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Abstract—With the increased penetration of distributed gener-
ation (DG) utilities are beginning to see impacts on their system,
especially on the ability of a feeder to accommodate DG. In this
paper we introduce a stochastic simulation framework to assess
the effects on hosting capacity from solar and wind generation
for various loading scenarios. The general approach includes
the use of a k-means clustering algorithm for segmenting and
grouping the raw wind, solar, and load data to define patterns
and assign probabilities to each pattern. Monte Carlo simulations
are adopted for calculating probabilistic outcomes for a variety
of wind, solar, and load scenarios, with the use of a distribution
planning software. The outcomes of the simulations, i.e., statistics
of minimum and maximum feeder hosting capacity, are used
to derive their probability distribution functions (pdfs). The
pdfs of the minimum and maximum hosting capacity provide
insights into the effects on loading from various wind and
solar DG scenarios. The proposed framework is illustrated for a
representative utility feeder.

Index Terms—Feeder Hosting Capacity, Solar Generation,
Wind Generation, Stochastic Simulation Framework.

I. INTRODUCTION

With the rapid adoption of distributed generation (DG), it

is becoming inherently challenging for utilities to assess how

these applications will affect the distribution system. Until

recently there have been relatively low amounts of DG instal-

lations and as a result most of the research has been focused

towards developing techniques for determining the output of

these systems and not their interconnection challenges. Market

forces, government subsidies, and legislative mandates such

as California’s ambitious Renewable Energy Portfolio; as well

as Fast-track integration initiatives such as the 15% screening

process established by the Federal Electric Regulatory Council

(FERC), are driving down costs for renewables and promoting

their rapid adoption [1]. As a result of the short time frame

well thought out interconnection requirements have not been

established and utilities are limited to generally insufficient

tools to assess the effects of these systems.

Particular concern is raised towards, solar and wind DG.

Unlike other forms of DG, these generation types pose unique

challenges due the variable and uncertain nature of their

output. Conventional generation resources have relatively slow

system fluctuations, and their energy output can be accu-

rately predicted using day-ahead or hour-ahead forecasting

techniques. Unlike these, wind and solar DG systems are

characterized by more rapid and less predictable generation

fluctuations over smaller time scales ranging from seconds to

hours, and thus become difficult to predict [2]. As such, there

exists a need for the development of more precise and robust

modeling and analysis methods to understand wind and solar

DG impacts on feeders from an interconnectivity standpoint.

One such analysis is determining hosting capacity of a

feeder. Hosting capacity can be defined as the maximum

amount of DG that can be accommodated without impacting

system operation [3]. Hosting capacity addresses two of the

major challenges that utilities are faced with when considering

the integration of DG; overvoltage and overloading. Tradi-

tional feeder systems have been designed to flow radially and

outward from the substation; the defining issue is the addition

of local generation that will counteract the traditional unidi-

rectional flow of a feeder contributing additional load to the

system. As a result, local high voltage, load, and possible back-

feed scenarios may emerge (e.g., [3], [4], [5], [6]). Detailed

studies have shown that hosting capacity is rather complex

and depends on a variety of different variables, such as DG

location, size, and the individual feeder characteristics; factors

which the 15% rule established by FERC does not take into

account [1]. In light of the obvious need for developing better

screening criteria to ensure grid reliability, many individual

studies have been conducted utilizing stochastic methodologies

in order to calculate and model hosting capacity. The key

advantages of these methods include scalability and more

realistic results.

In this paper we propose stochastic simulation framework

that utilizes k-means clustering to determine patterns in the

solar, wind, and load data. The k-means output provides a set

of clusters and a probability of each cluster occurring. We

sample the developed clusters for the solar, wind, and load

data over a 24-hour window and run Monte Carlo simulations

to determine the probability distribution function (pdf) of the

hosting capacity of a specific feeder on a distribution planning

software. The paper is outlined as follows. In Section II,

we illustrate the development of the wind, solar, and load

mathematical models as well as the clustering techniques used

to group and analyze the data. In Section III, we describe

the proposed stochastic simulation framework and sampling

procedure. In Section IV, we illustrate the validity of the

proposed framework through a representative utility feeder.

In Section V, we make some concluding remarks.



II. POWER SYSTEM MODEL

In this section, we develop the mathematical modeling used

to describe the behavior of the distribution system including

DG. More specifically, we model the wind and solar output

and present the model representing the load and network.

A. Wind Generation

The analysis of the impacts of wind generation into a

specific feeder requires a wind generation model with the ca-

pability to represent the wind speed and power output with the

appropriate level of detail. We develop a model that explicitly

represents the variability and intermittency characteristics of

the wind generation. To this end, we focus on the wind speed

modeling, capture patterns in the wind data by using clustering

techniques, and determine the wind generation output [7].

1) Wind Speed Model: The shape of the daily wind power

output depends directly on the daily wind speed pattern.

Similar daily wind patterns may occur multiple times during

the period under consideration. To identify the various wind

speed patterns, we group the days whose wind speed patterns

have similar “shapes” into a class. We partition the day into

H = 24 non-overlapping time intervals to analyze the wind

speed data. We collect hourly data for a D number of days,

usually for a one-year period; thus D = 365. We denote by D

the set that contains the days of the period under consideration

D = {1, . . . , D}. We denote by vd,h the wind speed at day

d and hour h. Thus, we formulate the wind speed vector for

day d as vd = [vd,1, vd,2, . . . , vd,24]
T . Then, we construct the

matrix V that contains the wind speed data for every hour for

all the days D during the period under consideration. Thus,

we have

V =











v1,1 v1,2 . . . v1,24
v2,1 v2,2 . . . v2,24

...
...

. . .
...

vD,1 vD2
. . . vD,24











=











vT1
vT2
...

vTD











. (1)

2) Clustering of Wind Speed Data: We wish to group the

collected data into groups that have similar patterns and define

the probability of these patterns occurring. To this end, we

apply clustering techniques in the wind speed data given in

V to determine wind speed patterns. We use the k-means

method, whose detailed description may be found in [8]. In

this paper, we provide a brief description of the algorithm. We

begin by k typical daily wind speed vectors and denote the

set of class centers. We then compute the relative Euclidean

distance between the cluster points and class centers and

assign new cluster centers depending on the calculated distance

between cluster points and original centers so as to minimize

the distance between all members in a cluster.

Once we have identified the k classes, CW1
, . . . ,CWk

,

composed of the similar days of wind speed data, we have

defined k daily wind speed patterns. We interpret each class

CWc
, c = 1, . . . , k, as a realization of the set of hourly wind

speed random variable νc,h for h = 1, . . . , 24. The mean value

of each random variable µWc,h
is defined as

µWc,h
=

1

|CWc
|

∑

vd∈CWc

vd,h, (2)

where |CWc
| is the number of wind speed vectors vd that

are part of class CWc
. For each class CWc

we construct the

vector that represents the daily wind speed pattern by µWc
=

[µWc,1
, . . . , µWc,24

]T . We wish to assign a probability of each

realization, i.e., class, occurring. To this end we associate with

each class CWc
the probability pWc

, which is equal to

pWc
=

|CWc
|

D
. (3)

3) Wind Generation Output Model: We have established

wind speed patterns and their associated probability of occur-

rence. Next, we need to define the wind generation output

based on a certain daily wind speed pattern. To this end, we

denote by vc the cut-in wind speed, vr the rated wind speed,

vo the cut-out wind speed, and PWr
the maximum or rated

output power of a wind unit. We use the following function

for the wind output curve

PWh
(vd,h) =



















0 0 ≤ vd,h < vc

a+ bv3d,h vc ≤ vd,h < vr

PWr
vr ≤ vd,h < vo

0 vd,h ≥ vo

. (4)

B. Solar Generation

The approach developed to represent the solar output gen-

eration is similar to that of wind generation described in

Section II-A. We collect hourly solar generation output data

for a period of D days. The output of solar generation for day

d at hour h is denoted by PSd,h
. We construct the solar output

vector for day d as PSd
= [PSd,1

, PSd,2
, . . . , PSd,24

]T . Then,

we construct the matrix PS that contains the solar generation

output for every hour for all the days D during the period

under consideration. Thus, we have

PS =











PS1,1
PS1,2

. . . PS1,24

PS2,1
PS2,2

. . . PS2,24

...
...

. . .
...

PSD,1
PSD,2

. . . PSD,24











=











PT
S1

PT
S2

...

PT
SD











. (5)

We use the clustering algorithm described in Section II-A to

derive the classes and associated probabilities for the solar

generation output. Thus, we have the classes CS1
, . . . ,CSk

,

composed of the similar days of solar generation output. We

interpret each class CSc
, c = 1, . . . , k, as a realization of the

set of hourly solar generation output random variable ρc,h for

h = 1, . . . , 24. The mean value of each random variable µSc,h

is defined as

µSc,h
=

1

|CSc
|

∑

PSd
∈CSc

PSd,h
, (6)

where |CSc
| is the number of solar generation vectors PSd

that are part of class CSc
. For each class CSc

we construct the



Fig. 1: Conceptual structure of the proposed stochastic framework.

vector that represents the daily solar generation output pattern

by µSc
= [µSc,1

, . . . , µSc,24
]T . The probability of each class

CWc
occurring is pSc

, and is equal to

pSc
=

|CSc
|

D
. (7)

C. Load Modeling

For each of the three phases φ = 1, 2, 3 we collect historical

data over D days. The load for day d at hour h for phase φ is

denoted by P
L

φ

d,h

. We combine the loads at the three phases

and construct the load vector for day d as

PLd
= [PL1

d,1
, . . . , PL1

d,24
, PL2

d,1
, . . . , PL2

d,24
,

PL3

d,1
, . . . , PL3

d,24
]T . (8)

We stack all the phases together to maintain the load cor-

relation between phases. Then, we construct the matrix PL

that contains the load for every hour for all the days D

during the period under consideration. Thus, we have PL =
[PT

L1
, PT

L2
, . . . , PT

LD
]T .

Same as in the previous sections we calculate the classes

CL1
, . . . ,CLk

, composed of the similar days of load. We

interpret each class CLc
, c = 1, . . . , k, as a realization of the

set of the load random variable ℓc,h for h = 1, . . . , 24. The

mean value of each random variable µLc,h
is defined as

µLc,h
=

1

|CLc
|

∑

PLd
∈CLc

PLd,h
, (9)

where |CLc
| is the number of load vectors PLd

that are

part of class CLc
. For each class CLc

we construct the

vector that represents the daily three-phase load pattern by

µLc
= [µLc,1

, . . . , µLc,24
]T . The probability of each class CLc

occurring is pLc
, and is equal to

pLc
=

|CLc
|

D
. (10)

D. Distribution Network

We consider a power distribution system with N buses

indexed by N = {0, 1, . . . , N − 1}. Let node 0 represent

the point of common coupling (PCC). Such networks are

mostly radial and the network topology can be described

by a connected tree, the edge set of which is denoted by

E , where (i, k) ∈ E if i is connected to k by a line. We

denote by Pn = {an, bn, cn} the phases at bus n ∈ N . Let

V φ
n = |V φ

n |∠θφn (Iφn ) denote the bus n voltage (current) at

phase φ. Similarly, let P
φ
Ln

and Q
φ
Ln

denote the active and

reactive power demanded by a wye-connected load at bus n.

We denote by P
φ
Sn

(P
φ
Wn

) the solar (wind) output at bus n.

The active power flow equation for the distribution system is

given by

P
φ
Sn

+ P
φ
Wn

− P
φ
Ln

= V φ
n Iφ

⋆

n , ∀φ ∈ Pn, n ∈ N . (11)

In this paper we use a distribution planning tool to solve the

power flow. We include (11) to show how the uncertainty and

variability in the output of solar and wind generation affects

the power flow in distribution systems.

III. PROPOSED STOCHASTIC SIMULATION FRAMEWORK

The proposed framework is based on a steady-state analysis

that emulates the integration of wind and solar DG on a

selected feeder. We choose the 24-hour window to capture

the time-dependent, variable, and intermittent nature of the

wind and solar resources and the correlation between the

chronological load and the uncontrollable DG output. The

effects of DG on a feeder’s hosting capacity are affected

by its location as well as its output. In order to accurately

assess the DG impacts on the distribution systems and capture

the uncertainty in the size and the location of potential DG

installations, in the wind and solar generation clustering we

include a class that has zero elements for all hours, and assign

a probability of that class occurring. We do so to capture the

event that several buses might not have DG.

The simulation emulates the three-phase unbalanced power

flow of a distribution system feeder for various outputs of

DG. Specifically, in each simulation period, we emulate the

power flow output over a 24-hour period. The modeling of

the highly variable DG, which is uncertain, is in terms of a

collection of discrete random variables (d.r.v.). The probability

distribution function of the d.r.v. is established from the k-

means clustering algorithm. We make use of independent

Monte Carlo simulations [9, p. 10], and construct multiple

independent and identically distributed (i.i.d.) sample paths

for each of the wind, solar, and load random variables. For

each simulation run, we use one sample path for each one of
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Fig. 2: Hourly wind speed for 5 days.

the input random variables to calculate system performance

metrics. A conceptual structure of the proposed framework is

depicted in Fig. 1.

The output of the power flow generates the voltage at each

bus. We gather the maximum voltages of each 24-hour run, and

compare them with the ANSI voltage limit to determine which

penetration levels in each realization might cause problems in

the feeder [10, p .2]. The minimum hosting capacity refers

to the penetration level where the first violation is observed.

The maximum hosting capacity refers to the penetration level

where all the maximum voltages exceed the ANSI voltage

limit. At each 24-hour simulation run we generate realizations

of the minimum or the maximum hosting capacity. We use

these realizations to approximate the statistics of the minimum

and the maximum hosting capacity of a feeder. We utilize the

statistics and build an empirical pdf. However, the result of the

pdf has the form of a step function due to the finite amount

of data. In order to smooth the pdf we use the kernel density

estimation (KDE) method [11]. In this regard, the outputs of

the proposed stochastic simulation framework are smoothed

pdfs of the minimum and maximum hosting capacity.

IV. NUMERICAL RESULTS

We performed extensive testing of the proposed framework

to validate the results. In this paper, we illustrate the appli-

cation of the framework with a representative utility feeder,

which contains 118 nodes. We collected historical for the

wind speed, solar generation, and load data over a one-year

period. For the solar generation output we utilize an open

source NREL software [12]. We demonstrate how the wind

generation output was determined. In Fig. 2 we depict the

wind speed at a particular site for 5 random days. We use

the k-means algorithm to group the wind speed data into 10

time [h]
1 5 10 15 20 24

µ
W

c
[m

/s
]

0

5

10CW1
CW2

CW3
CW4

CW5
CW6

CW7
CW8

CW9
CW10

Fig. 3: Wind speed clusters.

time [h]
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P
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h
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Fig. 4: Hourly wind output for cluster C1.

clusters that have similar patterns and define the probability of

such a pattern occurring. In Fig. 3, we depict the 10 classes,

CW1
, . . . ,CW10

, composed of the similar days of wind speed

data. In order to define the wind generation output PW based

on a certain daily wind speed pattern, we use the following

function for the wind output curve

PW =



















0 , 0 ≤ v < 3

−2.6 · 10−3 + 8.8 · 10−4v3 , 3 ≤ v < 12

1.5 , 12 ≤ v < 20

0 , v ≥ 20

, (12)

where v is the wind speed. The wind generation for cluster

CW1
is depicted in Fig. 4. A similar approach is conducted

for the solar and load data, as described in Section II.

Once the patterns are determined, we sample them and

carry out 100 simulation runs to estimate the output random

processes of maximum and minimum hosting capacity through

a power flow simulation on the distribution planning software.

In Fig. 5, we depict the histogram of the maximum hosting

capacity. We smooth the discontinuities with the KDE, and

depict in Fig. 6 the pdf of the maximum hosting capacity.

Similarly, we calculate the pdf of the minimum hosting

capacity (see Fig. 7). Based on these values, utilities may

decide what confidence level is acceptable and how much

risk they are willing to undertake in DG installation. In this

specific example, a moderate-risk approach would be to allow

a penetration of 10,000 kW. If the 15% rule was used in

this specific example then the hosting capacity would be 647

kW. Thus, we may see that the heuristic approach provides

very conservative results in this particular feeder, whereas

our proposed framework provides more realistic results as

depicted in Figs. 6, 7. A stochastic method that evaluates the

maximum hosting capacity [kW]
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Fig. 5: Histogram of maximum hosting capacity.
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Fig. 6: Probability distribution function of maximum hosting

capacity.

hosting capacity of a feeder during minimum load conditions

determines that the minimum hosting to be 4, 000 kW and

maximum hosting capacity 10, 200 kW. The minimum load

conditions may be considered as a “worst” case scenario.

Therefore, a more detailed approach as the one described in

this paper is beneficial for utilities planning.

V. DISTRIBUTION SYSTEM PRACTICAL APPLICATIONS

While determining the hosting capacity allows utilities to

determine the amount of DG that specific feeders can accom-

modate, it also provides additional wide reaching benefits in

areas of risk management, investment deferment, and possible

optimal DG deployment to minimize outages and improve

reliability to the customer.

One such example is for interconnection purposes since it

is yet unclear who pays for the additional upgrades needed

to interconnect to the system. The proposed framework may

be used to determine the interconnection charges based on a

calculated risk factor for the addition of each DG unit. Fur-

thermore, the proposed framework may also allow determine

where and when issues might arise as a result of DG units

deployment. Knowledge such as this could be utilized for

planning purposes in order to identify the ideal location for

DG installations so as to minimize necessary upgrades; or to

take a more proactive approach into the management of the

distribution system. Lastly, as an increasing amount of DG

and storage technologies are connected to the grid, there is an

opportunity to utilize them to minimize the number and the

duration of outages. The proposed framework can present an

analytic approach to determine which DG should be utilized

without causing adverse effects elsewhere in the system.
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Fig. 7: Probability distribution function of minimum hosting

capacity.

VI. CONCLUSIONS

In this paper, we presented a stochastic simulation frame-

work for the determination of a feeder’s hosting capacity.

To this end, we developed probabilistic models for the wind

and solar generation, and load profiles by using historical

data and the k-means clustering algorithm. Next, we used the

probabilistic models for the solar, wind, and load data, and

fed them into a distribution planning software, which runs

the power flow, to determine the voltages at each bus. We

collected the maximum voltages of each wind, solar, and load

realization to determine statistics for the feeder’s minimum and

maximum hosting capacity. We used the KDE technique to

obtain a smoothed pdf of the minimum and maximum hosting

capacity.

In the numerical result section, we applied the proposed

framework into a representative 118-node feeder, showed

the derivation of the probabilistic models with the k-means

clustering technique, and used the KDE technique to calculate

the pdfs of the minimum and maximum hosting capacity. We

compared our findings with that of the 15% process, and

showed the process to be quite conservative and that it did not

exemplify a good perspective for planning. We also proposed

the utilization of the proposed framework towards other related

applications for the distribution systems.
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