

City, University of London Institutional Repository

Citation: Ollero, J. & Child, C. H. T. (2018). Performance Enhancement of Deep

Reinforcement Learning Networks using Feature Extraction. Lecture Notes in Computer
Science, 10878, pp. 208-218. doi: 10.1007/978-3-319-92537-0_25

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/19526/

Link to published version: https://doi.org/10.1007/978-3-319-92537-0_25

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Performance Enhancement of Deep Reinforcement
Learning Networks using Feature Extraction

Joaquin Ollero and Christopher Child

City, University of London, United Kingdom

Abstract. The combination of Deep Learning and Reinforcement Learning, termed
Deep Reinforcement Learning Networks (DRLN), offers the possibility of us-
ing a Deep Learning Neural Network to produce an approximate Reinforcement
Learning value table that allows extraction of features from neurons in the hidden
layers of the network. This paper presents a two stage technique for training a
DRLN on features extracted from a DRLN trained on a identical problem, via the
implementation of the Q-Learning algorithm, using TensorFlow. The results show
that the extraction of features from the hidden layers of the Deep Q-Network im-
proves the learning process of the agent (4.58 times faster and better) and proves
the existence of encoded information about the environment which can be used
to select the best action. The research contributes preliminary work in an ongoing
research project in modeling features extracted from DRLNs.

Keywords: Reinforcement Learning, Neural Networks, Deep Learning, Feature
Extraction, TensorFlow.

1 Introduction

Deep Learning is a class of Machine Learning algorithms based on learning data
representations based on Artificial Neural Networks (ANN). By using an architecture
such as a Deep Neural Network [1], it is possible to extract information from neurons
placed in the hidden layers of the network that automatically encode valuable features
from the raw data used as inputs. Reinforcement Learning algorithms, as opposed to
supervised and unsupervised learning, present a mechanism to train an artificial agent
in the learning process of how to solve a specific problem. Overall, a Reinforcement
Learning algorithm maps every state/action combination within a given environment
to a specific value. This value will inform the agent how good or bad taking each ac-
tion is in relation to the next state that the agent will experience straight afterwards.
Q-Learning is a popular Reinforcement Learning technique, used to produce optimal
selections of actions for any Markov Decision Process [2]. Reinforcement Learning
using Deep Learning Neural Networks is currently receiving intense media attention.
There is growing interest in this area of artificial intelligence since [3] introduced Deep
Q-Networks (DQNs) and the research was published in the multidisciplinary scientific
journal Nature. The presented work proved that the proposed model achieved a higher
level of expertise than that of a professional human game player in a set of 49 Atari
2600 games [4]. The field of Machine Learning is evolving rapidly in terms of revolu-
tionary applications and groundbreaking research that is leading the area to tremendous

2 J. Ollero, C. Child

popularity. Along with this, open source tools that allow scientists to experiment with
algorithms and structures are becoming more accessible and straightforward to learn
and use. One of the Machine Learning libraries that is experiencing the biggest growth
is TensorFlow [5], an open-source software library for Machine Intelligence developed
by Google.

The objective of this paper is the training of a DRLN on features extracted from
an DRLN trained to solve a similar problem with the Q-Learning algorithm. Emphasis
have been given to the detailed study of this structure by extracting features from its
hidden layers in order to use them in an environment modelling algorithm. The state
space can be reduced by predicting the future states of these features and using this as
a model, replacing the original environment. The system will model features extracted
from an initial level of a Deep Neural Network, using them as inputs of a reduced Deep
Neural Network (in terms of number of layers) to prove that the information of the
inputs is automatically encoded and preserved and can be used to increase the speed of
learning of the agent. Performing feature extraction from a later level of a Deep Neural
Network will allow the system to classify the codifications and verify if they can be
used to predict future states of the features.

The rest of the paper is structured as follows. A literature review that covers research
on Deep Reinforcement Learning Networks is presented in the next section. The prob-
lem statement, the Q-Learning algorithm and the structures in which the technique is
implemented, a Deep Q-Network and a Deep Q-Network using Feature Extraction, are
presented on Section 3. Results, introduced on Section 4, are stated in terms of testing
the behaviour of the agent and if the overall learning process is improved in terms of
time. A thorough analysis of the model, overall considerations and a set of extensions
that would improve and contribute to the research are discussed in the last section of
this paper.

2 Context

The renaissance of Reinforcement Learning is largely due to the emergence of Deep
Q-Networks [3]. The Deep-Q Network framework [3] was motivated due to the limi-
tations of Reinforcement Learning agents when solving real-world complex problems,
because they must obtain efficient representations from the inputs and use these to relate
past experiences to the next situations the agent will be presented with. The developed
framework, a combination of Reinforcement Learning with Deep Neural Networks, was
able to effectively learn policies directly from the inputs. More precisely, the agent was
tested on 49 classic Atari 2600 games [4], receiving only the pixels of the image and the
game score as inputs, performing with a level comparable to the one of a proffesional
human player. The research introduced the first intelligent agent that was able to learn
how to solve a set of different tasks with groundbreaking results.

Several extensions have been proposed to the work presented in [3]. The adapta-
tion of the Deep Q-Network framework using the Double Q-Learning algorithm has
reduced observed overestimations [6]. By prioritizing experience replay, a technique
that lets the agent review important transitions more frequently, the learning process of
the agent can be improved in terms of efficiency [7]. In contrast to architectures such

Performance Enhancement of Deep RL Networks using Feature Extraction 3

as Convolutional Neural Networks or Autoencoders, a new structure, termed Dueling
Network Architecture, was introduced to prove the generalization of learning accross
actions without performing any change to the Reinforcement Learning algorithm [8].
All these works have produced agents that perform better in the Atari 2600 games do-
main in comparison with the original Deep Q-Network. Finally, the original authors of
Deep Q-Networks [3], introduced four different asynchronous methods for Reinforce-
ment Learning: one-step Q-Learning, one-step Sarsa, n-step Q-Learning and advantage
actor-critic [9]. Advantage actor-critic was the algorithm that performed best overall.

In an early stage of combining Reinforcement Learning with neural networks, TD-
Gammon [10] showed that an agent could learn how to play the board game Backgam-
mon by playing against itself and learning from the results it was obtaining while play-
ing. AlphaGo, a computer program that plays the game of Go, defeated the European
Go champion by 5 games to 0 on a full-sized 19x19 board, becoming the first com-
puter program to defeat a human professional player in this game [11]. Later, AlphaGo
Zero achieved superhuman performance, mastering Go without human knowledge [12].
DeepMind researchers have recently produced further groundbreaking results. For ex-
ample, a research has taught digital creatures to learn how to navigate accross complex
environments [13]. StarCraft II is a highly technical real-time strategy video game re-
leased in 2010. Blizzard Enterntainment, the company that developed the video game,
and DeepMind have published a joint paper that presents the StarCraft II Learning En-
vironment, a challenging environment for testing Deep Reinforcement Learning algo-
rithms and architectures on this game [14]. Another work poses the task for an agent to
push boxes onto red target squares to successfully complete a level [15]. The challenge
for the agent is that some actions might lead to irreversible mistakes resulting in the
level being impossible to complete. The agent uses imagination, which is a routine to
choose not only one action, but entire plans consisting of several steps to ultimately
select the one that has best expected reward.

“Inceptionism” [16] and “DeepDream” [17] proved that after training a Deep Neural
Network with a high number of related images and adjusting the network parameters,
each layer progressively contains higher-level features of the image, until reaching the
output layer, that ultimately makes a decision on what the image shows. Therefore, it
was proven that the first hidden layers of a Deep Neural Network trained under these
circumnstances, contained low-order features, such as edges or corners. Then, the in-
termediate hidden layers contained information about simple shapes, such as doors or
leaves and the last hidden layers put together this information to form complete figures
such as buildings or trees.

3 Methods

A structured set of methods will be followed to undertake this research. First, the
problem to solve and the environment in which the agent will operate will be defined.
The cornerstone of the research is the Reinforcement Learning algorithm that will teach
the agent how to learn over time the specifics of the environment: the states, actions
and reward values. Specifically, the Q-Learning technique will be implemented using
a Deep Neural Network, a structure that will ultimately allow the feature extraction to

4 J. Ollero, C. Child

occur. Features are going to be extracted from the initial level of the Deep Q-Network
with the objective of improving the overall learning process of the agent and from the
later level of the Deep Q-Network to predict which actions will lead to the next best
states.

The Deep Reinforcement Learning Networks and the Q-Learning algorithm have
been implemented using the programming language Python 3.5 and have been built
using TensorFlow 1.2 [5], an open-source software library for Machine Intelligence.
The project has been developed using the Python API of TensorFlow with CPU support.

3.1 Problem Statement and Environment

The agent must learn how to solve a pathfinding problem, which is to find the short-
est route between two states. It will start in an initial state and its objective will be to
learn over time how to arrive at a goal state (+1 reward) with the addition of learning
how to avoid a set of states (”holes”, −1 reward) that are present in the environment.
In order to represent this pathfinding problem, an environment composed by a set of
states, actions and rewards in relation to the states is defined. The description of the
environment used throughout the implementation is a 4x4 matrix composed by the let-
ters ‘A’ to ‘P’ in alphabetical order, inspired by the Frozen Lake environment [18].
To complete the environment definition, the initial, goal and hole states are designated
(Figure 1). Given this environment, a 16x4 matrix (R) that contains, every state, the
next state resulting in taking all of the available actions (move up, down, right or left)
is automatically generated.

Fig. 1: Environment. Initial state: ‘A’, goal state: ‘P’ and hole states: ‘F’, ‘H’, ‘L’, ‘M’.

3.2 Q-Learning

The Q-Learning algorithm [19] works by learning an action-value function that ul-
timately gives the expected utility of taking a given action in a given state and conse-
quently following the optimal policy thereafter. The agent will have a maximum of 2000
episodes to learn how to find the shortest path from the initial to the goal state, and in
each of these episodes it will have 99 steps to move through the environment in search
of the goal and to continuously adjust the values for the weights of the Deep Neural Net-
work. An episode will end if the agent consumes all the steps or if it reaches the goal
state. It starts by picking one action from the state it is in at the moment. This action will

Performance Enhancement of Deep RL Networks using Feature Extraction 5

be either the best one as calculated until that moment or a random one. This decision is
taken based on a ε-greedy policy (ε = 0.1), which keeps a balance between exploration
(taking random actions) and exploitation (taking best actions at that moment) in the
discovery process of the environment. Once the action has been selected, using the R
matrix, the next state that the agent will be in is extracted along with its related reward
(neutral, positive or negative). Using the next state, the Q-values associated with that
state are generated by feeding the state through the whole neural network. Therefore,
it is possible to calculate the maximum Q-value that will be used in the fundamental
Q-Learning formula, computed by the multiplication of the discount factor (γ) times
the maximum Q-value plus the reward (Equation 1). Overall, for each state, the value
that has been reinforced the most, corresponding to the best action, is chosen in order to
determine the next state that the agent will be in. The algorithm will ultimately replace
all the random initialized values of the weights and these will represent the minimum
path from any state to the goal state.

Q(s, a) = r + γ(max(Q(s′, a′)). (1)

3.3 Deep Q-Network and Feature Extraction

The Deep Q-Network takes every state encoded in a unique 1x16 vector, and pro-
duces a vector of 4 values in its output layer, one for each action. In order to have a
Deep Neural Network, it is necessary to include hidden layers between the input and
output layers. In relation to the number of inputs and outputs and to have a representa-
tive number of hidden layers, a first hidden layer with 12 neurons was added, connected
to a second hidden layer composed by 8 neurons, which is finally connected to the last
hidden layer composed by 2 neurons (22 = 4, the number of total actions) (Figure 2).

The method of updating the values of the weights of the Deep Neural Network
will be achieved by using backpropagation and a loss function. The loss function is
defined as the sum-of-squares loss, where the difference between the output and the
predicted output is computed. In this case, the target Q-value for the chosen action
is the equivalent to the new Q-value computed in the Q-Learning algorithm. Finally,
the agent is trained, using the target and predicted Q-values, with a gradient descent
optimizer in order to minimize the loss. With a Deep Neural Network the information
is propagated through the weights of the whole network.

The parameters used to configure the neural network are the following. Learning
rate (α) = 0.05, discount factor (γ) = 0.99 , the hyperbolic tangent (tanh) activa-
tion function for hidden and output neurons, the

∑
((Y − Y predicted)2) loss func-

tion and the gradient descent optimizer. The weights of the Deep Q-Network are ini-
tialized randomly to normalize the variance of the output of each neuron to 1. This
is achieved by scaling its weight vector by the square root of the number of inputs
(∼

⋃
[−1/

√
numStates, 1/

√
numStates]), where

⋃
[−a, a] is the uniform distribu-

tion in the interval (−a, a) and numStates is the number of inputs of the algorithm [20].
The biases are initially set to 0, because the symmetry between hidden units of the same
layer is broken by initializing the weights randomly in the indicated range.

Features can be extracted from the the neurons of the hidden layers of a Deep Neu-
ral Network trained with a Reinforcement Learning algorithm. A neuron is considered

6 J. Ollero, C. Child

Fig. 2: The DQN with 12 input neurons (right) will be trained using as inputs features
extracted from the first hidden layer of the DQN with 16 input neurons (left).

activated if its activation value is greater than 0, and not activated if its activation value
is less than 0. More precisely, features are going to be extracted from the first hidden
layer of the 16x12x8x2x4 Deep Q-Network, by having each available state encoded in
a 1x12 vector, to be used as inputs for a different 12x8x2x4 Deep Q-Network (Figure
2). Features extracted from the last hidden layer of these two Deep Q-Networks, and
encoded in 1x2 vectors, are going to be used to demonstrate that these codifications can
be used to predict the best action to take in each state.

4 Results

This research was approached using a number of discrete steps. First, a testing phase
was undertaken to demonstrate that the trained agent was capable of learning how to
behave in the proposed environment. This was achieved by checking whether the agent
reaches the goal state in an optimum number of steps from each state. Parallelly, the
training time, the accumulated reward over time, the first episode in which the agent
receives a reward equal to 1 and the average number of steps per episode were also
obtained. These values define the performance of the agent in a specific training pro-
cess and are used to make observations about the behaviour of the agent following
the Q-Learning algorithm in the different Deep Q-Networks. Lastly, by using features
extracted from the last hidden layer of a specific Deep Q-Network, we demonstrate
that these can be used to predict the best actions to take from each state to reach the
goal state. 30 different and independent experiments were run on a MSI GE63VR 7RE
Raider laptop (Windows 10 Home 64 bits, Intel Core i7-7700HQ CPU @ 2.80GHz,
16.0GB RAM, GeForce GTX 1060).

Performance Enhancement of Deep RL Networks using Feature Extraction 7

4.1 Testing

The experiments demonstrated that the agent was able to find the shortest path from
any state to the goal state without traversing through a hole. Because the Q-Learning
algorithm does not end an episode if the agent enters a hole state, these states have
related values that can lead the agent to the goal state. The agent has great difficulty to
find the goal state from either states ’D’ and ’H’. This occurs because these two states
are not on the optimal path to the goal state from any state and when exploring the
environment, the agent usually does not reach states that are slightly further apart. The
Deep Q-Networks that uses features extracted from the original Deep Q-Network as
inputs shows marginally better results in finding the optimum path from each starting
square (Figure 3).

Fig. 3: Number of times that the agent finds an optimum path from each state of the
environment to the goal state without entering a hole state.

4.2 Performance

The performance of the agent is tested on both Deep Q-Networks, with the objective
of concluding in which one the agent performs the best. The results show that training
an agent in the 16x12x8x2x4 Deep Q-Network takes an average training time of 66.73
seconds, with an accumulated reward of -0.09%, that it will receive its first reward
equal to 1 in the episode 570, and that it takes 47.93 steps per episode on average. On
the other hand, it can be seen that the training process of the agent on the 12x8x2x4
Deep Q-Network is considerably improved by using as inputs features extracted from
the first hidden layer of the original Deep Q-Network. In this case, the average training
time is 26.06 seconds, the accumulated reward over time is 0.63%, the episode in which
it first receives a reward equal to 1 is 117 and that it only takes 16.36 steps per episode to

8 J. Ollero, C. Child

reach the goal state for each episode on average. The performance of the agent using the
12x8x2x4 Deep Q-Network against using the original Deep Q-Network is 2.56 times
faster in terms of training time, 8 times better regarding the accumulated reward over
time, 4.87 times faster on finding the first episode with reward equal to 1, and 2.92 times
better on the average number of steps it consumes per episode (Figure 4). Overall, the
agent using 12x8x2x4 Deep Q-Network performs 4.58 times faster and better than using
the 16x12x8x2x4 Deep Q-Network.

Fig. 4: Comparison of the perfomance of the agent between using 16x12x8x2x4 DQN
and the 12x8x2x4 DQN trained on features extracted from the original DQN.

4.3 Prediction of Next States

After training both Deep Q-Networks (Figure 2) on every experiment, features are
extracted from the last hidden layers using the activation of neurons. These features,
encoded in 1x2 vectors, contain information regarding the best action to take from
each state, so they can be used to predict the best state/action combinations without
accessing the values contained in the output layers of both Deep Neural Networks. The
16x12x8x2x4 Deep Q-Network has been able to predict the best actions to take from
each state 13.33% of times, while the 12x8x2x4 Deep Q-Network has achieved correct
predictions 3.33% of times. This is due to several factors. For a prediction to be succes-
ful it is fundamental that the training process has firstly been succesful and that from
every state, the agent is capable of reaching the goal state in an optimum number of
steps (from Figure 3, at maximum 10 times, the number of times that optimum paths
were effectively calculated from ‘D’). In addition, the activation threshold is established
on 0 and it has been observed that this threshold is sometimes displaced by a factor of

Performance Enhancement of Deep RL Networks using Feature Extraction 9

−0.15/+0.15 from 0. Due to the training process, the activation values for the neurons
are not always centered exactly on 0 because the hyperbolic tangent function is not
a step function. When a prediction is correct, different groups of states will share the
same codification indicating that all the states that belong to a group will take the same
action in order to reach the goal state in an optimum set of steps. This demonstrates that
the extracted features can be used to make predictions about the future states in which
the agent will be in.

5 Conclusions

This work has presented an analysis of DRLNs focused primarily on the features
that are automatically encoded in the hidden layers of this type of neural network. To
achieve this, an environment to be discovered by an intelligent agent has been defined
and the Q-Learning algorithm has been implemented using a Deep Q-Network. 30 ex-
periments have been run in order to test if the agent is able to solve an established
pathfinding problem within the defined environment and to compare the effectiveness
of the different Deep Q-Networks. The research has produced two results: features ex-
tracted from the initial stage of a Deep Q-Network can be used in a different Deep
Q-Network in order to improve the performance of an intelligent agent by a factor of
4.58 on average (Figure 4). And secondly, features extracted from the later stage of a
Deep Q-Network contain information regarding the best action to take from a specific
state. We have also shown that the information of the states is lost in later levels of the
neural network, as the information regarding the states is transformed into decisions
about which taken actions will lead to the best next states.

This research could be improved with the implementation of various extensions.
First, to determine if the initialization of the weights of the Deep Q-Network and the
activation functions and thresholds used are the optimal ones. Second, to implement a
decaying ε-greedy policy, which would improve the way the agent discovers the envi-
ronment. Third, to define a metric that would measure how long does it takes to learn
the optimal policy. Fourth, to test the agent in different environments. Fifth, to obtain
an optimal topology for a Deep Q-Network by consecutively extracting features from
the first hidden layers of successive Deep Q-Networks. Lastly, to obtain a model built
from a table of features and actions to features and rewards then to unseen states. As it
stands, the model cannot work without the original environment, as it is only possible
to extract rewards by relating them to the states.

References

1. Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural net-
works. science 313(5786) (2006) 504–507

2. Bellman, R.: A markovian decision process. Journal of Mathematics and Mechanics (1957)
679–684

3. Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A.,
Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level control through deep
reinforcement learning. Nature 518(7540) (2015) 529–533

10 J. Ollero, C. Child

4. Bellemare, M.G., Naddaf, Y., Veness, J., Bowling, M.: The arcade learning environment: An
evaluation platform for general agents. Journal of Artificial Intelligence Research (2012)

5. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis,
A., Dean, J., Devin, M., et al.: Tensorflow: Large-scale machine learning on heterogeneous
distributed systems. arXiv preprint arXiv:1603.04467 (2016)

6. Van Hasselt, H., Guez, A., Silver, D.: Deep reinforcement learning with double q-learning.
In: AAAI. (2016) 2094–2100

7. Schaul, T., Quan, J., Antonoglou, I., Silver, D.: Prioritized experience replay. In: Interna-
tional Conference on Learning Representations (ICLR). (2016)

8. Wang, Z., Schaul, T., Hessel, M., van Hasselt, H., Lanctot, M., de Freitas, N.: Dueling
network architectures for deep reinforcement learning. arXiv preprint arXiv:1511.06581
(2015)

9. Mnih, V., Badia, A.P., Mirza, M., Graves, A., Lillicrap, T.P., Harley, T., Silver, D.,
Kavukcuoglu, K.: Asynchronous methods for deep reinforcement learning. In: International
Conference on Machine Learning. (2016)

10. Tesauro, G.: Td-gammon, a self-teaching backgammon program, achieves master-level play.
Neural computation 6(2) (1994) 215–219

11. Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van Den Driessche, G., Schrit-
twieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al.: Mastering the game of
go with deep neural networks and tree search. Nature 529(7587) (2016) 484–489

12. Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A., Hubert, T.,
Baker, L., Lai, M., Bolton, A., et al.: Mastering the game of go without human knowledge.
Nature 550(7676) (2017) 354

13. Heess, N., Sriram, S., Lemmon, J., Merel, J., Wayne, G., Tassa, Y., Erez, T., Wang, Z., Es-
lami, A., Riedmiller, M., et al.: Emergence of locomotion behaviours in rich environments.
arXiv preprint arXiv:1707.02286 (2017)

14. Vinyals, O., Ewalds, T., Bartunov, S., Georgiev, P., Vezhnevets, A.S., Yeo, M., Makhzani, A.,
Küttler, H., Agapiou, J., Schrittwieser, J., et al.: Starcraft ii: A new challenge for reinforce-
ment learning. arXiv preprint arXiv:1708.04782 (2017)

15. Weber, T., Racanière, S., Reichert, D.P., Buesing, L., Guez, A., Rezende, D.J., Badia, A.P.,
Vinyals, O., Heess, N., Li, Y., et al.: Imagination-augmented agents for deep reinforcement
learning. arXiv preprint arXiv:1707.06203 (2017)

16. Mordvintsev, A., Olah, C., Tyka, M.: Inceptionism: Going deeper into neural networks.
Google Research Blog. Retrieved June 20 (2015) 14

17. Mordvintsev, A., Olah, C., Tyka, M.: Deepdream-a code example for visualizing neural
networks. Google Res (2015)

18. Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J., Zaremba,
W.: Openai gym. arXiv preprint arXiv:1606.01540 (2016)

19. Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3-4) (1992) 279–292
20. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural net-

works. In: Proceedings of the Thirteenth International Conference on Artificial Intelligence
and Statistics. (2010) 249–256

