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ABSTRACT

The default risk premium expresses the difference between the actual default risk of a

company and the default risk implied by the securities issued by the company. In this paper,

we study the simultaneous relationship between the dynamics of the default risk premium

and both the dynamics of the stock price and the CDS (Credit Default Swap) spread of a

company. We show that an increase in the default risk premium can be associated, at the

same time, to either an increase in the stock price and a decrease in the CDS spread, or to

a decrease in the stock price and an increase in the CDS spread. We document that the first

type of relationship features securities belonging to a consistent risk-return framework, while

the second type of relationship describes securities following a counterintuitive risk-return

puzzle. We show this result theoretically end empirically, by adopting a contingent claim

model. We estimate the model with a non-linear Kalman filter in conjunction with quasi-

maximum likelihood, and we shed light on the relationship over time between the default

risk premium and both the equity value and the CDS spreads for a sample of non-financial

firms.
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I. Introduction

The default risk premium is a measure of the difference between the actual default risk of
a company, and the evaluation of the default risk that is reflected in the price of the securities
issued by the company, such as equity, bonds, or derivatives. The default risk implied by the
price of the securities is straightforward to compute, by adopting widely used financial models.
The result is the risk-neutral probability of default of the company. We refer to this measure
as risk-neutral, as it is the evaluation of the default risk by a risk-neutral agent, such as the
market. Instead, the actual default risk of the company, that we refer to as real-world default
probability, is generally measured by using the company rating provided by rating agencies,
which combine information on firm-specific economic indicators with macroeconomic drivers.
Then, a risk premium arises as long as the two default risk measures are not equal. In
particular, the premium is defined as the ratio between the risk-neutral default probability
and the real-world default probability.

In this paper, we study the relationship between the default risk premium and the price of
both the stock and the CDS of a company, over time. We show that an increase in the default
risk premium can be associated, at the same time, to either an increase in the stock price and
a decrease in the CDS spreads, or to a decrease in the stock price and an increase in the CDS
spread.

We use CDS spreads following previous papers that show the better performance of the
CDS market to provide a reliable proxy of credit risk with respect to bonds or loans spreads
(Blanco, Brennen, and Marsh (2005), Almeida and Philippon (2007)). The CDS spreads are
less affected by other sources of risk, in particular by liquidity risk (Longstaff, Mithal, and
Neis (2005)). In practice, the CDS spread is the price of an insurance against the firm’s
default, which pays a given amount to the holder when the firm defaults. The higher is the
default risk of the firm, then, the higher should be the price of the insurance (i.e., the CDS
spread).

The intuition behind our results is simple. The default risk premium may increase be-
cause the risk-neutral default probability (i.e., the market-based evaluation of the default
risk) has increased more than the real-world default probability (the actual default risk of the
company), that is the numerator of the ratio has increased more than the denominator. How-
ever, the default risk premium may also increase because the real-world default probability
has decreased more than the risk-neutral default probability (the denominator has decreased
more than the numerator). In the first case, the stock depreciates because of the greater risk
of default of the company, while the price of the CDS increases (buying an insurance against
the default is more costly). In the second case, instead, the stock price moves up (the firm is
safer and the equity is worth more), while the CDS depreciates (the price for hedging against
default is lower).

On the other hand, the default risk premium may decrease either because the risk-neutral
default probability has decreased more than the real-world default probability, or because the
real-world default probability has increased more than the risk-neutral default probability.
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In the first case, the stock price moves up and the price of the CDS decreases. In the second
case, the stock depreciates and the price of the CDS increases.

We show that the first type of relationship describes securities (i.e., firms) belonging to
a consistent risk-return framework (we call them as normal), where the firm reports an ex-
pected rate of growth higher than the risk-free rate, and the actual default probability is lower
than the risk-neutral default risk (default risk premium larger than 1). The second type of
relationship, instead, describes securities belonging to a counterintuitive risk-return frame-
work (we refer to as distressed), where the firm generates expected return even lower than the
risk-free rate, and the actual default risk is greater than the risk-neutral default risk (default
risk premium lower than 1).

We show this result theoretically and empirically, by adopting a contingent claim model.
In particular, we adopt a first-time passage model, where the default occurs as soon as the
asset value of the firm crosses from above a default barrier. This framework is an extension of
the seminal model of Merton (1974), where the default can occur only at the maturity of the
debt. Moreover, in the appendix, we show that the result does not depend on the particular
choice of the model, and we prove it in a very simple and general pricing model, that features
the pricing of a stock and an insurance, by using both the real-world and the risk-neutral
probability. We derive the relationship between the default risk premium and the dynamics
of the stock price, then we apply similar proofs to derive the relationship between the default
risk premium and the dynamics of the insurance premium (such as a CDS spread).

In the paper, we illustrate this result numerically in the contingent claim model, then
we estimate the model with a non-linear Kalman filter in conjunction with quasi-maximum
likelihood, by using equity prices and CDS spreads. We first report that our estimates well
fit the real data. Buying and selling equity shares and CDS, according to the one-step ahead
forecasts based on our estimation of the firms’ asset and debt, generates highly significant
performance.

Then, we use the output of our estimation to compute both the real-world and the risk-
neutral probability of default, for each firm, and we combine the two measures to compute the
default risk premium, at each point in time. We show that the equity and the credit markets
exhibit a relationship with the default risk premium which is opposite to each other, where
the direction of the relationship depends on the type of firm-security (normal, or distressed).

Therefore, our paper makes three contributions. First, we propose a novel methodological
approach to estimate a corporate credit risk model, by using only market information, for a
sample of non-financial firms, across different geographic regions. We generally find that the
firm’s market value of the leverage, defined as the ratio between debt and asset, reaches the
peak around the 2008-2009 financial crisis. Also, we estimate the actual value of the default
boundary for each firm in our sample, and we report values of the default barrier around 75%
of the face value of the debt. This result is substantially similar to the findings of Davydenko
(2012), who estimates a default boundary around 70% of the debt value, and Wong and Choi
(2009), who report a default barrier equal to 74% of the debt.

As second contribution, we address the estimation of the default risk premium by using
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only market data, and by gathering the information conveyed simultaneously from the credit
and the equity markets. The result is a measure of the distance between actual and risk-
neutral default risk that is reflected at the same time in both the financial markets. We find
that the default risk premium is substantially time varying. In particular, the default risk
premium exhibits the lowest peak around the great recession, and an additional downturn
during the sovereign debt crisis. Moreover, the premium is generally higher for the shorter
time horizons.

We generally find that the default risk premium is greater than one for most of the firms,
that is the risk-neutral default probability is higher than the corresponding real-world mea-
sure (normal firms). However, we document the presence of a significant number of distressed
firms. In fact, for the 10-years (5-years) maturity, we find that the 32% (26%) of our sample
firms reports an average default risk premium lower than 1.

As last contribution, we bring new insight on the broad literature which links the default
risk and the equity returns, and recently the CDS and the equity market. We show that the
dynamics of the default risk premium can be associated to diametrically opposite dynamics
of the stock price and the CDS spreads, and this completely different relationship depends on
the type of the firm-security in terms of risk-return framework.

We split our sample firms in two sub-samples, normal and distressed firms, and we show
that the difference in the correlation, between equity prices and default risk premium, across
the two sub-samples is positive and very significant, while the difference in the correlation,
between CDS spreads and default risk premium, across the two sub-samples is negative and
very significant. We corroborate this result by implementing long-short portfolio strategies
of equity shares and CDS, based on the one-step ahead forecast generated by the Kalman
filter of the default risk premium, for each firm. Then, we buy (sell) equity shares and we sell
(buy) CDS when we have a prediction of an increase (a decrease) in the default risk premium,
for firms with default risk premium larger than 1 (normal). Instead, we buy (sell) equity
shares and we sell (buy) CDS when we have a prediction of a decrease (an increase) in the
default risk premium, for firms with default risk premium lower than 1 (distressed). We
report highly significant performance for our long-short portfolio strategies, both in-sample
and out-of-sample.

The rest of the paper is organized as follows. In the next section we relate our study
to the previous literature. In section 3 we detail the model and the estimation methodology.
Moreover, we define the default risk premium, and we provide numerical evidence on the rela-
tionship between the default risk premium and the market variables. The data are described
in Section 4, and Section 5 presents the empirical analysis. The first part of this section re-
ports our results on the contingent claim model estimation, while in the second part we focus
on the default risk premium, and the last part documents the construction and the perfor-
mance of the portfolio strategies that use the premium as key driver. Section 6 concludes and
introduces further potential research directions.

4



II. Related Literature

The first method to estimate a credit risk model à la Merton is based on a system of
two equations which link the equity value and volatility to the unobservable asset value and
volatility. This method, proposed by Jones, Mason, and Rosenfeld (1984), Ronn and Verna
(1986), and improved and amended by Bohn and Crosbie (2003), Vassalou and Xing (2004), is
known as Volatility-Restriction (VL). Duan (1994) highlights the drawbacks of this approach
and constructs a transformed likelihood function to estimate the asset values from the ob-
servable equity prices.

Brockman and Turtle (2003) address the estimation of a model with early default risk,
and they proxy the value of the asset by adding the equity value to the book value of the debt.
They report values of the default boundary above the nominal value of the debt. Ericsson and
Reneby (2004), Li and Wong (2008), show that the maximum-likelihood approach of Duan
(1994) outperforms both the VL and the market proxy methods, either in the Merton model or
in the barrier-dependent model. Perlich and Reisz (2007) attribute the misleading results of
Brockman and Turtle (2003), who predicts that the equity holders liquidate the firm when the
asset value is more than enough to guarantee the payment of the final debt, to the overvalu-
ation of the market value of the debt when it is replaced by the nominal face value. By using
a transformed maximum-likelihood approach to estimate a barrier-dependent model, Wong
and Choi (2009) report values of the barrier around 70% of the face value of the debt. As in
the original Duan (1994) formulation, they use equity prices to infer the asset value, by con-
structing a modified likelihood function adapted to the barrier framework. Similar results are
documented in Davydenko (2012), where the market value of the asset just prior to the default
is estimated for those firms with market value of debt entirely observable. This is the case of
those firms that have all liabilities traded on the market. Forte (2011) proposes a calibration
approach to derive the asset value from the equity prices, and the default boundary level from
the CDS spreads, while Forte and Lovreta (2012) implement a double-stage maximization al-
gorithm that extracts both the asset and the barrier values from the stock prices, under the
assumption that the equity value incorporates the optimal level of the barrier. These two last
papers estimate barrier values below the nominal debt.

Our paper nests in this literature, with several innovations. We estimate a barrier-dependent
model, by using only market data. In contrast with Brockman and Turtle (2003), Perlich and
Reisz (2007), Wong and Choi (2009), Forte and Lovreta (2012), we use not only equity prices
but also CDS spreads. This approach allows to estimate also the market value of the debt,
instead of using the book value of the debt. Moreover, differently from Forte (2011), equity
value and CDS spreads enter in our estimation model simultaneously, in order to estimate at
the same time the asset value dynamics and the barrier value.

Also, we show that our contingent claim framework fits better the real data than the Mer-
ton (1974) model. Buying and selling equity shares and CDS, according to the one-step ahead
forecasts based on the estimation implemented with the barrier-dependent model, generates
larger and more significant performance than using the one-step ahead forecasts based on the
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estimation implemented with the Merton (1974) model.
We assume an exogenous boundary, as in Longstaff and Schwartz (1995). In this case, the

barrier may represent certain covenants between creditors and debtors, where managers are
committed to maintain some financial ratios above pre-specified levels in order to preserve the
possibility of debt financing. Moreover, consistently with the previous literature, we specify
a default barrier that is strictly positive but no greater than the book value of the liabilities.
The intuition is simple. As long as the asset value is above the default boundary, even if is
below the face value of the debt, the shareholders are willing to cover the promised payment
and bear these losses in order to keep the firm operating. Otherwise, the firm defaults and
the equity holders get nothing.

Moreover, we focus our attention on the dynamics of the default risk premium which cap-
tures remarkable attention in both asset pricing and credit risk literature. Different ap-
proaches have been proposed to assess this key measure. Hull, Predescu, and White (2005)
compute the ratio between the risk neutral and the real world default probability by using
corporate bond spreads and historical data, while Driessen (2005) estimates a reduced-form
model to derive a default risk premium, constant over time, implied by corporate bond spreads
and rating-based default probability, with a Kalman filter. He finds that the premium is sta-
tistically and economically significant. In a pioneer work on the CDS-based default risk pre-
mium, Berndt, Douglas, Duffie, Ferguson, and Schranz (2008) perform both a panel regression
and a reduced form model by using 5-years CDS spreads and Moody’s EDFs data, and they
show that the premium is time, sector, and rating-varying. Diaz, Groba, and Serrano (2013)
adopt a similar approach to Driessen (2005) and Berndt et al. (2008), by using a wider term
structure of CDS spreads on European firms. The default risk premium has been recently
studied by Huang and Huang (2012), who calibrate different credit risk models with corpo-
rate bond spreads and default data from rating agencies. They support the conclusion that
the premium decreases with the credit quality, and after the crisis periods.

In terms of magnitude of the premium, Berndt et al. (2008) report a default risk premium
roughly equal to two, thus arguing that the investors price twice the expected default loss,
evaluated under the actual probability measure. Instead, in case of corporate bonds, the
premium describes the amount required by the investors to bear the risk related to the com-
pany’s default, which indeed will affect the bond repayment. Driessen (2005) estimates that
the investors multiply the actual default probability with a factor close to 6, in order to price
corporate bonds. Therefore, we report similar but lower premia with respect to Berndt et al.
(2008) and Driessen (2005), with the exception of the US sample, which exhibits default risk
premia significantly larger.

III. The Model

We define the firm i as an entity fully financed with equity, with market value Ei,t at time
t, and a zero-coupon debt with a face value of Fi maturing at time T . Let Vi,t be the asset

6



value of the i-th firm and Zi,t its risky zero-coupon bond value at time t. Then, the following
condition holds for every point in time, and for every firm:

Vi,t = Ei,t + Zi,t

The asset value of the i-th firm is described by a geometric Brownian motion on the filtered
probability space (Ω,F , {Ft : t ≥ 0},P):

dVi,t = µViVidt+ σViVidWi,t,

where µVi and σVi are the P-drift and diffusion constant coefficients, Wi,t is a standard Brow-
nian motion under the physical probability measure P.

We define the i-th firm’s market value of leverage as Li,t = ln
(
Fi
Vi,t

)
, following an arithmetic

Brownian motion,

dLi,t = µLidt− σLidWi,t, (1)

where µLi = −
(
µVi − 1

2σ
2
Vi

)
is the P-leverage drift coefficient, and σLi = σVi is the leverage

diffusion component. As result of the inverse relationship between the asset value and the
leverage, the minus in front of the diffusion component stands for the perfect and negative
correlation between the Brownian motions of the asset value and the leverage.

For pricing the firm’s securities, we adopt a first-time passage framework, as in Black and
Cox (1976), Longstaff and Schwartz (1995), with a constant and deterministic barrier, that
we assume to be below the face value of the debt. Default occurs as soon the asset value of
the i-th firm crosses from above the barrier Ci at any time s, with t ≤ s ≤ T , where T is the
outstanding firm’s debt maturity. Therefore, the firm’s equity value Ei,t can be considered as
a down-and-out European call (DOC) option, written on the firm’s asset value, with maturity
T . The pricing formula for the equity value in a DOC framework is rearranged in order to
express the observable equity value as function of the firm’s leverage.1

Ei,t =
Fi
eLi,t

Φ(d1)−Fie−r(T−t)Φ(d1−σLi
√

(T − t))− Fi
eLi,t

exp

(
(Ki + Li,t)

(
2r

σ2Li
+ 1

))
Φ
(
dCi1

)

+ Fie
−r(T−t) exp

(
(Ki + Li,t)

(
2r

σ2Li
− 1

))
Φ
(
dCi1 − σLi

√
(T − t)

)
, (2)

where

d1 =
−Li,t +

(
r + 1

2σ
2
Li

)
(T − t)

σLi
√

(T − t)
, dCi1 =

(2Ki + Li,t) +
(
r + 1

2σ
2
Li

)
(T − t)

σLi
√

(T − t)

Φ stands for the cumulative distribution function of a standard normal variable, and Ki =

ln
(
Ci
Fi

)
. The parameter Ki measures the willingness to the gamble for resurrection of the
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shareholders. As the default barrier is below the face value of the debt, Ki assumes only
negative values. The larger is the magnitude of the absolute value of Ki, the larger is the
distance between the face value of the debt Fi and the default barrier Ci, and the larger is the
potential amount the shareholders are willing to take out of their pocket in order to bail out
the firm’s debt, and to keep the firm operating.

The firm’s default risk is also priced in the credit default swaps (CDS) issued with different
maturity τj , with j going from 1 to J , where the longest maturity τJ matches the firm’s debt
maturity T . In a CDS contract, the protection buyer pays a fixed premium each period until
either the default event occurs or the contract expires, and the protection seller is committed
to buy back from the buyer the defaulted bond at its par value. Therefore, the price of the
CDS, i.e. the premium (the spread) paid by the insurance buyer, is defined at the inception
date of the contract in order to equate the expected value of the two contractual legs. Then,
by assuming the existence of a default-free money market account appreciating at a constant
continuous interest rate r, and M periodical payments occurring during one year, the CDS
spread γ with time-to-maturity τj , priced at t = 0, solves the following equation:

M∑
m=1

T
γ

M
exp

(
−r m

M

)
EQ0 [1t∗>m

M
] = EQ0 [exp(−rt∗)α1t∗<τj ],

where t∗ stands for the time of default, α is the amount paid by the protection seller to the
protection buyer in case of default, and EQ0 indicates that the expectation is taken under the
risk-neutral measure Q. Therefore, EQ0 [1t∗<τj ] is the probability that the firm defaults at any
time before τj , that is the probability that the asset value crosses from above the barrier Ci.
At t, this probability is equal to:

PDQi,t(τj) = Φ

(
Ki + Li,t −

(
r − 1

2σ
2
Li

)
(τj − t)

σLi
√

(τj − t)

)

+ exp

(
(Ki + Li,t)

(
2r

σ2Li
− 1

))
Φ

(
(Ki + Li,t) +

(
r − 1

2σ
2
Li

)
(τj − t)

σLi
√

(τj − t)

)
, (3)

if τj < T , otherwise

PDQi,t(τJ) = 1− Φ

(
−Li,t +

(
r − 1

2σ
2
Li

)
(τJ − t)

σLi
√

(τJ − t)

)

+ exp

(
(Ki + Li,t)

(
2r

σ2Li
− 1

))
Φ

(
(2Ki + Li,t) +

(
r − 1

2σ
2
Li

)
(τJ − t)

σLi
√

(τJ − t)

)
, (4)

as τJ = T , and we have to consider not only the early bankruptcy risk as in the equation
(11), but also the probability of the firm not being able to pay back the outstanding debt Fi at
time T , even though the asset value never crossed the default boundary.
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The face value of the debt, Fi, appears in the equations (10) and (12) (even not explicitly
in (12), where it appears in terms of the parameter Ki), and this is consistent with the mar-
ket evaluation which takes into account the information released by the company with the
book data in order to form a proper assessment of the firm’s value, and the firm’s riskiness.
Nevertheless, we define Vi,t as the market value of the i-th firm at time t, as we obtain this
estimation by using the information contained in market data.

However, we need to estimate Fi because we are mapping companies which are normally
characterized by more complex debt structure, in terms of debt instruments and maturities,
into companies with very simple debt structure, with one single zero-coupon bond issue. This
simplification does not affect the definition of default risk. In fact, what only matters in terms
of default risk is the threshold triggering the default. As long as the asset value is above the
default boundary the shareholders are willing to cover the firm’s losses, even if the asset value
is not enough to meet the promised debt payment at maturity. In practice, the shareholders
would buy additional shares in order to bail out the maturing debt holders, still assessing as
profitable the investment in the company.

We formulate our problem in a state-space model, where the measurement equations come
from (10) and (11-12), and the default probability for different time horizons can be extracted
from the CDS spreads according to O’Kane and Turnbull (2003). The firm’s leverage Li,t is
unobservable, while we observe Ei,t on the equity market, and we observe the CDS spreads
for four time horizons (1,3,5, and 10 years). Hence, we have five measurement equations.
The noise terms associated with the CDS implied-default probability for different time to
maturities τj are assumed to be uncorrelated, and with equal variance.

(I − IV ) : PDQi,t(τj) = g (Li,t;Ki, σLi) + εi,t(τj), [j = 1, 3, 5, 10]

(V ) : Ei,t = h (Li,t;Ki, σLi , Fi) + ςi,t,

where the time to maturity is expressed in years, and j = 10 stands for the maturity T of
the outstanding debt Fi (i.e., 10 years). The functions g and h define the non-linear relation-
ships between the observable and the latent variable, and εi,t(τj) is the measurement noise
associated with the CDS implied-default probability equation and the time horizon j. These
four measurement noises, for each firm i, are assumed to follow a multivariate normal dis-
tribution, with zero mean, and diagonal covariance matrix Ri. We assume a homoscedastic
covariance matrix, which is firm-varying. ςi,t is the measurement noise associated with the
equity equation, and we assume it to be normally distributed, with zero mean and variance
ωi.

On the other side, the transition equation describes the evolution of the firm’s leverage. It
follows from the discretization of the stochastic process defined in (9):

Li,t+δt = Li,t + µLiδt+ ηi,t+δt,

where ηi,t+δt = σLi(Wi,t −Wi,t+δt) v N (0, Qi) is the transition error, and Qi = σ2Liδt.
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The dynamics of Li,t, and the parameters of the model, such as the face value of the debt
Fi, the parameters of the leverage P-dynamics (µLi , σLi), and the willingness to the gamble for
resurrection Ki, are then estimated by performing a non-linear Kalman filter in conjunction
with quasi-maximum likelihood estimation. For parsimony, the steps to implement the non-
linear Kalman filter, and the construction of the likelihood function, are described in details
in the Appendix A.

The estimation of the dynamics of the firm’s asset value Vi,t, the dynamics of market value
of the debt Zi,t, and the level of the default boundary Ci, becomes straightforward, once we
have obtained the estimates of the leverage dynamics, and the parameters of the model. In
fact, from the definition of Li,t, and Ki, it immediately follows that:

Vi,t =
Fi
eLi,t

,

Ci = eKi × Fi,

Zi,t = Vi,t − Ei,t. (5)

A. The Default Risk Premium

The default risk premium is defined as the ratio between the risk-neutral default proba-
bility and the real-world default probability:

DRPi,t(τj) =
PDQ

i,t(τj)

PDi,t(τj)
(6)

The default risk premium can be computed for each firm i, each point in time t, and each
time horizon τj . Our target is to investigate the relationship between the dynamics of the
default risk premium and the dynamics of both the stock price and the CDS spread, for a
given firm. We know that there is a straightforward relationship between both the stock
price, and the CDS, and the state variable of the model, that is the leverage of the firm. The
leverage increases, indeed, when the value of the firm decreases. As consequence, the equity
value of the firm decreases, and the CDS spread increases. The firm, in fact, is becoming
riskier, as the value of the firm is approaching the default boundary.

Therefore, the natural procedure to achieve our target is to study the sensitivity of the de-
fault risk premium with respect to the leverage, that means to study the sign of the derivative
of the premium with respect to the leverage of the firm. We do not report here the analytical
derivation of this derivative. However, we study the sign of the derivative numerically. In
particular, we show that, ceteris paribus, the sign of this derivative depends on the difference
between µV and r, that is whether this difference is positive or negative. The plots in figure 1
illustrate this result.

The left plot shows that the default risk premium increases when the leverage increases,
therefore the equity value of the firm depreciates, and the CDS spread increases. The default
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Figure 1. Default Risk Premium and Leverage. Numerical Example

The left plot shows the variation of the leverage, the default risk premium, and the two measures of default probability when the asset value of the firm decreases, up to
the default boundary. The right plot shows the variation of the leverage, the default risk premium, and the two measures of default probability when the asset value of
the firm increases, starting from the default boundary.

risk premium increases, in fact, because the risk-neutral probability of default increases more
than the real-world probability of default. This is the case of firms with µV < r, for which the
default risk premium is lower than 1. The right plot, instead, shows that the default risk
premium increases when the leverage decreases, therefore the CDS spread depreciates, and
the equity value increases. The default risk premium increases, in fact, because the real-
world probability of default decreases more than the risk-neutral probability of default. This
is the case of firms with µV > r, for which the default risk premium is larger than 1.

In a nutshell, an increase in the default risk premium can be associated to diametrically
opposite dynamics of the stock price and the CDS spreads, and this completely different rela-
tionship depends on the type of the firm-security in terms of risk-return framework. While,
in fact, it is natural that a firm has an expected rate of value growth higher than the risk-free
rate, since the assets of the firm are risky and may end up in default, it is puzzling that the
this expected rate of growth is even lower than the risk-free rate. Nevertheless, we document
in our empirical analysis that a significant portion of firms is characterized by a default risk
premium lower than 1, and then they show a dynamics of the premium negatively related to
the equity value and positively related to the CDS spread.

Moreover, this result does not depend on the particular choice of the model. In the ap-
pendix, we present a very simple and general pricing model, where we show the relationship
between the default risk premium and the dynamics of the stock price, and the relationship
between the default risk premium and the dynamics of the insurance premium (such as a
CDS spread).

IV. Data

Our dataset consists of the market variables that we use to estimate the contingent claim
model. In particular, we use daily CDS spreads traded on four different maturities (1 year, and
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3,5,10 years), which are the most liquid on the CDS market, and daily market capitalization
(i.e., the product between the number of outstanding shares and the share price).

The CDS premia are expressed in basis point. In a CDS transaction, the premium, which
the buyer of credit risk (i.e. the protection seller) receives, is expressed as an annualized
percentage of the notional value of the transaction and this value is recorded as the market
price. The details of a CDS transaction are recorded in the CDS contract, which is usually
based on a standardized agreement prepared by the International Swaps and Derivatives
Association (ISDA), an association of major market participants.2

The event triggering the payment of the protection leg in a CDS contract ranges from no-
restructuring to full-restructuring. As priority rule, we select, when is possible, the contracts
that adopt the no-restructuring (MR) clause, as it is the standard convention after the CDS
Big Bang protocol in April 2009. Otherwise, we include the contracts that adopt the modified-
restructuring (MR) clause, as it was the standard convention before the protocol. As last
options, we include the contracts with full-restructuring or modified-modified restructuring
clause.

We take CDS data from Thomson Reuters by Datastream, which provides information on
CDS spreads from December 2007. The sample firms are chosen from the reference entities
listed on the Markit indexes, where the most liquid companies in terms of CDS transactions
are quoted. In particular, we refer to the iTraxx indexes for Australia, Japan, and Europe. In
the last index, we select only the Eurozone entities to ensure homogeneity in currency. The
CDX North America - Investment Grade index is adopted for the United States sample, where
we select only the US companies, for the same homogeneity reason.3

First, we keep only the reference entities with active CDS contracts before the 20th De-
cember 2007, which is the starting point of our time series. It goes from the 20th December
2007 to the 19th December 2013. The choice of this time window is driven by the so-called
International Monetary Market dates.4

Moreover, we exclude the financial firms, which are characterized by a peculiar capital
structure in terms of assets and liabilities, that would deserve a specific analysis and discus-
sion.

Also, we control for the stale prices, where a price is defined stale when remains equal
for many consecutive days. This issue may have an impact on the inversion from the CDS
spreads curve to the risk-neutral default probabilities. In fact, a massive discrepancy in the
number of active trading days between CDS on the same entity with different maturities
may produce non-monotone default probabilities. In this case, for instance, we would have
higher probability of defaulting in a time interval going from now to one year than defaulting
from now to five years. As a consequence, we would end up with a negative probability of
defaulting in the time interval going from one to five years, i.e. negative forward default
probability. Instead, the default probability for longer time horizons must be at least equal to
the default probability for shorter time horizons, as the longer horizon nests the shorter.

This same finding can be a consequence of an enormous variation in the CDS spread
recorded for only one or some of the four maturities. We find 5 companies to show this il-
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logical result, and we drop out from the dataset the companies with negative forward-default
probabilities for more than the 1% of the entire time series, for at least one time horizon, and
we set this negative forward measure to zero for the remaining entities, in order to retrieve a
monotone non-decreasing term structure of the default probability. In fact, while it is possible
to have a CDS downward sloping term structure when the company is perceived to be riskier
in the short term than in the long term (similarly to a downward sloping term structure of
interest rates), this curve must be not too steep.

At the end, we are left with a CDS dataset of 172 firms. The data on the daily market cap-
italization, for these companies, and the same time series, are downloaded from Bloomberg.
Finally, we delete from our dataset 8 firms with no data on the market capitalization value,
and we are left with a final dataset of 164 firms, geographically divided as follows: Australia
(9), Japan (10), United States (89), Europe (56).

As proxy of the risk-free rates, we use the sovereign bonds curve constructed by Bloomberg
for Unites States, Australia, and Japan. The European curve is given by an aggregation of
the sovereign bonds issued by France, Germany, and Holland. Given the CDS spread, the
termination date, the arbitrary assumption on the recovery rate (we follow the common ap-
proach of a recovery rate equal to 40% of the notional value), and the risk-free term structure,
we can extract from the CDS spread the risk-neutral default probability for the correspond-
ing maturity. In practice, there is only one arbitrage-free PD (for a certain debt instrument,
with a certain contractual structure) that is implied by the market default swap spreads,
and equates the starting value of the premium leg (protection buyer) and the protection leg
(protection seller) in a CDS contract.5

A. Summary Statistics

We report in the table 1 the descriptive statistics about the CDS spreads for all the entities
in our sample. The statistics for each geographic region are available upon request.

[Insert Tables 1, here]

The upper graph of figure 1 shows the term structure of the average CDS spreads for each
region. The worldwide propagation of the 2008-2009 financial crisis is the main source of the
peak in the CDS premia around that time interval. The difference in the CDS spreads across
years is very pronounced for the shorter time horizons, and in particular for the one-year
maturity, while the CDS premia paid on the longer time horizons are more stable over the
entire time series. It turns out that the conjecture of the market on the default risk in the
short-term dramatically rose up.

These features are homogeneous across regions. However, the larger premia paid on the
US reference entities in the first part of the time window arise from the strong concentration
of the financial turmoil in the US market, and the higher spreads quoted for the Eurozone
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Figure 2. CDS Spreads. Regional Average and Standard Deviation

The four upper plots show the cross-sectional average of the CDS spread across the four geographic regions, along the sample time series (X-axis), and the four different
maturities (Y -axis).The four lower plots show the cross-sectional standard deviation of the CDS spread across the four geographic regions, along the sample time series
(X-axis), and the four different maturities (Y -axis). Both the average and the standard deviation are expressed in basis points.
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Figure 3. Market Capitalization. Regional Average

The plots show the cross-sectional average of the market capitalization across the four geographic regions, along the sample time series. The firm’s market capitalization
is calculated as number of outstanding shares times the share price, and is expressed in millions of the local currency.

companies in the last years follow from the European sovereign debt crisis starting in the
2011.

The financial crisis of 2008-2009 is also characterized by a larger cross-sectional standard
deviation of the CDS spreads (figure 2, lower graph), showing an increase in the heterogeneity
between the CDS premia paid on the different entities. It is evident for the US sample, and
is emphasized by the same scale used in the lower part of figure 2. However, the gap across
years in this dispersion measure is clearly present in each region. The combination of higher
average spreads and higher heterogeneity across spreads reflects the attitude of the insurance
sellers, even more emphasized during a crisis period, to ask for a very large premium on the
risky entities, and to be willing to accept a lower price on the more safe companies.

The summary statistics for the firms’ market capitalization are calculated for each region
as this data is expressed in millions of the local currency.

[Insert Table 2, here]

The historical pattern of the equity value generally pairs with the trend described for
the CDS spreads. The market value for the shareholders drop in the core of the sub-primes
distress, whilst a pretty constant increase starts at the end of 2009. Few peculiarities still
appear across regions. The market capitalization swiftly grows up for the US and Eurozone
firms from 2009 to 2010, then the US companies keep substantially rising up, while the Euro-
zone entities move around that level of equity value for the remaining part of the time series.
The shift at the end of the financial crisis is not terribly noticeable for the Australian and the
Japanese firms. On the other hand, these companies show a big jump during the 2013.
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Figure 4. Leverage and Assets - Eurozone

The first plot (CDS vs Leverage) shows the estimated mean firm’s leverage against the observed mean CDS spread for the 5-years maturity, along the sample time series,
for the Eurozone firms. The leverage is expressed as eLi,t = F

Vi,t
, and the CDS spread in basis points. The second plot (Equity vs Leverage) shows the estimated mean

firm’s leverage against the observed mean Equity value, for the Eurozone firms, where the equity value is expressed in millions of Euro. The third plot (CDS vs Asset)
shows the estimated mean firm’s asset value (Vi,t) against the observed mean CDS spread for the 5-years maturity. The last plot (Equity vs Asset) shows the estimated
mean firm’s asset value against the observed mean Equity value, for the Eurozone firms.

V. Empirical Results

A. The dynamics of leverage and the default boundary

We combine the CDS spread-implied default probability and the equity value to compose
the set of observable variables, which appear on the left-hand-side of the equation (I-IV), and
(V), respectively. We are gathering information from credit and equity markets to estimate the
unobservable dynamics of the market value of the firm’s leverage, and the hyperparameters
of the model. We perform this estimation for each firm, one-by-one.

The estimation of the state variable dynamics Li,t is achieved by the iteration of the pre-
dicting and the updating equations of the non-linear Kalman filter. The hyperparameters are
estimated by performing a maximum likelihood algorithm, under the assumption of normality
for the measurement errors, given by the difference between the actual and the fitted value
of the observable variables. The fitted value of the observable variables is computed from the
equations (10) and (11-12), respectively, by using the current estimate of the state variable.

As result, we reconstruct the time series of the market value of the leverage for each firm
in our sample. Then, by mean of the equation set (13), we also reconstruct the time series of
the market value of the asset, and we provide a quantitative measure of the firm’s outstanding
debt, and a measure of the default boundary. Figure 3 shows the dynamics of leverage and
asset value averaged across firms for the Eurozone sample. The leverage value is expressed
in terms of debt-to-asset ratio. The plots for the other regions are reported in the Appendix
C. We compare these dynamics against the time series of the market data, such as the equity
value and the CDS spreads. In particular, we use the 5-years CDS maturity as benchmark in
the following plots.

On average, the market value of the Eurozone firms’ leverage exhibits a peak around
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Figure 5. Debt and Barrier

The four plots show the cross-sectional average of the debt and default barrier values, across the four geographic regions. The values are expressed in millions of the local
currency, and the title of each plot reports the average ratio between the default boundary value and the value of the debt.

the 2009 financial crisis, when the debt counted for more than 80% of the market value of
the asset. After a decreasing trend until the beginning of 2011, this ratio has grown up as
consequence of the sovereign debt crisis, before starting again to decrease in the last part
of the time series. The value of the asset shows indeed the opposite dynamics, with a lowest
peak around the great recession, and an increasing trend in the second part of the time series,
partially interrupted during the sovereign debt crisis in 2012.

We can also appreciate how the market value of the leverage has a very similar pattern
to the CDS spread dynamics. It means that our estimation correctly reflects the evaluation
of the credit market in terms of firm riskiness. On the other side, the leverage moves in
the opposite direction with respect to the market capitalization of the firm along the entire
time period. It turns out that our leverage estimation is also able to reflect the market value
of the firm, as reported by the stock market. Symmetrical discussion applies to the asset
value estimation, which follows an opposite trend with respect to the CDS spread, and shows
a pretty overlapping dynamics with respect to the equity value. We derive similar results
for the other geographic regions in our sample. However, the downturn of the asset value
(increase in the leverage) is less pronounced around the 2012 for the other regions, as the
sovereign debt crisis has produced lower impact on the non-European firms.

A key parameter in our framework is the willingness of the shareholders to rescue the firm
in case of distress to avoid default and keep the firm operating. It is measured by Ki, which
proxies the distance between the default boundary and the value of the debt. By plugging
in the equation set (13) the estimate of Ki, coupled with the estimation of the market value
of leverage and asset, we are able to quantify the default barrier and the outstanding debt,
for each firm. Figure 4 shows the average barrier and debt for each region, and reports the
barrier-to-debt ratio.
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We document similar barrier-to-debt ratios for the different geographic areas, between
67% (Australia) and 81% (United States). Intuitively, this result suggests that the Australian
firms are more likely to be rescued by the shareholders with respect to the US firms. These
findings are very similar to the estimates reported by Davydenko (2012), who argues that
the firms on average default when the asset value drops until 70% of the debt value, and by
Wong and Choi (2009), who also estimate a Black-Cox default boundary, and they find that
this boundary lies around 74% of the debt.

Finally, we also show that our estimation well fits the real data. By using our estimates
of the hyperparameters, and the reconstructed dynamics of the unobservable variables, we
generate a fitted time series of equity value and CDS spreads. Figure 5 compares our fitted
time series of the market data against the actual observations. We show the average fitted 5-
years CDS spread and equity value against the average actual CDS spread and equity value,
for each region.

In order to test the ability of our estimation results in fitting the real data, we construct
daily long-short portfolio strategies, over the sample time series. By using the fitted dynamics
of the equity value and CDS spreads, at each day, we buy those stocks and CDS for which we
forecast an increase in the price in the next day, and we sell otherwise.

Table 4 reports a highly significant performance achieved by this strategy, for all securities.
As robustness, we perform a long-short portfolio strategy with randomly selected firms. At
each day, we randomly split the sample in two sub-samples, and we buy the securities for the
firms belonging to the first sub-sample, and we sell the securities for the firms belonging to
the second sub-sample. We repeat this exercise for 1000 simulations, where each simulation
generates a trading strategy performance over the sample time series. Table 4 reports the
maximum performance achieved across the 1000 simulations, which is not significant for none
of the securities.

Therefore, we can conclude that our results have significant ability in fitting the real-
data, and allow to generate performances that are statistically significant, differently from
strategies implemented with random selection of portfolios.

B. The Default Risk Premium

Previous papers have disentangled the estimation of the default risk premium with differ-
ent approaches, by using either corporate bonds or credit default swaps to extract the risk-
neutral probability of default, and the rating agency data to compute the real-world proba-
bility of default. Hence, the default risk premium proxies the distance between the actual
evaluation of the default risk and the evaluation reflected in the pricing of the securities is-
sued by the company. We extract this measure not only from the credit market, by using CDS
spreads, but also form the equity market, by including information on the firm’s equity value.

We calculate the default risk premium as the ratio between the risk-neutral and the real-
world default probability, for each firm i, for each point in time t, and each time horizon τj .
The risk-neutral and the real-world measures of default probability are computed by using the
equation (11-12), where we plug in the estimates of the hyperparameters, and the estimated
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Figure 6. Estimation Performance: Fitting Real Data

The plots compare the fitted dynamics of the 5-years CDS spread and Equity value, by using the structural estimation results, against the observed 5-years CDS spread
and Equity value, for the average firm across regions, along the sample time series. The CDS spread is expressed in basis points, and the Equity value is expressed in
millions of the local currency.
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Figure 7. Term Structure of Default Risk Premia. Median Firm

The plots show the term-structure of the estimated default risk premium, for the median firm across regions, along the sample time series. The default risk premium is
expressed as ratio between the risk-neutral and the real-world default probability, which have been both calculated with a daily frequency, and for each firm, by using the
structural estimation results.

value of the unobservable variable Li,t. The result is a firm-specific daily term structure of
the default risk premia.

The difference between the two measures of default probability is given by the drift com-
ponent of the asset value dynamics. In the equation (11-12), we keep the risk-free rate to
estimate the risk-neutral default probability, and we use the actual drift coefficient of the
leverage, µLi , to estimate the real-world measure of default risk. This coefficient is related to
the asset drift coefficient as follows

µVi = −
(
µLi −

1

2
σ2Li

)
,

where σLi comes from the quasi-maximum likelihood estimation, and µLi is the outcome of a
matching moment approach.

In fact, after performing the quasi-maximum likelihood algorithm to obtain the estimates
of the hyperparameters, we also perform a non-linear squares minimization for calibrating the
measurement errors variances to the observed market data, and we reconstruct the dynamics
of the market value of the leverage which is able to simultaneously fit the CDS spreads and
the equity value. Finally, we compute the mean of the first differences, divided by the time
step. Therefore, µLi returns a measure of the average growth of the leverage value along the
entire time series. It contains information on the growing trend of the leverage coming from
both the credit and the equity markets. 6

Figure 6 shows the term structure of the default risk premia for the median firm in each
regional sample. The default risk premium is substantially time varying. The variation over
time of the premium is primarily due to the evolution over time of the market value of the
firm’s asset and leverage. In particular, the premium exhibits a lowest peak around the great
recession, and an additional downturn during the sovereign debt crisis, although less pro-
nounced. This pattern is the consequence of the greater actual default risk during the periods
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of turmoil, which increases the real-world default probability.
This finding is consistent with Huang and Huang (2012), who argue that the default risk

premium decreases as the credit quality declines, as the real-world default risk accounts more
for the lower-rating firms. In terms of magnitude, we report similar but lower premia with
respect to Berndt et al. (2008) and Driessen (2005), with the exception of the US sample,
which exhibits default risk premia significantly larger. Such lower premia are primarily due
to our sample period spanning over both the two recent crises, when the actual default risk
has substantially increased.

[Insert Table 3, here]

Moreover, the premium is generally higher for the shorter time horizon. In fact, we know
that the credit risk models, that do not include jumps in the asset value, tend to underes-
timate the actual default probability for short time horizons. However, Huang and Huang
(2012) argue that including jumps do not substantially affect the fraction of spread explained
by credit risk, unless if the model is calibrated with rather extreme values. Second, in partic-
ular for investment grade companies, Huang and Huang (2012) also document that the mean
reversion of credit quality increases the credit risk for longer maturities.

We generally find that the default risk premium is greater than one, that is the risk-
neutral default probability is higher than the corresponding real-world measure (normal
firms). However, we document the presence of a few firms with estimated actual default
probability higher than the corresponding risk-neutral measure, and therefore default risk
premium lower than 1 (distressed firms).

For instance, narrowing our attention on the 10-years maturity, we find that the 32% of
our sample firms (53 out of 164) is characterized by an average default risk premium lower
than 1. Looking at the 5-years maturity, instead, the percentage of firms with average default
risk premium lower than one drops to 26% of the sample (43 firms). Similar results are
obtained for the 3-years (41 firms), and 1-year maturity (40). In the next section we explore
the relation between this result and the dynamics of the market data, by implementing a
long-short portfolio strategy of equity and CDS, based on the default risk premium.

C. Long-Short Portfolio Strategy

We start linking the default risk premium and the market data dynamics in a descriptive
analysis, where we assess the sample correlation between the premium and the market vari-
ables. We calculate the average premium for each firm over the sample time series, and we
rank the firms according to the average premium in ascending order. In the following graphs
we show the correlation coefficient between the default risk premium and both the equity
value and the 10-years CDS spread, after sorting the firms.

Figure 7 clearly highlights that the firms with average default risk premium higher than
one exhibit positive correlation with the dynamics of the equity value, while the firms with
average premium lower than one report opposite relationship with the equity prices. On the
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Figure 8. DRP and Equity Prices

Figure 9. DRP and CDS spreads

Figure 7 shows the sample correlation between the equity prices and the default risk premium, for firms ranked according to the average premium over the time series.
Figure 8 shows the sample correlation between the 10-years CDS spread and the default risk premium, for firms ranked according to the average premium over the time
series. In both graphs, the dotted-red line is drawn in correspondence of the first firm with average premium higher than one.
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other hand, the low premium firms show positive correlation with the CDS-spread dynamics,
as described by figure 8. Then, this correlation substantially decreases as the premium in-
creases, even if this opposite relationship is not as strongly monotone as for the low premium
firms.

Further than graphically, table 6 supports these results statistically. The difference in the
equity-DRP (Default Risk Premium) correlation between the high and the low risk premium
firms is positive and very significant, and the difference in the CDS-DRP correlation between
the high and the low risk premium firms is negative and very significant too. The bottom line
is that the market variables exhibit a relationship with the default risk premium which is
opposite to each other, either if we consider the high or the low premium sub-sample of firms.

We test this empirical hypothesis by constructing long-short portfolios of firm’s equity
shares and CDS spreads. We implement our trading strategy in the last year of the time series
(i.e., 252 daily observations). We start with an in-sample analysis, where we sort the firms
according to the t-average default risk premium by using the market prices information up to
t, but the estimation of the hyperparameters is based on full sample information, following
the approach of Cochrane and Piazzesi (2005).

At each day t, and for each firm, we compute the average default risk premium until t− 1,
by plugging in the equations (11-12) and (14) the estimated value of the state variable (Li,t),
and the hyperparameters. We split the sample in two sub-samples: the firms with average
premium higher than one (HP-firms), and the firms with average premium lower one (LP-
firms). For the HP-firms, an expected increase (decrease) in the premium should predict
higher (lower) future price of the stock, and lower (higher) future CDS spread. Instead, for
the LP-firms, an expected increase (decrease) in the premium should predict lower (higher)
future price of the stock, and higher (lower) future CDS spread.

Then, at t, we buy (sell) the stocks and we sell (buy) the CDS of the HP-firms for which our
estimation of the premium at t+ 1 is higher (lower) than the current estimate of the premium
at t. On the other hand, we sell (buy) the stocks and we buy (sell) the CDS of the LP-firms for
which our estimation of the premium at t+1 is higher (lower) than the current estimate of the
premium at t. We can do that, as the filter generates a forecast for the state variable one-step
ahead. Then, by using the equations (11-12), and the estimated hyperparameters, we can
produce a forecast for the default probabilities one-step ahead, and thus for the default risk
premium by using the equation (6). Table 7 (top-left) reports the average daily performance of
the trading strategy, for the equity and the CDS portfolios, respectively. The trading strategy
performed by using either the equity shares, or the CDS spread, shows a positive daily mean,
which is very significant.

D. Out-of-Sample and Robustness

In the last step we support our results with a set of robustness checks, and an out-of-
sample test. First, we start constructing the strategy by excluding, from the feasible basket
of firms, those firms with average default risk premium, up to the beginning of 2013, higher
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than 1000. Such a big value of the premium is primarily driven by a very low estimation of
the real-world default probability, which is the denominator of the ratio. Table 7 shows that
the previous results are not affected by narrowing the feasible set of firms for the strategy.

Moreover, we perform the portfolio strategy by trading in the opposite direction with re-
spect to the approach described above. In other words, we buy (sell) the stocks and we sell
(buy) the CDS of the LP-firms (instead of the HP-firms) for which our estimation of the pre-
mium at t + 1 is higher (lower) than the current estimate of the premium at t. On the other
hand, we sell (buy) the stocks and we buy (sell) the CDS of the HP-firms for which our esti-
mation of the premium at t+ 1 is higher (lower) than the current estimate of the premium at
t. The bottom part of table 7 shows that, in-sample, the strategy generates now negative and
significant performance for both the portfolios, and even after excluding the outliers.

Finally, we strength our results with an out-of-sample analysis, where we still implement
our trading strategy sorting the firms according to the t-average default risk premium, by
using the market prices information up to t. However, the estimation of the hyperparame-
ters is based now on the information up to the beginning of the trading strategy window. In
practice, we perform again the non-linear filtering in conjunction with quasi-maximum likeli-
hood estimation to extract the model parameters, and to reconstruct the dynamics of the state
variable, but now we only use data on the observable market variables up to the beginning of
2013. Though, all the described results are confirmed, with the only exception of the negative
performance of the opposite direction trading strategy in the case of the equity portfolio. This
performance becomes now positive but not significant.

VI. Conclusion

In this paper we estimate a barrier-dependent contingent claim model, with only market
data. By gathering information coming from the credit and the equity markets, we reconstruct
the dynamics of the market value of assets and debt, and the default boundary, for a sample
of non-financial firms. Then, we exploit the results of our estimation to measure the default
risk premium, for each company, that at the same time reflects the information conveyed by
the two different markets. This premium arises from the difference between the actual and
the market-implied evaluation of the default risk. We find that the default risk premium is
time varying, and decreases during the crisis periods because of an increase in the actual risk
of default.

Our main finding is that the dynamics of the default risk premium can be associated to
completely different dynamics of the stock price and the CDS spreads, and these opposite
relationships depend on the type of the firm in terms of risk-return framework.

We believe that our estimation approach may also be addressed for different targets. Com-
bining the result on the default boundary and the market value of the asset, we supply a
new insight in the academic research on the corporate credit risk based on the well-known
distance-to-default. In addition, we equip the corporate finance research with a new approach
for the evaluation of the market value of the debt. It can be then primarily used in the firm’s
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evaluation framework, and in the firm’s profitability assessment debate, such as the discus-
sion on the Tobin’s Q.

More importantly, we leave an open question that awaits for further research. Why is it
possible to estimate a default risk premium lower than 1, that is an expected rate of growth
of the value of the firm even lower than the risk-free rate? Is there any omitted premium
component that justifies this counterintuitive result?
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Appendix A. A simple asset pricing model

Appendix A.1. Default Risk Premium and Stock Price

Consider two states of the world, high and low, and a stock that pays out Sh and Sl in the
two states, at the payout date T , respectively. We refer to the low state as the default. We
define St the price of the stock at time t, µ the discounting rate of return under the real-world
probability, and r the discounting rate of return under the risk-neutral probability (i.e., the
risk-free rate). Hence, at time t = 0,

S0 = e−µEP0 [ST ] = e−µ[p0S
l + (1− p0)Sh], (7)

and

S0 = e−rEQ0 [ST ] = e−r[q0S
l + (1− q0)Sh], (8)

where EP indicates the expectation taken under the real-world probability, EQ indicates the
expectation taken under the risk-neutral probability, p is the real-world default probability,
and q is the risk-neutral default probability. Therefore,

µ = − ln

(
S0

EP0 [ST ]

)
, r = − ln

(
S0

EQ0 [ST ]

)
,

and

p0 =
Sh − S0

e−µ

Sl
, q0 =

Sh − S0
e−r

Sl

At time t = 1,

p1 =
Sh − S1

e−µ

Sl
, q1 =

Sh − S1
e−r

Sl
,

and

p1
p0

=
e−µSh − S1
e−µSh − S0

,
q1
q0

=
e−rSh − S1
e−rSh − S0

Indeed, when S1 > S0, then p1 < p0 and q1 < q0, provided that Sl < St > Sh. The opposite
holds when S1 < S0.
Moreover, by equating (1) and (2), we obtain

µ− r = ln

(
EP0 [ST ]

EQ0 [ST ]

)
.
Hence, if
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µ > r ⇔ EP0 [ST ] > EQ0 [ST ]⇔ p(Sl − Sh) > q(Sl − Sh)⇔ p < q,

as (Sl − Sh) < 0. The opposite relationship holds when µ < r.

Let define now Z as the default risk premium, that is the ratio between the risk-neutral and
the real-world default probability:

Z0 =
q0
p0
,

then we have that,

µ > r ⇔ Z0 > 1 (9)

µ < r ⇔ Z0 < 1 (10)

We refer to (3) as the normal case, and to (4) as the distressed one. At every time t,

Zt = er−µ
e−rSh − St
e−µSh − St

Hence, the gross rate of growth of the default risk premium Ż between 0 and 1 is

Z1

Z0
=
e−rSh − S1
e−rSh − S0

· e
−µSh − S0
e−µSh − S1

= q̇ · 1/ṗ (11)

Therefore, the default risk premium increases, that is Ż > 1, either because q̇ > ṗ > 1 if
S1 < S0, or because 1/ṗ > 1/q̇ > 1 if S1 > S0. In the first case there is an increase in the
risk-neutral default probability higher than the increase in the real-world default probability.
This picture is associated to a decrease in the stock price. In the second case there is a
decrease in the risk-neutral default probability higher than the decrease in the real-world
default probability. This picture is associated to an increase in the stock price.

Moreover, by simply rearranging (5), we can show that

Ż > 1⇔ e−r(S1 − S0) > e−µ(S1 − S0)

It turns out that S1 > S0 when µ > r, and S1 < S0 when µ < r. By combining this result
with the statement following the equation (5), we can conclude that an increase in the default
risk premium can be associated to an increase in the stock price, when the real-world default
probability decreases more than the risk-neutral default probability, and this is the case when
µ > r. Otherwise, an increase in the default risk premium can be associated to a decrease in
the stock price, when the risk-neutral default probability increases more than the real-world
default probability, and this is the case when µ < r.
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Appendix A.2. Default Risk Premium and Insurance Price

Consider again the two states of the world, high and low, and a contingent claim security
that pays out Bh and Bl in the two states, at the payout date T , respectively. We refer again
to the low state as the default. We think the security B as a type of insurance, that pays out
more in case of default, that is Bl > Bh. We define Bt the price of the insurance at time t,
a the discounting rate under the real-world probability, and c the discounting rate under the
risk-neutral probability. Hence, at time t = 0,

B0 = e−aEP0 [BT ] = e−a[p0B
l + (1− p0)Bh], (12)

and

B0 = e−cEQ0 [BT ] = e−c[q0B
l + (1− q0)Bh], (13)

Then,

a = − ln

(
B0

EP0 [BT ]

)
, c = − ln

(
B0

EQ0 [BT ]

)
,

and

pt =
Bh − Bt

e−a

Bl
, qt =

Bh − Bt
e−c

Bl

Hence,

p1
p0

=
e−aBh −B1

e−aBh −B0
,
q1
q0

=
e−cBh −B1

e−cBh −B0

Indeed, when B1 > B0, then p1 > p0 and q1 > q0, provided that Bl > Bt > Bh. The opposite
holds when B1 < B0.
Moreover, by equating (6) and (7), we obtain

a− c = ln

(
EP0 [BT ]

EQ0 [BT ]

)
.
Hence, if

a > c⇔ EP0 [BT ] > EQ0 [BT ]⇔ p(Bl −Bh) > q(Bl −Bh)⇔ p > q,

as (Sl − Sh) > 0. The opposite relationship holds when a > c.

Now, the gross rate of growth of the default risk premium Ż between 0 and 1 is

Z1

Z0
=
e−cBh − S1
e−cBh −B0

· e
−aBh −B0

e−aBh −B1
= q̇ · 1/ṗ (14)
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Therefore, the default risk premium increases, that is Ż > 1, either because q̇ > ṗ > 1 if
B1 > B0, or because 1/ṗ > 1/q̇ > 1 if B1 < B0. In the first case there is an increase in the
risk-neutral default probability higher than the increase in the real-world default probability.
This picture is associated to an increase in the insurance price. In the second case there is
a decrease in the risk-neutral default probability higher than the decrease in the real-world
default probability. This picture is associated to a decrease in the insurance price.

Again, by simply rearranging (8), we can show that

Ż > 1⇔ e−c(B1 −B0) > e−a(B1 −B0)

It turns out that B1 > B0 when c < a, and B1 < B0 when c > a. By combining now with
the statement following the equation (8), we can conclude that an increase in the default risk
premium can be associated to a decrease in the insurance price, when the real-world default
probability decreases more than the risk-neutral default probability, and this is the case when
c > a. Otherwise, an increase in the default risk premium can be associated to a increase in
the insurance price, when the risk-neutral default probability increases more than the real-
world default probability, and this is the case when a > c.

We can finally state the simultaneous and two-fold relationship between default risk premium
and stock price, and between the default risk premium and a contingent claim security such as
an insurance (e.g., a CDS spread). An increase in the default risk premium can be associated
to an increase in the stock price and a decrease in the insurance price, when the real-world
default probability has decreased more than the risk-neutral default probability. This result
holds with normal securities in the context of the classical risk-return framework, that is
µ > r (a risk-averse investor seeks for an excess rate of return on the top of the risk-free rate),
and a < c (a risk-averse investor is willing to pay more to hedge against a risky scenario).
On the other hand, an increase in the default risk premium can be associated to a decrease
in the stock price and an increase in the insurance price, when the risk-neutral default prob-
ability has increased more than the real-world default probability. This result holds with
distressed securities, that are in a counterintuitive risk-return framework (ie., µ < r, and
a < c).
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Appendix B. Kalman filter and Quasi-Maximum Likelihood Estimation

In a general formulation, with a non-linear relationship between the measurement and
the state variables, the state-space model is defined by two sets of equations, the transition
and the measurement equation, respectively:

Xi,t+δt = Xi,t + ci + εi,t+δt,

Yi,t+δt = ψ(Xi,t+δt) + ui,t+δt,

where Xi,t+δt is the i-th observation of the state variable at time t+ δt, ci is the time-invariant
component driving the evolution of the state variable, εi,t+δt is the transition error on the i-th
observation of the state variable at time t+δt. On the other hand, Yi,t+δt is the i-th observation
of the measurement variable at time t + δt, ψ is the measurement function which links the
observable and the latent variable, and ui,t+δt is the measurement error.

For a Gaussian state-space model, under standard assumptions, the discrete Kalman filter
is proved to be the minimum mean squared error estimator. However, in the case of non-linear
relation between the measurement and the state variable, the classic linear Kalman filter is
not longer optimal. One possible solution is to linearize the estimation around the current
estimate by using the partial derivatives of the process and measurement functions.7 To
linearize the measurement process, we need to compute the derivatives of ψ with respect to

(a) the state variable: Hi,j = ∂ψi
∂Xj

(X̃t, 0),

where H is the Jacobian matrix of partial derivatives of the generic measurement function
ψ(·) with respect to the state variable X, and X̃t is the current estimate of the state.

(b) the measurement noise: H̆i,j = ∂ψi
∂νj

(X̃t, 0),

where H̃ is the Jacobian matrix of partial derivatives of ψ(·) with respect to the noise term ν.

Once the linearization has been completed, we can implement the discrete Kalman filter
in the usual steps. First, we need to set the initial conditions:

λi,0 Pi,0,

where Pi,t := var[Xi,t−λi,t] is the variance of the estimation error, and λi,t is the estimate of the
state at time t based on the information available up to time t. Then, the filter implementation
is based upon two sets of equations, the predicting equations, and the updating equations, that
must be repeated for each time step in the data sample.

• State Prediction
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λi,t+δt/t = λi,t + ci,

and

Pi,t+δt/t = Pi,t +Qi,

where λi,t+δt/t is the estimate of the state at time t+ δt based on the information available up
to time t, and Qi is the covariance of the transition noise.

• Measurement Update

λi,t+δt = λi,t+δt/t + Pi,t+δt/tH
′
i,t+δtZ

−1
i,t+δt

(
Yi,t+δt − ψ(λi,t+δt/t)

)
Pi,t+δt = Pi,t+δt/t − Pi,t+δt/tH

′
i,t+δtZ

−1
i,t+δtHi,t+δtPi,t+δt/t

Zi,t+δt = Hi,t+δtPi,t+δt/tH
′
i,t+δt +Ri,

where H stands for the Jacobian matrix of partial derivatives of the generic measurement
function ψ with respect to the state variable X, Zi,t+δt is the covariance matrix of the predic-
tion errors at time t + δt. The prediction errors are defined as vi,t+δt = Yi,t+δt − ψ(λi,t+δt/t),
where Yi,t+δt is the observation of the measurement variable at time t+ δt.

The parameters that describe the dynamics of the transition and the measurement equa-
tions (i.e., hyperparameters) are unknown, and need to be estimated.

Let rewrite the state-space model as follows:

(yt+δt, xt+δt) = (xt, {θ}), {θ} = {θ(f); θ(g)}

, where yt+δt is the observable variable at time t+ δt, xt+δt is the state variable at time t+ δt,
{θ(f)} is the set of unknown parameters in the transition equation, and {θ(g)} is the set of un-
known parameters in the measurement equation. The measurement and transition equations
of the system are:

g(yt+δt, α) = ϕ(xt+δt, β) + εt+δt, εt v N (0, σ2ε )

xt+δt = f(xt, γ) + ηt+δt, ηt v N (0, σ2η)

Then,

{θ(f)} = {γ, σ2η}

{θ(g)} = {α, β, σ2ε }

We assume that the nonlinear regression disturbance, εt, is normally distributed:
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f(εt) =
1√

2πσ2ε
exp

[
− ε2t

2σ2ε

]
By transformation of variable, the density of yt is given by

f(yt) = f(εt)

∣∣∣∣∂εt∂yt

∣∣∣∣ , ∂εt
∂yt

=
∂g(yt, α)

∂yt

Then, the density of yt is

f(yt) =
1√

2πσ2ε
exp

[
−(g(yt, α)− ϕ(xt, β))2

2σ2ε

] ∣∣∣∣∂g(yt, α)

∂yt

∣∣∣∣
The log-likelihood function for observation t is

ln Ωt (yt; {θ}) = −1

2
ln(2π)− 1

2
ln(σ2ε )−

(g(yt, α)− ϕ(xt, β))2

2σ2ε
+ ln

∣∣∣∣∂g(yt, α)

∂yt

∣∣∣∣ ,
and the log-likelihood function for t = 1, 2, ..., T observations (i.e., δt = 1) is

ln Ω =

T∑
t=1

ln Ωt (yt; {θ}) = −T
2

ln(2π)− T

2
ln(σ2ε )−

1

2σ2ε

T∑
t=1

(g(yt, α)− ϕ(xt, β))2

+

T∑
t=1

ln

∣∣∣∣∂g(yt, α)

∂yt

∣∣∣∣
As long as g(yt, α) = yt, then

f(yt) = f(εt)⇒ ln Ωt (yt; {θ}) = ln Ωt (εt; {θ})

The last term in the log-likelihood function is equal to zero, and the space of the hyperpa-
rameters to be estimated is reduced to:

{θ(f)} = {γ, σ2η}

{θ(g)} = {β, σ2ε }

In practice, the iteration of the filter generates a measurement-system prediction error,
and a prediction error variance at each step. Under the assumption that measurement-system
prediction errors are Gaussian, we can construct the log-likelihood function as follows:

ln Ω(yt; {θ}) = ln

T−δt∏
t=0

p
(
yt+δt/t

)
=

T−δt∑
t=0

ln p
(
yt+δt/t

)
=

= −N
2

ln(2π)− 1

2

T−δt∑
t=0

ln |Zt+δt| −
1

2

T−δt∑
t=0

vt+δt
′Z−1t+δtvt+δt,

where N is the number of time steps in the data sample. Finally, this function is maximized
with respect to the unknown parameters vector {θ}. This is known as the Quasi-Maximum
Likelihood estimation, in conjunction with the non-linear Kalman filter.
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Appendix C. Prices Observation Noise: Minimization by Model Calibration

A useful interpretation of the Kalman filtering is to think of it as an updating process,
where we first form a prior preliminary guess about the unobservable state variable and then
we perform a correction to this guess. It is a typical Bayesian procedure. The correction
depends on how good has been the guess in predicting the next observation, and the weight of
the correction to update our guess about the state variable primarily depends on how confident
we are about the reliability of the observation. It is measured by the variance of the errors in
the measurement equation, which links the state and the observable variable.

It follows that we are more confident about the observation of the CDS-PD and the equity
prices when lower is the variance of the measurement errors. In the extreme case, when the
error associated with the CDS-PD measurement equation has zero variance and the equity
equation has high measurement error variance, we take into account only the CDS prices to
reconstruct the dynamics of the market value of the leverage, and vice versa. We interpret
this variance as a measure of the noise in the observation of the market data. This noise may
be a consequence of the market microstructure effects, the model misspecification, or even the
recording price procedure for the CDS spreads, which are traded on an OTC market, and the
quotes may vary according to the data provider. It turns out that the impact of the market
data on the estimated hyperparameters and state variable dynamics is inversely proportional
to the observation noise measured by the measurement error variance.

In principle, we could impose an arbitrary prior on the variance of the measurement error
either of the CDS-PD equation or the equity equation according to the weight that we want
to assign to a particular market variable. It would be the case if we have an ex-ante conjec-
ture on the informativeness of the credit or the equity market. However, we do not impose
any prior constraint, and we include the variance of the measurement errors in the hyperpa-
rameters that we estimate, by using the quasi-maximum likelihood algorithm based on the
non-linear filtering. Then, in a second stage, we implement a non-linear squares minimization
to calibrate the values of the measurement error variances associated with the risk-neutral
PD and the equity pricing equation, in order to fit simultaneously the observed dynamics of
the risk-neutral PD implied by CDS spreads, and the equity value.

Driessen (2005) adopts a similar algorithm to derive the risk-premium component which
translates the real-world probability measure of default, extracted from rating agency data,
into the risk-neutral intensity. In practice, he performs a non-linear squares minimization
by using the observed and the model-implied default probabilities, after estimated the hyper-
parameters with a Kalman filter. We search the value of the measurement errors variances
which minimize the sum of the squared differences between the observed and the model-
implied market data, where the sum is calculated over the sample time series.

min
Ri,ωi

T∑
t=1

α2
i,t,
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where αi,t =

[
ˆPD
Q
i,t(τa)− PDQi,t(τa)
Êi,t − Ei,t

]

Finally, we iterate again the updating and the predicting equations of the non-linear
Kalman filter to reconstruct the dynamics of the firm’s market value of the leverage. Now,
we do not perform the quasi-maximum likelihood estimation as we have already obtained the
hyperparameters in the first step, and the measurement errors variances in the second stage.
The result is the dynamics of the market value of the leverage which minimizes the distance
between the implied and the observed market variables. It may be interpreted as the ’best-
we-can-do’ to reduce the noise in the prices observation, due to the model misspecification.
We can attribute the residual error to the systematic noise implicitly contained in the market
quotes observation.
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Appendix D. Leverage and Asset against Market data: Other Regions

Leverage and Assets - Australia

Leverage and Assets - Japan

Leverage and Assets - United States

The plots report the same comparison between estimated average leverage and asset value
against observed average market prices dynamics, as shown in the figure 3 for the Eurozone
sample. See legend of figure 3.
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Appendix E. Goodness of Fit: Bloomberg Data

The estimation of the dynamics of the market value of the leverage is performed for each
firm one-by-one, and the hyperparameters of the model are firm-specific. As consequence,
by using the set of equations (5), we can reconstruct the dynamics of the market value of
asset and debt for each company. We can compare these results against the data provided
by Bloomberg on the market value of asset, and the balance-sheet data of asset and debt.
More precisely, Bloomberg gives information on the market value of the asset by gathering
the data on the equity value, the market prices of the debt items traded on the market, and
the balance-sheet data of the debt items not traded on the market. Then, especially for that
companies with many debt items not traded on the market, Bloomberg needs a big amount of
information from the balance-sheet to produce this kind of data. Instead, we use only market
variables, which can be easily collected, to provide the same data. We are quicker in the
production of the data, and we do not need to rely on any book information.

In the following figures, we show (first row) the comparison between the Bloomberg data
on the market value of asset and our estimation of the market value of asset, (second row)
the balance-sheet data on the value of the asset and our estimation of the market value of
asset, and (third row) the balance-sheet data on the value of the debt and our estimation of
the market value of debt. In particular, the first comparison is done between two time series
of daily data, whilst the second and the third rows compare daily data (our estimation), and
quarterly data (book information). We focus on the description of the first one, where we
contrast two equivalent, in principle, sets of information. Nevertheless, the remaining two
are useful to give a graphical intuition of the differences, in terms of value and frequency,
between market and book evaluation of the same quantity, which we have underlined in the
introduction, the motivation, and the contribution of the paper. We choose twelve illustrative
firms, which belong to different regions, sectors, and ratings, in order to show that these
results are robust across different firms’ categories.

E-I

The figure E-I shows four examples where our model produces an estimation of the market
value of the asset that is very similar to the data provided by Bloomberg. For almost the entire
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time series, the two dynamics seem to really overlap. It means that we and Bloomberg are
providing exactly the same data. Moreover, we are able to be quicker, and totally ignore the
book information. However, if they are nearly equal, which is the point to collect data on the
equity value and the CDS spreads, construct a proxy of the risk-free rate, and then implement
our estimation model, if it would be possible to easily download the same result directly from
a Bloomberg terminal? The answer is in the following graphs.

E-II

In the first plot of the figure E-II (Foster’s Group), our estimation and Bloomberg data are
very similar in the first part of the sample period, then Bloomberg would give stale data, while
we keep providing fresh daily information. In the second and the third plot, the two series are
similar in the first part, then the Bloomberg data is constantly larger than our estimation.
In the last plot, this situation occurs only in specific time windows of the time series. More
precisely, the two lines pretty overlap along the wider part of the time series, but Bloomberg
reports a few jumps that we do not obtain in our results.
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E-III

The figure E-III, finally, shows that the two sets of data can be really different for the entire
time interval. The difference is not very noticeable in the trend, as for the both data sets there
is a common and equal item (the equity value), but particularly in the levels. Such difference
is due to the different evaluation of the firm’s debt, which is highlighted in the last row of
the figure E-III. When we obtain a market value of debt clearly lower than the book data of
debt, we provide data on the market value of asset which is much lower than the Bloomberg
data. The opposite case appears in the third plot. In this regard, we need to remind that
Bloomberg uses the balance-sheet data when the debt items are not traded on the market.
The conclusion is that we may be able to produce a more reliable and fresher information, by
ignoring the book data and by taking into account only the market assessment.
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Notes

1The original formulation for the default probability and the equity value in a first-time

passage framework can be found, among others, in Perlich and Reisz (2007)

2See Longstaff et al. (2005) for an extensive description of the CDS contractual structure,

and functioning

3The Markit iTraxx and CDX indices are constructed every six months, according to spec-

ified criteria and selections rules, which ensure the eligibility of an entity to be a constituent

of the index, especially in terms of CDS contracts liquidity. We refer to the 20th list for the

iTraxx indexes, and the 21th list for the CDX index. All have been issued on September 2013

4This term is also used for the conventional quarterly termination dates of credit default

swaps, which fall on 20 March, 20 June, 20 September and 20 December. From late 2002, the

CDS market began to standardize credit default swap contracts so that they would all mature

on one of the four days of 20 March, 20 June, 20 September and 20 December. These dates

are used both as termination dates for the contracts and as the dates for quarterly premium

payments. So, for example, a five-year contract traded any time between 20 September 2005

and 19 December 2005 would have a termination date of 20 December 2010.

5See O’Kane and Turnbull (2003) for an extensive overview of the CDS valuation

6By adopting this procedure we also avoid the issue related to the insensitivity of the

likelihood function with respect to the drift coefficient. Previous works have widely reported

huge complexity in estimating the drift component in stochastic processes. We find that even

trying to solve this problem by calibration is pretty useless. The impact of changing the drift

coefficient of the state variable dynamics on the value of the sum of the squared errors is quite

negligible. Instead, the likelihood function is very sensitive to the diffusion component, and

we can directly estimate σLi in the first step

7Instances of application of this filter deal in particular with interest rates term structure

estimation. Duan and Simonato (1999) implement this technique to estimate an exponential-

affine term structure models, while more recently Duffee and Stanton (2012) prove the ro-

bustness of the non-linear Kalman filter for a dynamics term-structure model estimation
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