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ABSTRACT  

Biometric verification is the process of authenticating a person‟s identity using 
his/her physiological and behavioural characteristics. It is well-known that 
multimodal biometric systems can further improve the authentication accuracy 
by combining information from multiple biometric traits at various levels, 
namely sensor, feature, match score and decision levels. Fusion at match score 
level is generally preferred due to the trade-off between information availability 
and fusion complexity. However, combining match scores poses a number of 
challenges, when treated as a two-class classification problem due to the highly 
imbalanced class distributions. Most conventional classifiers assume equally 
balanced classes. They do not work well when samples of one class vastly 
outnumber the samples of the other class. These challenges become even more 
significant, when the fusion is based on user-specific processing due to the 
limited availability of the genuine samples per user. This thesis aims at exploring 
the paradigm of one-class classification to advance the classification performance 
of imbalanced biometric data sets. The contributions of the research can be 
enumerated as follows. 

Firstly, a thorough investigation of the various one-class classifiers, 
including Gaussian Mixture Model, k-Nearest Neighbour, K-means clustering 
and Support Vector Data Description, has been provided. These classifiers are 
applied in learning the user-specific and user-independent descriptions for the 
biometric decision inference. It is demonstrated that the one-class classifiers are 
particularly useful in handling the imbalanced learning problem in multimodal 
biometric authentication. User-specific approach is a better alternative with 
respect to user-independent counterpart because it is able to overcome the so-
called within-class sub-concepts problem, which arises very often in multimodal 
biometric systems due to the existence of user variation. 

Secondly, a novel adapted score fusion scheme that consists of one-class 
classifiers and is trained using both the genuine user and impostor samples has 
been proposed. This method also replaces user-independent by user-specific 
description to learn the characteristics of the impostor class, and thus, reducing 
the degree of imbalanced proportion of data for different classes.  Extensive 
experiments are conducted on the BioSecure DS2 and XM2VTS databases to 
illustrate the potential of the proposed adapted score fusion scheme, which 
provides a relative improvement in terms of Equal Error Rate of 32% and 20% as 
compared to the standard sum of scores and likelihood ratio based score fusion, 
respectively.  

Thirdly, a hybrid boosting algorithm, called r-ABOC has been developed, 
which is capable of exploiting the natural capabilities of both the well-known 
Real AdaBoost and one-class classification to further improve the system 
performance without causing overfitting. However, unlike the conventional Real 
AdaBoost, the individual classifiers in the proposed schema are trained on the 
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same data set, but with different parameter choices. This does not only generate a 
high diversity, which is vital to the success of r-ABOC, but also reduces the 
number of user-specified parameters. A comprehensive empirical study using 
the BioSecure DS2 and XM2VTS databases demonstrates that r-ABOC may 
achieve a performance gain in terms of Half Total Error Rate of up to 28% with 
respect to other state-of-the-art biometric score fusion techniques.  

Finally, a Robust Imputation based on Group Method of Data Handling 
(RIBG) has been proposed to handle the missing data problem in the BioSecure 
DS2 database. RIBG is able to provide accurate predictions of incomplete score 
vectors. It is observed to achieve a better performance with respect to the state-
of-the-art imputation techniques, including mean, median and k-NN 
imputations. An important feature of RIBG is that it does not require any 
parameter fine-tuning, and hence, is amendable to immediate applications.  
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ACRONYMS 

A-GMM Adapted score fusion using one-class GMM as the base classifier 

A-Kmeans Adapted score fusion using one-class K-means as the base classifier 

A-kNN Adapted score fusion using one-class k-NN as the base classifier 

A-SVDD Adapted score fusion using one-class SVDD as the base classifier 

AUC Area Under the ROC Curve 
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NOTATIONS 

𝑑 𝐬𝑇|𝑤𝑘  Distance of match score vector 𝐬𝑇  to the target class 𝑤𝑘  

𝐸 𝑥  Expected value of 𝑥 

𝑓𝑇  Fraction of target objects, which are rejected by a one-class 

classifiers (i.e., 𝑓𝑇 ∈ [0,… ,1])  

𝐺 Genuine user 

𝑔𝑡(𝐬𝑇) Hypothesis function mapping the test input match score vector 𝐬𝑇  

into a real-valued prediction in classifier ensemble learning, where 

𝑡 ∈ [1,… , T])   

Φ 𝐬𝑖  Mapping of vector 𝐬𝑖  to a high dimensional feature space 

𝑡(𝐬𝑇) 𝑡 𝐬𝑇 = 𝑠𝑖𝑔𝑛[𝑔𝑡 𝐬𝑇 ], which is able to generate hard class label for 

the test input match score vector 𝐬𝑇  

𝐼 Impostor 

𝐾 𝐬𝑖 , 𝐬𝑗   Kernel function operating on 𝐬𝑖  and 𝐬𝑗  

𝐽 Number of users 

𝑗 User index (i.e., 𝑗 ∈ {1,… , 𝐽}) 

𝑀 Number of biometric matchers 

𝑚 Matcher index (i.e., 𝑚 ∈ {1,… ,𝑀}) 

𝜇, 𝝁 Mean and mean vector 

𝑁 Number of training samples 

𝑛𝑇
𝑚  Normalized match score for the test match score 𝑠𝑇

𝑚  of the 𝑚-th 

matcher 

𝑝(𝑤𝑘) The prior probability for class 𝑤𝑘  to occur 

𝑝(𝑤𝑘 |𝐬𝑇) The a posteriori probability that the true class is 𝑤𝑘 , given 𝐬𝑇  

𝑝(𝐬𝑇|𝑤𝑘) Conditional probability density for 𝐬𝑇 , given class 𝑤𝑘  

𝑠𝑖
𝑚  Match score, provided by the 𝑚-th matcher 

𝐬𝑖  Match score vector 

𝐬𝑇  Test input match score vector 

𝑠𝐶𝑂𝑀 ,𝑘 𝐬𝑇  Combined match score for match score vector 𝐬𝑇 , where 𝑘 ∈ {𝐺, 𝐼} 
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𝑠𝐶𝑂𝑀 ,𝑗 ,𝑘 𝐬𝑇  Combined match score, related to user 𝑗 for match score vector 𝐬𝑇 , 

where 𝑘 ∈ {𝐺, 𝐼} 

SV Set of support vectors (i.e., objects with 𝛼𝑖 > 0) 

𝜎 Standard deviation 

𝛴 Covariance matrix 

T Number of individual classifiers in a classifier combination 

𝜏 Decision threshold 

𝐱𝑚  Output feature vector, presented to the 𝑚-th classifier 

𝑤𝑘  Class identifier, where 𝑘 ∈ {𝐺, 𝐼}  

𝑤𝑗 ,𝑘  Class identifier, related to user 𝑗, where 𝑘 ∈ {𝐺, 𝐼}   
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CHAPTER 1   

INTRODUCTION 

This chapter will start with a short introduction of the background associated to 

this research, including biometric systems, common biometric traits, the sources 

of biometric evidence; and the type of information to be fused (Sections 1.1-1.3).  

The problem of imbalanced class distribution that poses serious difficulties to 

most standard two-class classifiers, when applied in performing multimodal 

biometric fusion is then discussed in detail in Section 1.4. The contributions 

originating from this research and the outline of the thesis are given in Sections 

1.5 and 1.6. 

1.1. Biometric Systems in a Nutshell 

Traditional methods of human identification based on credentials (PIN or 

identification documents) are not able to meet the growing demand for stringent 

security in applications such as access control, government benefits, border 

crossings, and national ID cards [1]. As an alternative, biometric recognition, or 

simply biometrics, has gained much attention over recent years particularly due 

to rapidly growing demand for person identification applications [1-5]. Biometric 

recognition refers to the process of verifying an identity claim using a person‟s 

behavioural and physiological characteristics, such as hand geometry, iris, face, 

hand vein, voice, signature, fingerprint, etc. Although biometric recognition has 

its limitations (e.g., temporal changes in biometric traits, additional cost), it has 

provided many advantages over existing credential-based mechanisms because it 

constitutes a strong link between a person and his identity and cannot be 

forgotten, stolen, lost, shared or forged [1]. In addition, biometric recognition is 

able to deter users from making false repudiation claims because it requires the 

users to be present at the time of authentication [5].  
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The use of biometrics is not new. In the late 19th century, Alphonse 

Bertillon, a French law enforcement officer, advocated a personal identification 

system, which entailed the precise measurement of a morphological description 

of the shape and appearance of the body and a listing  of  peculiar marks, such as 

scars, tattoos, moles on the surface of the body [1], [6]. The Bertillon system was 

short-lived. Soon after its introduction, the distinctiveness of human fingerprints 

was established. Since the early 1990s, fingerprints have been an accepted 

method in forensic investigations to identify criminals [1]. With growing 

concerns about security breaches, financial fraud, other biometric traits, 

including face, iris, palmprint, and voice have been used for person 

identification. Now, biometrics is a mature technology, which is widely used in a 

variety of applications [7-10]. 

Figure 1.1. The general architecture of a biometric system. 

The general architecture of a biometric system, sketched in Figure 1.1  can be 

divided into two categories: (1) authentication (also referred to as verification), 

and (2) identification. In authentication applications, the system validates a 

person‟s  identity  by  conducting  a  one-to-one  (1:1)  matching  to  compare  the 

captured biometric data with his/her previously enrolled biometric template, 

pre-stored in the system database. On the contrary, the goal of personal 

identification applications is to recognize an individual by searching the entire 

enrolled template database for a match. For these applications, the system 

conducts a one-to-many (1:N) matching to establish the identity of an individual. 

This thesis is focused on biometric authentication. 

 

Biometric Signal Feature Extraction 

Biometric Signal Feature Extraction 

Matching 

Database 

a) Enrolment 

b) Verification/Identification 

1:1 Matching (Verification) 

1:N Matching (Identification) 
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Biometric authentication involves a trade-off between two types of errors: 

(1) False Rejection Rate (FRR), which is an empirical estimate of the probability of 

falsely rejecting a genuine user, and (2) False Acceptance Rate (FAR), which is an 

empirical estimate of the probability of falsely accepting an impostor as a true 

user. In general, both FRR and FAR are functions of the decision threshold. The 

system performance across the various thresholds can be depicted using a 

Detection Error Trade-off (DET) curve. Equal Error Rate (EER) is a single valued 

measure, which refers to an operating point on the DET curve where FRR equals 

FAR. More details about biometric performance evaluation methodologies will 

be given in Chapter 3. 

1.2. Biometric Modalities 

A number of biometric traits are being used in various applications. Behavioural 

biometric traits include voice, signature, gait, and keystroke. Physiological 

biometric traits include fingerprint, iris, retina, face, palmprint, and hand 

geometry (Figure 1.2). Each biometric has its strengths and weaknesses and the 

applicability of a biometric trait is typically dependent on the following 

fundamental premises [1], [5], [11-14]: 

1) Universality: every person should possess the biometric trait 

2) Distinctiveness: two persons should have different biometric traits. 

3) Permanence: the trait should be invariant over time.  

4) Performance: this can be measured in terms authentication accuracy and 

speed (throughput), and resource requirements for biometric system 

implementation. 

5) Acceptability: extent to which users are willing to use a particular biometric 

trait in their daily lives. 

6) Circumvention: difficulty to fool a biometric system by fraudulent methods. 

For the sake of completion, some characteristics of typical biometric traits are 

summarized in the following paragraphs. 
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Figure 1.2. Examples of common biometric traits: (a) Fingerprint, (b) Face, (c): Iris, (d) 

Palmprint, (e) Hand geometry (f), Hand veins, (g) Voice, and (h) Signature. Adapted from [1] 

and [21]. 

Fingerprint: Fingerprint recognition [16] has been used for personal 

identification for many decades. A fingerprint is the pattern of ridges and valleys 

on the surface of a fingertip (see Figure 1.2(a)). Ridges are characterised by 

several landmark points, known as minutiae, whose spatial distribution is 

claimed to be unique to each finger [5]. Virtually all law enforcement agencies 

use the Automatic Fingerprint Identification System (AFIS) [1]. The emergence of 

low cost and compact fingerprint readers has made fingerprint the preferred 

choice in many commercial applications. 

Face: Face recognition [17] has several advantages over other biometric 

traits. It is natural, non-intrusive and easy to use. Owing to advances in face 

modelling and analysis techniques, a significant progress has been seen in recent 

years in face recognition, with many systems capable of achieving recognition 

rates greater than 90% [17], [18]. However, real-world scenarios remain a 

challenge, especially for unconstrained tasks, where illumination, viewpoint, 

expression, occlusion, and accessories vary considerably [18]. The most popular 

approaches to face recognition are based on either (1) the global analysis of the 
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face image or (2) the location and shape of face attributes, such as the eyes, nose, 

lips and chin [5]. A survey of existing face recognition challenges and 

technologies is available in [18]. 

Iris: The iris is the coloured portion of an individual‟s eye. An iris image is 

typically captured under infrared illumination. The complex iris texture, 

illustrated in Figure 1.2(c), carries very distinctive information, including pits, 

stripes, and furrows, which allow for highly reliable personal identification [1], 

[5], [19]. First invented by Daugman [20], iris recognition is extremely accurate 

and fast on high-resolution well-captured iris images. However, the relatively 

large failure to enrol (FTE) rate, reported in several studies, and relatively high 

sensor costs may reduce its applicability to some large-scale government 

applications [5]. 

Palmprint: Palmprint recognition [21], just like fingerprint recognition, is 

based on the aggregate of information, presented in a friction ridge impression, 

which include ridge flow, ridge characteristics, and ridge structure (see Figure 

1.2(d)). As compared to fingerprint, the palm provides a much larger surface area 

and, as a result, more distinctive information can be extracted [21]. A variety of 

sensor types can be used for collecting the image of a palm; however, traditional 

live-scan methodologies have been slow to adapt to the larger capture areas [1]. 

Palmprint recognition systems have not been deployed for civilian applications 

(e.g., access control) [5].  

Hand geometry: Hand geometry recognition is based on a number of 

measurements of the human hand, including its size, shape, and the width and 

length of the fingers [16] (see Figure 1.2(e)). The systems are widely implemented 

for their ease to use, and integration capabilities. However, the geometry of the 

hand is not very distinctive, limiting the applications of the hand geometry 

system to verification tasks [5]. 

Hand veins: Hand vein recognition works by identifying the pattern of the 

blood vessels hidden underneath the skin (Figure 1.2(f)), which can be quite 

distinctive even among identical twins and stable over long periods of time [5], 
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[16]. Veins could be detected in the finger, palm, and backhand using 

inexpensive infra-red light emitting diodes (LEDs). Biometric authentication 

based on hand veins is now available for some commercial applications.  

Voice: Voice is a combination of behavioural and physiological 

characteristics. Voice is not very distinctive since the behavioural characteristics 

can change over time due to medical conditions (e.g., common cold) and age [1]. 

Voice recognition is highly suitable for person identification over the telephone, 

but is quite sensitive to playback spoofing and background noise [5].     

Signature: Signature (i.e., the way a person signs their name) is a 

behavioural characteristic, which has been acceptable in daily business 

transactions as a method of verification for a long time [16]. Nevertheless, 

signature is influenced by physical and emotional conditions of the signatories 

and may change over time.  Very few automatic signature recognition systems 

have been deployed [5]. 

Table 1.1. Comparison of different biometric traits. H, M and L denote High, Medium and Low, 

respectively. Adapted from [11]. 
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Fingerprint  M H H H M M 

Face H L M L H H 

Iris H H H H L L 

Palmprint M H H H M M 

Hand geometry M M M M M M 

Hand veins M M M M M L 

Voice M L L L H H 

Signature L L L L H H 

The biometric traits, described above are compared in Table 1.1. It has been 

observed that no single biometric trait is able to meet all criteria. Some of the 

traits, such as fingerprint, face and iris have sufficient discriminating power to be 
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applicable in large-scale identification applications, while others like hand 

geometry, are more appropriate for verification applications [1], [5]. It is also 

important to note that biometric traits are in varying stages of maturity [14].  

1.3. Multibiometrics and Multimodal Biometrics 

Authentication systems built upon a single biometric trait (also referred as 

unimodal biometric systems) have to contend with a variety of problems [1] such as:  

a) Non-universality: It may not be possible to extract meaningful biometric data 

from a subset of users. For example, about 4% of the population have poor 

quality fingerprints, which are difficult to image with existing fingerprint 

sensors [11]; 

b) Noise in the sensed data: Noisy data, which results from different ambient 

conditions or defective sensors, may lead to a genuine user being 

incorrectly rejected; 

c) Intra-class variations: Intra-class variations are typically caused by a change 

in the biometric characteristics of a person over time. Intra-class variations 

become more prominent in behavioural traits (e.g., voice, signature), as 

compared to physiological traits (e.g., face, fingerprint); 

d) Inter-class similarities: Inter-class similarities, which refer to the overlap in 

feature space of the data describing individual users, will increase the false 

acceptance rate of a large-scale identification system; 

e) Spoof attacks: Biometric systems are vulnerable to spoof attacks because 

some biometric data can be imitated, as highlighted in Section 1.2. The 

possibility of generating digital artifacts of biometric data in order to 

circumvent a biometric system has also been demonstrated in [1], [22]. 

Multibiometric systems seek to alleviate some of the above problems by 

reconciling multiple, (fairly) independent sources of evidence. They are known to 

be more robust against individual sensor failure, address the problem of non-

universality, and deter spoof attacks as it is difficult for an impostor to spoof 
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multiple biometric traits of a legitimate user [11]. Multibiometric systems are able 

to meet the stringent performance requirement of various applications [21]. 

Multiple sources of biometric information can be obtained by using 

multiple sensors, processing algorithms, instances, samples, and modalities [1], 

[11-14], [23]. These possibilities are briefly described in the sub-sections below: 

a) Sensors: A single biometric trait is imaged using multiple sensors, which are 

capable of extracting diverse information from registered images. As an 

example, multiple cameras can be deployed to record the two dimensional 

texture content and the three dimensional surface shape of a person‟s face. 

b) Processing algorithms: The same biometric data is processed using different 

algorithms. For example, a minutiae-based algorithm and a texture-based 

algorithm can be used simultaneously to obtain complementary feature sets 

from a fingerprint image. 

c) Instances: Multiple instances, such as the left and right finger, or the left and 

right irises can be used to verify a claimed identity. In this context, it is not 

necessary for the system to use a new sensor or algorithm to process the 

data and hence, this is a cost effective approach. 

d) Samples: Multiple samples of the same biometric trait are captured using a 

single sensor to account for the variations, which may occur in the trait. For 

example, the frontal face profile together with the left and right profiles are 

acquired in a face recognition system to account for facial pose variations. 

e) Modalities: These are also known as multimodal biometric systems, and 

combine the evidence of different body traits for personal recognition. Some 

of the earliest multimodal biometric systems integrate voice and face 

features for establishing identity. The deployment of these systems is 

influenced by several factors, such as cost of deployment, throughput time, 

expected error rate, enrolment time, etc. 

Various fusion scenarios can be performed using the aforementioned sources of 

evidence. A generic biometric system consists of four modules, i.e., (1) sensor 
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module, which acquires the raw biometric data; (2) feature extraction module, 

which processes the biometric data to extract  a set of compact discriminative  

features; (3) matching module, which compares the input feature vector with that 

of the stored template, thus, resulting to match scores (i.e., measures of similarity 

between the input and template biometric features); and (4) decision module, 

which outputs the authentication decision with regards  to  the  match  scores  

[1], [13], [14]. The combination of multiple pieces of evidence can be performed at 

any of these four modules, as illustrated in Figure 1.3, and described below: 

(a) Sensor level fusion refers to combining the raw data of the same biometric 

trait, obtained using either a single sensor or various compatible sensors. 

One example of this type of fusion is the mosaicking of multiple samples of 

a fingerprint (Figure 1.3(a)). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3.  Fusion scenarios in multibiometric systems. Adapted from [11], [12] and [14]. 
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(b) Feature level fusion refers to the combination of different feature sets, 

extracted from multiple biometric sources, as shown in Figure 1.3(b) for the 

example of left and right iris modalities.  

(c) Match score level fusion refers to the combination of match scores provided 

by different classifiers pertaining to different biometric modalities (see 

Figure 1.3(c)). More information regarding this type of fusion will be given 

in Chapter 2. 

(d) Decision level fusion refers to combining decisions, made independently by 

various biometric systems. Methods for decision level fusion include 

behaviour knowledge space [1], majority voting [59] and Dempster-Shafer 

theory of evidence based weighted voting [1]. 

Sensor and feature level fusion are generally expected to be more effective than 

fusion in the other two levels since they contain richer information about the 

biometric data. However, fusion in these levels is difficult to achieve in practice 

due to the following reasons: (1) most commercial biometric systems do not 

provide access to the raw data (nor the feature sets) for security reasons, (2) the 

fusion process has to deal with the presence of noise, which becomes prominent 

in the raw data; and (3) the feature sets of different modalities may be non-

homogenous or incompatible [1]. On the other hand, decision level fusion is 

considered to be the least informative [23]. Thus, match score level fusion is 

usually preferred, as it is relatively easy to access and combine the match scores 

generated by the various matchers [11].   

1.4. The Class Imbalance Problem 

As mentioned above, multimodal biometric fusion at the match score level is a 

promising research direction. However, combining match scores is a challenging 

task because the match scores of different matchers may have different 

probability distributions and can be inhomogeneous [1], [90].  
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A common practice in many reported works on multimodal biometrics is to 

view fusion at match score level as a two-class classification problem, where the 

vector of match scores is treated as a feature vector, and thus, can be classified 

into one of two classes, i.e., genuine user and impostor. Based on the training set 

of match scores, the classifier learns the decision boundary between the two 

classes [1]. The decision boundary can be learned at the training stage, regardless 

of the claimed identity [24-26] or for each user, enrolled in the system [29-33]. A 

number of two-class classifiers, such as HyperBF [24], k-Nearest Neighbour 

using vector quantization [25], C4.5 decision tree, Fisher linear discriminant, 

Bayesian classifier [26], [33], Multilayer Perceptron [26], Support Vector 

Machines (SVM) [26], [32], linear classifiers [29], and discriminative classifiers 

based on reduced polynomial expansion [30] have been used to render the 

decision in a multimodal biometric verification system. Although these classifiers 

are capable of learning the decision boundary irrespective of how the feature 

vectors are generated, their limitation is that it is not always possible to fix one 

type of error, e.g., False Acceptance Rate (FAR) and then compute the False 

Rejection Rate at the specified FAR [1].   

Table 1.2. Existing multimodal biometric databases and their class imbalance ratios. 

Database 
# 

Users 
Modalities 

# Imp. 

Samples 

# Gen. 

Samples 

Imbalance 

Ratio 

BioSecure DS2 [61], [62]  333 Face. Fingerprint. Iris 78,624 156 524:1 

XM2VTS LP1 [63] 295 Face, Speech 40,000 600 66:1 

XM2VTS LP2 [63] 295 Face, Speech 40,000 400 100:1 

NIST BSSR1 [52] 517 Fingerprint, Face 266,772 517 516:1 

MCYT [53] 75 Fingerprint, Signature 750 525 10:7 

MSU [107] 10 Face, Fingerprint, Hand-

Geometry 

12,250 500 49:2 

Moreover, recent literature has indicated that the performance of most 

conventional two-class classifiers deteriorates, when applied to problems 

characterised by class imbalance [34-37]. Class imbalance is a common problem 

to many application domains, including multimodal biometric authentication. 

Table 1.2 summarizes several well-known multimodal biometric databases and 
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their class imbalance ratio. It is not uncommon for the class imbalance to be on 

the order between 25:1 and 500:1, and in each case, the number of genuine user 

samples (# Gen. Samples) available for training is 𝑂(𝐽), but the number of 

impostor samples (# Imp. Samples) is 𝑂(𝐽2), where 𝐽 is the number of users (# 

Users) in the system [90].  

Most conventional two-class classifiers assume or expect balanced class 

distributions, and generally create suboptimal classification models, when 

complex imbalanced data sets are presented [35]. Particularly, Bayesian networks 

are learned using certain scoring functions to approximate the dependency 

patterns, which dominate the data. Since the dependency patterns in the small 

class are usually not significant, they are hard to be encoded in the networks 

[115], [158]. In [115], [116], it was reported that the Back propagation (BP) and 

Radial Basis Function (RBF) neural networks may perform sub-optimally with 

imbalanced data sets, since the small class is inadequately characterised in the 

learned solution. In [119], the k-Nearest Neighbour was observed to give higher 

probabilities to samples from the prevalent class, and hence, the test cases from 

the small class are prone to being incorrectly classified [115]. Support Vector 

Machines (SVM) is generally believed to be more robust against the class 

imbalance than other classification learning algorithms, since the class boundary 

of SVM is characterised by a few support vectors and the skewed class 

distribution may not affect this class boundary too much. However, recent works 

[34], [38], [39] have indicated that SVM may be ineffective in predicting samples 

of the small class. This is due to the fact that SVM tries to minimize the total 

error, which is inherently biased towards the prevalent class. Furthermore, if 

there is lack of samples in the small class, there could be an imbalance of 

representative support vectors, which can also degrade the overall classification 

performance. 

The most obvious characteristic of an imbalanced data set is the skewed 

data distribution between the two classes. However, it has been observed that the 

skewed data distribution is not the only negative impact that class imbalance has 
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on the generalization performance of a classifier‟s learning algorithm [34], [37]. 

Other influential factors are as follows: (1) The existence of within-class sub-concepts 

[37], referring to the problem of small disjuncts, where a single class is composed 

of various sub-clusters, which increases the learning concept complexity of the 

data set, (2) Separability, referring to the difficulties in separating the small class 

from the prevalent class. It is known that if the samples among each class are 

overlapping, discriminative rules are not easy to induce; and (3) Small sample size, 

where the classifier often fails to generalize the inductive rules over the sample 

space, leading to overfitting. 

Class imbalance has received limited attention in the biometric literature. 

Under-sampling seems to be the most common approach, which has been used 

to handle the problem [1], [32], [40]. Obvious shortcomings with the data 

sampling process are: (1) the optimal class distribution of a training data is 

usually unknown; (2) additional learning cost for processing data is inevitable in 

most cases; (3) ineffective data sampling methods may cause the classifier to miss 

important concepts pertaining to the impostor class [37]. In [30], 3% Gaussian 

noise with respect to the largest magnitude of the match scores was included into 

the genuine user class to increase the training sample size and reduce the class 

imbalance ratio. Nevertheless, this can potentially decrease the matching 

accuracy of combining non-Gaussian match scores. These factors indicate the 

need for additional research efforts to advance the classification of imbalanced 

biometric data.  

1.5. Research Contributions of the Thesis 

The difficulties originating from the class imbalance problem and its frequent 

occurrence in practical applications of machine learning have attracted increased 

research interest [37], [41-43]. Over the years, the machine learning community 

has addressed this problem in many different ways. Among others, the most 

perspective technique seems to be one-class classification [34], [44], which is 

naturally quite robust to the presence of class imbalance by using single class 
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samples rather than differentiating between the samples of the two classes [44], 

[45]. In [46-48], the authors suggested that one-class classifiers are particularly 

useful in handling extremely imbalanced data sets with high feature space 

dimensionality, while two-class classifiers are more suitable for moderately 

imbalanced data sets [34].  

The aim of this research is to investigate one-class classification methods in 

the context of class imbalanced data sets for systematically enhancing biometric 

authentication accuracy. The main contributions of the research are as follows: 

(1) A novel user-specific fusion paradigm based on one-class classifiers: 

Recent literature has been suggested that biometric systems have varying 

degrees of accuracy in authenticating users [109]. Due to the existence of 

user variation, match scores from both the impostor and genuine user 

classes are scattered into several small regions and the decision boundary 

may enclose a large sparsely populated area, which could increase the 

probability of accepting outliers [171]. The proposed score fusion scheme is 

capable of exploiting user-specific information, and thus, resulting more 

reliable and compact scatters. Particularly, it trains a different description 

for each of the users in the biometric system by using his/her 

corresponding match score patterns. As compared to its conventional user-

independent counterpart, this does not only improve verification 

performance, but also results to significant computational savings. 

Although a number of works have focused on designing a fusion classifier 

that differs for each user, no prior work has been conducted in the 

biometric literature on the use of one-class classifiers in designing user-

specific descriptions. 

(2) A novel adapted score fusion scheme based on Bayes theorem, applied in 

combining one-class classifiers of the same type to effectively and efficiently 

exploit the training data from both the genuine user and impostor classes. It 

also makes use of user-specific instead of user-independent score fusion to 

learn the characteristics of the impostor class, thus reducing the degree of 
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imbalance for different classes and counteracting the possible effects of the 

so-called within-class sub-concepts problem, which frequently occurs in 

biometric systems due to the existence of user variation. 

(3) A novel hybrid boosting algorithm, called r-ABOC, which inherits the 

natural capabilities of both the so-called Real AdaBoost (r-AB) [58] and 

One-class Classification (OC) to address the issue of extremely imbalanced 

class distribution in biometric data sets. This algorithm works by 

developing a weak classifier, which consists of one-class Gaussian Mixture 

Model and considers the use of training data from the two classes. Real 

AdaBoost is then applied to combine multiple weak classifiers in order to 

improve their performance without causing overfitting. However, unlike 

the conventional Real AdaBoost, the weak classifiers in r-ABOC are learned 

on the same data set, but with different parameter choices (i.e., fraction 

rejection rates). It does not only generate the necessary diversity to enable 

the classifier combination to perform well, but also dramatically reduces the 

number of parameters to be chosen by the user. An important feature of r-

ABOC is that its performance becomes unchanged when the number of 

rounds of boosting is increased. This suggests that r-ABOC may completely 

eliminate the possibility of making bad choice of the fraction rejection for 

the practical biometric authentication problem. 

(4) A comprehensive analysis of the performance of one-class classifiers in 

the context of multimodal biometric fusion is provided: A large number 

of one-class classifiers have been developed in the literature. They differ in 

their ability to cope with different characteristics of the data [44]. There is 

no single best classifier for all problems, which confirms the “no panacea” 

in pattern recognition [59]. Several representative one-class methods have 

been exhaustively analyzed in this thesis, i.e., Gaussian Mixture Model 

(GMM), k-Nearest Neighbour (k-NN), K-means clustering (K-means), and 

Support Vector Data Description (SVDD). The aim of this analysis is to 

provide guidelines, which can inform the appropriate choice of classifiers to 

be used in biometric applications. This also highlights the advantages of 
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one-class classifiers over two-class methods in dealing with imbalanced 

class distributions of biometric data sets. 

(5) A robust imputation based on Group Method of Data Handling: Most 

score level fusion techniques, including also the above proposals, are 

specifically designed for a complete match score vector and thus, cannot be 

invoked otherwise [40]. In order to handle incomplete match score vectors 

and their frequent occurrence in biometric systems, a robust imputation 

technique, called RIBG was developed. RIBG is based on Group Method of 

Data Handling, which is able to automatically find interrelations in the data 

and select the optimal structure of a model and hence, increasing the 

performance accuracy of existing techniques. RIBG offers many distinct 

advantages over other state-of-the-art imputation techniques. It is shown to 

be capable of providing more accurate predictions for the missing elements. 

It is resistant to noise and does not require any parameter fine-tuning. 

The above contributions are supported through systematic empirical evaluation. 

Extensive experiments, carried out on the BioSecure DS2 [61], [62] and XM2VTS 

benchmark databases [63], were utilised to illustrate the effectiveness of the 

proposed approaches. As it can be seen from Table 1.2, XM2VTS and BioSecure 

DS2 are two publicly available databases, which were developed to benchmark 

the performance of biometric algorithms at match score level. They contain 

biometric traits from a large number of users and their class distribution is 

considered as to be extremely imbalanced. BioSecure DS2 also involves a large 

number of incomplete match score vectors, which requires to be processed prior 

to applying any classifier learning algorithms [61]. 

1.6. Outline of the Thesis 

This thesis is organised as follows. Following the introduction, Chapter 2 

provides a literature survey on the different techniques, which have been widely 

used in multimodal biometric fusion at match score level. These techniques 

generally can be divided into two broad categories of user-independent and 
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user-specific processing. Chapter 3 is devoted to explaining the BioSecure DS2 

and XM2VTS benchmark databases and evaluation methodologies used to 

evaluate the authentication performance in multimodal biometric authentication. 

It discusses the set of experiments, which are conducted in this thesis. The 

proposed RIBG algorithm (Contribution (5)) to handle the missing values in 

these databases is also presented in this chapter. Chapter 4 introduces several 

representative one-class classifiers, i.e., GMM, K-means, k-NN, and SVDD. 

Illustrative examples and extensive evaluation are also presented to highlight the 

advantages of the user-specific fusion scheme over the user-independent 

counterpart (Contributions (1) and (4)). Chapter 5 discusses in detail the 

proposed adapted score fusion scheme (Contribution (2)) and the improved 

hybrid boosting algorithm, r-ABOC (Contribution (3)). The pros and cons of 

these techniques are further assessed in this chapter. Chapter 6 is dedicated to 

conclusions and future work. 
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CHAPTER 2   

LITERATURE REVIEW ON 

MATCH SCORE LEVEL FUSION  

When the match scores of individual biometric matchers are combined for the 

decision inference, fusion is said to be done at match score level. Match score 

level fusion is the most commonly used approach in multimodal biometric 

systems because the match scores are easily accessible and contain sufficient 

information to distinguish between a genuine user and impostor [1], [16], [67]. 

This chapter aims to describe various characteristics of match score level fusion 

and provide a comprehensive review on the techniques to perform the fusion at 

this level. This chapter will start with the integration architecture, which refers to 

the orders of the acquired match scores, being integrated to render the biometric 

decision (Section 2.1). In Section 2.2, the mathematical framework that describes 

the classifier combination in the context of statistical pattern recognition is 

presented. Sections 2.3 and 2.4 discuss in detail the state-of-the-art in match score 

fusion schemes, and their application to multimodal biometrics. In general, these 

schemes can be divided into: (1) the traditional user-independent processing, and 

(2) a new attempt in the literature to exploit the user specificities [15]. Based on 

this review, several best candidates will be selected to further evaluate and 

compare with the proposed schemes of this thesis, discussed in Chapters 4 and 5. 

2.1. Integration Architecture 

The integration architecture refers to the order, where the acquired biometric 

information is processed in order to render a decision. It is known to significantly 

impact the throughput time in large-scale identification systems [1]. The various 
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modes of the integration architecture, illustrated in Figure 2.1, are discussed 

below. 

 

 

 

 

 

 

 

 

Figure 2.1. General integration architectures of multiple biometric matchers. Adapted from [14]. 
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serial mode can reduce the processing time while improving user convenience 
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matchers [1], [31]. In [93], the author developed a serial architecture where the 

face matcher is used to retrieve the top 𝑛 matching identities, while the finger 

matcher is used to determine the final identity. In [31], the serial architecture was 

employed to select a subset of matchers for each of the users, enrolled in the 

biometric system. Various aspects were considered in this work, such as the 

variability of the system performance across the users, and the reliability of a 

user-ranking criterion based solely on a given data set. 

In the hierarchical architecture, the different biometric modalities are 

processed in a tree-like structure. The hierarchical architecture is known to be 

highly efficient in exploiting the discriminative power of different types of 

features [14], [16], [147]. In [148], the authors developed a hierarchical palmprint 

system, where multilevel palmprint features, such as key point distance, tuned 

mask based texture energy, fuzzy interest lines, and local directional texture 

energy were extracted and hierarchically matched to facilitate a coarse-to-fine 
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palmprint matching scheme, and thus, reducing the computational time. A 

similar idea was exploited in [149], where different fingerprint features, namely, 

the orientation image, minutiae, and pores and ridge contours, were 

hierarchically consolidated in an identity verification system. It was observed 

that using the pores and ridge contours in combination with the other features 

results in a relative reduction of 20% in the EER, and the performance gain is 

consistently achieved across various quality fingerprint images. In the context of 

multimodal biometrics, the hierarchical structure, used for combining the various 

traits can be determined, based on the quality of the individual input samples 

and the probability of encountering missing data [1]. However, its design is 

much application-dependent, and hence, it has not received much attention from 

researchers. 

In the parallel mode, each biometric matcher independently processes its 

information, which is then combined to render the decision. The parallel 

architecture has been the most widely used and investigated in the biometric 

literature. It generally achieves a lower error rate with respect to that of the serial 

mode because it uses more evidence about the user for authentication [1], [11], 

[13]. This PhD thesis is focused on biometric matchers, designed to operate in the 

parallel mode, since its primary goal has been to reduce the generalization error, 

and thus, enhancing the matching performance.  

2.2. Parallel Classifier Combination Rules 

It has been theoretically demonstrated that combining the classifiers has led to 

improved performance. For instance, in [150], the authors divided the total error 

into the Bayes error and the added error. The added error is the extra error due 

to the specific classification model used. They theoretically demonstrated that for 

independent classifiers, linearly combining their outcomes would result in a 

smaller added error with respect to the averaged individual added error. A 

similar observation was found in [151], where the added error was derived for 

the weighted mean combination of the classifiers.  
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In this section, several classifier combination rules for the parallel 

architecture, which can be deployed in the Fusion Module in Figure 2.1, are 

outlined from a pattern recognition perspective. These combination rules were 

developed in [95] to consolidate the evidence from multiple classifiers, where 

each classifier uses a different feature representation of the same input pattern. 

Consider the problem of classifying an input pattern 𝐗 = [𝐱1, 𝐱2,… , 𝐱𝑀] into one 

of the 𝐶 possible classes {𝑤1,𝑤2,… ,𝑤𝐶}, where 𝐱𝑚  is a feature vector, presented to 

the 𝑚-th classifier, and 𝑀 is the number of classifiers. Each of the classifiers 

represents the given pattern by a distinct measurement vector. In the feature 

space, each class 𝑤𝑘  is modelled by a probability density function 

𝑝(𝐱1,𝐱2,… ,𝐱𝑀|𝑤𝑘) and its prior probability 𝑝(𝑤𝑘), respectively.  

According to the Bayes theorem [96], the input pattern 𝐗 should be assigned 

to class 𝑤𝑟 , which maximizes the a posteriori probability, i.e., 

Assign 𝐗 → 𝑤𝑟  if 

𝑝 𝑤𝑟  𝐱1, 𝐱2,… , 𝐱𝑀 = max
𝑘
𝑝 𝑤𝑘  𝐱1, 𝐱2,… , 𝐱𝑀  

(2.1) 

where 𝑘 = 1,… ,𝐶. The a posteriori probability in Equation (2.1) can be expressed 

in terms of the joint conditional probability density of the feature vectors as 

follows: 

𝑝 𝑤𝑟  𝐱1, 𝐱2,… , 𝐱𝑀 =
𝑝 𝐱1, 𝐱2,… , 𝐱𝑀 𝑤𝑟 𝑝(𝑤𝑟)

 𝑝 𝐱1, 𝐱2 ,… , 𝐱𝑀 𝑤𝑘 𝑝(𝑤𝑘)𝐶
𝑘=1

 (2.2) 

In [95], the authors suggested many approximations to simplify the computation 

of the a posteriori probability in Equation (2.2), which led to several combination 

rules, i.e., product, sum, max, min, and median rules [14]. The product rule is 

obtained by assuming that the 𝑀 feature representations are statistically 

independent. This is reasonable in most multimodal biometric systems, where 

different biometric traits tend to be mutually independent [1]. The sum rule is 

achieved by further assuming that the a posteriori probabilities of the classifiers 

do not deviate dramatically from the prior probabilities [95]. The remaining rules 

are obtained by bounding the a posteriori probabilities [14]. 
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Product Rule: Assign 𝐗 → 𝑤𝑟  if 

 𝑝 𝑤𝑟  𝐱𝑚  

𝑀

𝑚=1

= max
1≤𝑘≤𝐶

 𝑝 𝑤𝑘  𝐱𝑚 

𝑀

𝑚=1

 (2.3) 

Sum Rule: Assign 𝐗 → 𝑤𝑟  if 

 𝑝 𝑤𝑟  𝐱𝑚  

𝑀

𝑚=1

= max
1≤𝑘≤𝐶

 𝑝 𝑤𝑘  𝐱𝑚 

𝑀

𝑚=1

 (2.4) 

Max Rule: Assign 𝐗 → 𝑤𝑟  if 

max
1≤𝑚≤𝑀

𝑝 𝑤𝑟  𝐱𝑚  = max
1≤𝑘≤𝐶

max
1≤𝑚≤𝑀

𝑝 𝑤𝑘  𝐱𝑚  (2.5) 

Min Rule: Assign 𝐗 → 𝑤𝑟  if 

min
1≤𝑚≤𝑀

𝑝 𝑤𝑟  𝐱𝑚  = max
1≤𝑘≤𝐶

min
1≤𝑚≤𝑀

𝑝 𝑤𝑘  𝐱𝑚  (2.6) 

Median Rule: Assign 𝐗 → 𝑤𝑟  if  

median
1≤𝑚≤𝑀

𝑝 𝑤𝑟  𝐱𝑚  = max
1≤𝑘≤𝐶

median
1≤𝑚≤𝑀

𝑝 𝑤𝑘  𝐱𝑚   (2.7) 

Consider a multimodal biometric system operating in the verification mode, a 

biometric input pattern 𝐗 is classified into one of the two classes, i.e., genuine 

user (𝑤𝐺) or impostor (𝑤𝐼). Equation (2.1) is based on the assumption that all 

types of errors are equally costly. However, this assumption does not hold in 

most practical authentication systems, which assign different costs to the False 

Acceptance Rate (FAR) and False Rejection Rate (FRR) [1]. In general, FAR and 

FRR are viewed as functions of the decision threshold 𝜏. For a given 𝜏, Equation 

(2.1) can be rewritten as 

Assign 𝐗 → 𝑤𝐺 if 

𝑝 𝑤𝐺 𝐱1, 𝐱2,… , 𝐱𝑀 

𝑝(𝑤𝐼|𝐱1, 𝐱2,… , 𝐱𝑀)
≥ 𝜏 

(2.8) 

Since the 𝑀 feature vectors [𝐱1, 𝐱2,… , 𝐱𝑀] are not available, the a posteriori 

probabilities have to be estimated based on the vector of match scores. In what 
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follows, a thorough discussion on the state-of-the-art techniques available in the 

biometric literature to estimate the a posteriori probabilities is provided. I adhere 

to the taxonomy, described in [15], to divide these techniques into two broad 

categories: i.e., user-independent processing, and user-specific processing. User-

specific processing, as opposed to the user-independent counterpart, takes into 

account the label of the claimed identity for a given access request. This 

taxonomy is depicted in Figure 2.2. In the rest of this chapter, a brief review on 

each category of Figure 2.2 will be given. The contributions originating from this 

PhD research (drawn in bold) will be detailed in Chapters 4 and 5. 

 

 

 

 

 

 

 

 

 

 

Figure 2.2. Approaches to match score level fusion in multimodal biometric authentication. The 

contributions originating from the research are drawn in bold. Adapted from [15]. 
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transformation-based, and classifier-based score fusion. These techniques differ 

in their ability to estimate the a posteriori probabilities based on the vector of 

match scores, provided by the individual matchers. They also exhibit different 

levels of sensitivity to the problems, in which the training data is not sufficient to 

guarantee the generalization capabilities and may include noisy training samples 

[1]. Without loss of generality, let {𝐬𝑖}𝑖=1
𝑁  be 𝑁 training samples, where 𝐬𝑖 =

[𝑠𝑖
1, 𝑠𝑖

2,… , 𝑠𝑖
𝑀] and 𝑀 is the number of matchers, and y𝑖 ∈ {−1, +1}) be their 

corresponding class labels, where -1 denotes an impostor and +1 denotes a 

genuine user. Suppose that 𝐬𝑇  is the test input match score vector (𝐬𝑇 =

[𝑠𝑇
1 , 𝑠𝑇

2 ,… , 𝑠𝑇
𝑀]). These notations will be used throughout this chapter. 

2.3.1. Density-based Score Fusion 

This approach assumes that the a posteriori probabilities, i.e., 𝑝 𝑤𝐺 𝐱1,𝐱2,… ,𝐱𝑀  

and 𝑝 𝑤𝐼 𝐱1,𝐱2,… ,𝐱𝑀  can be reliably approximated based on the vector of 

match scores. It requires explicit estimation of the underlying conditional 

densities 𝑝(𝐬𝑇|𝑤𝐺) and 𝑝(𝐬𝑇|𝑤𝐼) using the match score vectors. Hence, it is called 

density-based score fusion. By replacing the 𝑀 feature vectors [𝐱1,𝐱2,… , 𝐱𝑀] 

with the match score vector 𝐬𝑇 , Equation (2.8) can be rewritten as 

Assign 𝐬𝑇 → 𝑤𝐺  if 

𝑝 𝑤𝐺 𝐬𝑇 

𝑝(𝑤𝐼|𝐬𝑇)
≥ 𝜏 

(2.9) 

According the Bayes theorem [96], the a posteriori probabilities are as follows 

𝑝 𝑤𝐺 𝐬𝑇 =
𝑝 𝐬𝑇 𝑤𝐺 𝑝(𝑤𝐺)

𝑝(𝐬𝑇)
 (2.10) 

and 

𝑝 𝑤𝐼 𝐬𝑇 =
𝑝 𝐬𝑇 𝑤𝐼 𝑝(𝑤𝐼)

𝑝(𝐬𝑇)
 (2.11) 

By assuming that the prior probabilities are equal, i.e., 𝑝 𝑤𝐺 = 𝑝(𝑤𝐼), Equation 

(2.9) can be rewritten as 
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Assign 𝐬𝑇 → 𝑤𝐺  if 

𝑝 𝐬𝑇 𝑤𝐺 

𝑝 𝐬𝑇 𝑤𝐼 
≥ 𝜏 

(2.12) 

The terms  𝑝 𝐬𝑇 𝑤𝐺  and 𝑝 𝐬𝑇 𝑤𝐼  are referred to as the likelihood of the genuine 

and the impostor classes with respect to 𝐬𝑇 = [𝑠𝑇
1 , 𝑠𝑇

2 ,… , 𝑠𝑇
𝑀]. Hence, the ratio in 

Equation (2.12) is known as the likelihood ratio test. According to Neyman-

Pearson [97], when the prior probabilities of the classes are equal (or not known), 

the likelihood ratio test is considered as the optimal test for classifying an input 

match score vector. This test is optimal in the sense it will minimize the False 

Rejection Rate for a fixed False Acceptance Rate and no other decision rule can 

give a lower FRR [1]. The likelihood ratio test can be alternatively presented in 

terms of log-likelihood ratio, which is as follow:  

log
𝑝 𝐬𝑇 𝑤𝐺 

𝑝 𝐬𝑇 𝑤𝐼 
= log 𝑝 𝐬𝑇 𝑤𝐺  − log 𝑝 𝐬𝑇 𝑤𝐼  ≥ log(𝜏) (2.13) 

The likelihood ratio test in Equation (2.12) and log-likelihood ratio test in 

Equation (2.13) are optimal only when the underlying densities are either known 

or can be estimated accurately [90]. It is well-known that the Gaussian density is 

not always appropriate for modelling the underlying densities of biometric 

match scores. This is due to the fact that a biometric baseline matcher may apply 

thresholds at various stages in the matching process. For example, some 

fingerprint matchers produce a match score of zero if the number of extracted 

minutiae is less than a threshold. This leads to discrete components in the match 

score distribution, which cannot be modelled accurately using the continuous 

Gaussian density [100].  

In [91], [100], the biometric match scores were modelled using the Parzen 

Window based non-parametric density estimation [96] and kernel density 

estimators [152]. However, these approaches require a careful choice of the 

window width and kernel width, which are critical to their performance, 

respectively. In [90], Gaussian Mixture Model (GMM) was proposed for 

estimating the densities of match scores. It was reported that GMM is able to 
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achieve a comparable matching accuracy with respect to that of Support Vector 

Machines (SVM). The theoretical results in [98], [99] also showed that GMM 

indeed converges to the true density when a sufficient number of training 

samples is available [90]. Assume that  𝑝(𝐬𝑇|𝑤𝐺) (𝑝(𝐬𝑇|𝑤𝐼)) represents the 

densities, which are estimated using the genuine (impostor) score vector. 

According to [90], these conditional densities are as follows: 

𝑝 𝐬𝑇|𝑤𝐺 =
1

𝑁𝐺
 𝛼𝐺 ,𝑖𝑝(𝐬𝑇 , 𝜇𝐺 ,𝑖 ,𝛴𝐺 ,𝑖)

𝑁𝐺

𝑖=1

 (2.14) 

and 

𝑝 𝐬𝑇|𝑤𝐼 =
1

𝑁𝐼
 𝛼𝐼,𝑖𝑝(𝐬𝑇 , 𝜇𝐼,𝑖 ,𝛴𝐼,𝑖)

𝑁𝐼

𝑖=1

 (2.15) 

where 𝛼𝑘 ,𝑖   is the mixing coefficient assigned to the 𝑖-th mixture component in 

𝑝(𝐬𝑇|𝑤𝑘), and 𝑝(𝐬𝑇 , 𝜇𝑘 ,𝑖 ,𝛴𝑘 ,𝑖) is the Gaussian distribution, characterised by the 

mean 𝜇𝑘 ,𝑖  and covariance matrix 𝛴𝑘 ,𝑖, where 𝑘 ∈  𝐺, 𝐼  (genuine user/impostor). 

When the number of mixture components is known, the means and covariance 

matrices of the individual mixture components can be estimated using the 

Expectation Maximization (EM) algorithm [54]. However, selecting the number 

of mixture components is a challenging problem. As stated in [90], a mixture 

with too few components may not approximate the true density, while a mixture 

with too many components may result in overfitting. In this research, these 

numbers are found by using cross validation and grid search [54].  

In [100], the authors combined the match scores from the multiple matchers 

using the generalized densities, which are derived from the genuine and 

impostor match scores. The generalized densities were estimated using the 

multivariate Gaussian copulas [101] to incorporate the correlation (if it exists) 

among the biometric matchers. From a series of experiments, carried out on the 

MSU [107] and NIST BSSR1 databases [52], it was observed that the copula 

model cannot achieve a lower error rate with respect to that of GMM in [90] 
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when the biometric matchers are approximately independent of each other. Even 

when the degree of correlation among the matchers is more significant (i.e., 0.75 

and 0.29 for the genuine and impostor match scores, respectively), the 

performance gain is not significant. It should be noted that the copula model 

requires more parameters, which have to be specified by the user. Furthermore, 

it is also well-known that the different biometric traits tend to be mutually 

independent. Due to these reasons, the generalized density estimation in [100] is 

not further considered in this thesis.   

2.3.2. Transformation-based Score Fusion 

In practice, when the conditional densities 𝑝 𝐬𝑇|𝑤𝐺  and 𝑝 𝐬𝑇|𝑤𝐼  cannot be 

accurately estimated due to the limited availability of training data, it would be 

better to directly combine the match scores without converting them into a 

posteriori probabilities [1]. However, this brings about to a number of challenges 

because the match scores of the individual matchers may be inhomogeneous, 

need not be on the same numerical scale, and may follow different statistical 

distributions. Due to these reasons, it is essential to transform the match scores 

into a common reference domain prior to combining them [91]. This 

transformation is known as score normalization and the corresponding fusion 

approach is called transformation-based score fusion [1].  

By definition, score normalization is the change in the location and scale 

parameters of the match score distributions. It is also referred to as score 

calibration. For a good score normalization scheme, the estimates of the location 

and scale parameters have to be efficient and robust [1], [91]. Efficiency refers to 

the proximity of the obtained estimates with respect to the optimal ones, while 

robustness refers to the insensitivity to the presence of outliers. A large number 

of score normalization techniques, such as Min-max, Decimal Scaling, Z-norm, 

Median and Median Absolute Deviation and Tanh-Estimators have been 

proposed in the biometric literature. It is therefore essential to determine a 

technique, which has both the desired characteristics of robustness and efficiency 

[1]. Without loss of generality, suppose that 𝑁 is the number of match scores in 
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the training set, and 𝑛𝑇
𝑚  is the normalized match score for the match score 𝑠𝑇

𝑚 , 

provided by the 𝑚-th matcher. 

Min-max 

The Min-max normalization is the simplest normalization technique, which is 

able to retain the original distribution of match scores and transforms all the 

match scores into a common range [0,1]. It is given by 

𝑛𝑇
𝑚 =

𝑠𝑇
𝑚 − min{𝑠𝑖

𝑚 }𝑖=1
𝑁

max{𝑠𝑖
𝑚 }𝑖=1

𝑁 −min{𝑠𝑖
𝑚 }𝑖=1

𝑁  (2.16) 

where max{𝑠𝑖
𝑚 }𝑖=1

𝑁  and min{𝑠𝑖
𝑚}𝑖=1

𝑁  are the highest and lowest values of the match 

scores. In [70], the authors suggested that the Min-max should be chosen, 

provided that there are no outliers in the training data set. In [94], the authors 

conducted an empirical evaluation using the state-of-the-art Commercial Off-the-

shelf (COTS) fingerprint and face baseline systems on a population approaching 

1,000 individuals. They observed that the Min-max achieves lower error rates as 

compared to those of the Z-norm and Tanh-Estimators. Similar findings were 

reported in [1] and [51], in which NIST BSSR1 [52] and MCYT databases [53] 

were used to carry out the experiments.  

It has to be noted that the Max-min is not optimal for all kinds of match 

score data. For instance, it was demonstrated in [90] that the Min-max is not able 

to achieve a satisfactory performance on the XM2VTS database. The rationale for 

this is that the score distributions of the face and speech matchers are very 

different. The Min-max is generally not effective in handling the face match 

scores because the genuine and impostor face match scores are the outputs of a 

Multilayer Perceptron (MLP), which are peaked around 1 and -1 [90].     

Decimal Scaling 

When the match scores from multiple matchers are on a logarithmic scale, it is 

possible to normalize them using the Decimal Scaling as 
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𝑛𝑇
𝑚 =

𝑠𝑇
𝑚

10𝑐𝑚
 (2.17) 

where 𝑐𝑚 = log10(max{𝑠𝑖
𝑚}𝑖=1

𝑁 ). The Decimal Scaling maintains the match scores 

in the range of [−1, +1]. It is however based on an invalid assumption that the 

match scores vary by a logarithmic factor [16]. The Decimal Scaling is highly 

sensitive to outliers as it requires a reliable estimation of the maximum values of 

the match scores. Due to these reasons, it has received a very limited attention in 

the biometric literature.    

Z-norm 

The Z-norm is based on the assumption that the match scores of the individual 

matchers follow a Gaussian distribution. The Z-norm uses the mean 𝜇𝑚  and 

standard deviation 𝜎𝑚  of the training data. It is therefore expected to perform 

well if these parameters are reliably estimated. The normalized score is given by 

𝑛𝑇
𝑚 =

𝑠𝑇
𝑚 − 𝜇𝑚

𝜎𝑚
 (2.18) 

The Z-norm is the most popular score normalization technique, used in text-

independent speaker verification applications, where GMM has become the 

dominant methodology for building the reference model for each of the users, 

enrolled in the system [166], [167].  

In [91], the authors observed that the Z-norm is among the best evaluated 

score normalization schemes, which were applied to transform the match scores 

from the face, fingerprint and hand-geometry modalities of the MSU database 

[107] into a common numerical domain. In [106], the Z-norm was reported to be 

better than the Min-max and Tanh-Estimators on the experiments, which were 

carried out on the XM2VTS benchmark database [63]. However, it should be 

noted that when the Gaussian assumption is invalid, the Z-norm does not retain 

the distribution of the data [16]. It is not robust since the estimates of 𝜇𝑚  and 𝜎𝑚  

are sensitive to outliers. Also, the Z-norm may not guarantee a common 

numerical range for the normalized match scores of the different matchers [91]. 
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Median and Median Absolute Deviation (MAD) 

The Median and MAD normalized score is given by 

𝑛𝑇
𝑚 =

𝑠𝑇
𝑚 −𝑚𝑒𝑑𝑖𝑎𝑛𝑚

𝑀𝐴𝐷𝑚
 (2.19) 

where 𝑚𝑒𝑑𝑖𝑎𝑛𝑚 = median{𝑠𝑖
𝑚}𝑖=1

𝑁  and 𝑀𝐴𝐷𝑚 = median{  𝑠𝑖
𝑚 −𝑚𝑒𝑑𝑖𝑎𝑛𝑚   }𝑖=1

𝑁 . 

Both the 𝑚𝑒𝑑𝑖𝑎𝑛𝑚  and 𝑀𝐴𝐷𝑚  are insensitive to outliers and points in the 

extreme tails of the distribution [1]. Nevertheless, the median and MAD 

estimators have a low efficiency as compared to the mean and standard 

deviation estimators, i.e., when the match score distribution is not Gaussian, the 

location and scale parameters can be poorly estimated [91]. As previously 

discussed, the genuine and impostor match score distributions may contain 

discrete components and have more than one mode. Hence, the Median and 

MAD generally cannot perform as well as the Z-norm. The empirical studies, 

reported in [1], [65] and [91] further support this observation. 

Tanh-Estimators 

Finally, the Tanh-Estimators [165] is considered, which is fairly robust and 

efficient. The Tanh-Estimators is given by 

𝑛𝑇
𝑚 =

1

2
 𝑡𝑎𝑛  0.01 

𝑠𝑇
𝑚 − 𝜇𝐺𝐻

𝑚

𝜎𝐺𝐻
𝑚   + 1  (2.20) 

where 𝜇𝐺𝐻
𝑚  and 𝜎𝐺𝐻

𝑚  are the mean and standard deviation estimates of the genuine 

score distribution, which are given by Hampel estimators [165]. Hampel 

estimators are based on the following influence function: 

𝜓 𝑢 =

 
 
 

 
 
𝑢                                        0 ≤  𝑢 < 𝑎
𝑎 sign 𝑢                          𝑎 ≤  𝑢 < 𝑏

𝑎 sign 𝑢  
𝑐 −  𝑢 

𝑐 − 𝑏
      𝑏 ≤  𝑢 < 𝑐

0                                 𝑐 ≤  𝑢 

  (2.21) 

Since the 𝜓 𝑢  function is capable of reducing the influence of the match scores at 

the tails of the genuine score distribution (identified by 𝑎, 𝑏 and 𝑐), the Tanh-
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Estimators is not sensitive to outliers [1]. In [70], the authors suggested that this 

technique is most suitable for normalizing non-Gaussian match scores. The Tanh-

Estimators is complicated to implement as it requires a careful selection of the 

parameters 𝑎, 𝑏 and 𝑐 in the Hampel estimators to obtain good efficiency. In [91], 

𝑎, 𝑏 and 𝑐 were chosen such that 70%, 85%, and 95% of the match scores fall in 

the range [𝑚𝑒𝑑𝑖𝑎𝑛𝑚 − 𝑎,𝑚𝑒𝑑𝑖𝑎𝑛𝑚 + 𝑎], [𝑚𝑒𝑑𝑖𝑎𝑛𝑚 − 𝑏,𝑚𝑒𝑑𝑖𝑎𝑛𝑚 + 𝑏] and 

[𝑚𝑒𝑑𝑖𝑎𝑛𝑚 − 𝑐,𝑚𝑒𝑑𝑖𝑎𝑛𝑚 + 𝑐], respectively. 

Table 2.1 summarizes the characteristics of the various normalization 

schemes. The Tanh-Estimators has both desired characteristics, i.e., robustness 

and efficiency. The Median and MAD is robust but inefficient. On the contrary, 

the Min-max, Decimal Scaling and Z-norm are efficient but not robust. 

Table 2.1. Summary of score normalization techniques. Adapted from [1] and [67]. 

Score Normalization Robustness Efficiency 

Min-max No High 

Decimal Scaling No High 

Z-norm No High 

Median and MAD Yes Moderate 

Tanh-Estimators Yes High 

On the basis of the previous discussion, it is worth noting that no single score 

normalization technique has been found to be universally the best. In [1], it was 

recommended that various normalization schemes would be evaluated to 

determine the one that gives the best performance on a given data. In this PhD 

thesis, the match scores of the individual face and speech matchers of the 

XM2VTS database were normalized using the Z-norm, as recommended in [63].    

In the transformed domain, the sum, max, min combination rules in Section 

2.2 can be applied to combine the match scores of the different matchers. Since 

normalized match scores do not have any probabilistic interpretation, the sum, 

max, and min combination rules can be referred to as sum of scores, max score 

and min score, respectively [1], [91]. The combined match scores can be 

computed as a weighted sum of the match scores, which is referred to as the 
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weighted sum method. This is motivated by the fact that biometric matchers are 

not of identical accuracy. Hence, it is reasonable to give the more competent 

matcher more weight in making the final decision. In [59], it was observed that 

the weights only magnify the relevance of each matcher based on its accuracy, 

and do not take into account the performance of other matchers. In [102], the 

weights were directly obtained, based on either Equal Error Rate (EER) or Fisher 

discriminant analysis [54]. Although Fisher discriminant analysis was reported to 

achieve higher verification performance, it is based on a strong Gaussian 

assumption with equal covariance matrices, and thus, is particularly sensitive to 

the underlying joint distribution of the match scores of the individual matchers 

[106].  

Generally speaking, the weights can be found by adopting the exhaustive 

search over all possible candidates. Nonetheless, the exhaustive search is very 

time-consuming and may not be feasible when a large number of biometric 

matchers are available for rendering the biometric decision. Several authors have 

examined the evolutionary algorithms to reduce the search space. Among others, 

one of the most perspective algorithms is known as Bees Algorithm [66], [103]. 

Intuitively, the Bees Algorithms performs a kind of neighbourhood search, 

combined with random search in a way that is reminiscent of the food foraging 

behaviour of swarms of honey bees. It is very efficient at searching optimal 

solutions and overcoming the problem of local optima [103]. In [65], the Bees 

Algorithm was employed to search for the weights in order to combine five facial 

cues (total face, left and right eye, nose and mouth) and optimize the recognition 

rate in a face identification system. This approach was observed to achieve either 

better or comparable performance to that of the density-based score fusion 

(Section 2.3.1) on the experiments, carried out on the CASIA [104] and ORL face 

databases [105].  

It is important to note that there is no single best combination rule for all 

types of biometric data. There has been a debate in the literature concerning the 

weighted sum method, such as whether or not the weights should be positive 
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and should be constrained to sum to one [59]. In [106], a systematic study was 

conducted using the XM2VTS database to assess the possible effect of score 

normalization on the various combination rules, including the sum of scores and 

the weighted sum method with the weights, optimised using the exhaustive 

search, Fisher-ratio [102] and Decision templates [1]. It was confirmed that the 

Fisher-ratio and Decision templates are particularly sensitive to the underlying 

joint distributions of the match scores. The sum of scores was reported to achieve 

the lowest error rates among these schemes. Thus, only the sum of scores will be 

selected and further studied in the subsequent chapters. The work in [65], related 

to the application of the Bees Algorithm is not further considered in this thesis 

since its results are similar or mostly similar to those of the exhaustive search. 

2.3.3. Classifier-based Score Fusion 

In classifier-based score fusion, the relationship between the match score vector 

and the a posteriori probabilities is learned using a pattern classifier. In this 

context, the pattern classifier is viewed as a two-class problem, where the vector 

of match scores is treated as a feature vector, and thus, can be classified into one 

of two classes: genuine user/impostor. Based on the training set of match scores, 

a classifier learns the decision boundary between the two classes. The decision 

boundary can be quite complex depending on the nature of the classifier. 

However, it can be learned irrespective of how the feature vectors are generated 

[1]. Figure 2.3 shows examples of the decision boundary, learned by SVM using 

the match scores of the face and iris matchers from the BioSecure DS2 database. 

Since the match scores from these matchers are in the range [0,… ,1] and 

 0,… ,100 , they are normalized using the F-norm, as suggested in [61] to be 

better aligned and separated. During authentication, any match score vector that 

falls in the „Impostor‟ region is classified as an impostor, while any match score 

vector that falls in the „Genuine‟ region is classified as a genuine user. 

A number of classifiers have been used in the literature to render the 

biometric decision. In [24], the HyperBF network was used to combine vocal and 

three facial cues (eyes, nose and mouth) in an identity verification system. It was 
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observed that the use of multiple acoustic and visual cues is beneficial as it 

achieves a rank-1 recognition rate of 98%, while those of the voice and face 

matchers were 88% and 91%, respectively. In [25], the authors evaluated three 

different classifiers, namely, k-Nearest Neighbour classifier using vector 

quantization, the classifier based on logistic regression model, and decision tree 

classifier for the fusion of match scores of three biometric matchers, which were 

based on voice, frontal and profile face images. It was reported that the classier 

based on logistic regression model achieves the highest verification performance.  

Such an approach provides a total error rate of 0.1%, while the total error rates of 

the individual modalities (in the order of profile, frontal face, and voice) are 

8.9%, 8.7%, and 3.7%, respectively.    

  

          (a)             (b) 

Figure 2.3. Examples of the decision boundary, learned using SVM with (a) linear kernel, and (b) 

RBF kernel in 2-dimensional feature space using match scores of the face and iris matchers from 

the BioSecure DS2 database. Since the match scores from these matchers are in the range [0,… ,1] 

and  0,… ,100 , they are normalized using the F-norm [79], as suggested in [61] to be better 

aligned and separated. Adapted from [1]. 

In [27], k-means clustering, fuzzy clustering, and median radial basis function 

(MRBF) were employed to combine five biometric matchers, which are based on 

the grey-level and shape information of face image and voice features. All these 

approaches were reported to achieve lower error rates as compared to those of 

the individual matchers. No single approach was found to be universally the 

best. In [107], the face, fingerprint, and hand geometry modalities were 
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consolidated using either decision tree or linear discriminant classifier. In [28], 

random forest algorithm [138] was used for the classification of 3 dimensional 

match score vectors, described in [107], including face, fingerprint and hand 

geometry. The decision tree, linear discriminant classifier and random forest 

were demonstrated to achieve a much higher performance with respect to that of 

the individual biometric modalities. However, it is not possible to fix the FAR 

(and then compute the FRR at the specified FAR) when the multimodal biometric 

fusion is performed using these techniques [107].   

Support Vector Machines (SVM) [120] has largely advanced the situation in 

terms of decision boundary design. In [26], the authors compared the relative 

performance of a number of classification schemes, including C4.5 decision tree, 

Fisher linear discriminant, Bayesian classifier, Multilayer Perceptron (MLP), and 

SVM with Gaussian and polynomial kernels, as applied in combining the face 

and speech data from the XM2VTS database. It was reported that SVM achieves 

the best results among the evaluated schemes. Hence, SVM will be discussed in 

detail and evaluated in this dissertation. 

The aim of SVM is to determine the optimal hyperplane by maximising the 

margin between the separator hyperplane: 

{h ∈ ℍ| w, h ℍ + 𝑤0 = 0} (2.22) 

and the mapped data Φ(𝐬𝑖), where   ∙,∙  denotes the inner product in space  ℍ, 

and w are the hyperplane parameter. The optimal hyperplane is often considered 

as the solution of the following Quadratic Programming problem [120]: 

min
w,𝑤0 ,𝜉𝑖 ,…,𝜉𝑁

 
1

2
 w 2 + 𝐶 𝜉𝑖

𝑁

𝑖=1

  (2.23) 

subject to 

𝑦𝑖  w,Φ 𝐬𝑖  ℍ + 𝑤0 − 1 + 𝜉𝑖 ≥ 0     𝑖 = 1,… ,𝑁 

𝜉𝑖 ≥ 0                                                           𝑖 = 1,… ,𝑁 
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where 𝑁 is the number of training samples, 𝜉𝑖  are the slack variables, which are 

introduced to take account of the eventual non-separability of Φ 𝐬𝑖  and 𝐶 is a 

positive constant to control the trade-off between the slack variable and the size 

of the margin. The problem in Equation (2.23) is solved by using the dual 

representation and the kernel trick [54], [120] as 

max
𝛼𝑖 ,…,𝛼𝑁

  𝛼𝑖

𝑁

𝑖=1

−
1

2
 𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝐾 𝐬𝑖 , 𝐬𝑗  

𝑁

𝑖 ,𝑗=1

  (2.24) 

subject to 

0 ≤ 𝛼𝑖 ≤ 𝐶      𝑖 = 1,… ,𝑁 

 𝛼𝑖𝑦𝑖 = 0

𝑁

𝑖=1

                        

where 𝐾 𝐬𝑖 , 𝐬𝑗  =  Φ 𝐬𝑖 ,Φ 𝐬𝑗    is the kernel function, which is introduced to 

avoid direct manipulation of the samples in ℍ, and 𝛼𝑖  are Lagrange multipliers, 

which can be determined as the solution of a Quadratic Programming problem 

[120]. In particular, the Radial Basis Function (RBF) 

𝐾 𝐬𝑖 , 𝐬𝑗  = exp 
 𝐬𝑖 − 𝐬𝑗 

2

2𝜎2
  (2.25) 

is used in this PhD thesis.  RBF may result in complex separating surfaces 

between genuine and impostor score distributions. In [14],  the combined match 

score corresponding to test pattern 𝐬𝑇  is then defined as 

𝑓 𝐬𝑇 =  𝛼𝑖𝑦𝑖𝐾 𝐬𝑖 , 𝐬𝑇 

𝑖∈SV

+ 𝑤0
∗ (2.26) 

where  SV = {𝑖|𝛼𝑖 > 0} indexes the set of support vectors, and 𝑤0
∗ is the bias 

parameter, determined using Equation (2.24). Once the combined match score is 

obtained, it is compared with a decision threshold 𝜏 in order to classify the input 

match score vector 𝐬𝑇  as belonging to the impostor or genuine user class. 
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2.4. User-specific Processing 

Recent studies have suggested that some users are more difficult to recognize 

than others, despite the database being captured in similar conditions [15], [108], 

[109]. Some users do not perform consistently well in term of False Rejection Rate 

and False Acceptance Rate [109].  For example, it has been empirically estimated 

that about 4% of the population may have poor quality fingerprints, which are 

difficult to recognize automatically with existing fingerprint systems [1]. Due to 

the existence of user-variation, a recent trend in multimodal biometrics is to 

focus on the fusion techniques, which are capable of making use of the 

information, related to each of the users, enrolled in the systems. These schemes 

are called user-specific processing, which will be discussed in detail in the 

subsequent sections. 

2.4.1. The Biometric Menagerie 

Naturally, users of a biometric system may have differing degrees of accuracy 

within the system. This effect is known as the biometric menagerie [108], where 

the users are characterised by animal labels: 

1) Sheep refer to the majority of the population, who match poorly against 

others and well against themselves. 

2) Goats refer to the users, who are particularly difficult to recognize. Goats 

contribute significantly to the False Rejection Rate (FRR). 

3) Lambs are those users, who are easy to imitate. Lambs represent a potential 

system weakness. They result in relative high match scores when being 

matched against, accounting for a disproportionate share of false accepts. 

4) Wolves are those users, who are successful at imitating others. Wolves also 

increase the False Acceptance Rate (FAR). 

The biometric menagerie was first studied in [108], where the population 

statistics for speaker recognition performance were computed and analysed 

based on test data from the NIST 1998 speaker recognition evaluation. It was 
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observed that the population of speakers exhibits a continuum of goatish, wolfish 

and lambish characteristics. Although the true animal-like behaviour is more 

likely for behavioural biometric systems, this concept is applicable to all areas of 

biometric verification. In [110], the authors demonstrated the existence of wolves 

and lambs in fingerprint based data. Evidence for the presence of goats, wolves, 

and lambs in face recognition was examined in [111]. 

In [109], the author conducted tests on a variety of biometric modalities, 

such as fingerprint, iris, 2D face and speech, 3D faces and keystroke. They also 

suggested a new class of animals, which can be defined in terms of a relationship 

between genuine and impostor match scores.  These animals give further insights 

into individual performance.  It was empirically observed that goats, lambs and 

wolves appear everywhere, while the presence of the new class of animals varies 

widely between the systems. This further confirms that users within the 

biometric systems have their own match score distributions.    

In [153], the authors proposed explicitly to rank the users according to their 

performance using criteria such as F-ratio [15], Fisher-ratio and the d-prime [1]. 

They demonstrated that these criteria are able to partition the users in such a way 

that the performance of each partition differs by as much as a factor of 2. A 

similar idea was introduced by the same authors [31], where the users were 

ranked such that the rank order, obtained based solely on the training data set 

would maximally correlated with the rank order, which is derived on the test set.  

Quantitative method for dealing with the existence of user variation is an 

active area of research [109]. There are three primary user-specific techniques 

under investigation: (1) user-specific thresholds, which assign a different 

decision threshold to each user; (2) user-specific score normalization, which 

transforms the match scores for each user into a common domain; and (3) user-

specific score fusion, which takes into account the label of the claimed identity 

for a given access. In [15], it was proved that manipulating the threshold or the 

match score may lead to a similar result. Hence, user-specific thresholds can be 

considered as a sub-category of user-specific score normalization. 
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2.4.2. User-specific Score Normalization 

The most representative techniques for user-specific score normalization are the 

Z-norm [112] and the F-norm [15], [79]. In [15], [79], the F-norm and the Z-norm 

were compared. The majority of the experiments demonstrated that the F-norm 

is superior to the Z-norm. Similar observation and findings can be found in [114]. 

The rationale for this is that the F-norm considers the genuine and impostor class 

distributions simultaneously, while the Z-norm exclusively relies on the 

impostor class distribution.  

Let 𝜇𝑗 ,𝐺
𝑚  (𝜇𝑗 ,𝐼

𝑚 ) be the mean of the genuine (impostor) match scores, provided 

by the 𝑚-th matcher for the user 𝑗. The F-norm is given as 

𝑛𝑇,𝑗
𝑚 =

𝑠𝑇,𝑗
𝑚 − 𝜇𝑗 ,𝐼

𝑚

𝛼𝜇𝑗 ,𝐺
𝑚 + (1− 𝛼)𝜇𝐺

𝑚 − 𝜇𝑗 ,𝐼
𝑚  (2.27) 

where 𝑛𝑇,𝑗
𝑚  is the normalized match score for the test score 𝑠𝑇,𝑗

𝑚 . Since 𝜇𝑗 ,𝐺
𝑚  cannot 

be reliably estimated due to the small sample-size of the user-specific genuine 

match scores, it is compensated by the system-wide (user-independent) genuine 

mean score 𝜇𝐺
𝑚  via a tuneable parameter 𝛼 ∈ [0,… ,1]. In [15], where 𝛼 is 

associated with the so-called “relevance factor”. The fundamental idea is to 

further parameterize 𝛼 as a function of the number of user-specific genuine 

samples [31]. In this thesis, 𝛼 is found through directly optimization using the 

training data. As suggested in [61], the F-norm is used to normalize the match 

scores of the BioSecure DS2 database.  

2.4.3. User-specific Score Fusion 

User-specific score fusion was first studied in [29], where different set of weights, 

indicating the importance of individual biometric matchers, were determined on 

a user-by-user basis. For instance, users with persistently dry fingerprint may not 

provide a good quality fingerprint. It is therefore reasonable to decrease the 

weight of the fingerprint matcher of such users, and increase the weights 

associated with the other matchers [1]. This process involves searching the 

weight space for a user, such that the error rate on the training set is minimized. 
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However, using a brute-force search to find these weights can be extremely 

computationally expensive and hence, significantly reducing its applicability to 

large-scale biometric systems. 

In [94], the user-specific weight associated to each of the biometric matchers 

was determined using on the biometric menagerie concept (see Section 2.4.1). 

The so-called d-prime metric [1] was used as a measure of the degree of the 

separability between the genuine and impostor match scores in formulating the 

lambish metric for every pair of user and matcher (𝑗,𝑚). When the d-prime is 

small, user 𝑗 is a lamb in the space of matcher 𝑚. The weight associated with this 

matcher is then decreased for user 𝑗. The main aim is to reduce the lambish 

characteristics of user 𝑗 in the space of combined matchers [94], which results in 

the improved verification performance. 

In [113], a MLP was used with 𝑀 + 1 inputs to combine 𝑀 matchers and a 

user-identity index. The user-specific weights and bias on individual matchers 

are automatically computed using the training data. It was demonstrated that 

exploiting user identity as an additional feature can improve the performance 

accuracy, albeit insignificantly [15]. 

In [30], four global and local learning and decision paradigms were 

investigated, making use of both user-specific and user-independent parameters. 

For the training data, 3% Gaussian noise with respect to the largest magnitude of 

the match scores was added to the ten genuine user samples in order to address 

the problem of imbalanced class distributions of data for the two classes. It was 

observed that making use of both the user-specific score fusion and user-specific 

threshold can achieve about 50% improvement in Equal Error Rate (EER) over 

the user-independent counterpart.  

A potential weakness of user-specific score fusion is the need for a 

substantial amount of training match scores, especially those from the genuine 

user class, before it is able to provide better performance as compared to the 

user-independent counterpart [15], [31]. For instance, ten genuine samples were 

required in [30]. The d-prime in [94], which is based on the first-order and 
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second-order moments, is not able to be reliably estimated with one or two 

genuine training samples.  

2.4.4. Adapted User-Dependent Fusion 

The training data scarcity problem, related to the user-specific genuine samples 

can be partially overcome by trading-off the general class knowledge and the 

local characteristics of the user at hand. This approach is called “Adapted User-

Independent Fusion” (AUDF) [32], [33] to distinguish it from the conventional 

user-independent and user-specific techniques.   

In [32], the SVM classifiers were trained using either the user-specific 

training set or the training set from a pool of the users. The resulting user-specific 

𝑓𝑗 ,𝑈𝑆 𝐬𝑇  and user-independent score fusion schemes 𝑓𝑈𝐼 𝐬𝑇  were then 

consolidated to form the final decision for a given input vector of match scores 

𝐬𝑇 , and the claimed identity 𝑗 as 

𝑓𝑗 ,𝐴𝑑𝑎𝑝𝑡𝑒𝑑  𝐬𝑇 = 𝛼𝑓 𝑗 ,𝑈𝑆 𝐬𝑇 + (1− 𝛼)𝑓𝑈𝐼 𝐬𝑇   (2.28) 

where 𝛼 ∈ [0,1] is a trade-off parameter. This approach was reported to achieve a 

relative improvement of 42% and 35% in terms of EER, compared to the user-

independent and user-specific counterparts. Although the idea can be extended 

easily to train the fusion schemes with other two-class classifiers, it has to 

contend with the extremely imbalanced class distributions in the biometric 

training data as previously mentioned in Section 1.4 

A similar idea was presented by the same authors in [33], which is based on 

Bayesian adaptation (instead of SVM) to exploit the user-independent data. 

Although a relative improvement of 80% was obtained as compared to user-

specific score fusion, this approach, which assumes a single Gaussian component 

with a diagonal covariance matrix, may not be applicable to combine non-

Gaussian match scores [31]. Hence, it will not be considered further in the 

context of this thesis. 
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2.5. Chapter Summary 

Since the multimodal biometric matchers tend to be mutually independent of 

each other, combining their outcomes is believed to result in a significant 

improvement in performance. In this chapter, a comprehensive review on the 

techniques for the parallel combination of match scores of the individual 

biometric matchers has been provided. Although a large number of techniques 

have been developed in the literature, these are divided into two main categories, 

i.e., user-independent and user-specific processing. In user-independent 

processing, three main groups of techniques can be identified: density-based, 

transformation-based, and classifier-based schemes. They differ in their ability to 

estimate the a posteriori probabilities based on the vector of match scores. User-

specific processing, as opposed to the user-independent counterparts, takes into 

account the label of the claimed identity for a given access request. It is 

motivated by the concept of the biometric menagerie, which suggested that users 

of a biometric system may have differing degrees of accuracy within the system. 

It has been also empirically reported to be better alternative with respect to the 

user-independent counterpart, when sufficient training data is available for 

individual users. 

Based on this comprehensive review, it is worth noting that a common 

practice in multimodal biometrics is to view match score fusion as a pattern 

classification problem, where the two-class classifiers are employed to train the 

decision boundary between the genuine user and impostor classes. This decision 

boundary can be learned regardless of the claimed identity (user-independent 

processing) or for each user, enrolled in the system (user-specific processing). 

However, as mentioned in Section 1.4, most conventional two-class classifiers are 

inadequate when applied to the extremely imbalanced biometric data. It should 

be noted that such a problem becomes even more prominent when the classifiers 

are trained to learn the user-specific decision boundary due the limited 

availability of the genuine user samples. In Chapters 4 and 5, several techniques, 

based on the paradigm of one-class classifiers in order to tackle the class 
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imbalance problem will be developed. These techniques will be evaluated and 

compared with the most representative state-of-the-art solutions, which were 

selected and discussed in this chapter, namely the likelihood ratio based score 

[90], sum of scores [95], two-class SVM [120] and the SVM based Adapted User-

Dependent Fusion (AUDF) [32]. 
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CHAPTER 3   

PERFORMANCE MEASURES 

AND DATABASES 

This chapter summarizes the guidelines on biometric performance evaluation 

methodologies. It also provides information on the two databases, namely 

XM2VTS [63] and BioSecure DS2 [61], [62] databases, used in the experiments, 

reported in this thesis. Although research in multimodal biometrics has entailed 

an enormous effort on data collection, most of the works in the literature have 

concentrated on treatment of the individual matchers, and downplayed the 

subject of multimodal fusion [63]. The XM2VTS and BioSecure DS2 are two 

publicly available databases, which contain biometric traits from a large number 

of users. They also come with well-defined experimental protocols such that 

different fusion algorithms can be benchmarked [61-63]. BioSecure DS2 contains 

a number of missing values due to the failure of the segmentation process or 

other stages of biometric authentication [61]. Since most score level fusion 

techniques cannot be invoked when score vectors are incomplete [80], a novel 

Robust Imputation based on Group Method of Data Handling (RIBG) is also 

developed in this section to handle to missing data problem. 

This chapter is organized as follows: Section 3.1 summarizes the 

performance measures to assess accuracy and usability of biometric 

authentication systems. Sections 3.2 and 3.3 describe the XM2VTS and BioSecure 

DS2 databases. Section 3.4 discusses in detail the proposed RIBG. RIBG is also 

compared with other state-of-the-art imputation techniques, as applied in 

dealing with the missing values in the BioSecure DS2 database. Section 3.5 is 

dedicated to provide an overview of the sets of experiments, which will be 

conducted to assess the various biometric algorithms, developed in this PhD 

thesis.  



Performance Measures and Databases 

 67 

3.1. Performance Measures 

Biometric systems as a pattern recognition system are inevitable to make errors 

[16]. This is due to the fact that the biometric systems, which rely on simplistic 

models of biometric data, generally fail to capture the richness of information in 

a biometric sample [1], [16], [157]. In addition, these systems are not able to 

correctly model the invariance relationship among different patterns from the 

same user, even when these patterns are captured under different representation 

conditions [67], [157]. Performance measures are used to determine the range of 

errors with the aim of predicting the real-world performance of the biometric 

systems. The typical metrics for verification accuracy are False Rejection Rate 

(FRR), False Acceptance Rate (FAR) and Genuine Acceptance Rate (GAR). Besides 

these fundamental performance measures, a few “compact” indicators, namely 

Equal Error Rate (EER), Half Total Error Rate (HTER), relative change of EER and 

relative change of HTER are defined for more accurate evaluation of the system 

performance. These metrics were employed in many biometric algorithm 

contests such as Fingerprint Verification Contests (FVCs) [155] and BioSecure 

DS2 Evaluation Campaign [156]. On the other hand, the authentication accuracy 

can also be graphically represented using Detection Error Trade-off (DET), Receiver 

Operating Characteristics (ROC) curves, or Expected Performance Curve (EPC). In 

this section, a brief overview on these performance measures is presented. Their 

formal definitions and discussion can be found in ISO/IEC IS 19795-1 [68], and 

19785-2 [69]. In practice, it has been suggested that different tasks should explore 

distinct performance measures [67]. For instance, the compact indicators are best 

suited to summarize the results obtained on a large number of experiments, 

whereas DET and ROC should be considered when a few experiments are 

presented.    

3.1.1. Quantitative Measures 

It is well-known that the features, extracted from the same biometric trait of an 

individual can be significantly different from each other, leading to an imperfect 
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match. This is caused by changes in sensing conditions, the manner a user 

interacts with a biometric device, and natural alternation of biometric trait due to 

sickness [1], [71].  

The match score is a measure of similarity between the input and template 

biometric features. A match score is known as genuine if it is a result of matching 

two features of the same biometric trait of a user. It is known as impostor if it is 

obtained by comparing the features originating from different users. By 

definition, the False Rejection Rate (FRR) is the fraction of genuine match scores 

falling below a threshold 𝜏. Similarly, the False Acceptance Rate (FAR) is the 

fraction of impostor match scores exceeding a threshold 𝜏. 

  

(a)              (b) 

Figure 3.1. (a) FAR and FRR for a given threshold (𝜏), (b) FAR and FRR versus threshold (𝜏). 

Adapted from [70].  

Since FRR and FAR are functions of the threshold 𝜏, it is possible to express these 

two types of errors in terms of class conditional distribution of the match scores 

[1]. Assume that 𝑝(𝑠|𝑔𝑒𝑛𝑢𝑖𝑛𝑒) and 𝑝(𝑠|𝑖𝑚𝑝𝑜𝑠𝑡𝑜𝑟) are the probability density 

functions of the genuine and impostor match scores, respectively. For a given 

threshold 𝜏, FRR and FAR are as follows  

FRR(𝜏) =  𝑝(𝑠|𝑔𝑒𝑛𝑢𝑖𝑛𝑒)𝑑𝑠
𝜏

−∞

 (3.1) 

FAR(𝜏) =  𝑝(𝑠|𝑖𝑚𝑝𝑜𝑠𝑡𝑜𝑟)𝑑𝑠
+∞

𝜏

 (3.2) 
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The FRR and FAR, defined in Equations (3.1) and (3.2) are shown in Figure 3.1(a). 

Apart from these error rates, another performance measure, known as Genuine 

Acceptance Rate (GAR) can be used to denote the correct decision in a biometric 

system 

GAR 𝜏 = 1− FRR(𝜏) (3.3) 

Figure 3.1(b) demonstrates the values of FRR and FAR versus the threshold 𝜏. It 

is observed that if the value of 𝜏 is increased, FRR shows an increasing trend, 

while FAR shows a decreasing trend and vice versa. When the threshold 𝜏 is 

varied, there is a point where the two curves (FAR and FRR) cross each other, 

called the Equal Error Rate (EER) (see Figure 3.1(b)) [1]. A lower EER value 

indicates better verification accuracy. In practice, because of the discrete nature 

of FRR and FAR plots, the exact calculation of EER may be ambiguous, and 

hence, an operational procedure for computing EER must be followed. In this 

dissertation, the procedure for computing EER, described in [63], has been 

applied. 

The optimal threshold can be selected using a threshold criterion, which has 

to be optimized on the training data set. A common threshold criterion is known 

as Weighted Error Rate (WER) [15], [63]: 

WER 𝛼, 𝜏 = 𝛼FAR 𝜏 + (1− 𝛼)FRR(𝜏) (3.4) 

where 𝛼 ∈ [0,1] provides a balance between FAR and FRR. Having chosen the 

optimal threshold 𝜏∗ using the WER threshold criterion, another performance 

measure, known as Half Total Error Rate (HTER), is defined as 

HTER(𝜏∗) =  
FAR 𝜏∗ + FRR 𝜏∗ 

2
 (3.5) 

The HTER is called a priori HTER if the threshold is selected prior to the 

measurement of the verification performance. Otherwise, it is called a posteriori. 

The a priori HTER is more realistic for use than the a posteriori, since the 

distribution of the test data set is usually different from the distribution of the 



Performance Measures and Databases 

 70 

training data set in most practical biometric systems [15], [63], [70]. Hence, in this 

thesis, only the a priori HTER is used. 

Finally, the relative change of EER and the relative change of HTER are 

considered. These measures quantify the performance gain obtained from the 

specific fusion approach with respect to the baseline system 

rel. change of EER =  
EERnew − EERbaseline

EERbaseline

 (3.6) 

rel. change of HTER =  
HTERnew − HTERbaseline

HTERbaseline

 (3.7) 

It is clear that a negative (positive) change of EER and HTER implies a 

performance improvement (decrease), whereas zero change implies no change in 

performance. The relative change of EER and the relative change of HTER are 

useful because they take into account the fact that when an error rate is already 

low, making more progress can be rather difficult [15], [63].  

In general, the requirements related to the authentication accuracy are very 

much application-dependent. For instance, in forensic applications, it is the FRR 

that is of more concern than the FAR in minimising the risk of manually 

examining a large number of potential FAs. At the other extreme, a very low FAR 

is the most important factor in the highly secure access control applications, 

where the primary aim is to not let in any impostor [16]. As a consequence, the 

choice of quantitative measures for a particular biometric system is also 

application-dependent. EER has been the most commonly used quantitative 

measure in biometric literature. Nevertheless, in some cases, when the exact EER 

cannot be reliably estimated due to the limited availability of the genuine and 

impostor match scores, the a priori HTER should be considered as an alternative. 

3.1.2. Graphical Measures 

When presenting test results, the verification performance can be graphically 

represented using the Receiver Operating Characteristics (ROC), Detection Error 

Trade-off (DET), or Expected Performance Curve (EPC) measures. 
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Receiver Operating Characteristics (ROC) 

The ROC curve [72], [73] is a traditional method for summarizing the 

performance of pattern-matching systems. It is threshold independent, allowing 

performance comparison of different biometric systems under similar conditions, 

or a single system under different conditions. The ROC visualizes the trade-off 

relationship between the GAR and the FAR. Figure 3.2(a) is a sample of the ROC 

curve. Varying the system‟s threshold moves the operating point along its ROC 

curve.  

 

(a)             (b) 

Figure 3.2. (a) ROC curves and (b) Area under the ROC curve (AUC) from the face and iris 

matchers of the BioSecure DS2 database. 

The Area under the ROC curve (AUC) (see Figure 3.2(b)) corresponds to the 

probability of correctly identifying the positive case when presented with a 

randomly chosen pair of cases, where one case is positive and the other is 

negative. It can also be interpreted as the average GAR over the entire range of 

possible FAR. Hence, the AUC provides a single measure of a classifier‟s 

performance for the evaluation of which model is better on average. The AUC 

seems to be the most commonly used performance measure in imbalanced 

domains [34], [36], which is concerned with the performance of learning 

algorithms in the presence of underrepresented data and severe class distribution 

skews [34]. The AUC is shown in Figure 3.2(b). In [36], the AUC measure is 

computed as 
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AUC =  
1 + GAR− FAR

2
 (3.8) 

Since FRR + GAR = 1, Equation (3.8) is rewritten as 

AUC =  
1 + (1 − FRR)− FAR

2
 (3.9) 

Hence 

AUC =  1− HTER (3.10) 

Generally, a lower HTER means a higher AUC and a better performance.  

Detection Error Trade-off (DET) 

The FAR and FRR at various values of 𝜏 can be summarized using the Detection 

Error Trade-off (DET) curve [74]. The DET, which is illustrated in Figure 3.3, 

plots the FRR against the FAR at various thresholds.  It has a distinct advantage 

over the ROC curve for presenting system performance, where the trade-off of 

the two error types is involved. It also enables the user to select the threshold 

according to the system requirements. 

 

Figure 3.3. The DET curves from the face and iris matchers of the BioSecure DS2 database. 

Expected Performance Curve (EPC) 

The Expected Performance Curve (EPC) [15], [63], [70], depicted in Figure 3.4, 

plots the HTER versus the value of 𝛼, as defined in Equation (3.4). The HTER is 
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measured using the a priori threshold 𝜏∗, which is optimized for a given value of 

𝛼  as in Equation (3.4). The EPC curve can be interpreted in a similar manner to 

the DET curve, i.e., the lower the curve, the better performance. It is used for the 

comparison of two systems for a given cost, controlled by 𝛼. 

 

Figure 3.4. The EPC curves from the face and iris matchers of the BioSecure DS2 database. 

The ROC and DET have an distinct advantage over the EPC because they can 

provide a direct view of the system performance at all operating points (decision 

threshold 𝜏). A system designer may not know in advance the particular 

applications, where the biometric systems would be deployed. In such 

circumstance, it is advisable to report the system performance using the ROC 

and DET [67]. However, in this thesis, I decided not to use graphical measures 

due to their inherent difficulties to summarize results obtained on a large 

number of experiments. Instead, quantitative measures, such as EER, a priori 

HTER and relative change of EER and HTER will be employed for performance 

reporting. 

3.2. XM2VTS Database  

The XM2VTS database [63] contains synchronized face video and speech data of 

295 persons. There are 200 genuine users in the database. The remaining 95 users 

serve as zero-effort impostors. The zero-effort impostors refer to impostors, who 
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submit their biometric traits only to claim to be another user. There are 25 

impostors in the development set and 70 in the evaluation set. The data was 

processed independently by 5 face matchers and 3 speech matchers. The match 

scores of these matchers were obtained by two experimental protocols, known as 

Lausanne Protocol I (LP1) and II (LP2) [63]. All 8 channels of data are used in 

LP1, while 5 out of 8 channels are used in LP2. Note that there are 8 biometric 

samples in the XM2VTS databases on a per user basis. As demonstrated in Table 

3.1, they are used in the following decomposition: three samples are used to train 

the template in LP1 Train (and 4 in LP2 Train). Three samples are remaining in 

the LP1 Eva (and two in LP2 Eva) for learning the user-specific descriptions. 

Finally, in both protocols, two genuine accesses are dedicated to the testing in the 

LP Test. The class imbalance ratios in LP1 and LP2 are in the order of 66:1, and 

100:1, respectively.   

Table 3.1. The Lausanne Protocols of the XM2VTS database. LP Eva (LP Test) denotes the fusion 

protocols’ development (evaluation) set. Adapted from [63]. 

Data sets 
Lausanne Protocols 

Fusion Protocols 
LP1 LP2 

LP Train genuine accesses 3 4 NIL 

LP Eva genuine accesses 600 (3x200) 400 (2x200) Development set 

LP Eva impostor accesses 40,000 (25x8x200) Development set 

LP Test genuine accesses 400 (2x20) Evaluation set 

LP Test impostor accesses 112,000 (70x8x200) Evaluation set 

The detailed descriptions of the speech and face matchers are shown in Table 3.2. 

Each matcher is characterised by a feature representation and a classifier. All 

speech matchers are based on Gaussian Mixture Model (GMM) [54]. They differ 

by the nature of the employed feature representations, i.e., Spectral Sub-band 

Centroids (SSC) [75], Linear Frequency Cepstral Coefficients (LFCC) [76], and 

Phase-Auto-Correlation (PAC) [77]. On the other hand, the face matchers are 

based on the normalized face image concatenated with its RGB Histogram 

(abbreviated as FH) [63], and Discrete Cosine Transform (DCT) coefficients [78]. 

The DCT operates with two image block dimensions: i.e., small (denoted as 
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DCTs) and big (denoted as DCTb). Two types of classifiers are used, i.e., GMM 

and Multilayer Perceptron (MLP).  

The inhomogeneity of the match scores of the different matchers raises a 

number of challenges [1], [23]. Figures 3.5(a) and 3.5(b) show the match score 

distributions of the speech and face matchers from the XM2VTS LP1 database. It 

is observed that these match scores are not on the same numerical scale, and 

follow different statistical distributions. Due to these reasons, it is essential to 

normalize the match scores of individual matchers into a common reference 

framework prior to combining them. The match scores of the XM2VTS database 

were normalized using the Z-norm (see Section 2.3.2), as recommended in [63].  

Table 3.2. The 13 biometric matchers of the XM2VTS database, and their performance in terms of 

EER (%). Note that P1 (P2) indicates LP1 (LP2). 

Labels Modalities Features Classifiers EER (%) 

XM2VTS Lausanne Protocol I (LP1) 

P1:1 Face FH MLP 1.94 

P1:2 Face DCTs GMM 4.22 

P1:3 Face DCTb GMM 1.82 

P1:4 Face DCTs MLP 3.53 

P1:5 Face DCTb MLP 6.61 

P1:6 Speech LFCC GMM 1.15 

P1:7 Speech PAC GMM 6.62 

P1:8 Speech SSC GMM 4.53 

XM2VTS Lausanne Protocol II (LP2) 

P2:1 Face FH MLP 1.73 

P2:2 Face DCTb GMM 0.55 

P2:3 Speech LFCC GMM 1.37 

P2:4 Speech PAC GMM 5.39 

P2:5 Speech SSC GMM 3.33 

As can be seen from Table 3.2, P1:6 achieves the lowest error rate with an EER of 

1.15% among the biometric matchers in LP1. This is followed by P1:3 (1.82%), 

P1:1 (1.94%), P1:4 (3.53%), P1:2 (4.22%), and P1:8 (4.53%). The worst performance 

is produced by P1:5 and P1:7 with an EER of 6.61% and 6.62%, respectively. The 
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biometric matchers in LP2 have lower error rates with respect to those in LP1, 

since more training samples can be used to extract the biometric features in LP2. 

For instance, as shown in Figures 3.5(b) and 3.5(c), the verification performance 

significantly depends on the overlapping zone between the impostor and 

genuine user match score distributions. P2:2 has a smaller overlapping region, 

and thus, it has better verification accuracy, as compared to P1:3, even when they 

are based on similar feature representation (i.e., DCTb) and classifier (GMM). 

Among the biometric matchers in LP2, P2:2 (EER of 0.55%) performs best, while 

the highest error rate is produced by P2:4 (EER of 5.39%). 

 

          (a)           (b)            (c) 

Figure 3.5. Examples of the match score distributions: (a) speech matcher (P1:8), (b) face matcher 

(P1:3) and (c) face matcher (P2:2) of the XM2VTS database. Note that P1:3 and P2:2 are based 

on the same feature representation (DCTb), and classifier (GMM). 

3.3. BioSecure DS2 Database  

The BioSecure DS2 [61], [62] is the desktop scenario subset of the BioSecure 

database, which contains still face, 6 fingerprint (i.e., thumb, middle, and index 

fingers of both hands) and iris matchers from 333 persons. These 8 matchers are 

divided into two score data sets: the development (training) and the evaluation 

(test) sets. The development set is used for algorithm development, e.g., finding 

the optimal parameters of a fusion algorithm, while the evaluation set is used 

specifically for performance reporting. There are 51 genuine users in the 

development set and 156 in the evaluation set. The remaining 126 subjects are 

considered as an external population of users, who serve as zero-effort 

impostors. The zero-effort impostors refer to the impostors, who submit their 

biometric traits only to claim to be another user.  
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Each user contributes 4 samples. The first sample serves as a 

reference/template, while the second sample is used to obtain a genuine match 

score for training the user-specific descriptions. The remaining two samples are 

used to evaluate the performance of different fusion approaches. The BioSecure 

DS2 database has a class imbalance in the order of 524:1. Table 3.3 provides a 

summary of the BioSecure DS2 data. To overcome the challenges, related to the 

inhomogeneity of the match scores of individual matchers as shown in Figure 

3.6, the F-norm [79] was applied, based on the recommendation of [61] to 

transform the match scores into a common domain. 

Table 3.3. The experimental protocol for the BioSecure DS2 database. Adapted from [61]. 

Data sets 
No. of match scores 

Development set (51 persons) Evaluation set (156 persons) 

S1 
Genuine accesses 1x51 1x156 

Impostor accesses 103x4x51 126x4x156 

S2 
Genuine accesses 2x51 2x156 

Impostor accesses 103x4x51 126x4x51 

 

          (a)           (b)            (c) 

Figure 3.6. Examples of the match score distributions: (a) face matcher, (b) right thumb 

fingerprint matcher and (c) iris matcher of the BioSecure DS2 database. The value of the missing 

elements is denoted as “-999”, as shown in (b). 

It has to be noted that the BioSecure DS2 database contains a number of missing 

elements as a result of the failure of the segmentation process or other stages of 

biometric authentication [61]. In the event of any failure, the missing element is 

denoted as “-999” (see Figure 3.6(b)). The missing elements occur only on the 

evaluation data set, and not the training data set. The rationale for this is that the 

training data set is often better controlled. It is well-known that most techniques 

for match score level fusion have been implicitly designed for complete score 
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vectors, assuming that all the match scores to be fused are available. They are not 

well equipped to handle the problem of incomplete score vectors [40]. 

3.4. Handling the Missing Information 

It is important to distinguish between different patterns of missing data, since it 

can determine the method used to handle the problem [80-82]. In Missing Not At 

Random (MNAR), the probability that an entry is missing depends on both the 

observed data and the value of the missing data. In Missing Completely At Random 

(MCAR), the missing entry is neither dependent on the observed values nor the 

unobserved values in the data set. In Missing At Random (MAR), the probability 

that an entry is missing is a function of the observed data. It should be noted that 

it is not always possible to determine the reason behind missing information, and 

hence, it cannot be guaranteed that the occurrence of a missing observation is 

truly random [80]. 

3.4.1. Missing Data in Biometrics 

In multimodal biometric systems, there are three common reasons for missing 

information [40], [80], [83], as follows: 

1) Temporary/permanent alternation of biometric traits: a cough may temporarily 

change the voice of a person, while some drugs are known to permanently 

change fingerprint features. In such circumstances, the biometric traits 

should not be used because they may lead to false rejection; 

2) Desire to increase the authentication throughput: for some applications, where 

access requests is much higher than expected, it is sensible to reduce the 

number of biometric traits needed in order to increase the throughput of the 

authentication process; 

3) Device malfunction: biometric devices may not be operational as they have 

been worn over time. 

The missing data problem in biometric fusion has received some attention. In 

[84], separate Support Vector Machine (SVM) classifiers were implemented for 



Performance Measures and Databases 

 79 

each possible combination of input modalities, and the appropriate SVM was 

selected based on the available data of the query sample. In [85], a Bayesian 

approach was proposed, which handles missing elements by assigning a fixed 

rank value to the marginal likelihood ratio, corresponding to the missing sample. 

While the former is obviously not scalable, and hence, inefficient, the latter is 

quite sensitive to the number of match scores available during training [80]. 

In [83], the authors developed a discriminative classifier capable of dealing 

with missing values using a kernel-based SVM with Neutral Point Substitution 

(NPS). This approach replaces the missing element by one, which is unbiased 

with regards to the classification, called a neutral point. Particularly, the NPS 

adopts a decision-agnostic approach with respect to the substitution of the 

missing elements by assuming that they do not contribute to any bias in the 

discrimination of one class from another. The estimation of the missing elements 

(i.e., neutral points) was implicitly incorporation within the SVM training 

framework. Although this technique was demonstrated to achieve a better 

generalization performance than the sum of scores, it is strongly related to the 

SVM, and may not be applicable to other fusion techniques [40]. 

Data Imputation, which substitutes the missing elements with predicted 

values, has the following distinct advantages: (1) it does not delete any score 

vectors, which may contain useful information for authentication, and (2) the 

treatment of missing data is independent of the succeeding learning algorithm 

[40], [64], [80], [92]. Among others, one of the most perspective imputation 

techniques seems to be RIBG (Robust Imputation Based on Group Method of 

Data Handling) [64]. The aim of RIBG is to provide an accurate prediction for the 

missing elements. It is known to be resistant to noise [64], which frequently 

occurs in biometric applications. In [64], RIBG demonstrated a lower error rate, 

as compared to other state-of-the-art techniques, such as mean imputation [82], 

median imputation [82], regression imputation [82], EM imputation [87], grey-

based k-NN imputation [86], and Multiple imputation [81]. In [89], the capability 

of RIBG was exploited to fill the missing match scores of individual biometric 
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matchers. Since the complete match score vectors were obtained, the likelihood 

ratio based score fusion [90] was utilized to deduce the evidence for making the 

final decision in a personal recognition system. The experiments were conducted 

on the three partitions of the NIST BSSR1 database [52], which demonstrate that 

the proposed approach is capable of achieving 95% rank-1 recognition rate even 

when the missing rate is set to 25%. This led to the investigation of RIBG in this 

research and adapting it to be more suitable in the context of biometric 

authentication. 

3.4.2. RIBG Algorithm based Data Imputation 

RIBG is based on the Group Method of Data Handling (GMDH) [88], which is 

applied in a great variety of areas for data mining and knowledge discovery, 

forecasting and systems modelling, optimization, and pattern recognition. 

GMDH is a self-organizing approach, which is substantially different from 

deductive methods used commonly for modelling. It has inductive nature and 

provides a mean of automatically finding interrelations in the data, selecting the 

optimal structure of a model and increasing the performance accuracy of existing 

techniques. GMDH guarantees that most unbiased models will be found even for 

real problems with noised and short data.  

Without loss of generality, assume that 𝐬𝑇  is the input vector of match 

scores, which contains missing elements, 𝐷𝑘  is the initial complete set of match 

scores, 𝑘 ∈ {𝐺, 𝐼} indicates the genuine user or impostor class, 𝐴𝑚  is a variable, 

which corresponds to the scores of the 𝑚-th matcher, and 𝑀 is the number of 

biometric matchers. The RIBG algorithm works as follows: 

Input: incomplete vector of match scores 𝐬𝑇  

Output: complete vector of match scores 𝐬 𝑇  

1) Generate the data set, which includes 𝐬𝑇 : 

𝐷 =  
𝐷𝐺 ∪ 𝐬𝑇 𝑖𝑓 𝑑 𝐬𝑇 , 𝜇𝐺 ≥ 𝑑 𝐬𝑇 , 𝜇𝐼  
𝐷𝐼 ∪ 𝐬𝑇 𝑜𝑡𝑒𝑟𝑤𝑖𝑠𝑒

  (3.11) 
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where 𝑑 𝐬𝑇 , 𝜇𝑘 =  (𝑠𝑇, − 𝜇𝑘 ,)2
∈𝑂 , 𝜇𝑘  is the mean vector of the initial 

complete set 𝐷𝑘  (𝑘 ∈ {𝐺, 𝐼}), and 𝑂 ={ |the -th element of the observation 

𝐬𝑇  is observed}. 

2) Divide 𝐷 into two disjoint data subsets 𝐷 = 𝐵 ∪ 𝐶. 

3) Replace each missing element 𝑠𝑇,𝑖  in 𝐬𝑇  by the mean of the observed match 

scores in 𝐷. 

4) Select the variable 𝐴𝑖 , which corresponds to the missing element 𝑠𝑇,𝑖 , as 

output variable (𝑦 𝑖 = 𝐴𝑖). All the remaining variables are treated as input 

variables 𝑥𝑚 = 𝐴𝑚 , where 𝑚 = 1,… ,𝑀 and 𝑚 ≠ 𝑖, to enter the first layer of 

the GMDH network. 

5) Exhaustively combine the input variables in pairs (𝑥𝑚 , 𝑥𝑛), where 1 ≤

𝑚,𝑛 ≤ 𝑀 and 𝑚,𝑛 ≠ 𝑖 and generate model candidates from each 

combination using the following quadratic polynomial: 

𝑦 𝑖 = 𝑐0 + 𝑐1𝑥𝑚 + 𝑐2𝑥𝑛 + 𝑐3𝑥𝑚𝑥𝑛 + 𝑐4𝑥𝑚
2 + 𝑐5𝑥𝑛

2 (3.12) 

where 𝑐0, 𝑐1,… , 𝑐5 are parameters estimated by the Ordinary Least Squares 

(OLS). The OLS is the method for estimating unknown parameter using a 

linear regression model [54]. 

6) Evaluate the external criterion of each model using the 𝑅𝑀 criterion: 

𝑅𝑀 =    (𝑦𝑖 − 𝑦 𝑖
𝐶)2

𝑖∈𝐵

+ (𝑦𝑖 − 𝑦 𝑖
𝐵)2

𝑖∈𝐶

  +  (𝑦 𝑖
𝐵 − 𝑦 𝑖

𝐶)2

𝑖∈𝐵∪𝐶

 (3.13) 

where 𝑦𝑖  is of the actual value and 𝑦 𝑖
𝐵 and 𝑦 𝑖

𝐶  are the predicted values, 

corresponding to the model, constructed on dataset 𝐵 and 𝐶, respectively.  

7) Record the minimum of the external criterion from the current layer, and 

the best model with lower criterion values. Their outputs are implied as 

new input variables for the second layer of the GMDH network. 

8) Repeat steps 5-7 to produce model candidates for the second layer, the third 

layer, etc. until the lowest value of the external criterion at the current layer 
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is greater than that in the previous layer, in which the model with the 

minimum external criterion is selected as the final optimal complex model. 

9) Use the estimate 𝐴 𝑖  of the optimal complex model to update the missing 

variable 𝐴𝑖 . 

10) Repeat steps 4-9 until the change of missing element estimate 𝐴𝑖  becomes 

smaller than a predefined threshold or the maximum number of iterations 

is reached. The current value of 𝐴𝑖  is assigned to the corresponding missing 

element in 𝐬 𝑇 . 

11) Repeat steps 4-10 to predict and update the remaining missing elements. 

3.4.3. Comparison of Data Imputation Techniques 

In Table 3.4, the robustness of RIBG is illustrated. RIBG is also compared with 

other state-of-the-art techniques, including mean, median, and k-NN 

imputations, when applied in handling the missing data in the BioSecure DS2 

database. It is observed that the face matcher does not contain any missing 

elements (see Figure 3.6(a)). Hence, in such case, no performance gains are 

observed. RIBG consistently produces the best verification accuracy, while the 

highest error rates are achieved when no imputation technique was used. 

Table 3.4. EER (%) of different imputation techniques, as applied to handle the missing data in 

BioSecure DS2 database. 

Modalities No Imp. Mean Median k-NN RIBG 

Face 10.67 10.67 10.67 10.67 10.67 

Right thumb finger 16.40 16.18 16.18 15.99 15.80 

Right index finger 7.99 7.75 7.75 7.42 7.36 

Right middle finger 12.50 12.27 12.27 12.22 11.91 

Left thumb finger 16.48 16.37 16.37 16.00 15.89 

Left index finger 10.34 10.18 10.18 9.81 9.73 

Left middle finger 14.51 14.45 14.45 14.01 13.89 

Iris 14.89 15.49 15.39 14.93 14.90 

k-NN imputation can achieve a better performance, with respect to the median 

and mean imputation techniques since it is capable of selecting the most suitable 
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candidates for the estimation process. However, k-NN imputation requires a 

careful choice of the number of nearest neighbours 𝑘. As it was observed in [40], 

a large value of k may include samples, which are significant different from the 

sample containing missing elements, while a small value of k may lead to 

deterioration in the classifier‟s performance after imputation due to the 

overemphasis on a few dominant samples. On the contrary, RIBG does not 

require such parameter, making it amendable to immediate applications. 

As it can be seen from Table 3.4, among the biometric modalities, the right 

index finger has the highest authentication accuracy with an EER of 7.36%. This 

is followed by the left index finger (9.73%), face (10.67%), right middle (11.91%), 

left middle finger (13.89%), iris (14.90%), and right thumb finger (15.80%). The 

worst performance (i.e., 15.89%) is achieved by the left thumb finger. 

3.5. Experimental Protocol  

As previously mentioned, this PhD thesis aims to exploit the paradigm of one-

class classifiers to address the highly imbalanced class distribution of biometric 

data sets, and thus, advancing the classification performance of multimodal 

biometric fusion (i.e., using different biometric traits). Using the data from the 

XM2VTS and BioSecure DS2 databases, I conduct four sets of experiments in 

order to assess the various biometric algorithms that are investigated and 

developed in this PhD dissertation. Table 3.5 summarizes the properties of these 

sets, i.e., the class imbalance ratio, number of modalities (# Modalities), which 

were combined for the decision inference, number of combination possibilities (# 

Combinations) and number of genuine samples per user (# Gen. Samples/user).  

Specifically, in the first three sets, two biometric matchers of the BioSecure 

DS2, XM2VTS LP1 and LP2 were exhaustively paired in the context of 

multimodal fusion. Hence, Experiment (1) involves 13 combination possibilities 

(1 face matcher × 6 fingerprint matchers + 1 iris matcher × 6 fingerprint matchers + 1 

face matcher × 1 iris matcher), while those numbers of Experiments (2) and (3) are 

15 (5 face matchers × 3 speech matchers) and 6 (2 face matchers × 3 speech matchers), 
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respectively. It should be noted that each of the databases has a different class 

imbalance ratio (i.e., 524:1 in BioSecure DS2, 66:1 in XM2VTS LP1 and 100:1 in 

LP2), and contains different number of genuine match scores per user (i.e., 1 in 

BioSecure DS2, 3 in XM2VTS LP1 and 2 in LP2). The objective of conducting 

these first three sets is to determine whether one-class classifiers are able to 

achieve a better performance compared to that of the two-class methods, such as 

two-class SVM when dealing with extremely imbalanced biometric data. The 

possible effect of the number of genuine match scores per user on the 

authentication accuracy is also evaluated.  

In the remaining set, three out of the eight biometric matchers of the 

BioSecure DS2 database were combined at the same time. Hence, 6 combination 

possibilities (1 face matcher × 6 fingerprint matchers × 1 iris matcher) were obtained 

to analyse the impact of having additional pieces of evidence from another 

biometric on the performance of the various biometric algorithms. 

Table 3.5. Summary of the characteristics of different sets of experiments in this thesis. These 

characteristics include the class imbalance ratio, number of modalities (# Modalities), number of 

combination possibilities (# Combinations) and number of genuine samples per user (# Gen. 

Samples/user). 

Characteristics Experiment (1) Experiment (2) Experiment (3) Experiment (4) 

Database BioSecure DS2 XM2VTS LP1 XM2VTS LP2 BioSecure DS2 

Class Imbalance Ratio 524:1 66:1 100:1 524:1 

# Modalities 2 2 2 3 

# Combinations 13  15 6 6 

# Gen. Samples/user 1 2 3 1 

These sets of experiments were conducted on an Intel(R) 2.00 GHz, 3.25 GB of 

RAM and MATLAB platform using the functions provided by the Data 

Description Toolbox 1.9.1 [163], and the MATLAB SVM and Kernel Methods 

Toolbox [164]. The performance in terms of EER, HTER, relative change of EER 

and HTER was evaluated using the tools, developed in [63]. 
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3.6. Chapter Summary 

In this chapter, several popular quantitative and graphical performance 

measures for determining system performance have been presented. Some of 

these measures, such as EER, HTER, the relative change of EER and the relative 

change of HTER will be used in the subsequent chapters to allow a comparison 

of the fusion techniques, investigated and developed. I also provided an 

overview of the main multimodal biometric databases, namely BioSecure DS2 

and XM2VTS databases, and their corresponding sets of experiments, which will 

be conducted in this thesis for the performance evaluation. Some data imputation 

techniques were also introduced to deal with the missing information in the 

BioSecure DS2 database. Among others, RIBG was observed to achieve the best 

performance. Moreover, it does not require any parameter fine-tuning, thus 

making it amenable to immediate applications.  
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CHAPTER 4   

ONE-CLASS LEARNING 

One-class classifiers aim to recognize instances of a concept by using mainly or 

only a single class of samples [34]. They are known to be naturally quite robust to 

the class imbalance problem [41], [45-50]. This chapter aims to exploit the one-

class classifiers to advance the classification performance of extremely 

imbalanced biometric data sets. The main contributions of this work consist of 

the followings: (1) Designing user-specific score fusion scheme based on the 

paradigm of one-class methods. An extensive empirical evaluation is also 

presented to highlight advantages of this scheme over the user-independent 

counterparts; (2) Exhaustively analysing several representative one-class 

classifiers, namely Gaussian Mixture Model, k-Nearest Neighbour, K-means 

clustering, and Support Vector Data Description. The target is to determine 

whether their performance outranks the performance of the standard two-class 

methods, such as two-class SVM when dealing with extremely imbalanced 

biometric data. It also provides an indication, which can drive a proper choice of 

the classifier to be used in different biometric applications. 

This chapter is organized as follows: Section 4.1 describes the various one-

class classifiers considered in this work, pointing out their characteristics, 

advantages and disadvantages. Section 4.2 explains how these classifiers can be 

used for rendering the multimodal biometric decision. The user-specific score 

fusion scheme is also presented in this section. Sections 4.3 and 4.4 present 

extensive experiments using data from the BioSecure DS2 and XM2VTS 

databases, and discuss the results. 

4.1. One-class Classification Methods 

One-class classification has been successfully applied in a wide variety of 

application domains, including Bioinformatics [121], Information Retrieval [122], 
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and Face Recognition applications [123]. Its main objective is to learn a 

description around the target set of samples, and to detect which objects 

resemble this training set [44]. Unlike conventional two-class classification, 

where the decision boundary is supported from samples of both classes, in one-

class classification only samples of one-class are available. The objects from this 

class are called the target objects, while all other objects are known as the 

outliers.  

 

Figure 4.1. Example of the description, learned around the impostor class using match scores 

from the face and iris matchers of the BioSecure DS2 database. Because the match scores from 

these matchers are in the range [0,… ,1] and  0,… ,100 , they are normalized using the F-norm 

[79], as suggested in [61] to be better aligned and separated. A one-class classifier is shown, 

which distinguishes impostor samples from all other possible outliers. Adapted from [44]. 

Table 4.1. Summary of one-class classification methods. 𝑁 is the number of training samples. 

Adapted from [127]. 

Methods Robustness to outliers Number of free parameters Computation 

GMM No 1 𝑂(1) 

k-NN No 1 𝑂(𝑁) 

K-means No 0 𝑂(1) 

SVDD Yes 1 𝑂(𝑁) 

In the context of multimodal biometrics, a match score vector can be treated as 

the target object (sample), which is then fed into a trained classifier, whereas the 

target class can be either the genuine user or impostor class. As illustrated in 
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Figure 4.1, a one classifier is applied to learn the description around the impostor 

class by using samples from the face and iris matchers of the BioSecure DS2 

database. No samples of the genuine user class are needed for the training of the 

description. The red solid line shows that the one-class classifier is able to 

distinguish between impostor class samples and the outliers (i.e., genuine user 

samples). 

There are number of methods for one-class classification, such as Gaussian 

Mixture Model [54], Support Vector Data Description [44], [56], k-Nearest 

Neighbour [124], etc. They differ in their ability to exploit or cope with different 

characteristics of the data, which include the scaling of features in the data, the 

convexity of the data distribution, etc. In [44], these one-class classifiers were 

compared using the following characteristics:  

1) Robustness to outliers refers to the ability of rejecting outliers, when the 

training data is already contaminated by some of those. 

2) Free parameters and ease of configuration refer to the number of 

parameters to be defined by the user. It is obvious that when a large 

number of free parameters is required, finding a good set of parameters 

may be hard and time consuming.  

3) Computation is defined as the computational time of a classifier, when 

evaluating a single test object.  

In the rest of this chapter, I present only some representative one-class classifiers, 

such that Gaussian Mixture Model, k-Nearest Neighbour (k-NN), K-means 

clustering (K-means), and Support Vector Data Description (SVDD), which can 

be utilized to render the biometric decision. The characteristics of these classifiers 

are summarized in Table 4.1.  

It must be noted that all the one-class classifiers require the fraction 

rejection 𝑓𝑇 ∈ [0,… ,1], which has to be specified by the user. By definition, this 

parameter controls the amount of target samples, which the classifier can reject 

during training.  It allows the classifier to be more robust against outliers in the 
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training data set [44]. For instance, when 𝑓𝑇 = 0.1, a decision threshold on the 

classifier‟s outcomes is optimized such that the 10% most dissimilar target data 

(possibly containing outliers/noisy samples) are rejected.  In practice, it is 

challenging to determine whether a given sample represents the general class 

characteristics or is merely attributed to noise. It is therefore essential for the 

different values of 𝑓𝑇  to be tested. The fraction rejection is not a free parameter 

for a particular one-class method, thus, it is omitted in Table 4.1. Without loss of 

generality, assume that 𝑤𝑇  is the target class, 𝐬𝑇  is a test object,  𝐬  is the 

Euclidean length of vector 𝐬, and 𝑝(𝐬𝑇 , 𝜇𝑗 , Σ𝑗 ) is the Gaussian distribution 

characterised by mean 𝜇𝑗  and covariance matrix Σ𝑗 . These notations will be used 

throughout this chapter. 

4.1.1. Gaussian Mixture Model  

The Gaussian Mixture Model (GMM) is often employed in multimodal biometric 

systems due to its capability of forming smooth approximations to arbitrary 

shape densities of the match scores. The Gaussian Mixture Model (GMM) is a 

linear combination of Gaussian distributions as given by: 

𝑝𝐺𝑀𝑀 𝐬𝑇|𝑤𝑇 =
1

𝑁𝐺𝑀𝑀
 𝛼𝑗𝑝(𝐬𝑇 , 𝜇𝑗 , Σ𝑗 )

𝑁𝐺𝑀𝑀

𝑗=1

 (4.1) 

where 𝛼𝑗  are the mixing coefficients, 𝑁𝐺𝑀𝑀  is the number of mixture components, 

which is used to model the match score distributions of either the genuine user 

class or the impostor class. When the number of mixture components 𝑁𝐺𝑀𝑀  is 

known, 𝜇𝑗  and Σ𝑗  of the individual mixture components can be estimated using 

the Expectation Maximization (EM) algorithm [54]. As already mentioned, 

selecting the appropriate number of components is a vital requirement for the 

success of the mixture. With too few components, a mixture may not flexible 

enough to approximate the true underlying densities, while a mixture with too 

many components may overfit the data [90]. In general, this number can be 

selected in many different ways. Penalized likelihood approaches, such as 

Bayesian inference criterion (BIC) [159], Minimum description length (MDL) 
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[160] are typical derived from approximations based on asymptotic arguments as 

the training data size approaches ∞ [168]. The fully Bayesian approach treats the 

number of component as a parameter and obtains a posterior distribution on 

𝑁𝐺𝑀𝑀 ,  given the data. The models and the posterior can be then estimated 

analytically or via Markov Chain Monte Carlo sampling [161]. Nevertheless, 

none of the above approaches is able to achieve the results, which is independent 

of the quality of the underlying approximation or simulations [162], [168]. Cross 

validation [54] is another tool for automatically determining the true value of 

𝑁𝐺𝑀𝑀 . It is simple and straightforward in the sense that the model is directly 

judged on their out-of-sample predictive ability [168]. Due to this reason, it has 

been applicable to a wide variety of practical problems.  In this PhD thesis, the 

value of 𝑁𝐺𝑀𝑀  is also determined through cross validation and grid search. 

4.1.2. k-Nearest Neighbour  

When limited training data is available, k-Nearest Neighbour (k-NN) [44], [124] 

is preferred, compared to the GMM. In general, k-NN can be derived from a local 

density estimation, which can be defined as: 

𝑝𝑘−𝑁𝑁 𝐬𝑇|𝑤𝑇 =
𝑘/𝑁

𝑉𝑘( 𝐬𝑇 − 𝑁𝑁𝑘(𝐬𝑇) )
 (4.2) 

where 𝑁 is the number of training objects, 𝑁𝑁𝑘(𝐬𝑇) is the 𝑘𝑡  Nearest Neighbour 

of the test pattern 𝐬𝑇  in the training set, and 𝑉𝑘  is the volume surrounding 𝐬𝑇 . 

This algorithm requires the user to define the number of nearest neighbours 𝑘, 

which heavily relies on the distance between objects, as it is sensitive to the 

scaling of the match scores, provided by multiple matchers [44]. 

There is almost no computation cost for training k-NN, but testing is 

expensive. Such classifiers require all the training samples to be stored and, 

during testing, distances to all training samples have to be calculated and sorted 

[44], [54], [125]. This effect can be offset by constructing tree-based search 

structures, which allow for the nearest neighbours to be found efficiently without 

carrying out an exhaustive search on the training data [54]. 
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4.1.3. K-means Clustering  

K-means clustering (K-means) [54] is one of the simplest methods for one-class 

classification, which assumes that the data 𝐬𝑖  is clustered and described by a set 

of prototype objects 𝜇𝑘 . The position of these prototype objects is determined by 

minimizing the following error: 

𝜀𝐾−𝑚𝑒𝑎𝑛𝑠 =  min
𝑘
 𝐬𝑖 − 𝜇𝑘 

2

𝑖

 (4.3) 

The classification of a test object 𝐬𝑇  is based on its distance to the nearest 

prototype object, defined as: 

𝑑𝐾−𝑚𝑒𝑎𝑛𝑠  𝐬𝑇|𝑤𝑇 = min
𝑘
 𝐬𝑇 − 𝜇𝑘 

2 (4.4) 

K-means uses the squared Euclidean distance as the measure of similarity 

between the test and prototype objects. Not only does this limit the scaling of 

data, which can be considered, however it may impact on the robustness of the 

cluster means estimation, with regards to outliers [54]. Note that the error in 

Equation (4.3) can be then minimized using a so-called batch algorithm, which is 

comparable to the EM algorithm of GMM [44]. A distinct advantage of K-means 

over other one-class classifiers is that it has no free parameters, which have to be 

specified by the user apart from the fraction rejection, and thus, making it more 

amenable to immediate biometric applications. 

4.1.4. Support Vector Data Description  

Support Vector Data Description (SVDD) [44] aims to directly fit a closed 

boundary around the target data set, without estimating a complete probability 

density. Thus, such a method has the ability to obtain the data boundary from a 

limited data set. The boundary can then be described by a few training objects, 

known as, the support vectors. In order to obtain more flexible data descriptions, 

SVDD replaces the normal inner products by kernel functions 𝐾(𝐬𝑖 , 𝐬𝑗 ). 

Polynomial and Radial Basis Functions (RBF) are the most common kernel 

functions used in practice. Since SVDD is a kernel-based method, it is 
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particularly suitable to deal with hyper-dimensional feature spaces. The 

classification of a test object 𝐬𝑇  is then based on its distance from the centre of the 

hypersphere, which is calculated as follows: 

𝑑𝑆𝑉𝐷𝐷 𝐬𝑇|𝑤𝑇 =  𝐬𝑇 − 𝐚 
2                                             

= 𝐾 𝐬𝑇 , 𝐬𝑇 − 2 𝛼𝑖𝐾 𝐬𝑇 , 𝐬𝑖 

𝑖

+ 𝛼𝑖𝛼𝑗𝐾 𝐬𝑖 , 𝐬𝑗  

𝑖 ,𝑗

 
(4.5) 

where 𝐚 =  𝛼𝑖𝐬𝑖𝑖  is the centre of the sphere, 𝛼𝑖 ≥ 0 are the Lagrange multipliers, 

which can be determined as the solution of a Quadratic Programming problem 

[44], [56]. Obviously, the centre of the sphere is a linear combination of the 

samples 𝐬𝑖  with weights 𝛼𝑖 . Since a large fraction of the weights becomes 0, the 

description can be characterised by a few samples with positive weights. These 

samples are called the support vectors of the description. It was observed that 

when an insufficient number of samples is available, the number of support 

vectors remains high, indicating that more data is necessary. Hence, for very 

small sample sizes (less than ten), the SVDD breaks down due to its requirement 

for support vectors [44], [56].  

In general, SVDD is different from the ν-SVM, proposed in [126], for one-

class classification. While the former computes a closed hypersphere around the 

data, the latter estimates the largest margin hyperplane, used to separate the data 

and the origin of the space, where the data resides [45]. However, it has been 

shown that when the RBF is used as the kernel function, these methods are 

equivalent and produce similar performances [44], [126]. The width of the RBF 

kernel is the single free parameter, which is used in SVDD and can be also found 

by using cross validation [54]. 

4.2. Multimodal Fusion via One-class Classifiers 

It has been demonstrated that most conventional two-class classifiers are 

inadequate when applied to authenticate the identity claim in multimodal 

biometric systems, where very often the training data is extremely imbalanced. 

One-class classifiers on the other hand are capable of learning the description 
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using samples exclusively from one-class. They are therefore known to be 

naturally quite robust to the class imbalance problem [44], [45]. In [46], [47], the 

authors suggested that one-class classifiers are particularly useful in handling 

extremely imbalanced data sets with high feature space dimensionality, while 

two-class classifiers are more suitable for moderately imbalanced data sets. In 

[47], it was reported that with 5% or lower small class data, the performance of 

the ν-SVM surpassed that of the two-class SVM. 

In [48], a variety of one-class classifiers, including GMM, k-NN, K-means 

and SVDD, and two-class classifiers, including Logistic Regression, Naïve Bayes, 

MLP and two-class SVM, was evaluated on a selection of credit score datasets as 

the class imbalance is manipulated. It is important to note that one-class 

classifiers offer a viable solution to the low-default portfolio problem, when the 

minority class constitutes approximately 4% or less of the data (i.e., the 

imbalance rate is severe). In [49], it was observed that the auto-encoder may be 

superior to the MLP neural network under certain conditions, such as 

multimodal domains. The pros and cons of the auto-encoder, as compared to 

other data sampling techniques were demonstrated in [50].  

In [51], a user-independent approach based on the ν-SVM was developed, 

which aims to classify a given test match score vector based on the description 

learned around the data, containing all impostor match score vectors from a 

number of different users. It was observed to be comparable to the two-class 

SVM, and surpass other conventional classifier combination rules, including the 

sum of scores in the experiments, carried out on the NIST BSSR1 [52] and MCYT 

databases [53]. 

One-class classifiers have not been sufficiently exploited in multimodal 

biometric authentication. The remainder of this chapter aims to provide a 

thorough investigation on the various one-class classifiers and directly extend the 

method in [51]. To this end, I propose user-independent and user-specific score 

fusion schemes based on the paradigm of these classifiers. Both of the two 

methods are capable of using match score vectors from either the genuine user or 
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impostor class. User-specific score fusion scheme, as opposed to the user-

independent counterpart takes into account the claimed identity and learn a 

different description for each of the users, enrolled in the systems. It should be 

noted that all the reported works in biometric literature have been focused on 

designing user-specific descriptions using the two-class methods [30], [32]. No 

attempt has been made to exploit the one-class classifiers to learn these 

descriptions.  

As already mentioned, essentially, one-class classifiers can provide two 

types of outcomes, i.e., (1) a distance or (2) a probability estimate of the test object 

to the target class. K-means and SVDD are examples of classifiers belonging to 

the first group, while GMM and k-NN are examples of classifiers of the second 

group. In the context of multimodal biometrics, the combined match score can be 

directly defined using the outcomes of the one-class classifiers with the 

assumption that the test object 𝐬𝑇  is the test match score vector. This section 

discusses in detail the user-independent and user-specific score fusion schemes. 

Illustrative examples are also presented to highlight the advantages of the user-

specific approach over the user-independent counterpart.  

4.2.1. User-independent Score Fusion 

In the user-independent score fusion, a single description is learned around the 

target class 𝑤𝑘  using the match score vectors from a number of different users. 

Since the target class can be either impostor or genuine user, one-class classifiers 

applied separately to each of these classes can produce two different 

descriptions. Figure 4.2 shows graphical representations of the decision 

boundaries, learned by GMM, k-NN, K-means and SVDD. Specifically, the 

continuous red lines correspond to the descriptions of the impostor class, while 

the continuous blue lines correspond to those of the genuine user class. 

Obviously, each of the one-class classifiers has a different ability to learn the 

characteristics of the training data, leading to a difference in their description, 

and the associated error rates.  
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             (a)             (b) 

  

            (c)             (d) 

Figure 4.2. Examples of the user-independent descriptions around the impostor class (continuous 

red lines) and genuine user class (continuous blue lines), learned by (a) GMM, (b) k-NN, (c) K-

means, and (d) SVDD using the match scores from face and iris matchers of the BioSecure DS2 

database. The match scores of these matchers were normalized using the F-norm [79]. 

Since samples of the two classes are scattered into several small regions, the 

decision boundary encloses a large empty area, which could augment the 

probability of accepting outliers [51]. This situation has been referred to as the 

problem of within-class sub-concepts in the literature [34], [37], [115], which is 

observed to occur in any biometric system. The rationale for this is that some 

users may particularly be vulnerable to impersonation while others may have 

trouble authenticating. The manner that a user interacts with devices also leads 

to a difference in the biometric signals, which are captured at different time 

instances. It is therefore expected that there will be some impostor matches with 

high scores, and there will be some genuine matches with low scores [109]. 
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Because of the vast representation of the impostor class, the occurrence of such 

problem is more notable in the genuine user class [34]. As illustrated in Figure 

4.2, a large number of impostor match score vectors are accepted by the 

description, learned around the genuine user class, leading to significantly 

higher error rates. This will be further elaborated in Section 4.3. 

  

(a) (b) 

Figure 4.3. The distributions of the combined match scores, generated by GMM when the 

descriptions are learned around (a) impostor, and (b) genuine user classes using the match scores 

from face and iris matchers of the BioSecure DS2 database.  

  

            (a)             (b) 

Figure 4.4. The distributions of the combined match scores, generated by K-means when the 

descriptions are learned around (a) impostor, and (b) genuine user classes using the match scores 

from face and iris matchers of the BioSecure DS2 database. 

In Figures 4.3 and 4.4, examples of the distributions of the outcomes of GMM and 

K-means are provided in both cases, i.e., when the descriptions are learned 

around the impostor and genuine user classes. The solid red line corresponds to 
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the distribution of the outcomes, obtained when classifying the test samples from 

the impostor class. On the other hand, the solid blue line corresponds to the 

distribution of the outcomes for those samples from the genuine user class. The 

verification performance depends much on the overlapping zone between the 

distributions of these outcomes. It is clear that the impostor class is more reliable 

source of information. Its corresponding distributions have a much smaller 

overlapping zone (see Figures 4.3(a) and 4.4(a)) as compared to that of the 

distributions, which are generated when the description is learned around the 

genuine user class (see Figures 4.3(b) and 4.4(b)). The distributions of the 

outcomes, related to the SVDD and k-NN are not demonstrated here, since they 

show a similar trend to those of K-means and GMM. 

In general, the combined match scores can be directly obtained based on the 

outcomes of the one-class classifiers. It should be noted the target class can be 

either genuine user or impostor class. Due to the choice of the target class, the 

combined match scores, even when generated by the same one-class method, are 

inhomogeneous. Obviously, when the target class is the impostor 𝑤𝐼, user-

independent score fusion, as illustrated in Figures 4.3(a) and 4.4(a), produces a 

low probability or high distance for a test object 𝐬𝑇  of a genuine user, while a 

higher probability or lower distance is obtained when the test object belongs to 

an impostor. Thus, the distance in this case is a similarity measure, while the 

probability is a dissimilarity measure and has to be transformed into a similarity 

one. To do this, the combined match scores 𝑠𝐶𝑂𝑀 ,𝐼 𝐬𝑇  can be defined as: 

𝑠𝐶𝑂𝑀 ,𝐼 𝐬𝑇 =  
−𝑝 𝐬𝑇 𝑤𝐼 , 𝑖𝑓 𝑡𝑒 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 𝑖𝑠 𝑎 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦

𝑑 𝐬𝑇 𝑤𝐼 , 𝑖𝑓 𝑡𝑒 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 𝑖𝑠 𝑎 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒
  (4.6) 

In contrast, when the target class is the genuine user class 𝑤𝐺   (see Figures 4.3(b) 

and 4.4(b)), the probability becomes a similarity measure, while the distance 

turns out to be a dissimilarity measure. The combined match scores 𝑠𝐶𝑂𝑀 ,𝐺 𝐬𝑇  

are as follows:  

𝑠𝐶𝑂𝑀 ,𝐺 𝐬𝑇 =  
𝑝 𝐬𝑇 𝑤𝐺 , 𝑖𝑓 𝑡𝑒 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 𝑖𝑠 𝑎 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦

−𝑑 𝐬𝑇 𝑤𝐺 , 𝑖𝑓 𝑡𝑒 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 𝑖𝑠 𝑎 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒
  (4.7) 
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It should be noted that the former case (Equation (4.6)) was considered in [51] 

using the ν-SVM [126]. I directly extend the former to obtain the latter case 

(Equation (4.7)). Since the ν-SVM is equivalent to the SVDD when RBF is used as 

the kernel function (see Section 4.1.4), such a classifier is not further considered 

in this PhD thesis. In addition to SVDD, a number of one-class classifiers, such as 

GMM, k-NN, and K-means are evaluated in both user-independent scenarios. 

4.2.2. User-specific Score Fusion 

In user-specific score fusion, different descriptions around the target class are 

determined for each user enrolled in the system using exclusively their 

corresponding match score vectors. Its basic motivation is to address biometric 

menagerie effect, and hence, enhancing the verification performance. It also 

differs from the conventional user-specific score fusion since its description is 

learned using the one-class classifiers (see Section 2.4.3 for more details). 

Similarly to user-independent score fusion, the classifier‟s outcomes can be either 

similarity or dissimilarity measure depending on the choice of the target class, 

which can be the genuine user (𝑤𝑗 ,𝐺) or impostor (𝑤𝑗 ,𝐼). Subsequently, the 

combined match score, related to the user 𝑗 is defined as: 

𝑠𝐶𝑂𝑀 ,𝑗 ,𝐼 𝐬𝑇 =  
−𝑝 𝐬𝑇 𝑤𝑗 ,𝐼 , 𝑖𝑓 𝑡𝑒 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 𝑖𝑠 𝑎 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦

𝑑 𝐬𝑇 𝑤𝑗 ,𝐼 , 𝑖𝑓 𝑡𝑒 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 𝑖𝑠 𝑎 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒
  (4.8) 

if the target class is the impostor, and: 

𝑠𝐶𝑂𝑀 ,𝑗 ,𝐺 𝐬𝑇 =  
𝑝 𝐬𝑇 𝑤𝑗 ,𝐺 , 𝑖𝑓 𝑡𝑒 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 𝑖𝑠 𝑎 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦

−𝑑 𝐬𝑇 𝑤𝑗 ,𝐺 , 𝑖𝑓 𝑡𝑒 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 𝑖𝑠 𝑎 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒
  (4.9) 

if the target class is the genuine user. The latter case (Equation (4.9)) is 

impractical to achieve due to the limited availability of genuine match scores per 

user. GMM, as mentioned in Section 4.1.1 requires a large number of target 

samples to converge to the true density, while SVDD suffers from the lower 

bound on the number of support vectors required for its description. In [44], the 

authors observed that GMM and SVDD do not work at all with a sample size of 

less than ten. Due to this reason, I only consider user-specific score fusion in 
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Equation (4.8), when the descriptions are learned using the impostor class 

samples.  

As the impostor is the target class, user-specific score fusion can be 

generally considered as a better alternative, relative to the user-independent 

counterpart for the following two reasons. 

 Firstly, it is observed that user-specific score fusion is much faster in testing 

time, since fewer samples are used to construct the classifier. This is 

particularly true in the case of k-NN, where, during testing, the distances of 

the test object from all training samples have to be calculated and sorted. A 

similar observation can also be made when SVDD is used as a classifier, 

where the reduction in the number of training samples leads to a smaller 

number of support vectors, and associated computational savings. More 

results, supporting for this observation can be found in [127].    

 Next, it was observed that one-class classifiers fail to achieve a good 

verification performance when the impostor class is composed of various 

sub-clusters. As already mentioned, this problem is known as the problem 

of within-class sub-concepts, which becomes even more prominent when the 

biometric decision is based on user-independent score fusion. A 

straightforward explanation for this is that such method trains the 

classifiers using the match score patterns from different users, while the 

literature on biometric menagerie, mentioned in Section 2.4.1, suggests that 

users of a biometric system may have differing degrees of accuracy within 

the system [108]. Particularly, the sheepish users can be easily recognized, 

matching poorly against others, and well against themselves, while other 

users (i.e., lambish and wolfish users) are particularly successful at 

impersonation, receiving high match scores for all verifications even when 

matching against others. Clearly, these users, when enrolled in the system, 

amplify the within-class sub-concepts problem in the impostor class 

distribution. User-specific score fusion partially alleviates this problem by 

defining a different reference model for each user, thus forming a more 
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reliable and compact scatter, which reduces both types of errors, i.e., False 

Acceptance Rate (FAR) and False Rejection Rate (FRR). 

Figure 4.5 provides an overview of the effect of user-specific vs. user-

independent descriptions, learned using impostor class samples of the first three 

users in the BioSecure DS2 database using samples of the face and iris matchers. 

Specifically, the three continuous lines (drawn in red, green and blue) 

correspond to distinct user-specific descriptions. The dashed line (drawn in 

black) corresponds to the user-independent description and is obtained from the 

three user-specific training data by learning the decision boundaries, using GMM 

and k-NN. Impostor samples are indicated by „+‟, while genuine samples are 

given by „o‟.  In this context, the false rejects correspond to those genuine 

samples, which are accepted by the descriptions. It can be seen that user-specific 

score fusion, as compared to user-independent score fusion, has resulted in a 

reduction in the number of false rejects by two and three samples, when GMM, 

and k-NN are used to train the descriptions, respectively. The descriptions, 

related to the SVDD and K-means are not demonstrated here, since they show a 

similar trend to those of GMM and k-NN. 

  

              (a)              (b) 

Figure 4.5. User-specific descriptions (continuous lines) and user-independent description 

(dashed line) around the impostor class, learned by (a) GMM and (b) k-NN for the first 3 users in 

the BioSecure DS2 database using match scores of the face and iris matchers. The match scores of 

these matchers were normalized using the F-norm [79]. 
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4.3. Empirical Evaluation of One-class Learning  

In this section, extensive experiments are conducted to evaluate the user-specific 

and user-independent score fusion schemes with various one-class classifiers, 

used to learn the descriptions: i.e., Gaussian Mixture Model (GMM) k-Nearest 

Neighbour (k-NN), K-means clustering (K-means) and Support Vector Data 

Description (SVDD). These classifiers have a common parameter to adjust, i.e., 

the fraction rejection 𝑓𝑇 ∈ [0,… ,1]. Figure 4.6 shows the user-independent 

descriptions learned by GMM with two values of 𝑓𝑇  (e.g., 𝑓𝑇 = 0 and 𝑓𝑇 = 0.1). It 

can be seen that by increasing 𝑓𝑇 , a smaller decision boundary is obtained, 

leading to a reduction in the probability of accepting outliers, while enhancing 

the probability of rejecting target samples. The matching accuracy of the one-

class classifiers is therefore dependent on the choice of the fraction rejection. A 

similar observation can also be made when k-NN, K-means and SVDD are 

selected to train the description. In general, 𝑓𝑇  can take values between 0 and 1. 

Because the data collection is assumed to be accurate and there is a low density 

of noisy samples in the training set, the rejection rate of more than 50% (i.e., 

𝑓𝑇 = 0.5) of the target data is considered excessive. In this thesis, the choice of 

𝑓𝑇 ∈ [0,… ,0.5] will be evaluated in terms of the performance of the user-

independent and user-specific score fusion schemes. Other parameters specific to 

one-class classifiers were determined using grid search and cross validation [54]. 

  

Figure 4.6. User-independent descriptions around (a) the impostor class, and (b) the genuine user 

class, learned by GMM with various values of 𝑓𝑇. The continuous red (blue) lines correspond to 

the descriptions learned with 𝑓𝑇 = 0 (𝑓𝑇 = 0.1).  
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User-specific and user-independent approaches are also compared with other 

state-of-the-art techniques, discussed in Chapter 2, namely the sum of scores 

(abbreviated as SUM), likelihood ratio based score fusion (abbreviated as LR), 

and conventional two-class SVM (abbreviated as SVM). In this section, the 

following abbreviations will be often referred: UIFG (for User-independent score 

fusion using the genuine user target class), UIFI (for User-independent score 

fusion using the impostor target class), and USFI (for User-Specific score fusion 

using the impostor target class).  

As already mentioned in Section 3.5, four sets of experiments will be 

presented. In the first three sets, two biometric matchers were combined 

simultaneously in the context of multimodal fusion, leading to 13, 15 and 6 

combination possibilities for the BioSecure DS2, XM2VTS LP1, and LP2 

databases. In the remaining set, three out of the eight biometric matchers of 

BioSecure DS2 database were consolidated at the same time. Hence, 6 multimodal 

combination possibilities were performed to assess the impact of having 

additional pieces of evidence from another biometric trait on the combination 

techniques. The reported results for a given set of experiments will correspond to 

the average EER over all the combination possibilities. 

Note that there is a large number of impostor match score vectors in the 

XM2VTS and BioSecure DS2 databases. Using all these samples to train the SVM 

and the one-class classifiers in UIFI can be computationally expensive and 

increase memory requirements. To avoid this, a subset of 2,000 impostor match 

score vectors is randomly selected to carry out training. The selection process is 

repeated 20 times, and the mean authentication rates over 20 trials will be 

reported.  

4.3.1. Experiment (1): Combining Two Biometric Matchers of the 

BioSecure DS2 Database 

The performance of GMM, k-NN, K-means and SVDD as applied in learning 

user-specific and user-independent descriptions is illustrated in Figure 4.7. 
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Among the user-independent approaches, UIFI consistently outperforms UIFG, 

when any of the one-class classifiers are selected. For example, UIFI with K-

means classifier achieves an average of 6.24% in terms of EER at 𝑓𝑇 = 0.01, while 

that of UIFG is only 9.06% in EER at 𝑓𝑇 = 0.18. Since USFI learns a different 

description for each of the users, it is shown to be better than both its user-

independent counterparts. 

 

       (a) GMM                  (b) k-NN 
 

 

      (c) K-means                 (d) SVDD 

Figure 4.7. Combining two biometric matchers of the BioSecure DS2 database: The average EER 

(%) of UIFI, UIFG, and USFI when applied in conjunction with various one-class classifiers, is 

plotted as a function of fraction rejection 𝑓𝑇 ∈ [0,… ,0.5]. The schemes are also compared with 

state-of-the-art techniques, such as SUM, SVM and LR. 
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shown to be highly sensitive to the choice of 𝑓𝑇 , while the performances of GMM, 

k-NN, and K-means do not change much for 𝑓𝑇 ∈ [0.02,… ,0.5]. 

  

       (a) GMM                 (b) k-NN 

  

       (c) K-means                  (d) SVDD 

Figure 4.8. Combining two biometric matchers of the XM2VTS LP1 database: The average EER 

(%) of UIFI, UIFG, and USFI when applied in conjunction with various one-class classifiers, is 

plotted as a function of the fraction rejection 𝑓𝑇 ∈ [0,… ,0.5]. The schemes are also compared with 

state-of-the-art techniques, such as SUM, SVM and LR. 
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SVM (1.16% EER) and LR (1.14% EER), even when various one-class classifiers 

are used to learn the decision boundaries. 

Among the one-class classifiers used in USFI, SVDD performs best with an 

average EER of 1.49% at 𝑓𝑇 = 0. This is followed by k-NN (1.55% EER for 

𝑓𝑇 ∈ [0.41,… ,0.5]), GMM (1.69% EER at 𝑓𝑇 = 0.44), and K-means (1.70% EER at 

𝑓𝑇 = 0.38). However, while the performances of GMM and K-means do not vary 

significantly for 𝑓𝑇 ∈ [0.01,… ,0.5]), that of k-NN decreases by increasing the 

values of 𝑓𝑇 . SVDD is shown to be more dependent on the choice of such 

parameter, as its performance becomes even lower with respect to that of the 

user-independent schemes when 𝑓𝑇 > 0. 

 

       (a) GMM                   (b) k-NN 
 

 

      (c) K-means               (d) SVDD 

Figure 4.9. Combining two biometric matchers of the XM2VTS LP2 database: The average EER 

(%) of UIFI, UIFG, and USFI when applied in conjunction with various one-class classifiers, is 

plotted as a function of the fraction rejection 𝑓𝑇 ∈ [0,… ,0.5]. The schemes are also compared with 

state-of-the-art techniques, such as SUM, SVM and LR. 
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4.3.3. Experiment (3): Combining Two Biometric Matchers of the 

XM2VTS LP2 database 

Figure 4.9 shows the performance of various match score fusion schemes, as 

applied in combining two biometric matchers of the XM2VTS LP2 database. As 

opposed to Experiments (1) and (2), UIFG is observed to consistently achieve 

lower error rates, with respect to UIFI and USFI. USFI is shown to be better than 

UIFI when k-NN and K-means are employed to learn the decision boundaries. 

However, such method, when using GMM and SVDD to perform the fusion 

demonstrates the poorest verification performance. 

Among the various one-class classifiers used in UIFG, SVDD achieves the 

lowest error rate (0.41% EER at 𝑓𝑇 = 0.05), which is better than the SUM (0.48% 

EER) and SVM (0.44% EER). On the contrary, GMM (0.46% EER at 𝑓𝑇 = 0.21), k-

NN (0.51% EER), and K-means (0.62% EER at 𝑓𝑇 = 0.32) cannot perform as well 

as the state-of-the-art solutions. It is also noted that SVDD cannot provide a good 

result for 𝑓𝑇 ≠ 0.05. In contrast to SVDD, the verification accuracy of k-NN 

appears to be unchanged for 𝑓𝑇 ∈ [0,… ,0.5]. Overall, LR with average EER of 

0.37% outperforms other evaluated schemes in this experiment. 

4.3.4. Experiment (4): Combining Three Biometric Matchers of 

the BioSecure DS2 database 

For the fusion of three biometric matchers from the BioSecure DS2 database, 

Figure 4.10 shows the verification performance for the various one-class 

classification methods, as applied to learn the user-specific and user-independent 

descriptions. It is observed that all of these schemes demonstrate significantly 

improved EER performance, as compared to the two biometrics case in 

Experiment (1). It is therefore beneficial to have additional traits to render the 

biometric decision. Similarly to Experiments (1) and (2), the highest error rates 

are produced by UIFG, while USFI consistently outperforms UIFI.  

Among the various one-class classifiers used in USFI, K-means achieves the 

lowest error rates (2.08% EER at 𝑓𝑇 = 0.03), which is similar to that of the LR. 
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This is followed by SVDD (2.25% EER at 𝑓𝑇 = 0.26), GMM (2.27% EER at 

𝑓𝑇 = 0.14), and k-NN (2.35% EER at 𝑓𝑇 = 0.01). Obviously, USFI even when 

applied in conjunction with the one-class classifiers can provide a better 

performance with respect to the SVM (2.44% EER) and SUM (2.59% EER). Apart 

from SVDD, GMM, k-NN and K-means are able to achieve a consistently high 

performance for 𝑓𝑇 ∈ [0.01,… ,0.5]. 

  

       (a) GMM                 (b) k-NN 

  

    (c) K-means                           (d) SVDD 

Figure 4.10. Combining three biometric matchers of the BioSecure DS2 database: The average 

EER (%) of UIFI, UIFG, and USFI when applied in conjunction with various one-class 

classifiers, is plotted as a function of the fraction rejection 𝑓𝑇 ∈ [0,… ,0.5]. The schemes are also 

compared with state-of-the-art techniques, such as SUM, SVM and LR. 
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decision boundaries. It is also important to evaluate the computational 

complexity of these methods. In most cases, it is possible to train a classifier off-

line and the training time is not of interest. In practical applications however, the 

evaluation time might be critical to improve the degree of user convenience. 

From Table 4.2, it can be observed that when SVDD and k-NN are applied 

in rendering the biometric decision, UIFI is the most computationally expensive. 

UIFG has the lowest evaluation time in Experiments (1) and (4), while in 

Experiments (2) and (3) the least computational complexity is produced by USFI. 

This naturally meets the expectation, shown in Table 4.1, which demonstrates 

that SVDD and k-NN have time complexity of order 𝑁, where 𝑁 is the sample 

size. It has to be noted that in all the experiments, the descriptions of UIFI are 

trained on a subset of 2000 impostor match score vectors. On the other hand, 

UIFG learns its descriptions using 156, 600, 400 and 156 samples in Experiments 

(1), (2), (3) and (4), whereas those numbers, which were used by USFI are 524, 

200, 200 and 524, respectively. The evaluation time of SVDD is much higher than 

that of k-NN since it has to compute the kernel between the input match score 

vector and the support vectors. 

Table 4.2. Evaluation time (ms) of the one-class classification methods, as applied in learning the 

user-specific and user-independent descriptions 

Methods Experiment (1) Experiment (2) Experiment (3) Experiment (4) 

GMM USFI 0.40 0.54 0.54 0.45 

 UIFG 0.30 0.55 0.59 0.31 

 UIFI 0.34 0.57 0.57 0.35 

k-NN USFI 2.79 1.08 1.08 3.11 

 UIFG 0.75 2.25 1.67 0.76 

 UIFI 6.26 6.22 6.22 6.47 

K-means USFI 0.18 0.31 0.32 0.21 

 UIFG 0.17 0.27 0.28 0.17 

 UIFI 0.17 0.28 0.28 0.19 

SVDD USFI 7.78 6.59 6.62 8.00 

 UIFG 7.30 7.07 7.40 7.44 

 UIFI 8.27 7.33 7.60 8.87 
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As opposed to SVDD and k-NN, the evaluation time of GMM and K-means does 

not change much in all the experiments, even when they are applied in learning 

the user-specific or user-independent descriptions. This implies that these 

classifiers are not influenced by the sample size. In general, their computational 

complexity is shown to be dependent only on the number of the mixture 

components and the prototype objects, which can be automatically found by 

adopting cross validation [54] or the batch algorithm (see Section 4.1.3). The 

obtained results in Table 4.2 provide concrete evidence to support the argument, 

made in Section 4.2.2, which suggested that when the decision boundaries are 

learned using the samples exclusively from impostor class, user-specific 

approach is much faster in testing time with respect to user-independent 

counterpart.  

It can be also observed that the evaluation time of all the one-class methods 

is increased in Experiment (4) as compared to that in Experiment (1). The 

straightforward reason for this is that in Experiment (4), additional pieces of 

evidence (biometric traits) have been used for rendering the biometric decision 

and hence, the dimensionality of the feature vectors (i.e., match score vectors) is 

increased. Among the various one-class classifiers, SVDD demonstrates to be the 

most expensive. This is followed by k-NN, while K-means requires the least 

evaluation time. In terms of computational complexity, GMM is in the middle 

between k-NN and K-means.  

4.3.6. Summary and Discussion 

Based on the previous experiments, the following observations can be made: 

 Impostor match score vectors are a more reliable source of information, 

which can be used to learn the descriptions, since UIFI and USFI 

consistently demonstrate better performances with respect to those of UIFG 

in most of the experiments. USFI is also observed to be a better alternative 

as compared to its user-independent counterpart in terms of both 

verification accuracy and computational time. In practice, USFI can be 
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directly applied in those biometric systems, where only data coming from 

the impostor class is available for training the decision boundaries. 

 It is observed that the user-specific score fusion is able to achieve a lower 

error rate as compared to the standard two-class SVM in Experiments (1) 

and (4), which are carried out on the BioSecure DS2 database. However, this 

observation does not hold in Experiments (2) and (3), which were 

conducted on the XM2VTS database. A possible reason for this is that 

XM2VTS database contains only 200 impostor samples for learning the 

user-specific decision boundaries, while the number of impostor samples 

per user in the BioSecure DS2 database is 524. The significant reduction in 

sample size may have a detrimental effect on the overall generalization 

error. This observation will be further analysed in Section 4.4.1. 

 Various one-class classifiers have been applied in performing fusion.  There 

is no one-class classifier that performs best in all of the experiments. GMM 

achieves the lowest error rate in Experiment (1), while SVDD and K-means 

produce the highest performance in Experiments (2), (3), and (4). The 

performance of SVDD is highly sensitive to the choice of the fraction 

rejection 𝑓𝑇 , while those of GMM, k-NN and K-means do not vary 

significantly for 𝑓𝑇 ∈ [0.02,… ,0.5]. In term of time complexity, SVDD and k-

NN are computationally expensive, while GMM and K-means demonstrate 

the least evaluation time.  

4.4. The Influence of Data Characteristics on the 

Performance of One-class Classifiers 

In [44], the influence of sample size, multimodality, non-convexity, subspaces, 

robustness, and score scaling on various one-class classification methods were 

investigated from a pattern recognition perspective. This section is therefore 

dedicated on the factors, which have a significant impact on the practical 

applications of USFI in multimodal biometric systems. These factors include 

sample size and score scaling. Here I do not consider the remaining factors, such 
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as multimodality, non-convexity and subspaces because they are much 

dependent on the nature of biometric data, and cannot be controlled through the 

data collection and post-processing processes. 

4.4.1. Sample Size 

Since USFI uses only samples from the impostor class, the problem of training 

data scarcity due to the limited availability of genuine class samples per user can 

be completely eliminated. However, the number of user-specific impostor match 

scores available for training the description can be relatively small due to the 

time, effort and cost involved in collecting multimodal biometric data [1]. Due to 

these reasons, in this section, the following two essential questions will be 

addressed:  

(1) How does the sample size influence the verification accuracy of various one-class 

classifiers?  

(2) How many of the user-specific impostor samples are needed to guarantee the good 

performance of USFI as compared to other state-of-the-art techniques, such as 

SUM, and SVM?  

  

  (a) Combing two biometric modalities        (b) Combining three biometric modalities 

Figure 4.11. EER (%) of USFI when using various one-class classification methods as a function 

of the number of training samples. 

To this end, the average EER of the one-class classification methods is evaluated 

with varying numbers of impostor samples, used for learning the user-specific 
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which involves a reasonably large number of impostor samples per user. It 

should be noted that addressing the second question will provide obvious 

evidence to support the observations, made in Section 4.3.6. 

Note that SUM is a non-trainable combination rule, while SVM is a user-

independent approach. Both of them are not affected by the sample size. As 

illustrated in Figure 4.11, SVDD seems to be least sensitive to the sample size, 

with respect to other one-class classifiers. In general, the description, learned by 

SVDD can be described by few training samples, known as support vectors. 

Hence, removing all other samples would leave the description unchanged.  

For GMM, k-NN and K-means, increasing the sample size leads to an error 

decrease. GMM and k-NN seem to be mostly influenced by this factor since their 

EERs significantly deteriorate by 30% when the number of user-specific impostor 

match score vectors is decreased from 524 to 50. It is observed that these 

classifiers require at least 400 training impostor samples in order to provide a 

higher matching accuracy with respect to SVM.  

SVDD and K-means cannot achieve a good performance when combining 

two biometric modalities (see Figure 4.11(a)). However, their performances are 

significantly improved in the three biometrics case (see Figure 4.11(b)). These 

classifiers are shown to perform better than SVM when at least 200 training 

samples are used to learn the user-specific decision boundaries. Recall that USFI 

when using any of the one-class classifiers was not able to produce lower error 

rates as compared to SVM in Experiments (2) and (3) in Section 4.3. A 

straightforward rationale for this may be due to the small sample size as the 

Experiments (2) and (3) were carried out on the XM2VTS database, where a 

limited number (i.e., 200) of impostor samples is available for learning the user-

specific descriptions. 

4.4.2. Data Scaling 

It is well-known that the match scores, generated by individual matchers are not 

in the same numerical scale (range). It is generally believed that one-class 
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classifiers are capable of learning the decision boundary irrespective of how the 

feature vectors are generated. However, recent studies have indicated that some 

methods are heavily dependent on the appropriate definition of a well-scaled 

feature [44]. This holds most explicitly for the SVDD, but also for the K-means, k-

NN, and GMM. It has to be noted that the inhomogeneity of the data is more 

notable in the BioSecure DS2 database, where the iris matcher has match scores 

in the range of [0,… ,1], while the range of other matchers is [0,… ,100]. Since this 

characteristic is not really shown in the XM2VTS database, the influence of data 

scaling on the various one-class classifiers will be demonstrated using the 

BioSecure DS2 database. 

  

  (a) Combing two biometric modalities     (b) Combining three biometric modalities 

Figure 4.12. EER (%) of various one-class classification methods, as applied to train the user-

specific score fusion when no normalization is performed and when the F-norm is used prior to 

fusion.  

In Figure 4.12, the EER of various one-class classification methods is shown in 

both cases, when the F-norm is applied to transform the match scores into a 

common scale, and when no normalization is carried out. It is observed that 

SVDD and K-means are most sensitive to the scaling of the data as their 

performances heavily rely on the distance of the test samples from the centre of 

the sphere or the prototype objects. Applying the F-norm prior to fusion can 

lower the error rate of SVDD and K-means by as much as 57%. GMM and k-NN 

are less influenced by the scaling of the data. Nevertheless, a decreasing trend is 

still observed. Hence, score normalization is beneficial in all these cases. 
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  (a) Combing two biometric modalities      (b) Combining three biometric modalities 

Figure 4.13. EER (%) of various one-class classification methods, as applied to train the user-

specific score fusion when the Min-max, Z-norm and F-norm are used prior to fusion. 

Figure 4.13 illustrates the error performance of the one-class classifiers when 

various score normalization techniques, such as Min-max, Z-norm and F-norm 

(see Sections 2.3.2 and 2.4.2) were applied in rescaling the match scores of the 

individual matchers. Clearly, since GMM and k-NN are probability based 

methods, they consistently achieve their best generalization performance 

irrespective of which score normalization techniques are chosen to pre-process 

the data. This somewhat confirms the finding in [106]. On the contrary, the EER 

of SVDD and K-means is much dependent on the choice of the score 

normalization techniques. Applying the F-norm can reduce their error rates by as 

much as 16% with respect to those of the Min-max and Z-norm. Based on these 

empirical results, it can be concluded that selecting the appropriate scaling 

solutions is crucial to the success of SVDD and K-means. In this section, the 

influence of the score scaling on GMM, k-NN, K-means and SVDD was assessed 

in the context of the user-specific score fusion. However, the above observations 

can be applicable to the user-independent counterparts, where the various one-

class classifiers are equally influenced by the scaling factor. 

4.5. Chapter Summary 

In this chapter, I have provided a thorough investigation of various one-class 
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user-independent and user-specific score fusion schemes using data from either 

genuine user or impostor class. It was observed that the user-specific approach is 

a better alternative with respect to the user-independent counterpart. Impostor 

match scores are a more reliable source of information, which can be used to 

learn the descriptions.  

As expected, one-class classifiers are particularly useful in handling the 

extremely imbalanced biometric data sets. They have been demonstrated to be 

either better or comparable to the two-class SVM when the experiments were 

conducted on the BioSecure DS2 database, which has the class imbalance ratio to 

be on the order of 524:1. 

Among the various one-class classifiers, SVDD is able to achieve a good 

performance but is computationally expensive. It is also highly sensitive to the 

selection of the fraction rejection. On the contrary, K-means has the least 

evaluation time, but cannot produce a satisfactory performance in most cases. 

Both SVDD and K-means are heavily influenced by the scaling of the match 

scores, provided by the individual matchers. GMM is the best trade-off between 

verification accuracy and time complexity. However, it is highly sensitive to the 

training sample size. 
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CHAPTER 5   

COMBINING AND BOOSTING 

ONE-CLASS CLASSIFIERS 

In Chapter 4, the use of the various one-class classifiers has been investigated in 

order to advance the classification performance of the extremely imbalanced 

biometric data sets. This chapter aims at systematically improving the 

performance of these methods. Towards this end, the following two 

contributions have been made. In the first contribution, described in Section 5.1, a 

novel adapted score fusion is proposed, which is based on Bayes Decision 

Theory, as applied in combining one-class classifiers to effectively exploit the 

training data from both classes (genuine user/impostor). It also makes use of 

user-specific instead of user-independent score fusion to learn the characteristics 

of the impostor class, and thus, decreasing the degree of class imbalance and 

counteracting the effects of the within-class sub-concepts problem. In the second 

contribution (see Section 5.2), a hybrid boosting algorithm, called r-ABOC is 

developed, which inherits the naturally capabilities of Real AdaBoost in order to 

enhance the system performance without causing overfitting. However, unlike 

the conventional Real AdaBoost, the individual classifiers in r-ABOC are trained 

on the same data set, but with different parameter choices. This does not only 

generate the necessary diversity to make r-ABOC perform well, but also reduces 

the number of user-specified parameters. 

5.1. Combining Descriptions 

This section will start with the related topic of multiple classifier combination. 

Next, the proposed adapted score fusion scheme is presented. Finally, I provide 

an extensive empirical evaluation and discussion of the results. 
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5.1.1. Combining Pattern Classifiers 

By combining descriptions, we aim at a more accurate classification decision at 

the expense of increased complexity [59]. The idea is not to rely on a single 

decision making classifier. Instead, all the designs, or their subsets, are used for 

decision making by combining their individual outputs in order to render a 

consensus decision [95]. This may not only increase the performance, but also the 

robustness of classification [44]. 

A large number of combining methodologies exist, which can be divided 

into two categories, depending on the nature of the outcomes of the individual 

classifiers [44], [129]. In the first category, each classifier outputs hard class labels, 

and these labels can be combined using majority voting [59], [130] and label 

ranking [59]. The second category involves the combination of continuous 

outputs (i.e., the degrees of support for a given input pattern) for each of the 

classes. The continuous outputs can be either posterior probabilities [131] or 

evidences [1], [132].  

In [133], the authors investigated the effect of regularization on averaging 

the estimated posterior probabilities of individual classifiers. They compared 

four different averaged regularized combiners, namely simple averaging, 

bagging, variance-based weighting and variance-based bagging. It was 

empirically reported that bagging and variance-based bagging achieve the lowest 

overall error rates over a wide range of degrees of regularization. Simple 

averaging also improves the performance of the individual classifiers. However, 

the degree of improvement may be application-specific.  

In [134], the Bayes theorem was adopted to combine probability estimates 

of individual classifiers. Under the assumption of statistical independence, the 

outputs of these classifiers can be multiplied and normalized. This is called 

logarithmic opinion pool, which was reported to achieve a significant 

improvement in overall classification accuracy as compared to the individual 

classifiers in the experiments, carried out on the multisource remote 

sensing/geographic data and very high dimensional data.  
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In [95], the authors developed various types of classifier combination rules, 

namely the sum, product, max, min, and median decision rules, which were 

introduced in Section 2.2. It was shown that when the data representations are 

independent, classifiers‟ outcomes should be multiplied to gain maximally from 

the independent representations. Otherwise, they should be summed to reduce 

the errors in the posterior probability estimation. In [44], [135], the sum decision 

rule was observed to be particularly useful in combining classifiers with highly 

correlated feature spaces. 

For the combination of one-class classifiers, another approach is introduced. 

The posterior probabilities have to be estimated using information exclusively 

from the target class. In [136], by assuming a uniform distribution over the 

feature space, several combining schemes, such as mean vote, mean weighted 

vote, product of weighted votes, mean of the estimated probabilities and product 

combination of the probabilities, were evaluated to combine the different types of 

one-class classifiers on a handwritten digit dataset. It was observed that in most 

cases, the product combination of the estimated probabilities achieves the lowest 

error rates, whereas the mean of these probabilities suffers from the fact that the 

area covered by the target class tends to be overestimated, and hence, more 

outlier samples are accepted. Combining various one-class classifiers does not 

always result in better performance when one single classifier is already highly 

accurate or when the posterior probability outcomes of the individual classifiers 

are poorly estimated. 

Unlike [136], this research is not dealing with the problem of combining 

various families of one-class classifiers. Instead, the focus is to combine the 

outputs of the one-class classifiers of the same type to efficiently use both the 

genuine user and impostor class samples, which are always available during 

training in most practical biometric systems. It is clear that training data from 

two classes definitely provide more information to define the description than 

sampling only on one side/data from one class. In general, the following 

criterion can be adopted [45]: 
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arg  max
𝑘∈{𝐺 ,𝐼}

𝛿(𝐬𝑇|𝑤𝑘)  (5.1) 

where 𝛿 𝐬𝑇 𝑤𝑘  can either be 𝑝 𝐬𝑇 𝑤𝑘  or 𝑑 𝐬𝑇 𝑤𝑘  depending on the nature of 

the one-class classifier. Although this criterion is very simple and 

straightforward, it is not based on any solid (Bayesian) foundation and may not 

be suitable for those biometric applications, where the reliability of each of the 

predictions has to be estimated. 

5.1.2. Adapted Score Fusion Scheme 

Assume that 𝐬𝑇  is the test match score vector and 𝑤𝑘  is the target class, where 

𝑘 ∈ {𝐺, 𝐼} indicates the genuine user or impostor class. In Chapter 4, it was shown 

that an one-class classifier of the same type can produce four different outputs 

for a given 𝐬𝑇  of the claimed identity 𝑗. Particularly, GMM and k-NN outputs are 

𝑝 𝐬𝑇 𝑤𝑘  and 𝑝 𝐬𝑇 𝑤𝑗 ,𝑘 , while the SVDD and K-means outputs are 𝑑 𝐬𝑇 𝑤𝑘  and 

𝑑 𝐬𝑇 𝑤𝑗 ,𝑘 . It should be, however, noted that 𝑝 𝐬𝑇 𝑤𝑗 ,𝐺  and 𝑑 𝐬𝑇 𝑤𝑗 ,𝐺  are 

impractical to achieve due to the limited availability of genuine match score 

vectors per user. Here, a novel adapted score fusion scheme is proposed to 

combine the remaining outputs so as to improve system performance. According 

to the Bayes Decision Theory,  

Assign 𝐬𝑇 → 𝑤𝐺 if  

𝑝(𝑤𝐺|𝐬𝑇) ≥ 𝑝(𝑤𝐼|𝐬𝑇) 
(5.2) 

In general, the a posteriori probabilities of 𝐬𝑇  belonging to the genuine user or 

impostor class are computed as 

𝑝 𝑤𝑘  𝐬𝑇 =
𝑝 𝐬𝑇 𝑤𝑘 𝑝(𝑤𝑘)

 𝑝 𝐬𝑇 𝑤𝑘 𝑝(𝑤𝑘)𝑘∈{𝐺 ,𝐼}

 (5.3) 

By assuming that the prior probabilities are equal (𝑝 𝑤𝐺 = 𝑝 𝑤𝐼 ), Equation (5.2) 

can be rewritten as 

Assign 𝐬𝑇 → 𝑤𝐺 if  (5.4) 
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𝑝 𝐬𝑇 𝑤𝐺 ≥ 𝑝 𝐬𝑇 𝑤𝐼  

Or 

Assign 𝐬𝑇 → 𝑤𝐺 if  

𝑝 𝐬𝑇 𝑤𝐺 − 𝑝 𝐬𝑇 𝑤𝐼 ≥ 0  
(5.5) 

Equation (5.5) is only achieved when all types of errors are equally costly. Most 

biometric verification systems assign different costs to the two types of error 

rates, i.e., False Acceptance Rate (FAR) and False Rejection Rate (FRR) [1]. Thus, 

FAR and FRR can be considered as functions of the decision threshold 𝜏. For a 

given 𝜏, Equation (5.5) is as follows 

Assign 𝐬𝑇 → 𝑤𝐺 if  

𝑝 𝐬𝑇 𝑤𝐺 − 𝑝 𝐬𝑇 𝑤𝐼 ≥ 𝜏  
(5.6) 

Equation (5.6) holds when the prior probabilities are assumed to be equal. This 

assumption is, however, not valid in biometric systems due to the highly 

imbalanced class distributions. A better alternative is to replace 𝑝 𝐬𝑇 𝑤𝐼  of the 

user-independent score fusion with 𝑝 𝐬𝑇 𝑤𝑗 ,𝐼  of the user-specific counterpart. 

The rationale is that both the outcomes are based on the descriptions, which 

exploit the same source of information, i.e., impostor match score vectors. This 

not only alleviates the within-class sub-concepts problem in the impostor score 

distribution (see Section 4.2), but also reduces the degree of imbalance for 

different classes. For example, the BioSecure DS2 database has the imbalance 

ratio to be in the order of 524:1. Replacing 𝑝 𝐬𝑇 𝑤𝐼  with 𝑝 𝐬𝑇 𝑤𝑗 ,𝐼  reduces this 

ratio to 5:1. The adapted score fusion scheme can be finally written as: 

Assign 𝐬𝑇 → 𝑤𝐺 if  

𝑝 𝐬𝑇 𝑤𝐺 − 𝑝 𝐬𝑇 𝑤𝑗 ,𝐼 ≥ 𝜏  
(5.7) 

Previously, it is assumed that one-class classifiers directly approximate the 

posterior probabilities of 𝐬𝑇  for the target class. When some classifiers, such as K-
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means, SVDD, are not based on some type of density estimation, the posterior 

probabilities can be estimated by a heuristic mapping as in [44], [136]: 

𝑝 𝐬𝑇 𝑤𝑘 =
1

𝑐1

exp −
𝑑 𝐬𝑇 𝑤𝑘 

𝑐2

  (5.8) 

where 𝑐1 is a normalization constant and 𝑐2 is a scale parameter. Both can be 

fitted to the distribution of 𝑑 𝐬𝑇 𝑤𝑘  of the training (target) class. It is clear that 

the probability estimate decreases to zero when the distance is very large. On the 

contrary, the probability becomes maximal when the distance drops to zero. 

Since the probability is always bounded between 0 and 1, the proposed adapted 

score fusion scheme is bounded between -1 and 1.  

In general, the proposed adapted score fusion scheme can be considered as 

a unified framework for combining the outcomes of one-class classifiers 

regardless of whether they are distance-based or probability-based. It has the 

following three significant advantages. Firstly, it uses one-class methods instead 

of two-class ones to counteract the class imbalance problem, which is 

encountered very often in biometric systems. Secondly, it is believed to be a 

better alternative as compared to the ν-SVM in [51], which is a simple application 

of ν-SVM for multimodal fusion, because it combines user-specific and user-

independent fusions to effectively exploit the entire training data set. Finally, 

since user-specific score fusion is trained using only samples from the impostor 

class, the problem of training data scarcity of the genuine class samples per user 

can be completely eliminated. 

5.1.3. Experimental Setup 

In the reminder of Section 5.1, extensive experiments are carried out using the 

data from the BioSecure DS2 and XM2VTS databases. In order to assess the 

effectiveness of the proposed adapted score fusion scheme, various one-class 

classifiers, described in the Chapter 4, have been tested, i.e., Gaussian Mixture 

Model (GMM), k-Nearest Neighbour (k-NN), K-means clustering (K-means) and 

SVDD (with RBF kernel). For notation purposes, this scheme when used with 
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GMM, k-NN, K-means and SVDD is abbreviated by A-GMM, A-kNN, A-Kmeans 

and A-SVDD, respectively.  

Similarly to Section 4.3, A-GMM, A-kNN, A-Kmeans and A-SVDD will be 

evaluated with different fraction rejections 𝑓𝑇 , which can take values between 0% 

and 50% (i.e., 𝑓𝑇 ∈ [0,… ,0.5]). Next, their performance will be compared with that 

of the state-of-the art solutions. In addition to the user-independent approaches, 

namely the sum of scores (abbreviated as SUM), likelihood ratio based score 

fusion (abbreviated as LR), and two-class SVM (abbreviated as SVM), the 

Adapted User-Dependent Fusion (abbreviated as AUDF) (see Section 2.4.4) is 

also evaluated for comparison purposes. Cross validation [54] was adopted to 

find the optimal parameters for each of these methods.  

The AUDF approach (see Section 2.4.4), presented in this research is based 

on SVM. For this method, there is a trade-off parameter 𝛼 ∈ [0,1], which reflects 

the reliability of user-specific information and thus influences verification 

performance. Particularly, 𝛼 = 0 implies that no user-specific score fusion is 

needed and AUDF is equivalent to SVM, while 𝛼 = 1 indicates that user-specific 

score fusion is beneficial. In order to obtain the best performance from AUDF, 

different values for 𝛼 ∈ [0,1] will be evaluated. The performance of the user-

specific fusion technique, based on SVM is equivalent to that of AUDF for 𝛼 = 1.  

Similarly to Section 4.3, four sets of experiments will be presented. In the 

first three sets, two biometric matchers are combined with respect to the 

multimodal biometric fusion. It should be noted that these sets of experiments 

were based on the BioSecure DS2 and XM2VTS databases, which differ not only 

in term of the class imbalance ratio, but also in the number of genuine user 

samples, which can be used to learn the user-specific descriptions (i.e., 1 in 

BioSecure DS2, 3 in XM2VTS LP1 and 2 in LP2). Hence, the possible effect of the 

number of genuine match scores per user on the verification performance is also 

evaluated. In the remaining set, three out of the eight biometric matchers of 

BioSecure DS2 database are combined at the same time. The performance in 

terms of Equal Error Rate (EER) and relative change of EER will be evaluated. In 
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Section 4.3, it was observed that no one-class classifiers, even when applied to 

learn the user-specific descriptions in order to render a biometric decision, were 

able to achieve a higher matching accuracy than LR. Due to this reason, LR is 

selected as the baseline system to estimate the relative change of EER. The 

relative change of EER will be illustrated using the box plot (i.e., a non-

parametric approach showing the median, the 25-th and 75-th, as well as the 5-th 

and 95-th percentiles of the data). Obviously, a negative (positive) change of EER 

implies a performance improvement (decrease), whereas zero change implies no 

change in performance. 

5.1.4. Experiment (1): Combining Two Biometric Matchers of the 

BioSecure DS2 Database 

The performance of SUM, SVM, LR, AUDF, A-GMM, A-kNN, A-Kmeans and A-

SVDD schemes is illustrated in Figure 5.1(a). Note that the effect of two tunable 

parameters is considered in the Figure. The range of fraction rejection 𝑓𝑇  is 

considered for A-GMM, A-kNN, A-Kmeans and A-SVDD and displayed at the 

bottom of the figure, while 𝛼 is considered for the case of AUDF and displayed at 

the top of the figure.  

As it can be seen, LR performs best among all user-independent schemes, as 

it provides an average EER of 5.09%. This is followed by SVM (5.24%) and SUM 

(5.39%). AUDF is observed to outperform user-independent approaches for 

𝛼 ∈ [0.15, . . ,0.75]. When 𝛼 = 1, its performance reduces to that of the user-

specific score fusion. It is noted that user-specific score fusion cannot provide a 

good performance (EER of 8.48%) since there is only one genuine match score per 

user available to train the decision boundary for each user. AUDF achieves its 

lowest average EER (4.76%) at 𝛼 = 0.5, which is similar to that of A-SVDD at 

𝑓𝑇 = 0.16. 

A-Kmeans achieves its lowest error rate, i.e., an average EER of 5.06% at 

𝑓𝑇 = 0.35. The performances of A-kNN and A-GMM do not change much for 

𝑓𝑇 ∈ [0.01, . . ,0.5]. The lowest EER (4.56%) for A-kNN is found at 𝑓𝑇 = 0.19, while 
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that of A-GMM (EER of 4.51%) is found at 𝑓𝑇 = 0.17. The authentication 

performance of A-GMM demonstrates relative EER improvements of 

approximately 5%, 11%, 14% and 16% with respect to AUDF, LR, SVM and SUM, 

respectively. 

 

(a) 

 

(b) 

Figure 5.1. Combining two biometric matchers of the BioSecure DS2 database: (a) Average EER 

(%) for different learning settings (i.e., fraction rejection 𝑓𝑇, and trade-off parameter 𝛼), (b) 

Relative change of EER (%) across 13 combination possibilities of SUM, SVM, AUDF (𝛼 =

0.5), A-GMM (𝑓𝑇 = 0.17), A-kNN (𝑓𝑇 = 0.19), A-Kmeans (𝑓𝑇 = 0.35) and A-SVDD (𝑓𝑇 =

0.16) with respect to LR. 
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In terms of relative change of EER, shown in Figure 5.1(b), it is observed that 

AUDF, A-GMM, A-kNN and A-SVDD demonstrate an improvement over the 

baseline system, i.e., LR, since their median values are less than zero. AUDF has 

a similar median value to that of A-SVDD. The lowest median value, which 

indicates the best performance, is attributed to A-GMM. 

 

(a) 

 

(b) 

Figure 5.2. Combining two biometric matchers of the XM2VTS LP1 database: (a) Average EER 

(%) for different learning settings (i.e., fraction rejection 𝑓𝑇, and trade-off parameter 𝛼), (b) 

Relative change of EER (%) across 15 combination possibilities of SUM, SVM, AUDF (𝛼 =

0.6), A-GMM (𝑓𝑇 = 0.02), A-kNN (𝑓𝑇 = 0.03), A-Kmeans (𝑓𝑇 = 0.43) and A-SVDD (𝑓𝑇 =

0.06) with respect to LR. 
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5.1.5. Experiment (2): Combining Two Biometric Matchers of the 

XM2VTS LP1 Database 

In Figure 5.2(a), the performance of LR (1.14% EER) is observed to be either 

superior or comparable to that of SVM (1.16% EER), and SUM (1.31% EER). The 

evaluation of the influence of parameters was carried out as in Figure 5.1(a). 

Compared to these techniques, A-GMM has a lower EER (1.04%) at 𝑓𝑇 = 0.02. A 

similar EER is obtained by A-SVDD when 𝑓𝑇 = 0.06. However, while the good 

performance of A-GMM is consistently achieved for 𝑓𝑇 ∈ [0.01,… ,0.5], that of the 

A-SVDD significantly decreases when 𝑓𝑇 ≠ {0.05,0.06}.  

A-Kmeans has its best authentication accuracy (0.99% EER) at  𝑓𝑇 = 0.43. 

The lowest EER (0.93%) is achieved by A-kNN at 𝑓𝑇 = 0.03. In addition, for 

𝑓𝑇 ∈ [0.01,… ,0.5], A-kNN is better than LR, SVM and SUM with a relative 

improvement in terms of average EER of 18%, 18% and 29%, respectively. An 

EER of 0.93% is also achieved by AUDF at 𝛼 = 0.6 since more (three) genuine 

match score vectors per user were used for training the user-specific fusion. 

However, the error rate of the user-specific score fusion (see Figure 5.2(a), 

performance of the AUDF at 𝛼 = 1) is still higher than that of the user-

independent counterpart, i.e., SVM. 

As illustrated in Figure 5.2(b), the highest performance in terms of relative 

change of EER is attributed to AUDF and A-kNN. These are followed by A-

Kmeans, A-GMM, A-SVDD, and SUM. All these approaches have median values 

less than zero, and thus, demonstrate a performance improvement over LR. 

5.1.6. Experiment (3): Combining Two Biometric Matchers of the 

XM2VTS LP2 Database 

Similarly to Experiments (1), and (2), for A-GMM, A-kNN, A-Kmeans and A-

SVDD, various fraction rejection values were tested (𝑓𝑇 ∈ [0,… ,0.5]), and for 

AUDF, the trade-off parameter 𝛼 was chosen in the interval of [0,… ,1]. 

In Figure 5.3(a), it is observed that LR with an average EER of 0.37% 

outperforms other user-independent approaches, including SVM (0.44% EER) 
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and SUM (0.48% EER). The best performance for AUDF (0.27% EER) is obtained 

at 𝛼 = 0.75, which is similar to that of A-GMM at 𝑓𝑇 = 0.01. User-specific score 

fusion, which is equivalent to AUDF at 𝛼 = 1, cannot produce a better 

performance, as compared to user-independent counterpart, i.e., SVM.  

 

(a) 

 

(b) 

Figure 5.3. Combining two biometric matchers of the XM2VTS LP2 database: (a) Average EER 

(%) for different learning settings (i.e., fraction rejection 𝑓𝑇, and trade-off parameter 𝛼), (b) 

Relative change of EER (%) across 6 combination possibilities of SUM, SVM, AUDF (𝛼 =

0.75), A-GMM (𝑓𝑇 = 0.01), A-kNN (𝑓𝑇 = 0.05), A-Kmeans (𝑓𝑇 = 0.18) and A-SVDD 

(𝑓𝑇 = 0.05) with respect to LR. 
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A-SVDD has its lowest EER (0.33%) at 𝑓𝑇 = 0.05, while that of A-Kmeans is 0.36% 

at 𝑓𝑇 = 0.18. A-SVDD seems to be highly sensitive to the choice of fraction 

rejection as it cannot provide a satisfactory results for 𝑓𝑇 ≠ 0.05. It is observed 

that A-kNN, A-Kmeans and A-GMM are able to achieve a low EER for different 

𝑓𝑇  values. The highest authentication accuracy (0.21% EER) is obtained by A-

kNN with 𝑓𝑇 = 0.05, providing a relative EER improvement of 22%, 43%, 52% 

and 56% with respect to AUDF, LR, SVM and SUM, respectively.  

Concerning the relative change of EER in Figure 5.3(b), A-Kmeans has a 

lower median value (i.e., better performance) compared to that of SUM, SVM 

and LR. A-SVDD, AUDF and A-GMM are shown to be better relative to A-

Kmeans, while the lowest median is achieved by A-kNN. 

5.1.7. Experiment (4): Combining Three Biometric Matchers of 

the BioSecure DS2 Database 

For the fusion of three biometric matchers from the BioSecure DS2 database, 

Figure 5.4(a) shows the verification performance for the various approaches. All 

these methods demonstrate significantly improved EER performance, compared 

to the two biometrics cases in Experiment (1). Particularly, a relative 

improvement of 60% is produced by A-Kmeans, while those of A-SVDD, A-

GMM and A-kNN are 59%, 58%, and 58%, respectively. 

Among the user-independent techniques, LR has the lowest EER (2.08%), 

while those of SUM, and SVM are 2.59%, and 2.44%, respectively. The lowest 

EER (2.15%) for AUDF is at 𝛼 = 0.7.  Surprisingly, this error rate is higher than 

that of LR. A straightforward reason for this is that AUDF makes use of the SVM 

based user-specific and user-independent score fusions, which do not produce a 

good performance for this dataset.  

A-Kmeans, A-SVDD, A-GMM and A-kNN are better than other techniques, 

providing a relative improvement of 9%, 12%, 22% and 27% with respect to LR, 

AUDF, SVM and SUM, respectively. The performance of these techniques for 

various values of 𝑓𝑇  demonstrates similar trends to those in Experiment (1). 
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(a) 

 

(b) 

Figure 5.4. Combining three biometric matchers of the BioSecure DS2 database: (a) Average EER 

(%) for different learning settings (i.e., fraction rejection 𝑓𝑇, and trade-off parameter 𝛼), (b) 

Relative change of EER (%) across 6 combination possibilities of SUM, SVM, AUDF (𝛼 = 0.7), 

A-GMM (𝑓𝑇 = 0.01), A-kNN (𝑓𝑇 = 0.01), A-Kmeans (𝑓𝑇 = 0.42) and A-SVDD (𝑓𝑇 = 0.01) 

with respect to LR. 

With regards to the relative change of EER (see Figure 5.4(b) for more details), A-

Kmeans is demonstrated to be better than SVM, SUM, LR and AUDF. However, 

its performance is still lower relatively to that of A-SVDD and A-kNN. The 

lowest median value is provided by A-GMM. 
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5.1.8. Summary and Discussion 

Tables 5.1 and 5.2 summarize the findings of the previous experiments, by 

ranking the techniques based on their performance in terms of the average EER, 

and relative change of EER. The following observations can be made:  

Table 5.1. Ranking of different approaches with respect to the EER 

 Experiment (1) Experiment (2) Experiment (3) Experiment (4) Mean 

A-GMM 1 4 2 1 2.00 

A-kNN 2 1 1 1 1.25 

A-Kmeans 5 3 5 4 4.25 

A-SVDD 3 4 4 3 3.50 

SUM 8 8 8 8 8.00 

SVM 7 7 7 7 7.00 

LR 6 6 6 5 5.75 

AUDF 3 1 2 6 3.00 

Table 5.2. Ranking of different approaches with respect to the relative change of EER 

 Experiment (1) Experiment (2) Experiment (3) Experiment (4) Mean 

A-GMM 1 4 2 1 2.00 

A-kNN 2 1 1 2 1.50 

A-Kmeans 7 3 5 4 4.75 

A-SVDD 3 4 3 2 3.00 

SUM 8 6 8 8 7.50 

SVM 6 7 7 7 6.75 

LR 5 7 6 5 5.75 

AUDF 4 1 3 6 3.50 

 The best authentication accuracy is achieved by A-kNN. This is followed by 

A-GMM, AUDF, A-SVDD, A-Kmeans, LR, and SVM. As compared to these 

techniques, SUM typically provides higher error rates due to the simplicity 

of the fusion rule [1]. 

 In Chapter 4, no one-class classifiers, even when applied in learning the 

descriptions for each of the users, were shown to be better as compared to 

LR, since they use samples exclusively from one class (either genuine user 
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or impostor class) to train the descriptions. On the contrary, the 

performance in terms of EER of A-GMM, A-kNN, A-Kmeans and A-SVDD 

is significantly better than LR, although the base classifier is a one-class 

method; however, these use training data from both classes. 

 The state-of-the-art user-specific score fusion approach, considered in this 

research, is equivalent to AUDF at 𝛼 = 1. In brief, user-specific score fusion 

cannot provide a lower error rate relative to the user-independent 

counterpart, i.e., SVM for all the experiments. The performance of AUDF is 

improved by increasing the number of samples in the training of the 

decision boundary specific to a user. For this reason, it is observed that 

AUDF has a comparable performance to that of the A-kNN in Experiment 

(2), where three genuine match score vectors are available for each user, 

enrolled in the system. However, such method requires careful selection of 

the trade-off parameter 𝛼 ∈ [0,1], which is shown to be influenced by the 𝐶 

parameter of SVM [15], [31], and the classification problem at hand. For 

example, the optimal choice of 𝛼 is different for Experiments (1) to (4), 

where SVMs are trained using the same training data set, parameters, and 

kernel width. In addition, the lowest EER is achieved using a smaller 𝛼 

value in Experiment (2), as compared to those in Experiments (3), and (4), 

although the user-specific information in Experiment (2) is more reliable 

due to the higher number of genuine match score vectors per user, which 

can be used during training. A-GMM, A-kNN, A-Kmeans and A-SVDD 

combine both user-specific and user-independent information, similarly to 

AUDF, but do not require the choice of a trade-off parameter. 

 A-GMM, A-kNN, A-Kmeans and A-SVDD have a single parameter to 

adjust, i.e., fraction rejection value 𝑓𝑇 ∈ [0,… ,0.5]. It was demonstrated that 

A-SVDD is highly sensitive to the selection of 𝑓𝑇 . As opposed to A-SVDD, 

the performance of A-GMM, A-kNN and A-Kmeans does not change 

significantly for different 𝑓𝑇 ∈ [0.01,… ,0.5], implying that these approaches 

are more robust to the selection of this parameter. 
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5.2. Boosting for Learning Imbalanced Biometric Data  

Imbalance learning problems have drawn growing research interest due to their 

classification difficulty caused by the imbalanced class distributions. It should be 

noted that research solutions to handle the class imbalance are not solely in the 

form of one-class learning. For instance, Real AdaBoost [58] is the technique, 

which can be used to improve the classification performance of any classifier 

regardless of whether the data is imbalanced or not [34-38]. The aim of Real 

AdaBoost is to combine multiple (weak) classifiers in order to develop a highly 

accurate (strong) classifier system [58]. It is known to reduce bias and variance 

errors as it focuses on the samples, which are harder to classify. Particularly, Real 

AdaBoost weighs each sample to reflect its importance, and places the most 

weights on those samples, which are most often misclassified by the preceding 

classifiers [115]. Real AdaBoost is very effective at handling the class imbalance 

problem because the small class samples are most likely to be misclassified.  

In this section, a novel hybrid boosting algorithm, called r-ABOC, is 

developed, which is capable of exploiting the natural capabilities of both Real 

AdaBoost (r-AB) and One-class Classification (OC) to address the problem of 

highly imbalanced biometric data sets. The proposed r-ABOC works by first 

considering the classifier, given in Equation (5.6), as the weak classifier. The 

paradigm of Real AdaBoost is then applied to further improve the performance 

of this classifier without causing overfitting. It has been recognized that diversity 

is a key requirement for the success of Real AdaBoost. Conventional Real 

AdaBoost generates diversity by training weak classifiers on different data 

subsets, constructed from the original training data. In the proposed paradigm, a 

new training procedure is introduced to train these classifiers on the same data 

set, but with different parameter choices. The target is to reduce the number of 

user-specified parameters, while still generating the diversity necessary to enable 

the classifier ensemble to perform well. Extensive experiments are carried out on 

the BioSecureDS2 and XM2VTS benchmark databases, which demonstrate that 
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the proposed r-ABOC algorithm achieves significantly improved results in terms 

of Half Total Error Rate (HTER) as compared to state-of-the-art solutions. 

The remainder of this section will start with a thorough discussion on the 

choice of the weak classifier algorithm. The proposed r-ABOC and other related 

classifier ensemble learning algorithms are then presented in Sections 5.2.2-5.2.4. 

Finally, sections 5.2.6-5.2.11 report the extensive experiments using the XM2VTS 

and BioSecure DS2 databases and discuss the results. 

5.2.1. Weak Classifier Algorithm 

The weak classifier algorithm, developed in this research, consists of one-class 

classifiers, trained using data from both the genuine user and impostor classes. A 

large number of one-class methods have been developed in the literature. 

Among others, Gaussian Mixture Model (GMM) has been demonstrated to 

successfully estimate the biometric match score distributions, and converge 

indeed to the true density with a sufficient number of training samples [90]. In 

sections 4.3.5, it was observed that the use of GMM also results in significant 

saving in testing time with respect to other classifiers, such as SVDD and k-NN. 

Hence, GMM is selected as the initial one-class classifier in this research.  

In general, it is possible to combine the one-class GMMs using Equations 

(5.6), (5.7) or the log-likelihood ratio (see Section 2.3.1). Although the log-

likelihood ratio is the optimal test for deciding that the test match score vector 𝐬𝑇  

corresponds to a genuine user or an impostor, it is not for use as weak classifiers 

in boosting algorithms, including r-ABOC. This is due to fact that the log-

likelihood ratio is numerically unstable, leading to very large updates in the 

margins of some of the training samples. This, according to margin-based theory, 

can have a detrimental effect on the overall generalization error [58], [170]. On 

the contrary, Equations (5.6) and (5.7) have their continuous outputs to be in the 

range [−1, +1] and hence, offer a distinct advantage especially when stability is 

an issue. Equation (5.7) is better alternative because it is capable of learning a 

different description for each of the users in the system, and thus, counteracting 

the within-class sub-concepts problem in the impostor class distribution. Its main 
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drawback is however the need for substantial amount of match scores to train 

and validate the user-specific descriptions. Practical biometric systems only 

contain a limited number of genuine user samples per user in the training data 

sets. If all data is used for training and the same data is used for validation, the 

classification model might be over-trained so that it perfectly learns the available 

data and fails on unseen data [59]. It has to be also noted that a reliable model 

validation is a key requirement for the success of classifier ensemble learning 

algorithms. Due to these reasons, Equation (5.6) will be used as the weak 

classifier in the present work. 

As previously demonstrated, such a classifier is naturally quite sensitive to 

the choice of the fraction rejection value. It is well-known that biometric data 

suffers from various forms of degradation, caused by being sampled in different 

circumstances, such as the manner a user interacts with a biometric device, the 

changes in the acquisition environment, and even the natural alteration of 

biometric traits due to sickness [71]. As a result, the fraction rejection value, 

obtained through an optimization process on the training set [44] does not 

necessarily provide optimal performance on the testing set. In order to eliminate 

the risk of making a bad choice for the fraction rejection for the problem at hand, 

a possible solution is to generate a number of classifiers with different values for 

this parameter and combine their outcomes to form the final hypothesis.  

5.2.2. The Proposed r-ABOC Algorithm 

Classifier ensemble learning has received much attention in recent years to solve 

complex recognition problems [59], [115]. This increased interest has been 

reflected in the introduction of a series of annual International Workshops on 

Multiple Classifier Systems, which have been held since 2000. A well researched 

survey in this field can be found in [59]. As already mentioned, the main 

motivation of classifier ensembles is to create a highly accurate classification 

model by combining multiple weak classifiers, which are only moderately 

accurate. This idea follows the human natural behaviour, which tends to seek 

several opinions before making any important decision. 
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In the literature, the effect of combining classifiers is studied in terms of 

statistical concepts of bias-variance decomposition. There is a trade-off between 

bias and variance as decreasing the bias will likely result in a higher variance, 

and vice versa. For example, increasing 𝑘 in the k-NN classifier is believed to 

reduce the variance, and increase the bias [59]. For the decision tree, heavily 

pruned trees will have smaller variance and larger bias than trees, which are 

fully grown to classify correctly all training samples. In general, bias is associated 

with underfitting, while variance is associated with overfitting [59], [115], [137]. 

The improved performance of a classifier ensemble is therefore often a result of a 

reduction in variance, rather than a reduction in bias. 

Boosting is known as one of the most successful classifier ensemble 

algorithms, because it is able to reduce bias (in addition to variance), and 

similarly to SVM boost the distance margin [34], [35]. Boosting can be applicable 

to most classification system and is capable of combining multiple classifiers 

with little risk of model overfitting [37]. Discrete AdaBoost [143] and Real 

AdaBoost [58] are the most representative boosting algorithms. Real AdaBoost is 

the generalization of Discrete AdaBoost. Real AdaBoost improves over Discrete 

AdaBoost because it generates not only hard class labels, but also real valued 

“confidence-rated” predictions, and thus, is more tolerant to classification noise, 

which naturally appears in biometric applications [169].  

As previously mentioned, r-ABOC algorithm is based on Real AdaBoost 

The key to the success of Real AdaBoost is to build a set of diverse classifiers 

using different subsets of the training data [34-38]. The proposed r-ABOC 

algorithm offers the same advantages as Real AdaBoost. It is, however, different 

from the conventional Real AdaBoost, since the diverse classifiers in r-ABOC are 

trained with different fraction rejections. 

Let 𝐗 =   𝐬1,𝑦1 ,… ,  𝐬𝑁 ,𝑦𝑁   be a sequence of 𝑁 training samples, where 𝐬𝑖  

is a match score vector and 𝑦𝑖  is its associated class label, i.e., 𝑦𝑖 ∈ {−1, +1} (-1 

denotes an impostor and +1 denotes a genuine user). At the 𝑡𝑡  iteration, 

𝑡 ∈ [1,… , T], the weak classifier‟s continuous outcomes for the match score vector 
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𝐬𝑇  can be generated as 𝑔𝑡 𝐬𝑇 = 𝑝 𝐬𝑇 𝑤𝐺 − 𝑝(𝐬𝑇|𝑤𝐼). Assume that 𝐷𝑡(𝑖) is the 

weight assigned to 𝐬𝑖 . The value of the fraction rejection 𝑓𝑇  will be selected in the 

range [0.01,… ,0.01 × T], where 0.01 is equivalent to 1% of the most dissimilar 

target samples that the classifier would reject during training. This level of detail 

is to ensure that the individual classifiers are not over-trained, while the single 

best classifier is still obtained.  

Given 𝐗 =   𝐬1,𝑦1 ,… ,  𝐬𝑁 ,𝑦𝑁  ; 𝑦𝑖 ∈ {−1, +1}. 

1) Initialize 𝐷1 𝑖 = 1/𝑁 

2) For 𝑡 = 1,… , T 

(a) Train the classifier 𝑔𝑡 𝐬𝑇 = 𝑝 𝐬𝑇 𝑤𝐺 − 𝑝(𝐬𝑇|𝑤𝐼) using 𝑓𝑇 = 0.01 × 𝑡 

(b) Determine the weight updating parameter 𝛼𝑡  

𝛼𝑡 =
1

2
log

 𝐷𝑡 𝑖  1 + 𝑦𝑖𝑔𝑡 𝐬𝑖  
𝑁
𝑖=1

 𝐷𝑡 𝑖  1− 𝑦𝑖𝑔𝑡 𝐬𝑖  
𝑁
𝑖=1

 

(c) Update and normalize 𝐷𝑡+1 𝑖  such that  

𝐷𝑡+1 𝑖 =
𝐷𝑡 𝑖 exp −𝛼𝑡𝑦𝑖𝑔𝑡 𝐬𝑖  

𝛧𝑡
 

where 𝛧𝑡 =  𝐷𝑡(𝑖)exp(−𝛼𝑡𝑦𝑖𝑔𝑡 𝐬𝑖 )
𝑁
𝑖=1  

3) Output the final hypothesis 

G 𝐬𝑇 = 𝑠𝑖𝑔𝑛   𝛼𝑡𝑔𝑡 𝐬𝑇 

T

𝑡=1

  

Figure 5.5. The process of r-ABOC algorithm. 

Figure 5.5 illustrates the process of r-ABOC algorithm. In step (1), the weights of 

each sample are selected to be uniformly distributed for the entire training data 

set. Thus, the weights of the samples are initialized to 1/𝑁.  In step (2), T 

classifiers are trained, as shown in steps (2a)-(2c). In step (2a), the classifier 𝑔𝑡 𝐬𝑇  

is trained with a different value of 𝑓𝑇 = 0.01 × 𝑡. In step (2b), the weight updating 

parameter 𝛼𝑡  is selected. Next, the weight distributions for the next iteration (i.e., 

𝐷𝑡+1(𝑖)) are updated and normalized (step (2c)). After T iterations of step (2), the 
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final hypothesis G 𝐬𝑇  is obtained as a linear combination of the T classifiers 

𝑔𝑡 𝐬𝑇  (step (3)), i.e., G 𝐬𝑇 = 𝑠𝑖𝑔𝑛  𝛼𝑡𝑔𝑡 𝐬𝑇 
T
𝑡=1  . 

As it can be seen, it is very essential to choose the appropriate value of 𝛼𝑡  at 

each round of r-ABOC. By unravelling the weight updating rule in step (2c), 

𝐷T+1(𝑖) can be written as 

𝐷T+1(𝑖) =
exp(− 𝛼𝑡𝑦𝑖𝑔𝑡 𝐬𝑖 

T
𝑡=1 )

𝑚 𝑍𝑡
T
𝑡=1

 (5.9) 

 

where 

Ζ𝑡 =  𝐷𝑡(𝑖)exp(−𝛼𝑡𝑦𝑖𝑔𝑡 𝐬𝑖 )

𝑁

𝑖=1

 (5.10) 

Moreover, if G 𝐬𝑖 ≠ 𝑦𝑖, then  𝛼𝑡𝑦𝑖𝑔𝑡 𝐬𝑖 ≤ 0T
𝑡=1 , implying that 

exp(− 𝛼𝑡𝑦𝑖𝑔𝑡 𝐬𝑖 
T
𝑡=1 ) ≥ 1. Thus, 

 G 𝐬𝑖 ≠ 𝑦𝑖 ≤ exp(− 𝛼𝑡𝑦𝑖𝑔𝑡 𝐬𝑖 

T

𝑡=1

) (5.11) 

where  G 𝐬𝑖 ≠ 𝑦𝑖 = 1 if G 𝐬𝑖 ≠ 𝑦𝑖, and  G 𝐬𝑖 ≠ 𝑦𝑖 = 0 otherwise. Combining 

Equations (5.9) and (5.11) gives the bound on training error since  

1

𝑁
  G 𝐬𝑖 ≠ 𝑦𝑖 

𝑁

𝑖=1

≤
1

𝑁
 exp(− 𝛼𝑡𝑦𝑖𝑔𝑡 𝐬𝑖 

T

𝑡=1

)

𝑁

𝑖=1

 (5.12) 

Hence, 

1

𝑁
  G 𝐬𝑖 ≠ 𝑦𝑖 

𝑁

𝑖=1

≤   𝛧𝑡
𝑡

 𝐷T+1(𝑖)

𝑁

𝑖=1

 (5.13) 

Since  𝐷T+1 𝑖 = 1𝑁
𝑖=1 , Equation (5.13) can be rewritten as 

1

𝑁
  G 𝐬𝑖 ≠ 𝑦𝑖 

𝑁

𝑖=1

≤ 𝛧𝑡
𝑡

 (5.14) 
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Equation (5.14) suggests that in order to minimize the training error, a reasonable 

approach might be to minimize 𝛧𝑡  at each round of r-ABOC. Since 𝑔𝑡 𝐬𝑖 ∈

[−1, +1], implying that 𝑦𝑖𝑔𝑡 𝐬𝑖 ∈ [−1, +1], Ζ𝑡  in Equation (5.10) is bounded as 

Ζ𝑡 ≤ 𝐷𝑡(𝑖) 
1 + 𝑦𝑖𝑔𝑡 𝐬𝑖 

2
exp −𝛼𝑡 +

1− 𝑦𝑖𝑔𝑡 𝐬𝑖 

2
exp 𝛼𝑡  

𝑁

𝑖=1

 (5.15) 

The value of 𝛼𝑡  is then obtained by zeroing the first derivative of the right hand 

side of Equation (5.15), i.e., 

𝛼𝑡 =
1

2
log

 𝐷𝑡 𝑖  1 + 𝑦𝑖𝑔𝑡 𝐬𝑖  
𝑁
𝑖=1

 𝐷𝑡 𝑖  1− 𝑦𝑖𝑔𝑡 𝐬𝑖  
𝑁
𝑖=1

 (5.16) 

The aim of the weight updating scheme in step (2c) is to decrease the weight of 

training samples, which are correctly classified and increase the weight of the 

opposite part [36], [37]. Hence, 𝛼𝑡  should be a positive number. To ensure 𝛼𝑡 > 0, 

the following condition should hold:  

 𝐷𝑡 𝑖 (1 + 𝑦𝑖𝑔𝑡 𝐬𝑖 )
𝑁

𝑖=1
>  𝐷𝑡 𝑖 (1− 𝑦𝑖𝑔𝑡 𝐬𝑖 )

𝑁

𝑖=1
 (5.17) 

5.2.3. Diversity among weak classifiers 

The lack of performance improvement could be attributed to the lack of diversity 

in the ensemble [59], [60], [150], [151]. In general, an ensemble is not needed if 

there is a perfect classifier, which makes no errors. However, since classifiers do 

make errors, then a potential classifier should be complemented with others, 

which make errors on different samples. In [59], it was also observed that if all 

classifiers in the ensemble make errors on the same samples, combining them 

would result in overfitting. Hence, diversity of the classifier outputs is a key 

factor for the success of the classifier ensemble learning algorithms [60]. 

As previously mentioned, r-ABOC is different from the conventional Real 

AdaBoost because it builds a set of diverse classifiers using the entire training 

data set, but with different fraction rejections. This section is dedicated to 
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demonstrate that the new training procedure is capable of generating the 

necessary diversity to make r-ABOC work efficiently. 

Table 5.3. Average HTER (%) of r-ABOC and the conventional Real AdaBoost, as applied to 

combine T ∈ {5,10,15,20,25,50} classifiers over the four sets of experiments 

 T = 5 T = 10 T = 15 T = 20 T = 25 T = 50 

Experiment (1) 

r-ABOC 4.57 4.38 4.36 4.36 4.36 4.36 

Real AdaBoost 6.13 6.25 6.14 6.11 6.11 6.11 

Experiment (2) 

r-ABOC 1.01 0.98 0.98 0.98 0.98 0.98 

Real AdaBoost 1.08 1.05 1.05 1.04 1.04 1.04 

Experiment (3) 

r-ABOC 0.29 0.29 0.29 0.29 0.29 0.29 

Real AdaBoost 0.36 0.32 0.32 0.32 0.32 0.32 

Experiment (4) 

r-ABOC 1.90 1.89 1.85 1.85 1.85 1.85 

Real AdaBoost 2.47 2.38 2.38 2.38 2.38 2.38 

It should be noted that measuring diversity is not straightforward since there is 

no formal definition of what is perceived as diversity [59]. Hence, in this 

research, a MATLAB program was implemented to directly gauge the 

conventional Real AdaBoost and r-ABOC as applied to combine 

T ∈ {5,10,15,20,25,50} classifiers. The classifiers in Real AdaBoost were learned 

on different data subsets, which were generated by randomly removing the 

impostor samples until the number of impostor and genuine user samples are 

equal [35]. The fraction rejection value in r-ABOC was selected in the range 

[0.01,… ,0.01 × T]. From Table 5.3, the following observations can be made: 

 The conventional Real AdaBoost is not able to provide a satisfactory 

performance in all the experiments. Increasing T does not lead to a 

significant change in its error rates. In some cases (see Experiment (1)), 

doing so may result in overfitting. A possible reason for this is due to the 

lack of variability/diversity among the individual classifiers in Real 

AdaBoost. Moreover, the fraction rejection value, used in training these 
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classifiers is optimised on the training set. It cannot guarantee the optimal 

performance on the testing set.  

 The proposed r-ABOC consistently produces higher verification accuracy 

with respect to that of Real AdaBoost. This implies that the new training 

procedure is a better alternative in order to generate the diversity in the 

classifier combination. The issue here is whether the combination is 

justified. Would it be able to achieve lower error rates with respect to the single 

best classifier? These questions will be addressed in Sections 5.2.6-5.2.11 

5.2.4. Other Related Classifier Ensemble Approaches 

Many alternative algorithms can be applied in classifier ensemble learning. 

Bagging [142] has been also reported to be successful at the bias and variance 

reduction. Bagging is known as bootstrap aggregating. Its basic aim is to fit and 

combine T weak classifiers using T new training sets by uniformly sampling 

samples from the original training data with replacement. Hence, bagging is not 

suitable for combining the classifiers, which are generated using different values 

of the fraction rejection. 

Random Forest [138] is a variant of Bagging. The difference lies in the 

construction of the decision tree. The best feature at each node is selected among 

𝑀 randomly chosen features, where 𝑀 is the parameter of the algorithm. 

Random Forest specially designed for decision tree classifiers. It also requires a 

sufficient number of data features in order to perform well, and hence, reducing 

its applicability to multimodal biometric score data with only two or three 

features.  

In [37], [145], several cost-sensitive boosting techniques for imbalance 

learning, such as AdaCost, AdaC1, AdaC2, and AdaC3 have been proposed, 

which are motivated by the work of Discrete AdaBoost. Their focus is on how to 

introduce the cost into the weight updating rule of the Discrete AdaBoost and 

how to find an appropriate cost matrix. In general, the costs denote the uneven 

classification importance among classes, such that the boosting algorithms can 
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intentionally bias the learning towards the small class, and thus, improving the 

classification performance on it [37]. While various heuristic manipulations are 

available, these manipulations do not guarantee the asymptotic convergence to a 

good cost-sensitive decision rule [146]. Moreover, given a data set, the cost 

matrix is often unavailable. Genetic Algorithm (GA) has been widely employed 

to find the cost matrix; however, it can be very time-consuming due to its very 

nature. Because of these reasons, cost-sensitive boosting techniques will not be 

further considered. 

The “AND” and “OR” decision rules are the simplest means of combining 

the class label of the weak classifiers, which is implemented as 𝑡 𝐬𝑇 =

𝑠𝑖𝑔𝑛[𝑔𝑡 𝐬𝑇 ]. The decision of the “AND” rule is +1 only when all the classifiers 

produce +1 outputs. On the contrary, the “OR” rule outputs +1 as long as the 

decision of at least one classifier is +1. The “AND” and “OR” rules are duals of 

each others. The “OR” results in lowering the FRR but increases the FAR, while 

the “AND” results in lowering FAR but increases FRR. In [139], the authors 

observed that these decision rules could yield worse performance that the best of 

the individual classifiers. Due to this reason, the “AND” and “OR” decision rules 

are rarely used in practice [1]. The Majority Vote is perhaps the most commonly 

used method for decision making. Given a set of 𝑡 𝐬𝑇 , 𝑡 = 1,… , T, the Majority 

Vote gives an accurate class label if at least T/2 + 1 classifiers give correct 

decision. In [59], the accuracy of the Majority Vote is given by 

𝑃𝑚𝑎𝑗 =   
T
𝑖
 𝑝𝑖(1− 𝑝)T−𝑖

T

𝑖=
T
2

+1

 
(5.18) 

where 𝑝 is the probability for each classifier to give the correct class label. This 

supports the intuition that one can expect performance improvement over the 

individual accuracy 𝑝 only when 𝑝 is higher than random guessing, i.e., 𝑝 > 0.5. 

This observation is valuable even for unequal 𝑝 [140]. In [141], a theoretical 

analysis was done to establish the limits on the accuracy of the Majority Vote 

based on the number of classifiers, the pair-wise dependence between these 

classifiers, and their individual accuracy.   



Combining and Boosting One-class Classifiers 

 142 

In general, the “AND”, “OR”, and Majority Vote decision rules have the 

following distinct advantages: (1) no a priori knowledge about the classifiers is 

needed; (2) no training is required to come up with the final decision [1]. Apart 

from r-ABOC, these decision rules will be evaluated in this research. 

5.2.5. Experimental Setup 

In the reminder of Section 5.2, an extensive empirical evaluation is carried out 

using data from the BioSecure DS2 and XM2VTS databases. The performance of 

various classifier combination algorithms, such as “AND” (abbreviated as AND), 

“OR” (abbreviated as OR), Majority Vote (abbreviated as MAJOR) decision rules 

and r-ABOC will be evaluated with different numbers of weak classifiers T. In 

these experiments, the maximum T that is selected is 50. The rationale for this is 

that T is much dependent on the choice of the fraction rejection 𝑓𝑇 . For T = 50, 

the range of 𝑓𝑇  should be from 0.01 and 0.5 (i.e., 0.01 × T). Because the data 

collection is assumed to be accurate and there is a low density of noisy samples 

in the training data, a rejection rate of more than 50% (i.e., 𝑓𝑇 = 0.5) of the 

training samples is considered excessive [44].  

It should be noted that the classifier combination algorithms, investigated 

and developed in this research, work independently of the claimed identity. 

Hence, experiments were only conducted to compare these algorithms with other 

state-of-the-art user-independent solutions, namely the sum of scores 

(abbreviated as SUM), two-class SVM (abbreviated as SVM), and likelihood ratio 

based score fusion (abbreviated as LR). The results, corresponding to the weak 

classifier, given in Equation (5.6) are also presented in this section for comparison 

purposes. The weak classifier will be evaluated in both scenarios: (1) the fraction 

rejection is optimized on the training set (WTR) and (2) the fraction rejection is 

directly on the testing set (WTE).  

Similarly to Section 5.1, four sets of experiments will be presented using the 

BioSecure DS2 and XM2VTS databases. Because AND, OR and MAJOR are only 

able to produce the hard class label outcomes, their error rates cannot be tuned 
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with different decision thresholds. In other words, it is not possible to obtain 

their EER. Due to this reason, the a priori HTER and relative change of HTER 

will be used for performance reporting. In order to determine the relative change 

of HTER, LR is selected as the baseline system. The obtained results will be 

demonstrated using the box plot representation.  

 

(a) 

 

(b) 

Figure 5.6. Combining two biometric matchers of the BioSecure DS2 database: (a) Average 

HTER (%) as a function of the number of weak classifiers, used in classifier ensembles, (b) 

Relative change of HTER (%) across 13 combination possibilities of SUM, SVM, WTR, WTE, r-

ABOC, OR (T = 5), AND, and MAJOR (T = 7) with respect to LR. 
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5.2.6. Experiment (1): Combining Two Biometric Matchers of the 

BioSecure DS2 Database 

Figure 5.6(a) shows the performance of SUM, SVM, LR, WTR, WTE, r-ABOC, 

OR, AND, and MAJOR schemes as the functions of the number of weak 

classifiers in the classifier combination. As it can be seen, WTE is better than 

other single classifier models as it provides an average HTER of 4.51%. This is 

followed by LR (4.60% HTER), WTR (4.82% HTER), SVM (4.83% HTER) and 

SUM (5.15% HTER). 

AND is the worst performer. It is observed that its error rates (6.24% HTER) 

are not even decreased when the value of T is increased. OR has its lowest HTER 

(4.42%) at T = 5, while that of MAJOR is found at T = 7. r-ABOC achieves the 

highest authentication accuracy (4.36% HTER), providing an HTER improvement 

of 3%, 5%, 10%, 10%, and 15% as compared to WTE, LR, WTR, SVM and SUM, 

respectively.  

It should be noted that while the performance of OR and MAJOR seems to 

be susceptible to the selection of T, that of r-ABOC becomes stable when T > 10. 

This in turn implies that r-ABOC is more robust to the choice of this parameter. 

In terms of relative change of HTER, shown in Figure 5.6(b), SVM, WTR, 

WTE, r-ABOC, OR and MAJOR demonstrate an improvement over the baseline 

system, i.e., LR, since their median values are less than zero. MAJOR has mostly 

similar median value to that of WTE, while the lowest median value, indicating 

the best performance, is attributed to r-ABOC. 

5.2.7. Experiment (2): Combining Two Biometric Matchers of the 

XM2VTS LP1 Database 

Similarly to Experiment (1), for r-ABOC, OR, AND, and MAJOR various values 

of T ∈ [1,… ,50] are tested. The performance is shown in Figure 5.7(a). The lowest 

HTER of SVM is 1.05%, which is either superior or comparable to that of LR 

(1.07% HTER), WTR (1.14% HTER) and SUM (1.32% HTER). WTE (0.94% HTER) 
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demonstrates the best performance when the value of 𝑓𝑇  is optimized directly on 

the testing set.  

 

(a) 

 

(b) 

Figure 5.7. Combining two biometric matchers of the XM2VTS LP1 database: (a) Average HTER 

(%) as a function of the number of weak classifiers, used in classifier ensembles, (b) Relative 

change of HTER (%) across 15 combination possibilities of SUM, SVM, WTR, WTE, r-ABOC, 

OR (T = 3), AND (T = 38), and MAJOR (T = 21) with respect to LR. 

AND has its lowest error rate (1.03% HTER) at T = 38, while that of OR (1.00% 

HTER) is found at T = 3. OR seems to be highly dependent on the selection of T 

as its performance significantly decreases for T ≠ 3. The lowest HTER, achieved 
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by r-ABOC and MAJOR is 0.98%, which demonstrates a relative improvement of 

7%, 8%, 14% and 26% as compared to SVM, LR, WTR and SUM, respectively. It 

should be noted that r-ABOC is able to consistently produce a good performance 

for T > 10. 

As illustrated in Figure 5.7(b), the highest performance in terms of relative 

change of HTER is attributed to r-ABOC and MAJOR. WTE, AND, and OR have 

median values less than zero, indicating a performance improvement over LR. 

5.2.8. Experiment (3): Combining Two Biometric Matchers of the 

XM2VTS LP2 Database 

In Figure 5.8(a), it is demonstrated that SUM with an average HTER of 0.55% is 

the worst performer. LR has a mostly similar error rate to that of WTR and SVM. 

It is observed that when the value of fraction rejection 𝑓𝑇  is optimized directly on 

the testing set, WTE offers significant advantages as it is shown to produce the 

highest authentication accuracy (HTER of 0.26%) in this experiment.  

OR, AND, MAJOR and r-ABOC are able to provide a better performance as 

compared to the single classifier models. MAJOR has its lowest HTER (0.28%) at 

T = 13, while those of OR (0.32% HTER) and AND (0.35% HTER) are achieved at 

T = 5, and T = 1, respectively.  

The performance of OR, AND, and MAJOR is shown to be highly sensitive 

to the choice of T. Similarly to Experiment (1), an average HTER of 0.29% is 

consistently achieved by r-ABOC for T > 5, which provides a relative 

improvement of 29%, 29% and 47% as compared to LR, SVM and SUM, 

respectively. 

Concerning the relative change of HTER in Figure 5.8(b), apart from SUM 

and SVM, all other techniques demonstrate an improvement over the baseline 

system, i.e., LR since their median values are less than zero. AND has slightly 

lower median value (i.e., better performance) than OR. The proposed r-ABOC 

and WTE are shown to be better alternative relative to these techniques, while 

the lowest median value is achieved by MAJOR. 
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(a) 

 

(b) 

Figure 5.8. Combining two biometric matchers of the XM2VTS LP2 database: (a) Average HTER 

(%) as a function of the number of weak classifiers, used in classifier ensembles, (b) Relative 

change of HTER (%) across 6 combination possibilities of SUM, SVM, WTE, WTE, r-ABOC, 

OR (T = 5), AND (T = 1), and MAJOR (T = 13) with respect to LR. 
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these schemes is significantly improved, as compared to the two biometrics case 

in Experiment (1) (see Section 5.2.6).  

 

(a) 

 

(b) 

Figure 5.9. Combining three biometric matchers of the BioSecure DS2 database: (a) Average 

HTER (%) as a function of the number of weak classifiers, used in classifier ensembles, (b) 

Relative change of HTER (%) across 6 combination possibilities of SUM, SVM, WTR, WTE, r-

ABOC, OR (T = 3), AND, and MAJOR (T = 7) with respect to LR. 

WTE demonstrates the lowest error rate (2.19% HTER) among the single 
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Experiment (1), the error rates of AND are not decreased when the value of T is 

increased. 

OR has its lowest HTER (1.88%) at T = 3. The best authentication accuracy 

is achieved by r-ABOC and MAJOR (1.85% HTER), providing a relative 

improvement of 22%, 22%, 27% and 30% with respect to WTR, LR, SVM and 

SUM, respectively. The error rates achieved by OR, and MAJOR are shown to be 

highly sensitive to the choice of T, while that of r-ABOC becomes unchanged for 

T > 15. 

With regards to the relative change of HTER, illustrated in Figure 5.9(b), 

WTE, OR, MAJOR and r-ABOC are shown to be better than the baseline system, 

i.e., LR. Overall, the lowest median value is provided by r-ABOC. 

5.2.10. Computational Complexity 

Figure 5.10 shows the evaluation time of r-ABOC. In most cases, it is possible to 

carry out the training off-line and the training time is not a major concern. For 

practical uses, evaluation time might be critical. The evaluation time was 

recorded on an Intel(R) 2.00 GHz. 

 

Figure 5.10. The evaluation time of r-ABOC as a function of the number of weak classifiers 
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multiple weak classifiers. It is observed that its computational complexity is 

almost linear and increases with the number of classifiers in the ensemble. 

However, it should be noted that at T = 50, the evaluation time of this algorithm 

is approximately 110 ms, which is still suitable for most practical multimodal 

biometric systems. 

5.2.11. Summary and Discussion 

Tables 5.4 and 5.5 summarize the findings of the previous experiments (Sections 

5.2.6-5.2.9), by ranking the techniques based on their performance in terms of the 

average HTER, and relative change of HTER. The following observations can be 

made: 

Table 5.4. Ranking of different approaches with respect to the HTER 

 Experiment (1) Experiment (2) Experiment (3) Experiment (4) Mean 

r-ABOC 1 3 3 1 2.00 

OR 3 4 4 3 3.50 

AND 9 5 5 7 6.50 

MAJOR 2 2 2 1 1.75 

SUM 8 9 9 9 8.75 

SVM 6 6 6 7 6.25 

LR 5 7 6 6 6.00 

WTR 6 8 6 5 6.25 

WTE 4 1 1 4 2.50 

Table 5.5. Ranking of different approaches with respect to the relative change of HTER 

 Experiment (1) Experiment (2) Experiment (3) Experiment (4) Mean 

r-ABOC 1 1 3 1 1.50 

OR 4 5 5 3 4.25 

AND 9 3 4 8 6.00 

MAJOR 2 2 1 2 1.75 

SUM 8 9 9 9 8.75 

SVM 4 6 7 5 5.50 

LR 7 6 7 6 6.50 

WTR 6 6 8 6 6.50 

WTE 3 3 2 4 3.00 
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 When the training data is sufficiently representative to guarantee the 

parameter estimation and the optimal value of the fraction rejection 𝑓𝑇  is 

determined, WTE is demonstrated to be better with respect to other state-

of-the-art solutions, namely SUM, SVM and LR in all the experiments. In 

practice, training data may be significantly different from the testing data 

because they are collected in different sessions. It is therefore difficult to 

determine the optimal value of 𝑓𝑇 . The results of WTR, which optimizes 𝑓𝑇  

on the training data, further confirm this observation. Despite that, it 

should be noted that WTR is able to achieve either better or comparable 

performance to that of the LR and SUM. Its error rates are only slightly 

higher than those of the SVM. 

 MAJOR, r-ABOC and OR are among the best performers. Indeed, MAJOR 

and r-ABOC are demonstrated to achieve lower error rates, as compared to 

WTE. Although WTE is based on an unrealistic assumption and is 

impractical to achieve, its corresponding results are still presented in this 

section in order to give the answer to the question, which arose in Section 

5.2.3. The results also highlight the distinct advantages of r-ABOC, which is 

able to provide lower error rates relative to the single best classifier. 

 It is observed that the authentication accuracy of MAJOR and OR is highly 

susceptible to the selection of the number of the weak classifiers T, while 

that of r-ABOC becomes unchanged for T ∈ [15,… ,50]. This, in turn, 

implies that the proposed r-ABOC is naturally robust to the selection of this 

parameter. As already mentioned, T is directly related to the fraction 

rejection. Hence, it can be concluded that r-ABOC is able to eliminate the 

risk of making a bad choice of the fraction rejection for the multimodal 

biometric authentication problem. In practice, one may select a reasonably 

large value of T (e.g., T = 50) for this algorithm to provide its lowest error 

rates. The lowest error rates are achieved at the expense of increased 

complexity. However, even when T = 50, the increased complexity is still 

suitable for the practical biometric authentication systems.  
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5.3. Chapter Summary 

In this chapter, an adapted score fusion scheme and a novel hybrid boosting 

algorithm, called r-ABOC have been developed to advance the classification 

performance of extremely imbalanced class distribution in multimodal biometric 

systems. Both these approaches are based on the Bayes Decision Theory, as 

applied in combining one-class classifiers to effectively use the training data from 

both the genuine user and impostor classes and efficiently overcome the class 

imbalance problem.  

As it can be seen, the adapted score fusion is capable of exploiting both the 

user-specific information and general class knowledge, provided by a number of 

different users. It offers many advantages over the stage-of-the-art solutions as it 

is able to completely or partially overcome the within-class sub-concepts in the 

impostor score distribution and training data scarcity of the genuine user class 

samples. The adapted score fusion scheme has been tested with different one-

class classifiers. It was observed to consistently outperform other techniques 

evaluated, providing a relative improvement of 20% and 10% as compared to the 

likelihood ratio based score fusion and adapted user-dependent fusion. Among 

the one-class classifiers, k-NN and GMM provides the lowest error rates. In 

addition, these classifiers are insensitive to the choice of the fraction rejection, 

and thus, are more amendable to immediate applications. 

One the other hand, r-ABOC inherits the natural capabilities of Real 

AdaBoost to combine multiple classifiers in order to find a highly accurate 

classifier system. However, unlike the conventional Real AdaBoost, the 

individual classifiers in r-ABOC were trained on the same data set, but with 

different fraction rejection values. It has been shown that this training procedure 

not only generates the necessary diversity to make r-ABOC work efficiently, but 

also eliminates the risk of making a bad choice of the fraction rejection for the 

problem at hand. Extensive experiments, carried out on the BioSecure DS2 and 

XM2VTS databases, demonstrated the potential of the proposed r-ABOC, which 

provides a significant relative improvement of 28%, 24% and 22% with respect to 
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the sum of score, likelihood ratio based score fusion and SVM, respectively. It is 

also considered as a better alternative as compared to other classifier ensemble 

learning algorithms, namely the “AND”, “OR” and Majority Vote decision rules. 

Another important feature of r-ABOC is that it does not require any parameter 

fine-tuning, making it easily handled in practical multimodal biometric systems.   
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CHAPTER 6   

CONCLUSIONS AND FUTURE 

WORK 

This chapter will start by summarizing the main contributions of the research 

reported in this thesis (Section 6.1). Next, the possible extensions and 

recommendations for future research will be given in Section 6.2. 

6.1. Conclusions 

Biometric authentication is the process of verifying a human identity using his 

behavioural and physiological characteristics. It is well-known that multimodal 

biometric systems can further improve the verification performance of a 

biometric system by combining the evidence, presented by multiple biometric 

traits at various levels, namely, sensor, feature, match score and decision levels. 

Fusion at match score level is generally preferred due to the trade-off between 

information availability and fusion complexity and is normally treated as a two-

class classification problem, i.e., genuine user and impostor. However, as 

previously mentioned, two-class methods suffer when applied to imbalanced 

data sets. 

In this research, the paradigm of one-class classification has been exploited 

to advance the classification performance of extremely imbalanced biometric 

data sets. A robust imputation technique based on Group Method of Data 

Handling (RIBG) was also developed to handle incomplete match score vectors 

in multimodal modal biometric system. During a series of experiments, carried 

out on the BioSecure DS2 and XM2VTS databases, four main scientific 

achievements can be identified in this research: 
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(1) RIBG, a robust imputation technique was proposed in Section 3.4 to 

handle incomplete match score vectors in BioSecure DS2 database, which is 

primary problem of any match score level fusion techniques. RIBG is based 

on Group Method of Data Handling. It is able to find an optimal structure 

of model to provide accurate predictions for the missing elements in 

multimodal biometric systems. From a comprehensive empirical analysis, 

RIBG was observed to outperform other state-of-the-art imputation 

techniques, namely mean and median imputations. It is also comparable to 

k-NN imputation. However, while k-NN requires a careful selection of the 

number of nearest neighbours to achieve a satisfactory performance, RIBG 

does not require any parameter fine-tuning. 

(2) Design of user-specific score fusion: In Chapter 4, the one-class classifiers 

were employed to learn the user-specific and user-independent descriptions 

around either the impostor or genuine user class. It was illustrated that 

user-specific approach is a better alternative and consistently demonstrates 

a better authentication performance when compared to user-independent 

approaches. It is also shown to be able to partially overcome the problem of 

within-class sub-concepts, which arises when the target class is scattered 

into several small regions due to the existence of user variations. Various 

one-class classification methods, such as Gaussian Mixture Model (GMM), 

k-Nearest Neighbour (k-NN), K-means clustering (K-means), and Support 

Vector Data Description (SVDD) have been applied in designing user-

specific score fusion. There is no single best classifier for all problems. 

However, they are all demonstrated to be better than the standard two-class 

SVM on the experiments, carried out on the BioSecure DS2 database, where 

the class imbalance is on the order of 524:1. This in turn implies that one-

class methods are particularly useful in handling the extremely imbalanced 

class distributions of biometric data sets. As it is expected, SVDD, K-means 

are most sensitive to the scaling of the data since they heavily reply on the 

distance of the test samples to the center of the sphere or the prototype 

objects. On the other hand, GMM and k-NN seem to be most influenced by 
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the sample size. In term of computational complexity, SVDD and k-NN are 

the most expensive, while K-means shows the least evaluation time. GMM 

demonstrates the best trade-off between authentication accuracy and 

computational complexity. 

(3) Adapted Score Fusion Scheme:  In Section 5.1, a novel adapted score fusion 

scheme based on both user-specific information and general class 

characteristics, has been developed for multimodal biometric 

authentication. It is different from the well-known Adapted User-

Dependent Fusion (AUDF), which is based on two-class SVM, because it 

consists of one-class classifiers, trained using training data from both the 

genuine user and impostor classes. It is also shown to offer many distinct 

advantages over the state-of-the-art solutions as it can completely or 

partially alleviate the problems of training data scarcity and imbalanced 

class distribution. Extensive experiments with various one-class classifiers 

were carried out in order to gauge the adapted score fusion scheme. They 

demonstrated that the proposed scheme is able to provide an improvement 

in Equal Error Rate (EER) of 32%, 27% and 20% with respect to the user-

independent approaches, such as the sum of scores, two-class SVM, and 

likelihood ratio based score fusion, respectively. It is also either comparable 

or better to the AUDF. The comparable result was achieved only when 

experiments were conducted on XM2VTS LP1 database and three genuine 

samples per user were available for training the user-specific descriptions. 

The proposed adapted score fusion scheme was tested with various one-

class classification methods. Among others, it was noted that k-NN and 

GMM provide the lowest error rate. Moreover, these classifiers were shown 

to be insensitive to the choice of fraction rejection, hence, making them 

amenable to implementation without requiring fine-tuning. 

(4) r-ABOC, a hybrid Boosting Algorithm was developed, which was capable 

of exploiting the natural capabilities of both Real AdaBoost and one-class 

classification. This algorithm works by developing a weak classifier, which 
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is also based on the Bayes Decision Theory as applied in combining the one-

class methods in order to make use of training data from both classes. Real 

AdaBoost is then applied to further improve the performance of the weak 

classifier without causing overfitting. However, unlike the conventional 

Real AdaBoost, the weak classifiers in r-ABOC are learned on the same data 

set but with different values of the fraction rejection. It has been shown that 

this training procedure is able to generate a high diversity, which is the key 

requirement for the success of this algorithm. An extensive empirical 

evaluation was carried out to illustrate the effectiveness of r-ABOC. Overall, 

the proposed algorithm was shown to consistently achieve better 

performance, relative to the “AND”, “OR” decision rules and other state-of-

the-art solutions, such as the sum of scores, likelihood ratio based score 

fusion and SVM. It is also comparable to the Majority Vote decision rule. 

However, while the Majority Vote decision rule is highly sensitive to the 

choice of the number of weak classifiers in the ensemble T, the performance 

of r-ABOC does not change much for T > 15. It should be noted that T is 

directly related to the choice of the fraction rejection. This in turn implies 

that r-ABOC is able to completely eliminate the possibility of making bad 

choice of this parameter for the practical biometric authentication problem.  

6.2. Future Work 

Several research directions arise from the dissertation work are enumerated as 

follows: 

(1) It was observed in Chapter 4 that none of the one-class classification 

methods shows a clear dominance above the remaining ones, which 

confirms the “no panacea” principle in pattern recognition. It means that 

defining the best fitting data description for a given biometric data as well 

as building a user-specific classification model for each of the users, 

enrolled in the system, is still an open field for researchers. It is also 

possible to combine the various classifiers to further improve the 
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authentication accuracy, while increasing the robustness of the classification 

[163]. 

(2) There is growing evidence that making use of cohort templates can improve 

biometric verification performance [70], [71]. The match scores, obtained 

using the cohort temples, are called cohort match scores, which are 

captured online by comparing the query with a set of competing templates, 

including the template of the claimed identity. These match scores are 

subject to the same degradation, and are expected to reduce the effect of 

varying score distributions due to the degradation factor, caused by the 

change in environmental conditions, and the user interaction. Future 

research can be focused on the incorporation of cohort match scores into the 

proposed schemes of this thesis order to improve the learning capabilities 

of different characteristics of impostor class distributions, and thus, enhance 

the verification performance of the user-specific and adapted score fusion 

schemes. 

(3) It is also possible to capture the various degradation factors by using a set 

of quality measures. Very often, high quality values are associated with 

good verification performance, and vice versa for low quality values. Thus, 

it is reasonable to consider quality measures of the input biometric signals 

and weight the contributions of various biometric traits based on this 

information. A common practice in many reported works is to treat quality 

measures as another set of features, which is then fed into the classifiers in 

order to render the biometric decision [15]. A similar idea can be exploited 

to further enhance the performance of the match score fusion schemes, 

developed in this thesis. 

(4) The user-specific and adapted score fusion schemes were employed to 

perform the classification task on the BioSecure DS2 and XM2VTS 

databases, where a limited (up to three) genuine samples can be used for 

learning the user-specific descriptions. It is therefore important to 

investigate their behaviours on a different database with a large availability 
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of training data from the genuine user class, and hence, to determine 

whether they are consistently better or at what level they are better than 

state-of-the-art solutions. Nevertheless, there is no publicly available 

database, which can serve this purpose. Hence, a new database should be 

also developed in order to address these questions.  

(5) The proposed r-ABOC, developed in this work, provides the hard class 

label outcomes by assuming that the decision threshold is firmly selected as 

0. Although it was demonstrated to be better than the state-of-the-art 

solutions in terms of a priori HTER, its limitation is that it is not easy to fix 

one type of errors (say FAR) and compute the FRR at the specified FAR. As 

already mentioned, the system requirements, concerning the authentication 

accuracy are very much dependent on the application. Some applications 

tend to have a low FRR to make them more tolerant to the input variations, 

while others require an extremely low FAR to not let in the impostors. 

Hence, future research is also focused on the classifier ensemble algorithm, 

where the trade-off between the FAR and FRR can be adjusted to better 

meet the system requirements.   

  

  



 

 160 

REFERENCES  

[1] A. Ross, K. Nandakumar, and A. K. Jain, Handbook of Multibiometrics, 

Springer, 2006.  

[2] R. Heyer, "Biometrics Technology Review 2008", 2008. Available at 

http://dspace.dsto.defence.gov.au/dspace/handle/1947/9704. 

[3] J. Elliott, "Biometrics roadmap for police applications," BT technology 

journal, vol. 23, no. 4, pp. 37-44, 2005. 

[4] M. C. Fairhurst, S. T. France, and J. M. Matthias, "Promoting Biometrics in 

the UK: Bridging the gap between research and exploitation,” Cyber 

Security Knowledge Transfer Network, University of Kent, 2008. 

[5] A. K. Jain, and A. Kumar, "Biometrics of next generation: An overview," 

Second Generation Biometrics, 2010. 

[6] A. A. Moenssens, Fingerprint Techniques, Chilton Book Company, 1971. 

[7] J. Daugman, "Iris recognition border-crossing system in the UAE," 

International Airport Review, vol. 8, no. 2, 2004. 

[8] Y. B. Kwon, "Biometrics in Asia", 2014. Available at http://biometrics.org. 

[9] Planning Commission, "Ensuring Uniqueness: Collecting iris biometrics 

for the Unique ID Mission". Available at http://eprints.cscsarchive.org. 

[10] UKBA, "Using IRIS to enter the UK", 27 Feb. 2013. Available at 

http://www.ukba.homeoffice.gov.uk. 

[11] A. Ross, K. Nandakumar, and A. K. Jain, "Introduction to 

multibiometrics," Handbook of biometrics, Springer US, pp. 271-292, 2008. 

[12] A. Ross, “Information fusion in fingerprint authentication,” Ph.D. 

dissertation, Michigan State University, 2003. 

[13] K. Nandakumar, "Multibiometric Systems: Fusion Strategies and Template 

Security," Ph.D. dissertation, Michigan State University, 2008. 

[14] J. Fierrez-Aguilar, “Adapted Fusion Schemes for Multimodal Biometric 

Authentication,” Ph.D. dissertation, Technical University of Madrid 

(UPM), 2006. 

http://dspace.dsto.defence.gov.au/dspace/handle/1947/9704
http://biometrics.org/
http://eprints.cscsarchive.org/
http://www.ukba.homeoffice.gov.uk/


References 

 161 

[15] N. Poh, “Multi-system Biometric Authentication: Optimal Fusion and 

User-Specific Information,” Ph.D. dissertation, Dept. STI, Univ. EPFL, 

Lausanne, Switzerland, 2006. 

[16] D. Maltoni, D. Maio, A. K. Jain, and S. Prabhakar, Handbook of fingerprint 

recognition, Springer, 2009. 

[17] A. K. Jain, and S. Z. Li, Handbook of face recognition, Springer, 2005. 

[18] A. F. Abate, M. Nappi, D. Riccio, and G. Sabatino, “2D and 3D face 

recognition: A survey,” Pattern Recognition Letters, vol. 28, no. 14, pp. 1885-

1906, 2007. 

[19] J. Daugman, “How iris recognition works,” IEEE Trans. Circuits and 

Systems for Video Technology, vol. 14, no. 1, pp. 21-30, 2004. 

[20] J. Daugman, “High confidence visual recognition of persons by a test of 

statistical independence,” IEEE Trans. Pattern Analysis and Machine 

Intelligence, vol. 15, no. 11, pp. 1148-1161, 1993. 

[21] D. D. Zhang, Palmprint authentication, vol. 3, Springer, 2004. 

[22] A. Ross, J. Shah, and A. K. Jain, “Towards Reconstructing Fingerprints 

from Minutiae Points,” In: Proc. SPIE Conference on Biometric Technology for 

Human Identification II, vol. 5779, pp. 68-80, Orlando, USA, 2005. 

[23] A. Ross, and A. K. Jain, “Multimodal biometrics: An overview,” In: Proc. of 

12th European Signal Processing Conference, pp. 1221-1224, Sep. 2004. 

[24] R. Brunelli, and D. Falavigna, “Person Identification Using Multiple 

Cues,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 17, no. 10, 

pp. 995-966, Oct. 1995. 

[25] P. Verlinde, and G. Cholet, "Comparing decision fusion paradigms using 

k-NN based classifiers, decision trees and logistic regression in a multi-

modal identity verification application," In: Proc. Int. Conf. Audio and Video-

Based Biometric Person Authentication (AVBPA), pp. 188-193, USA, 1999.  

[26] S. Ben-Yacoub, Y. Abdeljaoued, and E. Mayoraz, “Fusion of Face and 

Speech data for Person Identity Verification,” IEEE Trans. Neural Network, 

vol. 10, no. 6, pp. 1065-1075, Sep. 1999. 



References 

 162 

[27] V. Chatzis, A. G. Bors, and I. Pitas, “Multimodal Decision-level Fusion for 

Person Authentication,” IEEE Trans. Systems, Man, and Cybernetics, Part A: 

Systems and Humans, vol. 29, no. 6, pp. 674-681, 1999. 

[28] Y. Ma, B. Cukic, and H. Singh, “A Classification Approach to Multi-

biometric Score Fusion,” In: Proc. 5th Int. Conf. Audio- and Video-based 

Biometric Person Authentication (AVBPA), pp. 484-493, Rye Brook, USA, 

2005. 

[29] A. K. Jain, and A. Ross, “Learning user-specific parameters in a 

multibiometric system,” In: Proc. Int. Conf. Image Processing (ICIP), pp. 57-

60. 2002. 

[30] K.-A. Toh, X. Jiang, and W.-Y. Yau, “Exploiting Global and Local Decision 

for Multimodal Biometrics Verification,” IEEE Trans. Signal Processing, vol. 

52, no. 10, pp. 3059-3072, Oct. 2004. 

[31] N. Poh, A. Ross, W. Lee, J. Kittler, "A User-specific and Selective 

Multimodal Biometric Fusion Strategy by Ranking Subjects," Pattern 

Recognition, vol. 46, no. 12, pp. 3341 - 3357, Dec. 2013. 

[32] J. Fierrez-Aguilar, D. Garcia-Romero, J. Ortega-Garcia, and J. Gonzalez-

Rodriguez, “Adapted User-dependent Mutlimodal Biometric 

Authentication Exploiting General Information,” Pattern Recognition 

Letters, vol. 26, no. 16, pp. 2628-2639, Dec. 2005. 

[33] J. Fierrez-Aguilar, J. Ortega-Garcia, D. Garcia-Romero, and J. Gonzalez-

Rodriguez, “Bayesian Adaptation for User-Dependent Multimodal 

Biometric Authentication,” Pattern Recognition, vol. 38, no. 8, pp. 1317-

1319, Aug. 2005. 

[34] H. He, and E. A. Garcia, "Learning from imbalanced data," IEEE Trans. 

Knowledge and Data Engineering, vol. 21, no. 9, pp. 1263-1284, 2009. 

[35] C. Seiffert, T. M. Khoshgoftaar, J. Van Hulse, and A. Napolitano, 

“RUSBoost: A hybrid approach to alleviating class imbalance,” IEEE Trans. 

Systems, Man and Cybernetics, Part A: Systems and Humans, vol. 40, no. 1, 

pp. 185-197, 2010. 



References 

 163 

[36] M. Galar, A. Fernandez, E. Barrenechea, H. Bustince, and F. Herrera, “A 

review on ensembles for the class imbalance problem: bagging-, boosting-, 

and hybrid-based approaches,” IEEE Trans. Systems, Man, and Cybernetics, 

Part C: Applications and Reviews, vol. 42, no. 4, pp. 463-484, 2012. 

[37] Y. Sun, M. S. Kamel, A. K. Wong, and Y. Wang, “Cost-sensitive boosting 

for classification of imbalanced data,” Pattern Recognition, vol. 40, no. 12, 

pp. 3358-3378, 2007. 

[38] B. X. Wang, and N. Japkowicz, “Boosting support vector machines for 

imbalanced data sets,” Knowledge and Information Systems, vol. 25, no. 1, pp. 

1-20, 2010. 

[39] G. Wu, and E. Y. Chang, “Adaptive feature-space conformal 

transformation for imbalanced data learning,” In: Proc. the 20th Int. Conf. 

Machine Learning, 2003. 

[40] Y. Ding, and A. Ross, “A comparison of imputation methods for handling 

missing scores in biometric fusion,” Pattern Recognition, vol. 45, no. 3, pp. 

919-933, 2012. 

[41] “Learning from Imbalanced Data Sets,” In: Proc. Am. Assoc. For Artificial 

Intelligence (AAAI) Workshop, N. Japkowicz, ed., 2000, (Technical Report 

WS-00-05). 

[42] “Workshop Learning from Imbalanced Data Sets II,” In: Proc. Int. Conf. 

Machine Learning, N. V. Chawla, N. Japkowicz, and A. Kolcz, eds., 2003. 

[43] N. V. Chawla, N. Japkowicz, and A. Kolcz, “Editorial: Special Issue on 

Learning from Imbalanced Data Sets,” ACM SIGKDD Explorations 

Newsletter, vol. 6, no. 1, pp. 1-6, 2004. 

[44] D. M. J. Tax, “One-class Classification: Concept-learning in the absence of 

counter-examples,” Ph.D. dissertation, Dept. Intelligent Systems, Univ. TU 

Delft, 2001. 

[45] J. Munoz-Marf, Lorenzo Bruzzone, and G. Camps Vails, "A support vector 

domain description approach to supervised classification of remote 

sensing images." IEEE Trans. Geoscience and Remote Sensing, vol. 45, no. 8, 

pp. 2683-2692, 2007. 



References 

 164 

[46] B. Raskutti, and K. Adam, "Extreme re-balancing for SVMs: a case study," 

ACM SIGKDD Explorations Newsletter, vol. 6, no. 1, pp. 60-69, 2004. 

[47] H. J. Lee, and S. Cho, “The Novelty Detection Approach for Different 

Degrees of Class Imbalance,” Lecture Notes in Computer Science, vol. 4233, 

pp. 21-30, 2006. 

[48] K. Kennedy, B. Mac Namee, and S. J. Delany, “Learning without default: 

A study of one-class classification and the low-default portfolio problem,” 

Artificial Intelligence and Cognitive Science, pp. 174-187, Springer Berlin 

Heidelberg, 2009. 

[49] N. Japkowicz, “Supervised versus unsupervised binary-learning by 

feedforward neural networks,” Machine Learning, vol. 42, no. 1-2, pp. 97-

122, 2001. 

[50] N. Japkowicz, C. Myers, and M. Gluck, “A Novelty Detection Approach to 

Classification,” In: Proc. Joint Conf. Artificial Intelligence, pp. 518-523, 1995. 

[51] C. Bergamini, L.S. Oliveira, A.L. Koerich, and R. Sabourin, “Combining 

Different Biometric Traits with One-class Classification”, Signal Processing, 

vol. 89, no. 11, pp. 2117-2127, Nov. 2009. 

[52] National Institute of Standards and Technology (NIST) multimodal 

database. Available at http://www.nist.gov/index.html. 

[53] J. Ortega-Garcia, J. Fierrez-Aguilar, D. Simon, M. Faundez, J. Gonzalez, V. 

Espinosa, A. Satue, I. Hernaez, J. J. Igarza, C. Vivaracho, D. Escudero, and 

Q. I. Moro, "MCYT baseline corpus: A bimodal biometric database", IEE 

Proceedings Vision, Image and Signal Processing, vol. 150, no. 6, pp. 395-401, 

Dec. 2003. 

[54] C. M. Bishop, Pattern Recognition and Machine Learning, Springer, 2006. 

[55] M. Breunig, H.-P. Kriegel, R. Ng, and J. Sander, “LOF: Indentifying 

density-based local outliers,” In: Proc. ACM SIGMOD 2000 Int. Conf. 

Management of Data, pp. 93-104, USA, 2000. 

[56] D. M. J. Tax, and R. P. Duin, “Support vector data description,” Machine 

Learning, vol. 54, no. 1, pp. 45-66, 2004. 

http://www.nist.gov/index.html


References 

 165 

[57] R. P. Duin, "The combining classifier: to train or not to train?" In: Proc. Int. 

Conf. Pattern Recognition, vol. 2, 2002. 

[58] R. E. Schapire, and Y. Singer, “Improved boosting algorithms using 

confidence-rated predictions,” Machine learning, 37(3), 297-336, 1999. 

[59] L. I. Kuncheva, Combining pattern classifiers: methods and algorithms, John 

Wiley & Sons, 2004. 

[60] K. Venkataramani, “Optimal classifier ensembles for improved Biometric 

Verification,” Ph.D dissertation, Carnegie Mellon University, 2007. 

[61] N. Poh, T. Bourlai, and J. Kittler, “A Multimodal Biometric Test Bed for 

Quality-dependent, Cost-sensitive and Client-specific Score-level Fusion 

Algorithms”, Pattern Recognition Journal, vol. 43, no. 3, pp. 1094-1105, Mar. 

2010. 

[62] J. Ortega-Garcia, et al., "The Multiscenario Multienvironment BioSecure 

Multimodal Database (BMDB)," IEEE Trans. Pattern Analysis and Machine 

Intelligence, vol. 32, no. 6, pp. 1097-1111, June, 2010. 

[63] N. Poh, and S. Bengio, "Database, protocols and tools for evaluating score-

level fusion algorithms in biometric authentication," Pattern Recognition, 

vol. 39, no. 2, pp. 223-233, 2006. 

[64] B. Zhu, C. He, and P. Liatsis, “A robust missing value imputation method 

for noisy data”, Springer Science + Business Media, LLC 2010. 

[65] Q. D. Tran, P. Kantartzis, and P. Liatsis, “Improving fusion with optimal 

weight selection in Face Recognition,” Integrated Computer-Aided 

Engineering, vol. 19, no. 3, pp. 229-237, 2012. 

[66] D. T. Pham, A. Ghanbarzadeh, E. Koc, S. Otri, S. Rahim, and M. Zaidi, 

“The bees algorithm-a novel tool for complex optimization problems,” In: 

Proc. 2nd Virtual Int. Conf. Intelligent Production Machines and Systems 

(IPROMS 2006), pp. 454-459, 2006. 

[67] S. Z. Li, and A. K. Jain, Encyclopedia of Biometrics: I-Z, vol. 2, Springer, A. K. 

(2009). 

[68] ISO/IEC JTC1/SC37 IS19795-1: Biometric Performance Tasting and 

Reporting- Part 1: Principles and Framework, 2006. 



References 

 166 

[69] ISO/IEC JTC1/SC37 FDIS 19795-2: Biometric Performance Tasting and 

Reporting- Part 2: Testing methodologies for technology and scenario 

evaluation, 2006. 

[70] A. Merati, “Multi-Modal Biometric Authentication with Cohort-Based 

Normalization,” Ph.D. dissertation, Centre for Vision, Speech and Signal 

Processing, University of Surrey, Sep. 2011. 

[71] N. Poh, A. Merati, and J. Kittler, “Making Better Biometric Decisions with 

Quality and Cohort Information: A Case Study in Fingerprint,” In: IEEE 

Conf. Biometrics: Theory, Applications and Systems (BTAS), 2009. 

[72] T. Fawcett, “ROC Graphs: Notes and Practical Considerations for Data 

Mining Researchers,” Technical Report HPL-2003-4, HP Labs, 2003. 

[73] T. Fawcett, “An Introduction to ROC Analysis,” Pattern Recognition Letters, 

vol. 27, no. 8, pp. 861-874, 2006. 

[74] A. Martin, G. Doddington, T. Kamm, M. Ordowski, and M. Przybocki, 

“The DET curve in assessment of decision task performance,” In: Proc. 

ESCA Eur. Conf. Speech Communication and Technology (EuroSpeech), pp. 

1895-1898, 1997.  

[75] K. K. Paliwal, “Spectral Subband Centroids Features for Speech 

Recognition,” In: Proc. Int. Conf. Acoustics, Speech and Signal Processing 

(ICASSP), vol. 2, pp. 617–620, Seattle, 1998. 

[76] L. Rabiner and B.-H. Juang, Fundamentals of Speech Recognition, Oxford 

University Press, 1993. 

[77] S. Ikbal, H. Misra, and H. Bourlard, “Phase Auto-Correlation (PAC) 

derived Robust Speech Features,” In: Proc. Int. Conf. Acoustics, Speech, and 

Signal Processing (ICASSP), pp. 133–136, Hong Kong, 2003. 

[78] C. Sanderson, and K. Paliwal, “Fast Features for Face Authentication 

under Illumination Direction Changes,” Pattern Recognition Letters, vol. 24, 

no. 14, pp. 2409–2419, 2003. 

[79] N. Poh, and S. Bengio, “An Investigation of F-ratio Client-Dependent 

Normalisation on Biometric Authentication Tasks,” Research Report 04-46, 

IDIAP, Martigny, Switzerland, 2004. 



References 

 167 

[80] Y. Ding, and A. Ross, "When data goes missing: methods for missing score 

imputation in biometric fusion," In: Proc. SPIE Conf. Biometric Technology 

and Human Identification VII, Orlando, USA, 2010. 

[81] D. B. Rubin, “Inference and missing data,” Biometrika, vol. 63, no. 3, pp. 

581–592, 1976. 

[82] R. Little, and D. Rubin, Statistical analysis with missing data, Wiley, New 

York, 2002. 

[83] N. Poh, D. Windridge, V. Mottl, A. Tatarchuk, and A. Eliseyev, 

“Addressing Missing Values in Kernel-based Multimodal Biometric 

Fusion Using Neutral Point Substitution,” IEEE Trans. Information Forensics 

and Security, vol. 5, no. 3, pp. 461–469, 2010. 

[84] S. Dinerstein, J. Dinerstein, and D Ventura, “Robust Multi-Modal 

Biometric Fusion via Multiple SVMs,” In: IEEE Int. Conf. Systems, Man and 

Cybernetics, pp. 1530–1535, Oct. 2007. 

[85] K. Nandakumar, A.K. Jain, and A. Ross, “Fusion in multibiometric 

identification systems: what about the missing data?” In: Proc. IEEE/IAPR 

Int. Conf. Biometrics, Springer, pp. 743–752, 2009. 

[86] G. E. Batista, and M. C. Monard, “An analysis of four missing data 

treatment methods for supervised learning,” Applied Artificial Intelligence, 

vol. 17, no. 5-6, pp. 519-533, 2003. 

[87] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood from 

incomplete data via the EM algorithm (with discussion),” Journal of the 

Royal statistical Society, vol. 39, no. 1, pp. 1-38, 1977. 

[88] A. G. Ivakhnenko, “The group method of data handling-a rival of the 

method of stochastic approximation,” Soviet Automatic Control, vol. 13, no. 

3, pp. 43-55, 1968. 

[89] Q. D. Tran, P. Liatsis, B. Zhu, and C. He, “Using Density based Score 

Fusion for Multimodal Identification Systems under the Missing Data 

Scenario,” In: Developments in E-systems Engineering (DeSE), pp. 238-242, 

Dec. 2001. 



References 

 168 

[90] K. Nandakumar, Y. Chen, S. C. Dass, and A. K. Jain, "Likelihood Ratio 

Based Biometric Score Fusion", IEEE Trans. Pattern Analysis and Machine 

Intelligence, vol. 30, no. 2, Feb. 2008.  

[91] A. K. Jain, K. Nandakumar, K., and A. Ross, “Score normalization in 

multimodal biometric systems,” Pattern Recognition, vol. 38, no. 12, pp. 

2270-2285, 2005. 

[92] O. Fatukasi, J. Kittler, and N. Poh, “Estimation of missing values in 

multimodal biometric fusion,” In: Proc. IEEE Int. Conf. Biometrics: Theory, 

Applications and Systems (BTAS), 2008. 

[93] L. Hong, and A. K. Jain, “Integrating Faces and Fingerprints for Personal 

Identification,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 20 

no. 12, pp. 1295-1307, 1998. 

[94] R. Snelick, U. Uludag, A. Mink, M. Indovina, and A. K. Jain, “Large Scale 

Evaluation of Multimodal Biometric Authentication Using State-of-the-Art 

Systems,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 27, no. 

3, pp. 450-455, 2005. 

[95] J. Kittler, M. Hatef, R. P. Duin, and J. Matas, “On combining classifiers,” 

IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 20, no. 3, pp. 226-

239, 1998. 

[96] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification. John Wiley & 

Sons, 2001. 

[97] E. L. Lehmann, and J. P. Romano, Testing Statistical Hypotheses, Springer, 

2005. 

[98] J. Q. Li, and A. Barron, “Mixture Density Estimation,” Advances in Neural 

Information Processings Systems 12, S. A. Solla, T. K. Leen, and K.-R. Muller, 

eds., 1999. 

[99] A. Rakhlin, D. Panchenko, and S. Mukherjee, “Risk Bounds for Mixture 

Density Estimation,” ESAIM: Probability and Statistics, vol. 9, pp. 220-229, 

June 2005. 

[100] S. C. Dass, K. Nandakumar, and A. K. Jain, “A Principled Approach to 

Score Level Fusion in Multimodal Biometric Systems,” In: Proc. Fifth Int. 



References 

 169 

Conf. on Audio- and Video-based Biometric Person Authentication (AVBPA), 

pp. 1049-1058, Rye Brook, USA, 2005. 

[101] U. Cherubini, E. Luciano, and W. Vecchiato, Copula Methods in Finance, 

Wiley, 2004. 

[102] Y. Wang, T. Tan, and A.K. Jain, “Combining Face and Iris Biometrics for 

Identity Verification,” In: Proc. 4th Int. Conference on Audio- and Video-based 

Biometric Person Authentication (AVBPA), pp. 805-813, Guildford, UK, 2003 

[103] D. T. Pham, and A. Ghanbarzadeh, “Multi-Objective Optimization using 

Bees Algorithm,” In: Proc. Innovative Production Machines and Systems 

Virtual Conference, 2007. 

[104] CASIA 3D face database, Center for Biometrics and Security Research, 

http://www.cbsr.ia.ac.cn/. 

[105] ORL face database, AT&T Laboratories Cambridge, 

http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html. 

[106] N. Poh, and S. Bengio, “A Study of the Effects of Score Normalisation 

Prior to Fusion in Biometric Authentication Tasks,” IDIAP Research Report 

69, IDIAP, 2004. 

[107] A. Ross, and A. K. Jain, “Information Fusion in Biometrics,” Pattern 

Recognition Letters, vol. 24, no. 13, pp. 2115-2125, 2003. 

[108] G. Doddington, W. Liggett, A. Martin, M. Przybocki, and D. Reynolds, 

“Sheep, goats, lambs, and wolves: a statistical analysis of speaker 

performance in the NIST 1998 Speaker Recognition Evaluation,” In: Int. 

Conf. Spoken Language Processing (ICSLP), Sydney, 1998. 

[109] N. Yager, and T. Dunstone, “The biometric menagerie,” IEEE Trans. 

Pattern Analysis and Machine Intelligence, vol. 32, no. 2, pp. 220-230, 2010. 

[110] J. L. Wayman, “Multi-Finger Penetration Rate and ROC Variability for 

Automatic Fingerprint Identification Systems,” Technical report, National 

Biometric Test Center, 1999. 

[111] M. Wittman, P. Davis, and P. Flynn, “Empirical Studies of the Existence of 

the Biometric Menagerie in the FRGC 2.0 Color Image Corpus,” In: Proc. 

Computer Vision and Pattern Recognition Workshop, 2006. 

http://www.cbsr.ia.ac.cn/
http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html


References 

 170 

[112] J. Fierrez-Aguilar, J. Ortega-Garcia, and J. Gonzalez-Rodriguez, “Target 

dependent score normalization techniques and their application to 

signature verification,” IEEE Trans. Systems, Man, and Cybernetics, Part C: 

Applications and Reviews, vol. 35, no. 3, pp. 418-425, 2005. 

[113] A. Kumar, and D. Zhang, “Integrating Palmprint with Face for User 

Authentication,” In: Workshop on Multimodal User Authentication (MMUA 

2003), pp. 107–112, Santa Barbara, 2003. 

[114] Q. D. Tran, and P. Liatsis, “A Modified Equal Error Rate Based User-

specific Normalization for Multimodal Biometrics,” In: Proc. Fifth Int. Conf. 

Developments in e-Systems Engineering (DESE), Bucharest, Romania, Sep. 

2012.  

[115] Y. Sun, “Cost-Sensitive Boosting for Classification of Imbalanced Data,” 

Ph.D. dissertation, Univ. Waterloo, Waterloo, Ontario, Canada, 2007. 

[116] K. Carvajal, M. Chacon, D. Mery, and G. Acuna, “Neural network method 

for failure detection with skewed class distribution,” INSIGHT, Journal of 

the British Institute of Non-Destructive Testing, vol. 46, no. 7, pp. 399-402, 

2004. 

[117] N. Japkowicz, and S. Stephen, “The class imbalance problem: A systematic 

study,” Intelligent Data Analysis Journal, vol. 6, no. 5, pp. 429-450, 2002. 

[118] M. Zhu, H. Chipman, and W. Su, “An adaptive method for statistical 

detection with applications to drug discovery,” In: 2003 Proc. Am Stat 

Assoc-Biopharm, pp. 4784-4789, 2003. 

[119] G. E. Batista, R. C. Prati, and M. C. Monard, “A study of the behavior of 

several methods for balancing machine learning training data,” SIGKDD 

Explorations Special Issue on Learning from Imbalanced Datasets, vol. 6, no. 1, 

pp. 20-29, 2004. 

[120] V. N. Vapnik, Statistical Learning Theory, Wiley-Interscience, New York, 

1998. 

[121] H. T Alashwal, S. Deris, and R. M. Othman, “One-class Support Vector 

Machines for Protein-Protein Interactions Prediction”, International Journal 

Biomedical Sciences, vol. 1, no. 2, pp. 120-127, 2006. 



References 

 171 

[122] L.M. Manevitz, and M. Yousef, “One-class SVMs for Document 

Classification,” Journal of Machine Learning Research, vol. 2, pp. 139-154, Jan. 

2002. 

[123] Q. Wang, L. S. Lopes, and D. M. J. Tax, “Visual Object Recognition 

through One-class Learning,” In: Proc. Int. Conf. Image Analysis and 

Recognition, pp. 463-470, 2004. 

[124] M. Breunig, H.-P. Kriegel, R. Ng, and J. Sander, “LOF: Indetifying density-

based local outliers,” In: Proc. ACM SIGMOD 2000 Int. Conf. Management of 

Data, pp. 93-104, USA, 2000. 

[125] B. W. Silverman, Density Estimation for Statistical and Data Analysis, 

Chapman and Hall, 1986. 

[126] B. Scholkopf, R. Willianmson, A. Smola, and J. Shawe-Taylor, “SV 

Estimation of a Distribution‟s Support” In: Proc. Neural Information 

Processing Systems (NIPS), pp. 582-588, 1999. 

[127] A. Tavakkoli, M. Nicolescu, M. Nicolescu, and G. Bebis, “Incremental 

svdd training: Improving efficiency of background modeling in videos,” 

In: Proc. the 10th IASTED International Conference, vol. 623, 2008. 

[128] N. Poh, A. Merati, and J. Kittler, “Adaptive client-impostor centric score 

normalization: A case study in fingerprint verification,” In: IEEE 3rd Int. 

Conf. Biometrics: Theory, Applications, and Systems, pp. 1-7, 2009. 

[129] L. Xu, A. Krzyzak, and C. Suen, “Methods of combining multiple 

classifiers and their applications to handwriting recognition,” IEEE Trans. 

Systems, Man and Cybernetics, vol. 22, no. 3, pp. 418–435, 1992. 

[130] J. Franke, and E. Mandler, “A Comparison of Two Approaches for 

Combining the Votes of Cooperating Classifiers,” In: Proc. 11th IAPR Int. 

Conf. Pattern Recognition, Conf. B: Pattern Recognition Methodology and 

Systems, vol. 2, pp. 611-614, 1992. 

[131] R. Jacobs, “Method for combining experts‟ probability assessments,” 

Neural Computation, vol. 7, no. 5, pp. 867-888, 1995. 

[132] G. Rogova, “Combining the results of several neural network classifiers,” 

Neural Networks, vol. 7, no. 5, pp. 777–781, 1994. 



References 

 172 

[133] M. Tanigushi, and V. Tresp, “Averaging regularized estimators,” Neural 

Computation, vol. 9, no. 5, pp. 1163–1178, 1997. 

[134] J. Benediktsson, and P. Swain, “Consensus theoretic classification 

methods,” IEEE Trans. Systems, Man and Cybernetics, vol. 22, no. 4, pp. 688–

704, 1992. 

[135] D. M. J. Tax, M. Breukelen, R. P. Duin, and J. Kittler, “Combining multiple 

classifiers by averaging or multiplying?,” Pattern Recognition, vol. 33, no. 9, 

pp. 1475–1485, 2000. 

[136] D. M. J. Tax, and R. P. Duin, “Combining one-class classifiers,” Multiple 

Classifier Systems, pp. 299-308, Springer Berlin Heidelberg, 2001. 

[137] R. Kohavi, and D. H. Wolpert, “Bias plus variance decomposition for 

zero–one loss functions,” In: Proc. 13th Int. Conf. Machine Learning, pp. 275–

283, Morgan Kaufmann, 1996. 

[138] L. Breiman, “Random forests,” Machine Learning, vol. 45, no. 1, pp. 5–32, 

2001. 

[139] J. Daugman, “Combining Multiple Biometrics”. Available at 

http://www.cl.cam.ac.uk/~jgd1000/combine/combine.html. 

[140] L. Shapley, and B. Grofman, “Optimizing group judgemental accuracy in 

the presence of interdependencies,” Public Choice, vol. 43, no. 3, pp. 329–

343, 1984. 

[141] O. Matan, “On voting ensembles of classifiers (extended abstract),” In: 

Proc. AAAI-96 workshop on Integrating Multiple Learned Models, pp. 84–88, 

1996. 

[142] L. Breiman, “Bagging predictors,” Machine Learning, vol. 24, no. 2, pp. 123-

140, 1996. 

[143] Y. Freund, R. E. Schapire, and N. Abe, “A short introduction to boosting,” 

Journal of Japanese Society For Artificial Intelligence, vol. 14, no. 5, pp. 771-

780, 1999. 

[144] Y. Freund, and R. E. Schapire, “A decision–theoretic generalization of on-

line learning and an application to boosting,” Journal of Computer and 

System Sciences, vol. 55, no. 1, pp. 119–139, 1997. 

http://www.cl.cam.ac.uk/~jgd1000/combine/combine.html


References 

 173 

[145] W. Fan, S. J. Stolfo, J. Zhang, and P. K. Chan, “AdaCost: misclassification 

cost-sensitive boosting,” In: Int. Conf. Machine Learning, pp. 97-105, 1999. 

[146] H. Masnadi-Shirazi, and N. Vasconcelos, “Cost-sensitive boosting,” IEEE 

Trans. Pattern Analysis and Machine Intelligence, vol. 33, no. 2, pp. 294-309, 

2011. 

[147] A. K. Jain, R. P. Duin, and J. Mao, “Statistical pattern recognition: A 

review,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 22, no. 1, 

pp. 4-37, 2000. 

[148] J. You, W. K. Kong, D. Zhang, and K. H. Cheung, “On hierarchical 

palmprint coding with multiple features for personal identification in 

large databases,” IEEE Trans. Circuits and Systems for Video Technology, vol. 

14, no. 2, pp. 234-243, 2004. 

[149] A. K. Jain, Y. Chen, and M. Demirkus, “Pores and ridges: high-resolution 

fingerprint matching using level 3 features,” IEEE Trans. Pattern Analysis 

and Machine Intelligence, vol. 29, no. 1, pp. 15-27, 2007. 

[150] K. Tumer, and J. Ghosh, “Error correlation and error reduction in 

ensemble classifiers,” Connection Science, vol. 8, no. 3-4, pp. 385-404, 1996. 

[151] G. Fumera, and F. Roli, “Linear combiners for classifier fusion: some 

theoretical and experimental results,” In: T. Windeatt and F. Roli, editors, 

Proc. 4th Int. Workshop on Multiple Classifier Systems (MCS 2003), vol. 2709 

of Lecture Notes in Computer Science LNCS, Guildford, UK, 2003, 

Springer-Verlag, pp. 74–83, 2003. 

[152] A. W. Bowman, and A. Azzalini, Applied Smoothing Techniques for Data 

Analysis: The Kernel Approach with S-Plus Illustrations, Oxford University 

Press, 1997. 

[153] N. Poh, and J. Kittler, “A Methodology for Separating Sheep from Goats 

for Controlled Enrolment and Multimodal Fusion,” In: Proc. 6th Biometrics 

Symposium, pp. 17–22, Tampa, 2008. 

[154] N. Poh, A. Rattani, M. Tistarelli, and J. Kittler, “Group-specific Score 

Normalization for Biometric Systems”, In: IEEE Computer Society Workshop 

on Biometrics (CVPR), 2010. 



References 

 174 

[155] D. Maio, D. Maltoni, R. Cappelli, J. L. Wayman, and A. K. Jain, “FVC2000: 

fingerprint verification competition,” IEEE Trans. Pattern Analysis and 

Machine Intelligence, vol. 24, no. 3, pp. 402–412, 2000. 

[156] N. Poh, T. Bourlai, J. Kittler, L. Allano, F. Alonso-Fernandez, O. Ambekar, 

J. Baker, B. Dorizzi, O. Fatukasi, J. Fierrez, H. Ganster, J. Ortega-Garcia, D. 

Maurer, A. A. Salah, T. Scheidat, and C. Vielhauer, “Benchmarking 

Quality-dependent and Cost-sensitive Multimodal Biometric Fusion 

Algorithms,” IEEE Trans. on Information Forensics and Security, vol. 4, no. 4, 

pp. 849–866, 2009. 

[157] A. K. Jain, S. Pankanti, S. Prabhakar, L. Hong, and A. Ross, “Biometrics: a 

grand challenge,” In: Proc. 17th IEEE International Conference on Pattern 

Recognition (ICPR), vol. 2, pp. 935-942, Aug. 2004. 

[158] H. Kuck, “Bayesian formulations of multiple instance learning with 

applications to general object recognition,” Master's thesis, University of 

British Columbia, Vancouver, BC, Canada, 2004. 

[159] J. Campbell, C. Fraley, F. Murtagh, and A. Raftery, “Linear Flaw Detection 

in Woven Textiles Using Model-Based Clustering,” Pattern Recognition 

Letters, vol. 18, no. 14, pp. 1539-1548, 1997. 

[160] J. Rissanen, Stochastic Complexity in Statistical Inquiry, Singapore: World 

Scientific, 1989. 

[161] S. Richardson, and P. Green, “On Bayesian Analysis of Mixtures with 

Unknown Number of Components,” Journal of the Royal Statistical Society: 

series B (statistical methodology), vol. 59, no. 4, pp. 731-792, 1997. 

[162] M. A. Figueiredo, and A. K. Jain, “Unsupervised learning of finite mixture 

models,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 24, no. 

3, pp. 381-396, 2002. 

[163] D.M.J Tax, “DDtools, the Data Description Toolbox for Matlab”, May 2012.  

[164] S. Canu, Y. Grandvalet, and A. Rakotonam, “SVM and Kernel Methods 

Matlab Toolbox,” Perception Systems et Information, INSA de Rouen, 

France, 2003.  



References 

 175 

[165] F. R. Hampel, E. M. Ronchetti, P. J. Rousseeuw, and W. A. Stahel, Robust 

statistics: the approach based on influence functions, John Wiley & Sons, 2011. 

[166] R. Auckenthaler, M. Carey, and H. Lloyd-Thomas, “Score normalization 

for text-independent speaker verification systems,” Digital Signal 

Processing, vol. 10, no. 1, pp. 42-54, 2000. 

[167] D. Reynolds, T. F. Quatieri, and R. B. Dunn, “Speaker verification using 

adapted Gaussian mixture models,” Digital Signal Processing, vol. 10, no. 1, 

pp. 19-41, 2000. 

[168] P. Smyth, “Model selection for probabilistic clustering using cross-

validated likelihood,” Statistics and Computing, vol. 10, no. 1, pp. 63-72, 

2000. 

[169] P. M. Long, and R. A. Servedio, “Random classification noise defeats all 

convex potential boosters,” Machine Learning, vol. 78, no. 3, pp. 287-304, 

2010. 

[170] J. Friedman, T. Hastie, and R. Tibshirani, “Additive logistic regression: a 

statistical view of boosting (with discussion and a rejoinder by the 

authors),” The Annals of Statistics, vol. 28, no. 2, pp. 337-407, 2000. 

[171] D. Wang, D. S. Yeung, and E. C. Tsang, “Structured one-class 

classification,” IEEE. Trans. Systems, Man, and Cybernetics, Part B: 

Cybernetics, vol. 36, no. 6, pp. 1283-1295, 2006. 


