

City Research Online

City, University of London Institutional Repository

Citation: Roberts, A. M., Pereira, C. L., Carby, M. R., Simon, A. R., Drey, N. & Reed, A. K. (2018). The Relationship Between Peak Cough Flow and Respiratory Function Testing (Spirometry), and the Factors That Influence This, Post Bilateral Sequential Single Lung Transplantation: A Cross-sectional Feasibility Study at a Single Centre Cardiothoracic Transplantation Unit. Journal of Heart and Lung Transplantation, 37(4), S296. doi: 10.1016/j.healun.2018.01.748

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/19707/

Link to published version: https://doi.org/10.1016/j.healun.2018.01.748

Copyright: City Research Online aims to make research outputs of City, University of London available to a wider audience. Copyright and Moral Rights remain with the author(s) and/or copyright holders. URLs from City Research Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study, educational, or not-for-profit purposes without prior permission or charge. Provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way.

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk/

National Institute for Health Research

NHS Foundation Trust

The relationship between peak cough flow and respiratory function testing (spirometry), and the factors that influence this, post bilateral sequential single lung transplantation: a cross-sectional feasibility study at a single centre cardiothoracic transplantation unit

A. M. Roberts^{1,2} C. L. Pereira¹, M. R. Carby¹, A. R. Simon¹, N.S. Drey^{2,} A.K. Reed¹
¹Royal Brompton and Harefield NHS Foundation Trust, ²City, University of London

BACKGROUND

- Chronic lung allograft dysfunction (CLAD) is the leading cause of mortality post bilateral sequential single lung transplantation (BSSLTx)^{1, 2}
- CLAD is associated with recurrent respiratory tract infections (RTI)²
- Adequate cough strength is the main defence mechanism against RTI⁴ and this is known to be impaired post BSSLTx⁵
- Peak cough flow (PCF) is a recognised clinical predictor tool in other disease populations⁶ with normal adult PCF 440-1200 L/min⁷
- PCF ≥ 270 L/min = adequate cough. PCF ≤ 160 L/min = inefficient cough⁶

AIMS

- To evaluate the feasibility of recruitment and conducting PCF testing alongside standard care
- To examine the relationship between PCF and spirometry: forced vital capacity (FVC) and forced expiratory volume in one second (FEV₁)
- To examine other factors that influence PCF

METHODS

- Baseline characteristics collected
- FVC and FEV₁ measured by pneumotachograph on day of PCF testing
- Best of 3-5 PCF attempts measured with portable peak flow meter (mini-Wright Standard Range Peak Flow Meter™)
- Health related quality of life (HRQoL) measure (EuroQol EQ-5D-5L™)
 completed

RESULTS

- Study methods feasible
- 91.90% recruitment rate, PCF test well tolerated
- n = 34 (61.8% male, 91.7% white British)

Table 1: participant characteristics (mean (SD) unless otherwise stated)

Age (years)	58.50 (17)
Height (cm)	168.84 (11.01)
Weight (kg)	72.02 (18.83)
BMI kg/m ²	25.12 (24.60)
FVC (L/sec)	3.25 (1.07)
FEV ₁ (L/sec)	2.66 (1.09)
PCF (L/min) median (IQR 25-75%)	220 (150)
Total hospital LOS (days) median (IQR 25-75%)	35.50 (30)
Time elapsed post BSSLTx (days) median (IQR 25-75%)	972 (1692)
EQ-5D-5L™ VAS Score (0-100)	72.56 (17.23)
EQ-5D-5L™ Value State (0-1) median (IQR 25-75%)	0.82 (0.23)

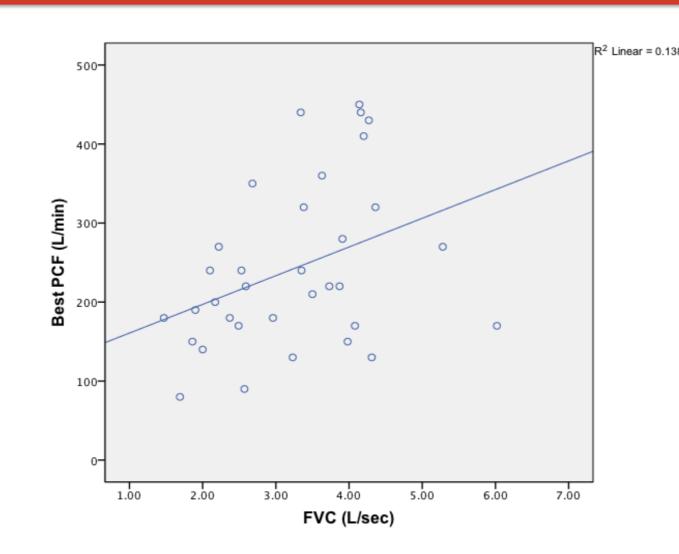


Figure A: Best PCF (L/min) versus FVC (L/sec)

Moderate positive correlations (rho = .389, n = 34, p = .023)

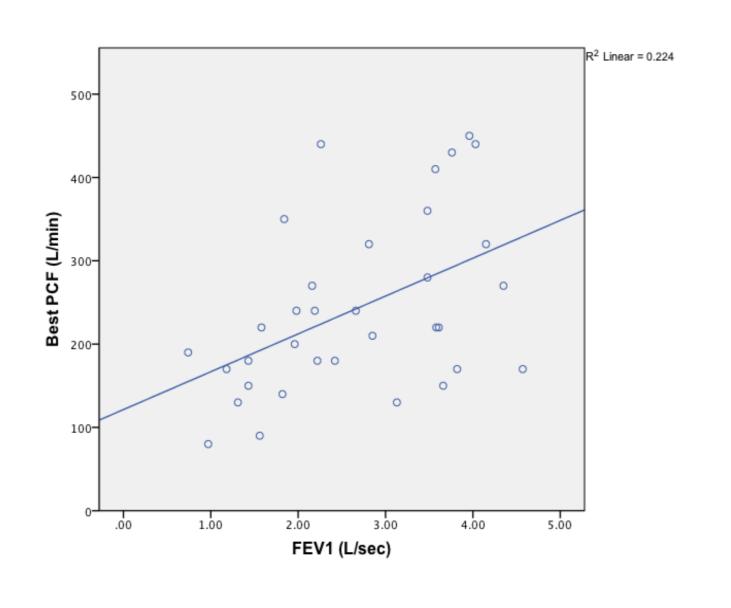


Figure B: Best PCF (L/min) versus FEV_1 (L/sec) Moderate positive correlations (rho = .471, n = 34, p = .005)

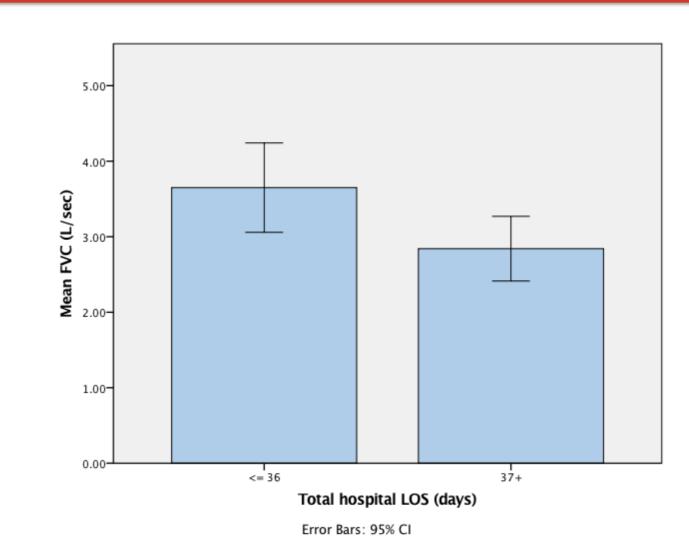
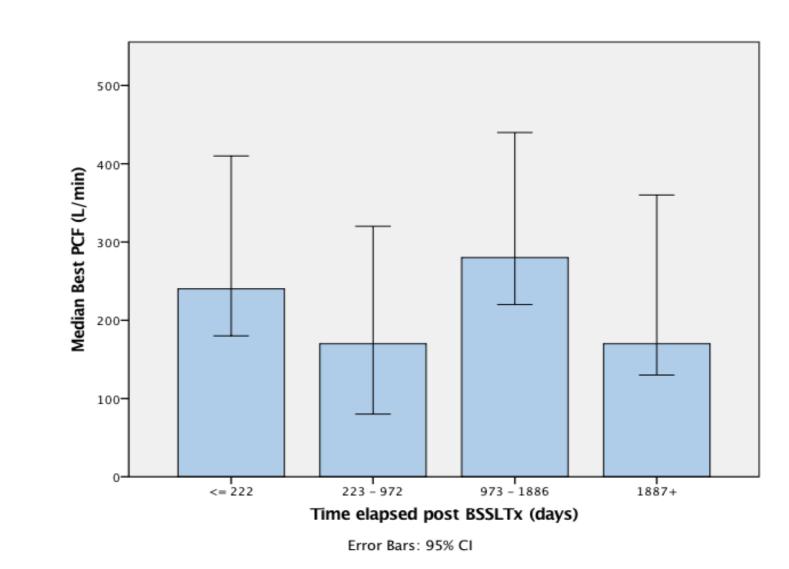



Figure C: Mean FVC (L/sec) versus Total Hospital LOS (days)

Significantly higher FVC (p = .024) in patients with a total hospital LOS \leq 36 days compared to those > 37 days

Figure D: Median PCF (L/min) versus Time Elapsed Post BSSLTx (days)

Significant differences in PCF as grouped into number of days elapsed post BSSLTx

CONCLUSION AND RECOMMENDATIONS

- Study methods feasible and PCF test well tolerated
- Positive correlation shown between PCF and spirometry (FVC and FEV₁), even when controlling for other variables
- Significantly higher FVC associated with hospital LOS < 36 days
- PCF changed with time elapsed post BSSLTx: significant difference (p = 0.07) noted between 223-972 days versus 973 1886 post operatively
- HRQoL did not appear to influence respiratory performance
- CLAD classification had moderate or strong negative correlations with PCF,
 FVC and FEV₁
- CLAD severity found to be worse dependant on time elapsed post BSSLTx
- A larger longitudinal study needs to be carried out with an increased sample size (estimated to be 244), revised sampling technique and consideration of additional respiratory outcome measures such as respiratory muscle testing

References:

- 1. Meyer, K. (2013) 'Lung transplantation', *F1000Prime Reports*, 5 16), pp. 1-10
- 2. Verleden, G., Raghu, G., Meyer, K., Glanville, A. and Corris, P. (2014) 'A new classification system for chronic lung allograft dysfunction', *The Journal of Heart and Lung Transplantation*, Elsevier, 33(2), pp. 127-133
- 3. Yeung, J. and Keshavjee, S. (2014) 'Overview of clinical lung transplantation', *Cold Spring Harbor Perspectives in Medicine*, 4(1), pp. 1-14
- Chang, A. (2006) 'The physiology of cough', *Paediatric Respiratory Reviews*, 7, pp. 2-8
 Duarte, A. and Myers, A. (2012) 'Cough Reflex in Lung Transplant Recipients', Lung, 190, pp. 23-27
- 6. Hull, J., Aniapravan, R., Cham, E., Chatwin, M., Furton, J., Gallagher, J., Gibson, N., Gordon J., Hughes, I. and McCulloch, R. (2012) 'British Thoracic Society guideline for respiratory management of children with neuromuscular weakness', *Thorax*, 67, pp. i1-i40
- 7. Bianchi, C. and Baiardi, P. (2008) Cough Peak Flows: Standard Values for Children and Adolescents, *American Journal of Physical Medicine and Rehabilitation*, 87 (6), pp. 461–467

CONTACT DETAILS: a.roberts@rbht.nhs.uk OR abigail.roberts@city.ac.uk