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Balancing Authority Area Model and its Application

to the Design of Adaptive AGC Systems
Dimitra Apostolopoulou, Student Member, IEEE, Peter W. Sauer, Fellow Member, IEEE, and

Alejandro D. Domı́nguez-Garcı́a Member, IEEE

Abstract—In this paper, we develop a reduced-order model
for synchronous generator dynamics via selective modal analysis.
Then, we use this reduced-order model to formulate a balancing
authority (BA) area dynamic model. Next, we use the BA area
model to design an adaptive automatic generation control (AGC)
scheme, with self-tuning gain, that decreases the amount of
regulation needed and potentially reduces the associated costs.
In particular, we use the BA area model to derive a relationship
between the actual frequency response characteristic (AFRC) of
the BA area, the area control error, the system frequency, and
the total generation. We make use of this relationship to estimate
the AFRC online, and set the frequency bias factor equal to the
online estimation. As a result, the AGC system is driven by the
exact number of MW needed to restore the system frequency and
the real power interchange to the desired values. We demonstrate
the proposed ideas with a single machine infinite bus, the 9-bus
3-machine Western Electricity Coordinating Council (WECC),
and a 140-bus 48-machine systems.

Index Terms—Reduced-Order Synchronous Generator Model,
Balancing Authority Area Model, Adaptive Automatic Genera-
tion Control, Actual Frequency Response Characteristic.

I. INTRODUCTION

The appropriate granularity necessary to describe power sys-

tem components, e.g., synchronous generators, is determined

by the type of phenomena that need to be studied. For example,

simplified models, such as the classical model for describing

generators dynamics, may be used in studies where the focus is

on slow-varying transients. The general idea behind simplified

models is to approximate the behavior of selected dynamics,

by means of various integral manifolds, without having to

explicitly solve the full set of differential equations. In the

same vein, reduced-order modeling techniques may be used

at the balancing authority (BA) area level to describe the BA

area dynamic behavior.

Since the slower-varying transients are sufficient for describ-

ing the BA area dynamic behavior, such simplified models may

be used in the design of new automatic generation control

(AGC) systems. The role of AGC is to maintain the system
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frequency at the nominal value and the power net interchange

between BA areas at the scheduled values. There is a need for

new AGC system designs, since studies show that demand for

AGC will increase due to larger net load variations caused by

the deepening penetration of renewable-based resources [1].

Thus, to cope with the aforementioned challenges, either

increased requirements of AGC system reserves, which are

expensive, are necessary, or new designs in the AGC system

that enhance its efficiency are mandated. Most BA areas

implement tie-line bias control, and the AGC command is

driven by the value of the area control error (ACE), which

includes the deviation of the sum of tie line flows between

the BA areas from the scheduled values and their obligation

to support frequency.

In order to prevent the AGC system from “fighting” the

area’s natural response, the BA area obligation to support

frequency is included in the ACE calculation. This term

includes the frequency bias factor, which in the ideal case

reflects the actual frequency response characteristic (AFRC) of

the BA area. The AFRC is the change in frequency that occurs

for a change in load-generation balance in an interconnection.

Independent system operators usually use the 1% of peak load

method to determine the frequency bias factor, which leads to

frequency bias factors greater than the AFRC and causes over-

regulation. A method that estimates the AFRC and uses this

value as the frequency bias factor increases the efficiency of

the AGC system. We may estimate the AFRC of a BA area

by using a power system model, simplified or not, to derive a

relationship between the AFRC and system variables.

Eigenanalysis is a commonly used approach for developing

simplified models [2]; however, when performing eigenanaly-

sis, the resulting reduced-order model is linear and sometimes

it is difficult to interpret the equations physically. In this

paper, we keep the non-linearity of the synchronous generator

model and substitute a portion of the differential equations

by linear algebraic constraints. The states of the reduced-

order model are: (i) the rotor electrical angular position, (ii)

the rotor electrical angular velocity, and (iii) the mechanical

power. Then, by using the selective modal analysis (SMA)

method (see, e.g., [3]), we substitute the differential equations

of the remaining states with linear algebraic constraints. Next,

we determine the dynamic pattern of behavior of the system

that we wish to maintain by calculating the eigenvalues of a

submatrix of a linearized system of a synchronous generator

dynamic behavior. We validated the proposed reduced-order

synchronous generator model by comparing it with a com-

mercial dynamic simulation software.
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We use the proposed reduced-order model to derive a set

of differential equations that describe a BA area dynamics;

an objective is that this set of equations depends only on BA

area variables. To this end, we use optimization techniques

and define the BA area droop and damping coefficients. The

derived model approximates better the BA area behavior than

other BA area dynamic models, where the droop and damping

coefficients are the summation of each generator droop and

damping values [4]. We compare the BA area model with

others, such as the 9-state model, and verify that it provides

a good approximation of the actual system state.

Next, we use the BA area model, described above, to design

an adaptive AGC system. Such a model is sufficient to model

the system dynamics for AGC implementation purposes, since

the output command of the latter is the total generation needed

in the BA area to restore the system frequency and the net

interchange between BA areas to the desired values. In this

regard, models that do not consider each generator states, but

only the BA area variables are sufficient. We modify the AGC

system design and include an adaptive proportional controller

with self-tuning gain that reflects the system AFRC. To imple-

ment such a controller, we estimate the AFRC online by using

the proposed BA area model, and then we derive a relationship

between the AFRC, the system frequency, the ACE and the

total generation. We select the sliding exponentially weighted

window blockwise least-squares (SEWBLS) algorithm for

the online estimation of the AFRC (see, e.g., [5]). Such an

algorithm keeps the computational complexity to a fixed level

by keeping the length of the sliding window fixed. In order to

exploit the advantages of forgetting estimation techniques and

improve the tracking capability of the algorithm the SEW-

BLS introduces an exponential weighting technique. This is

especially useful for the case in which the system experiences

a change in the operating point during the time window in

which measurements are obtained. The performance of the

SEWBLS algorithm depends on the length of the sliding

window. For systems with parameter changes, such as power

systems, the window length should be adjusted accordingly so

that out-of-date information from past measurements can be

discarded effectively and achieve fast tracking of the changed

parameters based on the latest measurements. In this paper,

we show that the proposed estimation technique provides a

good approximation of the AFRC and that when used in the

ACE calculation the system frequency converges faster to the

nominal value. A block diagram of the proposed adaptive AGC

system is depicted in Fig. 1.

Several papers are dedicated to the development of reduced-

order models for system components. For example, in [6],

a method is proposed for reducing the state matrices of

a linear system by keeping the dominant eigenvalues and

eigenvectors of the original system. A similar approach is

given in [3], where the authors use selective modal analysis

to construct a simplified model. A number of papers have

focused on the use of simplified models and the design of

AGC systems. A description of the AGC system role and

limitations is given in [7], where the authors also mention

why the AFRC is a good approximation to the frequency bias

factor (in the context of ACE calculation). A discussion of

Power System 
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Fig. 1: Block diagram of the adaptive AGC system.

the current practices for calculating frequency bias factors,

their limitations, and the proposal of a new method for sizing

these factors is given in [8]. In [9], the authors discuss issues

related to variable generation management, and adaptive AGC

unit tuning, to make the AGC system more efficient. The

authors in [10] propose an optimization technique to determine

parameters in the AGC system, such as gain controllers, to

increase its efficiency. In [11], the authors propose a stochastic

optimal relaxed AGC system, which takes into account North

american Electric Reliability Corporation (NERC) frequency

performance standards, and reduces control cost by tuning the

relaxation factors online.

The contributions of this paper may be outlined as follows:

the development of (i) a synchronous generator reduced-order

model, (ii) a BA area model, and (iii) an adaptive AGC system.

The advantages of (i) compared to other works (e.g., [3], [6])

are that it is simpler than the 9-state model, approximates the

system behavior in satisfactory levels, provides better accuracy

compared to the classical model, and has lower computational

burden compared to other reduced-order models, since only

the eigenvalues of a submatrix are needed. Next, we use (i)

to develop (ii). A systematic way to develop a BA area model

that represents the BA area dynamic behavior is missing from

the literature. The value of the BA area model is that it is

derived directly from the individual generator models and

not in a heuristic way. The typical BA area model (e.g.,

[2], [4], [12]) uses the heuristic approach of adding the

individual damping and droop coefficients of the individual

generators to determine the damping and droop of the BA area

respectively. The developed BA area model may be used in

various applications where the dynamic behavior of a BA area

needs to be represented. In this paper, we use it to derive (iii),

where the AFRC is estimated. The calculation of the AFRC

is a step forward in conducting the frequency response assess-

ment in a more scientific way and not with heuristic formulas

(e.g., [13]). In addition, the proposed adaptive AGC system

may be actually implemented in real large-scale systems, as

validated in the numerical results section, in contrast with

other advanced AGC system designs, e.g., [10], [11], where

the computational burden is large. Since, the AGC system is

implemented in fast timescales, 2-4 seconds, such designs are

hard to be implemented in real systems.

The remainder of the paper is organized as follows. In

Section II, we describe the 9-state and the AGC system
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model. In Section III, we derive the proposed models for

the synchronous generator and BA area dynamic behavior. In

Section IV, we present the proposed adaptive AGC system.

To this end, we obtain a relationship between the ACE, the

frequency deviation, the total generation and the AFRC at

each time instant, and use it to estimate the system AFRC

online via a SEWBLS algorithm. In Section V, we demonstrate

the proposed ideas on a single machine infinite bus system,

the 9-bus 3-machine Western Electricity Coordinating Council

(WECC) system, and a 140-bus 48-machine system. Finally,

we provide some concluding remarks and discuss the direction

for future research in Section VI.

II. PRELIMINARIES

In this section, we provide models for the synchronous

generator and AGC dynamics, and the network. These models

are the starting point for the developments in subsequent

sections.

A. Synchronous Generator Dynamics

The analysis starts with a synchronous generator dynamic

model without the fast stator/network dynamics — often called

the “two-axis” model. For the ith synchronous generator, the

nine states are: the field flux linkage E′
qi

, the damper winding

flux linkage E′
di

, the rotor electrical angular position δi, the

rotor electrical angular velocity ωi, the scaled field voltage

Efdi
, the stabilizer feedback variable Rfi , the scaled output

of the amplifier VRi
, the scaled mechanical torque to the shaft

TMi
, and the mechanical power PSVi

(see, e.g., [14, p.140]).

The evolution of these variables is determined by:

T ′
doi

dE′
qi

dt
= −E′

qi
− (Xdi

−X ′
di
)Idi

+ Efdi
, (1)

T ′
qoi

dE′
di

dt
= −E′

di
+ (Xqi −X ′

qi
)Iqi , (2)

dδi

dt
= ωi − ωs, (3)

2Hi

ωs

dωi

dt
= TMi

− E′
di
Idi

− E′
qi
Iqi

−(Xqi −X ′
di
)IqiIdi

−Di(ωi − ωs), (4)

TEi

dEfdi

dt
= −(KEi

+ 0.0039e1.555Efdi )Efdi

+VRi
, (5)

TFi

dRfi

dt
= −Rfi +

KFi

TFi

Efdi
, (6)

TAi

dVRi

dt
= −VRi

+KAi
Rfi −

KAi
KFi

TFi

Efdi

+KAi
(Vrefi − Vi), (7)

TCHi

dTMi

dt
= −TMi

+ PSVi
, (8)

TSVi

dPSVi

dt
= −PSVi

+ PCi
−

1

RDi

(ωi

ωs

− 1
)

, (9)

where the synchronous reference rotating speed is ωs and the

inertia constant is Hi; the governor time constant is TSVi
; the

d-axis (q-axis) component of the stator current is Idi
(Iqi );

the voltage magnitude at bus i is Vi; and the parameter PCi

is an input provided by the AGC and is given in (13). The

definitions of the machine parameters may be found in [14].

In addition to (1)-(9), we also have a set of algebraic

equations

Vie
jθi + (RSi

+ jX ′
di
)(Idi

+ jIqi )e
j(δi−

π
2
)

−
[

E′
di

+ (X ′
qi
−X ′

di
)Iqi + jE′

qi

]

ej(δi−
π
2
) = 0, (10)

where θi is the voltage phase angle at bus i.

B. AGC System

Let A = {1, 2, . . . ,M} denote the set of BA areas in an

interconnected power system, and for each m ∈ A , let Am

denote the set of BA areas directly connected to BA area m;

then, the ACE for area m, ACEm, is given by

ACEm =
∑

m′∈Am

∆Pmm′ − bm∆fm, (11)

where ∆Pmm′ is the difference between the actual and the

scheduled power transfer from BA area m to BA area m′,

bm is the frequency bias factor, and ∆fm is the frequency

deviation from the nominal value.

Let Gm denote the set of all generators in BA area m, and

define a new state for the system, zm, which is the sum of

the AGC commands sent to generators in BA area m, i.e.,
∑

i∈Gm
PCi

; then its evolution is given by

dzm

dt
= −ACEm. (12)

Each generator i in BA area m participates in the AGC by a

participation factor κm
i , which is determined in various ways

(see, e.g., [15], [16]). Thus, the AGC command PCi
, used

in (9), is determined by

PCi
= P ⋆

Gi
+ κm

i (zm −
∑

j∈Gm

P ⋆
Gj

), (13)

where P ⋆
Gi

is the economic dispatch signal for generator i,

and
∑

i∈Gm
κm
i = 1.

C. Network

Let PLi
represent the real power load at bus i. Further,

let QGi
and QLi

denote the reactive power supplied by the

synchronous generator and demanded by the load at bus i,

respectively. Then, we model the network using the standard

nonlinear power flow formulation (see, e.g., [14]); thus, for

the ith bus, we have that

(PGi
− PLi

) + j(QGi
−QLi

) =
∑n

k=1 ViVk(Gik − jBik)e
j(θi−θk), (14)

where Gik+jBik is the (i, k) entry of the network admittance

matrix.

III. SIMPLIFIED POWER SYSTEM DYNAMIC MODELS

In this section, we develop the proposed reduced-order

models for synchronous generators, and the BA area dynamics.

More specifically, we use the 9-state model and the SMA

method to derive the synchronous generator model, which

in turn is used to obtain the system of differential equations

describing the BA area dynamic behavior.
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A. Synchronous Generator Reduced-Order Model

We use the 9-state model in (1)-(10) to obtain a reduced-

order three-state model with δi, ωi, and PSVi
. We wish to

keep (3), (4), and (9), and substitute the remaining differential

equations with algebraic ones. To do so, we use concepts from

SMA, which is a technique used to simplify high-order linear

systems (see, e.g., [3]). Let xi = [rTi , ζ
T
i ]

T , where ri =
[δi, ωi, PSVi

]T , and ζi = [E′
qi
, E′

di
, Efdi

, Rfi , VRi
, TMi

]T ;

yi = [Vi, θi]
T ; ỹi = [Idi

, Iqi ]
T ; and ui = PCi

. We may

linearize the system described in (1)-(10) along a nominal

trajectory (x⋆
i , y

⋆
i , ỹ

⋆
i , u

⋆
i ). Sufficiently small variations around

the system nominal trajectory may be approximated by

∆ẋi = A1i∆xi +A2i∆yi +A3i∆ỹi +Bi∆ui, (15)

0 = C1i∆xi + C2i∆yi + C3i∆ỹi, (16)

where the matrices A1i , A2i , A3i , Bi, C1i , C2i , and C3i are

defined appropriately and evaluated along the nominal trajec-

tory as the partial derivatives of the functions given in (1)-(10).

We assume the nominal trajectory is well behaved in the sense

that C3i is invertible; thus, we may solve for ∆ỹi. We substi-

tute ∆ỹi in (15) and obtain ∆ẋi = Ai∆xi+Di∆yi+Bi∆ui,

where Ai = A1i −A3iC
−1
3i

C1i and Di = A2i −A3iC
−1
3i

C2i .

We now partition the states xi into relevant ri and less relevant

states ζi, and rewrite the system into partitioned form as

follows:
[

∆ṙi
∆ζ̇i

]

=

[

A11i A12i

A21i A22i

] [

∆ri
∆ζi

]

+

[

D1i

D2i

]

∆yi +

[

B1i

B2i

]

∆ui. (17)

The idea behind SMA is to approximate the behavior of the

relevant states, ∆ri, with a set of differential equations that

contain only ∆ri and ∆yi, i.e., to substitute the differential

equations of ∆ζi with a set of algebraic equations. We do

so by “freezing” the less relevant states, with the help of

eigenanalysis methods. More specifically, we select the three

natural modes which define the dynamic pattern of interest.

These are: (i) the two complex eigenvalues, where the relative

participation of ∆δi and ∆ωi is high; and (ii) the real eigen-

value, where the contribution of ∆PSVi
is high. One way to

calculate the three eigenvalues is by using the entire matrix Ai;

however, such an approach increases the computational burden

in large-scale systems. Instead, we choose the submatirx A11i

to determine the values of the three modes. It has been shown

in [17] that this matrix yields good approximations to the

frequencies of the swing modes.

By solving (17) for ∆ζi, we obtain that

∆ζi = (sI −A22i)
−1A21i∆ri + (sI −A22i)

−1D2i∆yi

+(sI −A22i)
−1B2i∆ui,

where I is the identity matrix, and s is the Laplace operator.

However, as it may be seen from (1)-(10), the value of B2i is

zero. Thus, we have that

∆ζi = (sI −A22i)
−1A21i∆ri + (sI −A22i)

−1D2i∆yi.

We fix s to the values corresponding to the three eigenvalues

and obtain a set of linear equations ∆ζi = Aζi∆ri+Dζi∆yi.

In particular, Aζi satisfies the property Aζivj = Zi(λj)vj ,

for j = 1, . . . , 3, where Zi(s) = (sI − A22i)
−1A21i , λj

is the eigenvalue corresponding to mode j, and vj is the

right eigenvector of mode j. In the case of a conjugate pair

of complex eigenvalues the equation is slightly different; the

details may be found in [3]. For simplicity, we set Dζi = D2i .

We wish to include the mechanical power PSVi
in the swing

equation, as given in (4), instead of the scaled mechanical

torque to the shaft TMi
. To this end, we write (8) as (sTCHi

+
1)TMi

= PSVi
. If we set s = 0, then TMi

= PSVi
. This is

equivalent to a singular perturbation of the fast variable TMi
.

To sum up, we use the small 3× 3 matrix A11i to calculate

the desired eigenvalues and determine Aζi and Dζi . The

overall reduced-order model for generator i is now given by

dδi

dt
= ωi − ωs, (18)

2Hi

ωs

dωi

dt
= PSVi

− PGi
−Di(ωi − ωs), (19)

TSVi

dPSVi

dt
= −PSVi

+ PCi
−

1

RDi

(ωi

ωs

− 1
)

, (20)

ζi = ζ⋆i + Aζi∆ri +Dζi∆yi, (21)

where ζ⋆i is the value of ζi at the nominal trajectory

(x⋆
i , y

⋆
i , ỹ

⋆
i , u

⋆
i ), with the algebraic equations given in (10) and

(14). We denote by PGi
= E′

di
Idi

+E′
qi
Iqi+(Xqi−X ′

di
)IqiIdi

,

the real power generation at bus i.

We compare the proposed reduced-order model in (18)-(21)

with the classical model (e.g., [14]). The classical model may

be derived by setting s = 0 for the fast dynamics and s → ∞
for the slow dynamics. Thus, the approximation of the 9-state

model is better in the case of the proposed reduced model,

where values that describe the dynamic pattern of interest are

used in the Laplace operator.

B. BA Area Model

For each generator i, we use the proposed reduced-order

model in (18)-(21). Define ∆ωi = ωi − ωs, Mi =
2Hi

ωs
, and

R̃Di
= RDi

ωs, then we have that

dδi

dt
= ∆ωi, (22)

Mi

d∆ωi

dt
= PSVi

− PGi
−Di∆ωi, (23)

TSVi

dPSVi

dt
= −PSVi

+ PCi
−

1

R̃Di

∆ωi, (24)

with the algebraic equations in (10), (14), and (21).

For each BA area m ∈ A , we define

δm =

∑

i∈Gm
Miδi

∑

i∈Gm
Mi

, ∆ωm =

∑

i∈Gm
Mi∆ωi

∑

i∈Gm
Mi

,

Pm
SV =

∑

i∈Gm

PSVi
, Pm

G =
∑

i∈Gm

PGi
,

zm =
∑

i∈Gm

PCi
, Mm =

∑

i∈Gm

Mi.
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We add (22)-(24) for all generators in Gm to obtain

dδm

dt
= ∆ωm, (25)

Mm d∆ωm

dt
= Pm

SV − Pm
G −

∑

i∈Gm

Di∆ωi, (26)

∑

i∈Gm

TSVi

dPSVi

dt
= −Pm

SV + zm −
∑

i∈Gm

1

R̃Di

∆ωi. (27)

We modify (26)-(27) by using the definitions for the BA area

variable ∆ωm, and obtain

Mm d∆ωm

dt
= Pm

SV − Pm
G −

∑

i∈Gm

Di

Mi

Mm∆ωm

+
∑

i∈Gm

(

∑

j∈Gm

i6=j

Dj

Mj

)

Mi∆ωi, (28)

∑

i∈Gm

TSVi

dPSVi

dt
= −Pm

SV + zm −
∑

i∈Gm

1

R̃Di
Mi

Mm∆ωm

+
∑

i∈Gm

(

∑

j∈Gm

i6=j

1

R̃Dj
Mj

)

Mi∆ωi. (29)

We wish to substitute the terms referring to each syn-

chronous generating unit with a BA area variable. To do so

from (28)-(29), we wish that
∑

j1∈Gm

i6=j1

Dj1

Mj1

=
∑

j2∈Gm

i6=j2

Dj2

Mj2

,
∑

j1∈Gm

i6=j1

1
R̃Dj1

Mj1

=
∑

j2∈Gm

i6=j2

1
R̃Dj2

Mj2

, and TSVj1
= TSVj2

for all i, j1, j2 ∈ Gm. We may rewrite the equations as

Di

Mi

= c1, constant, ∀i ∈ Gm, (30)

1

R̃Di
Mi

= c2, constant, ∀i ∈ Gm, (31)

TSVi
= c3, constant, ∀i ∈ Gm; (32)

from where it follows that

Mm d∆ωm

dt
= Pm

SV − Pm
G − c1M

m∆ωm, (33)

c3
dPSV m

dt
= −Pm

SV + zm − c2M
m∆ωm. (34)

In order to determine the parameters c1, c2 and c3, we wish

to minimize the euclidean norm of the errors of the ratios

given in (30)-(32); however, there is a constraint relating c1
and c2. The deviations of the rotor angular speeds from the

nominal value are the same for each generator i ∈ Gm and the

BA area. We use the reduced-order model for each generator i,

given in (22)-(24), and the Laplace transformation, to obtain

s2TSVi
+ s(Mi∆ωi + PGi

TSVi
+DiTSVi

∆ωi)− PCi

+
1

R̃Di

∆ωi + PGi
+Di∆ωi = 0.

When t → ∞, then s → 0, and we have
( 1

R̃Di

+Di

)

∆ωi = PCi
− PGi

= −(PGi
(t)− PGi

(0)),

since PCi
(t) = PGi

(0), when the AGC system model is not

considered. We use (33), (34), and in a similar way find the

relationship that holds for t → ∞ for the BA area m. Since,

∆ωi(t) = ∆ωm(t), ∀i ∈ Gm as t → ∞, we have

PGi
(t)− PGi

(0)
1

R̃Di

+Di

=
Pm
G (t)− Pm

G (0)

(c1 + c2)Mm
, ∀i ∈ Gm . (35)

Since
∑

i∈Gm
(PGi

(t) − PGi
(0)) = Pm

G (t) − Pm
G (0), then by

adding (35) for all generators i ∈ Gm, we may derive that
∑

i∈Gm

( 1

R̃Di

+Di

)

= (c1 + c2)M
m.

Now, we may construct the constrained optimization problems

to determine the parameters c1, c2, and c3, given in (33)-(34),

as follows

minimize
c1,c2

∑

i∈Gm

(

c1 −
Di

Mi

)2

+
∑

i∈Gm

(

c2 −
1

MiR̃Di

)2

such that
∑

i∈Gm

( 1

R̃Di

+Di

)

= (c1 + c2)M
m;

(36)

and

minimize
c3

∑

i∈Gm

(

c3 − TSVi

)2

. (37)

By solving the optimization problems in (36) and (37) we

obtain

Dm = c1M
m =

1

2|Gm|

∑

i∈Gm

Mm

Mi

(Di −
1

R̃Di

)

+
1

2

∑

i∈Gm

( 1

R̃Di

+Di

)

,

1
R̃m

D

= c2M
m =

1

2

∑

i∈Gm

( 1

R̃Di

+Di

)

−
1

2|Gm|

∑

i∈Gm

Mm

Mi

(Di −
1

R̃Di

),

Tm
SV = c3 =

∑

i∈Gm
TSVi

|Gm|
,

where |Gm| the cardinality of the set Gm.

We may describe the BA area dynamic behavior by

dδm

dt
= ∆ωm, (38)

Mm d∆ωm

dt
= Pm

SV − Pm
G −Dm∆ωm, (39)

Tm
SV

dPSV m

dt
= −Pm

SV + zm −
1

R̃m
D

∆ωm, (40)

where Pm
G =

∑

i∈Gm

∑n

k=1 ViVk

(

Gik cos(θi − θk) +

Bik sin(θi − θk)
)

+ Pm
L , with Pm

L the BA area m total load.

IV. ADAPTIVE AGC SYSTEM

In this section, we use the BA area model derived in (38)-

(40) to determine the relationship between the AFRC, the

ACE, the system frequency and the total BA area genera-

tion. Next, we use this relationship and estimate the AFRC

online by using the sliding exponentially weighted window

blockwise least-squares (SEWBLS) algorithm. Then, we set

the frequency bias factor equal to the online estimation of the

AFRC in the ACE calculation.
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A. AFRC Determination

We now use (38)-(40), the dynamics of a single BA area,

to calculate its AFRC. The AFRC of BA area m is equal to

βm = −2π( 1
R̃m

D

+Dm) = −2π
∑

i∈Gm

(

1
R̃Di

+Di

)

. For the

case when the frequency bias factor is set to be equal to the

AFRC, we have non-interactive control, which is a fair control

in the sense that the BA area in which the load disturbance has

occurred is the only one that reacts to restore the frequency

and net tie flow to the desired values.

More specifically, we show that under some assumptions

the optimal value for the frequency bias factor is the AFRC.

We define Pm
G = Pm

G0
+∆Pm

L +∆Pm
losses, where Pm

G0
denotes

the total generation of BA area m in steady state. Similarly,

we have zm = zm0
+ ∆zm. At steady state, the following

relationship holds: zm0
= Pm

G0
. As in (35), we may obtain

a similar relationship for the entire BA area m with s = 0,

by using (38)-(40). We denote ∆ωm = 2π∆fm, and at time

t = k, we have

βm∆fm(k) + ∆zm(k)−∆Pm
L −∆Pm

losses = 0. (41)

The AGC system algorithm is essentially an integral controller,

which is working in discrete form by placing a sample & hold

circuit between the AGC and the power system (commands

to generators are sent every 2 to 4 seconds). Then, for one

BA area, we rewrite the AGC system given in (12) by using

(11), and Euler’s method: ∆z(k+1)−∆z(k) = b∆f(k). So,

∆z(k) = b
∑k−1

i=0 ∆f(i). We use (41) and the aforementioned

AGC algorithm, and for ∆f(0) = ∆PL+∆Plosses

β
, with ∆z(0) =

0, we see that ∆f(1) = 0 for b = β. In such a case, ACE is

corrected in only one control period [18]. Numerical results

of this claim may be found in [19].

Since d∆ωm

dt
= 2π d∆fm

dt
, we may combine (39) and (40)

into one equation using the Laplace transformation, and ig-

noring the second-order terms since they are negligible due to

the system inertia. Thus, we have that

s2π(Mm +DmTm
SV )∆fm − βm∆fm =

zm − (1 + sTm
SV )P

m
G . (42)

We use (42) to describe a BA area dynamic behavior, and

exploit it to derive a relationship between the AFRC, the ACE,

the frequency and the total generation of the BA area.

B. Online Estimation of AFRC

In order to estimate the AFRC, we use (42) in combination

with (12), and neglect the newly inserted second-order terms,

to obtain

ACEm = sβm∆fm − sPm
G . (43)

With the introduction of phasor measurement units (PMUs),

we can assume that the time elapsed between two consecutive

measurements, h, is very small; thus, we may approximate the

derivatives in (43) as follows. For every step k, referring to

time instant t = kh, we have

βm(k) =
ACEm(k) +

Pm
G (k)−Pm

G (k−1)
h

∆fm(k)−∆fm(k−1)
h

. (44)

We use the SEWBLS algorithm for the online estimation of

βm — the AFRC of BA area m (see, e.g., [5]).

In order to formulate our problem, we introduce the follow-

ing variables: χ(k) = φ(k)βm(k) and w(k) = χ(k) + v(k),
where χ(k) is the system output, w(k) is the measured

output and v(k) is a zero-mean white Gaussian sequence that

accounts for measurements noise and modeling errors. We

have that φ(k) is the denominator, and χ(k) is the nominator

of (44), respectively. The SEWBLS solution is

β̂m(k) =
[

(φk
k−L+1)

TΛk
k−L+1φ

k
k−L+1

]−1

[

(φk
k−L+1)

TΛk
k−L+1w

k
k−L+1

]

, (45)

where φk
k−L+1 = [φ(k−L+1), φ(k−L+2), . . . , φ(k)]T , and

Λk
k−L+1 is an L× L diagonal matrix with diagonal elements

being the forgetting factors, λL−1, λL−2, . . . , λ0. The values

of λ vary from 0 to 1. After several tests, we concluded that a

window length of L = 10 min provides good results in terms

of convergence speed and accuracy.

V. NUMERICAL RESULTS

In this section, we present several numerical studies to

demonstrate the proposed ideas and make several comparisons

to alternative approaches in the literature. First, we show that

the proposed reduced synchronous generator model provides

a good approximation to the 9-state model. In addition, we

show that the determination of the parameters Dm and R̃m
D for

a BA area m provides a satisfactory description of the system

dynamic behavior. We verify that the proposed methodology

yields an accurate estimation of the system AFRC, and show

the benefits of setting the estimated AFRC as the frequency

bias factor in an adaptive AGC system.

A. Single-Machine Infinite-Bus Power System

We illustrate the differences between: (i) the proposed

reduced-order model in (18)-(21), (ii) the conventional 9-

state model in (1)-(10), (iii) the classical model with the

governor dynamics, and (iv) the classical model without the

governor dynamics. To this end, we simulate the behavior of

these models in the context of the single-machine infinite-bus

(SMIB) test system, depicted in Fig. 2. The voltage at bus

2 is fixed at 1∠0; the machine, network, and load parameter

values for this example are as follows: the system MVA base

is 100; the synchronous speed is ωs = 377 rad/s; the machine

shaft inertia constant is H = 23.64; the machine damping

coefficient is D = 0.0125; the machine impedances are

Xd = 0.146, X ′
d = 0.0608, X ′

q = 0.1969, and Xq = 0.8645;

the governor droop is RD = 0.05; and the stator, rotor, voltage

regulator, exciter, and governor parameters are T ′
do = 8.96,

1 2

V1∠θ1 V2∠θ2

PL1
+ jQL1

jXl

Fig. 2: One-line diagram of a single-machine infinite-bus

power system.
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9-state model Reduced-order model Classical model with governor Classical model

−0.2151 ± j2.9256 −0.2556± j3.0082 −0.0542 ± j3.5146 −0.0500 ± j3.4849

−0.5156 −0.5163 −0.4916 −

TABLE I: Eigenvalues for the four different models.

t [s]
0 5 10 15 20 25 30

ω
[r
ad

/s
]

376

377

378

379
proposed reduced-order model

9-state model

classical model with governor

classical model

Fig. 3: Rotor electrical angular velocity ω for the three

synchronous generator models.

T ′
qo = 0.31, TSV = 2, TF = 0.35, KF = 0.063, TE = 0.314,

KE = 1, TA = 0.2, and KA = 20. The network impedance

between bus 1 and 2 is Xl = 0.5. We solve the power flow

equations and the machine algebraic equations such that the

synchronous generator output in bus 1 is PG1
= 0.8, the load

in bus 1 is PL1
+ jQL1

= 1+ j0.5, the voltage magnitude in

bus 1 is V1 = 0.871.

We choose the SMIB system, since the network impedances

are comparable with the machine stator reactances, and thus

the proposed reduced-order model yields the worst results

with this system. We demonstrate that even in this worst-

case scenario, the proposed model provides a very good

approximation of the system behavior. We change the load in

bus 1 from PL1
= 1 to PL1

= 1.3, and plot the rotor electrical

angular velocity of Generator 1 in Fig. 3. We consider the

9-state model as reference and notice that, as we make further

simplifications, we lose accuracy in the representation of the

actual system behavior. The proposed reduced-order model

is very close in terms of damping and frequency of oscil-

lations with the 9-state model, in contrast with the classical

model with and without the governor dynamics. We may

explain this fact by linearizing the four models. The damping

and frequency of oscillations of ω are determined by the

eigenvalues in which ∆δ, ∆ω, and ∆PSV have the largest

participation. The participation of a system state to a mode

(eigenvalue) is determined by the participation matrix [3].

In our proposed reduced-order model, the three eigenvalues

2 7 8 9 3

5 6

4

1

G1

G2 G3

Fig. 4: One-line diagram of the WECC three-machine nine-bus

power system.

t [s]
0 20 40 60 80 100

ω
1
[r
ad

/s
]

376.5

377

377.5

378
proposed reduced-order model
9-state model
PowerWorld model

Fig. 5: Rotor electrical angular speed of Generator 1.

that are associated with ∆δ, ∆ω, and ∆PSV , are close to

those of the 9-state model, since that is the way the reduced-

order model was constructed. In contrast, the eigenvalues of

the classical model with the governor, where ∆δ, ∆ω, and

∆PSV have the largest participation, do not match those of

the 9-state model. More specifically, we show the values of

the aforementioned eigenvalues in Table I.

B. Three-Machine Nine-Bus Power System

1) Synchronous Generator Reduced-Order Model: We

compare the proposed reduced-order synchronous generator

model with the PowerWorld dynamic simulation software,

which is well-established in the industry, (e.g., [20]) with

the standard three-machine-nine-bus WECC power system

model, the online diagram of which is depicted in Fig. 4.

The system contains three synchronous generating units in

buses 1, 2 and 3, and loads in buses 5, 6 and 8; the machine,

network and load parameter values may be found in [14]. More

specifically, we decrease the load in bus 5 by 0.05 pu. In the

PowerWorld software for the machine model we choose the

GENPWTwoAxis model, for the exciter the IEET1 model, for

the governor the TGOV1 model, and assign the parameters for

the generators as specified in [14]. In this example, we do not

include the AGC system; thus the system frequency does not

converge to the nominal value. In Fig. 5, we show the rotor

electrical angular speed of Generator 1, ω1, calculated with

the proposed reduced-order synchronous generator model, the

9-state model, and the PowerWorld model. We may notice

that the results of the three models are very close; thus, the

proposed reduced-order model provides a good approximation

of the synchronous generator dynamic behavior. We also

notice that the proposed-reduced order model provides a better

approximation of the 9-state model in the WECC power

system compared to the SMIB system. The reason is that the

network smooths the errors introduced.

2) BA area model: We also use the three-machine-nine-

bus WECC power system model to illustrate the proposed

BA area model and adaptive AGC system. We consider the

system as one BA area and model the system behavior with

the proposed model in (38)-(40), which we refer to as method

(i). We compare the behavior of the proposed model, with

that of a similar model by setting Dm =
∑

i∈Gm
Di,

1
R̃m

D

=
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0 20 40 60 80 100
376.5

377

377.5

378

378.5

379

379.5

ω
[r
a
d
/
s]

t [s]

 

 

(i)

(ii)

(iii)

Fig. 6: Speed of center of inertia with the three methods.

∑

i∈Gm

1
R̃Di

, and Tm
SV =

∑
i∈Gm

TSVi

|Gm| , which is commonly

found in the literature [4]; this is referred to as method (ii).

The benchmark model is the 9-state model described in (1)-

(10), which we use to calculate the speed of the center of

inertia, and refer to it as method (iii). In Fig. 6, we depict the

speed of center of inertia calculated with the three methods.

In this example, we do not include the AGC system, which

is why ω does not converge to the synchronous speed. We

notice that the approximation of the BA area dynamics with

method (i) is better than that obtained with method (ii), in

terms of magnitude of oscillations and time to reach steady

state. However, both methods deviate from method (iii), which

we use as reference. The reason is that in both methods (i) and

(ii), there are no individual states for each generator, and we

only consider the BA area states.

3) Adaptive AGC system: Next, we use this system to

demonstrate that the proposed algorithm used for estimating

the AFRC online, provides a good approximation. To this

end, we modify the system load as a stochastic differential

equation: dXt = aXt + ζWt, where a = −5 · 10−6 and

ζ = 0.01, and Wt is a Wiener process, as described in [21].

At time t = 30 min, the unit commitment changes, and

Generator 3 no longer participates in the system. Initially,

the generators AGC participation factors are: κ1 = 0.24,

κ2 = 0.50, and κ3 = 0.26, and after the unit commitment

they are: κ1 = 0.50, and κ2 = 0.50.

The online estimation of the AFRC, β, with λ = 0.95 in

the SEWBLS for a period of 70 min is given in Fig. 7. We

notice that the algorithm provides a good approximation of

the AFRC, which in this case is β = −1.152 pu/Hz, for the

first 30 min and −0.7881 pu/Hz for the subsequent minutes.

The maximum relative absolute error observed is 27.5%, the

minimum is 0.6%, and the average is 10.9%. We notice that

the proposed method captures the event of the change of the

set of generators, and the estimation of the AFRC changes

accordingly.

10 20 30 40 50 60 70

-1.5

-1

-0.5

0

p
u
/
H
z

t [min]

 

 

β̂

β

Fig. 7: Estimation of the AFRC.

0 10 20 30 40 50 60
-0.4

-0.2

0

0.2

0.4

A
C
E

[p
u
]

t [s]

 

 

b = β̂
b = β
b = −1.7 pu/Hz

Fig. 8: ACE with three different frequency bias factors.

In Fig. 8, we depict the system ACE, when using the online

estimation b = β̂ = −1.158 pu/Hz for the 20th min, the AFRC

b = β, and a fixed value b = −1.7 pu/Hz for the period

of 1 min. We may see that for b = β, we obtain the best

results, since it is well known that the best choice for the

frequency bias factor is the AFRC [18]. We notice that b =
β̂ is very close to ideal case, as desired. The reason is that

the estimation is very close to the AFRC. The case of b =
−1.7 pu/Hz presents the biggest oscillations. We also note that

for this time period the maximum absolute values of ACE for

the three cases are: 0.2360 pu, 0.1138 pu, and 0.3475 pu, and

the regulation amounts needed for each of the three cases are:

4.3079 pu, 2.3425 pu, and 7.7154 pu, respectively; thus, the

use of the online estimation β̂ in b is a good practice.

C. 48-Machine 140-Bus Power System

Next, we demonstrate the scalability of the proposed

methodology to the online estimation of the AFRC for large

power systems. In particular, we examine the IEEE 48-

machine test system, which consists of 140 buses and 233

lines [22]. To implement our proposed adaptive AGC scheme,

we use the MATLAB-based Power Systems Toolbox (PST)

[23], by adding the AGC system model in (12)-(13). The AGC

signal is allocated to the generators with a ratio proportional

to their inertia constant.

We use the algorithm proposed in (45) to estimate the AFRC

and use it in the calculation of the ACE. We modify the system

load in a similar way as in the 9-bus 3-machine system. In

Fig. 9, the ACE is plotted for the period of 1 minute by using:

the estimated AFRC b = β̂ = −5278 MW/Hz, the ARFC

b = β = −5475 MW/Hz, and the value b = −15833 MW/Hz

in its calculation. One can see that the proposed method yields

good results and the ACE is close to zero. In addition, the

maximum deviation of ACE is 4.91 pu, 4.30 pu, and 14.25 pu,

respectively.

0 10 20 30 40 50 60

-20

-15

-10

-5

0

A
C
E

[p
u
]

t [s]

 

 

b = β̂
b = β
b = −15833MW/Hz

Fig. 9: ACE for cases b = β̂, b = β and b = −15833 MW/Hz.
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VI. CONCLUDING REMARKS AND FUTURE WORK

In this paper, we developed simplified models that describe

synchronous generator and BA area dynamic behavior. More

specifically, we proposed a reduced-order generator model

that is simpler than the 9-state model and approximates the

synchronous generator dynamics in satisfactory levels, pro-

vides better accuracy compared to the classical models, and

has lower computational burden compared to other reduction

models. Subsequently, we used the reduced-order model to

derive a set of differential equations that describe the BA area

dynamic behavior. We demonstrated in the numerical results

section that these models provide a good approximation of

the system state compared to the 9-state model, which is

considered as the reference.

Moreover, to demonstrate the suitability of the proposed

models to power system analysis, we chose to use the simpli-

fied model for a BA area to design an adaptive AGC system.

To this end, we express the AFRC as a function of the BA

area variables that we have measurements of. Then, we used

the SEWBLS algorithm to estimate the AFRC and modify the

control gain of the AGC system. We showed that the use of

the AFRC provides better results in the frequency regulation,

in terms of the magnitude of the oscillations, the time the

frequency converges to the nominal value, and the regulation

amount needed. Furthermore, we showed that the proposed

method gives a good approximation of the AFRC.

For the future work, we plan on validating the proposed

adaptive AGC system in a real system, and compare the results

against the NERC frequency response requirements. Then,

we will investigate if a BA area that exercises the proposed

adaptive control meets the frequency criteria, such as CPS1,

CPS2, and BAAL (e.g., [24], [25]).
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