, we therefore chose a method 

which, to our knowledge, has not previously been used to identify decision 

variable signals, namely cluster-based permutation tests (Maris & Oostenveld, 

2007). This method identifies differences between conditions in the whole brain 

rather than just specific waveforms, and can be applied here since we have 

clear predictions about the effects of difficulty on an accumulation signal. 

Importantly, this method uses biophysically motivated constraints, which not 

only increase its sensitivity, but also make it more interpretable. By combining 

this approach with the exploration of established EEG signals, we aimed to 

identify the most suitable neural correlate of the decision variable. 
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Figure 3.1: Simplified illustration of an accumulation process in a sequential sampling model framework: 
evidence accumulates from a starting point towards the threshold. The slope of the accumulation is 
defined by the drift rate, which varies with task difficulty. The easier the decision, the higher the slope of 
the accumulation.  

3.1. Methods  

 

Since this study uses data collected in Chapter 2, the data collection methods 

are only described briefly (please see Chapter 2 for more details). 

 

3.1.1.  Participants 

A total of 26 participants (nine males) were recruited using poster 

advertisements and word of mouth. Three participants were excluded from the 

experiment as they were unable to perform the task as required by criteria 

established prior to the experiment (see Chapter 2, section 2.1.1.2.2). The 

remaining sample was made up of 23 participants (eight males) with a mean 

age of 29.39 (SD = 7.47). Each participant took part in a two-hour session, 

completing 800 trials, and was paid £8 per hour, as well as an additional 

performance-based reward of up to £4. All procedures were approved by the 

City, University of London Psychology Department Ethical Committee. 

3.1.2.  Stimuli and Procedure 

Participants were asked to complete a random dot motion task, in which they 

viewed an array of moving dots, a proportion of which moved coherently either 

up or down, while the rest of the dots moved in random directions. Participants 

were asked to indicate the direction of the coherent motion. The difficulty of the 
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task was determined by the coherence level, i.e. the ratio between coherently 

and randomly moving dots. Each participant was presented with ‘easy’ and 

‘hard’ trials, the coherence levels of which were calibrated individually using the 

QUEST staircase procedure, implemented in Psychtoolbox (Watson & Pelli, 

1983). The QUEST procedure estimated the coherence levels at which a given 

participant was able to respond correctly in 75% of trials for the ‘hard’ condition, 

and 95% for the ‘easy’ condition. Overall, the appropriate difficulty levels 

estimated for the final sample resulted in a mean of 30.63% (SD = 18.69) 

coherence for ‘hard’, and 67.67% (SD = 28.23) for ‘easy’ trials. ‘Easy’ and ‘hard’ 

trials, as well as trials with upward and downward motion were randomly 

intermixed. The original experiment also included a manipulation of speed and 

accuracy instructions (see Chapter 2, section 2.1.1.2.3). However, this 

manipulation is ignored here and all analyses are performed to compare only 

difficulty conditions, collapsed over speed and accuracy conditions. 

 

The trial procedure is displayed in Figure 3.2. To start each trial, participants 

were presented with a fixation cross for 500 ms (plus a jitter of up to 1000 ms, 

drawn from a uniform distribution). Then, 100% of the dots moved randomly for 

1000 ms (plus a jitter of up to 1500 ms, drawn from a gamma distribution with 

shape parameter 1 and scaling parameter 150). This period of random motion 

was introduced as the onset of the moving dots is likely to produce a visual 

evoked potential (VEP). By allowing this VEP to occur before the onset of 

coherent motion, we were able to clearly track decision-related potentials from 

the onset of the accumulation process (i.e. the onset of coherent motion). The 

random motion was followed by the onset of coherent motion, when a 

proportion of dots started moving coherently either up or down, for up to 2000 

ms, or until the response. Feedback was provided after each trial. All stimuli 

were written in Matlab (The Mathworks, Natick, U.S.A.), using the Psychtoolbox 

extension (Brainard, 1997; Kleiner et al., 2007; Pelli, 1997) and run on a PC.  
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Figure 3.2: Random dot motion task trial procedure: in each trial, a fixation cross was followed by a period 
of random motion (coherence: 0%). Then, the coherent motion (up/down) was presented according to 
each participant’s difficulty level (here: coherence: 70%, direction: up). The coherent motion continued for 
2000 ms or until a response was given. Feedback was provided after each trial. Note that the size and 
number of dots have been adjusted for illustration. 

 

3.1.3.  EEG Recording and Analysis 

Continuous EEG was recorded using 64 active electrodes, placed equidistantly 

on the scalp (EasyCap, M10 Montage) and referenced to the right mastoid. 

Using a BrainAmp amplifier (BrainProducts), data were recorded at a sampling 

rate of 1000 Hz and band-pass filtered from 0.016 – 1000 Hz. The data were 

then pre-processed using custom scripts in Matlab (The Mathworks, Natick, 

U.S.A.), drawing on functions from the EEGLAB toolbox (Delorme & Makeig, 

2004). 

 

EEG data were re-referenced to the average reference and filtered at 0.1 (low 

cut-off) and 45 Hz (high cut-off), using a Hamming windowed finite impulse 

response filter. To improve the signal-to-noise ratio, we initially visually 
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inspected the data to remove large muscle artifacts before applying 

independent component analysis to remove eye blink components. Any 

remaining artifacts were removed manually during a second visual inspection. 

Afterwards, spherical spline interpolation was used to reconstruct noisy 

channels, which were identified and rejected during the first visual inspection.  

 

3.1.3.1. Event-related Potentials 

To generate ERP waveforms, matched stimulus-locked (-200 to 2000 ms 

relative to the onset of coherent motion) and response-locked (-1000 to 100 ms 

relative to button press) epochs were extracted from the continuous data. All 

epochs were baselined to the average over a 200 ms period preceding the 

onset of coherent motion. Epochs were then separated into ‘easy’ and ‘hard’ 

conditions. Since we assume equivalent decision processes for trials with 

upward and downward motion, we collapsed trials over motion direction. 

However, since trials with upward and downward motion were associated with 

right and left-hand responses, leading to stronger changes in the left and right 

hemisphere respectively, simply averaging over both motion directions would 

distort the lateralisation of motor processes. Therefore, the topography of all 

trials with a right-hand response (correct ‘up’ trials and incorrect ‘down’ trials) 

was mirrored along the midline, so that all contralateral activity was projected 

onto the right hemisphere (i.e. activity recorded in electrodes on the left 

hemisphere was now associated with electrodes on the right hemisphere). 

Finally, in line with previously suggested procedures (Kelly & O’Connell, 2013; 

O’Connell et al., 2012), the data were converted to current source density 

(CSD) estimates to increase spatial selectivity. The CSD transformation was 

applied using the CSD toolbox, which uses a spherical spline algorithm, with the 

spline interpolation constant m set to its default value (m = 4; Kayser & Tenke, 

2006).  

3.1.3.1.1. Centroparietal Positivity (CPP) 

To generate the CPP waveform, centroparietal electrodes were chosen for each 

participant individually by inspecting the averaged ERP topography and 

identifying the electrode associated with the maximum amplitude (chosen 
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electrodes: 1, 5, or 14, roughly equivalent to electrodes Cz, CPz, and Pz in the 

10-20 system; see Figure 3.4 a). The activity in the selected electrodes was 

averaged over correct trials and participants for each difficulty condition and for 

stimulus and response-locked signals separately. 

3.1.3.1.2. Lateralised Readiness Potential (LRP) 

Similarly, ERP topographies, as well as waveforms at different electrodes were 

visually inspected to identify appropriate frontocentral electrodes for the LRP 

waveform per participant (chosen contralateral electrodes: 18 or 31, ipsilateral 

electrodes: 10 or 22, roughly equivalent to electrodes FC3, C5, FC4, C6 in the 

10-20 system)8. Activity recorded from the chosen ipsilateral electrode was 

subtracted from the recordings from the corresponding contralateral electrode. 

The resulting activity was averaged over correct trials and participants to 

generate the LRP waveform. 

3.1.3.2. Time-Frequency Analysis 

To estimate the time-varying spectral content of the data, longer epochs than 

those required for the ERP analysis were extracted (-2000 to 2000 ms relative 

to the onset of coherent motion for stimulus-locked, and -2000 to 1000 ms 

relative to the response for response-locked data). Segments were separated 

into ‘easy’ and ‘hard’ conditions, collapsed over ‘up’ and ‘down’ trials, mirrored, 

and CSD-transformed in the same way as described above for the ERP 

analysis. Error trials were discarded from the analysis. The time-frequency 

analysis was performed using the wavelet decomposition method, in which the 

data is convolved with a Morlet wavelet. We used wavelets with four cycles on a 

single trial basis before averaging the resulting transforms. Frequencies from 2 

to 40 Hz were analysed in steps of 1 Hz. The resulting time-frequency 

representation (TFR) was normalised by dividing the power in each frequency 

by its mean during a baseline interval of -500 to -100 ms relative to the onset of 

coherent motion. 

 

                                                
8 Note that we repeated all analyses based on an LRP which was generated using the standard 
electrodes 17 and 11 (roughly equivalent to C3 and C4 in the 10-20 system) and found 
qualitatively identical results. 
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3.1.3.2.1. Event-Related Beta Desynchronisation 

In order to explore event-related desynchronisation, we visually inspected each 

participant’s time-frequency plot and identified the 15 to 25 Hz frequency range 

to be suitable for all participants. We used the band-power method 

(Pfurtscheller & Lopes, 1999) to analyse the time-varying power of this beta 

band. Each participant’s temporospatial signal was filtered between 15 and 25 

Hz, using a Butterworth band-pass filter (order = 4). The resulting signal was 

squared, averaged, and then smoothed using a moving average with a 50 ms 

window. Lastly, the power was expressed in percentage of change from the 

baseline interval of -200 to 0 ms relative to the onset of the coherent motion, by 

subtracting the mean baseline power from the waveform, dividing the resulting 

signal by the mean baseline power and multiplying it by 100. In line with 

standard procedures (Doyle et al., 2005; O’Connell et al., 2012; Pfurtscheller, 

1981), we chose electrode 17 (roughly equivalent to C3 in the 10-20 system) to 

test contralateral beta power. In order to test lateralised beta ERD, we 

subtracted signals recorded from the ipsilateral electrode 11 (roughly equivalent 

to C4 in the 10-20 system), from activity in electrode 17. 

 

3.1.3.3. Statistical Analysis 

In order to test for characteristics of the decision variable in the generated ERP 

and ERD waveforms, we compared the slope of the build-up between ‘easy’ 

and ‘hard’ conditions. To do so, we fitted a straight line and measured its slope 

for each participant’s signal. In line with Kelly and O’Connell (2013), the chosen 

time intervals to which we fitted a line were 200 to 350 ms for the stimulus-

locked CPP, -250 to -100 ms for the response-locked CPP, 300 to 450 ms for 

the stimulus-locked LRP and ERD, and -300 to -150 ms for the response-locked 

LRP and ERD. 

 

Additionally, we analysed the impact of difficulty on the amplitude of the 

waveform. Using t-tests, we compared the values in ‘easy’ and ‘hard’ ERPs and 

ERDs in each time sample between 0 and 1000 ms for the stimulus-locked, and 

-1000 to 0 ms in the response-locked signal. The results were controlled for 
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multiple comparisons using the false discovery rate (FDR) approach (Benjamini 

& Hochberg, 1995). In this procedure, the uncorrected p-values are sorted from 

lowest to highest (pi refers to the ith lowest value out of m total p-values). The 

largest i for which 𝑝𝑖 < (
𝑖

𝑚
) ∝ is identified and all p-values associated with is 

smaller or equal to the identified i are considered significant.  

 

3.1.3.4. Exploratory Approach 

Since there is no single signal in the human EEG which has been conclusively 

proven to be a correlate of decision-related evidence accumulation, we set out 

to not only test those signals which have previously been suggested to play this 

role, but also to explore the data using a bottom-up approach. Since sequential 

sampling models make strong predictions about differences in accumulation 

due to different difficulty levels, we used a data-driven method to search the 

data for differences between signals associated with ‘easy’ decisions and those 

associated with ‘hard’ decisions. To this end, we employed a non-parametric 

cluster permutation approach to evaluate both ERP data (temporal and spatial 

dimensions) and TFR data (temporal, spatial, and spectral dimensions; Maris & 

Oostenveld, 2007). This method not only allows for a less conservative solution 

to the multiple comparison problem than, for example, Bonferroni corrections, 

but is also built on biological concepts and makes use of the assumption that, if 

a difference between conditions is meaningful, it ought to be visible across a 

multidimensional cluster (i.e. across time and space, or across time, space, and 

frequency if TFR data are used).  

 

Following this method, we first generated dependent-measures t-statistics for 

the comparison between ’easy’ and ‘hard’ trials for each of the samples (one 

sample corresponds to one time-electrode pair for ERP comparisons and one 

time-electrode-frequency pair for TFR comparisons), to identify all samples at 

which a given cut-off (defined here as p < .05) was exceeded. These t-tests 

were run across all electrodes, and all time points in the time interval of 0 to 

1000 ms relative to the onset of coherent motion in the stimulus-locked data, as 

well as for each frequency between 2 and 40 Hz for TFR comparisons. If 
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neighbouring samples exceeded the threshold and shared the same sign, they 

were grouped into a cluster. The cluster statistic is defined as the sum of all t-

values in a cluster. Each cluster is then assigned a p-value by comparing it 

against the permutation distribution of the maximum cluster-level statistic. The 

permutation distribution is approximated using a Monte-Carlo estimate after 

performing 500 random partitions of the data (i.e. data is shuffled across 

conditions and randomly assigned into two new conditions) and re-calculating 

the statistic of interest on the shuffled data.  

 

The analysis was run in Matlab (The Mathworks, Natick, U.S.A.), using custom 

scripts drawing on functions of the fieldtrip extension (Oostenveld, Fries, Maris, 

& Schoffelen, 2011). Cluster permutation tests were only performed on 

stimulus-locked data, as we expected a neural correlate of the decision variable 

to display differences between ‘easy’ and ‘hard’ trials in the stimulus-locked, but 

not in the response-locked amplitude, as according to sequential sampling 

models, response-locked signals should converge to a common bound. 

Although slope differences are expected in both the stimulus and the respond-

locked data, these differences are often less visible in response-locked data, 

and do not necessarily translate into a clear difference in amplitude. To explore 

any clusters identified in the stimulus-locked signal in the response-locked data, 

we generated the response-locked signal of the electrodes (and frequencies for 

TFR clusters) defined by the cluster and performed the same FDR controlled t-

tests as defined above to evaluate the signal. 

 

3.2. Results 

3.2.1.  Behavioural Results 

In order to test the effects of the difficulty manipulation on the behavioural data, 

data were collapsed over ‘up’ and ‘down’ trials. Trials with very short (< 180 ms) 

and very long (>= 2000 ms) RTs were excluded from the analysis (6.08% of 

trials). The remaining data are displayed in Figure 3.3. A paired-samples t-test 

revealed that response times in correct trials were significantly different 
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between difficulty levels, t(22) = 11.19, p < .001, d = 2.33, with ‘easy’ decisions 

being associated with shorter RTs (M = 533 ms) than ‘hard’ decisions (M = 679 

ms). 

 

To explore this effect in the accuracy data, a generalised linear mixed-effects 

model with a logistic link function and binomial data model was used, which, 

unlike a t-test, appropriately models the non-normal distribution of the data. 

Using the ‘fitglme’ function in Matlab (The Mathworks, Natick, U.S.A.), 

parameter estimates were based on a maximum likelihood method using the 

Laplace approximation. In this model, ‘Difficulty’ was included as a fixed effect 

and ‘Participant’ was included as a random effect (Wilkinson notation: 

Accuracy ~ 1 + Difficulty + (1 + Difficulty | 

Participant))9. It was found that ‘Difficulty’ was a significant predictor, t(44) 

= 4.69, p < .001, with higher accuracies observed in easy (M = 86%) compared 

to hard trials (M = 79%). 

 

Figure 3.3: Behavioural results: reaction time in seconds (left) and accuracy in proportion correct (right). 
Error bars indicate 95% confidence interval. ** indicates p < .001. 

 

                                                
9 The dispersion parameter of the model, φ = .80, was calculated by dividing the sum of squared 
Pearson residuals by the residual degrees of freedom (Venables & Ripley, 2002). 
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3.2.2.  Neural Results 

3.2.2.1. Centroparietal Positivity (CPP) 

We generated the CPP (see Figure 3.4 a) and conducted a t-test to investigate 

the difference in slope between signals associated with ‘easy’ and ‘hard’ 

decisions. In the CPP waveform, we found a significant difference in slopes in 

both stimulus-locked, t(22) = 3.67, p = .001, d = .77, and response-locked t(22) 

= 3.60, p = .002, d = .75, waveforms. In accordance with sequential sampling 

models which assume a higher drift rate (i.e. a steeper slope of accumulation) in 

‘easy’ compared to ‘hard’ choices, we found that slopes in trials with high 

motion coherence (Mstimulus-lock= .07, Mresponse-lock= .06) were significantly 

higher than those in trials with lower motion coherence (Mstimulus-lock= .06, 

Mresponse-lock= .04).  

 

Additionally, an FDR-corrected series of t-tests revealed statistically significantly 

higher amplitudes in ‘easy’ compared to ‘hard’ trials in all time samples between 

265 and 632 ms in the stimulus-locked CPP (corrected p < .05). The response-

locked CPP showed no significant difference in amplitude between ‘easy’ and 

‘hard’ trials after FDR correction (see Figure 3.4 a). 

 

3.2.2.2. Lateralised Readiness Potential (LRP) 

Further, we generated the LRP waveform (see Figure 3.4 b) and found a 

significant difference in slopes between difficulty conditions in the stimulus-

locked data, t(22) = -5.00, p < .001, d = -1.04, with a steeper slope associated 

with ‘easy’ (Mstimulus-lock= -.07) compared to ’hard’ (Mstimulus-lock= -.04) trials. 

However, there was no significant difference in slope in the response-locked 

LRP t(22) = -.31, p = .076, d = -.06 (Mresponse-lock= -.03 for both difficulty levels).  

 

FDR-corrected t-tests showed significant differences in the stimulus-locked 

LRP, with higher amplitudes in ‘easy’ compared to ‘hard’ trials, between 8 and 

12 ms relative to stimulus onset (corrected p < .049), as well as in 212 out of 

278 time samples between 318 and 596 ms relative to stimulus onset (corrected 
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p < .05). There was no significant difference in amplitude between the 

difficulties in the response-locked LRP (corrected p > .58; see Figure 3.4 b). 

 

3.2.2.3. Event-Related Beta Desynchronisation 

For contralateral beta power (see Figure 3.4 c), we first tested differences 

between difficulty levels. We found that the slope of the ERD did not differ 

significantly between ‘easy’ (Mstimulus-lock = -.05, Mresponse-lock = -.03) and ’hard’ 

(Mstimulus-lock = -.04, Mresponse-lock = -.04) conditions in either the stimulus-locked, 

t(22) = .42, p = .68, d = .09, or the response-locked data, t(22) = .38, p = .71, d 

= .08. We further tested the amplitude difference between ‘easy’ and ‘hard’ 

conditions throughout the decision-making process. After FDR correction for 

multiple comparisons, we found no difference in either the stimulus-locked 

(corrected p > .07), or the response-locked data (corrected p > .9). 

 

We then performed the same test on the lateralised spectral power in the beta 

frequency (see Figure 3.4 d). Again, we found no significant difference in slope 

between the ‘easy’ (Mstimulus-lock = -.02, Mresponse-lock = -.003) and the ‘hard’ 

(Mstimulus-lock = -.02, Mresponse-lock = -.005) conditions in either the stimulus-locked, 

t(22) = -1.06, p = .30, d = -.22, or the response-locked data, t(22) = .09, p = .93, 

d = .02. Similarly, we found no significant differences between ‘easy’ and ‘hard’ 

waveforms in amplitude in either the stimulus-locked (corrected p > .38) or the 

response-locked data (corrected p > .26). 

 

Overall, these findings are explained by the fact that we did not observe any 

desynchronisation in the lateralised part of beta ERD. To quantify this lack of 

lateralisation, we used t-tests to test the null hypothesis that each time sample 

(like all other analyses, time samples were taken at an interval of 0 to 1000 ms 

relative to stimulus onset and -1000 to 0 ms relative to response) of each 

condition stems from a distribution with a mean of zero, and corrected for 

multiple comparisons using FDR corrections. We found no time sample at which 

the null hypothesis was rejected (minimum corrected p-value across stimulus 

and response-locked data .06). This indicates that the same patterns were 

recorded on both contralateral and ipsilateral sites, and that the 
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desynchronisation observed in the contralateral signal was not effector-specific, 

but merely reflected a more general motor preparation.  

 

 

Figure 3.4: Neural results: from left to right: stimulus-locked, and response-locked waveforms, and ERP 
topographies. Topoplots show the mean ERP activity between 0 and 1000 ms relative to the onset of 
coherent motion. The electrodes used to generate each waveform are highlighted. Shaded grey areas in 
the waveform panels indicate a significant difference in amplitude between ‘easy’ and ‘hard’ trials. Vertical 
dashed lines indicate mean RT (note that these mean RTs only include RTs from trials which were 
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ultimately included to generate the waveform and therefore differ slightly from RTs displayed in Figure 3.3, 
as well as between ERP and spectral data). a) CPP; b) LRP; c) Beta ERD; d) lateralised Beta ERD. 

 

3.2.2.4. Exploratory Approach 

We further compared ‘easy’ and ‘hard’ decisions using a more exploratory 

analysis for both ERP and TFR data (Maris & Oostenveld, 2007). In the ERP 

data, a non-parametric cluster permutation test showed that there was a 

significant difference between the ERPs associated with ‘easy’ and ‘hard’ 

decisions. It revealed the presence of a cluster (p = .002) between 228 and 

1000 ms relative to the onset of coherent motion, in which the waveform 

associated with ‘easy’ trials built up faster and higher than the one associated 

with ‘hard’ trials. This cluster included a large range of electrodes, primarily over 

centroparietal regions (see Figure 3.5). We applied this cluster to response-

locked data by averaging over the ERPs of the identified electrodes. FDR-

corrected t-tests showed that ‘easy’ ERPs built up higher than ‘hard’ ERPs in 

238 out of 240 time samples between -239 and 0 ms relative to the response 

(corrected p < .05). 
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Figure 3.5: ERP cluster: Left: ERPs averaged over the identified electrodes (see topography) for stimulus-
locked (top) and response-locked (bottom) data (note that the cluster permutation test was only performed 
on stimulus-locked data). Vertical dashed lines indicate mean RT (like in Figure 3.4, mean RT is based 
only on trials used to generate the waveform and slightly differs from behavioural data displayed in Figure 
3.3). Shaded grey areas indicate a significant difference between ‘easy’ and ‘hard’ conditions. In the 
stimulus-locked data, this is based on the time samples identified in the cluster, while in the response-
locked data, significance is based on a number of FDR-controlled t-tests. Right: ERP topography over 
time. Electrodes identified by the cluster are highlighted. 

 

 



118 
 

A second cluster-based permutation test was used to identify differences 

between ‘easy’ and ‘hard’ decisions in TFR data. Again, the test showed that 

there was a significant difference in the TFR data between the two difficulty 

levels and revealed the presence of two clusters (both p = .002). One cluster 

was found between 700 and 1000 ms. Since this is a time interval in which most 

decisions have already been completed, we assumed that this cluster is not 

decision-related and discarded it from further investigation. The second cluster 

revealed higher power in delta and theta frequencies (2 to 7 Hz) in ‘easy’ 

compared to ‘hard’ trials, between 170 and 640 ms. This cluster was observed 

in a large range of mainly frontal and parietal electrodes (see Figure 3.6). We 

applied this cluster to response-locked TFR data by averaging over the 

frequencies and electrodes identified. FDR-corrected t-tests on this data 

revealed that ‘easy’ trials built up significantly higher than ‘hard’ trials during the 

interval of -280 to 0 ms relative to response (corrected p < .042). 
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Figure 3.6: TFR cluster: Left: Spectral power averaged over the identified frequency range (2 to 7 Hz) and 
electrodes (see topography) for stimulus-locked (top) and response-locked (bottom) data (note that the 
cluster permutation test was only performed on stimulus-locked data). Vertical dashed lines indicate mean 
RT (like in Figure 3.4, mean RT is based only on trials used to generate the waveform and differs slightly 
from behavioural data displayed in Figure 3.3). Shaded grey areas indicate a significant difference 
between ‘easy’ and ‘hard’ conditions. In the stimulus-locked data, this is based on the time samples 
identified in the cluster, while in the response-locked data, significance is based on a number of FDR-
controlled t-tests. Right: Topography of spectral power in the identified frequency band (2 to 7 Hz) over 
time. Electrodes identified by the cluster are highlighted. 
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3.3. Discussion 

 

In this study, we set out to test different potential neural correlates of the 

decision variable in the human EEG. We tested the impact of a difficulty 

manipulation on a number of signals which have previously been suggested to 

display accumulation-to-bound characteristics, namely the CPP (Kelly & 

O’Connell, 2013; O’Connell et al., 2012), the LRP (Kelly & O’Connell, 2013; 

Polanía et al., 2014), and beta ERD (Donner et al., 2009; Siegel et al., 2011). 

Additionally, we used an exploratory approach to identify other potential 

difficulty-related differences.  

 

We chose the manipulation of difficulty as it is has strong effects on behavioural 

data, which have been studied extensively in the sequential sampling model 

literature and are universally accounted for by a variation in just one parameter, 

namely the variation of drift rate, which makes strong predictions about the 

profile of the accumulation process (Brown & Heathcote, 2008; Mulder et al., 

2014; Ratcliff & McKoon, 2008; Voss, Nagler, & Lerche, 2013). Using two levels 

of difficulty (‘easy’, ’hard’), we expected strong behavioural differences, with 

‘easy’ decisions leading to shorter, and more accurate decisions than ‘hard’ 

decisions. The results support this hypothesis, showing that the ‘easy’ condition 

was associated with fewer errors and RTs which were on average 

approximately 150 ms shorter.  

 

Importantly, we further expected that a signal which reflects the decision 

variable would mirror these differences. An accumulation signal therefore has to 

not only build up over time and peak at the time of response, but also differ in 

slope between the conditions, with higher slopes (i.e. higher drift rates) in ‘easy’ 

compared to ‘hard’ decisions. Note that, due to the nature of EEG, we expect 

this difference in slope to be associated with a difference in amplitude in the 

stimulus-locked, but not in the response-locked data. We predict that the 

difference in difficulty is accounted for by a variation of only the drift rate (i.e. 

slope), while all other parameters are equal across conditions. This implies that 

the distance between the starting point of accumulation and the decision 
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threshold (i.e. the amplitude of the peak of each accumulation process) does 

not differ (given that the accumulation terminates immediately after reaching the 

threshold, but see below). However, in stimulus-locked EEG signals, the 

amplitude of the average peak is dependent on the variability of its latency 

across trials. Since ‘hard’ decisions are associated with longer, more variable 

RTs, the stimulus-locked average peak is necessarily smaller. This difference in 

amplitude should however disappear in the response-locked data, where, 

assuming a true decision variable signal, the signal is locked to the peak, 

removing any effects of variability in latency. In the following, we briefly re-

introduced each of the suggested signals and addressed to which extent they 

meet these slope and amplitude expectations. 

 

3.3.1.  Centroparietal Positivity (CPP) 

The CPP is a centroparietal ERP component, which has been shown to display 

accumulation-like profiles, independently of sensory or motor processes 

(O’Connell et al., 2012). It has been found to display the same build-up over the 

course of the decision and peak at the response for both visual and auditory 

decisions, as well as for decisions with and without motor responses. However, 

its role has been questioned as it is not effector-specific, which means that it 

cannot predict which decision is being made (Urai & Pfeffer, 2014). The slope of 

the CPP has previously been shown to scale with task difficulty (Kelly & 

O’Connell, 2013; O’Connell et al., 2012). 

 

In the current study, we were able to confirm this finding. As predicted for a 

decision variable signal, the CPP displayed the expected gradual build-up over 

the course of the decision, the peak of which co-occurred with the response 

(see Figure 3.4 a). In line with Kelly and O’Connell (2013), we found that the 

slope of the build-up was higher for ‘easy’ compared to ‘hard’ decisions, in both 

the stimulus-locked and the response-locked data. This suggests that ‘easy’ 

decisions are associated with a faster integration of evidence and a steeper 

accumulation, supporting the role of the CPP as a neural substrate of decision-

making.  
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We further compared the amplitude of ‘easy’ and ‘hard’ trials and found that, in 

the stimulus-locked ERP, ‘easy’ trials had a larger amplitude for the majority of 

the decision-making process. Sequential sampling models do not predict a 

difference in peak amplitude, which is arguably equivalent to a difference in 

decision threshold and/or starting point. However, a difference in slope can, 

over time, lead to a separation of the signal amplitudes. Additionally, as 

described above, a difference in amplitude is likely to be caused by differences 

in RT variability between the difficulty conditions. If we assume that the build-up 

peaks at a stereotyped level at response, averaging waveforms over trials and 

participants will lead to higher means when said peaks are less variable in time. 

Therefore, a difference in amplitude in the stimulus-locked ERP signal is not 

necessarily indicative of a difference in accumulation amplitude. The response-

locked ERP signal on the other hand, provides a truer reflection of the ERP 

amplitude at response. As predicted for a decision variable signal, there was no 

significant difference in amplitude between ‘easy’ and ‘hard’ conditions in the 

response-locked ERP. 

 

However, although the difference was not significant, visual inspection of the 

waveform and uncorrected p-values contradict previous CPP studies, which 

found that the amplitudes of response-locked peaks of ERPs associated with 

different difficulties were virtually identical (Kelly & O’Connell, 2013; O’Connell 

et al., 2012). We suggest two explanations for this difference. Firstly, it is 

important to note that accumulation may continue after the threshold is reached. 

Once enough evidence is accumulated and the boundary is reached, a decision 

is made and the response is initiated. However, the stimulus only turns off when 

the button is pressed. This implies that there is a brief time interval between the 

reaching of the threshold and the press of the response button in which 

evidence is still being observed and potentially accumulated. Since 

accumulation is shown to be faster for ‘easy’ than for ‘hard’ decisions, this 

means that, given the same time interval, ‘easy’ decisions will accumulate to a 

higher amplitude. Since the response-locked signal is locked to the press of the 

button, not the reaching of the threshold, we expect a small difference and are, 

in fact, surprised by Kelly and O’Connell's (2013) finding of virtually identical 
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amplitudes, which may be specific to their experimental setup. A second, not 

mutually exclusive, explanation for the small difference seen in the amplitude 

between conditions at response, was brought up by Philiastides et al. (2014). 

They suggested that the distributed nature of EEG recordings in combination 

with the spatial averaging due to volume conduction make it highly unlikely that 

we would observe different accumulation signals converging to the same 

boundary, as observed in single-unit recordings. 

 

Overall, the CPP displayed all of the characteristics of a decision variable 

outlined above. We observed a gradual build-up which peaks at the response, 

and is influenced by task difficulty, with ‘easy’ decisions leading to steeper build-

up rates. Therefore, we conclude that the CPP is a potential neural substrate of 

the decision variable. 

 

3.3.2.  Lateralised Readiness Potential (LRP) 

The LRP is a motor-related ERP component associated with the lateralised part 

of motor preparation and is generated by subtracting ipsilateral motor cortex 

activity from contralateral signals. It has been suggested to correlate with 

decision-related accumulation (Kelly & O’Connell, 2013; Polanía et al., 2014). 

However, as an effector-specific motor preparation signal, it can only track 

accumulation for decisions associated with particular motor (usually left/right-

hand) responses. The LRP has been tested in the context of difficulty 

manipulations and it has been shown that, similar to the CPP’s, its slope is 

steeper (although negative) with easier decisions (Kelly & O’Connell, 2013). 

 

In the current study, we replicate this finding only in part. We observed a 

significant difference in slope in the stimulus-locked signal, with higher slopes 

for ‘easy’ compared to ‘hard’ decisions. There was no difference in slope in the 

response-locked signal. This finding questions the role of the LRP as a decision 

variable signal, as sequential sampling models predict difficulty-related 

differences in slope throughout the decision-making process. However, it is 
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important to note that difficulty-induced slope differences are typically observed 

in stimulus-locked data and less visible in response-locked data. 

 

Additionally, we tested the effects of difficulty on the amplitude of the LRP. 

Here, the results are similar to the CPP’s. Like for the CPP, although over a 

shorter time period and with more variable t-values, we found differences in 

amplitude in the stimulus-locked data, with ‘easy’ decisions showing a higher 

amplitude than ‘hard’ decisions. There was no difference in amplitude between 

‘easy’ and ‘hard’ conditions in the response-locked signals. Overall, the 

amplitude of the LRP, although somewhat noisier, is qualitatively similar to the 

CPP amplitudes reported above, supporting the similarities between the LRP 

and an accumulation signal. 

 

Overall, the statistical findings as well as the shapes of the LRP waveforms 

appear very similar to those found for the CPP. However, the results are less 

clear, and there was no significant difference in slope between ‘easy’ and ‘hard’ 

trials in the response-locked data. We conclude that, although we do not rule 

out the possibility of the LRP displaying an accumulation-to-bound-like profile, 

the slight ambiguity of the findings as well as its response-dependent nature 

make the LRP a less appropriate neural correlate of the decision variable than 

the CPP. 

 

3.3.3.  Event-related Beta Desynchronisation 

Event-related desynchronisation in the beta frequency band is, similarly to the 

LRP, a signal which has been linked to the preparation of hand movements 

(Jasper & Penfield, 1949; Pfurtscheller, 1981; Zaepffel et al., 2013). Although 

studies vary in the methods used to generate the beta waveform, changes in 

beta power have been suggested to display characteristics of decision-related 

accumulation both recorded from electrodes over the contralateral motor cortex 

(O’Connell et al., 2012), and lateralised by subtracting ipsilateral activity from 

the contralateral signal (Donner et al., 2009). However, both signals are, like the 

LRP, dependent on motor responses. Beta power has been tested under 
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different difficulty manipulations previously, but the findings have been mixed. 

De Lange et al. (2013) found that difficulty had an impact on the slope of beta 

power in the response-locked signal, but not in the stimulus-locked signal, while 

Twomey et al. (2016) found no difficulty-induced difference in the slope of beta 

power.  

 

In the current study, we found no evidence for a slope difference between ‘easy’ 

and ‘hard’ conditions in either the stimulus-locked or the response-locked 

spectral power in the beta-band, recorded contralateral to the response. We 

also found no slope difference in the lateralised beta power (but see below). 

Additionally, there was no difference in contralateral beta power amplitude 

between ‘easy’ and ‘hard’ conditions in either the stimulus-locked or the 

response-locked data. Again, no amplitude difference was observed in the 

lateralised part of the beta power.  

 

In fact, we did not observe any lateralised desynchronisation in beta power. 

Subtracting ipsilateral activity from contralateral signals removed any change in 

power over time, indicating that desynchronisation recorded over the 

contralateral hemisphere reflects a general motor preparation, rather than an 

effector-specific build-up. The fact that previous research demonstrated 

lateralised beta desynchronisation while we only observed a general effector-

non-specific desynchronisation, may be explained by our comparatively short 

RTs. The typical approach to explore motor-related activity in the beta 

frequency makes use of delayed response paradigms, in which participants 

select a response based on a presented stimulus, and wait for a response cue 

before making the appropriate movement (Kaiser, Birbaumer, & Lutzenberger, 

2001; Kühn et al., 2004; Zaepffel et al., 2013). This gives participants more time 

(often several seconds) to prepare the response, which may be necessary to 

observe a clear lateralisation. Although this lateralisation has been observed in 

perceptual decision-making and reaction time tasks before, these studies tend 

to report much longer RTs than the ones we observed (de Lange et al., 2013; 

Twomey et al., 2016). Therefore, the duration of the motor preparation period in 

our experiment may be too short to observe a lateralisation of beta ERD.  
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Since we did not observe a lateralisation of desynchronisation in the beta 

frequency, we cannot comment on its characteristics as a neural correlate of a 

decision variable. However, it is in the nature of perceptual decisions to be 

quick, and sequential sampling models are designed to apply to fast decisions 

with RTs less than approximately 1000 ms. Therefore, the use of a neural 

correlate of the decision variable which can only be tracked for slow decisions is 

questionable.  

 

Overall, we found no evidence to suggest that changes in spectral power in the 

beta band show characteristics of the decision variable. Contralateral beta 

power showed no modulation in amplitude or slope with varying levels of 

difficulty, and we were unable to generate lateralised beta ERD. Although these 

findings do not rule out the possibility that beta power may display 

characteristics of accumulation in other experimental setups, we observed no 

evidence to support this role in our paradigm. 

 

3.3.4.  Exploratory Approach 

Lastly, we employed a more exploratory approach in the form of a non-

parametric cluster permutation test, in order to identify any signals which differ 

between ‘easy’ and ‘hard’ decisions and may reflect decision-related 

accumulation. In the first test, we explored temporospatial data and identified a 

cluster between approximately 200 ms and 1000 ms relative to the onset of 

coherent motion, in which both the ‘easy’ and the ‘hard’ waveform displayed a 

gradual build-up over the course of the decision, with ‘easy’ trials building up 

faster and higher than ‘hard’ trials. This cluster contained a large number of 

electrodes, most of which were centred around centroparietal regions. Based on 

the similarity in waveform and topography, it may be speculated that this cluster 

does in fact, at least in part, show the CPP, further supporting its role as a 

potential neural correlate of the decision variable. However, applying this cluster 

to response-locked data showed a significant difference in amplitude between 

‘easy’ and ‘hard’ trials, with ‘easy’ trials building up to a higher peak at 

response. Although, as outlined above, we might expect a slight difference 
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between difficulty levels at response time, a large, significant difference is 

somewhat unexpected given that we assume the same baseline-to-threshold 

difference to underlie both types of decisions. Nevertheless, it is important to 

note the similarities between the ERP cluster and the CPP. 

 

In the second analysis, we tested time-frequency data to identify any clusters 

across temporal, spatial, and spectral dimensions. The test revealed one 

relevant cluster in the delta/theta frequency band. Again, power in these 

frequencies (2 to 7 Hz) displayed a gradual build-up over the course of the 

decision, which was steeper and higher for ‘easy’ compared to ‘hard’ decisions. 

This difference was seen between approximately 200 and 650 ms, and across a 

range of mainly parietal and frontal electrodes. This is particularly interesting as 

this frequency range has been associated with accumulation previously (van 

Vugt et al., 2012; Wyart et al., 2012). In particular, van Vugt et al. (2012) found 

theta power (4 to 9 Hz) to be correlated with evidence accumulation. However, 

applying the cluster to response-locked TFR data showed significantly higher 

amplitudes in ‘easy’ than ‘hard’ trials. As in the ERP cluster, this difference 

questions the validity of the signal as a potential neural correlate of the decision 

variable. Although it does not rule out the possibility that these oscillations do in 

fact reflect evidence accumulation, it is clear that more research is needed in 

order to comment on their role as a neural correlate of decision-making. 

 

3.3.5.  Summary 

Overall, we tested a number of potentially decision-related signals by comparing 

their profiles for easy and hard decisions. Since sequential sampling models 

make clear predictions about accumulation to account for behavioural 

differences due to task difficulty, we expected a neural correlate of the decision 

variable to display a higher build-up rate in easy compared to hard decisions. 

We found no evidence for this in event-related beta desynchronisation. The 

LRP displayed mixed results with slope differences visible in the stimulus-

locked, but not in the response-locked data, although it seems to mirror the 

overall shape of the CPP.  
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However, both beta ERD and LRP are motor-related signals, which, although 

roughly equivalent to more established decision-related signals in monkeys’ 

oculomotor firing rates, is arguably a disadvantage as they can only be 

observed when a decision is associated with a specific hand movement. The 

CPP on the other hand, has been shown to be independent of the decision-

response mapping (O’Connell et al., 2012). Here, we were able to further 

support the role of the CPP as a neural correlate of accumulation as it showed 

the expected differences in slope and amplitude, with easy decisions leading to 

steeper accumulation. Exploratory analyses of the ERP data added further 

support to centroparietal signals. Additionally, exploratory tests of the TFR data 

identified power in delta/theta bands as a potentially decision-related signal. 

However, more research is needed to comment on its role in accumulation. 

 

In summary, we were not able to provide any conclusive evidence for either 

LRP or beta ERD to correlate with decision-related accumulation, and the 

evidence for motor-related signals remains mixed. However, we showed that 

the CPP displays the expected characteristics of the decision variable, with 

decision difficulty influencing the slope of the signal, supporting the notion that 

the CPP is a neural substrate of decision-making.  
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4. Testing the CPP as a Decision Variable Signal 

by Manipulating Evidence Dynamics and 

Biases 

 

Our ability to make perceptual decisions and quickly respond to sensory stimuli 

is a crucial aspect of human cognition, and a vast body of literature has been 

dedicated to the question of how we make these decisions. Although many 

questions are yet to be answered, there is a consensus that the way we make 

perceptual decisions can be described by sequential sampling models (Brown & 

Heathcote, 2008; Ratcliff & McKoon, 2008; Usher & McClelland, 2001). 

Sequential sampling models are a group of computational models which 

assume that, to make a decision, we accumulate sensory evidence over time, 

until a set decision boundary is reached, at which point we initiate the 

corresponding motor response.  

 

There are several different models within this framework, which differ in a 

number of aspects, such as the number of accumulators, or the assumption of 

inhibition and leakage (Ratcliff & McKoon, 2008; Usher & McClelland, 2001), 

but all sequential sampling models share the fundamental assumption of 

accumulation-to-bound decision-making. Although sequential sampling models 

were developed to explain behavioural data, i.e. reaction time (RT) and 

accuracy data, and have done so successfully in a large variety of paradigms 

(Huk & Shadlen, 2005; Milosavljevic et al., 2010; Ratcliff, 2002; Ratcliff, Thapar, 

College, & Mckoon, 1992), more recently, several neural signals have been 

suggested to reflect the accumulation process described by these models.  

 

Research in non-human primates has identified firing rates of neurons in the 

lateral intraparietal area (LIP), frontal eye field (FEF), and superior colliculus 

(SC) as potential neural substrates of a decision variable, i.e. an accumulation-

to-bound profile as suggested by sequential sampling models (Gold & Shadlen, 

2000, 2003; Horwitz et al., 2004; Huk & Shadlen, 2005; Roitman & Shadlen, 

2002; Shadlen & Newsome, 1996, 2001; Thompson et al., 1997). Firing rates in 

neurons in these areas have been shown to undergo ramp-like changes over 



130 
 

the course of the decision, the slope of which depends on the strength of 

sensory evidence, and to peak at the time of response. 

 

While neurophysiological findings in non-human primates have been advancing 

quickly, the identification of a neural substrate of the decision variable in the 

human brain has been more difficult, primarily due to restrictions of the 

neuroimaging techniques available. A number of studies have used functional 

magnetic resonance imaging (fMRI) in order to shed light on human decision-

making (Heekeren et al., 2004; Kayser et al., 2010; Mulder et al., 2014; Tosoni 

et al., 2008). This technique has the advantage of a high spatial resolution in 

combination with system-level perspective, allowing it to identify whole 

networks. However, while fMRI designs can successfully identify areas involved 

in the decision-making process, the technique’s low temporal resolution does 

not lend itself to directly tracking the fast and dynamic build-up associated with 

a decision variable.  

 

Electroencephalography (EEG) and magnetoencephalography (MEG) on the 

other hand, have a very high temporal resolution and are therefore favourable in 

the identification of a neural substrate of the decision variable in the human 

brain. In fact, there are a number of M/EEG studies which have explored 

electrical brain activity during perceptual decision-making and a variety of 

different signals have been suggested as potentially decision-related, ranging 

from event-related potential (ERP) components (Philiastides et al., 2006; 

Philiastides & Sajda, 2006; Ratcliff et al., 2009) to changes in theta band power 

(van Vugt et al., 2012), and motor-related lateralised desynchronisation in beta 

power (Donner et al., 2009; Siegel et al., 2011). 

 

A particularly promising approach was introduced by O’Connell et al. (2012). In 

a series of experiments, they identified the centroparietal positivity (CPP) as an 

ERP component that displays an accumulation-to-bound profile and described it 

as a decision variable signal. It was demonstrated that the CPP shows all 

properties of a decision variable that have previously been established in single-

cell recordings in monkeys. It displays a build-up over the course of the 

decision, reflecting a cumulative function of sensory evidence. Further, this 
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waveform builds up at a rate which varies with the quality of the sensory 

evidence, and its crossing of a stereotyped level was shown to predict reaction 

time (Kelly & O’Connell, 2013; O’Connell et al., 2012). 

 

Importantly, it was shown that the CPP is independent of sensory and motor 

signals. In a series of experiments, a rapidly flickering, continuous target 

detection task with a gradual target onset was used, allowing the authors to 

track steady-state visual evoked responses (SSVEPs) while avoiding visual 

evoked potentials at the onset of the stimulus, leading to clear view on decision-

related signals. By adjusting the task in these ways, O’Connell et al. (2012) 

were able to track three different signals during the decision-making process: 

the SSVEPs as a readout of sensory input, the CPP as a decision variable, and 

contralateral beta power as a motor signal. Importantly, they were able to fully 

dissociate these signals, showing that only the CPP is a valid decision-making 

signal, and demonstrating that it is independent of decision-unrelated sensory 

input or motor responses. In fact, in a later study which directly compared the 

CPP with motor-related beta power, it was shown that while both signals build 

up over the course of the decision, the CPP drops back to baseline levels after 

a given boundary is reached, while beta activity persisted until a delayed 

response. Importantly, the study also demonstrated that without foreknowledge 

of the stimulus-effector mapping, beta activity is eliminated while the CPP 

remains unchanged, further supporting the role of the CPP as an abstract 

decision signal, dissociated from response specific signals (Twomey et al., 

2016). Interestingly, the CPP was also observed in an auditory decision-making 

task, leading the authors to suggest that it is a supramodal decision variable 

signal (O’Connell et al., 2012). 

 

However, studies validating the CPP’s role as a decision variable remain 

scarce. In particular, its relation to sequential sampling models is not well-

established. Although the CPP has undergone several statistical tests to 

analyse whether it shows the conceptual characteristics of a decision variable, 

few attempts have been made to directly compare its profile to model 

predictions. Kelly and O’Connell (2013) used a sequential sampling model 

labelled the Diffusion model (Ratcliff & McKoon, 2008) to account for 
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behavioural decision-making data, and found that, in an experiment with 

different levels of difficulty, RT data was accounted for by a model with a 

varying drift rate parameter. This means that just like the CPP, which shows an 

increased slope with decreased task difficulty, the model fits also indicate a 

varying slope (i.e. varying drift rate) across difficulty conditions. However, no 

further parallels between the model and the EEG data were drawn. Twomey et 

al. (2015) fitted the same model, a Diffusion model with varying drift rates for 

varying difficulty levels, to a separate data set, but added a further step to their 

analysis to allow for a comparison between the model and the CPP. After fitting 

the Diffusion model, Twomey and colleagues used the resulting parameters to 

simulate the mean accumulation, as predicted by the model. They found that 

the simulated accumulation profile and the CPP shared key characteristics, as 

in both profiles, the slope varied with task difficulty, and a stereotyped level was 

reached before the response. This finding is important as it goes beyond 

comparing a potential neural substrate of decision-making against a set of 

conceptual characteristics and instead allows for a direct comparison of the 

entire accumulation profile. This is particularly crucial as with increasing 

complexity of sequential sampling models (e.g. by introducing inhibition or 

leakage; Usher & McClelland, 2001), it becomes virtually impossible to make 

conceptual predictions about how accumulation profiles may change as a 

function of different manipulations.  

 

The current study therefore set out to further explore the CPP in the light of 

sequential sampling models. As outlined above, to date, the CPP has only been 

tested in the context of a limited number of manipulations, with most studies 

focusing on task difficulty (Kelly & O’Connell, 2013; Twomey et al., 2015), and 

only the manipulation of decision difficulty has been compared to simulations 

based on sequential sampling model fits. We therefore aimed to build on 

Twomey et al.'s (2015) approach to compare the CPP profile to model 

predictions under a variety of manipulations affecting the accumulation profile.  

 

To this end, we used two sets of manipulations which affect decision-making, 

namely decision biases, which, to our knowledge, have not been previously 

tested using the CPP, and non-stationary evidence, and fitted a sequential 
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sampling model to the resulting RT data. We then used the estimated 

parameter values to simulate the accumulation profiles as predicted by the 

model and compared them to the CPP, which was recorded during the decision-

making process. To do so, we chose an accumulator model to fit the 

behavioural data (Brown & Heathcote, 2008; Heathcote & Love, 2012). There 

are two main groups of sequential sampling models, namely accumulator 

models with an absolute stopping rule and random walk models with a relative 

stopping rule (Smith & Ratcliff, 2004). Random walk models assume that all 

evidence within a binary choice is integrated in a single accumulator. This 

accumulator has a decision boundary to either side of the starting point, each 

associated with a given response alternative, and the accumulation profile has a 

positive or negative mean slope (drift rate), depending on which alternative is 

receiving more evidence. Although random walk models have been shown to 

provide good fits to behavioural data in a number of paradigms (Ratcliff et al., 

2004; Ratcliff, Perea, Colangelo, & Buchanan, 2004; Thapar, Ratcliff, & 

McKoon, 2003), they have also received criticism as they are challenging to 

generalise to choices with more than two alternatives, and, importantly, are 

motivated more by mathematical optimality than neurobiological plausibility 

(Ratcliff et al., 2016; Usher & McClelland, 2001). Accumulator models, on the 

other hand, assume that evidence for each response alternative is integrated in 

separate accumulators, which race to reach a common threshold. It is 

conceivable that processes similar to these occur in the brain, with each 

accumulator being associated with a neural population, integrating information 

fed forward by sensory areas.  

 

Since we aim to compare model predictions to neural signals, we chose an 

accumulator model as a neurophysiologically plausible way to model our data. 

Specifically, we chose a race model, which, on one hand, requires a minimal 

number of assumptions (as compared to models which, for example, assume 

leakage over time; Usher & McClelland, 2001), while on the other hand, 

remaining biologically plausible (as compared to simplified models which, for 

example, assume integration without noise; Brown & Heathcote, 2008). Given 

the nature of EEG, which records the sum of all underlying electrical activity 
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from the scalp, we assume that the CPP is best predicted by the summed 

activity of all accumulators in a race model10. 

 

We fitted this model to behavioural data from two experiments and predicted the 

associated accumulation profile using the estimated parameters. The predicted 

accumulation was then used to evaluate the associated CPP waveform. 

This approach of directly comparing the CPP with the model prediction drawn 

from the behavioural decision-making data allowed us to evaluate the role of the 

CPP as a neural correlate of the decision variable. 

 

 

4.1. Experiment 1: Non-stationary Evidence 

 

The first experiment set out to explore the effects of non-stationary evidence on 

the CPP. Most research in the field of perceptual decision-making has focused 

on binary choices with stationary evidence, where a choice is based on fixed 

information which remains virtually unchanged in quality and intensity 

throughout the decision-making process (Gold & Shadlen, 2000; Kelly & 

O’Connell, 2013; Ratcliff & McKoon, 2008; Ratcliff et al., 2010). While these 

comparatively simple decisions are associated with a range of practical 

advantages and have led to numerous insights into decision-making, decisions 

we make every day typically occur in a dynamic environment, in which sensory 

evidence is continuously changing. Recently, studies have drawn attention to 

the fact that a comprehensive model of decision-making has to be able to 

account for decisions with non-stationary evidence. 

 

Researchers have hence started to use decisions in response to non-stationary 

evidence in order to distinguish between different sequential sampling models 

                                                
10 In the course of our research, we explored various models with a view to a model 
comparison. However, this work is ongoing. We therefore chose the model we deemed most 
suitable, i.e. the race model, as a representative of sequential sampling models overall and will 
discuss our findings in the context of this framework, rather than a specific model (but see 
section 4.3). 
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(Nunes & Gurney, 2016; Tsetsos et al., 2011; Zhou, Wong-Lin, & Philip, 2009), 

which often offer indistinguishable accounts of data from traditional decision-

making paradigms (Brown & Heathcote, 2008; Ratcliff & Smith, 2004; 

Teodorescu & Usher, 2013). For example, Tsetsos et al. (2011) used a 

paradigm in which the evidence for a given alternative changed dynamically 

throughout a trial to compare accumulator (Brown & Heathcote, 2008; Usher & 

McClelland, 2001) and random-walk models (Ratcliff & McKoon, 2008), 

supporting the accumulator model as a suitable account of the data. 

 

Similarly, Holmes, Trueblood, and Heathcote (2016) used dynamically changing 

evidence to explore different models. Participants were asked to discriminate 

between left and right motion in a random dot motion task, in which, halfway 

through the decision-making process, the motion direction switched. Findings 

showed that switch effects were only seen in trials with long RTs, suggesting 

that participants react to the switch in motion, but do so with a delay. In order to 

explore the underlying mechanisms of these behavioural findings, a number of 

variations of a simplified accumulator model labelled the linear ballistic 

accumulator (LBA) model, incorporating different assumptions regarding the 

implications of the switch in evidence, were compared. It was found that a 

version of the LBA, labelled ‘piecewise LBA’, provided the best account of the 

data. It was shown that the difference in accumulation rates between two 

accumulators (one for each alternative) was larger after the motion switch than 

before, indicating that the discrimination between motion directions improved 

after the switch. This was a surprising finding, as the switch in evidence led to 

motion in the opposite direction but equal in magnitude. The model also 

confirmed the presence of a delay between the switch in evidence and its 

integration, and found no evidence for increased response caution. 

 

Dynamically changing evidence also has implications for any neural signals 

which claim to reflect the accumulation of evidence towards a threshold. For a 

signal to be validated as a decision variable signal, a modification of sensory 

evidence must not only lead to a change in the signal’s profile to show that the 

signal is decision-related, but also continue to affect the signal for a prolonged 

period of time, to demonstrate that the signal is not a mere reflection of sensory 
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encoding. To date, there is little research to test the range of neural signals 

which have been suggested to reflect the decision variable under these 

conditions.  

 

An exception is the firing rate of LIP neurons in non-human primates. Huk and 

Shadlen (2005) recorded single-cell activity while monkeys performed a 

saccadic random dot motion task. In two thirds of the trials, 100 ms pulses of 

motion in either the same or the opposite direction of the overall trial motion 

were added. It was demonstrated that these added motion pulses had 

persistent effects not only on the behavioural choices, but also on LIP activity, 

which increased/decreased with positive/negative motion pulses and remained 

altered for several hundreds of milliseconds. The authors concluded that LIP 

neuronal firing rates represent the temporal integration of motion evidence. 

 

There is also some evidence to suggest that dynamic evidence influences the 

profile of neural correlates of decision-making in the human EEG, such as 

motor-related beta band power and the CPP (O’Connell et al., 2012). In a 

detection task, participants were presented with stimuli which gradually 

decreased in contrast and instructed to respond when the fading was perceived. 

When this gradual decrease was interrupted by a 450 ms increase towards the 

baseline, before continuing the reduction of contrast, participants demonstrated 

longer RTs, but no difference in accuracy (note that a free response task with 

no pressure to respond under uncertainty was used). Importantly, the CPP 

(and, to a lesser extent, beta power) was shown to be sensitive to this 

manipulation, as following the perturbation, the stereotypical build-up was 

interrupted and plateaued for several hundreds of milliseconds before 

continuing, further supporting its role as a decision variable.  

 

However, the data were not fitted using a sequential sampling model and no 

comparisons were made between potential accumulation profile simulations and 

the recorded CPP waveform. Although it is conceptually reasonable to assume 

that sequential sampling models would predict a dip in accumulation, similar to 

the one observed in the CPP, the complexity of these models makes it difficult 

to predict the timescale and shape of this perturbation. We therefore argue that 
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it is necessary to compare the CPP profile directly to simulations of sequential 

sampling in order to evaluate its role as a neural substrate of decision-making. 

 

To this end, we presented participants with a random dot motion task which 

required them to discriminate between motion to the left and right, while 

recording their EEG. Since difficulty is a more established manipulation (see 

Chapter 3), the task involved an ‘easy’ and a ‘hard’ condition. In one third of the 

trials, the motion remained unchanged throughout the trial (‘continuous’ 

condition), while in another third of the trials, the motion was interrupted by 

motion in the opposite direction for 200 ms before continuing in the original 

direction (‘reverse’ condition). Additionally, we added a third condition in which 

the motion in a given direction was interrupted by random motion without any 

directional evidence (‘stop’ condition). We hypothesised that these different 

perturbations would lead to different CPP waveforms, and that using sequential 

sampling models to simulate accumulation profiles would allow us to compare 

the signal patterns and thereby evaluate the role of the CPP as a decision-

variable signal. Specifically, we expected that a ‘stop’ in evidence would also 

lead to a stop in the build-up of the accumulation profile, and thereby a plateau 

in any neural signal which reflects the decision variable, which is clearly 

distinguishable from accumulation in ‘continuous’ trials. Although the prediction 

regarding the impact of a reversal of evidence on the accumulation profile is 

less clear, we hypothesised that it would differ from the profile observed in the 

‘stop’ condition. Since the true accumulation profiles of each condition are 

difficult to predict conceptually, we use a race model to directly compare 

modelled accumulation profiles with observed EEG patterns in order to evaluate 

the potential role of the CPP as a neural correlate of the decision variable. 

 

4.1.1.  Methods  

4.1.1.1. Participants 

For this study, a total of 21 participants (eight males) with a mean age of 27.33 

(SD = 8.66) were recruited. To ensure a reasonable and distinguishable task 

performance at two different difficulty levels, each participant completed a 
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staircase procedure to establish the appropriate level of difficulty, i.e. level of 

coherence, for ‘easy’ and ‘hard’ trials (see section 4.1.1.2). In line with criteria 

defined prior to data collection, participants were excluded from the experiment 

if the calibrated level of coherence exceeded 98% for the ‘easy’ condition. 

Based on this criterion, one participant did not continue to the main experiment, 

leading to a sample of 20 participants (seven males) with a mean age of 27.55 

(SD = 8.83). Each remaining participant took part in a single two-hour session. 

Participants were recruited using poster advertisements and word of mouth. 

Two of the participants were researchers in the current study. All other 

participants were paid £8 per hour. The experiment was approved by the City, 

University of London Psychology Department Ethics Committee. 

 

4.1.1.2. Stimuli and Procedure 

Participants were asked to complete a random dot motion task. The task was 

written in Matlab (The Mathworks, Natick, U.S.A.), making use of Psychtoolbox 

functions (Brainard, 1997; Kleiner et al., 2007; Pelli, 1997). In this task, an array 

of white dots was presented on a black screen. A proportion of dots moved 

coherently either to the left or to the right, while the rest of the dots moved in 

random directions. Participants were instructed to indicate the perceived motion 

direction by pressing a button in their right/left hand for movement to the 

right/left. For this, digital response buttons interfaced via a 16 bit A/D card 

(National Instruments X-series PCIe-6323, sample rate 100,000 Hz) were held 

between the thumb and index finger of each hand. Participants were seated 100 

cm away from a cathode ray tube screen (size: 41 x 30 cm), operating at a 

refresh rate of 85 Hz and a resolution of 1240 x 786. A total of 300 dots, 0.04 x 

0.04 degrees visual angle (dva) in size, were presented within a 5 dva circular 

aperture. All dot movement occurred at a speed of 3.3 dva per second. The 

proportion of dots determining the motion direction moved either to the left or to 

the right, depending on the trial, while the rest of the dots moved in a direction 

which was randomly selected for each dot and each frame. The position of all 

dots was randomised every five frames. Each trial began with a central fixation 

cross (size: 0.33 x 0.33 dva) for 500 ms (plus a jitter of up to 1000 ms, drawn 

from a uniform distribution), followed by a period of random motion (1000 ms 
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plus a jitter of up to 1500 ms, drawn from a gamma distribution with shape 

parameter 1 and scaling parameter 15011). Since the onset of moving dots on 

the screen is likely to produce a visual evoked potential which would interfere 

with the recording of the CPP, this period of random motion was introduced to 

allow for the evoked potential to occur before the onset of the decision-making 

process. The random motion was followed by the onset of coherent motion 

(left/right) which continued for up to 2000 ms or until the response (see Figure 

4.1). 

 

Participants completed a minimum of 100 practice trials at high levels of 

coherence (i.e. > 80% of dots moving in one direction) to familiarise themselves 

with the task. In order to calibrate suitable levels of difficulty for ‘easy’ and ‘hard’ 

trials for each participant individually, a further 100 trials were completed in 

which the QUEST (Watson & Pelli, 1983) staircase procedure, implemented in 

Psychtoolbox, estimated the coherence level at which each participant 

responded correctly in 80% of trials. This coherence level was then used for the 

‘hard’ condition. The ‘easy’ coherence level was set as 150% of the ‘hard’ 

coherence level. Participants had 1300 ms to respond, and no feedback was 

provided during staircase trials. Overall, the appropriate difficulty levels 

estimated for the remaining participants resulted in a mean of 27.70% (SD = 

14.74) coherence for ‘hard’, and 40.15% (SD = 22.15) for ‘easy’ trials.  

 

After the staircase procedure, participants were asked to complete a further 100 

practice trials which included all conditions of the main experiment, including the 

different difficulties and evidence interruptions (see below). During this training, 

participants were given feedback in the form of their mean accuracy and RT 

every 10 trials. Participants were instructed to aim for a mean accuracy of at 

least 80% and a mean RT of less than 1000 ms. 

 

In the main experiment, in addition to the manipulation of difficulty, we also 

manipulated the continuity of the evidence by introducing three motion 

                                                
11 A gamma distributed fore period with a shape parameter of 1 was chosen as it is associated 
with a uniform hazard function (Luce, 1986). 
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conditions (see Figure 4.1). One third of the trials, like the practice and staircase 

trials, were ‘continuous’ trials, i.e. the coherent motion began after a period of 

random motion and remained throughout the trial. In the ‘stop’ condition, the 

coherent motion was interrupted 200 ms after motion onset and replaced by a 

200 ms period of random motion, before being reinstated. Similarly, in the 

‘reverse’ condition, the coherent motion was interrupted for the same time, but 

replaced by coherent motion in the opposite direction (see Figure 4.1). Informal 

questioning of participants indicated that these interruptions were not perceived 

consciously. During the main task, the interruption condition (‘continuous’, 

‘stop’, or ‘reverse’), motion direction (left or right) and coherence level (‘easy’ or 

‘hard’) varied randomly from trial to trial. Each participant completed 16 blocks 

of 60 trials. After each block, participants were given feedback in the form of 

their mean accuracy and RT. No feedback was provided for individual trials. 
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Figure 4.1: Experiment 1 random dot motion task trial procedure: each trial began with a period of random 
motion, followed by coherent motion (here: direction: right; coherence: 70%, i.e. 70% of dots move to the 
right, while 30% of the dots move in random directions). a) In the ‘continuous’ condition, the motion 
continued unchanged; b) in the ‘stop’ condition, the coherent motion was interrupted after 200 ms, and 
replaced with random motion (coherence: 0%) for a further 200 ms, before continuing in the original 
direction; c) in the ‘reverse’ condition, the coherent motion was interrupted after 200 ms and replaced by 
motion of equal strength in the opposite direction (here: direction: left; coherence: 70%) for a further 200 
ms, before continuing in the original direction. Note that the size and number of dots have been adjusted 
for illustration. 

 

4.1.1.3. EEG Recording and Pre-processing 

During the task, we recorded participants’ EEG using 64 active electrodes, 

placed equidistantly on the scalp (EasyCap, M10 Montage) and referenced to 

the right mastoid. Data were recorded through a BrainAmp amplifier 
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(BrainProducts) and band-pass filtered from 0.016 to 1000 Hz (sampling rate: 

1000 Hz).  

 

The data were pre-processed in Matlab (The Mathworks, Natick, U.S.A.), using 

custom scripts and implementing functions from the EEGLAB toolbox (Delorme 

& Makeig, 2004). Data were re-referenced to the average reference and band-

pass filtered from 0.1 (low cut-off) to 45 Hz (high cut-off), using a Hamming 

windowed finite impulse response filter. We then visually inspected the data to 

remove noisy channels and reject large artifacts, before applying independent 

component analysis to correct for eye blinks. Afterwards, the data was visually 

inspected a second time in order to manually remove any remaining noise. 

Lastly, we used spherical spline interpolation to reconstruct any channels that 

were previously removed. In line with the procedures used in previous CPP 

studies (Kelly & O’Connell, 2013; O’Connell et al., 2012), the data were 

converted to current source density (CSD) estimates to increase spatial 

selectivity. The CSD transformation was applied using the CSD toolbox, which 

uses a spherical spline algorithm, with the spline interpolation constant m set to 

its default value (m = 4; Kayser & Tenke, 2006). 

 

4.1.1.3.1. ERP Analysis 

For the ERP analysis, we extracted both stimulus-locked (-200 to 2000 ms, 

relative to motion onset) and response-locked (-1000 to 100 ms, relative to the 

button press) epochs. All epochs were baseline corrected to the average over a 

200 ms period preceding the motion onset. Since we assumed no difference in 

decision-making depending on the direction of motion, we collapsed over ‘left’ 

and ‘right’ decisions. However, simply averaging over right/left-hand responses 

would remove any visible lateralisation of activity. Therefore, activity recorded in 

trials in which a right-hand response was given was mirrored along the midline, 

so that all contralateral activity was projected onto the right hemisphere (i.e. 

activity recorded in electrodes on the left hemisphere is now associated with 

electrodes on the right hemisphere). Although this step was not strictly 

necessary to analyse the CPP, which is recorded from the midline, this 

mirroring allows for a better visualisation of activation across the scalp.  
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The appropriate electrode to generate the CPP waveform was chosen 

individually, by visually inspecting each participant’s averaged ERP topography 

to identify the centroparietal region of maximum amplitude (chosen electrodes: 

1, 5, or 14, roughly equivalent to electrodes Cz, CPz, and Pz in the 10-20 

system; see Figure 4.5). The activity in the selected electrodes was averaged 

for each condition and for stimulus and response-locked signals separately. 

Lastly, error trials were removed from the ERPs. 

 

4.1.1.4. Statistical Analysis 

In order to test the effects of the difficulty and interruption manipulations on the 

ERP, we explored both the slopes and the amplitudes of the waveforms. First, 

we compared the slopes between the different conditions by fitting a straight 

line to the CPP for each participant and each condition and measuring its slope. 

The resulting slopes were then compared in an ‘Interruption’ (‘continuous’, 

‘stop’, ‘reverse’) x ‘Difficulty’ (‘easy’, ‘hard’) repeated-measures ANOVA.  

 

We compared slopes during two different time intervals in the stimulus-locked 

data: an early interval between 100 and 300 ms and a late interval between 300 

and 500 ms relative to the onset of coherent motion. Given the interruption 

interval of 200 to 400 ms and the assumption of a small lag between stimulus 

presentation and accumulation, we assume that the early interval reflects 

accumulation mainly before the interruption and the late interval reflects 

accumulation mainly during the interruption. In the response-locked data, it is 

not possible to make the distinction between interruption intervals, so we only 

explored one time interval and followed Kelly and O’Connell's (2013) 

recommendation of a -250 ms to -100 ms interval. 

 

Additionally, we analysed the impact of difficulty and interruption on the 

amplitude of the waveform. Between 0 and 1000 ms in the stimulus-locked 

data, and between -1000 to 0 ms in the response-locked data, we compared 

conditions using an ‘Interruption’ (‘continuous’, ‘stop’, ‘reverse’) x ‘Difficulty’ 

(‘easy’, ‘hard’) ANOVA at each time point. The results were controlled for 
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multiple comparisons using the false discovery rate (FDR) approach (Benjamini 

& Hochberg, 1995)12. 

 

4.1.1.5. Model Fit 

To model the behavioural data, we used a race model which is, at least 

conceptually, one of the simplest sequential sampling models (Brown & 

Heathcote, 2008; Usher & McClelland, 2001; see Figure 4.2). In this model, 

evidence for each response alternative is integrated in an independent 

accumulator. In a binary choice like the one in our experiment, evidence is 

integrated in two accumulators, which race towards the decision threshold. The 

evidence strength at which accumulation starts is drawn from a uniform 

distribution between 0 and Sz (to represent bias). At each point in time, a given 

accumulator m accumulates the input evidence Im supporting alternative ‘M’, as 

well as noise N, drawn from a normal distribution with mean 0 and standard 

deviation σ, so that the quantity accumulated at each time point is described by  

  𝑑𝑥𝑚 =  𝐼𝑚 + 𝑁(0, 𝜎2)  (4.1.) 

To remain physiologically plausible, this accumulation process is restricted to 

positive values at each time step: 

  𝑥𝑚(𝑡 + 1) = max (0, 𝑥𝑚(𝑡) + 𝑑𝑥𝑚)  (4.2.) 

 

Once either of the accumulators reaches the threshold A, the decision is made 

and the corresponding response is initiated. The time taken to reach the 

threshold, in addition to a non-decision time which represents any time taken for 

sensory and motor processes before and after the accumulation process 

respectively, defines the modelled RT. The non-decision time is drawn from a 

uniform distribution with width STer, centred on Ter.  

 

This results in a standard race model for binary choices with seven parameters: 

the starting point distribution parameter Sz, mean drift rates for the correct and 

                                                
12 In this procedure, the uncorrected p-values are sorted from lowest to highest (pi refers to the 

ith lowest value out of m total p-values). The largest i for which 𝑝𝑖 < (
𝑖

𝑚
) ∝ is identified and all p-

values associated with is smaller or equal to the identified i are considered significant. 
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incorrect accumulators, vcorrect and vincorrect, the threshold A, the non-decision 

time Ter and its distribution STer, and the diffusion constant σ2. However, one 

parameter is chosen as a scaling parameter and fixed to an arbitrary value (i.e. 

changing its value will lead to a change in the value of all parameters but not in 

their relation to each other and therefore will not affect the model fits) leading to 

a standard model with only six free parameters. 

  

Figure 4.2: Race model: in a binary choice, there are two accumulators, each associated with one 
response alternative (correct/incorrect). In each accumulator, accumulation traces begin at a starting point 
drawn from a uniform distribution between 0 and Sz and race towards the threshold A. The accumulation 
profile of each accumulator is defined by the associated drift rate v and added noise, defined by the 
diffusion constant σ2. The time taken for the first accumulator to reach the threshold, in addition to a non-
decision time Ter, defines the response time. 

 

To apply this model to the current experiment, we tested two models, both of 

which assume that with dynamically changing evidence, only drift rates change 

during the interruption interval (200 to 400 ms relative to the decision onset; see 

Figure 4.3). In both models, the response threshold A was chosen as the 

scaling parameter and fixed to 1. 

 

Model 1 consisted of a total of eight parameters and assumed that the given 

drift rates vcorrect and vincorrect begin to accumulate and continue throughout the 

trial in ‘continuous’ trials. In ‘stop’ trials, the evidence becomes random during 

the interruption interval and we assume that only noise is accumulated during 

this period, (i.e. v-stopcorrect = v-stopincorrect = vincorrect), before returning to the 

starting drift rates (vcorrect and vincorrect). In the ‘reverse’ condition, the evidence 

changes direction during the interruption interval, but remains at its original 

strength, which may lead to a reversal of drift rates, i.e. v-reversecorrect = vincorrect, 
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v-reverseincorrect = vcorrect, before returning to the starting drift rates (vcorrect and 

vincorrect). This describes a model with only four drift rates (vcorrect and vincorrect for 

both easy and hard decisions), as well as the parameters Sz, Ter, STer, and σ2 

which were fixed between conditions (see Table 4.1). 

 

Model 2 did not assume a symmetrical change in drift rates with changing 

evidence as described above (see Figure 4.3). Instead, we estimated a new set 

of drift rates for the ‘stop’ and ‘reverse’ intervals, leading to a total of 12 drift 

rates (for each difficulty condition: v-continuouscorrect, v-continuousincorrect, v- 

stopcorrect, v-stopincorrect, v-reversecorrect, v-reverseincorrect). All other parameters 

(Sz, Ter, STer, σ2) were fixed between conditions, resulting in a model with a total 

of 16 free parameters (see Table 4.1). 
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Figure 4.3: Race model applied to interruption and difficulty conditions: visualisation of the concepts used 
in Model 2 (Model 1 only differs in the slopes during the interruption periods). a) in the ‘continuous’ 
conditions, a single drift rate per accumulator is continuous throughout the trial; b) in the ‘stop’ condition, 
new drift rates are estimated for the interruption period, which will arguably lead to lower drift rates in the 
correct accumulator; c) in the ‘reverse’ condition, like in the ‘stop’ condition, new drift rates are estimated 
for the duration of the interruption, arguably leading to a decrease in the correct and an increase in the 
incorrect drift rate; d) the manipulation of difficulty is assumed to affect the slope of the accumulation 
throughout the trial, with ‘easy’ trials (solid lines) associated with higher drift rates than ‘hard’ ones (dashed 
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lines). The effects of difficulty, although displayed separately here, affect all interruption conditions. Note 
that, since the drift rates during the interruption periods in both ‘stop’ (b) and ‘reverse’ (c) conditions are 
free to vary, their slopes are set to arbitrary values for illustration only and should not be directly compared 
based on this figure. 

In line with approaches employed in previous studies (Dmochowski & Norcia, 

2015; Twomey et al., 2015), individual RTs were pooled across participants to 

determine the best-fitting model parameters at the group level to fit each model 

to our data. Trials with RTs faster than 180 ms or slower than 2000 ms (less 

than 3%) were discarded. Modelled RTs were simulated based on the 

equations described above and compared to RT data using Quantile Maximum 

Probability Estimation (Heathcote et al., 2002). Parameter values were adjusted 

using a differential evolution algorithm implemented in Matlab (The Mathworks, 

Natick, U.S.A.; Price et al., 2005). 

We compared the goodness of fit of the two models by calculating the Bayesian 

information criterion (BIC, Schwarz, 1978) as well as the Akaike information 

criterion (AIC; Akaike, 1977). These measures take into account the likelihood 

of the model but also penalise a model for the number of parameters used in 

order to resolve the problem of overfitting. The model which best fitted the data 

according to these measures was then used to generate predictions of the 

accumulation profile. 

 

4.1.1.6. Model Prediction 

Since EEG recordings reflect the summation of neural activity in a given area, 

we assumed that, if the CPP is a neural correlate of the decision variable, it 

represents the sum of all evidence accumulation. Although a binary choice may 

recruit separate neural populations to accumulate evidence, these neural 

populations would likely be in close proximity. An ERP component recorded at 

the scalp over these neural populations measures the summation of electrical 

activity and therefore the sum of both accumulation processes. In order to 

compare the model prediction to the CPP, we therefore considered the sum of 

the correct and incorrect accumulation profiles of correct choices. 
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Based on the model equations described above, a total of 20,000 accumulation 

paths (in 10 ms time steps) were computed for each condition. To account for 

sensory processes, accumulation started after a sensory delay (fixed to 50% of 

Ter). Evidence was then accumulated until the response threshold and 

continued to be accumulated for a short period after the boundary was reached 

to account for motor processes (50% of Ter; note that we assume that 

accumulation continues until the offset of the stimulus, i.e. during the time to 

reach the threshold plus the time taken to make the motor response and stop 

the stimulus).  

 

To match with EEG processing, the ‘sum of accumulations’ signal was baseline 

corrected by subtracting the first data point value from the whole trial. Finally, 

we averaged accumulation signals in each condition, once locked to the 

estimated onset of the decision process (stimulus-locked) and once locked to 

the response (response-locked). Since the stimulus-locked signal includes 

varying time spans of post-decision stages, and we can only speculate about 

the behaviour of the accumulator after the response, we removed simulated 

trials from averaging after the response (i.e. after the crossing of the threshold 

plus 50% Ter). 

 

To compare the EEG signal with these model predictions, we recomputed the 

CPP as an average over single-trial data pooled across participants, rather than 

a grand average. Additionally, to match the stimulus-locked CPP with the 

stimulus-locked model predictions, we removed trials from the average once 

they reached the associated RT. The resulting averages were then low-pass 

filtered with a cut-off of 5 Hz for better visualisation, and downsampled to match 

the 10 ms time steps used in the model predictions. 

 



150 
 

4.1.2.  Results 

4.1.2.1. Behavioural Results 

Behavioural data were collapsed over ‘left’ and ‘right’ trials. All trials with very 

short (< 180 ms) or very long (>= 2000 ms) RTs were excluded from the 

analysis (2.99% of trials). The remaining data are displayed in Figure 4.4.  

 

We conducted a repeated-measures ANOVA to explore the effects of the 

factors ‘Interruption’ (‘continuous’, ‘stop’, ‘reverse’) and ‘Difficulty’ (‘easy’, ‘hard’) 

on correct RTs. The results showed a significant main effect of ‘Difficulty’, F(1, 

19) = 134.96, p < .001, ηp
2 = .88, with ‘easy’ trials (M = 769 ms) associated with 

shorter RTs than ‘hard’ trials (M = 863 ms). For the main effect of ‘Interruption’, 

Mauchley’s test indicated that the assumption of sphericity had been violated, 

χ2(2) = 18.77, p < .001. We therefore corrected the degrees of freedom using 

Greenhouse-Geisser estimates of sphericity (ε = .61). There was a significant 

main effect of ‘Interruption’, F(1.21, 23.07) = 63.45, p < .001, ηp
2 = .77. Since 

this factor has three levels, we used Fisher’s Least Significant Difference (LSD) 

for pairwise comparisons, which revealed that all three levels of ‘Interruption’ 

were significantly different from each other with 'continuous' trials (M = 735 ms) 

leading to shorter RTs than 'stop' (p = .001) and 'reverse' (p < .001) trials (M = 

870 ms), and 'stop' trials (M = 843 ms) showing shorter RTs than 'reverse' trials 

(p = .005). There was no significant interaction effect, F(2, 38) = 2.00, p = .15, 

ηp
2 = .10. 
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Figure 4.4: Behavioural results: reaction time (left) and accuracy (right) averages for all conditions. Error 
bars indicate 95% confidence intervals. 

 

Since accuracy data do not meet the distributional assumptions necessary to 

conduct an ANOVA, we used a generalised linear mixed effects model to 

explore the effects of ‘Interruption’ and ‘Difficulty’ on participants’ accuracy. 

Using the ‘fitglme’ function in Matlab (The Mathworks, Natick, U.S.A.), we used 

a model with a logistic link function and binomial data model. Parameter 

estimates were based on a maximum likelihood method using Laplace 

approximation. In line with recommendations by Barr et al. (2014) we used a 

‘maximal’ random effects structure, i.e. both manipulations, ‘Interruption’ and 

‘Difficulty’, and the ‘Interruption * Difficulty’ interaction were included as fixed 

effects, and both manipulations and their interactions within each participant 

were included as random effects (Wilkinson notation: Accuracy ~ 1 + 

Interruption*Difficulty + (1 + Interruption*Difficulty | 

Participant)13. The model showed that ‘Difficulty’ was a significant predictor, 

                                                
13 The dispersion parameter of the model, φ = .61, was calculated by dividing the sum of 
squared Pearson residuals by the residual degrees of freedom (Venables & Ripley, 2002), and 
indicates that there was no issue with overdispersion. 
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F(1, 114) = 7.19, p = .008, with ‘easy’ (M = 86%) conditions associated with 

higher accuracy scores than ‘hard’ (M = 83%) conditions. Additionally, 

‘Interruption’ was a significant predictor, F(2, 114) = 108.88, p < .001. The 

‘Interruption * Difficulty’ interaction was not a significant predictor, F(2, 114) = 

2.33, p = .10. 

 

In order to explore the differences between all three levels of ‘Interruption’ 

(‘continuous’, ‘stop’, ‘reverse’), we fitted the model a second time, but setting 

the reference level of ‘Interruption’ to ‘stop’, rather than ‘continuous’. We found 

that both the ‘continuous’ (M = 91%) and the ‘stop’ (M = 88%) conditions were 

associated with higher accuracy scores than the ‘reverse’ (M = 76%) condition 

(p < .001). However, there was no significant difference between the 

‘continuous’ and the ‘stop’ conditions (p = .13).  

 

4.1.2.2. ERP Results 

The resulting ERPs are displayed in Figure 4.5. The CPP displays a build-up 

over the course of the decision, which is disrupted by the interruption of 

evidence. To quantify this effect, we compared the slopes of the ERP before 

and during the interruption period.  
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Figure 4.5: CPP results: CPP waveforms (left) and topographies (right) for easy (a), and hard (b) trials. 
From left to right: stimulus-locked waveform, response-locked waveform, and topography averaged over 
the stimulus-locked 0 to 1000 ms interval. Electrodes used to generate the waveform are highlighted in the 
topoplots. Vertical dashed lines in the stimulus-locked CPP represent mean RTs per condition. Note that 
the mean RTs here are computed only from trials which were included to generate the waveform and 
therefore differ slightly from those displayed in Figure 4.4. Grey dots at the bottom of the waveforms 
indicate significance based on FDR-controlled comparisons of amplitude: dark grey dots indicate a 
significant main effect of ‘Interruption’, while light grey ones indicate a significant main effect of ‘Difficulty’. 

 

An ‘Interruption’ x ‘Difficulty’ ANOVA investigating the slope of the CPP showed 

that in the stimulus-locked data, there was a significant main effect of ‘Difficulty’ 

in the pre-interruption interval, F(1, 19) = 12.93, p = .002, ηp
2 = .40, with ‘easy’ 

waveforms displaying a higher slope (M = .02) than ‘hard’ waveforms (M = .01). 

There was no main effect of ‘Interruption’, F(2, 38) = 1.01, p = .38, ηp
2 = .05. 

There was no interaction effect between ‘Interruption’ and ‘Difficulty’, (p = .82).  

 

Conversely, in the interruption interval, there was no significant main effect of 

‘Difficulty’, F(1, 19) = .19, p = .67, ηp
2 = .01 (Measy = .02, Mhard = .01), however, 

there was a significant main effect of ‘Interruption’, F(2, 38) = 9.52, p < .001, ηp
2 
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= .33. We used Fisher’s LSD post hoc tests to explore the main effect further. 

They revealed that the slope of the ‘continuous’ waveform (M = .03) was 

significantly higher than the slopes of both the ‘stop’ (M = .01) and the ‘reverse’ 

(M = .01) waveforms, t(19) > 3.40, p < .003. There was no significant difference 

in slope between the ‘stop’ and ‘reverse’ conditions, t(19) = .76, p = .46. There 

was no significant interaction between ‘Difficulty’ and ‘Interruption’ in the 

interruption interval (p = .39). 

 

In the response-locked CPP, we found a significant main effect of ‘Difficulty’, 

F(1, 19) = 7.46, p = .013, ηp
2 = .28, with ‘easy’ waveforms associated with a 

higher slope (M = .04) than ‘hard’ ones (M = .03). There was no main effect of 

‘Interruption’, and no interaction effect, (p > .14). 

 

We also compared the amplitudes of the waveforms associated with the 

different conditions by performing a series of FDR-controlled ‘Interruption’ 

(‘continuous’, ‘stop’, ‘reverse’) x ‘Difficulty’ (‘easy’, ‘hard’) ANOVAs. For brevity, 

we only report significant results which show a corrected p-value of < .05 for at 

least 50 ms continuously. In the stimulus-locked CPP data, a main effect of 

‘Interruption’ was observed between 466 and 783 ms (corrected p < .049; see 

Figure 4.5). Fisher’s LSD-corrected post hoc tests found that the ‘continuous’ 

waveform displayed a higher amplitude than both the ‘stop’ waveform (between 

466 and 783 ms relative to the onset of coherent motion, corrected p < .02) and 

the ‘reverse’ waveform (between 488 and 783 ms, corrected p < .046). There 

was no significant difference in amplitude between ‘stop’ and ‘reverse’ 

conditions (corrected p > .26). 

 

Further, we found a significant main effect of ‘Difficulty’ in the time interval 

between 276 and 1000 ms relative to stimulus onset, with ‘easy’ waveforms 

reaching higher amplitudes than ‘hard’ waveforms (corrected p < .046). There 

was no significant interaction between ‘Interruption’ and ‘Difficulty’ (corrected p 

> .34). 

 

In the response-locked CPP, we found no main effect of ‘Interruption’ (corrected 

p > .07). There was a significant main effect of ‘Difficulty’ during 160 out of 229 
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time points between -229 and 0 ms relative to response, with ‘easy’ trials 

displaying a higher amplitude than ‘hard’ trials. There was no significant 

interaction effect (corrected p > .9). 

4.1.2.3. Model Fit 

We fitted two race models to the data, one of which assumes symmetric 

changes in drift rate with changing evidence (Model 1, 8 parameters), and one 

which fits a new drift rate to each evidence interruption (Model 2, 16 

parameters). To compare the goodness of fit among the models, we calculated 

the BIC (Schwarz, 1978) of each model fit. The BIC takes into account the 

likelihood of the model but also penalises a model for the number of parameters 

used in order to resolve the problem of overfitting. The best (lowest) BIC was 

obtained for Model 2 (see Table 4.1). This implies that the additional drift rate 

parameters of Model 2 increased the quality of the fit enough to warrant the 

increased model complexity, and suggests that evidence is integrated at 

different rates throughout the trial. The same comparison using the AIC (Akaike, 

1973) instead of the BIC supported the same conclusion (see Table 4.1). 

 

Table 4.1: Model Comparison: BIC and AIC values for each model. Model 1 has higher (worse) BIC and 
AIC values, despite its comparatively small number of parameters (best BIC and AIC values in bold). 

  
Model  

  

Number of 
parameters 

AIC BIC Parameters 

Model 1 8 71,992 72,053 

v-easycorrect, v-easyincorrect,  
v-hardcorrect, v-hardincorrect,  

Sz, Ter, STer, σ2 

Model 2 16 71,875 71,998 

v-easy-continuouscorrect, v- easy-continuousincorrect, 
 v-easy-stopcorrect, v-easy-stopincorrect,  

v-easy-reversecorrect, v-easy-reverseincorrect,  
v-hard-continuouscorrect, v-hard-continuousincorrect,  

v-hard- stopcorrect, v-hard-stopincorrect,  
v-hard-reversecorrect, v-hard-reverseincorrect,  

Sz, Ter, STer, σ2 

 

 

Table 4.2: Estimated parameter values for the chosen model (Model 2): note that the response threshold A 
was set to 1 as a scaling parameter. 

Model 2: Parameters     

Starting point variability (SZ) 0.7538 

Response threshold (A) 1 
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Non-decision time (Ter) 0.2895 

Non-decision time variability (STer) 0.266 

Diffusion constant (σ2) 0.5011 

Drift rate  
(v) 

‘Continuous’ 

correct 
easy 1.4355 

hard 1.1571 

incorrect 
easy 0.02 

hard 0.0135 

‘Stop’ 

correct 
easy 0.4121 

hard 0.2447 

incorrect 
easy 0.0471 

hard 0.0163 

‘Reverse’ 

correct 
easy 0.0369 

hard 0.0534 

incorrect 
easy 0.7725 

hard 0.9237 

 

 

The parameter estimates of the chosen race model are displayed in Table 4.2. 

We found that, as expected, drift rates in interrupted conditions were lower than 

‘continuous’ drift rates. Additionally, the best-fitting drift rates in the incorrect 

accumulator of the ‘reverse’ condition (e.g. v-easy-reverseincorrect = .77) were 

much lower than the ones in the correct accumulator of the ‘continuous’ 

condition (e.g. v-easy-continuouscorrect = 1.14) despite the equally strong 

sensory evidence.  

 

Figure 4.6 shows the quality of the model fit by displaying empirical (circles) and 

modelled (lines and crosses) RT distributions for correct (bold symbols) and 

incorrect (thin symbols) responses in each condition. Each distribution is 

summarised by five quantile estimates (from left to right: 10%, 30%, 50%, 70%, 

90%), the RT (x-axis) and proportion of data (y-axis) of which are shown. The 

overlap between empirical and modelled quantiles indicates that the model 

fitted the data well. The mean difference between predicted and observed RTs 

at each quantile for correct responses was approximately 36 ms, confirming that 

the race model with varying drift rates can account for decision-making with 

non-stationary evidence. 
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Figure 4.6: Model fit: quantiles estimated from behavioural data (circles) and race model (Model 2) 
simulations (crosses and lines) for easy (top) and hard (bottom) decisions. For each condition, correct 
(thick) and incorrect (thin) quantiles are displayed separately.  

4.1.2.4. Model Prediction 

The parameters of the chosen model were then used to estimate the average 

accumulation profile for each condition. Figure 4.7 displays the resulting 

predictions (a) and the corresponding EEG data (b) for stimulus (left) and 

response-locked (right) data, as well as easy (top) and hard (bottom) data. 

Visual inspection shows that the EEG and predicted profiles are qualitatively 

very similar. With stimulus-locking, both profiles show an initial build-up which is 

slower (lower slope) in ‘hard’ (dashed lines) compared to ‘easy’ (solid lines) 

conditions, but similar across interruption conditions. Both profiles also show 

that the ‘continuous’ waveforms continue the build-up, while ‘stop’ and ‘reverse’ 

waveforms display a drop at approximately the same time, before continuing to 

build up. A further similarity between the model prediction and the EEG signal is 

the unexpected finding of an overlap of the ‘stop easy’ and ‘reverse easy’ 
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conditions during the interruption period. However, there are also small 

differences between modelled and observed accumulation, such as the 

difference between ‘stop hard’ and ‘reverse hard’ profiles predicted by the 

models, which is less pronounced in the EEG waveform. Additionally, the CPP 

displays a negative dip as a response to evidence interruption while the model 

prediction shows a much reduced, but still positive slope. The response-locked 

signal is overall very similar in both the EEG and the predicted profiles, as no 

differences between conditions are seen, with the exception of a small deviation 

of the ‘continuous easy’ waveform in the EEG signal. 
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Figure 4.7: Decision variable (empirical and simulated): a) accumulation profile (correct and incorrect 
accumulator summed) per Interruption condition as predicted by the race model, for easy (top) and hard 
(bottom) trials, as well as stimulus (left) and response-locked (right) data. b) CPP waveform for easy (top) 
and hard (bottom) trials, as well as stimulus (left) and response-locked (right) data. The CPP here differs 
from the one displayed in Figure 4.5 as it is a pooled average and has been filtered and downsampled to 
match model predictions. 
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4.1.3.  Discussion Experiment 1 

In the first experiment, we set out to test the impact of non-stationary evidence 

on a potential neural substrate of the decision variable, the CPP. Since we 

assume that a change in evidence must necessarily induce a change in the 

accumulation profile, we hypothesised that, in order to support its role as a 

decision variable signal, the CPP waveform should also display a non-stationary 

build-up. To test this, we observed the CPP under three different ‘Interruption’ 

conditions: a ‘continuous’ condition in which the evidence continued at the same 

level of strength throughout the trial, a ‘stop’ condition in which the evidence 

was stopped and replaced by random noise for a brief interval, and a ‘reverse’ 

condition in which the evidence was reversed to support the opposite alternative 

for a brief period. We hypothesised that these three conditions would lead to 

three different profiles, with the continuous condition leading to the 

stereotypical, smooth build-up, while the stop and reverse profiles would deviate 

from this build-up to varying extents. We also added a more established 

manipulation of difficulty to the design and hypothesised that (as demonstrated 

in Chapter 3), this would affect the slope of the different accumulation profiles. 

 

Behavioural results indicated that both the interruption conditions and the 

difficulty conditions had the expected effects on the RTs and accuracy scores. 

‘Easy’ decisions were associated with faster, more accurate responses than 

‘hard’ decisions. Similarly, ‘continuous’ trials led to faster and more accurate 

decisions than ‘reverse’ trials. ‘Stop’ trials were associated with shorter RTs and 

higher accuracy scores than ‘reverse’ trials and longer RTs than ‘continuous’ 

trials. These behavioural findings are in line with previous research, which has 

repeatedly shown that disruptions in evidence lead to an increase in RT 

(Holmes et al., 2016; Huk & Shadlen, 2005; O’Connell et al., 2012). Accuracy 

results in these studies have been less consistent, but these are arguably 

dependent on the procedures of each study. For example, O’Connell et al. 

(2012) used a target detection paradigm with no response deadline in which 

participants were unlikely to respond under uncertainty, and found no difference 

in accuracy caused by the non-stationary evidence. In the current study, on the 

other hand, we implemented a comparatively short (2000 ms) deadline, which is 
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likely to push participants into responding under increased uncertainty in 

interrupted trials. Overall, as expected, interrupted trials led to worse 

performances than continuous trials, with evidence reversal disrupting the 

decision more than a simple pause in the evidence.  

 

Importantly, we expected that the manipulations of difficulty and interruption 

would not only affect the behavioural data, but also the accumulation profile. As 

described in detail in Chapter 3, the slope of the accumulation should vary with 

difficulty (Brown & Heathcote, 2008; Kelly & O’Connell, 2013; Ratcliff & 

McKoon, 2008; Ratcliff & Rouder, 1998). Furthermore, the interruption of 

evidence should lead to an interruption in the build-up of the accumulation. 

Specifically, we hypothesised that a ‘stop’ in evidence would also cause the 

accumulation to stop and plateau for the duration of the interruption interval. 

The impact of the ‘reverse’ condition on the accumulation profile is somewhat 

harder to predict as it is particularly dependent on the specifications of the 

model, as, for example, the assumption of inhibition may lead to a downward 

slope during the reversal interval, while a model that does not assume inhibition 

between accumulators would predict a mere decrease in the slope while 

remaining positive14. However, it is important to note that even the 

comparatively simple race model used here contains a large amount of 

interacting parameters, the results of which are difficult to predict conceptually. 

 

The CPP waveform revealed patterns which largely supported our hypotheses. 

We found that task difficulty affected the slope of the CPP, with ‘hard’ decisions 

leading to lower build-up rates than ‘easy’ decisions. In the ‘continuous’ 

condition, we observed the stereotypical build-up over time which peaked at the 

time of response. Importantly, we found that both the ‘stop’ and the ‘reverse’ 

waveforms displayed a clear divergence from this pattern. While all three 

conditions (‘continuous’, ‘stop’, ‘reverse’) displayed the same build-up up in the 

pre-interruption period, we observed a clear disruption of the build-up in both 

                                                
14 Note that the intuitive prediction that the reversal of evidence would lead to a reversal in 
accumulation (i.e. a downward slope) even without the assumption of inhibition is only accurate 
with regards to the correct accumulator, but not the sum of both accumulators which is used 
here. 
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the ‘stop’ and ‘reverse’ profiles, which plateaued before continuing to build up, 

approximately 300 ms later. This finding of the perturbation in evidence 

translating into a perturbation in the CPP build-up is in line with our hypothesis 

and with previous research which found that the evolution of the CPP is 

sensitive to a brief interruption of evidence (O’Connell et al., 2012). However, 

contrary to our hypotheses, we observed no difference between ‘stop’ and 

‘reverse’ CPP profiles, as both conditions displayed the same build-up and 

plateau behaviour (but see below).  

 

An additional finding worth noting is the delay in the disruption of the CPP build-

up compared to the timing of the evidence interruption. While the interruption of 

motion took place between 200 and 400 ms, the divergence in CPP amplitude 

between ‘continuous’ profiles and the two interrupted profiles was observed 

between approximately 470 and 780 ms. Although this delay was not tested 

specifically and the race model was able to account for the data without an 

additional delay parameter, we speculate that this temporal difference is larger 

than would be expected from a delay based on sensory processes alone. A 

similar delay between presentation and incorporation of the new information has 

been described by Holmes et al. (2016), although with a larger magnitude 

(approximately 450 ms). This finding further supports the role of the CPP as an 

accumulation signal, rather than a mere sensory signal, which would arguably 

display a faster reaction in response to the change in evidence. The CPP 

however, responds to the change slowly and is affected by the change for a 

longer period than the duration of the interruption interval, suggesting that it 

represents a higher-level integration of evidence.  

 

Overall, the CPP profile showed the majority of the expected patterns. However, 

the hypotheses against which the CPP was compared were largely intuitive. In 

order to gauge the extent to which the observed profiles match true 

accumulation profiles, we fitted a sequential sampling model to our data. We 

found that a race model with separate drift rates for each difficulty and 

interruption condition was able to fit our RT data well. In line with Holmes et al. 

(2016) we found that a change in evidence was better explained by a new, 

independent drift rate, rather than a symmetric drift rate, even when the change 
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in evidence itself was symmetric (i.e. in the best model, the drift rates during the 

reversal of the motion direction did not equal the inverse of the initial drift rates). 

However, Holmes et al. (2016) found larger drift rates after evidence reversal, 

while we found that the incorrect drift rate during the ‘reverse’ period was lower 

than the correct drift rate prior to the interruption, even though the sensory 

evidence associated with both was equivalent. Our findings indicate that there 

might be an inhibitory mechanism, impeding the increase of the losing 

accumulator. Although we fitted a race model which explained the data well 

without an inhibition parameter, it may be useful to explore other models which 

assume inhibition, such as the leaky competing accumulator model (Usher & 

McClelland, 2001) in future work. The difference in findings between our study 

and that of Holmes et al. (2016) may be explained by the different task 

procedures as we used brief perturbations while the evidence in Holmes et al. 

(2016) remained reversed for the rest of the trial. It is conceivable that evidence 

which opposes the winning accumulator is inhibited at first, but, if it continues 

long enough, eventually catches up and is then, potentially to compensate for 

the delay, accumulated faster. 

 

Importantly, we used the estimated parameters to simulate the accumulation 

profile associated with each condition and directly qualitatively compared the 

resulting patterns to the CPP. We found considerable overlap between the 

model predictions and the neural signal, even though these profiles were not 

fitted to one another directly. Both profiles showed the same slope differences 

between ‘easy’ and ‘hard’ trials. Additionally, neither the model prediction nor 

the CPP showed large differences between conditions in the response-locked 

data. The model predictions also showed the same gradual build-up in the 

‘continuous’ condition and the interruption of the build-up in the ‘stop’ and 

‘reverse’ conditions, as observed in the EEG signal. Interestingly, the model 

predictions also mimicked the CPP signal in the similarity between the ‘stop’ 

and ‘reverse’ waveforms. These patterns are particularly interesting as they 

oppose our prior hypotheses and show an overlap between neural data and 

evidence accumulation which might not have been predicted based on intuitive 

reasoning alone. Overall, these similarities support the role of the CPP as a 

neural substrate of decision-making. 
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4.2. Experiment 2: Decision Bias 

 

In Experiment 2, we set out to explore a second manipulation, which, to our 

knowledge, has not been used previously to evaluate the CPP as a potential 

neural correlate of the decision variable. To this end, we tested the effects of 

decision biases on the CPP. The notion of a decision bias is a common topic in 

the perceptual decision-making literature, as it is a manipulation which is 

associated with strong behavioural effects, which can often be explained using 

sequential sampling models by varying just one parameter (Summerfield & de 

Lange, 2014). In a sequential sampling process, evidence is accumulated from 

a given starting point towards a threshold. With the introduction of a bias 

towards a given alternative, the starting point moves towards the threshold 

associated with that alternative, thereby decreasing the amount of evidence 

required to make the choice in favour of the biased alternative (Spaniol, Voss, 

Bowen, & Grady, 2011; Voss et al., 2013). Specifically, in accumulator models, 

which assume that there are two accumulators in a binary choice, each 

integrating evidence for a given alternative and racing towards a common 

threshold, biases can be implemented by increasing the starting point (i.e. 

decreasing the amount of evidence required to reach the threshold) in only one 

of the accumulators and/or decreasing the starting point of the remaining 

accumulator, making the biased choice more likely (Gao et al., 2011). 

 

Other ways to implement bias effects in sequential sampling models have been 

suggested. For example, it has been proposed that a variation in drift rate, i.e. 

the slope of the accumulation, may account for biased decisions, with biases 

towards a specific alternative leading to increased slopes (Diederich & 

Busemeyer, 2006; Gao et al., 2011; Hanks, Mazurek, Kiani, Hopp, & Shadlen, 

2011; Mulder et al., 2012). It has also been suggested that the way a model 

best accounts for biased decisions depends on the nature of the bias, as 

variations in starting point, and potentially in drift rate, may differ depending on 

whether a bias towards a given alternative is caused by its increased frequency 

or by the association of the alternative with an increased payoff (Diederich & 
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Busemeyer, 2006; Feng, Holmes, Rorie, & Newsome, 2009; Leite & Ratcliff, 

2011; Mulder et al., 2012; Summerfield & de Lange, 2014). 

 

However, an overwhelming amount of evidence suggests either that a 

difference in the starting point accounts for behavioural data from biased 

decisions (Bode et al., 2012; Gao et al., 2011; Mulder et al., 2012; Ratcliff et al., 

2016; Spaniol et al., 2011; Summerfield & Koechlin, 2010), or a variation of this 

idea which claims that evidence accumulation is preceded by a process which 

evaluates a given bias and sets the starting point for accumulation (Diederich, 

2008; Diederich & Busemeyer, 2006). 

 

Biased decisions have also been explored using neural signals which have 

previously been proposed to reflect the accumulation profile described by 

sequential sampling models. Rorie, Gao, McClelland, and Newsome (2010) 

presented monkeys with a binary motion-discrimination task in which the reward 

for the two choices was either equal or unequal. It was found that the rewards 

primarily influenced LIP firing rates prior to the motion onset, with unbalanced 

payoffs leading to a baseline shift towards the rewarded threshold. These 

findings support the notion of a starting point difference in accumulation for 

biased decisions. No difference in the slope of the build-up in firing rate 

throughout the decision was observed. The same finding of a shift in baseline 

activity and unaltered slopes in LIP firing rates was supported when instead of 

unequal payoffs, directional cues were used in a motion discrimination task 

(Rao, DeAngelis, & Snyder, 2012). Similarly, it has been shown that firing rates 

in SC neurons, which show a build-up to threshold profile associated with a 

given choice, show a reduction in baseline activity with decreasing probability of 

this choice (Basso & Wurtz, 1998; Dorris & Munoz, 1998), further supporting the 

role of starting point activity in decision biases.  

 

Evidence from neural correlates of evidence accumulation in humans remains 

somewhat scarce. fMRI studies have reported correlates of a biased decision 

variable in parietal and prefrontal regions (Chen et al., 2015; Mulder et al., 

2012; Summerfield & Koechlin, 2010). EEG research on the other hand, has 

focused primarily on motor signals to track decision biases. Noorbaloochi et al. 
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(2015) recorded human EEG during a decision task with either biased or 

unbiased payoffs and explored the lateralised readiness potential (LRP) as a 

signal reflecting evidence accumulation. In line with findings from non-human 

primates, it was found that in biased decisions, the LRP amplitude was shifted 

towards the alternative associated with the higher payoff prior to the stimulus 

onset, suggesting a starting point difference. However, the behavioural data 

were best explained by a model with an additional accumulator which 

represents a fast guess process and races with the evidence accumulators, 

rather than by traditional models with starting point or drift rate variations to 

explain decision biases. On the other hand, de Lange et al. (2013) concluded 

that it is in fact a variability in starting point which accounts for bias-related 

activity. Using MEG, de Lange and colleagues found that motor-related activity 

in the beta frequency range displayed a pre-stimulus bias into the direction 

associated with the biased alternative. Together, these data suggest that biases 

push accumulation signals prior to the accumulation onset towards the 

threshold, without affecting the accumulation slope. 

 

To our knowledge, the effects of decision biases have not yet been explored 

using the CPP. In order to test whether the CPP reflects a neural substrate of 

the decision variable, we set out to explore the CPP waveform under different 

bias conditions. We presented participants with a motion direction discrimination 

task after viewing cues which either provided information regarding the likely 

direction of the following motion or gave no directional information. Based on 

the literature summarised above, we hypothesised that the presence of a 

directional cue would lead to a starting point difference in accumulation. 

However, it is unclear how this difference would translate into the CPP. One 

possibility is that a starting point difference would lead to baseline difference in 

the CPP, which, since the generation of the CPP waveform requires a baseline 

correction, would appear in the CPP amplitude (e.g. an increase in baseline 

leads to a decrease in the baseline-to-boundary distance and a decrease in the 

absolute magnitude of the accumulation). However, if, as we assume, the CPP 

reflects the sum of the accumulators, it is possible that we would observe no 

difference in the waveforms, as the increased starting point in the cued 

accumulator might co-occur with a decreased starting point in the non-cued 
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accumulator, the sum of which might be zero. Fitting a sequential sampling 

model to the resulting behavioural data and directly comparing it to the recorded 

CPP waveform is therefore crucial to yield insights into the role of the CPP as 

an accumulation signal. 

 

4.2.1.  Methods 

4.2.1.1. Participants 

Twenty participants (five males), with a mean age of 30.15 (SD = 7.28) were 

recruited. Exclusion criteria required participants to achieve an average 

accuracy score of 80% in the random dot motion task at a coherence level no 

greater than 90% (i.e. 90% of dots moving coherently; see 4.2.1.2). All 20 

participants met this requirement. Each participant took part in a session lasting 

between 2 and 2.5 hours. Participants were recruited using either poster 

advertisements or emails targeted at participants from previous studies. Two of 

the participants were researchers in the current project. All other participants 

were paid £8 per hour. The experiment was approved by the City, University of 

London Psychology Department Ethics Committee. 

4.2.1.2.  Stimuli and Procedure 

Participants were asked to complete a random dot motion task. The basic task 

and setup were, unless otherwise stated, identical to the description in 

Experiment 1 (see section 4.1.1.2). All participants completed a minimum of 50 

practice trials at a coherence level of 80% in order to familiarise themselves 

with the task. During the practice trials, feedback was provided after each trial 

(‘correct’/‘incorrect’). Afterwards, each participant completed 100 trials without 

feedback in order to establish an appropriate level of difficulty for the 

experiment. For this, we again used the QUEST staircase procedure targeting 

80% correct. The resulting average level of coherence was 32.25% (SD = 

27.92).  

 

For the main experiment, each participant completed 450 trials. The trial 

procedure is displayed in Figure 4.8. Each trial began with the display of a 
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fixation cross for 500 ms (plus a jitter of up to 200 ms drawn from a uniform 

distribution), followed by a cue (500 ms) that consisted of two arrows, one 

pointing to the left, and one pointing to the right. In one third of the trials, both 

arrows were white, indicating no specific direction (‘uncued’), while in two thirds 

of the trials, one arrow was yellow, providing a cue towards a given direction. 

One half of these cued trials was cued to the left while the other half was cued 

to the right. If a directionally specific cue was given, the following dot motion 

was congruent with the cue 80% of the time (‘congruent’), and incongruent in 

20% of the trials (‘incongruent’). In each trial, the cue was followed by random 

dot motion, i.e. a coherence level of 0%. After the random motion (like in 

Experiment 1: 500 ms + jitter up to 1000 ms, drawn from a gamma distribution 

with shape parameter 1 and scaling parameter 150), the coherent motion 

started (left/right) and lasted up to 1300 ms or until the response. No feedback 

was provided after each trial, but every 60 trials, participants took self-timed 

breaks during which they were provided with feedback in the form of mean 

accuracy scores and RTs over the last 60 trials. 
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Figure 4.8: Random dot motion task trial procedure: in each trial, a fixation cross was followed by a cue 
consisting of two arrows. If both arrows were white (‘uncued’), no directional information was given. If one 
of the arrows was yellow, this cue was correctly describing the direction of the upcoming motion in 80% of 
the trials (‘congruent’), and was false in 20% of the trials (‘incongruent’). Here, the right side is cued, and 
the coherent motion following the random motion is to the right (‘congruent’). Note that the size and 
number of dots have been adjusted for illustration. 

4.2.1.2.1.  EEG Recording and Pre-processing 

Continuous EEG was recorded and pre-processed, using the same setup as 

described in Experiment 1.  

 

4.2.1.2.2. ERP Analysis 

The CPP for each condition was generated in the same way as described in 

Experiment 1. 

 

4.2.1.3. Statistical Analysis 

In order to analyse the impact of the different cue conditions on the ERP 

waveform, we compared both the slope and the amplitude between conditions. 
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Like in Experiment 1, we compared the build-up rate by fitting a straight line to 

the waveform for each participant and each condition and measuring its slope. 

The chosen time intervals to which we fitted a line were 200 to 350 ms for the 

stimulus-locked CPP, and -200 to -150 ms for the response-locked CPP (Kelly 

& O’Connell, 2013). The resulting slopes were then compared using a one-way 

ANOVA to compare ‘congruent’, ‘incongruent’, and ‘uncued’ waveforms. 

 

Amplitudes were analysed in the same way as described in Experiment 1, by 

running a series of FDR-controlled one-way ANOVAs between 0 and 1000 ms 

in the stimulus and -1000 to 0 ms in the response-locked CPP. 

 

4.2.1.4. Model Fit 

The same race model as described in Experiment 1 was used to model these 

data. In this model, two accumulators integrate evidence, one for each 

alternative, and race towards a threshold. 

 

In order to account for different bias conditions, we tested two different models, 

both of which varied only in starting point in order to account for different bias 

conditions (see Figure 4.9). In both models, the response threshold A was 

chosen as the scaling parameter and fixed to 1. Since the number of trials 

across conditions was not balanced (i.e. fewer trials in the ‘incongruent’ than the 

‘congruent’ condition), adjusted, balanced trial numbers were used to estimate 

the parameters of each model, to avoid overfitting on the ‘congruent’ condition. 

 

The first model (Model 1) assumed that starting points change symmetrically in 

response to cues. The starting point of the accumulation process in the 

standard race model is drawn from a uniform distribution with the upper limit of 

Sz and the lower limit of 0. To allow for a variation in starting point in either 

direction, we fixed the lower limit of the starting-point distribution to 0.5, and 

used an additional bias parameter to allow bias-related variation. In ‘uncued’ 

trials, the starting point distribution remained between 0.5 and Sz for both 

correct and incorrect accumulators. In contrast, in the ‘congruent’ condition, the 

starting point distribution for the correct accumulator (in line with the cue) was 
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defined by the range of [0.5 Sz] + bias, and the distribution for the incorrect 

accumulator (opposing the cue) was defined by the range [0.5 Sz] - bias. The 

opposite pattern was used in ‘incongruent’ trials, where incorrect starting point 

distributions (in line with the cue) ranged within [0.5 Sz] + bias, and correct 

distributions (opposing the cue) ranged within [0.5 Sz] - bias. All other 

parameters (Sz, vcorrect, vincorrect, Ter, STer, σ2) were fixed between conditions, 

resulting in a model with a total of seven parameters (see Table 4.3Table 4.1). 

 

The second model (Model 2) also used starting point variations to account for 

differences induced by cue conditions. However, this model did not restrict 

these variations to be symmetric, instead using two bias parameters, one for 

positive biases, i.e. responses in line with the cue (biaspositive), and one for 

negative biases, i.e. responses opposing the cue (biasnegative). In the ‘congruent’ 

condition, the starting point distribution for the correct accumulator (in line with 

the cue) was defined by the range [0.5 Sz] + biaspositive, and the incorrect 

accumulator (opposing the cue) was defined as ranging within [0.5 Sz] + 

biasnegative. The opposite pattern was used in the ‘incongruent condition, with 

bounds of [0.5 Sz] + biasnegative defining the starting point distribution of the 

correct accumulator (opposing the cue), and bounds of [0.5 Sz] + biaspositive 

defining the starting point distribution of the incorrect accumulator (in line with 

the cue). In the ‘uncued’ condition, the starting point distribution remained 

between 0.5 and Sz. All other parameters (Sz, vcorrect, vincorrect, Ter, STer, σ2) were 

fixed between conditions, leading to a model with a total of eight parameters 

(see Table 4.3, Table 4.4). 

 

Like in experiment 1, to fit the model to our data, individual RTs were pooled 

across participants to determine the best-fitting model parameters at the group 

level. Trials with RTs faster than 180 ms or slower than 1300 ms (less than 6%) 

were discarded. Modelled RTs were simulated based on the equations 

described in Experiment 1 (a total of 20,000 simulated responses), and 

compared to RT data using Quantile Maximum Probability Estimation 

(Heathcote et al., 2002). Model fits were compared using BIC and AIC and the 

best performing model was chosen to generate the appropriate accumulation 

profile and compare it to the EEG data. 
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Figure 4.9: Race model applied to biased decisions: to allow for variation of the starting point in either 
direction, the default lower limit of the starting point distribution in unbiased decisions was raised from 0 to 
0.5. a) in ‘uncued’ trials, no decision bias is expected and the lower limit of the starting point distribution 
remains at 0.5. b) in the ‘congruent’ condition, a bias towards the correct choice leads to an 
increase/decrease in the starting point values in correct/incorrect accumulators; c) in ‘incongruent’ trials, 
the opposite pattern is expected, as the cue in the incorrect direction leads to an increased/decreased 
starting point in the incorrect/correct accumulator. Note that biaspositive and biasnegative are displayed as 
bias+ and bias- respectively. While the figure displays Model 2, Model 1 only differs by assuming that the 
increase/decrease in starting point is symmetrical. 
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4.2.1.5. Model Prediction 

To generate the model predictions and the EEG profile to compare it to, the 

same procedures as in Experiment 1 were followed. 

 

4.2.2.  Results 

4.2.2.1. Behavioural Results 

To assess the impact of the cues on the behavioural data, we collapsed over 

‘left’ and ‘right’ trials, and removed any trials with RTs less than 180 ms or 

greater than or equal to 1300 ms (approximately 5.34%) to exclude trials in 

which it is unlikely that the participant made a decision. The remaining data are 

displayed in Figure 4.10. We then performed a one way repeated-measures 

ANOVA to explore the effect of the ‘Cue’ (‘congruent’, ‘incongruent’, ‘uncued’) 

on correct RTs. There was a statistically significant difference between the 

groups, F(2, 38) = 42.72, p < .001, ηp
2 = .69. Fisher’s LSD corrected follow-up t-

tests revealed that all three groups differed significantly from each other, with 

‘congruent’ RTs (M = 664 ms) being faster than both ‘uncued’, t(19) = 6.21, p < 

.001, and ‘incongruent’, t(19) = 7.38, p < .001, RTs, and ‘uncued’ RTs (M = 705 

ms) being faster than ‘incongruent’ ones (M = 761 ms), t(19) = 5.17, p < .001. 
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Figure 4.10: Behavioural results: reaction time (left) and accuracy (right) averages for ‘congruent’, 
‘incongruent’, and ‘uncued’ trials. 

 

Since accuracy data do not meet the distributional assumptions necessary to 

conduct an ANOVA, we used a generalised linear mixed effects model to 

explore the effects of ‘Cue’ on participants’ accuracy. Using the ‘fitglme’ function 

in Matlab (The Mathworks, Natick, U.S.A.), we used a model with a logistic link 

function and binomial data model. Parameter estimates were based on a 

maximum likelihood method using Laplace approximation. The manipulation 

‘Cue’ was included as a fixed effect, and participants were included as a 

random effect (Wilkinson notation: Accuracy ~ 1 + Cue + (1 + Cue | 

Participant))15. The model revealed that ‘Cue’ was a significant predictor, 

F(1, 57) = 18.56, p < .001. In order to explore the differences between all three 

levels of ‘Cue’ (‘congruent’, ‘incongruent’, ‘uncued’), we fitted the model a 

second time, but setting the reference level of ‘Cue’ to ‘incongruent’, rather than 

‘congruent’. We found that both the ‘congruent’ condition (M = 94%) and the 

                                                
15 The dispersion parameter of the model, φ = .70, was calculated by dividing the sum of 
squared Pearson residuals by the residual degrees of freedom (Venables & Ripley, 2002), and 
indicates that there was no issue with overdispersion. 
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‘uncued’ (M = 87%) condition were associated with higher accuracy scores than 

the ‘incongruent’ (M = 71%) condition (p < .001). Additionally, the ‘congruent’ 

condition was associated with higher accuracy scores than the ‘uncued’ 

condition (p < .001). 

 

4.2.2.2. ERP Results 

The CPP waveform for each condition is displayed in Figure 4.11. In both the 

stimulus-locked and the response-locked CPP, the waveform associated with 

‘incongruent’ trials displays the highest amplitude, followed by the ‘uncued’ and 

‘congruent’ waveforms. In order to quantify the impact of ‘Cue’ on the ERP 

waveform, we first compared the slopes of the different conditions. We 

observed no significant difference in slope in either the stimulus-locked, F(2, 38) 

= .39, p = .68, ηp
2 = .02, or the response-locked CPP, F(2, 38) = .40, p = .67, ηp

2 

= .02. 

 

 

Figure 4.11: CPP results: Top: CPP waveform per condition for stimulus-locked (left) and response-locked 
(right) data. Vertical dashed lines in the stimulus-locked CPP indicate mean RTs per condition. Note that 
the mean RTs are based only on trials which were included in the generation of the waveform and differ 
slightly from the ones displayed in Figure 4.10. Black dots in the bottom of the waveform indicate time 
points at which FDR-controlled comparisons of amplitude showed a significant main effect of ‘Cue’ 
conditions. Bottom: ERP topographies averaged over three stimulus-locked time intervals show the 
evolution of the CPP. Electrodes used to generate the waveform are highlighted. 
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We also tested the variation of amplitudes in the CPP using a series of FDR-

controlled one-way (‘Cue’: ‘congruent’/‘incongruent’/‘uncued’) ANOVAs. In the 

stimulus-locked CPP, we found a significant effect for ‘Cue’ in 345 out of 355 

time points between 518 and 873 ms relative to the onset of coherent motion 

(corrected p < .049). Follow-up t-tests revealed that ‘incongruent’ amplitudes 

were higher than both the ‘congruent’ (for the entire duration of the main effect, 

corrected p < .02), and the ‘uncued’ ones (for 244 out of 321 time points 

between 542 and 863 ms relative to stimulus onset, corrected p < .05). 

However, there was very little difference between ‘congruent’ and ‘uncued’ 

amplitudes (corrected p < .05 only between 639 and 645 ms). 

 

In the response-locked CPP, we found a significant main effect between -198 

and -104 ms relative to the response (corrected p < .047). Post hoc tests 

showed the same patterns as the stimulus-locked data, with higher amplitudes 

in ‘incongruent’ than ‘congruent’ trials (during the entire duration of the main 

effect, corrected p < .018) and in incongruent than ‘uncued’ trials (during 76 out 

of 90 time samples between -198 and -108 ms, corrected p < .049). There was 

no difference between ‘congruent’ and ‘uncued’ trials (p > .09). 

4.2.2.3. Model Fit 

Based on the literature, two models assuming changes in starting point across 

bias conditions were fitted to the data. One model assumed that the 

increase/decrease in starting point for responses congruent/incongruent with 

the cue is symmetrical (Model 1, 7 parameters), while Model 2 let the bias 

parameter for increasing/decreasing starting points vary independently (Model 

2, 8 parameters). The best (lowest) BIC was obtained for Model 2 (see Table 

4.3). This implies that the additional bias parameter of Model 2 increased the 

quality of the fit enough to warrant the increased model complexity. The same 

comparison using AIC instead of BIC values supported the same conclusion 

(see Table 4.3). Therefore, Model 2 was chosen to generate accumulation 

profiles (note that Model 1 produced similar fits as well as similar predictions). 
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Table 4.3: Model Comparison: BIC and AIC values for each model. Model 1 has higher (worse) BIC and 
AIC values, despite its smaller number of parameters (best BIC and AIC values in bold). 

  
Model  

  

Number of 
parameters 

AIC BIC Parameters 

Model 1 7 30,675 30,723 

bias,  
vcorrect, vincorrect,  
Sz, Ter, STer, σ2 

Model 2 8 30,656 30,712 

biaspositive, biasnegative, 
vcorrect, vincorrect,  

Sz, Ter, STer, σ2 

 
 

Table 4.4: Estimated parameter values for the chosen model (Model 2): note that the response threshold A 
was set to 1 as a scaling parameter, and that all lower limits of the starting point distributions were 
generated with just two free bias parameters (0.5 + biaspositive/biasnegative). Note that, due to the raised 
starting point in the uncued condition, these parameters are not directly comparable to the ones displayed 
in Experiment 1 (Table 4.2). 

Model 2: Parameters     

Starting point variability (SZ) 0.2281 

Response threshold (A) 1 

Non-decision time (Ter) 0.0989 

Non-decision time variability (STer) 0.0755 

Diffusion constant (σ2) 0.1882 

Drift rate  
(v) 

correct 0.5993 

incorrect 0.2724 

Lower limit of 
 the starting point  

distribution 

‘congruent’ 
correct 0.54 

incorrect 0.4378 

‘incongruent’ 
correct 0.4378 

incorrect 0.54 

‘uncued’ 
correct 0.5 

incorrect 0.5 

 

  

The parameter estimates of the chosen race model are displayed in Table 4.4. 

It shows that the positive bias was slightly smaller (biaspositive = .04) than the 

negative bias (biasnegative = -.06). Figure 4.12 shows the quality of the model fit 

by displaying empirical (circles) and modelled (lines and crosses) RT 

distributions for correct (bold symbols) and incorrect (thin symbols) responses in 

each condition. It was found that a race model with varying starting points can 

account for biased decision-making, with the mean difference between 

predicted and observed RT quantiles for correct responses being approximately 

18 ms. 
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Figure 4.12: Model fit: quantiles estimated from behavioural data (circles) and race model simulations 
(crosses and lines) for each cue condition. Correct (thick) and incorrect (thin) quantiles are displayed 
separately. 

 

4.2.2.4. Model Prediction 

The parameters of the chosen model (Model 2) were used to estimate the 

predicted accumulation profile for each condition. Figure 4.13 displays the 

resulting predictions (a) and the corresponding CPP (b) for stimulus (left) and 

response-locked (right) signals. Visual inspection shows great qualitative 

similarities between the model predictions and the EEG signals. Both signals 

show a stimulus-locked build-up which peaks at the time of response. 

Importantly, both the model prediction and the CPP display an amplitude 

difference, with ‘incongruent’ decisions being associated with the highest 

values, followed by ‘uncued’ decisions, and ‘congruent’ trials associated with 

the lowest amplitudes. This pattern is visible in both the stimulus-locked and the 

response-locked waveforms in both the prediction and the EEG signal. 

Additionally, there appears to be a larger difference in amplitude between the 

‘incongruent’ and the remaining conditions, in both the stimulus and the 
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response-locked profiles. This pattern is particularly visible in the CPP data, but 

also, to a smaller extent, in the model prediction. However, the two signals are 

not identical. In particular, the amplitude differences in the EEG signal appear 

far more pronounced than the ones in the model predictions.  

 

 
Figure 4.13: Decision variable (empirical and simulated): a) accumulation profile per cue condition as 
predicted by the race model, for stimulus (left) and response-locked (right) data. b) CPP waveform for 
stimulus (left) and response-locked (right) data. The CPP here differs from the one displayed in Figure 
4.11 as it is a pooled average and has been filtered and downsampled to match model predictions. 
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4.2.3.  Discussion Experiment 2 

In Experiment 2, we tested how decision biases affect the CPP waveform and, 

like in Experiment 1, compared its profile to model predictions. To this end, we 

asked participants to complete a motion discrimination task in which cues prior 

to each trial either gave no information about the direction of the upcoming trial 

(‘uncued’), or indicated the upcoming direction either correctly (‘congruent’) or 

incorrectly (‘incongruent’). We found that these manipulations had the expected 

effects on the data. All conditions were significantly different from each other in 

both RT and accuracy, with ‘congruent’ trials associated with the fastest RTs 

and fewest errors, ‘incongruent’ trials associated with low accuracy rates and 

longer RTs, and ‘uncued’ trials falling mid-range in both RT and accuracy. 

These results are in accordance with previous research, which has repeatedly 

shown similar effects on both RT and accuracy as a result of decision biases 

(de Lange et al., 2013; Mulder et al., 2012). 

 

In order to support the role of the CPP as a neural substrate of the decision 

variable, we expect these behavioural differences to be evident in the EEG 

waveform. Based on previous evidence, we hypothesised that the bias 

conditions would affect the starting point of the accumulation profile (Bode et al., 

2012; Gao et al., 2011; Rorie et al., 2010). Since we expect the boundary to 

remain unaltered, a change in starting point implies a change in the baseline-to-

boundary distance. Specifically, we expected that a bias towards a given 

response would increase the starting point towards the associated boundary, so 

that less evidence is needed for this response. The exact pattern these changes 

would evoke in the CPP waveforms of each condition is difficult to predict 

conceptually. Based on only a correct accumulator in a race model (i.e. the 

accumulator which integrates evidence for the correct alternative) we may 

expect that the ‘uncued’ decisions start around a given starting point z, while 

‘congruent’ conditions have a higher starting point (i.e. closer to the correct 

boundary), and ‘incongruent’ decision have a lower starting point (i.e. at a larger 

distance to the correct boundary). Since a baseline correction is needed to 

generate the CPP waveform, a starting point difference would not be observed 

directly, but would instead lead to a difference in amplitude with higher starting 
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points leading to lower ERP peaks. This pattern would translate into the 

‘incongruent’ CPP displaying the largest, and the ‘congruent’ CPP showing the 

smallest peak amplitude. However, we assume that different neural populations 

represent different accumulators and that the EEG signal recorded from the 

scalp is the sum of all accumulation in a race model, rather than a single 

accumulator. In this context, the expected amplitude differences are less clear. 

Since we expect that a bias leads to an increase in starting point in the cued 

accumulator alongside a decrease in the non-cued accumulator, the sum 

displayed in the CPP may in fact cancel out any difference to an unbiased 

process.  

 

There are thus a number of possible outcomes which could, at least 

conceptually, be considered in line with sequential sampling models. This 

emphasises the importance of the approach implemented in the current study. 

In addition to the varying assumptions of different models complicating 

conceptual predictions, even simple sequential sampling models are often too 

complex to allow for accurate predictions based on reasoning alone. It is 

therefore particularly important to directly compare a signal to predictions made 

through model fits, in order to comment on its similarity to an accumulation 

process.  

 

The pattern we observed in the CPP was somewhat similar to what might be 

expected for just a correct accumulator. There was no difference in slope 

between the conditions, but we found a clear difference in amplitude. The 

waveform associated with ‘incongruent’ decisions showed a higher amplitude 

than ‘congruent’ or ‘uncued’ profiles in both the stimulus and the response-

locked data. The ‘uncued’ CPP also seemed to build up to a slightly higher 

plateau than the ‘congruent’ waveform, although this difference was not 

significant in our analysis. If, as we assume, these differences in amplitude are 

due to baseline differences, they indicate that, in correct trials, ‘incongruent’ 

trials have the lowest overall starting point, followed by ‘uncued’ trials, and lastly 

‘congruent’ trials with the highest overall baseline. However, it is not clear why 

this difference is seen in the CPP which arguably represents the sum of all 

accumulators (but see below). 
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In order to evaluate to what extent this observed CPP pattern resembled the 

accumulation process as predicted by sequential sampling models, we fitted a 

simple race model to the behavioural data. Its estimated parameters were used 

to simulate the accumulation profile for each condition, and the resulting 

waveforms show that all three conditions are predicted to follow a very similar 

trajectory, only differing in amplitude. The order in which the amplitudes differ is 

identical to the one described by the CPP, with the highest amplitude seen for 

‘incongruent’ decisions, followed by ‘uncued’ decisions, and ‘congruent’ 

waveforms showing the lowest amplitude. 

 

Although both the simulated accumulation profile and the CPP display similar 

patterns, it is not immediately clear what caused this pattern. While, as outlined 

above, we expected this pattern for the correct accumulator, summing over the 

accumulators should remove any difference between the conditions. To aid our 

interpretation, we explored the accumulation profiles of both correct and 

incorrect accumulators in both correct and error trials separately and found that 

the differences between the conditions reported above were caused by dividing 

correct from error trials. While the sum of accumulation paths averaged over 

equally weighted correct and error trials showed, as predicted, no difference 

between conditions, correct trials showed that ‘incongruent’ trials accumulated 

higher (followed by ‘uncued’ and ‘congruent’ trials), while error trials displayed 

the reversed pattern. This is likely caused by a bias in inter-trial variability in 

starting point (z) (and potentially intra-trial variability in accumulation; σ2). In the 

‘incongruent’ condition for example, mean starting points are higher in the 

incorrect (cued) than the correct (non-cued) accumulator, which implies that the 

incorrect accumulator often wins, leading to error trials. Trials in which the 

correct accumulator wins are primarily trials in which, by chance, the incorrect 

starting point was further from the upper limit of the starting point distribution 

(and/or large noise in the correct accumulator pushed the correct accumulation 

profile towards the boundary), leading to a larger baseline-threshold distance. 

By averaging accumulation profiles over only correct trials (note that the sum of 

incorrect and correct accumulation profiles was generated, but averaged only 

over correct trials), we selected a biased sample, leading to the difference 
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between the waveforms reported above. Note that averaging the accumulation 

profile over all correct and error trials leads to a qualitatively similar pattern to 

the profile associated with correct trials, arguably due to high accuracy rates 

(the cancellation of any baseline effects described above is only seen with 

equal numbers of correct and error trials). This is also the case for the CPP 

waveform which does not change its shape when both correct and error trials 

remain in the average. Unfortunately, we can only speculate on the shape of the 

CPP associated with error trials, as the quality of the waveform was too low to 

confirm the same patterns that were observed in accumulation profile 

associated with error trials. 

 

Nevertheless, the CPP and the simulated accumulation profile display similar 

patterns, suggesting similar underlying mechanisms, and supporting the role of 

the CPP as an accumulation signal. Further, these findings emphasise the 

importance of a direct comparison between the CPP and model predictions, as 

the patterns reported here are difficult to predict based on intuitive reasoning 

alone.  

 

Note that, due to the design in this study, far fewer trials were obtained for 

‘incongruent’ trials than ‘uncued’ or ‘congruent’ trials (although there were 

enough for each participant and each condition to generate useful ERP 

waveforms). This imbalance in trial numbers could be avoided by inducing 

decision biases using other manipulations, such as imbalanced rewards, rather 

than cues. Note however, that different implementations of decision bias may 

have different effects on decision-making (Diederich & Busemeyer, 2006; Feng 

et al., 2009; Leite & Ratcliff, 2011; Mulder et al., 2012; Summerfield & de Lange, 

2014). 

 

Overall, the different decision biases induced qualitatively similar changes in 

both the model predictions of accumulation profiles and the CPP waveforms. 

This evidence further supports the plausibility of the CPP as a neural correlate 

of the decision variable. 
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4.3. General Discussion 

 

In this study, we aimed to test the role of the CPP as a neural substrate of the 

decision variable as predicted by sequential sampling models. The CPP is a 

centroparietal ERP component which has previously been suggested to display 

decision-related accumulation of evidence independent of sensory and motor 

processes (Kelly & O’Connell, 2013; O’Connell et al., 2012; Twomey et al., 

2016). We were able to support its suitability as a decision-related EEG signal 

over other potential signals in Chapter 3, using a simple difficulty manipulation. 

Here, we built on this finding and tested the CPP and its similarity to the 

decision variable using more complex manipulations as well as model fits to 

predict accumulation profiles.  

 

In particular, we aimed not only to explore the effect of previously untested 

manipulations on the CPP, but also to evaluate the resulting waveforms using 

sequential sampling modelling. Neural correlates of accumulation are often 

evaluated based on conceptual hypotheses drawing on abstract interpretations 

of sequential sampling models. However, the dynamics of even simple 

sequential sampling models are difficult to predict conceptually. We therefore 

used a race model to fit the behavioural data and compare the neural data to 

the predicted accumulation profile based on the estimated parameters. 

 

In Experiment 1, we tested the impact of non-stationary evidence on the CPP 

waveform. Previous research had indicated that the CPP is susceptible to a 

change in evidence, a necessary feature of a signal which reflects the 

accumulation of evidence (O’Connell et al., 2012). Our results support this 

finding. While continuous evidence led to a gradual build-up of the CPP 

waveform, interrupted evidence caused a disruption in this build-up. 

Surprisingly, the two different interrupted conditions, one in which evidence was 

stopped, and one in which evidence was reversed, displayed very similar 

waveforms, even though they were associated with different behavioural 

patterns. Nevertheless, the pattern of the CPP closely resembled our model 

predictions. We fitted a race model to the data which accounted for the 
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changing evidence by using a different drift rate for each evidence state, and 

simulated its accumulation profiles for each condition. The model predictions 

showed qualitatively similar patterns to those observed in the CPP. 

 

In Experiment 2, we followed the same approach, but using a manipulation of 

decision bias rather than non-stationary evidence. Previous research suggests 

that biases affect the starting point of accumulation, the effect of which on the 

EEG signal was unclear (Bode et al., 2012; Gao et al., 2011; Rorie et al., 2010). 

We found that the CPP differed in amplitude across bias conditions. In 

particular, the decisions in which a directional cue was incongruent with the 

following motion direction were associated with higher amplitudes than both 

decisions in which the cue was congruent with the motion and decisions in 

which there was no directional cue.  

 

Once again, a race model was able to account for all behavioural data, in this 

case by varying only the starting points across bias conditions. The resulting 

accumulation profile predicted by the model showed qualitative similarities to 

the CPP waveforms. Both the EEG signal and the model prediction displayed a 

pattern in which profiles associated with different bias conditions differed only in 

amplitude, with the profiles of decisions with incongruent cues showing the 

highest amplitude, followed by uncued decisions, and trials with congruent cues 

showing the lowest amplitude. The model fits showed that these differences in 

amplitudes were not strictly the result of baseline differences, which in fact 

cancelled out on average, but were instead caused by a biased representation 

of variability parameters in correct trials. 

 

Overall, the CPP showed waveform alterations for both manipulations, and 

importantly, displayed profiles which were qualitatively similar to accumulation 

profiles predicted by a sequential sampling model. Both the build-up profile and 

the absolute magnitude were shown to vary in the same way as the model 

predictions. These findings provide strong support for the role of the CPP as a 

neural substrate of the decision variable.  
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Despite the substantial similarity between the CPP and the predicted 

accumulation profiles, there were also differences worth noting. For example, in 

Experiment 1, the interruption in the ‘stop’ and ‘reverse’ conditions appears to 

cause a slight initial downward slope, while the model predicts a plateau which 

seems to retain a small positive slope. Additionally, in Experiment 2, the 

amplitude differences between the conditions are far more pronounced in the 

CPP than in the model predictions.  

 

However, it is important to note that the CPP pattern is unlikely to replicate 

model predictions exactly for a number of reasons. Firstly, any model can, at 

best, be an approximation of true biological processes. This is the case here in 

particular, as we used a race model as a representation of sequential sampling 

models in general. This model was chosen as it requires only a minimal number 

of assumptions (compared to, for example, models which include leakage; 

Usher & McClelland, 2001), while still being physiologically plausible (as 

opposed to, for example, the Diffusion model which assumes a single 

accumulator which can become either positive or negative; Ratcliff & McKoon, 

2008). While we suggest that the race model represents sequential sampling 

models as a group fairly well, it is likely that predicted accumulation profiles 

would differ slightly across different sequential sampling models.  

 

A second reason for differences between the CPP and the model predictions 

lies in the nature of EEG recordings. EEG is measured from the scalp and can 

only record the sum of all electrical activity underneath each electrode. Since 

the brain is constantly performing accumulation-unrelated computations, the 

signal-to-noise ratio is low. Most of these computations are unlikely to be time-

locked to the decisions and are therefore averaged out, and the impact of 

conducted activation from more distal sources is reduced using the current 

source density transform which increases the spatial selectivity of the data. 

Nevertheless, a proportion of noise remains. Therefore, even if the EEG 

component contains the activity of the neural populations which accumulate 

decision-related evidence (and these neural populations do so in a manner 

which resembles the model predictions exactly), the resulting ERP is likely to be 
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slightly distorted. For reasons like these, it is difficult to quantify the similarity 

between the CPP and the predicted accumulation16. 

 

In summary, the current chapter provides strong support for the role of the CPP 

as a neural substrate of the decision variable. We have shown that the CPP is 

sensitive to two manipulations which influence decision-making behaviour, 

namely non-stationary evidence and decision biases. Importantly, we fitted a 

sequential sampling model to the behavioural data and simulated the resulting 

accumulation profiles. We found that the CPP waveform closely resembled the 

modelled accumulation. This indicates that the CPP seems to reflect the 

accumulation of evidence and remains a highly plausible correlate of the 

decision variable. 

  

                                                
16 Nevertheless, ongoing work in our lab continues to explore the similarity between neural 

signals and the model predictions and quantitatively compare different model predictions to the 

CPP.  
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5. Multiple-Alternative Decision-Making 

 

For several decades, researchers have been exploring the mechanisms 

underlying perceptual decision-making, and there is now a consensus that the 

way perceptual decisions are made can be described by a family of models 

called sequential sampling models. Sequential sampling models state that to 

make a decision, sensory evidence from the environment is accumulated over 

time, until a set boundary is reached. At this point, the decision is made and the 

motor plan associated with a given boundary is executed. With these simple 

assumptions, sequential sampling models are able to account for behavioural 

decision-making data in a wide range of settings (Brown & Heathcote, 2008; 

Forstmann, Ratcliff, & Wagenmakers, 2016; Ratcliff & McKoon, 2008; Smith & 

Ratcliff, 2004; Usher & McClelland, 2001). 

 

While all sequential sampling models share the assumption of the 

accumulation-to-bound processes described above, various models within this 

framework differ in a number of aspects defining this process. Generally 

speaking, there are two types of models: random walk models with a relative 

stopping rule, and accumulator models with an absolute stopping rule (Smith & 

Ratcliff, 2004). Random walk models assume that there is only one 

accumulator, in which all sensory evidence is accumulated to a single total. 

Accumulation begins at a starting point which is centred between two 

boundaries, each associated with a given alternative, and the accumulated 

evidence can become both positive or negative (e.g. Ratcliff & McKoon, 2008). 

Accumulator models on the other hand, assume that, in a choice between two 

alternatives, there are two accumulators, each accumulating the evidence in 

favour of a single alternative. The two accumulation processes race towards a 

common threshold and a decision is formed depending on which reaches the 

threshold first (Brown & Heathcote, 2008; Smith & Ratcliff, 2004). An example 

of an accumulator model is the leaky competing accumulator model (LCA; 

Usher & McClelland, 2001), which is arguably the most physiologically plausible 

of the sequential sampling models.  
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One major advantage of these models over random walk models is that they 

can be easily extended to decisions with any number of alternatives, by simply 

adding accumulators (e.g. Brown & Heathcote, 2008). Random walk models, 

such as the Diffusion model (Ratcliff & McKoon, 2008), on the other hand, offer 

no simple generalisation to multiple-alternative decision-making (although 

several attempts to extend the Diffusion model have been suggested; Krajbich 

& Rangel, 2011; Ratcliff et al., 2016; Ratcliff & Starns, 2013). 

 

The ability of models of perceptual decision-making to apply to multi-alternative 

choices has received comparatively little attention. Although a large body of 

research has provided many findings shedding light on how we make 

perceptual decisions, virtually all of these findings have been based on two-

alternative choices. While it is practical to reduce cognitive processes to their 

most basic form to study them in the lab, the ecological validity of the 

associated findings is questionable. Choices between two clearly defined, 

opposing alternatives are rare in everyday life, where we are more likely to face 

choices between a large number of potential responses with evidence 

supporting a subset of alternatives.  

 

To date, only a small number of studies have explored multi-alternative 

perceptual decision-making. Studies which have explored this area have 

primarily focused on testing the ability of different models to account for more 

complex behavioural patterns associated with an increasing number of choice 

alternatives (Bogacz et al., 2007; Brown, Steyvers, & Wagenmakers, 2009; 

McMillen & Holmes, 2006; Nunes & Gurney, 2016; Roe, Busemeyer, & 

Townsend, 2001). Particular attention has been paid to the LCA model, which 

has successfully accounted for multi-alternative decision-making in a variety of 

settings, including standard motion discrimination tasks extended to three 

possible motion directions, multi-alternative decisions following non-stationary 

evidence, and value-based choices between several options (Bogacz et al., 

2007; Ditterich, 2010; McMillen & Holmes, 2006; Tsetsos et al., 2010, 2011). 

 

A human behavioural study on multi-alternative decisions was conducted by 

Niwa and Ditterich (2008), who presented three subjects with a three-alternative 
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random dot motion task, and found that a relatively simple model, based on a 

race between three accumulators, each accumulating the net evidence for a 

given alternative, was able to account for the behavioural data. However, it was 

noted that the behavioural data were not able to distinguish well between 

different types of sequential sampling models. In a follow-up study, Ditterich 

(2010) showed that several different models can explain the behavioural 

dataset, but found that, while different models make similar predictions for 

behavioural data, they differ in their internal dynamics and therefore in their 

predictions of a decision variable (i.e. the accumulation profile, described by 

sequential sampling models). He thereby highlighted the need to explore neural 

data as a correlate of the accumulation process, in order to gain insights into 

how we make perceptual multi-alternative decisions. 

 

Only a small number of studies have recorded neural activity associated 

with decision-making with multiple alternatives. For binary decisions on the 

other hand, several neural signals have been studied and suggested to reflect 

the decision variable. For example, single-cell recordings in non-human 

primates have shown that firing rates of neurons in the lateral intraparietal area 

(LIP), but also the frontal eye field (FEF), and the superior colliculus (SC) 

display accumulation-to-bound characteristics in perceptual saccadic decision-

making tasks (Gold & Shadlen, 2000, 2003; Paré & Wurtz, 2001; Roitman & 

Shadlen, 2002; Shadlen & Newsome, 2001).  

 

Although a lot of research has been dedicated to studying neural correlates of 

decision-making, the vast majority of it focused solely on binary choices. Only a 

small number of studies have investigated the effects of multiple alternatives on 

neural correlates of the decision variable in non-human primates. In an early set 

of studies, Basso and Wurtz (1997, 1998) found that activity of monkey SC 

neurons decreased with the number of possible targets in a saccadic multi-

target task. A decade later, this finding was explored more thoroughly and in the 

context of sequential sampling models by Churchland et al. (2008) who 

presented two monkeys with a two and a four-choice random dot motion task at 

different difficulty levels and recorded the firing rates from neurons in the LIP. 

Behavioural results showed that, as expected in accordance with Hick’s law 
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(Hick, 1952), reaction times (RTs) were higher and accuracy scores were lower 

in the four-choice task, compared to the two-choice task. Importantly, 

Churchland et al. (2008) demonstrated a number of interesting patterns in the 

neurophysiological data. They were able to demonstrate that decisions with four 

alternatives show the same bounded accumulation profile, with firing rates 

reaching the same stereotyped level in both two and four-choice tasks. 

However, the firing rates associated with the two tasks differed in the beginning 

of the decision-making process as, in line with Basso and Wurtz (1997, 1998), 

four-choice decisions showed a large decrease in firing rate. This decreased 

level of activity at the beginning of the decision and the unaltered firing rate at 

response demonstrates a larger excursion extent in four-choice compared to 

two-choice tasks.  

 

Higher decision boundaries, or more precisely, larger baseline-boundary 

distances, are associated with higher response caution, as more evidence has 

to be accumulated to make a decision, thereby improving the signal-to-noise 

ratio, but increasing decision times (Brown & Heathcote, 2008; Heitz, 2014; 

Ratcliff & Rouder, 1998). Since an increase in the number of alternatives 

increases the level of uncertainty associated with a given decision, this increase 

in response caution may be necessary for effective decision-making. 

Churchland et al. (2008) were able to account for their behavioural data using 

an accumulator model. It was later demonstrated that the data can also be 

explained by a recurrent cortical circuit model (Furman & Wang, 2008). 

 

The finding of a reduction in firing rate in neurons associated with perceptual 

decision-making, with increasing numbers of alternatives has since been 

supported by a number of studies. Balan, Oristaglio, Schneider, and Gottlieb 

(2008) used a visual search task with two, four, or six elements while recording 

from LIP neurons, and found that firing rates decreased as elements were 

added to the display. Again, this difference was not seen at the time of the 

response. Similar findings have been reported for FEF neurons, as their firing 

rate during a visual-search task reduced as the number of visual elements 

increased (Cohen, Heitz, Woodman, & Schall, 2009). Another study using a 

saccadic colour-to-location task found the previously reported reduction in FEF 
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firing rate at the beginning of the trial, however, unlike previous studies, a 

reverse pattern was found at response time, with higher activity with higher 

numbers of alternatives (Lee & Keller, 2008).  

 

While, as briefly summarised above, there are some studies investigating the 

effects of multi-alternative decisions on neural correlates of the decision 

variable in non-human primates, which, overall, seem to suggest a baseline 

decrease to be associated with an increasing number of alternatives, there is 

little corresponding data on human multi-alternative decision-making.  

 

There are studies which have used functional magnetic resonance imaging 

(fMRI) to explore human decision-making with multiple alternatives. For 

example, Keuken et al. (2015) used a random dot motion task with three, five, 

or seven alternatives and found increased activity in the subthalamic nucleus 

with an increasing number of alternatives. Further, Daw, O’Doherty, Dayan, 

Dolan, and Seymour (2006) explored ‘exploration-exploitation’ behaviour using 

a multiple-choice decision-making task, and found that the frontopolar cortex 

and intraparietal sulcus showed increased activity during exploratory decisions.  

 

However, we are not aware of any studies which directly investigated neural 

correlates of evidence accumulation in the human brain. A number of, primarily 

electroencephalographic (EEG) signals have been suggested to reflect the 

decision variable in the human brain in the context of binary decisions 

(although, to our knowledge, none have been explored in the context of multi-

alternative decision-making). Among the most prominent are the event-related 

desynchronisation (ERD) in the beta frequency range (Donner et al., 2009; 

O’Connell et al., 2012; Siegel et al., 2011), an event-related potential (ERP) 

known as the centroparietal positivity (CPP; O’Connell et al., 2012), and the 

lateralised readiness potential (LRP; Kelly & O’Connell, 2013). Each of these 

signals has been suggested to show decision-related accumulation of evidence. 

Two of these signals, namely the LRP and the beta ERD, are motor preparation 

signals and therefore comparable to accumulation-related neural signals in non-

human primates, which are typically recorded from oculomotor neurons. This 

implies that these signals, both from humans and non-human primates, 
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measure the decision-making process indirectly by tracking the preparation of 

the motor response which terminates the decision (i.e. saccades in monkeys 

and hand movements in humans). While this does not pose a problem in 

research with non-human primates which relies on single-cell recordings, 

electrophysiological recordings in humans are primarily restricted to EEG 

measures, which have low spatial resolution and therefore limited utility to 

research multi-alternative decision-making.  

 

EEG is measured from the scalp and can therefore only record the sum of the 

electrical activity of all brain areas in the proximity of each electrode. It cannot 

track the activity of a specific region or neural population. However, signals of 

motor preparation are lateralised with any limb movement being processed in 

the contralateral hemisphere. This lateralisation implies that there is enough 

spatial distance between the regions preparing left and right-hand movements 

to be tracked individually by EEG recordings. For example, a hand movement is 

associated with a negativity over motor areas which is larger in the hemisphere 

contralateral to the movement (Ikeda & Shibasaki, 1992; Lang et al., 1991). By 

subtracting ipsilateral activity from contralateral recordings, any non-effector-

specific activity is cancelled out, resulting in the LRP component (or, if power in 

the beta band is used, lateralised beta ERD), which tracks limb-specific motor 

preparation. This effector-specific nature of the LRP and other motor-related 

signals depends crucially on the lateralisation of the human motor cortex and on 

‘right vs left’ movements. It cannot be extended to more than two response 

alternatives. Hence, it is unsurprising that the effects of multi-alternative 

decision-making on neural signals in the human brain remain largely 

unexplored.  

 

In this experiment, we therefore aimed to rectify this and study the impact of 

multiple alternatives on a neural correlate of the decision variable in humans. 

Since motor-related EEG signals cannot be informative for decisions with more 

than two response alternatives, only the CPP remains as an established neural 

correlate of decision-making in the human EEG, which could potentially be 

extended to multi-alternative decisions. However, the CPP, even for binary 

decisions, does not allow for a distinction between response alternatives. It 
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arguably reflects the sum of all accumulators (see Chapter 4) and displays the 

same profile regardless of which response is chosen. Here, we therefore 

choose a different neural correlate of decision-making, which allows us to track 

the preparation of individual responses. For this purpose, we use transcranial 

magnetic stimulation (TMS). 

 

TMS is a form of brain stimulation, which, when applied over the motor cortex, 

can induce electrical responses, called motor evoked potentials (MEPs), in the 

muscle associated with the stimulated region (Barker et al., 1985; Merton & 

Morton, 1980; Merton et al., 1982). Importantly, these evoked potentials can be 

used to index the level of motor preparation in the primary motor cortex or 

adjacent premotor areas (Bestmann et al., 2008; Hadar et al., 2012; Hadar et 

al., 2015; Kiers et al., 1997). It has been established that, given that a decision 

requires a motor response, motor preparation occurs throughout the decision-

making process (Coles et al., 1985; Gluth et al., 2013; Hadar et al., 2012; 

Michelet et al., 2010) rather than in a serial fashion after the termination of the 

decision-making process, as previously suggested (Donders, 1969; Sternberg, 

1969). Therefore, following the same logic as tracking motor-related EEG 

signals, which implies that signals of motor preparation display the same build-

up as the accumulation profile itself, MEPs can be used as a correlate of the 

decision variable. This concept has already been shown in a number of studies. 

For example, Michelet et al. (2010) found that MEPs of responding muscles 

increased over the course of a decision before reaching a constant maximum 

immediately prior to the response. Similarly, Hadar et al. (2015) smoothed 

MEPs at different time points using a Gaussian kernel to generate a continuous 

signal of corticospinal excitability, and suggested that it reflects ongoing 

evidence accumulation. In their study, ambiguous faces were presented in a 

gender categorisation task and it was found that more difficult categorisations 

were associated with longer activations in the responding muscle than easy 

ones. Additionally, the authors fitted a sequential sampling model and revealed 

qualitative similarities between its prediction and the MEP signal, further 

supporting the validity of the MEP signal as a correlate of the decision variable. 
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Building on the approach used by Hadar et al. (2015), the current study set out 

to explore multi-alternative decision-making by tracking continuous MEP signals 

as a correlate of the decision variable. To this end, a colour-discrimination task 

with either two or four response alternatives was used. By mapping two 

separate responses, each recruiting a different dominant muscle, to each hand 

and measuring the activity of both muscles in the hand contralateral to the brain 

stimulation, we were able to record MEPs associated with each response 

separately (though not during the same trials; see Figure 5.2). Like Hadar et al. 

(2015), we evoked MEPs at random time points throughout the decision-making 

process and later smoothed them to generate a continuous readout of motor 

excitability. We hypothesised that, in line with its role as an accumulation-like 

signal, the MEP signal associated with the responding muscle would build up 

over the course of the decision and peak at the time of response. Importantly, 

based on evidence from non-human primates reviewed above, we hypothesised 

that there would be a baseline difference in the MEP signal between two and 

four-choice trials, with four-choice decisions leading to a reduction in baseline 

activity.  

 

Since the approach of using a continuous MEP signal as a correlate of decision-

making is still a novel one, we also included a manipulation of difficulty. The 

impact of difficulty on accumulation has been studied extensively (Mulder et al., 

2014; Ratcliff & Rouder, 1998; Teodorescu & Usher, 2013) and has also been 

demonstrated in MEP signals (Hadar et al., 2015). We hypothesised that their 

findings would be replicated here. 

 

To further test the role of the MEP signal as a correlate of the decision variable, 

and explore the effects of multiple alternatives, we fitted a sequential sampling 

model to the behavioural data and used the resulting parameter estimates to 

predict the accumulation profile associated with each accumulator. To this end, 

we used the LCA model (Usher & McClelland, 2001), as it is an accumulator 

model which lends itself to multiple-alternative decision-making more easily 

than a random walk model, and has been successfully applied to these 

decisions in a number of previous studies (Bogacz et al., 2007; Ditterich, 2010; 

McMillen & Holmes, 2006; Tsetsos et al., 2010, 2011). 
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Due to our unique approach, which allowed us to track the evolution of 

preparation of each response separately using MEPs, as well as predict the 

accumulation profile of each accumulator using the LCA, we were able to not 

only explore the decision variable with different numbers of response 

alternatives, but also directly compare the profile of the measured and predicted 

decision variable in a more detailed way. 

 

5.1. Methods 

5.1.1.  Participants 

We recruited a total of 13 participants (five males) with a mean age 26.23 (SD = 

7.67). Each participant took part in between two and four sessions (each lasting 

between one and three hours) and completed on average 4166 trials in total. 

Participants were recruited using poster advertisements and word of mouth, 

resulting in a sample which was primarily made up of students and staff at City, 

University of London. Three of the participants were researchers in the current 

project. All other participants were paid £ 8 per hour. All procedures were 

approved by the City, University of London Psychology Department Ethics 

Committee. Extensive information about the brain stimulation used was 

provided at least 24 hours before the first sessions. Additionally, each 

participant completed a medical screening questionnaire along with the 

standard informed consent, as well as a post-stimulation questionnaire. 

 

5.1.2.  Stimuli and Procedure 

Participants were asked to complete a colour-discrimination task. In each trial, 

an array of coloured pixels appeared on a screen. Each array consisted of 

pixels of four different colours (green, red, blue, yellow), and participants were 

asked to indicate which colour was most prevalent, using the corresponding one 

of four response buttons (see Figure 5.1). 
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5.1.2.1. Colour Calibration 

In order to ensure that the difficulty of the task did not vary excessively across 

different trials depending on which colour was dominant, it was important to 

match the perceived salience of the four colours. To this end, three participants 

(one male, mean age= 33.33 (SD = 7.09), all researchers in the current project) 

completed a colour-matching task, using a Method of Adjustment procedure. 

Each participant was presented with an array of coloured pixels, which initially 

consisted of pixels of two different colours, one fixed colour (green), and one 

colour that could be adjusted to match the fixed colour in perceived salience, by 

increasing or decreasing its brightness using ‘up’ and ‘down’ keys on a 

keyboard. When participants found the appropriate colour intensity, the ‘enter’ 

key was pressed to confirm their selection and a third colour was added to the 

array. Again, participants were asked to adjust its brightness before the fourth 

colour was added and the procedure was repeated. The brightness was 

adjusted by converting the original colours into HSV colour space, in which 

colours are defined by the parameters hue, saturation, and value, and 

increasing/decreasing the ‘value’ parameter by a value of 0.05 for each 

‘up’/’down’ press. Each participant completed 60 trials. The initial intensity as 

well as the order of the three colours that were to be adjusted (red, yellow, blue) 

were randomised across trials. The chosen colour intensities were averaged 

across trials and participants, resulting in the following colours that were used in 

the experiment: green (RGB [0 0.6 0]), red (RGB [0.8 0 0]), yellow (RGB [0.92 

0.74 0]), blue (RGB [0.12 0.12 0.61]). 

 

5.1.2.2. Stimuli and Experiment Setup 

All stimuli were written in Matlab (The Mathworks, Natick, U.S.A.), primarily 

using the Psychtoolbox extension (Brainard, 1997; Kleiner et al., 2007; Pelli, 

1997), and presented on a Display++ LCD monitor (Cambridge Research 

Systems, Ltd., Rochester, UK, display size: 41 cm x 30 cm), operating at a 

refresh rate of 100 Hz and a resolution of 1240 x 786. Participants were seated 

at a distance of approximately 100 cm from the screen. Each trial presented a 

stimulus array of coloured pixels (6 x 6 degrees of visual angle; each coloured 
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pixel spanned 2 x 2 screen pixels, resulting in an array of 145 x 145 coloured 

pixels).  

 

Participants held two digital response buttons interfaced via a 16 bit A/D card 

(National Instruments X-series PCIe-6323, sampling rate 100,000 Hz) in each 

hand, one between their thumb and index finger (pinch), and one in the palm of 

their hand, attached to a plastic cylinder (grasp; Hadar et al., 2012). The pinch 

response required participants to squeeze the small button using index finger 

and thumb, contracting the first dorsal interosseous (FDI) muscle, while the 

grasp response was made by tightly gripping the cylinder, activating the 

abductor digiti minimi (ADM) muscle. Each colour was mapped to one of the 

four response buttons. The colour-response mapping was randomised across 

participants.  

 

In the experiment, each trial consisted of a cue (500 ms), the coloured stimulus 

array (2000 ms or until response), and a brief inter-stimulus interval (minimum 

500 ms; see Figure 5.1 and section 5.1.3). The experiment consisted of both 

two and four-choice trials, as well as easy and hard trials. To manipulate the 

difficulty of the task, the percentage of pixels of the dominant colour varied 

between 33% (easy) and 30% (hard). The remaining colours each took up 22% 

and 23% of the array respectively. The cue at the beginning of each trial 

informed participants whether a given trial was a two or a four-choice trial by 

presenting either two or four coloured squares representing the possible 

choices. In two-choice trials, possible responses were either both in the same 

hand (‘within’) or both requiring the same movement (‘between’), leading to four 

potential combinations (‘within-left’, ‘within-right’, ‘between-pinch’, ‘between-

grasp’; see Figure 5.1). 

 

One third of trials were four-choice, one third were two-choice ‘within’, i.e. the 

two possible responses were on one hand (left pinch - left grasp, right pinch - 

right grasp), and one third of trials were two-choice ‘between’, i.e. responses 

from both hands were possible (left pinch - right pinch, left grasp - right grasp). 

The order of the trials was randomised. Note that the difference between the 

two and four-choice trials lay solely in the instructions conveyed by the cue, and 
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that the stimulus array and the percentage of the four colours within it did not 

change. 

 

In the first session, participants completed 150 practice trials, to familiarise 

themselves with the task and the colour-response mapping. Participants 

completed between five and six experimental blocks per session, with each 

block consisting of 168 trials (plus additional trials to regulate TMS frequency; 

see section 5.1.3). 
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Figure 5.1: Colour discrimination task: each trial began with a fixation dot in the middle of the screen, 
followed by a cue which indicated which responses were possible in the following stimulus. Then, the 
colour array was displayed for 2000 ms or until the response. a) Four-choice task: all possible cues were 
displayed, indicating a four-choice trial; b) Two-choice task: only two of the possible cues were shown, 
indicating a two-choice trial. Here both cues are on the left-hand side, indicating that a left-hand response 
is required (‘within’ trial). c) Each cue/colour was associated with a specific response: the top right cue 
(here: green) was associated with a right-hand ‘pinch’ response, the top left cue (here: blue) was 
associated with a left-hand ‘pinch’ response, the bottom right cue (here: yellow) was associated with a 
right-hand ‘grasp’ response, and the bottom left cue (here: red) was associated with a left-hand ‘grasp’ 
response. Note that the colour-response mappings were randomised across participants while the cue 
location-response mapping remained the same; d) all possible two-choice combinations. In ‘within’ trials, 
both possible responses were on the same hand, while in ‘between’ trials, the two possible responses 
were on two hands but using the same response (pinch/grasp). Note that the size of the coloured pixels 
has been increased for illustration. 
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5.1.3.  Stimulation and Recording 

Participants’ muscle activity was recorded using surface electromyography 

(EMG), recorded at a sampling rate of 1000 Hz via a 13 bit A/D Biometrics 

Datalink system (version 7.5, Biometrics Ltd., Ladysmith, VA, U.S.A., 2008) and 

band-pass filtered (20 to 450 Hz). Surface Ag/AgCl electrodes (22 mm x 28 

mm, part No. SX230FW, Biometrics Ltd., Ladysmith, VA) were placed on the 

skin above the first dorsal interosseous (FDI), and the abductor digiti minimi 

(ADM) of each hand, as they contribute to the ‘pinch’ and ‘grasp’ responses 

respectively. Reference electrodes were placed at distances of approximately 2 

cm to each of the four active electrodes. The recorded EMG signal of the right 

ADM and FDI was also passed to speakers placed on the left and right of the 

participant respectively, with noise informing participants that their muscles 

were not fully relaxed between responses. 

 

During the experiment, single-pulse TMS was applied using a MagstimRapid2 

biphasic stimulator (The Magstim Co. Ltd., Whitland, UK). To induce motor 

evoked potentials (MEP) in both the ADM and the FDI of the right hand, a 70-

mm figure-of-eight coil (external casing diameter approximately 90 mm for each 

loop) was positioned on the scalp over the left motor cortex. The exact location 

and stimulation intensity was adjusted for each participant individually and was 

set at approximately 110% of the resting motor threshold. The resting motor 

threshold was defined as the minimal intensity to elicit an MEP with a peak-to-

peak amplitude of approximately 50 μV in 50% of stimulations.  

 

TMS pulses were planned in 57% of trials from each condition. In order to 

ensure a good distribution of TMS pulses during a baseline interval and over the 

course of the reaction time, TMS trials were divided into four equally frequent 

time bins between -200 and 700 ms relative to the stimulus onset (between 300 

and 1200 ms relative to cue onset). Within a given bin, the exact stimulation 

time was drawn randomly for each trial. Since the experiment followed a single-

pulse TMS protocol, the stimulation pulses were required to occur at a maximal 

frequency of 0.2 Hz. If, by chance, a planned pulse followed a previous one 

after less than 5000 ms, the task was adjusted in several ways. If the timespan 
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between the previous and the planned pulse was less than 5000 ms but more 

than 4000 ms, the inter-trial interval was increased in order to decrease the 

pulse frequency to its necessary limit. If, on the other hand, the duration 

between the last and the planned pulse was less than 4000 ms, the planned 

trial was replaced with the next planned stimulation free trial. If there were no 

stimulation free trials left, random stimulation free trials were generated in order 

to increase the interval between TMS pulses. Due to this method, an average of 

434 trials were added per session, leading, in total, to an average of 1354 trials 

per session. Planned pulses were not delivered if a response had already been 

detected, as this precluded analysis of the resulting MEP (see below). 

 

5.1.4.  EMG Processing 

5.1.4.1. Pre-processing 

All EMG processing was performed in Matlab (The Mathworks, Natick, U.S.A.). 

Data from each trial were aligned to the stimulus onset and visually inspected. 

An algorithm applying the Teager-Kaiser energy operator (TKEO) was used to 

detect the onset time of muscle activity (EMG RT) associated with each 

response (Li & Aruin, 2005; Li, Zhou, & Aruin, 2007; Solnik, Rider, Steinweg, 

Devita, & Hortobágyi, 2010). The discrete TKEO ψ for a given EMG value x of 

the sample n, was defined as: 

 𝜓[𝑥(𝑛)] =  𝑥2(𝑛) − 𝑥(𝑛 + 1)𝑥(𝑛 − 1) (5.1.) 

 A threshold-based method was used to identify the onset of muscle activity. 

The threshold was determined as: 

  𝑇 =  𝜇 + һ 𝜎 (5.2.) 

With μ and σ representing the mean and standard deviation of a baseline period 

(-300 to 200 ms relative to cue onset), and h set to 3. Additionally, all trials were 

visually inspected and the EMG onset was adjusted manually if necessary. 

Visual inspection provided no information about the experimental condition of a 

given trial. Trials with muscular artifacts, no detectable EMG onset, or partial 

responses on more than one channel were excluded from further analysis 

(6.41% of all recorded trials). 
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We further excluded all trials with button RTs of more than or equal to 2000 ms 

or less than 180 ms, or EMG RTs of more than 1850 ms or less than 30 ms (< 

1% of all recorded trials). The remaining EMG RTs were normalised by the 

median EMG RT per participant and per session. 

 

In TMS trials, MEP amplitudes in both channels (FDI and ADM) of the right 

hand were defined as the difference between the minimal and maximal EMG 

values in a time window of 10 to 40 ms relative to stimulation time. Trials which 

showed muscular activity previous to the TMS pulse, defined by EMG 

amplitudes exceeding 50 μV in a period of 200 ms preceding the stimulation, 

were excluded from further analysis (4.51% of all trials). Further, trials in which 

no MEP was visible or in which the amplitude of the MEP could not be 

accurately detected due to saturation were discarded (2.02% of all trials). Trials 

were also excluded if the participant’s response preceded the planned TMS 

(4.36% of all trials).  

 

In total, 17.53% of all recorded trials were discarded, leading to a total of 44,669 

usable trials (note that 35.38% of TMS trials were excluded, with a total of 

13,588 usable TMS trials remaining for analysis). The remaining MEP 

amplitudes were z-scored per muscle, session, and participant, in order to 

normalise the magnitudes of evoked responses which are likely to vary between 

muscles.  

 

5.1.4.2. Re-categorisation 

The channels (FDI and ADM) of correct trials were reclassified into one of four 

categories. MEPs recorded from correctly responding muscles were classed as 

‘Correct’, while MEPs from the non-responding muscles were classified into 

three different error categories, ‘Error1’, ‘Error2’, and ‘Error 3’.  

 

MEPs were categorised as ‘Error 1’ if they were either non-responding but cued 

in two-choice trials, or non-responding but on the same hand as the correctly 

responding muscle in four-choice trials. ‘Error 2’ referred to MEPs from non-

responding muscles in two-choice trials which were not cued but were either on 
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the same hand as the responding muscle (‘two-choice between’) or on the 

same muscle of the other hand (‘two-choice within’), as well as to MEPs from 

the same muscle as the responding muscle but on the other hand in four-choice 

trials. Lastly, MEPs recorded from non-responding muscles which are neither 

on the same hand nor the same muscle on the other hand, as the responding 

muscle, were categorised as ‘Error 3’ (see Figure 5.2). For example, if a four-

choice trial required the correct response ‘right pinch’, MEPs recorded from the 

right FDI (right pinch) were classed as ‘Correct’, MEPs recorded from the right 

ADM (right grasp) as ‘Error 1’, while the left FDI (left pinch) would be 

categorised as ‘Error 2’, and the left ADM (left grasp) as ‘Error 3’. Note 

however, that only the left motor cortex was stimulated, eliciting MEPs in only 

the right hand. Therefore, any given trial only provided two MEPs which were 

sorted into two of the four categories. 
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Figure 5.2: MEP categorisation: a) each hand performed pinch and grasp responses, recruiting the FDI 
and ADM muscle respectively. Non-responding FDI and ADM muscles are displayed in grey, and 
responding muscles are shown in green. MEPs were only recorded from the right hand (recorded muscles 
indicated by dark red border). b) four-choice trial resulting in a right grasp response. In four-choice trials, 
the responding muscle is labelled ‘Correct’, the non-responding muscle on the same hand is labelled ‘Error 
1’, and the muscles on the non-responding hand are labelled ‘Error 2’ (for the same muscle as the 
responding one) and ‘Error 3’ (for the remaining muscle). Therefore, here, the recorded MEPs are classed 
as ‘Correct’ (‘grasp’ muscle, ADM), and ‘Error 1’ (passive ‘pinch’ muscle, FDI). c) Two-choice trial (within) 
resulting in a left pinch response. In ‘within’ two-choice trials, the responding muscle is classed as 
‘Correct’, the non-responding but cued muscle is classed as ‘Error 1’ (here, the non-responding muscle on 
the same hand), the muscle corresponding to the responding muscle but on the opposite hand is labelled 
‘Error 2’ and the remaining muscle is labelled ‘Error 3’. Here, the recorded MEPs are classed as ‘Error 3’ 
(‘grasp’ muscle ADM), and ‘Error 2’ (‘pinch’ muscle FDI). d) Two-choice trial (between) resulting in a right 
pinch response. In ‘between’ two-choice trials, the responding muscle is classed as ‘Correct’, the non-
responding but cued muscle is classed as ‘Error 1’ (here, the same muscle in the opposite hand), the non-
responding muscle on the same hand is labelled ‘Error 2’ and the remaining muscle is labelled ‘Error 3’. 
Here, the recorded MEPs are classed as ‘Error 2’ (‘grasp’ muscle ADM), and ‘Correct’ (‘pinch’ muscle FDI). 
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5.1.4.3. Smoothing 

For each correct/error category and each condition, all MEPs associated with 

correct trials were pooled across participants and sessions. To this end, the 

stimulation times were normalised for each session and participant and 

expressed as a percentage of their median EMG RT (of stimulation free trials). 

Pooled MEPs were sorted in time and aligned to both the stimulus and the 

response, then smoothed (see Figure 5.3). 

 

In order to generate a continuous signal, the amplitudes of the sorted MEPs 

were smoothed using a Gaussian kernel: 
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(5.3.) 

Where N is the number of MEPs, each being associated with a magnitude Yi 

and a time ti. The smoothed signal was calculated in time steps of 1% median 

EMG RT, using a smoothing kernel with a full-width half maximum of 5% 

median EMG RT. 

 

A smoothed signal was generated for each time-lock (stimulus and response-

locked), each correct/error category (‘Correct’, ‘Error1’, ‘Error2’, and ‘Error3’), 

and each condition (number of alternatives: two/four, difficulty: easy/hard). 

Additionally, we generated a smoothed signal for the difference in MEP 

responses between the ‘Correct’ and the ‘Error 1’ muscles. This difference 

between a responding and a non-responding muscle cancels out any non-

specific spinal influences which affect the MEPs of both muscles equally, and 

importantly, has therefore been suggested as the most suitable neurometric 

signal to reflect the decision variable in this context (Hadar et al., 2015).  

 

Although we were able to generate smoothed MEP signals for each of the four 

responses (‘Correct’, ‘Error1’, ‘Error2’, and ‘Error3’; see above), this was only 

possible by pooling MEP recordings from different trials. In order to take 

differences between MEP values and accurately remove any non-specific spinal 

effects, however, only MEPs recorded at the same time in the same trial can be 

used. Since the only trials in which we recorded MEPs for both ‘Correct’ and 
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‘Error 1’ responses simultaneously are four-choice trials in which the correct 

response is on the right hand, and two-choice ‘within’ trials, in which both cued 

responses are on the right hand, we selected these trials to create a smoothed 

MEP signal for the difference between the responding (‘Correct’) and non-

responding (here: ‘Error 1’) trials. 

 

  

Figure 5.3: MEP processing: a) MEPs are recorded from two muscles (right FDI and right ADM, shown 
here as responding and non-responding) during each TMS trial; b) z-scored MEPs from each channel are 
sorted into one of four categories (‘Correct’, ‘Error 1’, ‘Error 2’, ‘Error 3’; see Figure 5.2) and smoothed to 
generate a continuous MEP signal. 

5.1.4.4. Statistical Analysis 

Based on previous research in non-human primates (Balan et al., 2008; 

Churchland et al., 2008; Cohen et al., 2009), we hypothesised that two-choice 

and four-choice trials would differ during the baseline period, with two-choice 

MEPs displaying higher amplitudes than four-choice MEPs. To test this, we 

conducted a paired t-test by first finding the mean absolute MEP size (for each 

participant) of all MEPs which were recorded prior to the stimulus onset and 

associated with a cued response. This means that, for four-choice trials, all 

MEPs during the baseline-period were used, while for two-choice trials, only 

MEPs from muscles categorised as ‘Correct’ or ‘Error 1’ were used.  
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We also expected a difference in the MEP signal depending on the difficulty of 

the task, with ‘easy’ trials displaying a steeper accumulation rate than ‘hard’ 

trials. To test this, we collapsed over two-choice and four-choice trials, and fitted 

a straight line to the stimulus-locked (between 50% and 90% median EMG RT) 

and response-locked (between -50% and -10% median EMG RT) MEP signal 

based on the difference between responding and non-responding muscles, for 

‘easy’ and ‘hard’ trials. We then subtracted the resulting slope for ‘hard’ trials 

from the slope associated with ‘easy’ trials. We used a non-parametric 

permutation test with 1999 iterations to generate new sets of resampled ‘easy’ 

and ‘hard’ conditions (without replacement) and calculated the slope difference 

between them. The original slope difference was then compared to the resulting 

null distribution of differences. 

 

5.1.5.  Model 

We used the LCA model to fit the behavioural data (Usher & McClelland, 2001). 

The LCA is an accumulator model and is therefore easily extended to multiple 

alternatives. The accumulation traces are defined by a drift rate v as well as 

noise, and race towards a threshold A. The LCA is a comparatively complex 

sequential sampling model as it is designed to explain the accumulation 

process in a more neurophysiologically plausible way than other models within 

this framework. To this end, the LCA includes a leakage parameter k, aiming to 

account for the finding that neural excitatory input currents decay over time 

(Abbott, 1991; Hodgkin & Huxley, 1990; Stein, 1967). Although this effect is 

decreased by recurrent self-excitation in populations of neurons, Usher and 

McClelland (2001) argued that his passive decay means that information is not 

integrated perfectly and that leaky integrators are a more physiologically 

plausible model of evidence accumulation. Additionally, the LCA implements 

physiological evidence suggesting lateral inhibition between neuronal 

populations (Desimone, 1998; Reynolds et al., 1999), by including a parameter 

β for mutual inhibition between accumulators (see Figure 5.4).  
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Thus, in a binary decision involving the accumulators m and n, the change in 

activation in accumulator m is given by: 

  𝑑𝑥𝑚 =  𝐼𝑚 − 𝑘 𝑥𝑚 − 𝛽𝑥𝑛 + 𝑁(0, 𝜎2)  (5.4.) 

Where I is the input into the accumulator and N(0,σ2) is noise drawn from a 

normal distribution with a mean of 0 and a standard deviation of σ. To further 

strengthen the neural plausibility of the LCA, the authors added a threshold 

function to prevent accumulation from dropping below zero, as the activity of a 

neuronal population, which accumulation arguably represents, cannot be 

negative:  

 𝑥𝑚(𝑡 + 1) = max (0, 𝑥𝑚(𝑡)  + 𝑑𝑥𝑚) (5.5.) 

In accordance with other models, the LCA assumes that a decision is made when 

either of the accumulators reaches the threshold A, and the RT is made up of the 

time required to reach the threshold, and a non-decision time Ter, which accounts 

for sensory and motor processes before and after the accumulation process. 

 

Figure 5.4: Standard LCA model: Left: two accumulators, one for the correct alternative, and one for the 
incorrect alternative, race towards a threshold A, starting at a starting point z (typically z = 0)and increasing 
at a rate given by the drift rates vcorrect and vincorrect respectively. Right: Two accumulators ∑1 and ∑2 receive 
input I1 and I2. The accumulation of a given accumulator is affected by leakage over time (k) and by inhibition 
from the other accumulator (β). 

5.1.5.1. Model Fit 

In order to apply the LCA to our data set, we tested a total of three models (see 

Table 5.1). In Model 1, we extended the model to include four accumulators. In 

a four-choice task, the drift rate of the correct accumulator was given by vcorrect, 

while the drift rate for all other accumulators was given by vincorrect. The starting 

point zfour-choice was set to 0, and along with the threshold A and the leakage k, 

equal across accumulators. The inhibition between accumulators was given by 

two parameters, β1 and β2. Separate inhibition parameters are chosen 

depending on the anatomical adjacency of responses, with one parameter 



210 
 

describing inhibition between different muscles of the same hand or between 

the same muscles on each hand, and one describing the inhibition between 

different muscles on different hands. Specifically, β2 describes the inhibition 

induced by the evidence associated with the opposite response and opposite 

hand relative to a given accumulator, while inhibition between all other 

accumulators is given by β1 (see Figure 5.5). This means that the change in 

accumulation for each accumulator is given by: 

𝑑𝑥𝐶𝑜𝑟𝑟𝑒𝑐𝑡 =  𝐼𝐶𝑜𝑟𝑟𝑒𝑐𝑡 − 𝑘 𝑥𝐶𝑜𝑟𝑟𝑒𝑐𝑡 − 𝛽1𝑥𝐸𝑟𝑟𝑜𝑟1 − 𝛽1𝑥𝐸𝑟𝑟𝑜𝑟2 − 𝛽2𝑥𝐸𝑟𝑟𝑜𝑟3 + 𝑁(0, 𝜎2) 

𝑑𝑥𝐸𝑟𝑟𝑜𝑟1 =  𝐼𝐸𝑟𝑟𝑜𝑟1 − 𝑘 𝑥𝐸𝑟𝑟𝑜𝑟1 − 𝛽1𝑥𝐶𝑜𝑟𝑟𝑒𝑐𝑡 − 𝛽1𝑥𝐸𝑟𝑟𝑜𝑟3 − 𝛽2𝑥𝐸𝑟𝑟𝑜𝑟2 + 𝑁(0, 𝜎2) 

𝑑𝑥𝐸𝑟𝑟𝑜𝑟2 =  𝐼𝐸𝑟𝑟𝑜𝑟2 − 𝑘 𝑥𝐸𝑟𝑟𝑜𝑟2 − 𝛽1𝑥𝐶𝑜𝑟𝑟𝑒𝑐𝑡 − 𝛽1𝑥𝐸𝑟𝑟𝑜𝑟3 − 𝛽2𝑥𝐸𝑟𝑟𝑜𝑟1 + 𝑁(0, 𝜎2) 

𝑑𝑥𝐸𝑟𝑟𝑜𝑟3 =  𝐼𝐸𝑟𝑟𝑜𝑟3 − 𝑘 𝑥𝐸𝑟𝑟𝑜𝑟3 − 𝛽1𝑥𝐸𝑟𝑟𝑜𝑟1 − 𝛽1𝑥𝐸𝑟𝑟𝑜𝑟2 − 𝛽2𝑥𝐶𝑜𝑟𝑟𝑒𝑐𝑡 + 𝑁(0, 𝜎2) 

(5.6.) 

In two-choice decisions the same four-accumulator structure was used with the 

following exceptions: based on previously demonstrated baseline differences 

(e.g. Churchland et al., 2008), the two accumulators associated with the cued 

responses (‘Correct’ and ‘Error 1’; see Figure 5.2) started the accumulation 

process at a starting point defined by ztwo-choice-cued, while the starting point of the 

other two accumulators (‘Error 2’ and ‘Error 3’) ztwo-choice-uncued was set to 0. The 

drift rate of the two accumulators associated with the non-cued responses 

(‘Error 2’ and ‘Error 3’), was also set to 0, so that only noise was accumulated in 

these accumulators (see Figure 5.5 b). 

 

Lastly, the drift rates vcorrrect and vincorrect varied across difficulty levels, leading to 

a model with a total of 10 free parameters (v-easycorrect, v-easyincorrect, v-

hardcorrect, v-hardincorrect, ztwo-choice-cued, k, β1, β2, σ2, Ter). The threshold parameter 

A was used as a scaling parameter and set to 1. Model 1 is displayed in Figure 

5.5. 

 

By setting the drift rate of the non-cued accumulators to 0 in Model 1, we 

assume that attentional selection occurs at an early processing stage, gating 

the signal at a sensory level. Since this is based on speculation alone, we also 

tested a model without this assumption, Model 2. Model 2 is identical to Model 

1, with the exception that the drift rate of the two uncued accumulators in two-
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choice conditions (‘Error 2’ and ‘Error 3’) were not set to 0, but instead to the 

same vincorrect as ‘Error 1’. This resulted in a model with the same 10 free 

parameters as Model 1 (v-easycorrect, v-easyincorrect, v-hardcorrect, v-hardincorrect, 

ztwo-choice-cued, k, β1, β2, σ2, Ter). 

 

Lastly, we also tested a model in which there was no difference in baseline 

between two-choice and four-choice conditions, but which introduced a 

difference in drift rate instead. This model, Model 3, is identical to Model 1 with 

the exception that the starting point is set to 0 for all conditions, and that two-

choice and four-choice conditions have separate correct and incorrect drift rates 

(v-easy-fourcorrect, v-easy-fourincorrect, v-easy-twocorrect, v-easy-twoincorrect, v-hard-

fourcorrect, v-hard-fourincorrect, v-hard-twocorrect, v-hard-twoincorrect). Note that, like in 

Model 1, the drift rates in uncued accumulators were set to 0. This resulted in a 

total of 13 free parameters for Model 3 (v-easy-fourcorrect, v-easy-fourincorrect, v-

easy-twocorrect, v-easy-twoincorrect, v-hard-fourcorrect, v-hard-fourincorrect, v-hard-

twocorrect, v-hard-twoincorrect, k, β1, β2, σ2, Ter). 

 



212 
 

 

Figure 5.5: Model 1: LCA model applied to the current experiment: a) Four-choice decisions: four 
accumulators race towards a threshold A. Each accumulator receives input I and starts at a starting point 
zfour-choice = 0. The accumulator associated with the correct alternative increases at a rate vcorrect while all 
other accumulators increase at a rate given by vincorrect. Each accumulator is affected by leakage over time 
(k, black, dashed arrows). Two inhibition parameters define the inhibition between accumulators. Two 
accumulators representing different responses (pinch/grasp) on different hands inhibit each other with a 
strength of β2 (pink, dashed arrows). All other accumulators inhibit each other with a strength of β1 (grey, 
dashed arrows). b) Two-choice decisions: like a), but the two uncued responses (‘Error 2’ & ‘Error 3’) only 
accumulate noise, with a drift rate of 0. The starting points of the accumulators associated with the two 
responses which were cued increases to the positive value ztwo-choice-cued. The correct accumulator 
integrates evidence at a rate given by vcorrect while the incorrect, but cued, accumulator (‘Error 1’) 
integrates evidence at a rate of vincorrect. (Note that the only difference in Model 2 is in ‘Error 2’ & ‘Error 3’ in 
b, in which v is not 0, but vincorrect. Model 3 on the other hand assumes all starting points to be 0, and that 
there is a separate set of vcorrect and vincorrect for two-choice and four-choice decisions). 

 

To fit each model to the data, the normalised EMG RTs remaining after EMG 

processing were pooled across participants to estimate the model parameters 

at the group level. A total of 20,000 simulated EMG RTs were compared to the 

empirical data using Quantile Maximum Probability Estimation (Heathcote et al., 
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2002) and parameter values were adjusted using a differential evolution 

algorithm implemented in Matlab (The Mathworks, Natick, U.S.A.; Price et al., 

2005). 

 

The three models were compared regarding their goodness of fit, by calculating 

two measures of fit which consider the likelihood as well as the number of free 

parameters of the model, namely the Bayesian information criterion (BIC, 

Schwarz, 1978) as well as the Akaike information criterion (AIC; Akaike, 1977). 

The model which best fitted the data according to these measures was then 

used to generate predictions of the accumulation profile. 

 

5.1.5.2. Model Prediction 

Once the best-fitting parameter values of the best model were estimated, we 

used the equations described above ((5.5.), (5.6.)) to simulate a total of 20,000 

accumulation paths for each condition. Since we used EMG RTs rather than 

button RTs to fit the model (i.e. the time taken for movement of effectors was 

not included), we assume that virtually all of the estimated non-decision time 

described sensory processes. We therefore started the accumulation profile 

after a sensory delay given by Ter 
17.  

 

Simulated MEPs were defined as the amplitude of a given accumulator at 

random MEP latencies (generated in the same way as described in section 

5.1.3). Just as in the experimental data, only simulated MEPs that occurred 

before the decision was reached were retained. The simulated MEPs 

associated with correct decisions were then smoothed (in the same way as 

described in section 5.1.4.3) to create continuous MEP signals. Since the TMS 

paradigm used here allowed us to track each of the (up to) four responses 

                                                
17 It could be argued that a very small proportion of the non-decision time should be categorised 
as motor processing time to account for the brief interval in which the motor signal travels 
through the corticospinal tract. However, from comparing the timing of TMS pulses and MEPs, 
we estimate that this takes only approximately 30 ms. Since we compared model predictions 
and MEP signals on a qualitative basis only, we argue that this difference is negligible.  
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separately (though not simultaneously; see section 5.1.4.), we simulated and 

plotted the accumulation profile for each accumulator separately.  

 

To create a prediction equivalent to the MEP signal reflecting the difference 

between the responding and the non-responding muscle of the same hand (see 

section 5.1.4.3), we also took the difference of only the MEPs classed as 

‘Correct’ and ‘Error 1’ and generated a smooth signal per condition in the same 

way as described above. 

 

Lastly, the resulting profiles were averaged within each condition and time-

locked once to the onset of the decision-making process (stimulus-locked), and 

once to the EMG onset (response-locked).  

 

5.2. Results 

5.2.1.  Behavioural Results 

To analyse potential behavioural differences between conditions, only 

stimulation free trials (remaining after EMG and MEP processing) were used 

(see Figure 5.6 a)18. Since there were no significant differences between two-

choice decisions involving one hand (‘within’) or two hands (‘between’) in RT, 

EMG RT or accuracy (p > .27), we collapsed over all two-choice conditions. To 

explore the effects of ‘Number of Alternatives’ and ‘Difficulty’ on correct EMG 

RT, we used a two-by-two repeated measures ANOVA, with the levels ‘two/four’ 

and ‘easy/hard’. We found a significant main effect of ‘Number of Alternatives’, 

F(1, 12) = 207.10, p < .001, ηp
2 = .95, with four alternatives (M = 544 ms) being 

associated with longer reaction times than two alternatives (M = 445 ms). 

Additionally, there was a significant main effect of Difficulty, F(1, 12) = 117.37, p 

                                                
18 Since the application of a TMS pulse alters response times, typically only stimulation free 
trials are used in the behavioural analysis. Since we reported some unexpected findings in the 
MEP data (see section 5.2.2.1), indicating no difference between ‘easy’ and ‘hard’ trials, we also 
analysed the EMG RT associated with TMS trials in order to rule out that the null finding in the 
MEP amplitude was caused by behavioural differences between TMS and stimulation free trials. 
An ANOVA exploring EMG RTs in TMS trials showed qualitatively similar findings to the ANOVA 
reported above (main effect of ‘Number of Alternatives’: p < .001, main effect of ‘Difficulty’: p < 
.001, interaction effect: p = .08). 
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< .001, ηp
2 = .91, with ‘hard’ trials (M = 509 ms) being associated with longer 

reaction times than ‘easy’ trials (M = 480 ms). There was no significant 

interaction effect (p = .68). Note that for this ANOVA, we used EMG onset time 

as RT. However, the same analysis with button RT as time of response led to 

qualitatively identical results (main effect of ‘Number of Alternatives’: p < .001, 

main effect of ‘Difficulty’: p < .001, interaction effect: p = .76).  
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Figure 5.6: Behavioural results: a) response times (left) and accuracy (right) averages for all conditions. 
Response times are given in EMG RTs (button RTs are indicated in dashed lines). Error bars indicate 95% 
confidence intervals. b) Proportion of errors per error category for four-choice (left) and two-choice (right) 
trials. Error bars indicate 95% confidence intervals. * indicates p < .05, ** indicates p < .001. 

 

Since accuracy data do not meet the distributional assumptions required for a 

standard ANOVA, we used a generalised linear mixed-effects model in order to 

analyse the effects of our manipulations on participants’ accuracies. Using the 
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‘fitglme’ function in Matlab (The Mathworks, Natick, U.S.A.), we used a model 

with a logistic link function and a binomial data model. Parameter estimates 

were based on a maximum likelihood method using Laplace approximation. We 

used the ‘maximal’ random effects structure (Barr et al., 2014), i.e. both 

manipulations, ‘Number of Alternatives’ and ‘Difficulty’, and their interaction 

were included as fixed effects, and both manipulations and their interactions 

within each participant and within each session were included as random 

effects (Wilkinson notation: Accuracy ~ 1 + Number of 

Alternatives*Difficulty + (1 + Number of 

Alternatives*Difficulty | Participant) + (1 + Number of 

Alternatives*Difficulty | Session))19. The ‘Number of Alternatives’ 

was a significant predictor, t(156) = 5.59, p < .001, with two-alternative trials (M 

= 89%) associated with higher accuracies than trials with four alternatives (M = 

80%). Additionally, ‘Difficulty’ was a significant predictor, t(156) = 9.68, p < .001, 

with higher accuracy scores in easy (M = 88%) than in hard trials (M = 82%). 

The interaction between the ‘Number of Alternatives’ and ‘Difficulty’ was not a 

significant predictor, t(156) = 2.05, p = .052.  

 

A further generalised linear mixed model was used to compare the proportions 

of the different error categories in the data (Figure 5.6 b). We used a model in 

which two predictors, ‘Number of Alternatives’ and ‘Error Category’, and their 

interaction were included as fixed effects, and both factors, and their 

interactions within each participant and within each session were included as 

random effects (Wilkinson notation: Accuracy ~ 1 + Number of 

Alternatives*Error Category + (1 + Number of Alternatives* 

Error Category | Participant) + (1 + Number of 

Alternatives* Error Category | Session)). We found that all fixed 

effects were significant predictors (p < .004). To explore these effects, four 

further models were used. One model tested the fixed effect ‘Error Category’ on 

                                                
19 The dispersion parameter of the model, φ = 2.08, was calculated by dividing the sum of 
squared Pearson residuals by the residual degrees of freedom (Venables & Ripley, 2002). This 
value indicates overdispersion, therefore, the p-values associated with the model may not be 
accurate. To test the reported effects, we therefore additionally conducted paired sign tests 
which confirmed that both the difference between ‘easy’ and ‘hard’, and between ‘two-choice’ 
and ‘four-choice’ trials were significant (p < .001). 
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two-choice data alone. A second model was used to test the same effect, but 

with the reference set to a different level in order to evaluate the difference 

between all three levels of ‘Error Category’ (‘Error 1’, ‘Error 2’, ‘Error 3’). Two 

further models were used in the same way but exploring four-choice data20. 

 

In two-choice trials, all three levels of ‘Error Category’ differed significantly from 

each other, t(117) > 2.58, p < .01, with most errors falling into the ‘Error 1’ 

category (M = 8%), and the least errors labelled ‘Error 3’ (M = .5%). In four-

choice trials however, the only significant difference was seen between ‘Error 1’ 

and ‘Error 3’, t(117) = 2.27, p = .03, with more errors in the ‘Error 1’ (M = 8%) 

than the ‘Error 3’ (M = 4%) category. There were no further significant 

differences in the four-choice condition, t(117) < 1.7, p > .09 (see Figure 5.6). 

 

5.2.2.  MEP Results 

Smoothed MEP signals were generated for each muscle category (‘Correct’, 

‘Error 1’, ‘Error 2’, ‘Error 3’) separately. The resulting signal is displayed in 

Figure 5.7. Note that two-choice traces were collapsed over ‘within’ and 

‘between’ choices, since both displayed qualitatively similar patterns (see 

Appendix 7.2.). Visual inspection of the resulting MEP signals reveals that, as 

expected, in each condition, the ‘Correct’ muscle’s activation increased over the 

course of the decision to a higher magnitude than all other muscles, while the 

‘Error 3’ muscle showed the lowest amplitude and even decreased over time. 

 

Contrary to our expectations, there was no visible difference between ‘easy’ 

(solid lines) and ‘hard’ (dashed lines) trials in any of the conditions. There were 

however, marked differences between two-choice and four-choice decisions. In 

the four-choice condition, ‘Error 1’ (same hand but different response relative to 

the responding muscle) and ‘Error 2’ (different hand but same response relative 

to the responding muscle) traces followed a virtually identical profile. In two-

choice trials on the other hand, the two cued responses (‘Correct’ and ‘Error 1’) 

                                                
20 The dispersion parameters of all models, φ, were calculated by dividing the sum of squared 
Pearson residuals by the residual degrees of freedom (Venables & Ripley, 2002) and ranged 
between 1.14 and 1.25, indicating no problems of overdispersion. 
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are separated from the uncued response traces (‘Error 2’ and ‘Error 3’) 

throughout the beginning of the recording (note that the time of cue onset is 

prior to the onset of MEP recording). Only towards the end of the decision, 

arguably when the correct response is selected, does the ‘Correct’ muscle 

increase at a steeper rate while the ‘Error 1’ muscle decreases in amplitude. 

  

Figure 5.7: MEP results (smoothed MEP signal for each muscle category): stimulus-locked (left) and 
response-locked (right) smoothed signals are displayed separately for two-choice (a) and four-choice (b) 
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decisions. In each panel, easy (solid lines) and hard (dashed lines), as well as each correct/error category 
(‘Correct’, ‘Error 1’, ‘Error 2’, ‘Error 3’) are displayed separately. 

 

Additionally, a smoothed signal for the difference between the responding and 

non-responding muscle (here: the difference between ‘Correct’ and ‘Error 1’) 

was generated (based on only a subset of trials; see section 5.1.4.3). The 

resulting profile is displayed in Figure 5.8, separately for stimulus-locked (left) 

and response-locked (right) signals, as well as four-choice (dark blue), two-

choice (turquoise), ‘easy’ (solid lines), and ‘hard’ (dashed lines) conditions. 

Each profile displays a clear increase over the course of the decision, indicating 

an increasing difference between the activation profiles of the responding and 

the ‘Error 1’ muscles. Differences between ‘easy’ and ‘hard’, or four-choice and 

two-choice trials are not apparent. 

 

  
Figure 5.8: MEP results (smoothed MEP signals for the difference between responding and non-
responding muscles): stimulus-locked (left) and response-locked (right) signals are displayed for four-
choice (dark blue) and two-choice (turquoise), as well as easy (solid lines) and hard (dashed lines) 
separately. Note that each profile displays the difference between the MEPs which were simultaneously 
recorded in the ‘Correct’ and the ‘Error 1’ category. 

 

5.2.2.1. Statistical Comparison 

In order to test our hypothesis predicting a difference in baseline activity 

between two and four-choice decisions, we used a paired t-test to compare 

MEP amplitudes. Since there was no difference between two-choice ‘within’, 
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and two-choice ‘between’ MEP amplitudes (p > .48), trials were pooled across 

both two-choice conditions. The t-test comparing two and four-choice baseline 

MEP sizes confirmed our hypothesis and showed that there was a significant 

difference in baseline amplitude, t(12) = 2.20, p = .048, d = .61, with two-choice 

trials showing larger MEP amplitudes (M = .22) than four-choice trials (M = .13). 

 

Additionally, we tested the difference in slope between different difficulty levels 

using a permutation procedure. Comparing the slope difference in ‘easy’ and 

‘hard’ trials to the null distribution of slope differences revealed that the original 

difference was not larger/smaller than the upper/lower 2.5% of the distribution, 

for either stimulus-locked or response-locked MEPs. This indicates that, 

contrary to our expectation, there was no slope difference between ‘easy’ and 

‘hard’ trials (p > .05). 

 

To further explore this unexpected finding, we compared the slope between fast 

and slow responses. To this end, we performed a median split on the data in 

order to categorise it into fast and slow bins. We then used the same bootstrap 

method described above (see section 5.1.4.4), testing the difference in slope 

between ‘easy’ and ‘hard’ trials, to compare slopes of slow and fast trials. We 

found that slopes in fast trials were significantly higher than slopes in slow trials 

in both the stimulus-locked and the response-locked signal (p < .05). 

5.2.3.  Model 

We fitted a total of three models to the EMG RT data. Model 1 (10 parameters) 

assumes that two-choice and four-choice trials are explained by the same drift 

rate, that there is no accumulation in uncued accumulators, and that cued two-

choice trials have a free starting point. Model 2 (10 parameters) is identical to 

Model 1 but assumes that accumulation occurs in all accumulators. Lastly, 

Model 3 (13 parameters) is identical to Model 1, but assumes a drift rate 

difference, instead of a starting point difference, between two-choice and four-

choice trials. Table 5.1 displays the BIC and AIC for each model, indicating their 

goodness of fit. The best (lowest) values were obtained for Model 1, indicating 

that this model provides the best account for the data. This suggests that 
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introducing multiple alternatives into a decision-making process primarily affects 

the baseline activity of the accumulation process. We therefore chose Model 1, 

and discarded the other models from the analysis. The resulting parameter 

estimates are displayed in Table 5.2. 

 

Table 5.1: Model comparison: BIC and AIC values for each model. Model 1 has the lowest (best) BIC and 
AIC values (best BIC and AIC values in bold). 

  
Model  

  

Number of 
parameters 

AIC BIC Parameters 

Model 1 10 141,600 141,680 

v-easycorrect, v-easyincorrect,  
v-hardcorrect, v-hardincorrect,  

ztwo-choice-cued, k, β1, β2, σ2, Ter 

Model 2 10 142,170 142,260 

v-easycorrect, v-easyincorrect,  
v-hardcorrect, v-hardincorrect, 

ztwo-choice-cued, k, β1, β2, σ2, Ter 

Model 3 13 144,170 142,260 

v-easy-fourcorrect, v-easy-fourincorrect,  
v-easy-twocorrect, v-easy-twoincorrect,  
v-hard-fourcorrect, v-hard-fourincorrect,  
v-hard-twocorrect, v-hard-twoincorrect,  

k, β1, β2, σ2, Ter 
 

Table 5.2: Estimated parameter values for the chosen model (Model 1): note that the response threshold A 
was set to 1 as a scaling parameter, and that the starting-point z was set to 0 for four-choice trials. 

Model 1: LCA Parameters     

Leakage (k) 0.000029 

Response threshold (A) 1 

Non-decision time (Ter) 0.2994 

Diffusion constant (σ2) 0.4863 

Inhibition 
(β) 

β1 0.000022 

β2 0.0408 

Starting point 
(z) 

two-choice (cued) 0.2355 

four-choice/ two-choice (uncued) 0 

Drift rate  
(v) 

easy 
correct 1.3199 

incorrect 0.2321 

hard 
correct 1.1781 

incorrect 0.3413 

 

The quality of the fit for each condition (left: four-choice, right: two-choice, top: 

easy, bottom: hard) is shown in Figure 5.9. The observed (circles) and 
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simulated (lines and crosses) normalised EMG RT distributions are summarised 

by five quantile estimates (from left to right: 10%, 30%, 50%, 70%, 90%), and 

the EMG RT (x-axis) and proportion of data (y-axis) associated with each 

quantile are displayed. Both correct responses (thick lines) and each error 

category (‘Error1’, ‘Error 2’, ‘Error 3’; see Figure 5.2) are shown. The overlap 

between empirical and simulated quantiles indicates a good overall model fit. 

The mean difference between predicted and recorded EMG RT quantiles was 

approximately 2.5% median EMG RT for correct responses, confirming that the 

LCA was able to account for both two and four-choice decisions.  

 

  

Figure 5.9: Model fit: quantiles estimated from behavioural data (circles) and LCA simulations (crosses and 
lines) for easy (top) and hard (bottom) decisions. For each condition, correct and incorrect quantiles are 
displayed separately. 

The estimated parameters were used to simulate the average accumulation 

profile for each condition. Figure 5.10 displays the resulting stimulus-locked 
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(left) and response-locked (right) predictions for each condition and each 

accumulator (categorised as ‘Correct’, ‘Error 1’, ‘Error 2’, or ‘Error 3’). For direct 

comparison, Figure 5.10 is displayed in the same format as Figure 5.7.  

Qualitatively similar patterns were observed in both the MEP signal (Figure 5.7) 

and the model predictions (Figure 5.10). Like the MEP signal, The LCA 

accumulation profiles show a higher increase of the ‘Correct’ accumulator than 

all other accumulators over the course of the decision in all conditions, while the 

‘Error 3’ accumulator showed the lowest amplitude throughout. It can further be 

seen that in four-choice conditions, the accumulators associated with ‘Error 1’ 

and ‘Error 2’ display a virtually identical profile, while in two-choice conditions, 

the cued accumulators (‘Correct’ and ‘Error 1’) show a higher activation than the 

uncued accumulators (‘Error 2’ and ‘Error 3’). Contrary to our hypotheses, there 

was no clear difference between ‘easy’ and ‘hard’ predicted accumulation 

profiles. 
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Figure 5.10: Decision variable (simulated): LCA predictions of the accumulation profile for two-choice (a) 
and four-choice (b) conditions, as well as easy (solid lines) and hard (dashed lines) conditions, locked to 
both the stimulus onset (left) and the EMG onset (right). For each condition, the accumulation profiles of all 
four accumulators (categorised into ‘Correct’, ‘Error 1’, ‘Error 2’, ‘Error 3’) are shown (note that in four-
choice conditions, ‘Error 1’ and ‘Error 2’ traces are virtually identical). See Figure 5.7 to compare with the 
corresponding MEP signal. 
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Figure 5.11 shows the model predictions for the difference between the 

‘Correct’ and the ‘Error 1’ accumulator for each condition. Overall, the observed 

patterns are comparable to those in the corresponding MEP signal (see Figure 

5.8). However, there appear to be small differences in the model predictions 

(e.g. lower amplitude in hard trials in stimulus-locked predictions), which are not 

obvious, potentially due to a high level of noise, in the MEP signal. 

 

  
Figure 5.11: LCA Predictions of the difference between responding (‘Correct’) and non-responding (‘Error 
1’) muscles: stimulus-locked (left) and response-locked (right) signals are displayed for four-choice (dark 
blue) and two-choice (turquoise), as well as easy (solid lines) and hard (dashed lines) separately. See 
Figure 5.8 to compare to the corresponding MEP signal. 

 

5.3. Discussion 

 

In this experiment, we set out to explore decision-making with multiple 

alternatives in humans. To this end, we asked participants to complete a colour-

discrimination task with either two or four choices and applied TMS to induce 

MEPs in the hand muscles used to execute responses as a measure of 

corticospinal excitability resembling the decision variable. We hypothesised 

that, in line with previous research in monkeys, a difference in the number of 

choice alternatives would translate into a difference in baseline MEP size (Balan 
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et al., 2008; Churchland et al., 2008; Cohen et al., 2009). We also added a 

difficulty manipulation and expected that the MEP size (i.e. the corticospinal 

excitability) recorded from responding muscles would increase faster in easy 

than in hard trials. 

 

Behavioural results showed that both the number of alternatives and the 

difficulty of the task had the expected effects on response times and accuracy 

scores. In line with previous research (Brown et al., 2009; Cohen et al., 2009; 

Hick, 1952), it was found that responses were faster and more accurate in two-

choice compared to four-choice, and in easy compared to hard trials. 

Additionally, each error was classed into one of three categories. With a total of 

four possible responses (two movements per hand), either two or four of which 

were cued, each response was classed either as ‘Correct’, ‘Error 1’ (cued but 

incorrect in two-choice trials, and correct hand but incorrect movement in four-

choice-trials), ‘Error 2’ (uncued and the correct/incorrect movement on the 

incorrect/correct hand in two-choice trials, and correct movement but on the 

incorrect hand in four-choice trials), or as ‘Error 3’ (incorrect movement and 

incorrect hand). We found, that in two-choice trials, ‘Error 1’ occurred more 

often than any other error, while in four-choice trials, ‘Error 1’ and ‘Error 2’ were 

roughly equal in frequency. These findings indicate that although the stimulus 

did not change, and the manipulation was implemented only by the cue, the two 

vs four-choice manipulation had a significant impact on participants’ decision-

making and affected not only the overall accuracy of responses but also the 

response selection of incorrect trials. 

 

During decision-making, we used TMS to induce MEPs in the relevant muscles 

of the right hand. By stimulating at random time-points throughout the trial, 

pooling the data across participants, and smoothing the resulting data points, 

we were able to construct a continuous MEP signal for each condition and each 

correct/error category separately. This signal reflects corticospinal excitability 

and has previously been associated with decision-related evidence 

accumulation (Hadar et al., 2015). Typically, within a given condition, neural 

correlates of decision-making produce a single waveform per decision. An 

example is the EEG component CPP, which arguably reflects the sum of all 
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accumulators in a given decision (O’Connell et al., 2012; see Chapter 4). 

However, in the current experiment, tracking the evolution of preparation for 

each of the four potential responses (‘Correct’, ‘Error 1’, ‘Error 2’, ‘ Error 3’) in 

each condition, allowed us to explore the behaviour of each of four associated 

accumulators and thereby provide a richer insight into the decision process than 

a single summary signal could provide. 

 

To our knowledge, this is the first attempt to track a neural correlate of the 

decision variable for multi-alternative decision-making in humans with high 

temporal resolution. We are also not aware of any studies which have 

previously attempted to track the evolution of accumulation of each alternative 

in multi-alternative decision-making. In line with our hypotheses, we found that 

the ‘Correct’ MEP trace increased throughout the trial and peaked at the 

response, clearly separating from all profiles associated with incorrect 

responses. Importantly, we observed a difference in the trajectories of the 

incorrect responses between two and four-choice decisions. While there was no 

observable difference between ‘Error 1’ and ‘ Error 2’ profiles in four-choice 

trials, or, in fact, any of the profiles during the first half of the trial, there was a 

clear separation in two-choice trials, where ‘Correct’ and ‘Error 1’ (both cued 

responses) showed a higher baseline amplitude than ‘Error 2’ and ‘Error 3’. In 

fact, we showed that MEPs recorded from muscles associated with cued 

responses during the baseline period were significantly higher in two-choice 

decisions than in four-choice decisions. This finding is in line with previous 

evidence from non-human primates which has repeatedly shown a decrease in 

baseline firing rates of oculomotor neurons during saccadic decision-making 

with an increase in the number of alternatives (Basso & Wurtz, 1998; 

Churchland et al., 2008; Cohen et al., 2009; Lee & Keller, 2008). 

 

It has previously been suggested that, in the context of sequential sampling 

models, this baseline effect implies a difference in the distance between the 

starting point and the threshold, which affects the signal-to-noise ratio (larger 

baseline-threshold distances imply that more evidence is necessary to 

terminate the accumulation process; Churchland et al., 2008). In four-choice 

decisions, in which uncertainty is inherently larger than in two-choice decisions, 
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an increase in the baseline-threshold distance may compensate for this 

uncertainty at the expense of response time. 

 

Contrary to our hypotheses, we observed no difference between the MEP 

signals of easy and hard trials. Previous research has shown that manipulations 

of difficulty have strong effects on accumulation (Ho et al., 2009; Ratcliff & 

McKoon, 2008), as well as associated neural signals (Kelly & O’Connell, 2013; 

Roitman & Shadlen, 2002; see Chapter 3), including smoothed MEP signals like 

the ones used here (Hadar et al., 2015; see Chapter 2). The similarity between 

easy and hard waveforms in the current experiment may therefore lead one to 

question the role of the MEP signal as a correlate of the decision variable. 

However, it can be explained by the similarity in response times between easy 

and hard trials. Although easy decisions were associated with significantly 

shorter RTs, the difference was small compared to other experiments (see 

Chapter 4, Figure 4.4), and may have led to a similarity in RTs which is specific 

to our paradigm. In our task, the dominant colour in the easy condition of the 

colour discrimination task took up 33% of the display, compared to 30% in hard 

conditions. This difference may not have been large enough to induce visibly 

different accumulation rates. A post hoc analysis confirmed that, while there 

was no slope difference between easy and hard waveforms, fast decisions were 

associated with higher slopes than slow decisions, a typical finding for a 

decision variable, confirming the role of the MEP as a correlate of accumulation. 

 

We fitted a sequential sampling model to the behavioural data in order to 

simulate the accumulation profile and directly compare it to the MEP signal. 

Here, we chose the LCA model for this purpose (Usher & McClelland, 2001). 

The LCA is an extension of a simple accumulator model, which includes 

leakage and inhibition parameters to model a more neurophysiologically 

plausible accumulation process than other sequential sampling models. This 

relatively complex model was chosen firstly because it has been shown to 

adequately account for multi-alternative decision-making in a number of 

previous studies (Bogacz et al., 2007; Ditterich, 2010; McMillen & Holmes, 

2006; Tsetsos et al., 2010, 2011), secondly because it is an accumulator model 

which implies that it is easily extended to any number of choice alternatives 
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(Smith & Ratcliff, 2004; Usher & McClelland, 2001), and lastly because the 

decision-making required in the current experiment was comparatively complex, 

inducing behavioural patterns which go beyond those seen in typical binary 

choices and are unlikely to be accurately described by other sequential 

sampling models. In particular, the inhibition between accumulators appears a 

necessary characteristic of the model in order to explain the varying behaviours 

associated with the three different error categories. By allowing two inhibition 

parameters, as well as varying starting points for two-choice trials and varying 

drift rates for easy and hard decisions, the model was able to account for the 

behavioural data with complex anatomical linkages between effectors.  

 

We tested a total of three different models and found that the best-fitting model 

assumed a difference in starting point between two-choice and four-choice 

trials, thereby supporting the findings of baseline difference observed in 

previous research in non-human primates (e.g. Churchland et al., 2008), as well 

as in our MEP results. Additionally, the model assumed that non-cued 

alternatives in two-choice trials had a drift rate of 0, indicating that attentional 

mechanisms gate the evidence at a sensory level, before accumulation occurs. 

Note that this was found, despite the fact that each stimulus contained all four 

colours, and the response options were determined by pre-stimulus cues alone. 

This finding is in line with previous research which demonstrated that a neural 

correlate of accumulation, namely the CPP only displays a build-up if the 

sensory evidence provided is directly relevant to the decision (O’Connell et al., 

2012).  

 

The estimated parameters of the chosen model were used to simulate 

accumulation profiles for each condition and each correct/error category 

separately. Crucially, the resulting profiles were qualitatively similar to those of 

the measured MEP signals. In both the simulated and the observed signal, 

there was a clear difference between error trajectories in two-choice and four-

choice trials. We found that, in two-choice trials, ‘Error 1’ and ‘Correct’ profiles 

begin higher than ‘Error 2’ and ‘Error 3’ traces, while in four-choice trials, there 

is no baseline difference and ‘Error 1’ and ‘Error 2’ trials follow the same 

trajectory throughout the trial.  
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Importantly, reproducing the pattern of the MEP signal, there was no visible 

difference between easy and hard accumulation profiles predicted by the model. 

Although drift rates were free to vary in each difficulty condition, and confirmed 

that RT differences were due to a modulation of accumulation rates, with higher 

slopes for easier decisions, the difference in the resulting drift rates did not 

produce distinct accumulation profiles. Although this is somewhat surprising 

given the significant difference between easy and hard RTs, it supports the role 

of the MEP signal as an accumulation signal, as it showed the exact same 

pattern.  

 

However, there were also marked differences between predicted and recorded 

accumulation signals, for at least two reasons. Firstly, like any model, the LCA 

can, at best, be an approximation of the true decision-making processes. This is 

an important point in this study, since we only used one model as 

representative of a family of models (sequential sampling models). We chose 

the model based on its previous application to multi-alternative decision-making 

and its ability to account for more complex decision-making processes, 

however, we must assume that other sequential sampling models or other 

implementations of our manipulations in the LCA may reveal slightly different 

patterns which should be explored in the future.  

 

Secondly, it seems that the direct comparison of the model prediction is limited 

by the quality and nature of the MEP signal. While we assume that the MEP 

signal showing the difference between the responding and non-responding 

muscles is a relatively true reflection of cortical excitability (under the 

assumption that spinal contributions to the corticospinal signal are constant 

across effectors), the MEP signal displaying each response separately may still 

contain non-specific spinal influences. These spinal signals may, for example, 

explain the slow negative drift visible in the MEP signal associated with each 

response (Figure 5.7), which is not seen in the MEP signal reflecting the 

difference between two muscles (Figure 5.8) or the model predictions (Figure 

5.10). 
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Additionally, the smoothed MEP signal used in this experiment is a labour-

intensive signal to produce. In each TMS trial, MEPs at only a single time point 

are collected, and TMS can only be applied in a proportion of trials. 

Furthermore, a large proportion of TMS trials had to be discarded for a number 

of reasons. In addition to the standard removal of noisy trials (and in particular, 

trials in which participants’ muscles were not fully relaxed prior to the 

stimulation) or trials with no, or very quick responses (i.e. trials in which it is 

unlikely that a decision-making process took place), a proportion of trials was 

lost due to the stimulation protocol. The planned TMS times for each trial were 

designed to ensure a good coverage of the whole RT distribution. This meant 

that in many cases, the response preceded the planned stimulation, leading to 

the exclusion of the trial.  

 

Therefore, it is difficult to produce enough data to quantitatively compare 

smoothed MEP signals with model predictions, which can be based on any 

number of simulations. Nevertheless, it is important to note that high exclusion 

rates are typical for this type of experiment (Hadar et al., 2015), and we used a 

large number of trials to minimise its effects and produce a smoothed MEP 

signals which show qualitative differences between conditions, similar to those 

predicted by sequential sampling models. In spite of its limitations, the method 

used here provides a unique and detailed insight into the accumulation process 

during decision-making with multiple alternatives. It allowed us to not only track 

the dynamics of the decision variable, which was comparable to model 

simulations, but also explore the evolution of each response and each 

accumulator separately, thereby arguably providing richer data than any other 

method commonly used in research with human subjects. 

 

Overall, the current study was able to demonstrate that multi-alternative 

decision-making in humans can be accounted for by sequential sampling 

models, and importantly, that smoothed MEP signals reflect the accumulation 

process. In addition, we showed that MEP signals can be used to track the 

evolution of preparation for each of four responses separately, giving insight 

into each of the four associated accumulators of a sequential sampling model. 

In addition, we demonstrated for the first time, that the number of choice 



233 
 

alternatives in a decision-making task affects the baseline activity of neural 

accumulation signals in humans. 

  



234 
 

6. General Discussion 

 

The current project set out to explore human perceptual decision-making by 

combining neural data with sequential sampling models. Sequential sampling 

models explain decision-making reaction time (RT) data by assuming that 

sensory evidence accumulates over time until a decision threshold is reached 

and a response is executed (Ratcliff & McKoon, 2008; Ratcliff & Rouder, 1998; 

Usher & McClelland, 2001). 

 

Although sequential sampling models were developed to explain behavioural 

decision-making data and make no claims about its neural underpinnings, a 

number of neural signals have been proposed to reflect the accumulation 

process predicted by these models. This similarity between model predictions 

and neural processes has primarily been shown in non-human primates, with 

firing rates in neurons in a range of oculomotor structures displaying 

accumulation-to-bound profiles in response to saccadic decisions (Huk & 

Shadlen, 2005; Roitman & Shadlen, 2002). 

 

In humans, correlations between neural signals and sequential sampling 

models are less established. Nevertheless, a number of signals in the human 

brain have been suggested to be decision-related. One of these signals is the 

event-related potential (ERP) centroparietal positivity (CPP) which has been 

shown to reflect the accumulation of decision-relevant evidence and can be 

dissociated from sensory and motor processing (O’Connell et al., 2012). This 

signal has been reported to have promising properties, as it appears to be 

independent of both the modality of the sensory evidence and the associated 

response, suggesting that it reflects accumulation itself (O’Connell et al., 2012; 

Twomey et al., 2016). However, to date, few studies have attempted to replicate 

these findings. 

 

Another neurometric measure which has been suggested to reflect the decision 

variable, i.e. the accumulation process predicted by sequential sampling 

models, is neural excitability in motor areas, measured through the amplitude of 
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motor-evoked potentials (MEPs) induced by transcranial magnetic stimulation 

(TMS; Hadar et al., 2015). While it has been claimed that the CPP reflects 

accumulation directly, this MEP signal is likely to be a down-stream 

representation of the integration of evidence. This is based on the concept that, 

during a decision, the accumulation progress is continuously fed forward into 

the motor system so that the level of evidence integration is reflected in the 

level of preparation of the associated motor response.  

 

Although this signal displays accumulation indirectly, it has an advantage over 

EEG signals in that it allows us to track accumulation of each response 

alternative separately in multi-alternative decision-making paradigms. The CPP 

on the other hand, may display accumulation directly, but only tracks 

accumulation as a whole and cannot distinguish between response alternatives. 

By making use of both of these signals, depending on which is most informative 

for any given paradigm, many open questions regarding human perceptual 

decision-making can be addressed. 

 

In this project, we used these neural signals to explore human perceptual 

decision-making by comparing them directly to predictions made by sequential 

sampling models. Specifically, we used accumulator models, i.e. sequential 

sampling models with an absolute stopping rule, in which evidence for each 

alternative is integrated in a separate accumulator and the accumulators race to 

a common threshold (Brown & Heathcote, 2008; Smith & Ratcliff, 2004; Usher & 

McClelland, 2001). We chose these models over random walk models, i.e. 

models with a relative stopping rule in which evidence for binary choices is 

integrated to a single total, due to their biological plausibility. The plausibility of 

random-walk models is limited, as they assume that accumulation can become 

negative, and it is not clear how activation of a neural population can decrease 

to arbitrary negative values. Separate accumulators assumed by accumulator 

models on the other hand, can be thought of as representations of the activity of 

separate neural populations, integrating evidence for a given alternative (Usher 

& McClelland, 2001). Additionally, random-walk models cannot be extended to 

account for decisions with multiple alternatives as easily as accumulator models 

(Ratcliff et al., 2016). 
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Note that, since, as described above, the MEP signal tracks each response 

alternative (i.e. the preparation of each muscle associated with a response) 

separately, we assume that the trajectory associated with each alternative is 

modelled by the associated accumulator of the accumulator model. In a binary 

choice, the difference wave reflecting the difference in MEP amplitude between 

the responding and the non-responding muscle is therefore assumed to be 

modelled by the difference between the two accumulators. The CPP on the 

other hand cannot distinguish between alternatives. We speculate that each 

alternative is accumulated in a separate neural population in proximity to 

centroparietal electrodes, but that, due to volume conduction, only the sum of all 

activity is recorded on the scalp. We therefore model the CPP as the sum of all 

accumulators in a model. 

 

6.1. Summary 

 

Using these methods, we set out to explore the underlying mechanisms of 

human perceptual decision-making and specifically, address the questions (1) 

whether accumulation, as predicted by sequential sampling models, occurs in 

the human brain, (2) which signals are most suitable to track accumulation, 

given that it occurs, (3) what impact a number of manipulations have on these 

signals, and importantly, (4) to what extent modelled accumulation profiles 

resemble these signals (see Chapter 1). First, we will summarise the findings of 

each experimental chapter, before we describe how each of these questions 

was addressed by our studies in the following section (see section 6.2). 

 

In Chapter 2, we explored the impact of the speed-accuracy trade-off (SAT) on 

perceptual decision-making. Participants were instructed to make easy and 

hard decisions either as quickly or as accurately as possible while we either 

recorded their EEG or used TMS to record MEPs. The SAT has traditionally 

been implemented in the sequential sampling model literature by adjusting the 

threshold parameter, with lower and higher thresholds associated with speed 
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and accuracy instructions respectively (Brown & Heathcote, 2008; Heitz, 2014; 

Ratcliff, 2002). We expected that this difference in the amount of evidence 

accumulated in each condition would translate into an amplitude difference in a 

neural substrate of the decision variable. However, evidence from studies using 

neurophysiological data from non-human primates have questioned this 

implementation of the SAT as they found no difference in amplitude of decision-

related firing rates between SAT conditions, and instead found more 

widespread changes in activity (Heitz & Schall, 2012, 2013). Our results 

supported these neurophysiological findings. Although we found that both the 

CPP and the MEP signal displayed a gradual increase over the course of the 

decision, which increased at a rate depending on the difficulty of the decision 

and peaked at the response, supporting their roles as decision variable signals, 

we found no amplitude differences between speed and accuracy conditions in 

either of the neural signals.  

 

We used two types of models to explain our data. First, we used a race model 

(i.e. an accumulator model) which, in line with the traditional approach, varied in 

threshold across SAT conditions. In our second model, we ‘rescaled’ the 

estimated parameters from the standard model. In line with previous 

neurophysiological findings suggesting more widespread changes in activity 

instead of specific amplitude differences (Heitz & Schall, 2012, 2013; Murphy et 

al., 2016), we set out to model a global modulation associated with the SAT 

using the rescaled model. To this end, we used the parameters estimated by 

the standard model (i.e. a model with variations in the threshold parameter), 

and rescaled the parameters in the speed condition so that the threshold in both 

SAT conditions was identical, and the original difference in threshold was 

transferred onto all other parameters. Note that this implementation of the SAT 

is conceptually different from the variation in threshold, but is mathematically 

identical and provides the same model fit to the RT data. We simulated mean 

accumulation profiles for each condition for each of the models. As expected, 

the original model with threshold changes led to accumulation profiles which 

differed in amplitude between SAT conditions. The accumulation profiles 

predicted by the rescaled model however, showed no amplitude differences 

and, in fact, replicated the pattern observed in the CPP and MEP signal. These 
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findings indicate that the SAT is associated not with a specific change in the 

amount of evidence required to make a decision, but with a global modulation of 

brain activity. 

 

However, our interpretation of the findings crucially depends on the validity of 

the CPP and MEP signals as substrates of the decision variable. Given our 

findings which showed that the profiles displayed by the neurometric measures 

did not match the accumulation profile predicted by sequential sampling models 

using the traditional implementation of the SAT, it could perhaps be concluded 

that the neural signals used here do not display accumulation. Instead, we 

concluded that the neural signals reflect accumulation and that the model needs 

to be adjusted. We came to this conclusion for a number of reasons. Firstly, the 

neural signals displayed a number of other characteristics of the decision 

variable, such as the gradual build-up which peaked at the time of response, 

and the expected slope differences between easy and hard conditions. 

Secondly, we observed the same patterns of activity in two fundamentally 

different signals, one EEG signal which likely displays accumulation directly and 

one signal of corticospinal excitability displaying down-stream accumulation in 

form of motor preparation, each of which have previously been shown to reflect 

accumulation, and thus provide converging evidence for our interpretation 

(Hadar et al., 2015; O’Connell et al., 2012). Thirdly, similar findings, 

contradicting the traditional implementation of the SAT using threshold 

variations have been reported in previous studies using neural data in both 

human and non-human primates (Heitz & Schall, 2012, 2013; Murphy et al., 

2016), further supporting our findings. And lastly, we were able to account for 

the neural signals by making only a small adjustment to the existing model, 

which implements a conceptually different explanation, namely a global 

modulation in activity, while remaining mathematically equivalent and without 

affecting the original model fit. We therefore conclude that both the CPP and the 

MEP signal are valid neural correlates of the decision variable, and importantly, 

that our results indicate that strategic changes in focus between speed and 

accuracy of perceptual decision-making are explained on a neural level not by a 

specific change in thresholds, but by a more global modulation of activity. 
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Nevertheless, it is important to note that, by observing no amplitude difference 

between speed and accuracy conditions, we identified a clear and somewhat 

unexpected difference between predictions made by sequential sampling 

models and neural data proposed to reflect the accumulation process. This 

necessarily questions the role of the neural signals used here, particularly since 

both the CPP and the MEP signal have not yet been supported by a large body 

of research. Therefore, to further strengthen our conclusions regarding the SAT, 

and to guide future work, we set out to test the role of the neural signals in 

Chapter 3. To this end, we tested a range of previously suggested neural 

correlates of the decision variable in order to identify the most suitable neural 

accumulation signal. We chose EEG signals since they, due to their temporal 

resolution, are the most appropriate measure to track the fast dynamics of the 

decision variable, and a variety of EEG signals have previously been proposed 

to reflect the accumulation process. Note that we did not test any other TMS 

methods as we are not aware of any alternative ways to generate accumulation-

like signals to the one used in Chapter 2. However, we tested EEG signals, 

which, like the MEP signal used above, reflect motor preparation.  

 

Specifically, we tested three of the most well-established neural correlates of 

the decision variable in the human brain, namely the CPP (Kelly & O’Connell, 

2013; O’Connell et al., 2012; Twomey et al., 2016), the lateralised readiness 

potential (LRP; Kelly & O’Connell, 2013; Polanía et al., 2014), and event-related 

desynchronisation (ERD) in the beta frequency (both contralateral and 

lateralised; Donner et al., 2009; O’Connell et al., 2012). Note that some of these 

signals (e.g. beta ERD reported by Donner et al., 2009) were observed using 

magnetoencephalography (MEG) rather than EEG, but are equally observable 

in EEG (O’Connell et al., 2012).  

 

In order to evaluate these signals and their roles as useful correlates of 

decision-making, we explored their profiles during decision-making with different 

levels of difficulty. The manipulation of difficulty was chosen as it is associated 

with very clear predictions regarding the shape of the accumulation profile. 

Unlike most other decision manipulations, difficulty is associated with a strong 

general consensus regarding its implementation in sequential sampling models 
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and its effects on the accumulation profile. Decision difficulty, i.e. the quality of 

sensory evidence, is known to be modelled by a variation in the drift rate 

parameter, i.e. the slope of the accumulation, with harder decisions being 

associated with lower accumulation rates (Donkin et al., 2009; Ratcliff & 

McKoon, 2008; Ratcliff & Rouder, 1998). Importantly, this modelled slope 

difference has been supported by a number of neural signals, reporting steeper 

build-up rates in neural activity for easy compared to hard decisions (de 

Lafuente et al., 2015; Hanks et al., 2011; Roitman & Shadlen, 2002). Together, 

these findings contribute to a large, unanimous body of research suggesting 

that any neural signal which claims to reflect decision-related accumulation 

must display slope differences associated with different levels of difficulty.  

 

We tested to what extent the CPP, the LRP, and beta ERD displayed these 

slope differences. We were not able to replicate previous findings indicating that 

beta ERD reflects accumulation (Donner et al., 2009). We found no difference in 

beta power slope between easy and hard decisions, but speculate that this may 

be a task-specific finding, as longer RTs may be necessary to accurately detect 

beta ERD. Conversely, we found that the CPP displayed all expected 

characteristics, with easier decisions associated with steeper slopes, supporting 

its role as a neural correlate of the decision variable. The LRP findings were 

less clear, but the waveform overall displayed characteristics comparable to 

those observed in the CPP. 

 

These findings indicate that, out of the three most commonly used EEG 

correlates of the decision variable, the CPP is the most suitable signal to track 

the evolution of the accumulation process, thereby supporting the findings 

described in Chapter 2. Additionally, we found that, in line with previous findings 

(Kelly & O’Connell, 2013) the LRP closely followed the CPP. Since the LRP has 

been shown to arise from supplementary motor areas (Ikeda & Shibasaki, 1992; 

Lang et al., 1991), this result supports the notion that accumulation is fed 

forward into motor areas in decisions requiring motor responses. Given the 

comparatively high spatial resolution of TMS, we can be confident that the MEP 

signal reported in Chapter 2 is an accurate reflection of excitability in motor 

areas (Bestmann & Krakauer, 2015; Hadar et al., 2012; Kiers et al., 1997). We 
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therefore argue that, if accumulation is represented in motor areas, as 

suggested by the LRP findings, it should also be visible in MEP amplitudes. The 

exploration of different EEG signals which have been claimed to reflect 

accumulation in Chapter 3 therefore arguably not only supports the role of the 

CPP as a neural correlate of the decision variable, but also gives some insight 

into accumulation in motor areas, indicating the validity of the MEP signal as a 

potential neural correlate of decision-making. 

 

However, while the comparison of different EEG signals showed that the CPP is 

the most suitable neural substrate of the decision variable, it did so only in 

comparison to the LRP and beta ERD. We did not test the similarity of the CPP 

with predictions made by sequential sampling models directly, and although this 

is arguably not necessary given a simple and well-established manipulation 

such as difficulty, our results can only comment on the CPP’s suitability over 

that of the other signals. It cannot give insight into the similarity of the CPP and 

the predictions made by sequential sampling models beyond what was already 

reported in the results of Chapter 2, i.e. that both the CPP and simulated 

accumulation profiles of a sequential sampling model vary in their build-up rate 

with easy decisions displaying a higher slope than hard decisions. 

 

Therefore, having established the CPP as the most suitable out of three of the 

most commonly suggested EEG correlates of the decision variable, in Chapter 

4, we set out to directly test its profile compared to model predictions in more 

complex settings. To this end, we explored decision-making with non-stationary 

evidence and biased decision-making in two separate experiments. In the first 

experiment, we used a motion discrimination task with easy and hard trials, in 

which the motion either continued in the same direction throughout the decision-

making process, or was interrupted for a brief period by either random motion or 

motion in the opposite direction. In line with previous research (O’Connell et al., 

2012), we found that the CPP was sensitive to these dynamic changes in 

evidence. However, contrary to our predictions, CPP waveforms associated 

with interruptions in evidence displayed similar profiles, regardless of whether 

the evidence was simply interrupted or reversed. A race model with intra-trial 

variation in drift rate accounted for the resulting behavioural data. We used the 
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parameters of the model to simulate the mean accumulation profile for each 

condition and directly compared the resulting waveform to the CPP. We found 

that the model predictions displayed a qualitatively similar pattern to the CPP 

waveform. Both profiles showed lower initial slopes in hard than in easy 

waveforms, and both profiles associated with un-interrupted evidence displayed 

the typical build-up over the course of the decision before peaking at the time of 

response, while profiles associated with interrupted and reversed evidence 

showed a dip in the build-up. We noted the unexpected similarity between the 

waveforms associated with the two interruption conditions in both the CPP and 

the model simulation, highlighting the necessity of using model-based 

approaches to explore more complex decision-making.  

 

In the second experiment, motion discrimination trials were preceded by cues 

which either gave no information about the upcoming trial or pointed towards a 

specific direction, which was either congruent or incongruent with the motion 

direction of the upcoming trial. We found that the CPP differed in amplitude 

between the conditions, with incongruent waveforms displaying the highest 

amplitude, followed by uncued and lastly, congruent waveforms. We used a 

race model to account for the behavioural data and found that a model with 

varying starting points across conditions was able to explain the empirical RT 

distributions. The simulated accumulation profile associated with this model 

displayed the same patterns as the CPP, supporting the role of the CPP as a 

decision variable signal. However, the model also indicated that the amplitude 

differences observed were not strictly due to starting point differences across 

conditions (which cancelled out as we summed over cued and non-cued 

accumulators, i.e. increased and decreased starting points), but due to a 

selection bias caused by only considering correct trials.  

 

Together, these findings support the role of the CPP as a correlate of the 

accumulation process. They also highlight the importance of combining 

modelling and neuroimaging approaches in order to gain interpretable insights 

into decision-making, as the shape of the accumulation profile is difficult to 

predict based on conceptual reasoning alone. Using a number of manipulations, 

including difficulty, speed stress, non-stationary evidence, and decision biases, 
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we have shown that the CPP reflects the decision variable and displays similar 

patterns to those predicted by sequential sampling models.  

 

A further manipulation which is arguably of particular interest when studying 

perceptual decision-making in the most ecologically valid way possible, is the 

manipulation of the number of response alternatives. Since perceptual 

decisions are rarely made between two opposite alternatives outside of the lab, 

any decision-making model needs to be able to account for multi-alternative 

decision-making. There have been a number of attempts to explore sequential 

sampling models under these conditions, indicating that particularly the leaky 

competing accumulator model (LCA; Usher & McClelland, 2001), can explain 

multi-alternative decision-making in a number of paradigms (Bogacz et al., 

2007; Nunes & Gurney, 2016; Roe et al., 2001). However, to our knowledge, 

neural correlates of the decision variable in perceptual decisions with multiple 

alternatives have not yet been explored in humans.  

 

We therefore set out to explore the effects of four-choice compared to two-

choice decisions on a neural substrate of accumulation in the human brain. 

However, although we confirmed the role of the CPP as a neural correlate of 

decision-making, we deemed a different neural signal more appropriate to 

explore decisions between multiple alternatives. As described above, the CPP 

tracks the evolution of the decision as a whole but cannot distinguish between 

different alternatives. To our knowledge, the CPP has not been used to track 

decisions between more than two alternatives, and although we speculate that it 

would track the sum of all accumulation, regardless of the number of 

alternatives, it cannot give a detailed insight into individual response 

alternatives which is arguably more important in multi-alternative decision-

making. MEP signals on the other hand, can track the level of preparation 

associated with each response individually and therefore provide richer data, 

more appropriate to explore decisions with multiple alternatives. 

 

We used a colour discrimination task in which participants were asked to 

identify the dominant one out of four colours. Each colour was associated with a 

different response muscle. A cue before each trial informed the participant 
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which out of the four colours were response options, thereby distinguishing 

between two-choice and four-choice trials. Besides the manipulation of the 

number of response options, we also manipulated difficulty by introducing easy 

and hard trials. By recording MEPs from two muscles during each TMS trial and 

pooling over trials, we were able to track the evolution of all four possible 

responses. 

 

In line with previous findings from non-human primates (Churchland et al., 

2008), we found that accumulation profiles displayed lower baselines in four-

choice, compared to two-choice trials. However, contrary to our expectations, 

we found no difference in slope between easy and hard decisions. We used the 

LCA model to fit the data (Usher & McClelland, 2001). This model was chosen 

as it had previously been shown to account for decisions with multiple 

alternatives (Bogacz et al., 2007; Nunes & Gurney, 2016; Roe et al., 2001), but 

also due to its neurophysiological plausibility. The race model we used in 

previous experiments is a simplified version of the LCA and accounts well for 

decision-making data in many paradigms. The LCA differs from the race model 

primarily in its assumption of leakage of information over time, and lateral 

inhibition between accumulators, both of which arguably play a greater role in 

more complex decisions like those with multiple alternatives.  

 

We found that a model with four accumulators, and varying inhibition 

parameters across response muscles, varying starting points across two-choice 

and four-choice trials, as well as varying drift rates for easy and hard decisions, 

was able to account for the behavioural data. The simulated accumulation 

profiles based on this model were similar to the MEP signals, confirming the 

baseline difference. Interestingly, like the MEP signal, the simulations did not 

show differences between easy and hard trials. Although drift rates (i.e. 

accumulation slopes) were free to vary across difficulty conditions, there was no 

visible difference in the accumulation profiles. On the one hand, this finding 

confirms the role of the MEP signals as an accumulation signal as it displays 

the same pattern as the model predictions, even when the results are 

unexpected. On the other hand however, we have previously claimed that the 

manipulation of difficulty has been associated with slope variations in a vast 
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body of both modelling and neuroimaging research, and that any neural 

correlate of the decision variable should display these variations.  

 

However, in this particular case, the difference between easy and hard trials 

was likely not large enough to translate into a visible slope difference. Although 

the difficulty manipulation led to the expected behavioural differences, as well 

as differences in absolute drift rate values, these were not seen in the 

accumulation profile. We speculate that this is a task-specific finding. All other 

experiments reported in this project, which included a manipulation of difficulty, 

also included a calibration of difficulty for each participant, ensuring not only that 

each participant can complete the task, but also that easy and hard decisions 

are different from each other. This calibration did not take place in the colour 

discrimination task. Instead, the same difficulty levels were chosen for each 

participant, and although all participants were able to complete the task, the 

difference between easy and hard trials was likely too small. This is also 

supported by the comparatively small differences in the RTs associated with 

easy and hard trials. We therefore argue that although there was no visible 

slope difference between easy and hard decisions in the MEP signal, this 

finding is explained by a lack of difference between the conditions and does not 

question its role as a neural correlate of the decision variable, which was 

confirmed by model predictions. 

 

Overall, this experiment was, to our knowledge, the first to track the decision 

variable associated with decisions with multiple alternatives in the human brain, 

and the first to demonstrate a baseline difference in activity associated with a 

variation in the number of response alternatives, which has previously been 

demonstrated in non-human primates (Balan et al., 2008; Basso & Wurtz, 1998; 

Churchland et al., 2008; Cohen et al., 2009). 
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6.2. Overall Findings 

 

Based on the review of the literature in Chapter 1, we identified four main open 

questions we aimed to address in this project. In the following, we described the 

extent to which we answered these questions.  

 

First, we asked the fundamental question of whether accumulation, as 

described by sequential sampling models, occurs in the human brain. Although 

accumulation-like processes have repeatedly been established in the neural 

activity of non-human primates (Gold & Shadlen, 2000; Roitman & Shadlen, 

2002; Shadlen & Newsome, 1996, 2001), it remains somewhat unclear whether 

these findings based on anatomically different and over-trained monkeys can be 

applied to the human brain. Note also that sequential sampling models were 

designed to account for RT data and not to predict neural mechanisms. 

Although a variety of neural signals have been suggested to reflect this 

accumulation process in the human brain (Donner et al., 2009; O’Connell et al., 

2012; Philiastides & Sajda, 2006; Twomey et al., 2015), a clear consensus 

regarding whether sequential sampling occurs in the human brain and how to 

record it is yet to be reached. Nevertheless, due to recent findings suggesting 

promising correlates of decision-making (Hadar et al., 2015; Kelly & O’Connell, 

2013; O’Connell et al., 2012; Twomey et al., 2016), we hypothesised that 

accumulation-to-bound dynamics like those predicted by sequential sampling 

models occur in the human brain and can be observed using EEG and TMS 

methods. 

 

The current project confirmed this hypothesis. We found that both EEG and 

TMS methods can be used to track accumulation-like signals in the human 

brain and utilised this in a variety of experiments. Specifically, both the CPP and 

the MEP signal displaying corticospinal excitability related to response 

preparation displayed a profile that is typical for the accumulation process 

suggested by sequential sampling models. Both signals build up gradually over 

the course of the decision and peak at the time of response, suggesting an 

accumulation-to-bound process. Therefore, in line with previous research 
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(Hadar et al., 2015; Kelly & O’Connell, 2013; O’Connell et al., 2012; Polanía et 

al., 2014), we argue that sequential sampling occurs in the human brain during 

perceptual decision-making and that the associated accumulation process can 

be observed using EEG and TMS methods. 

 

The second question we aimed to address asked, given that decision-related 

accumulation can be observed in the human brain, which signals are most 

suitable to research this process. A large variety of signals stemming from a 

range of techniques, including functional magnetic resonance imaging (fMRI; 

Heekeren et al., 2004; Ho et al., 2009; Philiastides & Sajda, 2007), M/EEG 

(Dmochowski & Norcia, 2015; Donner et al., 2009; Kelly & O’Connell, 2013; 

O’Connell et al., 2012; Polanía et al., 2014; Twomey et al., 2015), and TMS 

(Hadar et al., 2015; Michelet et al., 2010) have previously been suggested to 

display characteristics of the decision variable. Due to its poor temporal 

resolution, fMRI is better suited to identify specific brain structures associated 

with decision-making, than to track the fast-evolving decision-variable, and was 

therefore not further considered. EEG approaches, on the other hand, benefit 

from a very high temporal resolution and are arguably the most appropriate 

method to track decision-related accumulation in humans. As indicated above, 

the ERP component CPP is of particular interest here, as it is one of the few 

EEG signals which is posited to track accumulation directly (O’Connell et al., 

2012). Note that MEG and EEG record highly similar processes and although 

we chose EEG in the current project, many conclusions would arguably also 

apply to MEG data.  

 

TMS approaches allowing for a dynamic tracking of decision-related response 

preparation, like the one suggested by Hadar et al. (2015) may provide 

additional insights, as the resulting MEP signals can arguably track individual 

responses, which is not possible using the CPP, which we argue represents the 

sum of all accumulation during a given decision. We therefore hypothesised on 

the one hand that the CPP can be used to track the decision variable, 

suggesting a parietal locus of accumulation, but on the other hand, that down-

stream accumulation can also be observed in motor areas which are related to 

the preparation of the response and can be tracked using MEP signals. 
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The results in this project confirmed this hypothesis. We found that the CPP can 

be used to track decision-related accumulation in a variety of paradigms, 

supporting previous research which identified it as a correlate of the decision 

variable (Kelly & O’Connell, 2013; O’Connell et al., 2012). In a direct 

comparison, we specifically identified the CPP to be the most suitable neural 

correlate of the decision variable, compared to other frequently suggested EEG 

signals (see Chapter 3). We also found that the motor-related LRP closely 

followed the profile of the CPP, supporting the notion that accumulation is 

continuously fed forward into the motor system.  

 

Therefore, it is unsurprising that the MEP signal which displays the evolution of 

response preparation was also found to display the decision-related 

accumulation of evidence, supporting previous findings (Hadar et al., 2015). 

Although this signal tracks accumulation indirectly and depends on the 

association of the decision with a specific motor response, rendering the CPP 

as the more suitable signal to explore accumulation in most paradigms, it has 

an important advantage over the CPP. Since MEPs can be recorded from each 

response-relevant muscle separately, the MEP signal, unlike the CPP, can track 

the accumulation of each response alternative individually and is, to our 

knowledge, the only signal that can do so in decisions involving more than two 

response options in humans (see Chapter 5). We therefore conclude that both 

the CPP and the MEP signal are suitable signals to track the decision-related 

accumulation of evidence in the human brain, with the CPP displaying 

accumulation directly and the MEP signal showing the accumulation-dependent 

response preparation, and thereby complementing each other. 

 

Thirdly, we aimed to explore how the signals we identified as neural correlates 

of the decision-making process respond to a number of manipulations, to further 

test their roles as decision variable signals. To this end, we chose a total of five 

different manipulations (difficulty, SAT instructions, continuity of evidence, 

decision bias, number of alternatives), each of which is known to affect 

behavioural decision-making, and has previously been explained using 

sequential sampling models. We hypothesised that the neural correlates of the 
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decision variable would be sensitive to these manipulations and display 

changes in their profile which are consistent with parameter changes which 

explain the associated behavioural changes. 

 

The current findings largely supported these hypotheses. In a series of 

experiments, we recorded the CPP under a variety of conditions, including 

difficulty, non-stationary evidence, and decision biases (see Chapter 2-4). 

These manipulations have previously been associated with variations in the 

value of the accumulation slope (Ratcliff & McKoon, 2008), the continuity of the 

slope (Holmes et al., 2016), and the starting point of the accumulation (Leite & 

Ratcliff, 2011) in the modelling literature. We were able to demonstrate each of 

these changes in the accumulation profile in the CPP, supporting its role as a 

neural substrate of the decision variable. Additionally, we tested and observed 

the expected differences in the MEP signal in response to the manipulations of 

difficulty and a variation in the number of response alternatives (see Chapter 2, 

5).  

 

However, we also explored the impact of the SAT which is associated with a 

difference in threshold in the sequential sampling model literature (Brown & 

Heathcote, 2008), on both the CPP and the MEP signal, but did not observe the 

expected difference (see Chapter 1). As explained above, we nevertheless 

argue that both signals do in fact display the decision variable and that the 

notion of a threshold change to explain the SAT requires reconsideration. 

 

Lastly, we addressed the question of how similar the identified neural substrates 

of the accumulation process are to the predictions made by sequential sampling 

models by directly applying the models to the data, rather than evaluating the 

neural signals based on intuitive predictions. As outlined in Chapter 1, we argue 

that, in order to disentangle human perceptual decision-making, a combination 

of often separated approaches, namely modelling of behavioural data and 

neuroimaging, is necessary. Increasingly complex experimental designs in 

particular require a combination of methods to inform each other. This 

combination is particularly important in order to evaluate a neural signal’s role 

as a correlate of the decision variable, as interactions between parameters 
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often cause even simple sequential sampling models to predict accumulation 

profiles which are not predictable through intuitive reasoning alone. Equally, 

neural correlates of the decision variable can be used to inform sequential 

sampling models. This is particularly the case as sequential sampling models 

are designed to account for RT distributions rather than neural signals and can 

often explain the same data in a number of different ways, which lead to 

mathematically equivalent model fits, but qualitatively different accumulation 

profiles, which can only be evaluated using neural accumulation profiles. 

 

We therefore fitted a sequential sampling model to each of our behavioural data 

sets and used the resulting parameters to simulate mean accumulation rates 

which we directly compared to the neural signals. Using this approach, the 

model fit was only influenced by the RT data and was never qualitatively 

changed to match the neural signal. Therefore, qualitative overlaps between the 

simulated and the empirical accumulation profile provided strong support for 

both the validity of the neural signal as a substrate of the decision variable, and 

the sequential sampling model as a neurally plausible model. By using this 

combination of approaches, we hypothesised that the waveforms of both the 

CPP and the MEP signal would display qualitative similarities to the simulated 

accumulation profile predicted by sequential sampling models. 

 

We confirmed this hypothesis. In two experiments, the CPP displayed 

qualitatively similar patterns to those simulated by sequential sampling models 

(see Chapter 4). Similarly, the MEP signal was similar to simulated 

accumulation profiles, even in unexpected ways as neither the empirical nor the 

simulated profiles displayed the expected slope difference between easy and 

hard decisions (see Chapter 5). An exception is reported in Chapter 2, where 

both the CPP and the MEP signal displayed the same patterns but did not 

match the simulated accumulation profiles. However, since this is the only case 

in which the empirical and modelled profiles disagree, we used the neural 

findings to inform the model and adjusted it to match the neural signals without 

changing it mathematically. Together, these findings support the validity of the 

CPP and the MEP signal as neural correlates of the decision variable as well as 

the neural plausibility of sequential sampling models.  
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6.3. Limitations and Future Directions 

 

Overall this project shed light on human perceptual decision-making by 

measuring a variety of potential neural correlates of the decision variable in the 

human brain and evaluating each in the context of sequential sampling models. 

Although this triangulation of methods, making use of behavioural data, 

mathematical modelling, and neuroimaging, is a strong approach, there are of 

course, a number of limitations. 

 

One limitation, which is already discussed briefly above, is that our findings may 

appear somewhat unfalsifiable. It may seem like in this project, the chosen 

neural correlates of the decision variable (i.e. the CPP and the MEP signal) 

could not be questioned in their role, as different models (the LCA or a simpler 

race model) were chosen depending on which best fitted the data (see Chapter 

4-5), and even altered when their predictions did not match the neural signal 

(Chapter 2). However, we argue that this claim is inaccurate for three reasons. 

Firstly, while we chose different models depending on which best fitted our data, 

we did so only with regards to the behavioural data. We aimed to choose the 

most simple yet neurophysiologically plausible representative of the sequential 

sampling model framework and used a more complex model (i.e. the LCA) only 

in experiments with particularly complex decisions (Chapter 5). In each 

experiment, a number of models were fitted to the data and the best model was 

chosen based on the quality of the fit to the behavioural data alone. The 

similarity between the prediction of the model and the neural signal made no 

contribution to the model selection. Secondly, we adjusted the model to fit the 

neural data in only one instance (Chapter 2). In this particular case, we had a 

number of reasons which are discussed more thoroughly above, including 

ongoing debate about the validity of the original model, which had repeatedly 

been questioned in previous literature. And thirdly, we have demonstrated that 

neural signals which have been suggested to reflect accumulation can in fact be 

falsified in Chapter 3, where we rejected a previously proposed neural decision 

variable. 
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An additional limitation of this project is that, while we have explored the 

evolution of accumulation over time in the human brain, we cannot answer the 

question of which brain regions are involved in this process. Although we have 

a good understanding of the structural origins of the MEP signals (Bestmann et 

al., 2008; Hadar et al., 2015; Rothwell et al., 1987), we do not assume that 

these structures accumulate evidence directly. The CPP on the other hand 

reflects accumulation but we have little information about its source. Although 

based on its recording site, a parietal source is likely, and supported by fMRI 

findings which have suggested parietal regions to be involved in evidence 

accumulation (see Mulder et al., 2014), EEG is not an appropriate method to 

gain insight into the structural origin of a given signal. While the decision 

variable in the human brain can be studied without having identified the location 

of its source, future work, e.g. using a combination of EEG and fMRI is 

necessary to localise the neural structures responsible for sequential sampling.  

 

A further limitation is that we set out to explore decision-related accumulation in 

the human brain in the context of sequential sampling models as a whole. 

Although we necessarily chose specific models, namely two accumulator 

models (a race model without inhibition or leakage, and the LCA; Usher & 

McClelland, 2001), to fit the data, we interpreted the findings primarily with 

reference to the entire sequential sampling model framework, rather than a 

specific model. Note that, as discussed above, accumulator models were 

chosen due to their neural plausibility and extendibility to multi-alternative 

decision-making, and applied in this simple form where appropriate in order to 

make the least amount of assumption possible, and that the more complex 

version of the accumulator model (i.e. the LCA) was only used in experiments 

with more complex decision processes in which the additional leakage and 

inhibition parameters made an impact on the accumulation profile. 

Nevertheless, these models were used primarily as examples of sequential 

sampling models as a whole and were not directly compared to each other.  

 

Although we argue that this method was appropriate here as we aimed to 

comment on whether accumulation as predicted by the sequential sampling 

model framework as a whole occurs in the human brain, and chose the most 
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appropriate representatives of this framework, we are aware and even provide 

evidence (see Chapter 2) that the choice of a specific model can have a large 

impact on the profile of the simulated accumulation path. Building on our 

findings, confirming the validity of the CPP and the MEP signal as neural 

correlates of accumulation, we therefore suggest that future work directly 

compares these neural signals to accumulation profiles from a variety of 

different sequential sampling models, thereby evaluating the neural plausibility 

of each of the models as well as shedding light on the underlying neural 

mechanisms of perceptual decision-making. For example, finding that the 

accumulation path predicted by a model with inhibition between accumulators 

displays more similarities to the CPP than a model without inhibition would not 

only indicate that the model with inhibition is a more appropriate model, but also 

that neural populations which integrate evidence for competing alternatives 

inhibit each other. We therefore propose that a direct model comparison would 

provide great insights into human perceptual decision-making. 

6.4. Conclusion 

 

In summary, we set out to explore perceptual decision-making in the human 

brain in the context of sequential sampling models. Sequential sampling models 

assume that we make decisions by accumulating sensory evidence until a 

threshold is reached and a response is initiated. In a series of experiments, we 

demonstrated that these accumulation-to-bound processes occur in the human 

brain. We used a model-based approach, combining mathematical modelling of 

behavioural data and neuroimaging, by fitting sequential sampling models to 

empirical RT distributions and comparing associated simulated accumulation 

profiles with neural signals. Using this approach, we supported previous 

findings which indicated that the centroparietal ERP component CPP is a 

correlate of this accumulation process. Additionally, we confirmed that in 

decisions which require a specific motor response, accumulation is continuously 

fed forward into the motor system, and as a result, can be measured using an 

MEP signal reflecting the evolution of response preparation.  
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We found that the CPP shows qualitatively similar profiles to simulated 

accumulation profiles in decisions which vary in difficulty, the continuity of 

evidence, and decision biases, confirming not only its role as a neural correlate 

of decision-making, but also the validity of sequential sampling models on a 

neurophysiological level. Further, we gained new insights into the effect of 

speed stress on decision-making and suggest that this is not explained by a 

specific variation in threshold, but instead, by a global modulation in activity. 

Lastly, we explored, for the first time, the neural activity profile of each response 

alternative in a four-choice paradigm, and confirmed previous findings from non-

human primates, suggesting that the number of alternatives influences the 

baseline activity of the accumulation process. 

 

Overall, we showed that sequential sampling models apply not only to 

behavioural data but also account for neural processes in the human brain, and 

that these processes can be observed in both the CPP and the MEP signal. We 

have argued that a combination of modelling and neuroimaging is useful to gain 

a better understanding of human decision-making, and demonstrated that both 

approaches can inform each other. We suggest that future work makes use of 

these findings in order to directly compare different sequential sampling models 

and gain further insights into the underlying mechanisms of perceptual decision-

making in the human brain. 
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7. Appendices 

7.1. Appendix 1: Model Results for 

Normalised Data (Chapter 2, Experiment 1) 

In Chapter 2 (see section 2.1), we compared the accumulation profile predicted 

by sequential sampling models to ERP waveforms. To this end, we fitted a 

model to RT data which was pooled across participants. We generated model 

predictions based on a standard model and a rescaled model and showed that 

the rescaled model is associated with accumulation profiles more similar to the 

EEG waveforms than the standard model.  

 

Since we conducted the same experiment with TMS instead of ERP data (see 

section 2.2), which required the normalisation of data, including RTs, for 

consistency, we repeated the model comparison for the ERP data set with 

normalised data. To this end, we normalised each participant’s RTs and ERPs 

by their median RT and followed the same steps as described in section 

2.1.1.5. We found that the normalisation did not affect the results. 

 

Table 7.1 displays the goodness of fit of three different models we fitted to the 

RT data. The best (lowest) BIC (Schwarz, 1978) was associated with Model 2, a 

model in which drift rate varied across difficulty conditions, and both the 

threshold and the starting point distribution varied across SAT conditions. The 

same model was shown to provide the best fit to the non-normalised data. The 

parameters for this model, as well as its rescaled version (see section 2.1.1.5.2) 

are displayed in Table 7.2. 

 

Table 7.1: Model Comparison: BIC and AIC values for each model (best BIC and AIC values in bold). 

  
Model  

  

Number of 
parameters 

Parameters 
Experiment 1 

BIC AIC 

Model 1 9 

v-easycorrect, v-easyincorrect,  
v-hardcorrect, v-hardincorrect,  

Aspeed, 
Sz, Ter, STer, σ2 

62,827 62,759 

Model 2 10 
v-easycorrect, v-easyincorrect,  
v-hardcorrect, v-hardincorrect, 

Aspeed, 

62,741 62,665 
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Sz-speed, Sz-accuracy, 
Ter, STer, σ2 

Model 3 10 

v-easycorrect, v-easyincorrect,  
v-hardcorrect, v-hardincorrect, 

Aspeed, 

Ter-speed, Ter-accuracy, 
Sz, STer, σ2 

62,835 62,759 

 

 
Table 7.2: Estimated parameter values for the chosen model (Model 2) and its rescaled version: note that 
the response threshold A in the ‘accuracy’ condition was set to 1 as a scaling parameter. 

Parameters 
Standard Model: 

parameter values per 
SAT Instruction 

Rescaled Model: 
parameter values per 

 SAT Instruction 

 accuracy speed accuracy speed 

Starting point variability (SZ) 0.216 0.644 0.216 0.741 

Response threshold (A) 1 0.869 1 

Non-decision time (Ter) 0.531 0.531 

Non-decision time variability 
(STer) 

0.477 0.477 

Diffusion constant (σ2) 0.585 0.585 0.673 

Drift rate  
(v) 

correct 
easy 1.634 1.634 1.882 

hard 0.850 0.850 0.978 

incorrect 
easy 0.210 0.210 0.242 

hard 0.039 0.039 0.045 

 

 

Figure 7.1 displays the quality of the model fit, which is identical for both the 

standard and the rescaled model. The RT distribution is summarised by five 

quantile estimates (from left to right: 10%, 30%, 50%, 70%, 90%) for each 

condition separately. The overlap between empirical and modelled quantiles 

indicates that the model fitted the data well. 



257 
 

 
Figure 7.1: Model fit: quantiles estimated from behavioural data (circles) and Model 2 simulations (crosses 
and lines) for easy (top) and hard (bottom) decisions. For each condition, correct (thick) and incorrect (thin) 
quantiles are displayed separately. Note that the model fit is identical for the standard and the rescaled 
race model. 

Figure 7.2 displays the normalised ERP (a), as well as the simulated 

accumulation profile for both the standard (b) and the rescaled (c) model. Visual 

inspection suggests that the rescaled model predicts profiles more similar to the 

ERP waveform than the standard model. The similarity of the rescaled model 

with the ERP was confirmed by a bootstrap test (see section 2.1.1.5.4) which 

showed that the mean squared errors between the ERP and the simulation was 

significantly lower for the rescaled model than the standard model (p < .05). 
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Figure 7.2: Decision variable (empirical and simulated): stimulus-locked (left) and response-locked (right) 
CPP for each condition. Note that the CPP here is a pooled average rather than a grand average. 
Additionally, the waveform has been low-pass filtered with a cut-off of 5 Hz for display only. b) 
accumulation profile (correct and incorrect accumulator summed) per condition as predicted by the 
standard race model. c) accumulation profile (correct and incorrect accumulator summed) per condition as 
predicted by the rescaled race model. 
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7.2. Appendix 2: Comparison of Two-choice 

‘within’ and Two-choice ‘between’ 

Conditions (Chapter 5) 

 

In Chapter 5 (see section 5.2.2), we collapsed over all two-choice trials, 

including trials in which both response options were mapped to the same hand 

(within) and those in which the two options were mapped onto two hands 

(between). Figure 7.3 shows the MEP signals associated with within and 

between conditions separately. The two conditions do not display any visible 

qualitative differences. 
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Figure 7.3: MEP results (smoothed MEP signal for each muscle category): stimulus-locked (left) and 

response-locked (right) smoothed signals are displayed separately for two-choice ‘between’ trials (trials 

with two response options on different hands, a) and ‘within’ trials (trials with two response options on the 

same hand b). Due to their similarity, we collapsed over ‘within’ and ‘between’ trials.   
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