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Abstract 

The nonword repetition task (NWR) has been widely used in basic cognitive and clinical 

research, as well as in clinical assessment, and has been proposed as a clinical marker for 

Specific Language Impairment (SLI). Yet the mechanisms underlying performance on this 

task are not clear. This study offers insights into these mechanisms through a comprehensive 

examination of item-related variables identified in previous research as possibly contributing 

to NWR scores and through testing the predictive power of each in relation to the others. A 

unique feature of the study is that all factors are considered simultaneously. Fifty-seven 

typically developing children were tested with a NWR task containing 150 nonwords 

differing in length, phonotactic probability, lexical neighbourhood and phonological 

complexity. The results indicate that phonological processing of novel words draws on 

sublexical representations at all grain sizes and that these representations are phonological, 

unstructured and insensitive to morphemehood. We propose a novel index – mean ngram 

frequency of all phonemes – that best captures the extent to which a nonword draws on 

sublexical representations. The study demonstrates the primacy of sublexical representations 

in NWR performance with implications for the nature of the deficit in SLI. 

  



 

 

Introduction 

 

The accuracy with which people repeat non-existing, but phonologically possible 

words, such as kipser, is a remarkably good index of their language-related abilities. 

Performance in this very simple task, known as nonword repetition test (henceforth NWR), 

has proved an important predictor of novel word learning in both native and foreign language 

acquisition, as indexed by correlations of NWR scores with vocabulary size (Baddeley, 

Gathercole, & Papagno, 1998; Farnia & Geva, 2011; Gathercole & Baddeley, 1989; 

Gathercole, Hitch, Service, & Martin, 1997; Gathercole & Masoura, 2003; Gathercole, Willis, 

Emslie, & Baddeley, 1992; Jarrold, Thorn, & Stephens, 2009; Service & Kohonen, 1995). 

Clearly, the NWR task emulates the situation in which learners encounter new lexical items 

for the first time. In both cases, the learner is presented with new verbal material that needs to 

be perceived, processed and then repeated. Hence, finding the best predictors of NWR might 

help to identify key factors entailed in word-learning. 

NWR task has also proved effective in differentiating children diagnosed with 

language disorders such as Specific Language Impairment (SLI) from typically developing 

children (see Estes, Evans, & Else-Quest, 2007 for a metanalysis). SLI is an umbrella term for 

a group of language impairments that do not result from any general cognitive deficit 

(Joanisse & Seidenberg, 1998; 2003; Leonard, 2014). It is characterized by a range of 

symptoms including problems with grammar (processing of syntactically complex sentences 

and applying morphological rules; Bortolini, Caselli, & Leonard, 1997), word learning 

(Morley, Court, Miller, & Garside, 1955; Trauner, Wulfeck, Tallal, & Hesselink, 2000) and 

phonology (Elliott, Hammer, & Scholl, 1989). NWR has been considered in many studies as a 

potential diagnostic tool for SLI (see e.g. Estes et al., 2007; Conti-Ramsden & Botting, 2001; 

Weismer et al., 2000) and it seems that NWR performance is directly related to the core 

deficit underlying SLI. Therefore, by illuminating mechanisms underlying performance in the 

NWR task, we should be able to tap into the nature of SLI itself. 

The NWR task was initially used as a test of phonological short-term memory 

(henceforth pSTM) in studies of vocabulary development (Gathercole & Baddeley 1989, 

1990a, 1990b). The authors of these studies argued that NWR was a purer measure of pSTM 

than, for instance, the traditionally used digit span, because it does not involve processing of 

any lexical information (Gathercole & Baddeley, 1990b). However, very early on the claim 

that NWR is a test of pSTM was brought into question. It was pointed out that the task might 

also involve phonological and articulatory skills, as well as lexical knowledge (Bowey, 1996; 

2001; Snowling, Chiat, & Hulme, 1991). Even the authors of the early NWR papers conceded 

that the measure is a complex one and that it measures skills and knowledge beyond pSTM 

(Gathercole, 1995; Gathercole 2006). This has led to extensive debate about what NWR 

actually measures, and extensive research investigating the factors that influence NWR 

performance as evidence of the skills and knowledge involved. 

However, the results of most previous studies have been limited by their underlying 

methodological approach, with few, and often just one, factor being manipulated in a factorial 

design. These factors are then attributed to a specific type of cognitive representation or 

process. Some of these factors correspond to mechanisms (phonological STM, articulatory 

dexterity, perceptual acuity) and some to representations (lexical and sublexical knowledge) 

hypothesized to underlie NWR. Each will be briefly reviewed below. 

 

Phonological STM capacity 

It has been argued that participants who can hold more information in their pSTM can 

maintain a temporary representation of the nonword long enough to repeat it, resulting in 



 

 

better NWR performance (Gathercole & Baddeley, 1989; 1990a). Participants with poorer 

pSTM are not able to maintain the nonword in memory and thus have problems with 

repeating it. The idea that NWR provides an index of pSTM capacity is supported by two 

classes of findings. First, participants repeat short nonwords more accurately than long 

nonwords which tax pSTM to a greater degree (e.g. Gathercole & Baddeley, 1989; Stokes, 

Wong, Fletcher & Leonard, 2006; Weismer et al., 2000). Second, NWR correlates with tasks 

traditionally associated with phonological memory, namely digit span and the immediate 

serial recall tasks (Archibald & Gathercole, 2006; Gathercole & Baddeley, 1990b). 

Lexical and sublexical knowledge 

Length is by no means the only factor to affect NWR performance, indicating that 

NWR involves more than a purely quantitative capacity. Many researchers have pointed out 

that long-term memory may contribute to NWR and participants’ knowledge of the language 

might be a key factor determining accuracy of NWR (Bowey, 1996; 2001; Jones, 2011; Jones 

& Witherstone, 2011; Jones, Tamburelli, Watson, Gobet, & Pine, 2010; Metsala, 1999; 

Snowling et al., 1991). In this case, learners who are more proficient in a given language 

should be better at repeating nonwords which resemble real words in this language. This idea 

is supported by findings showing that NWR accuracy correlates with vocabulary size in L1 

(Bowey, 1996; 2001; Gathercole et al., 1992; Gathercole & Baddeley, 1989) and in L2 

(Gathercole & Masoura, 2003; Masoura & Gathercole, 1999; Service & Kohonen, 1995). 

Moreover, participants are more accurate in repeating highly wordlike nonwords (Archibald 

& Gathercole, 2006; Gathercole, 1995; Munson, Kurtz & Windsor, 2005). However, these 

findings may reflect different kinds of linguistic knowledge. Zooming in on more specific 

parameters of nonwords might help to pinpoint the most relevant aspects of this knowledge.  

Some authors have proposed that repeating nonwords relies on lexical knowledge and 

that participants use phonological representations of whole word forms as an aid in 

temporarily representing the nonword in pSTM (Gathercole, 2006; Roodenrys & Hinton, 

2002). They argue that the presentation of a nonword partially activates representations of its 

lexical neighbors – phonologically similar words that are already known to the learner. This 

enables more efficient representation of the nonword in pSTM. Phonological neighbors can 

also be used to repair a decaying memory trace of a particular nonword in pSTM (a process 

known as lexical redintegration; Brown & Hulme, 1995; Hulme et al., 1991; Hulme et al., 

1997; Hulme et al., 1999; Roodenrys & Hinton, 2002; Roodenrys et al., 2002; Schweickert, 

1993). The notion that lexical representations support NWR is in line with studies showing 

that nonwords coming from dense phonological neighborhoods are repeated faster and more 

accurately than those coming from sparse phonological neighborhoods (Janse & Newman, 

2013; Roodenrys & Hinton, 2002; Vitevitch & Luce, 1998; 1999; 2005)
1
. It is also supported 

by studies showing that nonwords containing real words (e.g. bathesis) lead to higher 

repetition accuracy than nonwords that do not contain embedded words (e.g. fathesis; 

Dollaghan, Biber, & Campbell, 1993; 1995). 

Nonword repetition may be supported not only by representations at the lexical level, 

but also by representations at a sublexical level. Sublexical representations contain phoneme 

combinations occurring more or less frequently in a given language. The existence of this 

level of phonological knowledge has been proposed by frameworks based on the Adaptive 

                                                 
1
 Note that Vitevitch and colleagues showed that lexical neighborhood density predicts the speed of nonword 

repetition, but they did not claim that lexical representations are necessarily used during nonword repetition.  



 

 

Resonance Theory (Grossberg, 1986; Grossberg et al., 1997; Vitevitch & Luce 1998; 1999), 

the EPAM-VOC and CLASSIC theories (Jones, Gobet, & Pine, 2007; Jones et al., 2014; 

Jones, 2016), and by the Lexical Restructuring family of theories (Bowey, 2001; Metsala, 

1999). The above-mentioned theories (with the exception of Lexical Restructuring) propose 

that the presentation of a nonword activates representations of “chunks” (or sequences) of 

phonemes in long-term memory that are present in this nonword. This activation, in turn, 

facilitates nonword repetition in similar ways to those that have been proposed for lexical 

representation: more efficient representation of nonwords in phonological STM and/or 

sublexical redintegration. The facilitative role of sublexical representations in NWR 

performance is supported by studies showing that nonwords with high phonotactic probability 

(i.e. containing combinations of phonemes that are typical for the language) are repeated 

faster (Vitevitch & Luce, 1998; 1999; 2005) or more accurately (Coady & Aslin, 2004; 

Edwards, Beckman, & Munson, 2004; Gathercole, Frankish, Pickering, & Peaker, 1999; 

Majerus et al., 2004; Messer, Leseman, Boom & Mayo, 2010; Munson, Edwards & Beckman, 

2005; Munson, Kurtz, et al., 2005; Roodenrys and Hinton, 2002; Thorn, Gathercole, & 

Frankish, 2005; Zamuner, 2009; Zamuner, Gerken, & Hammond, 2004) than nonwords with 

low phonotactic probability. In all of these studies, phonotactic probability was indexed using 

phonemic bigram frequency, i.e. the mean frequency of all pairs of adjacent phonemes (or 

letters) occurring in the nonword. 

However, phonemic bigram frequency is not the only possible measure of 

phonotactic probability. Sublexical representations do not necessarily consist solely of two-

phoneme combinations. In fact, EPAM-VOC and CLASSIC theories (Jones et al., 2007; 

Jones et al., 2014; Jones, 2016) assume that language learners store sublexical representations 

of varied lengths and that the greater the experience with a particular language, the longer the 

sequences of phonemes stored. This raises the possibility that a measure of phonotactic 

probability taking into consideration the frequency of phoneme sequences at many different 

lengths (phonemic bigrams, trigrams, and so on) might be a better predictor of NWR than 

simple phonemic bigram frequency. Another possibility is that the most rudimentary units of 

sublexical representation are syllables or subsyllabic elements such as onsets or codas rather 

than phonemes. Syllables and subsyllabic elements are typically proposed alongside 

phonemes as units of speech perception and production in phonology (Côté, 2012; Zec, 2007) 

and some studies suggest that these units might be indeed more basic and natural than 

syllables (Anthony et al., 2003; Morais, Cary, Alegria, & Bertelson, 1979; Massaro, 1987; 

Pierrehumbert & Nair, 1995; Read, Yun-Fei, Hong-Yin, & Bao-Qing, 1986; Treiman, 1983; 

Ziegler & Goswami, 2005)  

Articulatory difficulty 

Apart from pSTM and language-specific knowledge, NWR performance may also 

depend on articulatory difficulty and hence oromotor dexterity, as indicated by two types of 

evidence. First, NWR performance is correlated with scores on tasks testing oromotor skills in 

which participants are asked to repeat complex oral movement sequences after a model 

(Krishnan et al., 2013; Stark & Blackwell, 1997). Second, nonwords containing consonant 

clusters, structures that are deemed to be phonologically complex and difficult to articulate, 

are less likely to be repeated correctly in typically developing children (Archibald & 

Gathercole, 2006; Estes et al., 2007 Gathercole & Baddeley, 1989; 1990) and in children with 

SLI  (Bishop, North, & Donlan, 1996; Briscoe, Bishop, & Norbury, 2001; Leclercq, Maillart, 

& Majerus, 2013; Munson et al., 2005). Articulatory complexity of consonant clusters stems 

from the fact that they require a range of complex and rapidly changing movements, rather 

than the simple oscillatory pattern of closing and opening the jaw entailed in producing a 



 

 

simple Consonant-Vowel (CV) sequence (MacNeilage & Davis, 2000; 2005). Alternatively, 

the observed difficulty in repeating nonwords containing consonant clusters may simply result 

from their relative scarcity in the native languages of children tested in these studies (English, 

French), meaning that the children have had relatively less practice producing such sequences. 

Polish, the language of the current study, is very rich in consonant clusters (Dobrogowska, 

1992) and thus provides a perfect ground for testing if repetition of nonwords containing 

consonant clusters remains difficult even when consonant clusters are frequent in the 

participant’s native language. 

Another measure of phonological complexity that might reflect articulatory difficulty 

and thereby affect NWR is adherence to sonority-sequencing rules. Sonority is a feature of 

speech sounds, usually defined as the degree of opening of the mouth during the production of 

the sound (Jespersen, 1904; Keating, 1988) or the amplitude of the speech sound relative to 

other sounds produced in the same conditions (Parker, 2008; Selkirk, 1984; Steriade, 1982). 

Sonority-sequencing theories assume that a syllable is less phonologically complex if it 

begins with a less sonorous sound (e.g. an obstruent) and sonority rises steadily with each 

phoneme until it reaches its peak at a vowel (Dziubalska-Kołaczyk, 2002; Selkirk, 1984). For 

example, an initial consonant cluster /sp/, which consists of two obstruents (both low in 

sonority) violates sonority sequencing rules and thus is more complex than an initial cluster 

/pl/, which consists of an obstruent (low sonority) and a sonorant (high sonority). Sequences 

conforming to sonority rules tend to be easier to articulate, since such sequences typically 

require fewer articulatory gestures. The least articulatorily complex sequences are ones that 

conform to a simple pattern of closing and opening the jaw with minimal additional 

movement (MacNeilage & Davis, 2000; 2005). Measures of articulatory complexity based on 

the sonority hierarchy (e.g. the number of sonority violations) have not, to the best of our 

knowledge, been used in research on NWR. The only exception is a study by Nimmo and 

Roodenrys (2002) who carried out a post-hoc analysis to determine whether phoneme 

sequences that conformed to the sonority hierarchy were more likely to be retained. However, 

the results of this study were inconclusive. Therefore, explicitly manipulating the sonority 

measure in an NWR study might provide information about the involvement of articulatory 

skills in the repetition of nonwords. 

Perceptual difficulty 

Phonologically complex nonwords may not only be more difficult to articulate but also 

more challenging to perceive. Simple consonant+vowel sequences tend to be more 

perceptually salient because vowels and consonants are acoustically distinct, which facilitates 

perception (Ohala & Kawasaki-Fukumori, 1997). Furthermore, vowels strengthen the acoustic 

cues to consonants, while two consonants occurring in sequence can mask each other’s 

acoustic cues, especially if the sequence violates sonority-based rules and contains two 

obstruents (Wright, 2004; Henke, Keisse, & Wright, 2012). So, if NWR performance depends 

on the phonological complexity of items (indexed by number of consonants or adherence to 

the sonority hierarchy), this could be because the task taps articulatory dexterity and/or 

perceptual acuity. 

Limitations of previous approaches 

Clearly, repetition of a nonword entails perception of relevant details in input, 

temporary storage, and articulatory planning and production. Summarizing research to date, 

NWR tests have been proposed to tap into many different cognitive representations and 

mechanisms (phonological short term memory, lexical representations, sublexical 



 

 

representations as well articulatory dexterity, with little mention of perceptual acuity), and 

empirical evidence has been advanced in support of these. However, the number and diversity 

of proposed factors and the cognitive processes associated with these poses problems for 

identifying sources of NWR performance. Although previous studies have pointed to the 

importance of these factors in NWR performance, they have largely ignored the fact that all 

the item parameters influencing NWR performance are likely to be correlated with one 

another, and therefore in part explain common variance. For example, lexical neighborhood 

correlates with phonotactic probability (measured by phonemic bigram frequency), which 

leaves open the question which (one or both) truly helps nonword repetition (Messer et al., 

2015; Metsala & Chisholm, 2010; Storkel, Armbrüster & Hogan, 2006; Vitevitch & Luce, 

1998; 1999; 2005). Similarly, the presence of consonant clusters is correlated with 

phonotactic probability (consonant clusters are rare in English) and with subjective ratings of 

wordlikeness, at least in English-like nonwords (Coady & Evans, 2008; Gathercole, Willis, 

Emslie, & Baddeley, 1991). Likewise, length is highly correlated with neighborhood density 

(the shorter the word or nonword, the more neighbors it has, as exemplified in Table 2). When 

sequences of nonwords are repeated, the effect of neighborhood eclipses that of length 

(Jalberta, Neath, Bireta, & Surprenant, 2011) and it remains an open issue whether the same 

holds for nonword repetition. 

The intercorrelation of the proposed factors highlights the first problem with previous 

approaches to investigating the processes of nonword repetition. Given the multitude of 

correlated factors, it is necessary to consider many item parameters in parallel in order to 

identify those that most directly explain the difficulty of repeating the nonword. However, 

previous studies have investigated only a few, and in most cases just one selected variable, 

precluding identification of the most direct predictors of NWR. Moreover, these studies often 

lacked sufficient statistical power to explore a larger number of item-related variables, due to 

the limited number of items (typically fewer than 30). Dichotomization of the selected 

(continuous) variable(s) further limits statistical power. In addition, the items used have often 

been highly specific, with length often limited to one syllable, and/or limited to one syllable 

structure (Gathercole et al., 1999; Messer et al., 2010; Messer et al., 2015; Roodenrys & 

Hinton, 2002; Thorn & Frankish, 2005; Vitevitch & Luce, 1998; 1999; Zamuner, Gerken, & 

Hammond, 2004; Zamuner, 2009). 

A second shortcoming of previous studies is that some have evaluated a theoretical 

claim using indices that do not provide an adequate test of that claim. For example, support 

for theories positing that nonword repetition relies on sublexical representations hinged on the 

fact that phonemic bigram frequency predicts NWR accuracy. However, phonemic bigram 

frequency is a limited index of sublexical representation, providing no evidence regarding 

sublexical chunks greater than two phonemes. This limits evidence of the role of sublexical 

knowledge and implications for what is involved in NWR. 

Current study 

To go beyond previous studies and throw more light on key processes involved in 

NWR, we took a radically different approach to investigating factors influencing NWR 

performance. Making no a priori theoretical commitments, we set out to test the contribution 

of a wide array of item parameters using a much larger pool of items than those typically 

utilised. We targeted most of the predictors previously investigated, as well as including 

several new predictors that are theoretically justified (see Methods for details). The items 

were crafted in such a way that they spanned the entire space of possible values of the 

targeted item parameters.  



 

 

In addition, our study targeted Polish rather than English. As Vitevitch, Chan, and 

Goldstein (2014) point out, testing English-based theories in languages other than English is 

crucial for advancing theories and evidence, and research on typologically different languages 

may be particularly informative. Polish provides an excellent source of evidence regarding the 

relative contribution of parameters such as syllable complexity (presence of consonant 

clusters) and phonotactic probability, because in contrast to English, consonants clusters are 

very frequent in Polish words. For example, English allows for 46 double consonant clusters 

and 11 triple consonants clusters word-initially (Trnka, 1966), while Polish allows for as 

many as 160 initial double clusters, around 100 initial triple clusters, as well as 20 quadruple 

clusters (Dobrogowska, 1992). This relates to the fact that Polish is a heavily consonantal 

language with 31 consonants, but only 6 oral vowels and 2 nasal diphthongs (in contrast, 

English has 24 consonants, but 12 vowels and 8 oral diphthongs; Roach, 2004; Gussman, 

2007; Jassem, 2003). Moreover, using Polish made it particularly important to check if the 

effect of sublexical knowledge on NWR is moderated by the knowledge of morphology, since 

Polish is a morphologically rich, inflectional language and Polish nonwords are likely to 

contain morphemes. For instance, Polish nouns are inflectionally marked for number and case 

(there are seven cases in Polish) and their declension depends on gender, with six gender 

classes in the language (Nagórko, 2007). There is also a rich declension system of adjectives 

and complex system of verb conjugation, with eleven conjugation classes, that produce a wide 

range of inflectional morphemes.  

 Our approach will help uncover the most important factors influencing nonword 

repetition, and thereby elucidate factors shaping the processing and learning of novel words. It 

will also have implications for the nature of deficits in children with SLI whose performance 

on NWR tasks is typically compromised. 

 

  

Methods 

 

Participants 

Seventy-five children were recruited from four kindergartens in Kraków, Poland. All 

were monolingual speakers of Polish. Parents of all children signed informed consent, and 

filled in a short questionnaire about parental education level, history of children's language 

and hearing problems, and ear infections. Ten children were excluded because they did not 

complete all tests (see below); six children because parents reported hearing deficits, or 

serious ear infections; one child because he was receiving speech therapy; and one child 

because of low scores on the receptive vocabulary test (< 2 SD). The remaining 57 children 

were selected for analysis (26 female, mean age: 5;5, range: 4;5 - 6;10). To ensure that 

children had no hearing deficits, audiometric screening was conducted using a modified 

Hughson-Westlake procedure (Carhart and Jerger, 1959). All participants had hearing 

thresholds at or below 25 db HL for frequencies in range 1-4kHz. 

 

Materials 
Standardised tests 

Children took part in two standardised tests: a test of receptive vocabulary (OTS-R; 

Haman & Fronczyk, 2012), and a test of nonverbal IQ (Columbia Maturity Scale; 

Burgemeister, Blum & Lorge, 1972; Polish adaptation: Ciechanowicz, 1990). Both tests were 

administered according to the instructions in the test manuals. Descriptive statistics for raw 

scores (used in the analyses) and normalised scores on the tests are given in Table 1. 



 

 

 
 range mean SD 

OTS-R (raw, max 88) 30 - 84 63.1 12 

OTS-R (sten) 2 - 9 5.8 1.9 

Columbia (raw, max 67) 24 - 47 36.7 5.3 

Columbia (sten) 2.7 - 7.9 5.9 1.3 

Table 1. Descriptive statistics for raw and normalized results of the test of receptive vocabulary (OTS-R) and of 

nonverbal IQ (Columbia Maturity Scale). Sten scores have a mean of 5.5 and SD of 2.  

 

Construction of the nonword repetition test 

The NWR test was constructed based on parameters of Polish, derived from the 

National Corpus of Polish using the balanced subcorpus of about 250 million words 

(Przepiórkowski et al., 2012). Only words with a frequency above 0.1 per million were used 

for computing these corpus statistics. The following sections describe how the parameters 

were calculated (1-3), how the nonwords were generated (4), and procedures for the final 

selection and presentation of nonwords (5-7): 

1. Phonologisation of the corpus 

All words occurring in the corpus were automatically converted to a phonological 

form, taking advantage of the nearly perfect orthographic transparency of Polish, with each 

letter corresponding to one phoneme of Polish (Grzegorczykowa et al., 1998). In addition, a 

special character ('#') was added to the onset and offset of each word (see below). 

2. Segmentation of words into chunks of varying grain-size 

All words were automatically segmented into chunks of three different grain sizes: 

phonemes, syllables, and subsyllabic elements. Subsyllabic elements were obtained by 

splitting each syllable into onset, nucleus and coda. For example, segmentation of the word 

#klarnet# (English: clarinet) using the three methods would yield the following results: for 

phonemes: #-k-l-a-r-n-e-t-#; for syllables: #-klar-net-#; for subsyllabic elements: #-kl-a-r-n-e-

t-#. # symbols denoting the beginning and end of the nonword were necessary to capture 

positional frequency of syllables, subsyllabic elements and phonemes. 

3. Computation of statistical structure (ngrams) of Polish words 

For each grain size (phonemes, subsyllabic elements, syllables), we computed 

frequencies for all possible substrings. For example, the word #dom# divided into phonemic 

ngrams contributed to frequency counts of the following ngrams: #d, #do, #dom, do, dom, 

dom#, om, om#, m#. Each word contributed to frequency counts of sequences proportionally 

to its frequency in the corpus. For example, because the word "dom" occurred in the corpus 

34537 times, this value was added to the frequency counts of all above phonemic ngrams. 

This procedure was repeated for all words in the corpus. From now on, for brevity we will 

refer to the sequences of any size as ngrams (phonemic ngrams, syllabic ngrams, etc.), while 

sequences with a defined length will be referred to as bigrams, trigrams, and so on. 

4. Generation and selection of maximally varied nonwords 

A pool of 3500 2-4-syllable nonwords was generated by putting together randomly 

selected phonemic or sub-syllabic bi- and trigrams. In order to generate maximally varied 

nonwords, for some nonwords the generation algorithm was biased to draw more frequent 

combinations of ngrams, while for other nonwords it was biased to pick less frequent 

combinations of ngrams. Some nonwords were generated by putting together phonemes, 



 

 

others by putting together subsyllabic elements. In this way, nonwords varied with respect to 

their proximity to the source language. All generated nonwords were phonologically legal in 

Polish. Legality was defined as the requirement that all subsyllabic bigrams had to occur in 

the corpus of subsyllabic chunks. 

For all nonwords, three ngram parameters were computed, representing the averaged 

log-frequencies of all phonemic, subsyllabic, and syllabic bigrams in a nonword. A subset of 

180 nonwords was then selected, with 60 at each length (2-, 3- and 4-syllable). Within each 

length, the nonwords were selected to be representative of the entire pool of n-syllabic 

nonwords, preserving the variability in the pool of 3500 created to contain maximally varied 

nonwords. 

5. Recording and final selection of nonwords 

The 180 nonwords represented in orthographic form were read with a standard Polish 

accent by a professional actress and digitally recorded to a computer audio file. The recording 

took place in a sound-attenuated chamber using a Rode M3 condenser microphone. Each 

nonword was spliced and placed in a separate file. To ensure that the stimuli did not differ in 

volume, all nonword files were equated for overall RMS amplitude using the Audacity 

program. 

All stimuli were later screened by the experimenter for sound artifacts, and for 

pronunciation inaccuracies. This led to the selection of a final set of 150 nonwords (51 2-

syllable, 51 3-syllable, and 48 4-syllable). 

6. Assessment of wordlikeness 

For all 150 nonwords we obtained wordlikeness ratings from 30 adult native speakers 

of Polish. Rating was carried out in two phases. First, the raters passively listened to all 

nonwords presented in a randomised order via headphones in order to familiarise them with 

the variability of the nonwords. The raters were then asked to listen to the nonwords again and 

assess each on wordlikeness on a scale from 1 to 5 (1 - unlike a Polish word; 5 - this would 

make a perfect Polish word). The mean ratings for each nonword were then used as one of the 

predictors of nonword repetition accuracy. 

7. Creation of the final experimental procedure 

The 150 nonwords were divided into 3 lists of 50 nonwords. The nonwords in each 

list were matched with respect to length in syllables, and phonemic, sub-syllabic and syllabic 

average log-frequencies of all neighbouring pairs of chunks. Each child was tested with two 

of the three lists of the NWR task. 

The nonword repetition test was embedded in a game in which children learnt an 

alien language. Each list of nonwords was wrapped into a PowerPoint presentation. The 

presentation pictured an alien in a flying saucer who does funny things after every five 

nonwords. The nonwords were presented in the order of expected difficulty, such that shorter 

nonwords occurred earlier, and within a given length in syllables, nonwords with higher 

chunk frequencies preceded those with lower chunk frequencies. This was to avoid poorer 

performing children being discouraged by difficult items at the beginning of the test. After 25 

nonwords there was a break in the presentation. 

 



 

 

Procedure 

Children were tested individually in a quiet room in their kindergarten, in two 

sessions held on separate days. In the first session children received the Columbia Mental 

Maturity test, the audiometric test, and one nonword repetition list. In the second session, they 

received the receptive vocabulary test and a second nonword repetition list. All children's 

repetitions were recorded on a digital voice recorder. After each session children were given a 

sticker with an alien. 

The lists were balanced across children, so that in total, all lists were used an equal 

number of times. Six children were tested in one session only: they took part in all 

accompanying tests but repeated only one list of nonwords (data from these children is 

included in the analyses). After the exclusion of participants (see Participants section), across 

children, the lists were used 41, 38 and 31 times, for the first, second and third lists 

respectively
2
. 

 

Scoring 

Nonword repetitions of each child were independently assessed by two trained 

judges. The judges were instructed to transcribe the utterances in orthographic form with 

maximum faithfulness to the original, and to score whether the repetition was accurate or not. 

We chose whole-item scoring, because clinically it is considered more appropriate and 

sensitive in discriminating between typically developing children and children with SLI (Roy 

& Chiat, 2004; see comparison of scoring methods in Boerma et al., 2015). Children’s 

repetitions were scored correct if they included all and only the target phonemes in the correct 

order; addition/deletion/substitution counted as errors, but not substitution of a phoneme with 

a substandard allophonic variant. The two transcriptions were then reviewed by a third judge. 

The task of the judge was to review all instances where the two transcriptions of a nonword 

repetition did not match, and to adjudicate which one was correct. As a final step, the judge 

determined whether the child had developmental articulation problems with some sounds (e.g. 

substituting /r/ with [l] or [j]), and amended the score for those repetitions which were correct 

apart from developmental articulation problems. In the same way, the third reviewer also 

eliminated errors resulting from minor regional variations in accent. In the final analyses, only 

the binary scoring correct / incorrect was used. 

Predictors and statistical analyses 

Our approach in this study was fully exploratory, making no assumptions concerning 

the influence of item-related factors that might influence nonword repetition. That is why we 

set out to test as many plausible item-related predictors of nonword repetition as possible. The 

item-related variables included: 

● Three indices of length and/or information load: 

○ number of vowels (syllables) - the most frequently used index of nonwords' 

length 

○ number of consonants 

○ duration of the target nonword (as presented to the child) in milliseconds 

● Two measures of lexical neighbourhood: 

                                                 
2
 While in traditional analysis such imbalance in the number of children repeating the three sets of items could 

be a problem, this is not an issue for mixed-effects models which are robust to unbalanced designs.  



 

 

○ PLD20 - the average Levenshtein distance (the minimal number of 

substitutions, insertions, or deletions to be made in order to edit one string of 

any length into another) to the 20 closest phonological neighbours 

○ Coltheart's N - the number of phonological neighbours at Levenshtein 

distance equal to 1 

● Six indices of phonotactic probability at various levels of granularity:  

○ mean log frequency of phonemic bigrams, i.e. sequences of 2 adjacent 

phonemes (corresponding to the most widely used index of phonotactic 

probability) 

○ mean log frequency of subsyllabic bigrams, i.e. sequences of 2 adjacent 

subsyllabic elements (e.g. onset and vowel) 

○ mean log frequency of syllabic bigrams, i.e. sequences of 2 adjacent syllables 

○ mean log frequency of all phonemic ngrams - the mean was obtained by 

summing all log-frequencies of all ngrams (ngrams not occurring in the corpus 

were counted as zero), and dividing it by the number of ngrams occurring in 

the nonword (equal to n(n-1)/2, where n is the length of the nonword) 

○ mean log frequency of all sub-syllabic ngrams 

○ mean log frequency of all syllabic ngrams 

● Three indices of phonological complexity: 

○ number of consonant clusters 

○ maximum length of a constituent consonant cluster 

○ number of sonority violations (Shariatmadari, 2006). Since there is no widely 

accepted hierarchy of sonority (Selkirk, 1984; Ohala 1992), we used one that is 

quite broad, and in our intuition works well for Polish: voiceless obstruents < 

voiced obstruents < nasals < liquids and glides. Any consonant pair within a 

syllable onset that had decreasing sonority, or any consonant pair within a coda 

that had increasing sonority counted as a violation of sonority 

Although not central to our analysis, we also tested a few participant-related 

predictors typically controlled in NWR studies. These included: 

● age 

● raw score on the receptive vocabulary test 

● raw score on the Columbia Mental Maturity Scale 

● sex 

● parents’ education level.  

 

 

A note on collinearity 
 
 

n 
cons 

n 
vowels 

phon 
bigram 

freq 

ssyl 
bigram 

freq 

syl 
bigram 

freq 

phon 
ngram 

freq 

ssyl 
ngram 

freq 

syl 
ngram 

freq 

n 
coltheart 

PLD
20 

max 
cluster 

len 

n 
cluster 

sonority word 
like 

ness 

n vowels 0,52              
phon bigram freq -0,32 -0,04             

ssyl bigram freq -0,58 0,00 0,77            

syl bigram freq -0,36 -0,36 0,32 0,37           

phon ngram freq -0,75 -0,64 0,62 0,65 0,49          

ssyl ngram freq -0,79 -0,58 0,57 0,71 0,45 0,97         

syl ngram freq -0,76 -0,49 0,49 0,65 0,44 0,87 0,90        
n coltheart -0,54 -0,43 0,30 0,43 0,30 0,66 0,69 0,61       

PLD20 0,86 0,70 -0,39 -0,48 -0,38 -0,83 -0,82 -0,76 -0,51      

max cluster len 0,71 0,12 -0,31 -0,70 -0,32 -0,50 -0,61 -0,60 -0,43 0,52     
n cluster 0,88 0,19 -0,40 -0,73 -0,30 -0,63 -0,71 -0,72 -0,42 0,69 0,80    

sonority 0,41 0,08 -0,42 -0,60 -0,29 -0,42 -0,44 -0,41 -0,19 0,39 0,45 0,44   

wordlikeness -0,41 -0,47 -0,06 0,05 0,06 0,38 0,38 0,40 0,18 -0,55 -0,23 -0,33 -0,06  
recording len 0,88 0,69 -0,32 -0,45 -0,41 -0,78 -0,78 -0,74 -0,54 0,86 0,57 0,70 0,32 -0,44 

Table 2. Correlation matrix for all tested predictors. 



 

 

As can be seen in Table 2, there is considerable collinearity between the item-related 

variables. Given that most of the variables stem from some aspect of lexical phonology, this is 

to be expected. Phonotactic probability and indices of lexical neighbourhood are correlated, 

because words similar to many other words necessarily include frequent chunks of phonemes. 

Likewise, a correlation between lexical neighbourhood and length is to be expected, because 

shorter words tend to come from dense neighbourhoods (the space of possible short words is 

small, and thus it is densely packed; see section ‘Limitations of previous approaches’ in the 

Introduction). Thus, the high intercorrelation between the different theoretically motivated 

variables is an intrinsic property of this set of variables. This problem has to be dealt with in 

some way, because each of the closely correlated variables warrants qualitatively different 

theoretical conclusions. We assumed that, although the variables to a large extent explain 

common variance, identifying those that best explain the NWR variance would enable us to 

infer which representations and/or mechanisms are critical for NWR. Entering such correlated 

variables into a regression leads to the situation in which a variable’s estimate reflects its 

contribution while taking into account the contribution of all other correlated variables. As a 

result, the predicted shared variance is distributed across all correlated variables. Moreover, 

building models that are based on (too) many variables also straightforwardly leads to 

overfitting. To circumvent these problems and to distill a minimal set of variables that 

maximise model fit we used a backwards stepwise regression strategy. An alternative 

approach to dealing with multicollinearity, for example using principal component analysis, 

would mask possible differences between variables that could be informative about nonword 

processing. 

 

Data analysis 

The data were analysed using generalised linear mixed-effects regression, with logit 

link function, using the lme4 package in R (Bates, Maechler, Bolker & Walker, 2015). 

Because of the number of predictors, it was impossible to test the maximal model, including 

all fixed effects and full random effects structure. Therefore, we first fitted an anti-

conservative model containing all fixed effects, with random effects limited to the by-

participant and by-item random intercepts. Then, we reduced this model via backwards 

stepwise selection procedure: we removed predictors one by one, until exclusion of any 

predictor would result in a decrease in the Akaike Information Criterion by value smaller than 

2 (a decrease in AIC reflects improvement in a model's goodness of fit, while penalizing 

excessively complex models). Then we found the best random effects structure (following the 

recommendations by Bates, Kliegl, Vasishth, & Baayen, 2015) using stepwise forward 

regression for this model. After extending the random effects structure, the fixed effects were 

established anew using backward regression. The final model did not require adjusting the 

random effects (removing or adding random slopes did not improve the model fit). All 

predictor variables were centered before conducting the analyses (however, they were 

decentered for visualization in Figure 1). Thus, the intercept of the model corresponds to the 

overall mean log-odds of accurately repeating a nonword. 

 

 

Results 

On average, children correctly repeated 63.7% of the nonwords (range: 16%-85%, 

SD: 15.0%). On average, items were correctly repeated by 64.5% of the children (range: 6.7% 

- 97.3%, SD: 20.4%). This shows that the demands of the items were appropriate to the 

children’s level of phonological development, with no floor or ceiling effects. At the same 



 

 

time, items varied widely in their overall difficulty, affording variance necessary for 

estimating predictors of repetition accuracy. 

The best model contained fixed effects for four item-related factors (number of 

consonants, mean log frequency of all phonemic ngrams, sonority violation index as 

measured by violations of the sonority scale, wordlikeness), and one participant-related factor 

(raw score on the receptive vocabulary test). It also included by-subject and by-item random 

intercepts, and a by-subject slope for the mean log frequency of all phonemic ngrams. The 

fixed effects of the model are given in Table 3. The partial effects of each of the predictors are 

shown in Figure 1. 

 
Fixed effect Estimate SE z p 

Intercept 0.72 0.11 6.5 < .0001 

N consonants -0.21 0.07 -3.0 < .01 

Sonority violations -0.38 0.16 -2.4 <.05 
Phonemic ngram frequency 0.33 0.12 2.7 <.01 

Wordlikeness 0.27 0.12 2.4 <.05 

Receptive vocabulary 0.03 0.01 5.1 < .0001 

Table 3. LMM estimates (on the logit scale) of fixed effects in the final model. 

 
Random effect SD Correlation parameters 

by-Item   

    Intercept 0.74  

by-Participant   
    Intercept 0.66  

    Phonemic ngram Frequency 0.25 -0.86 

Table 4. LMM estimates of random effects in the final model. The correlation parameter reflects correlation 

between by-participant intercept and slope for Phonemic ngram frequency. 

 

 

 

Figure 1. Partial effects in the model predicting likelihood of correct repetition of nonwords. Shaded areas reflect 

95% confidence bands. Note that the values on the Y-axis are transformed to the probability scale.  



 

 

The two most influential item-related predictors were phonemic ngram frequency and 

number of consonants. The nonword with the most frequent ngrams had 1.6 higher log-odds 

of correct repetition, than the nonword with the least frequent ngrams. The log-odds of 

repeating a nonword with 9 consonants were lower by 1.7, relative to repeating a nonword 

with 1 consonant. The two remaining item-related fixed effects were weaker: the full effect of 

Wordlikeness increased log-odds of correct repetition by 1.1, while increasing the number of 

sonority violations by 2 decreased log-odds of correct repetition by 0.8. Importantly, these 

four factors overshadowed all other variables tapping into phonotactic probability and lexical 

neighbourhood. 

Out of all the participant-related predictors, receptive vocabulary score best explained 

variance in nonword repetition accuracy, overshadowing other predictors, such as age, 

intelligence or parents' educational level.  

As we can see in Table 4, children varied significantly with respect to their sensitivity 

to phonemic ngram frequency of nonwords. This sensitivity strongly and negatively 

correlated with the overall by-subject mean, indicating that the better a child was at repeating 

nonwords, the less susceptible he or she was to ngram frequency. This presumably reflects a 

simple ceiling effect: in the extreme cases when a child repeated almost all nonwords 

correctly, nonwords' ngram frequency by necessity no longer played any role. 

Having established that receptive vocabulary was the strongest participant-related 

predictor, while consonant number and ngram frequency were the most important item-related 

predictors, we tested whether there were any significant interactions between the participant-

related predictor and the item-related predictors. The likelihood ratio comparisons showed 

that there were not: neither a model that included the consonant number by receptive 

vocabulary interaction term, nor a model that included the ngram frequency by receptive 

vocabulary interaction term was better than the original model not including these 

interactions. 

Likewise, we checked that the contribution of the significant predictors was linear. 

We built a series of alternative models in which we added quadratic versions of the significant 

predictors. None of these models was better than the original model. 

Fixed effect variance explained by the predictors of the best model 

 There is no widely agreed method of estimating the goodness-of-fit of (generalized) 

mixed effects model (see Bolker et al., 2017). To estimate the individual contribution of each 

effect identified above to predicting nonword repetition accuracy, we used the method 

described by Nakagawa and Schielzeth (2013) and Johnson (2014) as implemented in 

sem.model.fits in the piecewiseSEM package in R (version 1.2.1, Lefcheck, 2016). This 

method does not have the many theoretical problems associated with other definitions of R
2
 

for mixed effect models (e.g. negative R
2
 values). It extracts marginal and conditional R

2
 

components of the mixed effects model. Here we focus on marginal variance that indexes 

variance explained by fixed effects only. For model comparison we used constant random 

effects structure that was the same as in the best model described above. We tested marginal 

variance explained when each individual effect was entered into the model alone. This 

analysis showed that receptive vocabulary explains 0.037 of total marginal variance. For item-

related effects, the most predictive were phoneme ngram frequency and number of 

consonants, explaining .105 and .096 of marginal variance, respectively. When combined, 

these two effects explained .118 variance. Subjective wordlikeness and number of sonority 



 

 

violations explained much less variance when entered individually (.035 and 0.036, 

respectively). In total, all item-related variables explained .125, while the full model, 

including receptive vocabulary size, explained .162 of total marginal variance. 

Further explorations of the ngram frequency factor 

Since phonemic ngram frequency was the most important predictor of all variables 

representing phonotactic probability and lexical neighbourhood density, we took a closer look 

at this factor. We addressed two questions: first, whether phonemic ngrams of all lengths 

contributed to the predictive value of this variable, and second, if all constituent ngrams 

contributed to nonword repetition accuracy, or perhaps only those that corresponded to 

morphemes existing in Polish. 

We addressed the first question by fitting a series of mixed effects models. Each 

model consisted of the same effects (fixed and random) as the original best model but with the 

phonemic ngram frequency fixed effect replaced by a variant of the effect based on ngrams of 

a fixed length: bigrams, trigrams, up to 8+-grams (ngrams of length 8 and more). We then 

compared this series of models with two baseline models: the original best model (containing 

the full phonemic ngram frequency effect), and a model without any ngram effect included. 

 

 

 
Figure 2. AIC of the model as a function of length of ngrams based on which ngram frequency was computed. 

The lower the AIC value, the better fit of the model. Since there were very few 8-, 9- and 10-grams, they were 

collapsed under the 8+ category. 

 

Figure 2 shows the results of these analyses. As can be seen, with the exception of 

one ngram length (discussed below), models with phonemic ngrams of all fixed lengths 

improved accuracy of the model, relative to a model without any ngram effect included. This 

confirms that the sublexical representations helping in repetition of nonwords are not 

restricted to only short or only long ngrams. Only 6-grams (and correlated 5- and 7-grams) 

seem not to be particularly useful. Our working assumption is that this result is due to 

sampling error and is an idiosyncratic property of our set of nonwords and participants, but 

this will have to be verified in future research. Our analysis showed in addition that no model 

based on phonemic ngrams of fixed length was a better fit than the model containing ngrams 

of all lengths (i.e. the original model). This confirms that ngrams of all lengths cooperate in 

supporting nonword repetition. 

The second question was whether phonemic ngrams contribute to nonword repetition 

regardless of their morpheme status in Polish. Because Polish is a morphologically rich 



 

 

language (see Introduction) and because the procedure for nonword generation based on the 

distribution of ngrams in Polish, many of our nonwords containing easily identifiable lexical 

units, as well as inflectional and derivational affixes. Therefore, nonword fragments (ngrams) 

whose form is consolidated in long-term memory and associated with some conceptual 

representation may be entirely responsible for the explanatory effect of phonemic ngrams. To 

test whether morpheme status mattered, we extracted all 3006 unique phonemic ngrams 

occurring in our nonwords that had non-zero frequency. Next, we hand-marked whether each 

of them corresponded to a morpheme or not. We followed an inclusive strategy, classifying as 

morphemes inflectional, derivational and lexical morphemes. Moreover, we marked as 

morphemes ngrams corresponding to inflected stems (root + affix), as well as ngrams 

corresponding to sole affixes, and sole word roots. We reasoned that if the predictive power of 

ngram frequency is not due to morpheme status, then even under this inclusive strategy, the 

effect of non-morphemic ngrams should still remain significant. 

This procedure resulted in 18% of the 3006 unique non-zero frequency ngrams being 

marked as morphemic. After classifying the ngrams, for each nonword we computed separate 

frequency scores for morphemic and non-morphemic ngrams (their sum equal to the original 

ngram frequency score). Next, we modified the original model best predicting nonword 

repetition by substituting the ngram frequency fixed effect (and corresponding random slopes) 

with these two new scores. The resulting model is shown in table 5. 

 
Effect Estimate SE z p 

Intercept 0.79 0.11 7.1 <.0001 

N consonants -0.21 0.07 -3.0 <.01 

Articulatory difficulty -0.37 0.16 -2.3 <.05 
Ngram frequency non-morphemic 0.38 0.13 2.9 <.01 

Ngram frequency morphemic 0.34 0.18 1.9 .057 

Wordlikeness 0.26 0.11 2.3 <.05 
Receptive vocabulary 0.04 0.01 5.0 <.0001 

Table 5. Fixed effects in the LMM model with phonemic ngram frequency split into morphemic and non-

morphemic ngrams. 

 

First and foremost, this analysis shows that the effect of non-morphemic ngram 

frequency remained as a significant contributor to the model. Moreover, the two predictors – 

morphemic and non-morphemic ngrams – have very similar estimates of effect size (though 

the effect of morphemic ngram frequency turns out to be non-significant, presumably due to 

the relatively low number of morphemic ngrams). Thus, it seems that ngrams contribute to 

nonword repetition performance independently of whether they are or are not associated with 

some conceptual representation or grammatical function. 

 

Considering statistical power 

 

Testing many predictors in parallel inevitably brings the question whether there is enough 

statistical power in the dataset to detect all theoretically interesting effects.  

 

When considering statistical power, one usually establishes the size of the effect and its 

variability from previous studies. Using these parameters, one determines the number of 

participants/items that are required to detect potential effects. In our case, this approach was 

impossible, because no prior study considered all our predictors jointly. Most of the predictors 

that we considered are highly correlated and this leads to a reduction in their effect sizes when 

the correlated predictors are entered into the model simultaneously.  In other words, the sizes 



 

 

of the effects estimated alone are much larger than when these effects are considered with 

other correlated predictors.  

 

An alternative approach to power analysis is testing whether our best model would be capable 

of detecting an additional effect besides the ones identified, if the effect had size that would 

still be theoretically interesting to consider. One effect which was not present in the best 

model, but whose statistical significance would certainly bear on the interpretation of our 

findings, is lexical neighborhood size. We carried out Monte Carlo simulations using the 

powerSim function from the simr package in R (Green & MacLeod, 2016) to check what 

effect size would make neighbourhood density detectable with a decent power (when the 

model already contains all other predictors of the best model). Simulations revealed that the 

PLD20 effect size of .45 would be detectable with over 80% power. For our sample of 

children, this effect size means that increasing PLD20 by half of its interquartile-distance (by 

0.8) would result in an increase of average repetition accuracy from 65% to 72% (with other 

predictors centered at their mean and held constant). Given that such a small effect would still 

be detectable by our model with a high probability, we conclude that we have sufficient 

power to reveal all relevant effects. Our failure to observe significant predictors besides the 

ones discussed most likely resulted from the fact that none of these could explain any further 

variance.  

 

 

Discussion 

In this study, we explored the mechanisms and representations underlying 

performance in the NWR task by testing the relationship between the scores on this task and 

potentially relevant item- and participant-related factors. Many of these factors have been 

considered in previous research and literature, but usually only individually. In this study, we 

explored them simultaneously, and making no a priori assumptions, in a large set of nonwords 

crafted in such a way as to span parameter space as broadly as possible. 

We found four critical item-level predictors: number of consonants, phonemic ngram 

frequency, number of sonority violations, and wordlikeness, as well as one participant-level 

predictor, receptive vocabulary. We will now discuss, in the order of their importance to the 

model, how each of these predictors might contribute to our understanding of the processes 

behind nonword repetition and, more broadly, behind phonological processing of novel 

words. 

 

Phonemic ngram frequency 

Our data show that one of the most important item-level predictors of accurate 

nonword repetition is the mean log frequency of phonemic ngrams. This index reflects the 

corpus frequency of any and all phonemic sequences contained in a particular nonword 

(phonemic bigrams, trigrams, etc.). It is the only corpus-based statistic that remained in the 

final model. The primacy of this factor over all other corpus-derived factors is novel and 

interesting for two reasons. First, it shows the superiority of ngram frequency with respect to 

lexical variables, suggesting the contribution of sublexical representations to novel word 

processing. Second, it demonstrates that other indices of phonotactic probability at different 

grain sizes were less capable of explaining NWR variance, which suggests that sublexical 

representations consist of chunks of all sizes. Below we will discuss each of these 

observations in more detail. 



 

 

Lexical vs. sublexical processing 

In previous studies, bigram frequency and neighborhood density were sometimes 

pitted against each other as predictors of NWR to clarify whether novel word processing 

draws on lexical or sublexical representations. These studies showed mixed results: some 

found that lexical neighborhood better explained NWR performance when phonotactic 

probability was controlled (Janse & Newman, 2013; Roodenrys & Hinton, 2002), while others 

found that both factors explained unique variance in NWR scores (Bailey & Hahn, 2001; 

Thorn & Frankish, 2005). Strong support for the role of sublexical representations in nonword 

repetition came from a study showing that listeners exposed to an artificial language with 

particular phonotactic patterns found it easier to repeat nonwords conforming to these patterns 

(Majerus et al., 2004). An even more complex picture was painted by studies looking at 

predictors of novel word acquisition. These have shown that phonotactic probability and 

neighborhood density might be connected with different aspects of novel word learning, with 

lexical neighborhood facilitating only later aspects of a word’s consolidation (Storkel & Lee, 

2011; Storkel, Armbruster, & Hogan, 2006). 

The present study was particularly suited to adjudicate between lexical and sublexical 

predictors. First, it included multiple predictors of both types of representation, giving them 

the best chance to reveal their contribution. Second, it employed a much larger sample of 

nonwords than typically used, which enabled us to manipulate the corpus-derived predictors 

in their full range. In contrast, many previous studies used nonwords with restricted variance 

in sublexical or lexical predictors which might well have distorted their results in favor of one 

or other type of representation (c.f. Thorn & Frankish, 2005). Because our new index of 

phonotactic probability (i.e. phonemic ngram frequency) turned out to be one of the best 

predictors of the NWR scores (and better than any of the lexical neighborhood measures we 

tested), our results strongly support the notion that sublexical representations have a critical 

role in nonword repetition, over and above lexical representations. 

Grain size of sublexical representations 

Among all indices of sublexical patterns in Polish, phonemic ngram frequency (in 

contrast to bigram frequency) turned out to be the best predictor. This result suggests that 

processing of a nonword is sensitive not only to phonemic bigram frequency, which is 

generally used as the index of ‘phonotactic probability’ (see e.g. Coady & Aslin, 2004; 

Edwards, Beckman, & Munson, 2004; Gathercole, Frankish, Pickering, & Peaker, 1999; 

Majerus et al., 2004; Messer, Leseman, Boom & Mayo, 2010; Munson, Edwards, & 

Beckman, 2005; Munson, Kurtz, et al., 2005; Roodenrys & Hinton, 2002; Thorn, Gathercole, 

& Frankish, 2005; Zamuner, 2009; Zamuner, Gerken, & Hammond, 2004); rather, it is 

influenced by frequency of chunks at all grain sizes. Our analyses revealed that of all 

individual grain-sizes of phonemic ngrams, trigrams (chunks of three phonemes) explained 

the most variance, but the best results are achieved when chunks of all grain sizes are 

considered jointly (as defined by the index of phonemic ngram frequency). Furthermore, the 

fact that frequency of phonemic ngrams was superior to indices relying on syllabic structure 

(frequencies of syllabic and sub-syllabic ngrams) implies that the phonological chunks stored 

in long-term memory are organized around phonemes. The fact that syllabic and sub-syllabic 

ngram frequency did not show up in the model suggests that syllables and sub-syllabic 

elements do not play any part in speech processing based on sublexical representations. 

Conversely, sublexical representations comprise any frequently occurring combination of 

phonemes and do not depend on syllabic boundaries. Similarly, there is no difference in 

explanatory power between the frequency of phonemic ngrams containing existing 



 

 

morphemes (content or functional) and those that do not contain any morphemes. This 

contradicts previous claims that nonwords containing morphemes are easier to repeat 

(Dollaghan et al., 1993; 1995; Archibald & Gathercole, 2006). The present study shows that 

this may be a corollary of the fact that morphemes constitute frequent phonemic ngrams and 

thus have well entrenched phonological representations. 

Perception, maintenance in STM or production? 

Our finding that NWR is related to sublexical representations at different grain sizes 

is in line with several theoretical and computational models of speech perception positing the 

existence of chunk-level representations. First, it supports the adaptive resonance theory, 

according to which speech recognition is based on the recognition of speech chunks of 

different lengths, where all known chunks of phonemes compete to represent the perceived 

phonological input in working memory (Grossberg, 1986; Grossberg, Boardman, & Cohen, 

1997; Vitevitch & Luce, 1999). Our findings are also in line with computational models of 

speech perception by Jones and colleagues: EPAM-VOC and CLASSIC (Jones et al., 2007; 

Jones et al., 2014; Jones, 2016). These models demonstrate that with greater exposure to a 

given language, learners learn increasingly larger chunks of phonemes that repeatedly occur 

in the input. Thanks to this, when confronted with a novel word (from the learner perspective: 

a nonword), they can encode it in short-term memory using relatively few longer chunks 

instead of many short chunks or separate phonemes. The longer the chunks, the less learners 

are limited by their short-term memory capacity, because maintaining a few longer chunks 

strains STM capacity to a lesser extent than maintaining a greater number of shorter chunks. 

The above two theories imply that sublexical representations support nonword 

perception and its maintenance in pSTM. However, the predictive power of phonemic ngram 

frequency can be also explained from the perspective of speech production: participants found 

it easier to repeat nonwords with high ngram frequency because they have practice with 

producing frequent combinations of phonemes. In other words, just as exposure to frequent 

combinations of phonemes is likely to generate perceptual patterns facilitating speech 

recognition (sublexical representations consisting of chunks of phonemes), the frequent 

production of certain combinations of phonemes is likely to foster generation of articulatory 

patterns (motor programs) that facilitate speech production. In fact, it is likely that both the 

perceptual and articulatory stages of nonword repetition contribute to performance in the task 

(Jones & Witherstone, 2011) and that both perceptual and articulatory representations are 

sublexical in nature. 

 

Vocabulary 

Our study did not aim to test a comprehensive set of participant-related variables (in 

contrast to item-related variables) and we included only the variables most frequently 

investigated in research on NWR. Findings on the effects of these participant-related variables 

mesh with our findings on item-related variables in interesting and informative ways. 

The only significant participant-level predictor of NWR performance was receptive 

vocabulary. This measure eclipsed all other participant-level predictors: age, IQ, sex and 

parents' education level. While the last three predictors served merely as control variables, age 

is known to significantly predict children’s accuracy in nonword repetition (Gathercole, 

Willis, Baddeley, & Emslie, 1994). In the current dataset, age would also be a significant 

predictor if it were not for the presence of receptive vocabulary in the model. This implies 

that, at least in 4-8-year-old children, age explains variance in nonword repetition accuracy 



 

 

because it is a proxy for vocabulary size – or any other construct that is tapped by receptive 

vocabulary. 

This raises the question of what makes receptive vocabulary such a good predictor of 

NWR. On the one hand, the lack of a lexical neighborhood effect in our model (see above) 

suggests that lexical representations do not contribute to accuracy of nonword repetition. On 

the other hand, vocabulary size, which directly measures the richness of lexical 

representations, does have a significant effect. This apparent paradox can be resolved by 

assuming that vocabulary size, as well as estimating the repertoire of lexical representations, 

is a proxy for the repertoire and the entrenchment of sublexical representations. In typically 

developing children, lexical representations (vocabulary) grow hand in hand with sublexical 

representations. This effect has most recently been demonstrated by Jones and Rowland 

(2017), who performed a simulation of vocabulary acquisition, NWR and novel word learning 

in children using the CLASSIC computational model. They found that feeding more diverse 

input into the model, i.e. input containing more varied types of words, led to a greater increase 

in vocabulary and novel word learning performance than merely increasing the amount of 

input, because it resulted in a wider repertoire of sublexical representations. Having more 

sublexical representations in turn improved the efficiency of encoding novel words. All this 

suggests that in our linear mixed effects models, a single underlying construct – sublexical 

representations – is indexed by two predictors, one participant-level (receptive vocabulary) 

and one item-level (ngram frequency). 

Interestingly, however, these two predictors did not interact in our models. The 

absence of such interaction indicates that the effect of phonemic ngram frequency on NWR 

scores was the same regardless of receptive vocabulary. In other words, all children benefited 

equally from high-ngram nonwords and were equally set back by low-ngram nonwords, with 

no ceiling or floor effects. Or, taking a different perspective, children with greater receptive 

vocabulary were better at repeating nonwords of any ngram frequency (i.e. nonwords with 

both frequent and infrequent ngrams). This suggests that children in our study knew all the 

ngrams to some extent, but differed in the strength of entrenchment of the ngrams in 

phonological long-term memory. If children with the smallest vocabularies did not have the 

representations of the least frequent ngrams, we would obtain an interaction between 

receptive vocabulary and ngram frequency. For nonwords with the rarest ngrams, the effect of 

receptive vocabulary would be flatter, because very few children would have the 

representations of these ngrams. Similarly, for children with the smallest vocabularies, the 

effect of ngram frequency would be flatter, because these children would know fewer ngram 

representations which they could use to process nonwords. Because this was not the case, we 

conclude that sublexical representations (phonemic ngrams) are not acquired in an all-or-

nothing fashion (an ngram is either stored or not), but rather that the development of 

sublexical representations is a gradual phenomenon, where all ngrams are represented to some 

extent, but ngram representations vary in their strength. At the same time, it should be noted 

that in this study we tested children in the age range 4;5 – 6;10. Had we tested younger 

children, it is likely that we would have obtained an interaction of ngram frequency and 

vocabulary, as demonstrated by studies testing younger children (Coady & Aslin, 2004; 

Zamuner, 2009)
3
. 

                                                 
3
 Note that the absence of vocabulary by mean ngram frequency interaction cannot be attributed to restricted 

range of vocabulary size values. Our participants demonstrated a full range of vocabulary sizes, with the mean 

and variance typical for the population (see Table 1).  



 

 

 

 

Number of consonants 

Apart from phonemic ngram frequency and receptive vocabulary, the third most 

important predictor of NWR performance was the number of consonants. Length-like 

measures were traditionally considered a proxy for information load and were taken to imply 

the involvement of phonological STM capacity in NWR: since longer nonwords strain pSTM 

capacity to a greater degree, they are more difficult to repeat (Gathercole & Baddeley, 1990). 

This interpretation is consistent with previous NWR studies, which have found that 

participants are better at repeating shorter than longer nonwords, defined by number of 

syllables (Gathercole et al., 1991; Stokes et al., 2006; Weismer et al., 2000, see also 

Gathercole, 2006 for a review). In the current study, we tested many length-like indices, 

including number of consonants and duration of the target nonword in milliseconds, as well as 

number of syllables (equal to the number of vowels). Out of these indices only number of 

consonants remained as a significant predictor. 

This raises the question why the number of consonants, but not the number of vowels 

or phonemes
4
, was most predictive of NWR accuracy. We believe that this result might be 

due to idiosyncratic characteristics of Polish – the native language of the participants and the 

language on which the nonwords were modelled. Polish is a highly consonantal language, 

with 31 consonants and only 6 vowels (Gussmann, 2007; Jassem, 2003). Vowels therefore 

carry a very low information load (see Fenk-Oczlon, 2001) and serve primarily as the 

background for the consonants. It is safe to assume that differentiating consonants constitutes 

the bulk of phonological perceptual or articulatory difficulty in Polish, and this may account 

for number of consonants emerging as the best predictor of NWR out of all measures of 

length. Thus, this interpretation does not attribute the effect of consonant number to the 

maintenance of nonwords in STM, but rather to perceptual and motor planning phases of 

nonword repetition. If perceiving and producing each consonant comes with a risk of 

misperceiving or misarticulating it, the higher the number of consonants, the higher is the 

chance that the nonword will be repeated incorrectly. This does not preclude that STM 

capacity also affects NWR performance, but it shows that it is impossible to unequivocally 

attribute the effect of number of consonants to perception, maintenance or articulatory phases 

of NWR. 

Another consideration related to consonants is that phonological complexity, defined 

as the number or length of consonant clusters, did not explain any NWR variance on top of 

consonant number and phonemic ngram frequency. Traditionally, consonants occurring in 

clusters are considered more phonologically complex, and claimed to be both difficult to 

produce (MacNeilage & Davis, 2000; 2005), and to perceive (Wright, 2004). A number of 

NWR studies have proposed that nonwords containing complex consonant clusters are more 

difficult to repeat, particularly in children with language impairments (Archibald & 

Gathercole, 2006; Estes et al., 2007; Bishop et al., 1996; Gathercole & Baddeley, 1989; 

1990a). However, they tested this effect in languages where consonant clusters are relatively 

                                                 
4
 We did not explicitly test the number of phonemes in our models, this factor being redundant since our models 

already included the number of consonants and the number of vowels. However, the fact that the number of 

vowels did not contribute as a significant predictor indicates that the number of consonants is a better predictor 

than the number of vowels. We also confirmed this conclusion in an alternative model where the number of 

vowels was substituted with the number of phonemes.  



 

 

infrequent, raising the possibility that clusters’ infrequency made them difficult to repeat
5
. 

Polish offers a good testing ground because consonant clusters are very frequent in Polish. 

Our results show that when phonemic ngram frequency and the number of consonants are 

held constant, consonant clusters play no role in determining repetition accuracy. It suggests 

that in those languages in which consonant clusters are less frequent, nonwords containing 

clusters may be more difficult to repeat than nonwords not containing consonant clusters 

precisely because these clusters are rare. This does not detract from the possibility that 

consonant clusters may be difficult to learn, as suggested by studies showing that they are 

acquired relatively late across the languages (Demel, 1987; McLeod, van Doorn & Reed, 

2001; Tamburelli, Sanoudaki, Jones, & Sowinska, 2015). However, our Polish data suggest 

that, once mastered, their difficulty may boil down to their frequency in the language. 

The substantial contribution of number of consonants bears on a controversy around 

the word length effect. This effect refers to the observation that longer verbal stimuli (in 

particular, stimuli that take longer to pronounce) are more difficult to retain in phonological 

short-term memory than shorter ones. This effect constituted evidence for time-based decay, a 

defining property of the phonological loop component in Baddeley’s theory of working 

memory (Baddeley, 1992). However, this idea has recently been challenged: it has been 

shown that at least for some stimulus sets, nonword length is confounded with neighborhood 

size (short nonwords tend to have many lexical neighbors), and when the latter is controlled, 

the effect of length disappears (Jalberta et al., 2011). The present study suggests that the 

conclusion by Jalberta et al. may be premature. Models including number of consonants are 

superior to models including neighborhood size, when phonemic ngram frequency is also 

controlled. On the other hand, it is number of consonants that matters and not the actual 

length of the nonwords in milliseconds (as some researchers have previously proposed, e.g. 

Lipinski & Gupta, 2005, or as assumed in Baddeley’s theory of working memory, Baddeley, 

1992), which might be an argument against the time-based nature of decay in phonological 

short-term memory. 

To sum up, our results align with previous research demonstrating the contribution of 

length-like indices in determining the difficulty of NWR. However, this finding cannot be 

unambiguously interpreted as evidence that phonological STM capacity affects the accuracy 

of NWR, since the number of consonants affects the number of opportunities to make a 

mistake in perception or articulation as well as increasing recall load. Finally, it should be 

borne in mind that the predictive power of number of consonants in our final model can be 

explained by the properties of Polish phonology and may not extend to more vowel-heavy 

languages. 

 

Sonority 

Another item-related factor that predicted variance in the NWR task was the number 

of sonority violations within a particular nonword. This index did not explain much additional 

marginal variance on top of the other item-related predictors. This effect suggests that while 

novel word repetition is based primarily on the application of known, language-specific 

sublexical representations (indexed by ngram frequency), there is also a more universal factor 

of phonological complexity that influences the mechanism. This factor might be related to 

                                                 
5
 Alternatively, the finding that consonant clusters predict nonword repetition could also be explained by the fact 

that those studies, in contrast to our study, did not include the index of consonant number. In either case, this 

suggests that the sole fact that consonants occur in a cluster does make a nonword more difficult to repeat. 



 

 

articulatory difficulty of the sequence and/or its perceptual salience. Sequences of consonants 

that violate sonority sequencing generalizations are difficult to produce, because they involve 

additional articulatory gestures which interrupt the jaw cycle (MacNeilage & Davis, 2000; 

2005). Moreover, sonority-violating sequences might be less perceptually salient. For 

example, if an obstruent is followed by another obstruent, the two sounds mask each other’s 

acoustic cues (Wright, 2004; Henke, Keisse, & Wright, 2012). 

Our finding that number of sonority violations predicted NWR accuracy over and 

above effects of phonemic ngram frequency suggests that some speech sequences are simply 

more difficult to perceive and articulate, regardless of how frequently they occur in a 

particular language. This suggests that perceptual and articulatory difficulty do affect the 

processing and repetition of nonwords. This is consistent with previous research showing that 

NWR performance correlates with oromotor dexterity (Krishnan et al., 2013) and that NWR 

appears to reflect both perceptual and articulatory processes (Jones & Witherstone, 2011). 

An alternative explanation for the role of sonority in nonword repetition is related to 

the entrenchment of sublexical representations. Chunks of phonemes that do not conform to 

the sonority hierarchy may be more difficult to store in learners’ phonological long-term 

memory (Nimmo & Roodenrys, 2002; Lee and Goldrick, 2008). As a result, these sequences 

might be less accessible during NWR and hamper performance. 

 

Wordlikeness ratings 

The last factor that turned out to be significant in our model is wordlikeness. Unlike 

other indices reflecting congruence of the nonword to lexical phonology in the language, this 

index was based on human judgment, rather than being derived from the corpus. It is not clear 

what criteria drive raters in their wordlikeness judgments, but there is a chance that they take 

into account criteria that we failed to capture using the corpus-based indices. However, 

wordlikeness ratings explained only a little of the total marginal variance on top of other 

predictors. This reassures us that the previously identified predictors adequately explain why 

some nonwords are more difficult to repeat than other nonwords, with human ratings adding 

little to the predictions. It is possible that the additional variance explained by the 

wordlikeness factor pertains to subtle differences in the prosody of the recorded nonwords, a 

factor that was not controlled in our study, but to which the participants of the wordlikeness 

judgment study could be sensitive. 

 

Understanding Specific Language Impairments 

As we indicated in the introduction, nonword repetition is considered one of the most 

sensitive markers of SLI in children. Determining factors that do versus do not affect accuracy 

of NWR in typically developing children may have implications for understanding the nature 

of the deficit in children with SLI who attain poor scores in NWR. Previous studies 

demonstrated that NWR tests employing items highly resembling the participants’ native 

language are better than tests employing less language-like items in differentiating children 

with SLI from typically developing children (Archibald & Gathercole, 2006; Estes et al., 

2007). These studies showed that both groups of children take advantage of the nonwords’ 

similarity to their language and consequently repeat them more accurately than less language-

like items, but children with SLI benefit less from the nonwords’ resemblance to actual 

words, performing more similarly when repeating high- and low-language-like nonwords, 

compared to typically developing children. 



 

 

Our study revealed that language-likeness of a nonword reflects the degree to which 

the nonword draws on participants’ sublexical representations: items with high ngram 

frequencies were easier to repeat because our participants knew the chunks of phonemes 

building up these nonwords. All in all, this suggests that children with SLI might have less 

developed sublexical representations, implying a deficit in extracting and learning sublexical 

patterns from input. This hypothesis is in line with recent findings suggesting that children 

with SLI may be slower, relative to TD children, to exploit the statistical structure of input to 

facilitate extracting and memorizing frequently occurring chunks of phonemes (Evans, 

Saffran, & Robe-Torres, 2009; Haebig, Saffran, & Ellis Weismer, 2017). Such a deficit could 

be construed in terms of previous suggestions that the primary deficit in SLI (or at least in the 

subpopulation who attain low scores on NWR) is phonological in nature and all remaining 

deficits (e.g. problem with acquisition of grammar in English) are a corollary of the 

phonological deficit (Chiat, 2001; Joanisse & Seidenberg, 1998). 

 

 

Conclusions 

The current study is, to the best of our knowledge, the most comprehensive 

investigation of item-related predictors of NWR to date, and makes a number of novel 

contributions to the field. First, we propose a new index of sublexical support a nonword 

receives – average phonemic ngram frequency – which emerged as a much better indicator of 

nonword difficulty than other existing indices of phonotactic probability and lexical 

familiarity. We propose that this index should be used to assess phonotactic probability 

instead of the traditional bigram frequency. Second, by showing the primacy of average 

phonemic ngram frequency in explaining NWR performance, we provide compelling 

evidence that sublexical representations are crucial for accurate nonword repetition. This 

stands in contrast to previous studies which argued for the primacy of lexical neighborhood 

over phonotactic probability. In fact, we have demonstrated that phonemic ngram frequency is 

the most effective index of phonotactic probability and that it can explain apparent effects of 

lexical factors. Third, we show that sublexical representations consist of chunks of phonemes 

of all grain sizes, that they are phonological, unstructured and insensitive to morphemehood. 

These findings provide crucial information about the basic representational units used in the 

repetition (and thus presumably processing) of novel words. Taken together, these results are 

important not only for the interpretation of NWR performance, but also for broader 

understanding of how novel words are perceived, maintained in STM and, consequently, 

learned. Moreover, they have implications for understanding the key deficit in children with 

SLI who perform poorly on NWR, suggesting that these children have difficulty in acquiring 

sublexical representations. Such a difficulty will necessarily have repercussions for learning 

words and other aspects of language that are heavily reliant on precise phonology (such as 

morphosyntax). 
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