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Abstract: With recent focus on deep neural network architectures for development of algorithms 12 
for computer-aided diagnosis (CAD), we provide a review of studies within the last 3 years (2015-13 
2017) reported in selected top journals and conferences. 29 studies that met our inclusion criteria 14 
were reviewed to identify trends in this field and to inform future development. Studies have 15 
focused mostly on cancer-related diseases within internal medicine while diseases within gender-16 
/age-focused fields like gynaecology/pediatrics have not received much focus. All reviewed studies 17 
employed image datasets, mostly sourced from publicly available databases (55.2%) and few based 18 
on data from human subjects (31%) and non-medical datasets (13.8%), while CNN architecture was 19 
employed in most (70%) of the studies. Confirmation of the effect of data manipulation on quality 20 
of output and adoption of multi-class rather than binary classification also require more focus. 21 
Future studies should leverage collaborations with medical experts to aid future with actual clinical 22 
testing with reporting based on some generally applicable index to enable comparison. Our next 23 
steps on plans for CAD development for osteoarthritis (OA), with plans to consider multi-class 24 
classification and comparison across deep learning approaches and unsupervised architectures 25 
were also highlighted. 26 

Keywords: computer-aided diagnosis; CAD algorithms; deep neural networks; medical diagnosis; 27 
review 28 

 29 

1. Introduction and Background 30 

Growth in advanced computational techniques, including machine learning, has lent great 31 
support to predictive modelling which supports pattern recognition, with application in several 32 
fields including medicine, sales and marketing, etc. Algorithms modelled after human neural 33 
architecture, that is, Artificial Neural Networks (ANN), later emerged, with Deep Neural Network 34 
(DNN)-based algorithms gaining popularity in recent times across several fields including medicine 35 
where developments in disease diagnosis is on the rise [1]. Deep learning algorithms are adaptive 36 
systems that have shown great effectiveness in feature classification for low- to high-level features. 37 
They have found application in many popular systems like Google, Instagram, Pinterest, and 38 
Facebook. Their effectiveness lies in the multiple layers hidden between the input and output layers, 39 
which enables the modeling of complex, non-linear relationships. Their application in medical 40 
diagnosis supports the development of several diagnostic algorithms in the last couple of years and 41 
within various medical fields [2,3]. Considering that such systems are relatively new and there are 42 
already several studies done within the short period of its emergence, identify trends in the field is 43 
crucial to future works. Though some studies have reported on review of studies within deep 44 
learning [1,4], extensive work is scarce on trends within the medical field and so are those that 45 
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highlight important gaps or employ systematic approaches. We focus on the most recent work to 46 
identify areas requiring attention in terms of development and other key issues for future 47 
consideration and to assist us and other researchers and/or developers in the proper channeling of 48 
future efforts in useful projects. 49 

2. Significance of the Review 50 

The future of every job, including medical diagnosis, will be depending a lot on algorithm-based 51 
solutions. Thus, the faster the progress in various fields of medicine, the earlier we can arrive at 52 
solving the problems of easy access, on-time attention and more affordable medical services, 53 
especially among poor populations. This review focus on areas where work on development of CAD 54 
had been focused, and highlights areas where such is lacking, so that neglected fields can benefit 55 
from similar developments in the future. Other than this, the review highlights effective 56 
methodologies to aid in the design of such algorithms with higher accuracy and precision. Future 57 
systems can then address the limitations of existing ones. In addition, when properly focused, 58 
reviews can bring together related studies conducted in various domains, across global regions and 59 
by different groups of researchers who otherwise may not have any contact, thereby helping to 60 
highlight state-of-the art, as well as address frivolous claims that may not be totally true. 61 

3. Objectives of the Review 62 

Availability of equipment and dearth of medical experts indicated by as low as a 1:3500 63 
physician-patient ratio in some countries [5] are among key healthcare issues in many developing 64 
nations. With poverty level complicating these issues, CAD underscores the potential benefits of 65 
technology-mediated medical services and efforts at developing more CAD algorithms can ensure 66 
that global health goals are achieved quickly. In addition to supporting early detection, accurate and 67 
efficient diagnosis, CAD algorithms can also serve as effective instructional systems. This review 68 
therefore focuses on identifying i) trends within this field, by capturing the fields of medicine focused 69 
by work on CAD development and those that have received less focus; types of data employed in the 70 
CAD developments; and deep learning architectures or methodologies engaged in these works and 71 
their significance; ii) main findings/results reported, their significance, suggestions regarding 72 
limitations and future work and iii) conclusions regarding trends within DNN-based development. 73 
These conclusions are intended to guide our fourth objective, to be captured in iv) next steps. 74 

4. Related Work 75 

Machine Learning (ML) refers to the ability of machines to take data as input, and teach 76 
themselves how to make decisions based on these data through defined procedures or processes 77 
referred to as algorithms. These algorithms are often categorized as being supervised (learning based 78 
on a definite or known goal or output), or unsupervised (no output is defined). ML is based on pattern 79 
recognition and has been employed in many fields including fraud detection, translation, information 80 
retrieval, facial recognition, classification of DNA sequences, handwriting recognition, and many 81 
others. In medicine, ML has been applied for various purposes including image annotation, 82 
registration, computer-aided diagnosis (CAD), and guided therapy. In recent times, new algorithms 83 
like deep learning are beginning to gain popularity in disease diagnosis by medical imaging and 84 
developments have been reported in several studies [6–8]. 85 

4.1. Artificial Neural Networks 86 

ANNs are artificial models of human brain decision-making power [9]. The general scheme is 87 
composed of three main parts: the input layer and the output layer, with one or many hidden layers 88 
between them. The number of neurons in a layer being a function of system complexity. The input 89 
layer provides information on the conditions for which the network is being trained and each neuron 90 
represents an independent variable related to the expected output. The number of neurons in the 91 
output layer is a function of the intended use of the output. Data fed to the neurons in the input layer 92 
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is transferred to the hidden layer where they undergo some complex mathematical computation and 93 
then transferred to neurons in the next layer, and the next, until the result is finally transferred to the 94 
output layer. Several complex mathematical computations go into determining the optimum network 95 
architecture for a system.  96 

In ANNs, learning is based on the training algorithm, a computational rule that forms the basis 97 
on which the network learns to approximate the transfer function, f, between an input and a 98 
corresponding output vector. The network ‘learns’ from ‘examples’ provided by a combination of 99 
inputs and outputs in a training database, that is, the information or features that indicates what the 100 
network learns; for example, symptoms/results of laboratory analysis and the diagnostic decisions 101 
(outputs) in medical diagnosis. Between these layers are the hidden layers responsible for the 102 
complex processing of the input data, the basis on which the ANN architecture is regarded as a black 103 
box [10]. With linear problems, one hidden layer is sufficient to address the required processing; but, 104 
with complex problems, more layers will be required [9] and the number of neurons in each layer 105 
must be estimated to achieve optimum network architecture. This ‘best fit’ value is determined by 106 
several methods; one method uses estimates of a regression plot of the training stopping/error 107 
function (MSE) and the number of nodes in the hidden layer, the optimal value being the lowest error 108 
(MSE) value achieved as shown in the ‘MSE vs hidden layers’ plot for training (a) and testing (b) in 109 
Figure 1 [11). 110 

 

Figure 1: Mean Error of Training (a) and Testing (b). 111 

4.2. Deep Neural Networks 112 

Deep Neural Networks (DNN) are based on deep learning, which has gained popularity in 113 
general data analysis and was listed among the top technology breakthroughs of 2013 [12]. Neural 114 
networks have great applicability in the handling of noisy datasets or those with missing variables. 115 
One disadvantage however lies in their longer training times requirement. Deep architectures are 116 
generally based on neural networks with multiple layers of stacked neurons that allows the back-117 
propagation of a signal. Convolutional Neural Networks (CNN) have been exceptionally prevalent 118 
and have gained more popularity than others. Two of the commonest deep learning architectures [1] 119 
include systems based on unsupervised training and those based on supervised training. 120 
Unsupervised systems use layer-by-layer pre-training of DNNs, with supervised finetuning of the 121 
network; Deep Belief Networks (DBNs), Stacked Auto-Encoders (SAEs) and Restricted Boltzmann 122 
Machines (RBMs) which are essentially SAEs in nature are examples. Supervised systems are based 123 
on supervised end-to-end training of an entire DNN. Examples are Recurrent Neural Networks 124 
(RNNs) and Convolutional Neural Networks (CNNs); CNNs being, in recent times, the most well-125 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 17 October 2017                   doi:10.20944/preprints201710.0117.v1

http://dx.doi.org/10.20944/preprints201710.0117.v1


 4 of 18 

 

known architecture within image processing. AlexNet [13,14] is the most well-known, general 126 
classification CNN architecture. 127 

CNNs are ANN models of human visual cortex [15]. They are among the commonest deep 128 
learning architectures, in the same group as RNNs and DBNs and are state-of-the-art within the field 129 
of computer vision. CNNs can learn both local and global structures in images, hence, their usefulness 130 
as demonstrated in real world applications and in big data tasks related to pattern recognition. CNNs 131 
have shown exceptional performance in difficult image classification problems, displaying 132 
capabilities that surpassed those of human experts in some domains [16]. They have proven useful 133 
in CAD and have been applied in feature extraction from diverse image datasets. It applies equal 134 
weights in the convolutional layers and thus require less memory and attains higher processing 135 
speed. CNNs do not depend on prior knowledge because they learn the features which are then 136 
applied for object classification. They are also less dependent on hand-engineered features. CNNs 137 
consists of four layers including the sub-sampling layer (max-pooling), Rectified Linear Unit Layer 138 
(ReLU), spatial convolutional layer, and a fully-connected layer. Considering the challenge of manual 139 
image interpretation, human limitations and large inter-grader variability, medical diagnosis can 140 
benefit immensely from CAD approaches like CNN. 141 

4.3. Computer-Aided Diagnosis 142 

CAD underscores the benefits of technology-aided disease detection in delivering accuracy that 143 
compares with or surpasses those by human professionals. While the target of CAD may not be to 144 
replace human doctors, its capabilities can extend those of humans by assisting them to make more 145 
accurate diagnostic decisions in addition to addressing expert scarcity in various world regions or 146 
medical fields. Several algorithms already exist within CAD; popular ones include Support Vector 147 
Machines (SVMs), Fuzzy Logic (FL), Decision Trees (DT), k-Nearest Neighbors (k-NN), Neural 148 
Networks (NN) and more recently, the deep learning algorithms. SVMs are clustering, supervised 149 
learning algorithms. FL operates within the domain of ‘computer understanding of natural language’ 150 
is based on ‘degrees of truth’ rather than the true-false or zero-one (0, 1) binary/Boolean logic of 151 
modern computing, thereby, being a closer representation of human cognitive abilities. DTs are non-152 
linear classifiers; they employ flow-chart or tree-like model of decisions and their possible outcomes, 153 
they attempt to capture important factors including unexpected consequences. In k-NN, classification 154 
is based on closest training cases; estimations of the probability of an event is based on information 155 
regarding such occurrence in a similar case based on the training data. 156 

5. Methodology 157 

We employed a systematic approach in our study based on its ability to support reproducibility 158 
and focus on a specific area for in-depth review rather than just the general overview approach in 159 
unsystematic reviews. Systematic reviews focus on a definite approach to selection, review and 160 
evaluation of studies for answering specific research questions. Considering the vast amount of work 161 
that have been done in the development of CAD algorithms, it is impractical to conduct a review that 162 
captures every study there is. In addition, other studies have considered general reviews; for example, 163 
see [1) provided a comprehensive review of studies that employed deep learning in medical image 164 
analysis, identifying studies per application area within image classification, object detection, 165 
segmentation, registration, and other related tasks. For our study, we considered a tighter selection 166 
of articles that reflects the focus of our study, which includes: i) most recent studies, ii) employed 167 
DNN, and iii) focused on CAD development. We applied the search strings ‘diagnosis medical 168 
algorithm’, ‘deep neural network diagnosis medical algorithm, ‘diagnosis algorithm’, ‘diagnosis 169 
algorithm medical’, ‘diagnosis medical algorithm deep neural network’ and ‘deep neural network 170 
algorithm diagnosis medical’ for identifying relevant articles in selected databases. Final samples for 171 
our study were selected based on three inclusion/exclusion criteria including being published within 172 
2015-2017 (based on popularization of deep learning in 2015), study reports on deep learning 173 
approaches for CAD algorithm development and reports information on procedure, training and 174 
methodology, with findings clearly laid out.  175 
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Noting that research articles are deposited in several repositories, some of which are not well-176 
known, and the impracticality of reviewing every possible study that falls within the group in focus, 177 
we sampled articles from top medical journals/conferences related to neural network and medicine 178 
with purposeful selection of few articles that meet the first and second criteria. Based on these criteria, 179 
we sampled from top 10 databases as provided by OMICS International (2017) in April-May, 2017 180 
(Note: OMICS’ lists are updated regularly). The full list of articles reviewed is provided in Appendix 181 
A (Table A1). Over 600 articles were returned from our initial search; however, only 67 met our basic 182 
criteria on abstract screening. Further screening and full content filtering based on the inclusion 183 
criteria and objectives yielded a total of 29 papers which were reviewed and the findings reported in 184 
this paper.  185 

For this study, we focused on identifying among other things: (i) the field of medicine covered, 186 
including the type of patient (gender, age-group, etc.) where applicable, while noting that a study 187 
can hardly be focused on a single field (e.g. a study on breast cancer, with ultrasound data combines 188 
oncology, mammography, and radiology). (ii) Data information; including the type and size of data 189 
employed and for which part of the work (feature extraction, training, etc.) where possible, as well 190 
as the source (simulated, real clinical data, medical/non-medical data). (iii) Methodology employed, 191 
including the procedure for CAD development; we aim to identify what architecture(s) is/are used 192 
in the different stages of the work. (iv) Key issues noted in the results of the study; including 193 
accuracy/precision reported, and limitations of the techniques used. (v) Suggestions for future work 194 
noted; for integration with our findings to draw conclusions that can inform future developments, 195 
system upgrade, and research studies. 196 

6. Results and Discussion 197 

In this section, we address each of the six objectives identified regarding the study. Each sub-198 
section addresses an objective while sub-sub-sections address separate concepts captured in the sub-199 
section. 200 

6.1. Distribution of Studies, the fields of medicine focused and those that have received less focus 201 

In this sub-section, we address the first objective, hence, we focus on the distribution of studies 202 
to capture the year of publication, the medical field or disease focused, the type and source(s) of data 203 
employed in the CAD developments and the methodologies engaged in the studies, with a focus on 204 
the deep learning architecture and their significance. 205 

6.1.1. Distribution of studies by year 206 

Based on the year of publication, studies were distributed across the years 2014-2017 (2014 207 
studies are among the few purposely selected ones) with most studies (40%) in 2016 as shown in 208 
Figure 2. This distribution reflects the recent focus within this area and the popularization of deep 209 
learning techniques from 2015 seeing many articles published in 2016. There is however, indication 210 
that several studies may become available before the end of 2017. 211 
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 212 

Figure 2: Distribution of Studies by Year 213 

6.1.2. Distribution of studies by Medical Field 214 

In terms of disease or field of medicine focused, we identified studies summarized into 9, 215 
including 8 specified medical fields and others (including unspecified diseases and general 216 
applications) as shown in Figure 3. The studies were focused within 3 main areas including 217 
cardiology [4], internal medicine [9], and oncology [7]. Cancer-related diseases (skin, breast, etc.) and 218 
fields captured within internal medicine have the highest number of studies, with the latter covering 219 
mostly interstitial lung disease and lymph node diseases. 220 

 221 

Figure 3: Distribution of Studies by Disease or Medical Field Focused 222 

While it is almost impossible to capture every disease specialty within medicine due to diverse 223 
classification approaches across global regions, we considered classifications that capture patient’s 224 
age and gender as central issues in medicine and thus, worthy of attention. We therefore examined 225 
studies for focus on paediatrics, internal medicine, and geriatrics as sub-specialities within age-based 226 
classifications, and obstetrics, gynaecology and mid-wifery for gender-based classifications. Based on 227 
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this, we noted that most of the studies reported fall within internal medicine, that is, diseases of 228 
younger adults as opposed to those of older adults, whose ailments, are usually complicated by 229 
sarcopenia and frailty [17] as shown in Figure 3. Development that focuses on populations of younger 230 
persons (pediatrics) was only one and none for older adults (geriatrics), in the reviewed studies, 231 
highlighting a huge gap within two major global populations. Further details on fields captured 232 
within internal medicine is shown in Figure 4. 233 

 234 

Figure 4: Distribution of Studies within Internal Medicine 235 

There is obviously no specialized field of medicine that focuses on men’s diseases; whereas 236 
obstetrics and gynaecology are devoted to the diseases of women, indicating their importance to 237 
global medical practice. In our review, apart from cancer-related fields like mammography, diseases 238 
of women have not been the focus of CAD algorithm developments. In addition, apart from heart- 239 
and lung-related diseases, diseases of other internal organs, including male and female reproductive 240 
organs, the digestive system, circulatory system, and bones and joints have not received extensive 241 
focus in terms of algorithm developments. 242 

6.1.3. Types and Sources of data employed in the CAD developments 243 

One of the most striking things noted in the review is that only image datasets (MRIs, x-rays, 244 
CT-scans, HRCT images, and ultrasound) were employed in the studies; highlighting the current 245 
focus of deep learning applications within medical imaging. This necessitated the use of imaging 246 
techniques in the studies. We also noted that three types of data sources were employed in the 247 
projects as shown in Figure 5. Data from human subjects [18] were small while public medical 248 
datasets [19–22] were relatively larger in size. Some of the studies [23–25] also engaged non-medical 249 
image datasets for algorithm training. This appears to be a recent approach to system training that 250 
attempts to by-pass the limitation caused by non-availability or inaccessibility of medical data, 251 
especially by researcher-developers who in many cases are not health professionals. However, fine 252 
details on how this works were not provided in the studies, though it was suggested that this might 253 
be a novel attempt that could yield great benefits, but it requires further validation. 254 

6.1.4. Deep learning architectures or methodologies engaged in the studies and their significance 255 

We noted the use of CNN techniques [19] either alone or in combination with other approaches 256 
like least squares-SVM [26], ELM [27], random forests [28], adaboost [29], etc. This is not very 257 
surprising, since data are mostly image datasets. Distribution of studies by deep learning technique 258 
is shown in Figure 6. In some of the studies, the same datasets were divided into training and testing 259 
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datasets, while in some, one dataset is used for training and another for testing. This is the case in 260 
studies that employed non-medical image datasets [24,30–32]. In such cases, methodologies are 261 

mostly domain-transfer CNN. 262 

Figure 6: Distribution of Studies by Deep Learning Architecture Employed 263 

6.2. Main findings noted in the studies reported and the significance for future works 264 

We were interested in a general overview of the quality of results in terms of the data size, type 265 
or quality, hence, we mapped deep learning techniques employed with the dataset used and the 266 
quality of result. We also identified the quality indicator employed for reporting in each study. 267 
Though it is difficult to make a conclusion on the comparative effectiveness of different methods (or 268 

Figure 5. Distribution of Study by Source of Dataset. 
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a combination of methods) due to different reporting indices, we made the following general 269 
observations which might help in future studies. 270 

6.2.1. Methodology 271 

A total of 12 different techniques were identifiable in the studies, with nine [9] being CNN or in 272 
combination with CNN. They include CNNs, Deep CNN, Customized CNN; domain-transfer CNN 273 
(DT-CNN), CNN + Support Vector Machines (SVM); DT-CNN + Sparse Spatial Pyramid; CNN + GIST 274 
(Generalized Search Tree), CNN + Adaboost + SVM + Random Forests (RFs); Extreme Learning 275 
Machines (ELM); SVM + RF; Least-squares SVM; CNN + Pattern Histogram; Lib linear SVM 276 
Classifier; Siamese DNN; and Deep Belief Network (DBN). In most of the studies, CNN, was 277 
employed either as the only approach, or in combination with other techniques. 278 

6.2.2. Quality Indicators 279 

Quality indicators noted in the articles reviewed were diverse: accuracy, mean class accuracy, 280 
performance accuracy, margin accuracy, average time for network computation, average absolute 281 
error [33], sensitivity and specificity [34], error rate, Jaccard index [32], error score  [19], Area Under 282 
Curve, precision, percent performance [35], and F1 score [36] among others. It appears there are no 283 
fixed standard or agreed upon indices for reporting these types of studies. It may help for all work 284 
to report quality achieved based on some fixed standard to aid comparison across approaches. This 285 
might offer a lot of leverage for future works in deciding on methods. Quality metrics employed in 286 
the reviewed studies are described below [37,38]. 287 

• Diagnostic Accuracy describes how close a measure is to the true /standard value and it can be 288 
described using other indicators like sensitivity, AUC, specificity, etc. 289 

• Sensitivity and specificity refers to how well a system or test accurately classifies a 290 
healthy/disease condition. It is measured based on how many disease conditions are classified 291 
as healthy (False Positives) and how many healthy conditions are classified as disease (False 292 
Negatives). It can also be reported as correct classification of healthy conditions as healthy (True 293 
Positives) and diseased as diseased (True Negatives). 294 

• Area Under Curve (AUC) is the area under the ROC curve which is a plot of specificity (x-axis) 295 
against specificity (y-axis). The AUC can take values up to 1.0 (best). Values <0.5 are not 296 
acceptable. The closer the AUC is to 1.0, the better the specificity and sensitivity. 297 

• Precision is a class agreement between the positive labels and the data labels provided by the 298 
classifier to give estimation of the predicted value of the class label based on the desired class 299 
calculated. 300 

• F1 Score describes a relationship between the test data positive labels and those provided by the 301 
classifier. It provides a measure of the accuracy of the test considering the recall (r) “sensitivity” 302 
and the precision (p) values to calculate the score. 303 

• Jaccard Index is a statistical measure to compare the sample set similarity and diversity; it is 304 
used to identify the similarity between procedures’ pairs. 305 

• Error Score/Rate is the average of the classification error per-class; it refers to as the False 306 
Acceptance Rate or the False Rejection Rate. 307 

• Performance evaluates the performance of the system or the classification task based on the 308 
overall matrix measurements results by testing the classes which are recognized correctly. 309 

 310 

6.2.3. Effect of Different Metrics Employed 311 

The type of image, (2D/3D) appears to influence quality achieved; for example, we noted that 312 
70,000 3D images achieved a higher accuracy (99.9%) than 215,000 2D images [25]. We also noted that 313 
authors reported generally higher quality metrics for hybrid approaches than single ones. Ahn et al. 314 
[19] employed a combination of DT-CNN and Sparse Spatial Pyramid and reported an error score 315 
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that ranked second among 13 techniques. Bar et al. [24] also achieved AUC up 0.94 with their CNN-316 
GIST combination. Similarly, Saraf and Tofighi [18] achieved an accuracy of up to 96.85% by 317 
combining SVM and CNN. Single method approaches (CNN and DBN) like Miki et al. [39], Sharma 318 
et al. [30] and Alcantara [31], reported comparatively lower metrics. 319 

6.2.4. Classification Approaches 320 

Many of the algorithms focused on binary classification which appears to support higher 321 
accuracy and precision than multi-stage classification. For example, 89.60% vs 62.07% for binary vs 322 
multi-class approach was reported by Alcantara et al [31]. However, real-life medical diagnosis is not 323 
a mere identification of the presence or absence (binary classification) of a disease, but, a multi-stage 324 
classification that can identify levels of severity to support proper treatment. Hence, multi-class 325 
approaches are more accurate simulations of real-life medical diagnosis, suggesting the need for 326 
future studies to focus on improving the accuracy of these types of classifications. 327 

6.2.5. Effect of Data Manipulation 328 

Data cleaning (e.g. de-noising) is a standard practice in pre-processing of data prior to data-329 
mining procedures. It assumes ‘dirtiness’ of raw data and its inability to provide useful or accurate 330 
information. The findings of Acharya, Fujita, and Shu Lih, et al. [34] appear to negate this; they 331 
reported an average accuracy of 93.53% with noise removal and 95.22% without noise removal. Miki, 332 
Muramatsu and Hayashi et al. [39] on their part noted an increased accuracy of 5% with data 333 
augmentation. These observations suggest the need for more studies to highlight issues within data 334 
manipulation. 335 

6.2.6. Significance of Data Type/Source 336 

Real patient data, image data from public databases and non-medical or natural image data were 337 
the 3 types of data noted. The use of non-medical/natural image datasets was noted by the users as a 338 
novel approach that can address the challenge of data scarcity while at the same time yielding useful 339 
results in terms of classification accuracy [24]. However, we noted that the use of real patient datasets 340 
yielded good results despite the small sizes employed [18,29,40,41]. The implication is that better 341 
results are possible with larger data sizes compared with the use of public medical datasets or natural 342 
image datasets. 343 

6.2.7. Training Mode 344 

We consider it worthy of note that every article reviewed employed supervised learning 345 
techniques for training the algorithms. At a time when the greater benefits of unsupervised learning 346 
is being highlighted, it is noteworthy that none of the studies employed unsupervised learning. 347 
Vaidhya’s presentation [42] highlights the advantages of unsupervised learning in medical imaging 348 
especially when compared with the need and cost of ‘strong, pixel-level annotations’ for several 349 
images that may run into millions required for very accurate image-based classifications. He 350 
described the application of ‘Stacked De-noising Auto-Encoders’ (SDAEs) for brain tumor 351 
segmentation from MRI which achieved results comparable to that based on 100% supervised CNNs. 352 
Though we did not find studies that reported results based on separate supervised and/or semi-353 
supervised and/or unsupervised deep learning in the same project and on the same datasets, we 354 
believe that such studies might shed the much-needed light on the comparative effectiveness of these 355 
techniques. 356 

6.2.8. Suggestions regarding limitations of the studies and future work 357 

 Several limitations including the use of retrospective and non-clinical data in about 70% of the 358 
studies, trial with only one type of data, one disease, and testing by developers in simulated settings 359 
in most cases, are some of the limitations reported in the studies. The necessity of assessing the 360 
usefulness of the algorithms for applications in point-of-care solutions was suggested by Luong et al 361 
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(2016) while trial with other techniques, data and diseases are recommended in studies employing 362 
novel approaches (Miki et al., 2017b; Wang et al., 2015). The need to establish generalizability of 363 
findings across different diseases was also noted, though, [21] and [43] reported the greater 364 
effectiveness of dedicated systems over multi-purpose ones. [31] noted deployment on mobiles as a 365 
means that might represent the ultimate usefulness of these systems for supporting self-diagnosis 366 
and timely access, especially, in poor populations. Other suggestions include the use of DT-CNNs 367 
with lower layers pre-trained on generic data and deeper (semantic) layers fine-tuned for specific 368 
image types and further tuning of algorithm trained with non-medical data with real data. [22] also 369 
suggested the use of ensemble teacher for labeling unlabelled samples to augment training set of 370 
student model to address the problem of limited annotated data. Overall, the need for larger datasets 371 
with more real patients, better features and more robust classifiers, and datasets and results made 372 
available to serve as public assets and reference point for future studies [29] cannot be over-373 
emphasized. 374 

6.3. Conclusions regarding the general trend within DNN-based development of CAD algorithms, and 375 
directions for future work 376 

The review highlighted important issues that require focus in future works including the scarcity 377 
of studies within some fields of medicine, like obstetrics, gynaecology, paediatrics geriatrics, 378 
psychiatry, and musculoskeletal disorders. Images datasets employed in all the studies, informed the 379 
focus on CNN approaches with supervised learning. Future studies should examine the efficacy of 380 
non-image data, for the development of useful applications within fields like mental health where 381 
clinical diagnosis remains an almost uncertain procedure complicated by comorbidity. Quality 382 
indicators reported are diverse, making comparison across studies difficult; we suggest that some 383 
generally applicable index, should always be reported. More focus should be placed on multi-class 384 
approaches while efforts are made to improve quality of results. More studies to confirm the effect of 385 
data manipulation on quality of output are required in addition to availability of large, real clinical 386 
data and direct collaboration between medical experts, hospitals, relevant researchers and machine 387 
learning experts to achieve better results. Finally, regarding our submission on the significance of 388 
reviews to clarify claims that may not be completely true, we noted that Suzuki et al. [32], in their 389 
report claimed that their ‘study is the first demonstration of DCNNs for detecting the masses in 390 
mammographic images’; however, we found a similar work by [44], in which they also employed 391 
deep CNN and which was reported in a MICCAI conference paper in October, 2015. 392 

6.4. Next Steps  393 

In our follow-up work, we will be addressing some of the findings reported in this paper. Due 394 
to the complications of working within paediatrics field and the certification requirements of medical 395 
data handling, we will be focusing on a CAD development project for a common geriatric ailment, 396 
osteoarthritis (OA), associated with ageing. We will be considering focus on multi-class classification 397 
and a comparison of various deep learning approaches using the same data in addition to the 398 
possibilities of comparison across supervised and unsupervised learning approaches. 399 
 400 
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Table A1. Information on Deep Learning Architecture and Dataset, Summary of Result and Quality 408 
Indicator for Studies Reviewed 409 

Year Author & Title Method & Dataset Result Reported with Precision 
Metric 

2016 Gulshan, et al., 2016. 
Development and 
Validation of a Deep 
Learning Algorithm for 
Detection of Diabetic 
Retinopathy in Retinal 
Fundus Photographs. 

DCNN; Training: 128,175 retinal 
images, graded 3 to 7 times for 
retinopathy, macular edema, & image 
gradability by 54 US licensed and 
senior resident ophthalmologists. 
Validation: 2 data sets, graded by at 
least 7 US board-certified 
ophthalmologists

Evaluation of algorithm with adult 
sufferers shows high sensitivity and 
specificity 

2016 Luong, C., et al., 2016. 
Automatic Quality 
Assessment of Echo 
Apical 4 - chamber 
Images Using 
Computer.  

DCNN; Randomly fetched end-
systolic apical 4-chamber images 
6, 916 images (manually graded by 1 
observer for image quality; score 
0=bad to 5=good). 
Training: 80% data; Testing: 20%. 

Absolute error of model compared 
with manual scoring was 0.68±0.58; 
91% of images obtain a score diff <1. 
Intra-obs variability show high 
agreement; within subject SD=0.65 (κ 
= 0.80). Average time for network 
computation of image quality score 
=10ms.   

2017 Wang, Xiaosong, et al. 
"Unsupervised Joint 
Mining of Deep 
Features and Image 
Labels for Large-scale 
Radiology Image 
Categorization and 
Scene Recognition."  

Deep CNN; 215,786, 2D key-images 
and the associated radiology reports of 
61,845 unique patients. 

Significantly better image 
categorization with model; clustering 
accuracy=75.3%, compared to the 
state-of-the-art supervised 
classification accuracy of 81.0% 
(when both are based on the VGG-VD 
model and categorized on the MIT 
indoor scene dataset) 

2017 Wang, et al., 2017. 
Unsupervised Joint 
Mining of Deep 
Features and Image 
Labels for Large-scale 
Radiology Image 
Categorization and 
Scene Recognition. 
 

CNN; 70,000 audio segments from 26 
patients; 5 methods tested: i) original 
spectrum ii)RASTA-PLP power 
spectrum, iii)RASTA-PLP cepstrum, 
iv)12th order PLP power spectrum 
without RASTA and v)12th order PLP 
cepstrum without RASTA. 

RASTA-PLP spectrum is the best 
method to encode audio signals; 
average accuracy=0.9965 in 200 
iterations on test batches and a Fl-
score = 0.9768 on samples re-sampled 
from the test set 

2016 Ribeiro, et al., 2016. 
Colonic polyp 
classification with 
convolutional neural 
networks.  
 

DNN; 100 images (256×256) from 62 
patients with high-definition (HD) 
endoscope with i-scan. Images from 
HD video frame regions form database 
(2classes of 25 healthy images from 18 
patients and 75 abnormal images from 
56 patients)

Superior performance compared to 
state-of-the-art feature extraction 
techniques 

2017 Wang, et al., 2017. A 
multi-resolution 
approach for spinal 
metastasis detection 
using deep Siamese 
neural networks.  

Siamese Deep Neural Networks;
Detection performance based on 26 
cases. Sagittal MRI images of the 
spines from 14 males and 12 females, 
(58 ± 14 years; mean ± SD) 

Method correctly detected 100% 
spinal metastatic lesions; produced 
only 0.40 False Positives (FPs)/case. 
At a True Positive (TP) rate of 90%, 
aggregation reduces FPs from 0.375 
FPs/case to 0.207 FPs/case (44.8% 
reduction)

2017 Pang, et al., 2017. A 
novel end-to-end 
classifier using domain 
transferred deep 
convolutional neural 
networks for 
biomedical images. 

DT-CNN; Image data from many 
public databases: NEMA-CT 
database, TCIA-CT database and 
OASIS-MRI database 

Technique overrides limitations of
traditional approaches including: the 
need for manual design of feature 
space; effective feature vector 
classifier or segment specific 
detection object and image patches, 
large training datasets, computing 
resources and waiting time for training 
a perfect deep model 

2017 Rajendra et al., 2017. 
Application of Deep 
Convolutional Neural 

DCNN; Two sets of ECG beat with 
651 samples each (250 samples before 

Average accuracy of 93.53% (with 
noise removal) & 95.22% (without 
noise removal. (2) Accuracy, 
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Network for 
Automated Detection 
of Myocardial 
Infarction Using ECG 
Signals. 

R-peaks detection and 400 samples 
after R-peaks detection) 

sensitivity & specificity of 93.53%, 
93.71%, & 92.83% respectively for 
ECG beats with noise 

2017 Miki, Yuma, et al. 
2017. "Classification of 
teeth in cone-beam CT 
using deep 
convolutional neural 
network."  

DCNN; 52 CT volumes randomly 
divided into 42 training and 10 test 
cases, ROIs obtained from training 
cases used for training the CNN. To 
examine sampling effect, 3 cycles of 
sampling was done with training and 
testing repeated

AlexNet network architecture 
provided in the Caffe framework used 
for study. Average classification 
accuracy =88.8%; with data 
augmentation, classification accuracy 
increased by 5%. 

2017 Sharma, et al. "Deep 
convolutional neural 
networks for automatic 
classification of gastric 
carcinoma using whole 
slide images in digital 
histopathology."  

DCNN; Cancer detection: 21,000 
images from each slide (AlexNet), 
resulting in 231,000 images. Necrosis 
detection: 47,130 images 

Classification accuracy= 0.6990 
(cancer classification); =0.8144 for 
necrosis detection 

2014 Li, et al. "Identifying 
informative risk factors 
and predicting bone 
disease progression via 
deep belief networks."  

Deep Belief Networks (DBNs); 
Variety of well-trained DBN models 
applied; they inherit the ability to 
pinpoint underlying causes of disease 
to assess risk of a patient developing a 
target disease; discriminating between 
patients with & without the disease for 
the purpose of selecting risk factors of 
the disease. 

Proposed method can be efficiently 
used to select the informative RFs and 
can successfully predict the 
progression of osteoporosis. 

2017 Alcantara, et al., 2017. 
Improving 
Tuberculosis 
Diagnostics Using 
Deep Learning and 
Mobile Health 
Technologies among 
Resource-Poor 
Communities in Peru. 
Smart Heal. 
 

DCNN; 4701 images (453 normal-
patients without TB & 4248 abnormal 
(patients with diff types of TB). 
Training data from ImageNet. Expt 1: 
binary categorization of X-ray into 
normal/abnormal by GoogleNet model 
room caffe. 4701 images from dataset 
for finetuning & testing. 

89.6% accuracy for binary 
classification (normal/abnormal) and 
62.07% of accuracy
for multi-class classification 

2016 Ahn, et al., 2016. "X-
ray image classification 
using domain 
transferred 
convolutional neural 
networks and local 
sparse spatial 
pyramid."  

DT-CNN+Sparse Spatial Pyramid
Training:12677 images; Testing: 1733 
images; Public dataset from (IRMA) 
database 

Error score ranked 2nd out of 13 
methods 

2015 Bar, et al., 2015. "Chest 
pathology detection 
using deep learning 
with non-medical 
training."  

CNN AND GIST; Training: non-
medical dataset; Testing: 433 (443) 
frontal chest x-ray images 

AUC 0.87-0.94 for pathologies; 1st 
demo DL with ImageNet (non-
medical image database) 

2015 Carneiro, et al. 2015 
"Automatic detection 
of necrosis, normoxia 
and hypoxia in tumors 
from multimodal 
cytological images."   

Adaboost, SVM, RF, CNN; 16 
images; Training=8, Validation=4 
Testing=4; allowing a 4-fold cross 
validation testing of methodology 

87% precision; best result 
(validation) with Adaboost 

2015 Chen, et al. "Standard 
plane localization in 
fetal ultrasound via 
domain transferred 
deep neural networks."  

DT-CNN; Training: ImageNet (non-
medical) data; 11942 expert-annotated 
fetal images from 300 videos; 
TESTING: 219 videos with 8718 
images on 219 pregnant women

DT-CNN outperformed R-CNN; 
AUC (DT-CNN) =0.93, R-CNN=0.9, 
RVD=0.8,  

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 17 October 2017                   doi:10.20944/preprints201710.0117.v1

http://dx.doi.org/10.20944/preprints201710.0117.v1


 14 of 18 

 

2017 Christodoulidis, 
Stergios, et al. 
"Multisource Transfer 
Learning With 
Convolutional Neural 
Networks for Lung 
Pattern Analysis."

DT-CNN; Training: 40, 872 images; 
Testing: 109 HRCT scans of ILDs; 
Manual annotations of 17 lung patterns 
with clinical parameters from ILD 
patients; 26 HRCT scans of ILDs 

Performance increase above 
previous system=2%;  
Multitask learning =0.8631, 
Compressed 8-layer CNN 0.8751, 
Ensemble of CNNs =0.8817 

2015 Chyzhyk, Darya, 
Alexandre Savio, and 
Manuel Graña. 
"Computer aided 
diagnosis of 
schizophrenia on 
resting state fMRI data 
by ensembles of 
ELM."  

ELM for CAD; SVM+RF for feature 
extraction; 72 patient images and 75 
healthy controls (ages: 18-65) from 
COBRE’s raw anatomical & fMRI 
data  

Classification cross-validation results 
achieved near 90% accuracy 

2015 van Ginneken, et al., 
2015. "Off-the-shelf 
convolutional neural 
network features for 
pulmonary nodule 
detection in computed 
tomography scans."  

DT-CNN; 865 scans (public LIDC 
dataset); 865 CT scans with 1,147 
pulmonary nodules, & 3,271 excluded 
doubtful lesions; 4096 features from 
2D sagittal, coronal & axial patches for 
each nodule candidate classified linear 
SVM 

CAD: Max sensitivity=78%; CAD + 
OverFeat: Av. sensitivity=71%; Off-
the-shelf CNN performance less than 
for dedicated systems; combined 
approach perform better than either 
approach alone 

2016 Bhattacharyya, et al. 
"A novel approach for 
automated detection of 
focal EEG signals 
using empirical 
wavelet transform."  

Least-squares-SVM classifier
50 pairs of focal and non-focal EEG 
signals 

Max. Accuracy=90%, 
sensitivity=88%; specificity=92% 
compared with previous system (750 
pairs of signals): Max. 
Accuracy=2.53%, sensitivity=81.60% 
&specificity=83.46% 

2016 Li, et al. "HEp-2 
specimen classification 
via deep CNNs and 
pattern histogram."  

CNNs + pattern histogram 
2 public datasets: ICPR 2014 Task-2 
(252 specimens of 1388×1040 pixels 
each in greyscale, categorised into 
seven patterns) and ICPR 2012 (28 
specimens of immunofluorescence 
images categorised into five patterns 

a)Leave-1-specimen-out: Mean class 
accuracy, MCA = 93.87% (1st 6 
classes); =80.46% (all classes) 
b)Linear-SVM for training & testing; 
MCA =85.62%; Accuracy (MS) 
=53.33%. Compared with state-of-
the-art (93.87% vs 96.03% for a). 
53.33% vs 53.33% for b) 

2014 Li, et al. "Medical 
image classification 
with convolutional 
neural network."  

Customized CNN; 16,220 image 
patches from 92 HRCT image sets 
from 113 HRCT images, with 2062 2D 
annotated ROIs, TRAINING: 10 
groups; TESTING: 1 of the 10 groups 
for testing with 9 for training data. 10 
testing sessions

Customized CNN: best classification 
performance; Comparison with 3 
approaches: (i) SIFT feature +SVM; 
(ii) rotation-invariant LBP feature 
with three resolutions + SVM; and 
(iii) unsupervised feature learning 
with RBM +SVM. 

2016 Shin, et al. "Deep 
convolutional neural 
networks for computer-
aided detection: CNN 
architectures, dataset 
characteristics and 
transfer learning."  

CNN architectures; 388 mediastinal 
LNs (public dataset) labelled by 
radiologists in 90 patient CT scans; 
595 abdominal LNs in 86 patient CT 
scans; 905 image slices from 120 
patients, with 6 lung tissue type 
annotations; randomly-sampled 2.5D 
views in CT for LN detection; 2D CT 
slices for ILD detection

First 5-fold cross-validation 
classification results on predicting 
axial CT slices with ILD categories 

2016 Meng, et al. "A deep 
tongue image features 
analysis model for 
medical application."   

Unsupervised feature learning for 
training a weighted LIB LINEAR 
SVM classifier  
315 raw tongue image samples (48 
normal, 267 abnormal) diagnosed by 
clinicians 
Training: Unbiased convolutional 
kernels with randomly selected 40 
normal and 44 abnormal samples

More accurate model of classification 
but lower precision compared with 
single features; Performance 
accuracy (LL-SVM)=91.14% (5.6% 
above best models); precision: 8-
20%; Sensitivity =4.8% (below best 
performances), specificity =15% 
(superior to other methods) 

2016 Moradi, et al. "A hybrid 
learning approach for 

Pre-trained CNN + SVM; Cardiac 
CT from 75 patients (with hundreds of 

Conv1: margin0 accuracy=72.3%; 
margin1 accuracy =96.2%; Combined 
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semantic labeling of 
cardiac CT slices and 
recognition of body 
position."  

2D axial slices, slice spacing ranging 
0.8-2mm). Experienced radiologist 
(PP) labeled 1 slice for each patient as 
the best representative of each level, 
when that level was available in the 
series. Total 595 labeled 2D images 
generated.

feature: margin1 accuracy=98.8%, 
and margin0 accuracy =91.7%; hybrid 
approach shows higher accuracy 

2017 Lopez, et al. "Skin 
lesion classification 
from dermoscopic 
images using deep 
learning techniques."  

CNN + pattern histogram; 
Benign/malignant images pre-
partitioned into sets of 900 training 
images and 379 test images; Dermofit 
Image dataset of 1,300 high quality 
skin lesion images collected across 10 
different classes. Dermnet skin disease 
atlas with website support that 
contains over 23,000 skin images 
separated into 23 classes 
Existing CNN architecture used to: (i) 
train CNN from scratch; (ii) DT-CNN 
for features extraction (iii) Fine-tuning 
of CNNs 

i. Training vs testing; Loss/ 
Accuracy/ Sensitivity/Precision 
i)Training from scratch: 
0.5637/71.87%/0.7087/0.6990 vs 
0.6743/66.00%/0.5799/0.6777  
ii) ConvNet as feature extractor: 
0.120/95.95%/0.9621/ 0.9560 vs 
1.0306/68.67%/ 0.3311/0.4958 
iii) Fine-tuning the ConvNet: 
0.4891/76.88%/0.6903/ 0.8259 vs 
0.4337/81.33%/ 0.7866/ 0.7974 
Summary: 78.66% sensitivity & 
79.74% precision are significantly 
higher than the current state of the art 
on this dataset (50.7% and 63.7%, 
respectively)  

2016 Sabouri and Hamid, 
2016. "Lesion border 
detection using deep 
learning."  

3-layer CNN; Training dataset: 480 
lesion & 1200 background images; 
divided into 50×50 patches & labelled 
as lesion or background 

Best testing accuracy obtained with 52 
most challenging images in the dataset 
rather than all images. Jaccard index 
(similarity coefficient score) 
compared for similarity & diversity in 
data samples; useful for calculating 
accuracy by measuring similarity 
between segmented image (obtained 
through algorithm) & the ground truth 
image

2016 Sarraf, and Ghassem. 
2016. "Deep learning-
based pipeline to 
recognize Alzheimer's 
disease using fMRI 
data."  

3-layer CNN; 28 Alzheimer sufferers, 
15 normal subjects (24 female and 19 
male); mean age 74.9 5.7 years 
selected from the ADNI dbase, data 
divided into: training (60%), 
validation (20%), &testing (20%); 
epochs set to 30, batch size 64, total 
126,990 iterations. LeNet trained by 
270,900 samples and validated & 
tested by 90,300 images in 5-fold 
cross-validations on NVIDIA GPU 
Cloud Computing

Training and testing;  
Accuracies of CNN on the 5 runs: 
Run1=96.858;  
Run2=96.857   
Run3=96.854  
Run4-96.863   
Run-5=96.8588;  
Overall Mean or Summary Accuracy 
of testing data: up to 96.85% 

2016 Suzuki, et al. 2016. 
"Mass detection using 
deep convolutional 
neural network for 
mammographic 
computer-aided 
diagnosis."  

CNN + SVM; Initial Training: 1.2 
million non-medical images, 
(ImageNet) to classify1,000 classes; 
subsequent training: 1,656 regions of 
interest (ROI) in mammographic 
image; Testing: 198 mammographic 
images including 99 mass images and 
99 normal images.

Sensitivity of the mass detection was 
89.9% and the false positive was 
19.2%. 

  410 
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