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Abstract

Semantic Image Interpretation (SII) is the task of extracting structured seman-
tic descriptions from images. It is widely agreed that the combined use of visual
data and background knowledge is of great importance for SII. Recently, Statis-
tical Relational Learning (SRL) approaches have been developed for reasoning
under uncertainty and learning in the presence of data and rich knowledge. Logic
Tensor Networks (LTNs) are an SRL framework which integrates neural networks
with first-order fuzzy logic to allow (i) efficient learning from noisy data in the
presence of logical constraints, and (ii) reasoning with logical formulas describ-
ing general properties of the data. In this paper, we develop and apply LTNs to
two of the main tasks of SII, namely, the classification of an image’s bounding
boxes and the detection of the relevant part-of relations between objects. To the
best of our knowledge, this is the first successful application of SRL to such SII
tasks. The proposed approach is evaluated on a standard image processing bench-
mark. Experiments show that the use of background knowledge in the form of
logical constraints can improve the performance of purely data-driven approaches,
including the state-of-the-art Fast Region-based Convolutional Neural Networks
(Fast R-CNN). Moreover, we show that the use of logical background knowledge
adds robustness to the learning system when errors are present in the labels of the
training data.
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1 Introduction
Semantic Image Interpretation (SII) is the task of generating a structured semantic
description of the content of an image. This structured description can be represented as
a labelled directed graph, where each vertex corresponds to a bounding box of an object
in the image, and each edge represents a relation between pairs of objects; verteces are
labelled with a set of object types and edges are labelled by the binary relations. Such
a graph is also called a scene graph in [15].

A major obstacle to be overcome by SII is the so-called semantic gap [19], that is,
the lack of a direct correspondence between low-level features of the image and high-
level semantic descriptions. To tackle this problem, a system for SII must learn the
latent correlations that may exist between the numerical features that can be observed
in an image and the semantic concepts associated with the objects. It is in this learning
process that the availability of relational background knowledge can be of great help.
Thus, recent SII systems have sought to combine, or even integrate, visual features
obtained from data and symbolic knowledge in the form of logical axioms [30, 4, 8].

The area of Statistical Relational Learning (SRL), or Statistical Artificial Intelli-
gence (StarAI), seeks to combine data-driven learning, in the presence of uncertainty,
with symbolic knowledge [29, 2, 13, 7, 26, 23]. However, only very few SRL systems
have been applied to SII tasks (c.f. Section 2) due to the high complexity associated
with image learning. Most systems for solving SII tasks have been based, instead, on
deep learning and neural network models. These, on the other hand, do not in general
offer a well-founded way of learning from data in the presence of relational logical
constraints, requiring the neural models to be highly engineered from scratch.

In this paper, we develop and apply for the first time, the SRL framework called
Logic Tensor Networks (LTNs) to computationally challenging SII tasks. LTNs com-
bine learning in deep networks with relational logical constraints [27]. It uses a First-
order Logic (FOL) syntax interpreted in the real numbers, which is implemented as a
deep tensor network. Logical terms are interpreted as feature vectors in a real-valued
n-dimensional space. Function symbols are interpreted as real-valued functions, and
predicate symbols as fuzzy logic relations. This syntax and semantics, called real
semantics, allow LTNs to learn efficiently in hybrid domains, where elements are com-
posed of both numerical and relational information.

We argue, therefore, that LTNs are a good candidate for learning SII because they
can express relational knowledge in FOL which serves as constraints on the data-driven
learning within tensor networks. Being LTN a logic, it provides a notion of logical
consequence, which forms the basis for learning within LTNs, which is defined as best
satisfiability, c.f. Section 4. Solving the best satisfiability problem amounts to finding
the latent correlations that may exist between a relational background knowledge and
numerical data attributes. This formulation enables the specification of learning as
reasoning, a unique characteristic of LTNs, which is seen as highly relevant for SII.

This paper specifies SII within LTNs, evaluating it on two important tasks: (i) the
classification of bounding boxes, and (ii) the detection of the part-of relation between
any two bounding boxes. Both tasks are evaluated using the PASCAL-PART dataset
[5]. It is shown that LTNs improve the performance of the state-of-the-art object clas-
sifier Fast R-CNN [11] on the bounding box classification task. LTNs also outperform
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a rule-based heuristic (which uses the inclusion ratio of two bounding boxes) in the
detection of part-of relations between objects. Finally, LTNs are evaluated on their
ability to handle errors, specifically misclassifications of objects and part-of relations.
Very large visual recognition datasets now exist which are noisy [24], and it is impor-
tant for learning systems to become robust to noise. LTNs were trained systematically
on progressively noisier datasets, with results on both SII tasks showing that LTN’s
logical constraints are capable of adding robustness to the system, in the presence of
errors in the labels of the training data.

The paper is organized as follows: Section 2 contrasts the LTN approach with re-
lated work which integrate visual features and background knowledge for SII. Section
3 specifies LTNs in the context of SII. Section 4 defines the best satisfiability problem
in this context, which enables the use of LTNs for SII. Section 5 describes in detail the
comparative evaluations of LTNs on the SII tasks. Section 6 concludes the paper and
discusses directions for future work.

2 Related Work
The idea of exploiting logical background knowledge to improve SII tasks dates back
to the early days of AI. In what follows, we review the most recent results in the area
in comparison with LTNs.

Logic-based approaches have used Description Logics (DL), where the basic com-
ponents of the scene are all assumed to have been already discovered (e.g. simple object
types or spatial relations). Then, with logical reasoning, new facts can be derived in the
scene from these basic components [19, 21]. Other logic-based approaches have used
fuzzy DL to tackle uncertainty in the basic components [14, 6, 1]. These approaches
have limited themselves to spatial relations or to refining the labels of the objects de-
tected. In [8], the scene interpretation is created by combining image features with
constraints defined using DL, but the method is tailored to the part-of relation and can-
not be extended easily to account for other relations. LTNs, on the other hand, should
be able to handle any semantic relation. In [18, 10], a symbolic Knowledge-base is
used to improve object detection, but only the subsumption relation is explored and it
is not possible to inject more complex knowledge using logical axioms.

A second group of approaches seeks to encode background knowledge and visual
features within probabilistic graphical models. In [30, 20], visual features are com-
bined with knowledge gathered from datasets, web resources or annotators, about ob-
ject labels, properties such as shape, colour and size, and affordances, using Markov
Logic Networks (MLNs) [25] to predict facts in unseen images. Due to the specific
knowledge-base schema adopted, the effectiveness of MLNs in this domain is eval-
uated only for Horn clauses, although the language of MLNs is more general. As a
result, it is not easy to evaluate how the approach may perform with more complex
axioms. In [2], a probabilistic fuzzy logic is used, but not with real semantics. Clauses
are weighted and universally-quantified formulas are instantiated, as done by MLNs.
This is different from LTNs where the universally-quantified formulas are computed by
using an aggregation operation, which avoids the need for instantiating all variables.

In other related work, [4, 16] encode background knowledge into a generic Condi-
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tional Random Field (CRF), where the nodes represent detected objects and the edges
represent logical relationships between objects. The task is to find a correct labelling
for this graph. In [4], the edges encode logical constraints on a knowledge-base spec-
ified in DL. Although these ideas are close in spirit to the approach presented in this
paper, they are not formalised as in LTNs, which use a deep tensor network and first-
order logic, rather than CRFs or DL. In general, the logical theory behind the functions
to be defined in the CRF is unclear. In [16], potential functions are defined as text
priors such as co-occurrence of terms found in the image descriptions of Flickr.

In a final group of approaches, here called language-priors, background knowledge
is taken from linguistic models [22, 17]. In [22], a neural network is built integrating vi-
sual features and a linguistic model to predict semantic relationships between bounding
boxes. The linguistic model is a set of rules derived from WORDNET [9], stating which
types of semantic relationships occur between a subject and an object. In [17], a similar
neural network is proposed for the same task but with a more sophisticated language
model, embedding in the same vector space triples of the form subject-relation-object,
such that semantically similar triples are mapped closely together in the embedding
space. In this way, even if no examples exist of some triples in the data, the relations
can be inferred from similarity to more frequent triples. A drawback, however, is the
possibility of inferring inconsistent triples, such as e.g. man-eats-chair, due to the em-
bedding. LTNs avoid this problem with a logic-based approach (in the above example,
with an axiom to the effect that chairs are not normally edible). LTNs can also han-
dle exceptions, offering a system capable of dealing with crisp axioms and real-valued
data, as specified in what follows.

3 Logic Tensor Networks
Let L be a first-order logic language, whose signature is composed of three disjoint sets
C, F and P , denoting constants, functions and predicate symbols, respectively. For any
function or predicate symbol s, let α(s) denote its arity. Logical formulas in L allow
one to specify relational knowledge, e.g. the atomic formula partOf(o1, o2), stating
that object o1 is a part of object o2, the formulae ∀xy(partOf(x, y)→ ¬partOf(y, x)),
stating that the relation partOf is asymmetric, or ∀x(Cat(x) → ∃y(partOf(x, y) ∧
Tail(y))), stating that every cat should have a tail. In addition, exceptions are handled
by allowing formulas to be interpreted in fuzzy logic, such that in the presence of
an example of, say, a tailless cat, the above formula can be interpreted naturally as
normally, every cat has a tail; this will be exemplified later.
Semantics of L: We define the interpretation domain as a subset of Rn, i.e. every
object in the domain is associated with a n-dimensional vector of real numbers. Intu-
itively, this n-tuple represents n numerical features of an object, e.g. in the case of a
person, their name in ASCII, height, weight, social security number, etc. Functions are
interpreted as real-valued functions, and predicates are interpreted as fuzzy relations on
real vectors. To emphasise the fact that we interpret symbols as real numbers, we use
the term grounding instead of interpretation1 in the following definition of semantics.

1In logic, the term grounding indicates the operation of replacing the variables of a term or formula
with constants or terms that do not contain other variables. To avoid any confusion, we use the synonym
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Definition 1 Let n ∈ N. An n-grounding, or simply grounding, G for a FOL L is a
function defined on the signature of L satisfying the following conditions:

1. G(c) ∈ Rn for every constant symbol c ∈ C;
2. G(f) ∈ Rn·α(f) −→ Rn for every f ∈ F;
3. G(P ) ∈ Rn·α(P ) −→ [0, 1] for every P ∈ P .

Given a grounding G, the semantics of closed terms and atomic formulas is defined as
follows:

G(f(t1, . . . , tm)) = G(f)(G(t1), . . . ,G(tm))

G(P (t1, . . . , tm)) = G(P )(G(t1), . . . ,G(tm))

The semantics for connectives is defined according to fuzzy logic; using for instance
the Lukasiewicz t-norm2:

G(¬φ) = 1− G(φ)

G(φ ∧ ψ) = max(0,G(φ) + G(ψ)− 1)

G(φ ∨ ψ) = min(1,G(φ) + G(ψ))

G(φ→ ψ) = min(1, 1− G(φ) + G(ψ))

The LTN semantics for ∀ is defined in [27] using the min operator, that is, G(∀xφ(x)) =
mint∈term(L) G(φ(t))), where term(L) is the set of instantiated terms ofL. This, how-
ever, is inadequate for our purposes as it does not tolerate exceptions well (the presence
of a single exception to the universally-quantified formulae, such as e.g. a cat without a
tail, would falsify the formulae. Instead, our intention in SII is that the more examples
there are that satisfy a formulae φ(x), the higher the truth-value of ∀xφ(x) should be.
To capture this, we use for the semantics of ∀ a mean-operator, as follows:

G(∀xφ(x)) = lim
T→term(L)

meanp(G(φ(t)) | t ∈ T )

where meanp(x1, . . . , xd) =
(

1
d

∑d
i=1 x

p
i

) 1
p

for p ∈ Z. 3

Finally, the classical semantics of ∃ is uniquely determined by the semantics of ∀,
by making ∃ equivalent to ¬∀¬. This approach, however, has a drawback too when
it comes to SII: if we adopt, for instance, the arithmetic mean for the semantic of ∀
then G(∀xφ(x)) = G(∃xφ(x)). Therefore, we shall interpret existential quantification
via Skolemization: every formula of the form ∀x1, . . . , xn(. . . ∃yφ(x1, . . . , xn, y)) is
rewritten as ∀x1, . . . , xn(. . . φ(x1, . . . , xn, f(x1, . . . , xn))), by introducing a new n-
ary function symbol, called Skolem function. In this way, existential quantifiers can be
eliminated from the language by introducing Skolem functions.

instantiation for this purpose. It is worth noting that in LTN, differently from MLNs, the instantiation of
every first order formula is not required.

2Examples of t-norms include Lukasiewicz, product and Gödel. The Lukasiewicz t-norm is
µLuk(x, y) = max(0, x + y − 1), product t-norm is µPr(x, y) = x · y, and Gödel t-norm is
µmax(x, y) = min(x, y). See [3] for details.

3The popular mean operators, arithmetic, geometric and harmonic mean, are obtained by setting p = 1, 2,
and −1, respectively.
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Formalizing SII in LTNs: To specify the SII problem, as defined in the introduc-
tion, we consider a signature ΣSII = 〈C,F ,P〉, where C =

⋃
p∈Pics b(p) is the set of

identifiers for all the bounding boxes in all the images, F = ∅, and P = {P1,P2},
where P1 is a set of unary predicates, one for each object type, e.g. P1 = {Dog,Cat,
Tail,Muzzle,Train,Coach, . . . }, and P2 is a set of binary predicates representing re-
lations between objects. Since in our experiments we focus on the part-of relation,
P2 = {partOf}. The FOL formulas based on this signature can specify (i) simple
facts, e.g. the fact that bounding box b contains a cat, written Cat(b), the fact that b
contains either a cat or a dog, written Cat(b) ∨Dog(b), etc., and (ii) general rules such
as ∀x(Cat(x)→ ∃y(partOf(x, y) ∧ Tail(y))).

A grounding for ΣSII can be defined as follows: each constant b, denoting a bound-
ing box, can be associated with a set of geometric features and a set of semantic features
obtained from the output of a bounding box detector. Specifically, each bounding box
is associated with geometric features describing the position and the dimension of the
bounding box, and semantic features describing the classification score returned by the
bounding box detector for each class. For example, for each bounding box b ∈ C,
Ci ∈ P1, G(b) is the R4+|P1| vector:

〈class(C1, b), . . . , class(C|P1|, b), x0(b), y0(b), x1(b), y1(b)〉

where the last four elements are the coordinates of the top-left and bottom-right corners
of b, and class(Ci, b) ∈ [0, 1] is the classification score of the bounding box detector
for b.

An example of groundings for predicates can be defined by taking a one-vs-all
multi-classifier approach, as follows. First, define the following grounding for each
class Ci ∈ P1 (below, x =

〈
x1, . . . , x|P1|+4

〉
is the vector corresponding to the

grounding of a bounding box):

G(Ci)(x) =

{
1 if i = argmax1≤l≤|P1| xl
0 otherwise

(1)

Then, a simple rule-based approach for defining a grounding for the partOf relation
is based on the naı̈ve assumption that the more a bounding box b is contained within
a bounding box b′, the higher the probability should be that b is part of b′. Accord-
ingly, one can define G(partOf(b, b′)) as the inclusion ratio ir(b, b′) of bounding box
b, with grounding x, into bounding box b′, with grounding x′ (formally, ir(b, b′) =
area(b∩b′)
area(b) ). A slightly more sophisticated rule-based grounding for partOf (used as

baseline in the experiments to follow) takes into account also type compatibilities by
multiplying the inclusion ratio by a factor wij . Hence, we define G(partOf(b, b′)) as
follows: {

1 if ir(b, b′) ·max
|P1|
ij=1(wij · xi · x′j) ≥ thir

0 otherwise
(2)

for some threshold thir (we use thir > 0.5), and with wij = 1 if Ci is a part of
Cj , and 0 otherwise. Given the above grounding, we can compute the grounding of
any atomic formula, e.g. Cat(b1), Dog(b2), leg(b3), partOf(b3, b1), partOf(b3, b2),
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thus expressing the degree of truth of the formula. The rule-based groundings (Eqs.
(1) and (2)) may not satisfy some of the constraints to be imposed. For example, the
classification score may be wrong, a bounding box may include another which is not
in the part-of relation, etc. Furthermore, in many situations, it is not possible to define
a grounding a priori. Instead, groundings may need to be learned automatically from
examples, by optimizing the truth-values of the formulas in the background knowledge.
This is discussed next.

4 Learning as Best Satisfiability

A partial grounding, denoted by Ĝ, is a grounding that is defined on a subset of the
signature of L. A grounding G is said to be a completion of Ĝ, if G is a grounding for
L and coincides with Ĝ on the symbols where Ĝ is defined.

Definition 2 A grounded theory GT is a pair 〈K, Ĝ〉 with a set K of closed formulas
and a partial grounding Ĝ.

Definition 3 A grounding G satisfies a GT 〈K, Ĝ〉 if G completes Ĝ and G(φ) = 1 for
all φ ∈ K. A GT 〈K, Ĝ〉 is satisfiable if there exists a grounding G that satisfies 〈K, Ĝ〉.

According to the previous definition, deciding the satisfiability of 〈K, Ĝ〉 amounts
to searching for a grounding Ĝ such that all the formulas of K are mapped to 1. Dif-
ferently from the classical satisfiability, when a GT is not satisfiable, we are interested
in the best possible satisfaction that we can reach with a grounding. This is defined as
follows.

Definition 4 Let 〈K, Ĝ〉 be a grounded theory. We define the best satisfiability prob-
lem as the problem of finding a grounding G∗ that maximizes the truth-values of the
conjunction of all clauses cl ∈ K, i.e. G∗ = argmaxĜ⊆G∈G G(

∧
cl∈K cl).

Grounding G∗ captures the latent correlation between the quantitative attribute of ob-
jects and their categorical and relational properties. Not all functions are suitable as
a grounding; they should preserve some form of regularity. If G(Cat)(x) ≈ 1 (the
bounding box with feature vector x contains a cat) then for every x′ close to x (i.e. for
every bounding box with features similar to x), one should have G(Cat)(x′) ≈ 1. In
particular, we consider groundings of the following form:

Function symbols are grounded to linear transformations. If f is a m-ary function
symbol, then G(f) is of the form:

G(f)(v) = Mfv +Nf

where v = 〈vᵀ
1 , . . . ,v

ᵀ
m〉

ᵀ is the mn-ary vector obtained by concatenating each vi.
The parameters for G(f) are the n×mn real matrix Mf and the n-vector Nf .

The grounding of an m-ary predicate P , namely G(P ), is defined as a general-
ization of the neural tensor network (which has been shown effective at knowledge
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completion in the presence of simple logical constraints [28]), as a function from Rmn
to [0, 1], as follows:

G(P )(v) = σ
(
uᵀP tanh

(
vᵀW

[1:k]
P v + VPv + bP

))
(3)

with σ the sigmoid function. The parameters for P are: W
[1:k]
P , a 3-D tensor in

Rk×mn×mn, VP ∈ Rk×mn, bP ∈ Rk and uP ∈ Rk. This last parameter performs
a linear combination of the quadratic features given by the tensor product. With this
encoding, the grounding (i.e. truth-value) of a clause can be determined by a neural
network which first computes the grounding of the literals contained in the clause, and
then combines them using the specific t-norm.

In what follows, we describe how a suitable GT can be built for SII. Let Picst ⊆
Pics be a set of bounding boxes of images correctly labelled with the classes that they
belong to, and let each pair of bounding boxes be correctly labelled with the part-
of relation. In machine learning terminology, Picst is a training set without noise.
In real semantics, a training set can be represented by a theory Texpl = 〈Kexpl, Ĝ〉,
where Kexpl contains the set of closed literals Ci(b) (resp. ¬Ci(b)) and partOf(b, b′)
(resp. ¬partOf(b, b′)), for every bounding box b labelled (resp. not labelled) with
Ci and for every pair of bounding boxes 〈b, b′〉 connected (resp¬partOf(b, b′). not
connected) by the partOf relation. The partial grounding Ĝ is defined on all bound-
ing boxes of all the images in Pics where both the semantic features class(Ci, b)
and the bounding box coordinates are computed by the Fast R-CNN object detector
[11]. Ĝ is not defined for the predicate symbols in P and is to be learned. Texpl
contains only assertional information about specific bounding boxes. This is the clas-
sical setting of machine learning where classifiers (i.e. the grounding of predicates)
are inductively learned from positive examples (such as partOf(b, b′)) and negative
examples (¬partOf(b, b′)) of a classification. In this learning setting, mereological
constraints such as “cats have no wheels” or “a tail is a part of a cat” are not taken
into account. Examples of mereological constraints state, for instance, that the part-
of relation is asymmetric (∀xy(partOf(x, y) → ¬partOf(y, x))), or lists the several
parts of an object (e.g. ∀xy(Cat(x) ∧ partOf(x, y) → Tail(y) ∨ Muzzle(y))), or
even, for simplicity, that every whole object cannot be part of another object (e.g.
∀xy(Cat(x) → ¬partOf(x, y))) and every part object cannot be divided further into
parts (e.g. ∀xy(Tail(x) → ¬partOf(y, x))). This general knowledge is available
from on-line resources, such as WORDNET [9], and can be retrieved by inheriting the
meronymy relations for every concept correponding to a whole object. A grounded the-
ory that considers also mereological constraints as prior knowledge can be constructed
by adding such axioms to Kexpl. More formally, we define Tprior = 〈Kprior, Ĝ〉, where
Kprior = Kexpl +M, andM is the set of mereological axioms. To check the role of
M, we evaluate both theories and then compare results.

8



(a) LTNs with prior knowledge improves the per-
formance of the Fast R-CNN on object type classi-
fication, achieving an Area Under the Curve (AUC)
of 0.800 in comparison with 0.756.

(b) LTNs with prior knowledge outperform the
rule-based approach of Eq.2 in the detection of
part-of relations, achieving AUC of 0.598 in com-
parison with 0.172.

Figure 1: Precision-recall curves for indoor objects type classification and the partOf
relation between objects.

5 Experimental Evaluation
We evaluate the performance of our approach for SII4 on two tasks, namely, the clas-
sification of bounding boxes and the detection of partOf relations between pairs of
bounding boxes. In particular, we chose the part-of relation because both data (the
PASCAL-PART-dataset [5]) and ontologies (WORDNET) are available on the part-of
relation. In addition, part-of can be used to represent, via reification, a large class of
relations [12] (e.g., the relation “a plant is lying on the table” can be reified in an object
of type “lying event” whose parts are the plant and the table). However, it is worth
noting that many other relations could have been included in this evaluation. The time
complexity of LTN grows linearly with the number of axioms.

We also evaluate the robustness of our approach with respect to noisy data. It has
been acknowledged by many that, with the vast growth in size of the training sets for
visual recognition [15], many data annotations may be affected by noise such as miss-
ing or erroneous labels, non-localised objects, and disagreements between annotations,
e.g. human annotators often mistake “part-of” for the “have” relation [24].

We use the PASCAL-PART-dataset that contains 10103 images with bounding
boxes annotated with object-types and the part-of relation defined between pairs of
bounding boxes. Labels are divided into three main groups: animals, vehicles and in-
door objects, with their corresponding parts and “part-of” label. Whole objects inside
the same group can share parts. Whole objects of different groups do not share any
parts. Labels for parts are very specific, e.g. “left lower leg”. Thus, without loss of
generality, we have merged the bounding boxes that referred to the same part into a
single bounding box, e.g. bounding boxes labelled with “left lower leg” and “left up-

4LTN has been implemented as a Google TENSORFLOWTM library. Code, partOf ontology, and dataset
are available at https://gitlab.fbk.eu/donadello/LTN_IJCAI17
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per leg” were merged into a single bounding box of type “leg”. In this way, we have
limited our experiments to a dataset with 20 labels for whole objects and 39 labels for
parts. In addition, we have removed from the dataset any bounding boxes with height
or width smaller than 6 pixels. The images were then split into a training set with 80%,
and a test set with 20% of the images, maintaining the same proportion of the number
of bounding boxes for each label.

Object Type Classification and Detection of the Part-Of Relation: Given a set
of bounding boxes detected by an object detector (we use Fast-RCNN), the task of ob-
ject classification is to assign to each bounding box an object type. The task of Part-Of
detection is to decide, given two bounding boxes, if the object contained in the first is
a part of the object contained in the second. We use LTN to resolve both tasks simulta-
neously. This is important because a bounding box type and the part-of relation are not
independent. Their dependencies are specified in LTN using background knowledge in
the form of logical axioms.

To show the effect of the logical axioms, we train two LTNs: the first containing
only training examples of object types and part-of relations (Texpl), and the second
containing also logical axioms about types and part-of (Tprior). The LTNs were set
up with tensor of k = 6 layers and a regularization parameter λ = 10−10. We chose
Lukasiewicz’s T-norm (µ(a, b) = max(0, a + b − 1)) and use the harmonic mean as
aggregation operator. We ran 1000 training epochs of the RMSProp learning algorithm
available in TENSORFLOWTM . We compare results with the Fast RCNN at object
type classification (Eq.(1)), and the inclusion ratio ir baseline (Eq.eq:grBpof) at the
part-of detection task5. If ir is larger than a given threshold th (in our experiments,
th=0.7) then the bounding boxes are said to be in the partOf relation. Every bounding
box b is classified into C ∈ P1 if G(C(b)) ≥ th. With this, a bounding box can be
classified into more than one class. For each class, precision and recall are calculated
in the usual way. Results for indoor objects are shown in Figure 1 where AUC is
the area under the precision-recall curve. The results show that, for both object types
and the part-of relation, the LTN trained with prior knowledge given by mereological
axioms has better performance than the LTN trained with examples only. Moreover,
prior knowledge allows LTN to improve the performance of the Fast R-CNN (FRCNN)
object detector. Notice that the LTN is trained using the Fast R-CNN results as features.
FRCNN assigns a bounding box to a class if the values of the corresponding semantic
features exceed th. This is local to the specific semantic features. If such local features
are very discriminative (which is the case in our experiments) then very good levels
of precision can be achieved. Differently from FRCNN, LTNs make a global choice
which takes into consideration all (semantic and geometric) features together. This
should offer robustness to the LTN classifier at the price of a drop in precision. The
logical axioms compensate this drop. For the other object types (animals and vehicles),
LTN has results comparable to FRCNN: FRCNN beats Tprior by 0.05 and 0.037 AUC,
respectively, for animals and vehicles. Finally, we have performed an initial experiment
on small data, on the assumption that the LTN axioms should be able to compensate a
reduction in training data. By removing 50% of the training data for indoor objects, a
similar performance to Tprior with the full training set can be achieved: 0.767 AUC for

5A direct comparison with [4] is not possible because their code was not available.
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object types and 0.623 AUC for the part-of relation, which shows an improvement in
performance.

Robustness to Noisy Training Data: In this evaluation, we show that logical ax-
ioms improve the robustness of LTNs in the presence of errors in the labels of the train-
ing data. We have added an increasing amount of noise to the PASCAL-PART-dataset
training data, and measured how performance degrades in the presence and absence of
axioms. For k ∈ {10, 20, 30, 40}, we randomly select k% of the bounding boxes in the
training data, and randomly change their classification labels. In addition, we randomly
select k% of pairs of bounding boxes, and flip the value of the part-of relation’s label.
For each value of k, we train LTNs T kexpl and T kprior and evaluate results on both SII
tasks as done before. As expected, adding too much noise to training labels leads to a
large drop in performance. Figure 2 shows the AUC measures for indoor objects with
increasing error k. Each pair of bars indicates the AUC of T kprior, T kexpl, for a given k%
of errors. Results indicate that the LTN axioms offer robustness to noise: in addition
to the expected overall drop in performance, an increasing gap can be seen between
the drop in performance of the LTN trained with exampels only and the LTN trained
including background knowledge.

6 Conclusion and Future Work
SII systems are required to address the semantic gap problem: combining visual low-
level features with high-level concepts. We argue that the problem can be addressed by
the integration of numerical and logical representations in deep learning. LTNs learn
from numerical data and logical constraints, enabling approximate reasoning on unseen
data to predict new facts. In this paper, LTNs were shown to improve on state-of-the-
art method Fast R-CNN for bounding box classification, and to outperform a rule-
based method at learning part-of relations in the PASCAL-PART-dataset. Moreover,
LTNs were evaluated on how to handle noisy data through the systematic creation of
training sets with errors in the labels. Results indicate that relational knowledge can add
robustness to neural systems. As future work, we shall apply LTNs to larger datasets
such as VISUAL GENOME, and continue to compare the various instances of LTN with
SRL, deep learning and other neural-symbolic approaches on such challenging visual
intelligence tasks.
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(a) Object types

(b) Part-of predicate

Figure 2: AUCs for indoor object types and part-of relation with increasing noise in
the labels of the training data. The drop in performance is noticiably smaller for the
LTN trained with background knowledge.
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