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Quantitative assessment of common practice
procedures in the fair evaluation of embedded options

in insurance contracts

Anna Maria Gambaro∗, Riccardo Casalini†,
Gianluca Fusai‡, Alessandro Ghilarducci§

Abstract

This work analyses the common industry practice used to evaluate financial options
written on with-profit policies issued by European insurance companies. In the last
years regulators introduced, with the Solvency II directive, a market consistent valuation
framework for determining the fair value of asset and liabilities of insurance funds. A
relevant aspect is how to deal with the estimation of sovereign credit and liquidity risk,
that are important components in the valuation of the majority of insurance funds, which
are usually heavily invested in treasury bonds. The common practice is the adoption of
the certainty equivalent approach (CEQ) for the risk neutral evaluation of insurance
liabilities, which results in a deterministic risk adjustment of the securities cash flows.
In this paper, we propose an arbitrage free stochastic model for interest rate, credit and
liquidity risks, that takes into account the dependences between different government
bond issuers. We test the impact of the common practice against our proposed model,
via Monte Carlo simulations. We conclude that in the estimation of options whose pay-
off is determined by statutory accounting rules, which is often the case for European
traditional with-profit insurance products, the deterministic adjustment for risk of the
securities cash flows is not appropriate, and that a more complete model such as the
one described in this article is a viable and sensible alternative in the context of market
consistent evaluations.
JEL classification codes: C63.
KEYWORDS: minimum guaranteed fund, embedded option, credit risk, liquidity risk,
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1 Introduction

The most recent and widely adopted European Embedded Value (EEV) and Solvency II
principles and standards require a market consistent approach for determining the fair
value of asset and liabilities of insurance funds (see [11] and [12]).
According to the standard formula approved by the European Insurance and Occupational
Pension Authority (EIOPA) and local regulators, government bonds issued by countries
belonging to European Union all have the same risk1, i.e. the credit and liquidity risk
that they carry is not accounted in the valuation of insurance products. In order to
cope with this assumption, it is a common practice by insurance companies to introduce
a deterministic adjustment on assets cash flows, so that their present value, calculated
discounting over the risk-free curve, and their market value, are equal. This approach in
the context of market consistent evaluation, is called certainty equivalent [11, principle
13].
Hence, in the common model, credit and liquidity risk factors do not affect the volatility
of the assets portfolio and the correlation between credit and liquidity spreads of different
issuers is not considered at all. This has the further consequence that the tools generally
adopted by insurance companies for Solvency II related valuations are not adequate for
risk management, where these factors are usually included.
In this paper we propose a stochastic model for credit and liquidity risks, which allows
for correlated movements across different issuers. Therefore, it is more suitable for risk
management than the approach suggested by regulators.
In addition, we also disentangle the two sources of risk, credit and liquidity, in order to
assess their relative importance. In fact, some econometric literature suggests that the
liquidity effect is quite important in crisis period (see for instance [6]). An example of
liquidity spread is reported qualitatively in Figure 1 for the German sovereign case. The
historical series show that in several periods the Bund yield becomes smaller than the
overnight rates in spite of a positive CDS premium. This behaviour can be interpreted
as a fly-to-liquidity effect as explained in [6], i.e. there is a liquidity component in the
bond spread and it turns out to be negative, hence the liquidity adjusting factor for zero
coupon bonds (ZCBs) is greater than one as shown in Figure 2. This behaviour is also
consistent when explained in terms of the re-denomination risk as suggested in a working
paper of the European Central Bank ( [33]). By viewing the liquidity risk as a flight-to-
quality effect, we can avoid to deal with the financial market micro-structure, and focus
on the relative importance of liquidity across European sovereign issuers.
In order to separate the effects of the two sources of risk, we consider firstly a model
where the stochastic spread is driven by only one factor and we calibrate it on the Credit
Default Swap (CDS) quotations; then we add a second stochastic factor to the spread
and we calibrate it on the bonds yields. Assuming that CDS quotations are not affected
by liquidity risk2, we can isolate the contribution of the two stochastic components in the
valuation of the portfolio.
For our numerical test, we focus on the case of segregated funds whose performance
is determined by statutory accounting rules. This choice is due to the fact that the
deterministic adjustment on cash flows, due to the application of the CEQ approach, is

1For a more precise definition of bonds that are treated like government bonds under Solvency
II standards see https://eiopa.europa.eu/regulation-supervision/insurance/solvency-ii/

solvency-ii-technical-specifications
2This assumption is widely used in literature, see for instance [15] and [17].
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Figure 1: The figure shows the historical series of the 5 year German Bund BVAL yields
(red line), the Eur OIS 5Y rate (blue line) and the 5 year German CDS premium (green
line).
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Figure 2: The figure shows the historical series of the 5 year German liquidity adjustment
factor for ZCBs from April 2015 to April 2016.

3



particularly inappropriate in this case. Therefore, we test the impact of our new model
versus the CEQ approach also with mark to market rules. Moreover, although we use
Italian specific accounting rules for the segregated fund in order to produce our numerical
results, very similar products are popular in other European countries (Germany and
France are a good example), where they are traditionally used for saving or retirement3.
The paper is organized as follows. Section 2 describes a with-profit segregated fund and
explains the generally adopted (in market consistent evaluations) certainty equivalent
approach used to evaluate the minimum guaranteed option. In Section 3 we describe our
jointly stochastic model for interest rate, credit and liquidity risks and we perform the
calibration of this model on market data. Section 4 presents the numerical evaluation
of the embedded options. Results obtained with the common procedure are compared
to the ones obtained with our model, inclusive of credit and liquidity risk. Conclusive
remarks are presented in last section.

2 Quantitative assessment of the common practice

Fundamental aspects in the evaluation of insurance products and in particular of segre-
gated funds are the statutory accounting rules which drive the profit sharing mechanism
(between policyholder and shareholder) and ultimately, the shareholder obligations to-
ward policyholders.
The common practice for the implementation of a market consistent framework consists
in using a certainty equivalent approach (CEQ) to evaluate assets, which for risky securi-
ties boils down to applying a risk adjustment to their cash flows. Therefore, in practical
valuations, it becomes critical to deem which assets are risk free (and therefore risk ad-
justed according to CEQ), and which are not. In the latter case, the certainty equivalent
approach may not be applied, depending on the sophistication of the calculators imple-
mented. Unfortunately, according to Solvency II standard formula, all government bonds
issued by sovereign countries belonging to the European Monetary Union are risk free4.
This contrasts with the view of capital markets, which quote very different government
bonds spreads (e.g. over the Euro overnight interest rate swap) on EMU sovereign is-
suers. The consequence is that insurance companies, in order to treat homogeneously
government bonds under the certainty equivalent approach, heavily risk-adjust bonds
cash flows. They have to do so in order to recover the assets market price as the present
value of cash flows discounted over the risk free curve provided by EIOPA.
Unfortunately, the value of financial options embedded in insurance contracts (minimum
guaranteed options) is not invariant to risk adjustment on cash flows because their pay-off
is determined by statutory accounting rules, as explained in the next section.

2.1 Description of segregated fund characteristics

A segregated fund is a type of investment fund administered by insurance companies in
the form of life insurance contracts offering certain guarantees to the policyholder, as
a minimum rate of return (minimum guaranteed). Segregated funds are owned by the

3See Appendix A for details on Italian accounting rules. A good description of German traditional
with-profit insurance, similar to the case treated in this paper, can be found in [2]. Another example
covering the French case can be found in [18].

4https://eiopa.europa.eu/regulation-supervision/insurance/solvency-ii/

solvency-ii-technical-specifications.
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life insurance company, not the individual investors, and must be kept separate from the
company’s other assets.
These funds consist of a pool of investments in securities such as bonds and stocks but
their value does not fluctuate according to the market value of the underlying securities.
In fact, for the purpose of determining the rate of return of the fund, assets are evaluated
at their amortized (average) cost, or book value, and income is computed according
to the dividends, coupons and amortization payments accrued over the year, plus any
realized gain or loss derived from the sales of assets with respect to their amortized
cost. Segregated funds accounting rules are explained further in Appendix A. Every
year at a specific date not necessarily coincident with the end of the fiscal year, this
rate is published and shared with the policyholder for the part exceeding the minimum
guaranteed (bonus rate), according to predefined contractual rules. The amount passed as
a bonus to the policyholder is accrued in the statutory reserve representing the insurance
company obligations to policyholders5.
To make the matter even more complicated, the determination of the return of the segre-
gated fund (the credited or bonus rate) is subject to discretionary rules (or management
actions) applied by the insurance company. These can be: the investment policy, the
investment limits, and the crediting strategy; all these determine the gains and losses
realization relative to the accounting measure.
Let p(t) be the payoff of the annual profit earned by an insurer holding a minimum
guaranteed investment fund, N(t) be the reserve (or the insurance obligation) at time t,
F (t) be the annual rate of return of the segregated fund, r̄ be the minimum guaranteed
rate, β be the policyholder participation coefficient and f be the fee charged by the
insurer to the policyholder. The payoff p(t) is given by

p(t) = N(t) (F (t)−max(β (F (t)− f), r̄))(2.1)

= N(t)
[
(1− β) F (t) + β f − (r̄ − β (F (t)− f))+] .

By the previous decomposition, it is evident that a guaranteed investment fund contains
an embedded option which is similar to a set of annual floorlet sold by the insurance
company to the policyholder. Each strip floorlet has payoff

c(t) = N(t) (r̄ − β (F (t)− f))+ .(2.2)

Hence, the value of guarantees (VOG) is the sum of the floorlet discounted prices

V OG(0) =
n∑
t=1

E
[
N(t) c(t)

M(t)

]
,(2.3)

where n is the number of years and M(t) is the stochastic money market account6. The
expectation is computed under the risk neutral measure, assuming that no-arbitrage holds
and markets are complete.
However, the embedded option can not be evaluated as a “classical” strip of put options
written on the segregated fund. In fact, the underlying of the option, i.e. the annual
return F (t), depends on both accounting and market value of assets, and the discretionary

5This type of financial guarantees where the bonus rate component is periodically consolidated in the
statutory reserve is called ”cliquet” and is typical of traditional endowment or saving insurance policies.
See [31] for an overview of guaranteed products.

6The money market account M(t) is defined later in equation (3.2)
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management actions applied to the fund. Moreover, the notional amount of the floorlet
N(t) depends on the history of accrued rates. This makes the option path dependent.
In fact, if the rate of return granted to the policyholder is greater than the minimum
guaranteed, then the following year the notional amount, which corresponds to the value
of the statutory reserve, will increase by a corresponding percentage.
For these reasons, in order to estimate the value of financial options embedded in a
generic insurance product backed by a segregated fund (value of guarantees or VOG), we
have to proceed simulating the fund applying a Monte Carlo approach, inclusive of an
appropriate asset and liabilities management (ALM) model.

2.2 Description of the simulation apparatus

The first step of our ALM model is asset calibration. By this term, we mean a procedure
apt to match the value of securities, calculated as a present value of contractual cash
flows, to their observed market value at the valuation date. This procedure should not be
confused with the calibration described in Section 3.1 of the interest, credit and liquidity
risk models. In fact, while the purpose of the latter is to determine the values of a set of
parameters so that the mathematical model describing the dynamic of some stochastic
processes is in agreement with observed data, the former is an ad-hoc procedure used to
correct any discrepancy in securities pricing which is not explained by the modelled risk
factors. Generally speaking, the more complete the pricing model, the closer the price
of a security should be to its observed market value. Since we want to compare results
calculated simulating alternative models, we need to guarantee that the asset portfolio
has the same initial value regardless the discounting factor’s specification that is used
to recover the present value of the securities. This means that all the residual value in
assets pricing, not explained by the model, is captured by a constant factor. In practice,
if the model used for the assets valuation includes all the relevant risk drivers, then the
constant factor is negligible.
This asset calibration is performed basically in two ways: adjusting the cash flows (this
is used under the CEQ approach) or adjusting the discount rate using a flat z-spread.
In our analysis both approaches have been utilised. The first one has been applied to test
the standard approach where the discount rate is the risk free rate alone. In this case the
asset calibration consists in correcting the cash flows of risky securities by a deterministic
and constant probability of default and then discounting them by using a risk free curve.
In formula, the price at valuation date (time zero) of the i-th coupon bond CBi(0, T ) is

CBi(0, T ) =
T∑
s=0

Cs,i(1− pi)s

(1 +R(0, s))s
with 0 < pi < 1,

where pi is the calibration parameter specific for the i-th coupon bond, representing the
i-th coupon bond’s default rate, R(0, s) is the risk free spot rate at time zero with tenor
s, Cs,i is the cash flow paid by the i-th coupon bond at time s, and T is the i-th coupon
bond’s maturity.
In mathematical terms, the z-spread approach consists in pricing each coupon bonds via

CBi(0, T ) =
T∑
s=0

Cs,i

(1 + R̃(0, s) + zi)s
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where R̃(s, 0) is the market (risky) spot rate at time zero with tenor s, and zi is the
z-spread specific fo the i-th security. In more details, R̃(0, s) is a stochastic interest
rate whose dynamic is described in Section 3 (see equation (3.11)) and includes credit
and liquidity spreads. This second approach is used to test our model against the CEQ
standard procedure. The z-spread is calibrated initially for each security, added to the
market curve of spot interest rate, and then kept constant during the simulation.
There are some remarkable differences between the two approaches. Using the z-spread
approach, cash flows are not affected by asset calibration; in fact the z-spread affects
only the discounting curve. The z-spread is greatly reduced by modelling appropriately a
security’s market discounting curve. That is the case of our sovereign bond model, which
includes interest, credit and liquidity risk. Furthermore, the CEQ calibration factor
(default probability) depends arbitrarily on the choice of the risk free curve, which is
the only possible discounting curve in the CEQ model. Moreover, in the calibration may
happen that the probability of default of the CEQ approach pi does not stay between 0
and 1 (trying to capture all the residual risky components as credit and liquidity). This is
the case for example of the German Bunds, when the risk free spot rate curve (R(0, t))t>0

is extracted from the European swap curve.
After having calibrated the assets portfolio, using the risk free or the market spot rate
curve at the valuation date, R(0, t) or R̃(0, t) respectively, then we use a Monte Carlo
algorithm to simulate the term structure of interest rates over time. For each Monte
Carlo scenario and for each projection year, we perform all the calculation steps of the
Asset and Liability Management process that a real insurance company would do. Firstly,
cash flows stemming from assets (such as coupons, dividends and capital reimbursements)
and recurrent, or new business, premiums are collected and used to pay for contractual
obligations which are come due. In case available cash is not enough to pay for them,
assets are sold and gains or losses are accounted.
Thereafter, crediting strategy is performed, i.e. assets are sold to meet the level of in-
come targeted by the insurance company; usually this target is often calculated as the
sum of a minimum guaranteed and a fixed management fee. This is typical of tradi-
tional insurance with-profit products because the performance of assets backing reserves,
is commonly measured at book value rather than at market value7. Therefore, the in-
surance company has the ability of smoothing the return shared with policyholders (the
credited rate) by selling assets whose market value is below (above) their book value
when the accounting performance provided by the assets before any sale is above (below)
the desired level. Ideally, the fund statutory performance (i.e. at book value) should
be high enough to cover the fees due to shareholders and leave a return to policyholder
above minimum guaranteed, in line with a stable long-term return. In practice, com-
mercial considerations often affect the determination of the credited rate that is declared
and shared with policyholder. After the crediting strategy step is completed, assets and
liabilities are aligned and capital is injected or withdrawn depending on whether assets
book value is lower or higher, respectively, than liabilities statutory value8. Finally, the
portfolio is rebalanced according to investment limits.

7The way assets book value is calculated vary across countries and generally depends on the accounting
category to which the asset is allocated (e.g. available for sales or immobilized). Coupon bonds are very
often booked at historical amortised cost.

8The assets book value is calculated under the Local Generally Adopted Accounting Principles
(LGAAP). Although this is similar to the old, Solvency I, coverage ratio, we wanted to keep our ap-
proach adherent to [10]. Indeed, aligning the value of the assets backing reserves at their statutory value
provides to be useful in decomposing the embedded value of the in-force business.

7



Because the purpose of our analysis is to evaluate the impact of introducing a richer
financial evaluation framework, which includes the stochastic credit and liquidity risk
component of sovereign bonds, all the parameters affecting the ALM policy and the
management actions9 are kept fixed, so that they do not depend either on the simulated
economic scenario, or on time. For example, the target rate used in the crediting strategy
is set constant and kept at its initial level during the simulations.
In order to minimize the turnover of the assets portfolio induced by allocation rebal-
ancing, we firstly enforce a “Buy and Hold”strategy by setting lower and upper bounds
on investments to 0% and 100% respectively. This is a sensible assumption on liability
driven products for three reasons. First, because investment managers tend to match the
maturity and duration of their assets and liabilities portfolio in order to offset interest
rate risk on net asset value. Second, because insurance portfolios very often consist of
long term investments, which cannot be disposed at an arms length (e.g. real estate or in-
frastructural investments). Third, because unnecessary turnover may deplete the reserve
of unrealized gains or losses, which are fundamental to steer the bonus rate. Nevertheless,
for completeness, we test also a “Constant Mix”approach where rebalancing occurs every
year at constant allocation, although it is never applied as such in practice on this type
of insurance products. See results in section 4.2.
Reinvestment strategy deserves a particular comment, since in our model new investments
occur on constant maturity strategy10. This gives mainly two advantages: the exposure
on key rate maturities can be controlled easily during the simulation, and no accounting
option emerges to bias the results. In fact, modelling on an accounting base new bonds
would introduce another option in the evaluation since bonds can be booked in more than
one way, e.g. immobilized or available for sales.
Another important hypothesis is relative to the actuarial factors which are assumed to be
deterministic (constant across scenarios) and independent from financial variables. For
instance, the death rate of policyholders is deterministic and estimated from life tables.
In the context of this study, assuming deterministic actuarial factors over time serves the
purpose of having a greater focus on financial aspects. However, our model can be easily
extended adding an affine stochastic mortality rate process (see for instance [24], [21], [34]
and [37]).
Finally, VOG is calculated under the hypothesis that the insurance company is always
solvent, i.e. it can not default, and it is always able to provide enough capital to cover
statutory liabilities.
Without these assumptions, comparability of results would be greatly impaired.
Although the ALM apparatus just described is similar to the packages available on many
commercial software widely used by actuaries, we implemented our on MATLAB R©, which
allows for easier but sound implementation of financial calculation libraries.

9Management actions are the set of discretionary actions that a company can decide on its own, which
may affect the annual return of the fund F (t) in formula (2.2). In the context of this paper these are
the crediting and the investment strategy. More in general, they can include also the type and extent of
re-insurance, the type and extent of future underwriting business.

10A constant maturity strategy is an investment strategy where every year a bond with a specific
maturity is purchased to be sold the following year. The proceeds are then used to finance the purchase
of a new bond with the same maturity of the bond initially purchased.
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3 The model

The model for sovereign bonds discussed in this section allows for three different sources
of risk: interest rates, credit and liquidity. Credit and liquidity risks are modelled con-
sidering a specific term structure of spreads for each issuer.
At first, we model the risk free interest rate curve using the classical Vasicek model (see
[36]). The dynamics of the short rate is described by the following stochastic differential
equation

dr(t) = a(r̄ − r(t))dt+ σdW (t),(3.1)

r(0) = r0,

where r̄ and a are the so called long run mean and speed of reversion coefficient (larger a
faster r will move towards its mean and converge to r̄), σ is the volatility parameter and
W (t) is a standard Brownian motion. The adoption of a Gaussian interest rate model is
consistent with the recent experience of negative rates. Without loss of generality, the
above dynamic is assumed to hold under the risk neutral measure.
The time t price of a risk free Zero Coupon Bond (ZCB) with maturity T is obtained by
computing the following expectation under the risk neutral measure

P (t, T ) = E
[
M(0, t)

M(0, T )

]
= E

[
e−

∫ T
t r(s) ds

]
,

where the money market account, M(0, t) is given by

M(0, t) = e
∫ t
0 r(s)ds(3.2)

It can be easily shown (see [8] page 59) that this expectation can be written as

P (t, T ) = A(t, T )e−B(t,T ) r(t),(3.3)

where

B(t, T ) =
1− e−a(T−t)

a
,

A(t, T ) = exp

[(
r̄ − σ2

2a2

)
(B(t, T )− T + t)− σ2

4a
B(t, T )2

]
.

In order to model the price of a bond issued by a defaultable issuer, we adopt an intensity
model with zero recovery. This is equivalent, see for example [23], to add to the short
rate a spread related to the creditworthiness of the issuer I. Therefore, the price of a
defaultable ZCB is obtained as

P I(t, T ) = E
[
e−

∫ T
t (r(u)+sI(u)) du

]
.(3.4)

Assuming independence between spread and risk free short rate model11, the price of the
risky ZCB can be split into the product of two components, the risk free ZCB and a
adjustment factor

P I(t, T ) = P (t, T ) AdjIc (t, T ),

11A common assumption in literature, see for instance [7] and [9].
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where

AdjIc (t, T ) = E
[
e−

∫ T
t sI(u) du

]
.(3.5)

The adjustment factor can be interpreted as a survival probability, i.e. the probability
that the issuer does not default in the time interval [t, T ].
The credit spread sI(t) is modelled as a positive stochastic process, e.g. the square-root
Cox-Ingersoll-Ross (CIR, see [14]) process. Therefore, we write

dsI(t) = bI
(
s̄I − sI(t)

)
dt+ ηI

√
sI(t)dZI(t),(3.6)

sI(0) = sI0,

where ZI is a standard Brownian motion, assumed to be independent from the Brownian
motion driving the dynamics of the risk-free rate.
Given (3.6), then the adjustment factor can be expressed in closed form (see [8] page 66)

AdjIc (t, T ) = AIc(t, T ) e−B
I
c (t,T ) sI(t),(3.7)

AIc(t, T ) =

[
2h e(b+h)(T−t)/2

2h+ (b+ h) (e(T−t) h − 1)

]2bs̄/η2

,

BI
c (t, T ) =

2
(
e(T−t) h − 1

)
2h+ (b+ h) (e(T−t) h − 1)

,

h =
√
b2 + 2η2.

A similar financial model is proposed in [20] in the so called multiple-curve Libor market,
i.e. a Libor rate model with different tenors.
We can include in our model a liquidity risk factor, as well, by introducing a liquidity
spread, lI(t), in the ZCB formula

P I(t, T ) = E
[
e−

∫ T
t (r(u)+sI(u)−lI(u)) du

]
.(3.8)

We model it again using the Vasicek model

dlI(t) = kI(l̄I − lI(t))dt+ φIdY
I(t),(3.9)

lI(0) = lI0,

where Y I is a standard Brownian motion, assumed to be independent from the Brownian
motions driving the dynamics of the risk-free rate and the credit spread.
Notice that the liquidity spread lI(t) can take negative values. This is relevant for example
in the German sovereign case as previously shown. In practice, a negative liquidity spread
allows us to capture the so called fly-to-liquidity effects; in other words a negative liquidity
spread is an implicit convenience yield that arises to the owner of a liquid bond. If we
assume that the liquidity spread is independent from both the risk free rate and the
credit spread, then, simply, the risky ZCB formula P I contains a second multiplicative
adjustment factor that has the following closed form

AdjIl (t, T ) = AIl (t, T )e+BI
l (t,T ) lI(t),(3.10)
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where

BI
l (t, T ) =

1− e−k(T−t)

k
,

AIl (t, T ) = exp

[(
−l̄ − φ2

2k2

)
(B(t, T )− T + t)− φ2

4k
B(t, T )2

]
.

The liquidity spread is calibrated using the bond yields quoted in the market.
The independence between the credit and the liquidity spread is an assumption used
in literature, see for instance [17], and it is desirable for the analytical tractability and
the parsimony of the model. Due to the complex dependence structure between the
credit and the liquidity risks highlighted by different empirical works, e.g. [4] and [19], we
think that a linear correlation between the Brownian motions driving the credit and the
liquidity spread dynamics is not appropriate. However, a more sophisticated model that
takes this dependence into account can be introduced in our framework, following ideas
in [28]. Finally, it should be clear to the reader that we are not attempting here to provide
an absolute measure of liquidity similar to what required by Basel III12, by engaging in
complex econometric models, which would require, probably, more factors than what we
have presently adopted. Rather, our aim is to complete our model in a parsimonious
way by including an additional factor able to capture a further risk component, which is
not necessarily explained by the credit spreads, and which may contribute to the relative
fluctuation of prices of European sovereign bonds denominated in Euro.
Finally, credit and liquidity spreads of different issuers can be correlated through the
Brownian motions of the CIR or Vasicek processes, i.e. for I 6= J

dZI(t) dZJ(t) = ρIJc dt,

dYI(t) dYJ(t) = ρIJl dt.

3.1 Model calibration

In this section we describe a possible calibration procedure of the model.
The implementation of the model requires firstly to identify the risk-free curve. EIOPA
proposes a risk-free discounting curve based on Euribor 6 months par Interest Rate Swap
(IRS) rates13. However, as highlighted in several papers, [3], [22], [27] and [30] among
others, the Euribor par swap rate is affected by credit and liquidity risk of the interbank
market, which is not negligible. To fix this problem the EIOPA curve contains a Credit
Risk Adjustment (CRA). An additional Volatility Adjustment (VA) is applied to the curve
(see [16]). These adjustments lead to a market consistency issue of the curve as highlighted
in [25]. Therefore, according to the recent financial literature (for instance [26], [30]
and [29]), we identify the overnight rate (in particular the Eonia rate for Euro currency)
to be the best proxy for the risk free interest rate. In particular, given that there are no
liquid options written on the Eonia rate, we calibrate the parameters of the stochastic
model for r(t) to the Euro overnight indexed swap (OIS) curve.

12See [5]. Here the liquidity of assets is measured as the ability of a security to be sold at an arm’s
length at little or no cost.

13More details about the construction of the EIOPA curve are given in Appendix B.

11



In the model previously presented in Section 3, ZCB price can be written as

P I(t, T ) = P (t, T ) AdjIc (t, T ) AdjIl (t, T )

= e(−R(t,T )−SI(t,T )+LI(t,T )) (T−t)

= e−R̃
I(t,T ) (T−t)(3.11)

where R(t, T ) is the zero risk free rate, SI(t, T ) and LI(t, T ) are the credit and liquidity
spreads, respectively, and R̃I(t, T ) is the market risky spot rate, calculated between t and
T for the issuer I. In order to estimate the credit component, we bootstrap the term
structure of survival probabilities (i.e. the no-default probabilities of the issuer) from the
quotations of credit default swap (CDS) spreads for each specific issuer. However, there
are no liquid quotations of CDS for maturities longer than 10 years. Hence, we extract
the long term survival probabilities from sovereign ZCB curves under the hypothesis that
the long term liquidity spread remains constant and equal to the 10 years spread, i.e.

LI(0, T ) = LI(0, T ∗), for T ≥ T ∗ = 10.

Without this assumption, we should have too large values of long maturity liquidity
spread14. Hence, we obtain the following formula for the issuer survival probabilities

PSI(0, T ) =
P I(0, T )

P (0, T )

(
P (0, T ∗) PSI(0, T ∗)

P I(0, T ∗)

) T
T∗

, if T ≥ T ∗.

By the previous formula the issuer survival probabilities PSI(0, T ) for T > T ∗ are com-
puted using (a) CDS quotations up to time T ∗, i.e. PSI(0, T ∗), (b) using the ZCB prices
of the issuer I, P I(0, T ) and P I(0, T ∗), obtained from quoted sovereign spot curves and
(c) using the risk free ZCB prices, P (0, T ) and P (0, T ∗), bootstrapped from the OIS
curve.
By this procedure, we have now market implied term structures of P (0, T ), PSI(0, T )
and P I(0, T ) up to 30 years and we use them to calibrate the parameters of the processes
r(t), sI(t) and lI(t), i.e. the risk free short rate and the stochastic credit and liquidity
spreads of the issuers. In particular, we consider CDS quotations and ZCB curves of
Italian and German governments on March 30th, 2016. Calibration results on market
quotations on March 30th, 2016 of the Vasicek model for r(t), of the CIR model for
sI(t) and of the Vasicek model for lI(t) are given in Table 1, 2 and 3 and Figure 3, 4
and 5, respectively. The calibrations are performed through the minimization of Root
Mean Square Deviation (RMSD) between market data (ZCB prices and probabilities of
default) and the corresponding model quantity. In Tables 1-3, we report the RMSD and
the maximum relative error (MRE) between market and model quantities. Market data
are reported in Appendix C. More details about the calibration procedure are given in
Appendix D.
Finally, we estimate the historical correlations between the credit spreads of the two
issuers, i.e. German and Italian governments, and we do the same for the liquidity spreads
of the two issuers. The data set covers the period from March, 30th 2015 to March, 30th

14 This quantity is given by the following form (as in [36])

LI(0,∞) = −l̄I − 1

2

φ2I
k2I
.
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2016 and it is composed by Euro OIS rates with maturity from 1 month to 10 years, CDS
spread quotations of the two issuers with maturity from 6 months to 10 years and bond
yield curves of the two issuers with maturity from 3 months to 10 years. For each date in
the sample, we bootstrap the ZCB prices from OIS rates, then we choose the most liquid
maturity and we invert formula (3.3) to extract r(t). In this way, we obtain the historical
time series of the risk free short rate r(t). In order to extract the historical series of
the stochastic credit spreads for each issuer, sI(t), we bootstrap in each date the issuer
survival probability curve from CDS quotations, using OIS as discounting curve, and
then we choose the most liquid maturity and we invert formula (3.7) to compute sI(t).
The correlation calculated between the series of daily returns of the two credit spreads
is assumed to be a proxy of the correlation between the two Brownian motions driving
the CIR processes. Finally, we subtract the risk free and the credit components from the
bond yields and the remaining part is identified with the natural logarithm of formula
(3.10), so that we obtain also the series of the liquidity spreads lI(t). The correlation
calculated between the series of daily returns is assumed to be a proxy of the correlation
between the two Brownian motions driving the Vasicek processes of the two liquidity
spreads. More details are given in Appendix D. The historical values of the correlation
between Italian and German credit and liquidity spreads turn out to be ρc = 0.2463 and
ρl = 0.3341, respectively. From a risk management point of view, it is very important
to assess the impact of the correlation on the volatility of portfolio. For this reason, we
simulate the portfolio using not only the historical based estimates of correlations but
also considering extreme correlation scenarios, i.e. ρc = ρl = ±1, as well as the zero
correlation case.

r0 a r̄ σ RMSD MRE (%)

-0.0107 0.1993 0.0135 0.0006 4.9×10−3 1.5

Table 1: Vasicek model: calibrated parameters on the Eonia curve on March 30th 2016.
The result of the calibration is shown in Figures 3. The root mean square deviation
(RMSD) and the maximum relative error (MRE) of the calibration are also reported.

Country s0 b s̄ η RMSD MRE (%)

GER 0.0001 0.3659 0.0075 0.0742 4.1×10−3 1.1

ITA 0.0001 0.4761 0.0389 0.1925 1.1×10−2 4.8

Table 2: CIR model: calibrated parameters on CDS and sovereign ZCB curves on March
30th 2016. The results of the calibrations are shown in Figure 4. The root mean square
deviation (RMSD) and the maximum relative error (MRE) of the calibrations are also
reported.

Country l0 k l̄ φ RMSD MRE (%)

GER -0.0078 0.9990 0.0090 0.0021 3.8×10−3 1.0

ITA -0.0001 0.4806 0.0261 0.0011 8.0×10−3 3.4

Table 3: Vasicek model: calibrated parameters on the sovereign ZCB curves on March
30th 2016. The results of the calibrations are shown in Figure 5.
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Figure 3: Calibration of the Eonia curve on March 30th, 2016 with the Vasicek model.
Blue markers are the market quotations.
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Figure 4: Calibration of the CDS and ZCB sovereign curves on March 30th, 2016 with the
CIR model. Blue markers are the market quotations. The last four market quotations
(15, 20, 25 and 30 years) are extracted from ZCB sovereign curves with the assumption
of long term constant liquidity spread as explained in Section 3.1.

3.2 Risk neutral evaluation and martingale test

In order to prove that the Economic Scenario Generator (ESG) built upon the model
presented in previous section is risk neutral and market consistent, as required by the
regulator under Solvency II directive, martingale tests on sovereign coupon bonds with
different maturities are performed. The martingale process is built by dividing the total
return performance of an asset by a the total return performance of the cash account, i.e.
the numeraire of the risk neutral measure. The results are shown in Figures 6-8, using
the calibrated parameters presented in Tables 1-3.
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Figure 5: Calibration of the sovereign BVAL curves on March 30th, 2016 with Vasicek
model for the risk free and the liquidity component and a CIR model for the credit factor.
Blue markers are the market quotations.

time (years)
0 2 4 6 8 10 12 14 16 18 20

m
ar

tin
ga

le

0.975

0.98

0.985

0.99

0.995

1

1.005

1.01

1.015

1.02

1.025
Martingale test risk free bonds

2 years maturity
5 years maturity
10 years maturity
21 years maturity

Figure 6: Martingale test performed on risk free coupon bonds with 100 Monte Carlo
simulations and parameter reported in Table 1. The error bars are the 97.5% confidence
intervals.
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Figure 7: Martingale tests performed on sovereign German and Italian coupon bonds
with 100 Monte Carlo simulations and parameter reported in Tables 1 and 2. The error
bars are the 97.5% confidence intervals.
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Figure 8: Martingale tests performed on sovereign German and Italian coupon bonds
with 100 Monte Carlo simulations and parameter reported in Tables 1, 2 and 3. The
error bars are the 97.5% confidence intervals.
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4 Numerical results

In this section, we compare the value of contractual options embedded in European
insurance (with-profit) traditional products, assuming that all government bonds are
risk free, with the value provided by the more complete model described in previous
sections. Overcoming the need of adopting a CEQ approach makes the evaluations more
sensible and robust, and ultimately, more consistent with a risk management framework.
In particular for the credit and liquidity model we study the role of the correlation
among issuers. The possibility to stress parameters such as correlation is of paramount
importance for a model to be of use as a risk management tool 15. This opportunity is not
achievable under the commonly adopted framework. In order to test the consistency of
our approach, we compare the full model including credit and liquidity spreads with a (less
complete) model that includes only credit spread and with one (incomplete) including only
the risk free interest rate as stochastic factor. In the latter case, we evaluate the embedded
option using the (standard) CEQ approach and a z-spread adjustment calibrated at
valuation date. Significantly, all the results agree with theory. In particular, results show
that adjusting cash flows for risk undesirably affects the value of the option through the
statutory accounting rules of the segregated fund.

4.1 Description of the tested portfolio

The ALM set-up described in the previous section is used to simulate, over a 20 years
time-horizon a portfolio of endowments, i.e. life liabilities with death, surrender and
maturity benefit (no annuities), which has a total duration (modified) of about nine
years and which runs-off in approximately 20 years. Liabilities have an average minimum
guaranteed of 3% (r̄ in formula 2.1), a total value (mathematical reserve) of one billion
and a vintage year of 4 years. The average policyholder participation coefficient β is near
to one and fixed fees are set very low at 25 basis points.
The life liabilities are backed by a portfolio of government bonds with fixed or floating
rate, issued by Italy or Germany (90% Italian and 10% German) with a total duration
(modified) of about nine years. The asset portfolio has an operating (current) accounting
return higher than 3% for the next 5 years.
The initial portfolio and liabilities compositions are derived from a real insurance fund
whose equity and corporate components are reallocated to sovereign bonds, keeping con-
stant the issuers proportions.

4.2 Evaluation of the embedded option

We perform a Monte Carlo simulation using the apparatus described above and a set of
stochastic scenarios consisting of the risk free rate, the Italian and German credit spreads
and the Italian and German liquidity spreads. The stochastic model adopted is described
in Section 3 and the calibration parameters are reported in Tables 1, 2 and 3 in Section
3.1.
The embedded option is evaluated under three alternative set-ups. In set-up 1, the
stochastic scenarios used to evaluated the VOG are generated using all available risk

15The approach presented in this paper is also in agreement with the prudent person principle. For
more details please check [1, Paragraph 6]
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factors, which are interest rate, credit and liquidity; in the set-up 2 only interest rate and
credit risk are used. In set-up 3 only interest rate risk is considered.
The asset calibration is carried out using a z-spread for set-up 1 and 2. The z-spread is
very few basis points when the complete model is used (set-up 1). For set-up 3, we test
both the z-spread method and the CEQ approach.
In the first two set-ups different dependence scenarios between the two issuers are gener-
ated and tested. Historical correlations for credit and liquidity spreads of the two issuers
are estimated in calibration, see Section 3.1. Extreme values (-1 and 1) of the correlation
between Brownian motions of credit and liquidity spreads are tested. Moreover, the port-
folio is simulated also in the hypothesis of independent issuers. VOG results are reported
in table 4.
Table 4 shows clearly that correlation affects sensibly the results and that adding the
liquidity risk to the model increases the value of the option. This is consistent with
the diversification effect which is expected when correlation turns negative. In fact,
increasing the correlation increases the variance of the portfolio and makes the options
more expensive. Although the standard error is still material with only 1000 simulations,
also in the set-up 2 it is evident that a diversification effect is operating.
In Table 7, we compare the VOG obtained using only stochastic interest rate (set-up 3)
with the VOG obtained with our complete model (set-up 1). The set-up 3 evaluation is
done applying a risk adjustment to securities cash flows, according to the CEQ approach.
The difference in results of Table 7 is striking, using both a buy & hold or a constant
mix investment strategy.
The explanation is that the option is written on an underlying that depends on accounting
rules that are not invariant to arbitrary risk adjustments of cash flows.
Compared to the model used to generate the results reported in Table 7, the results in
Table 4, set-up 1, are obtained using five risk factors (encompassing all the assets classes
in position which are German and Italian government bonds), instead of just one as in
the set-up 3. Therefore, we would have expected a result of the CEQ model close to
the one we have got using set-up 1 and perfect correlation. Because the magnitude of
the discrepancy observed between these models cannot be explained by some missing
risk factor or by a smaller volatility of the richer model compared to the CEQ, the only
explanation must be the appropriateness of the constant and arbitrary adjustment derived
from the application of the CEQ approach. From Appendix A, it will be clear that any
risk adjustment applied to a security’s cash flows would change the assessment of the
statutory income through the gains or losses at maturity of bonds available for sales, the
coupons received, the difference between accrued interest, and finally, the calculation of
average book value, and that all these changes do not necessarily compensate. To confirm
our interpretation of the numerical results, we have calculated the VOG evaluating the
segregated fund return (which is the option’s underlying) at market value, i.e. we have
evaluated the fund applying the same principles as for the assets classified in the Fair
Value Through Profit and Loss (FVTPL) category as defined by International Financial
Reporting Standards (IFRS). In line with our expectation, the choice of the accounting
rules has a large impact on the value of the embedded option. The most relevant aspect
is that the results obtained with a CEQ approach and with our model in case of perfect
correlation, are quite close if the fund is evaluated ”mark to market” (see Table 8). VOG
in Table 8 are higher than VOG in Tables 4 and 7, because accounting rules reduce the
volatility of the underlying fund (e.g. immobilized assets don’t show return volatility by
definition if they can be hold to maturity; see also Section 2.2). These results have an
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interesting implication, with respect to a quite controversial debate on whether or not
accounting rules have an impact on the economic value of assets.
Finally, we perform some sensitivity analysis in order to assess the importance of some
features of the model as the introduction of a liquidity spread or the correlation between
the sovereign issuers. The results are reported in Tables 5 and 6.
The reasons why the CEQ approach is not appropriate for the evaluation of this option
can be summarised as follows:

- the return of the funds and hence the value of the option depends on accounting con-
ventions;

- the value of the option also depends on the interaction of assets and liabilities which is
not completely under control of the insurance company and which depends on unob-
servable (in the capital market) variables such as mortality and surrender rates;

- the value of the option depends on discretionary actions (management actions) defined
by the company such as commercial targets on segregated fund statutory return, invest-
ment rules including the guidelines to classify newly purchased assets on the segregated
fund balance sheet, the criteria used to sell assets for paying contractual obligations or
for smoothing the fund return using unrealised gains or losses.

Correlation VOG - set-up 1 VOG - set-up 2

(Spread corr.) (Std error) (Std error)

-1 11,525,803 9,876,695

(-60.2%) (501,307) (467,384)

0 10,456,238 9,844,966

(-0.8%) (504,367) (498,935)

Hist 11,824,693 9,840,467

(19.1%) (579,445) (542,230)

1 11,643,768 10,365,180

(99.0%) (610,698) (569,352)

Table 4: The table reports the Value of Options and Guarantees (VOG) calculated run-
ning 1000 stochastic simulations; in parenthesis is reported in the first column the average
correlation observed on simulated spread and in the second and third columns the stan-
dard error of VOG. The option is evaluated using buy & hold ALM rebalancing strategy.
In all cases, the segregated fund is evaluated using Italian traditional accounting rules
(see Appendix A for details).
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set-up 1 vs set-up 2

Correlation Abs. difference Rel. variation (%)

-1 1,649,108 15%

0 611,271 6%

Hist 1,984,226 18%

1 1,278,588 12%

Table 5: This table reports the absolute difference and the relative variation between the
values obtained with and without the liquidity spread in Table 4. The relative variation
is calculated as the absolute difference divided by the average between the two prices.

Extreme correlations analysis VOG - set-up 1 VOG - set-up 2

Abs. difference 1,368,455 524,713

Rel. variation (%) 13% 5%

Table 6: This table reports the absolute difference and the relative variation between the
extreme values obtained stressing the correlation in Table 4. The relative variation is
calculated as the absolute difference divided by the smaller of the two prices.

Buy & Hold Constant Mix

VOG set-up 3 (CEQ) VOG set-up 1 VOG set-up 3 (CEQ) VOG set-up 1

36,503,519 11,643,768 15,399,976 5,922,923

(97,921) (610,698) (254,428) (1,415,055)

Abs. difference 24,859,752 Abs. difference 9,477,053

Rel. variation (%) 103% Rel. variation (%) 89%

Table 7: The table reports the value of VOG calculated using the CEQ approach with only
the interest rate as stochastic risk factor and our full model (set-up 1) with correlation
equal to 1. The option is evaluated using two different ALM rebalancing strategies, buy
& hold and constant mix. In all cases, the segregated fund is evaluated using Italian
traditional accounting rules (see Appendix A for details).

Buy & Hold Constant Mix

VOG set-up 3 (CEQ) VOG set-up 1 VOG set-up 3 (CEQ) VOG set-up 1

187,566,084 181,630,924 187,003,992 203,839,753

(450,605) (6,337,511) (570,700) (7,445,830)

Abs. difference 5,935,160 Abs. difference -16,835,761

Rel. variation (%) 3.2% Rel. variation (%) -9%

Table 8: The table reports the value of VOG calculated using the CEQ approach with only
the interest rate as stochastic risk factor and our full model (set-up 1) with correlation
equal to 1. The option is evaluated using two different ALM rebalancing strategies,
buy & hold and constant mix. In all cases, the segregated fund is evaluated using the
FVTPL (fair value through profit or loss) accounting rule of IFRS (International Financial
Reporting Standards).
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Conclusion

The European directive also known as Solvency II has driven more focus on the need
of sounder risk management practice by insurance companies. At the same time, it
has introduced standards in the evaluation of assets and liabilities in the attempt of
creating a fairer playing field in the insurance sector. Although the European regulator
has succeeded in its attempt, this is not without critics. One of most debated issues is
the assumption that all European government bonds has to be evaluated using a risk
free discounting curve. This assumption together with the adoption, mandatory in the
Solvency II framework, of market consistent evaluations, has pushed insurance companies
to adopt the certainty equivalent approach to cope with the complexity of simulation
apparatus needed to carry out all the necessary calculations, while being consistent with
the assumptions of the (Solvency II) Standard Formula. In this paper we have analysed
the consequences of oversimplified risk models, in particular where risk adjustment is
applied to options whose underlying depends on accounting rules. Moreover, we have
introduced a new model for European government bonds that is more consistent with
prices observed in capital markets and at the same time, more flexible to be used for day-
to-day risk management. Finally this work presents interesting possibilities for further
extensions such as the introduction of a model for corporate bonds and the relaxation of
simplifying assumptions concerning the insurance risks and the management actions.
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A Segregated fund accounting rules

In this section we describe briefly how the performance of fixed income securities (coupon
bonds) is calculated in case of Italian segregated funds. More information can be found
in the book [13]. Similar rules are applied to traditional saving and pension products also
by other countries in continental Europe (e.g. France, Germany; see [35] or [32]).
The components of the accounting performance are the determination of the bond current
(periodical) income and the average book value.
A bond’s current income is made of the following elements:

- coupons paid during the year or calculation period,

- difference between initial and final accrued interests, during the calculation period,

- amortisation,

- any realized gain or loss due to sales of part or all the quantity in position,

- any realized gain or loss at a bond’s maturity date.

The amortisation depends on the classification the bond receives when it is purchased.
The same asset can have more than one classification in the same segregated fund. Ad-
missible classifications are of two types: Immobilised, or Available for Sales. When a
bond is classified as immobilised it cannot be sold before maturity and the difference
between price paid when the asset was purchased and its value at maturity (reimburse-
ment) can be amortised linearly every year. If instead a bond is classified as available
for sales, the bond can be sold at any time, but only the difference between issue price
and reimbursement price can be amortized. Therefore, a remarkable characteristic of
assets classified as available for sale within a segregated fund, is that in case they are
purchased above par, the difference between the face value and the price is accounted as
a loss (negative income or a cost) when the bond matures. Obviously, the same applies
with opposite sign when assets are purchased below par.
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In order to calculate the statutory accounting return or performance, the income assessed
during the calculation period has to be divided by the average book value. The average
book value is the time weighted average of the book values of the assets in position during
the calculation period. A numerical example may help understanding. Let us assume the
calculation period is one year, that a bond with a notional of 1000 Euro is purchased at
a price of 100 at the beginning of the year and then another bond of the same type with
a notional of 1000 Euro is bought at a price of 110 after 6 months and hold until year’s
end. Then the average book value is 1000 · 0.5 + 2100 · 0.5 = 1550.
For those that have some knowledge of financial assets performance measurement, this is
a way to compute a money weighted performance.

B EIOPA curve construction

In this Appendix, for aim of completeness, we describe the procedure to obtain the
regulatory-specific risk free curve. Our presentation is based on the EIOPA official tech-
nical documentation as of May, 30th 2016 ( [16]).
EIOPA curve is based on the bootsrapping of the 6 months Euro swap rates from 1 year
maturity onwards.
The credit risk adjustment (CRA) is applied trough a parallel downward shift of the
observed par swap rates. For the Euro curve, the CRA is the difference between the
3 months OIS rate and the 3 months Euro swap rate, in spite of the fact that in the
technical documentation is said “The maturity of the OIS rate used to derive the CRA is
consistent with the tenor of the floating legs of the swap instruments used to derive the
term structure.”
After the CRA, a Smith-Wilson method (described in details in EIOPA technical docu-
mentation) is used to extrapolate forward rates between a maturity of 20 years (the “last
liquid point”) and a maturity of 60 years (the “convergence point”). The one-year zero-
coupon forward rate is assumed to converge towards a Ultimate Forward Rate (UFR),
that for the Euro zone is set equal to 4.2%. As specified in the documentation: “The
control input parameters for the interpolation and extrapolation are the last liquid point,
ultimate forward rate (UFR), the convergence point and the convergence tolerance.”
Finally, a Volatility Adjustment (VA) treatment is applied on the ZCB curve. The VA is
published by EIOPA at least on a quarterly basis for each relevant currency. The technical
documentation defines the VA in the following way: “The volatility adjustment (VA) is
an adjustment to the relevant risk-free interest rate term structure. The VA is based on
65% of the risk-corrected spread between the interest rate that could be earned from bonds,
loans and securitisations included in a reference portfolio and the basic risk-free interest
rates.”
As highlighted in [25], the two adjustments, CRA and VA, create a market consistency
issue of the curve. In particular, it is not clear why the CRA for the Euro currency is
based on a different tenor with respect to the swap curve. In addition, after the VA
correction the curve is no more risk free, since this adjustment contains the credit and
liquidity risk of bonds loans and securization.
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C Market Data

We report market data on March 30th, 2016 used for calibrating the model. Market data
are taken from the provider Bloomberg.

Maturity Mid swap rate (%) Maturity Mid swap rate (%)

04-Apr-16 -0.3470 03-Apr-18 -0.4106

08-Apr-16 -0.3574 01-Oct-18 -0.3908

15-Apr-16 -0.3555 01-Apr-19 -0.3813

02-May-16 -0.3482 01-Apr-20 -0.3315

01-Jun-16 -0.3503 01-Apr-21 -0.2548

01-Jul-16 -0.3507 01-Apr-22 -0.1547

01-Aug-16 -0.3645 03-Apr-23 -0.0437

01-Sep-16 -0.3690 02-Apr-24 0.0724

03-Oct-16 -0.3696 01-Apr-25 0.1819

01-Nov-16 -0.3724 01-Apr-26 0.2855

01-Dec-16 -0.3760 01-Apr-27 0.3655

02-Jan-17 -0.3816 03-Apr-28 0.4624

01-Feb-17 -0.3860 01-Apr-31 0.6499

01-Mar-17 -0.3936 01-Apr-36 0.8062

03-Apr-17 -0.3982 01-Apr-41 0.8659

02-Oct-17 -0.4067 02-Apr-46 0.8818

Table 9: Term Structure of zero rates from EONIA swap market quotes on March 30th,
2016.

CDS Germany CDS Italy

tenor (year) spread (bps) tenor (year) spread (bps)

0.5 5.29 0.5 28.45

1.0 5.44 1 36.00

2.0 6.71 2 67.06

3.0 8.94 3 86.62

4.0 14.86 4 114.10

5.0 18.38 5 122.36

7.0 27.01 7 150.81

10.0 38.54 10 186.00

Table 10: Term Structure of German and Italian CDS spreads on March 30th, 2016.

D Calibration procedure

The calibrations are performed through the minimization of the sum of squared differences
between model and market data as follows:

min
Θ

∑N
n=1(Marketn −Modeln(Θ))2

N
,
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German sovereign curve Italian sovereign curve

tenor yield( %) tenor yield (%)

0.25 -0.504 0.25 -0.166

0.5 -0.422 0.5 -0.053

1 -0.460 1 -0.058

2 -0.481 2 -0.002

3 -0.469 3 0.093

4 -0.426 4 0.230

5 -0.361 5 0.396

7 -0.183 7 0.772

8 -0.079 8 0.965

9 0.024 9 1.143

10 0.117 10 1.300

15 0.467 15 1.827

20 0.679 20 2.145

25 0.776 25 2.360

30 0.844 30 2.382

Table 11: Term Structure of zero rate of German and Italian BVAL sovereign curves on
March 30th, 2016.

where N is the number of available market quotations, Marketn and Modeln are the
market and the model quantities, respectively, and Θ is the vector of the model parame-
ters.
Once we have calibrated the model, for each curve, we report the root mean square
deviation (RMSD) and the maximum relative error (MRE), defined as follows

RMSD =
1√
N

√√√√ N∑
n=1

(Marketn −Model∗n)2

MRE = max
n=1,...,N

|Marketn −Model∗n |
Marketn

where Model∗n is the model quantity calculated in correspondence of the optimal param-
eters vector, Θ∗.
The market quantities used for calibration purpose are ZCB prices for the Eonia and
sovereign bonds curves, and CDS quotes.
The calibration is performed in three steps. Firstly a Vasicek model is calibrated on the
Eonia ZCB curve. Secondly a CIR model is calibrated on the issuer survival probabil-
ity curve. Finally the liquidity parameters (Vasicek) are calibrated on the sovereign or
corporate ZCB curve, fixing the other parameters previously obtained.
We report the explicit form of the historical correlation estimated between the liquidity
spreads through the procedure described in Section 3.1:

ρHl = Corr(dl1(t), dl2(t)) = ρl
1− e−(k1+k2)dt√

(1− e−2k1dt)(1− e−2k2dt)

2
√
k1k2

k1 + k2

(D.1)

where ρl is the correlation between the two Brownian motions. Hence, the estimated
correlation is not exactly equal to the model correlation. However, for small dt the
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difference between the two correlations goes to zero, for this reason we choose historical
series of daily returns.
We do not have an explicit formula for the correlation between credit spreads, but the
estimation procedure follows similar reasoning.
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