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Abstract

We consider the production and admission control decisions for a two-stage manufacturing

system where intermediate components are produced to stock in the first stage and an end-

product is assembled from these components through a second stage assembly operation. The

firm faces two types of demand. The demand for the end-product is satisfied immediately if there

are available products in inventory while the firm has the option to accept the order for later

delivery or to reject it when no inventory is available. Demand for intermediate components may

be accepted or rejected to keep components available for assembly purposes. We characterize

the structure of demand admission, component production and product assembly decisions. We

also extend the model to take into account multiple customer classes and a more general revenue

collecting scheme where only an upfront partial payment is collected if a customer demand is

accepted for future delivery with the remaining revenue received upon delivery. Since the optimal

policy structure is rather complex and defined by switching surfaces in a multidimensional space,

we also propose a simple heuristic policy for which the computational load grows linearly with

the number of products and test its performance under a variety of example problems.

Keywords: Production and inventory control, Multistage assembly systems, Inventory rationing,

Demand management, Markov decision processes, Dynamic programming, Optimal control

1 Introduction

This paper focuses on a manufacturing setting where a firm, having both component production and

final assembly operations, faces demands for its end-product as well as the intermediate components.

Several business practices may lead a firm to operate within this setting. For example, consider a

major appliance manufacturer such as Whirlpool, that produces various components and assembles

them into a refrigerator. In addition to the demand for the refrigerator, Whirlpool also supplies

individual components such as compressors in order to sustain its after-sales service operations.

In many instances, efficient production control and demand management skills may be crucial for

profitability when the product and component sales both have a significant contribution to the

firm’s revenues. The after-sales service is regarded as a high profit margin business and has become
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a comparable revenue generator throughout numerous industries. According to Cohen et al (2006),

in industries such as automobiles and white goods, the earlier units that companies have sold over

the years have created aftermarkets four to five times larger than the original product markets.

Consequently, businesses across many industries earn on average 45% of gross profits from the

aftermarket.

As another example, consider TRW, which produces a range of automotive components such

as braking, steering and suspension systems. TRW has a unit that makes engineered fastener

components for its own products but the fastener unit also sells fasteners to other Tier 1 automotive

suppliers which may sometimes even compete with TRW. Thus, at any point in time, the fastener

unit has the option to accept or reject outside demand but also needs to coordinate its production

policies to serve the demand arising from the assembly of its own products.

Our main objective in this paper is to address several important decisions that a firm operating

within this setting faces. Specifically, we will be focusing on the following questions: 1) How many

of each type of intermediate components should the firm produce? 2) How should the firm decide

whether to accept or reject an order for any of these intermediate components? 3) How does the

firm determine whether to initiate the assembly of another end-product? 4) How does the firm

regulate end-product admissions to its assembly queue?

This study interconnects the two research areas of assembly and admission control. There exists

a rich literature on inventory control of assembly systems. An extensive literature survey has been

provided by Song and Zipkin (2003). In one of the earliest works, Schmidt and Nahmias (1985)

study an assembly system with two components and a single final product that is assembled-to-

stock. They assume a two stage manufacturing system where both the production and assembly

stages have deterministic lead times. They identify the optimal assembly policy which states that

there exists a target assemble-up-to point to reach as long as there are available components. They

also identify the optimal production policies for the components which follows a modified base-

stock policy due to differing replenishment lead times for the components. Rosling (1989) extends

the findings of Schmidt and Nahmias (1985) to multi-stage assembly systems by also assuming

deterministic lead times.

In more recent works on pure assembly systems which are closest to our setting, Benjaafar and

ElHafsi (2006) consider the production and inventory control of a multi-component assembly system

with several customer classes. Assuming instantaneous assembly, they show that a state dependent

base stock policy is optimal for component production and there exists state dependent rationing

levels for different demand classes. A subsequent work by Benjaafar et al (2010) incorporates

multiple production and inventory stages in an assembly operation. They again characterize the
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structure of the optimal production and rationing policies in the presence of multiple customer

classes and show that production at each stage follows a state dependent base-stock policy which

decreases with the inventory level of downstream items and increases with the inventory level of all

other items. As in their previous work, demand admission for the product follows state dependent

rationing levels.

In Benjaafar et al. (2010), all customer classes require the same end-product but are willing

to pay different amounts for the product. Therefore, rationing decisions are taken at the end

product inventory level to prioritize several demand streams for the same product. In our setting,

different customers demand different products, either the end-product or any of the intermediate

components.

The majority of the work on assembly systems considers the time to assemble a product is

often negligible compared to the production time of components, and consequently, they assume

instantaneous assembly. In our model, we relax the assumption that assembly is instantaneous,

enriching our setting in important aspects. For example, this relaxation enables us to identify

the economic benefits of having the components turned into a final product versus keeping them

available for individual sales by considering the important decision of when to initiate an assembly.

There is also a rich literature on admission control which falls outside the assembly systems

classification. Stidham (1985) presents a review of the literature on admission control for a single

class make-to-order queue. Ha (1997a) considers a single item make-to-stock production system

with several demand classes and lost sales. He shows that the optimal admission control policy is

characterized by stock rationing levels for each demand class. He later extends the results to allow

backorders in Ha (1997b) for a make-to-stock production system with two priority classes.

Specifically, controlled arrival to multiple nodes of queues in series has also attracted interest.

Ghoneim and Stidham (1985) study one such setting with two queues in series where customer

arrivals to the first queue go through service in both queues whereas customer arrivals to the

second queue only require service by that queue. They show that the optimal demand admission

policy has a monotonic structure. Ku and Jordan (1997) also study a similar system with finite

queue sizes. They introduce randomness on whether a customer admitted to the first queue will

actually stay in the system to get service from the second queue. They show that the optimal

admission policy is defined by a monotonic threshold. In a subsequent work, Ku and Jordan

(2002), extend their results to systems with parallel first-stage queues. Duenyas and Tsai (2001)

study a two-stage production/inventory system where there is demand for the end product as

well as the intermediate product with admission control on the demand for the latter. Their

setting incorporating admission control for the intermediate product is an extension to the problem
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studied by Veatch and Wein (1994), which focuses on the control of a two-stage tandem production

system. Duenyas and Tsai (2001) derive the structure of the optimal policy for the centralized

control problem and consider several pricing schemes for the decentralized case that achieves the

profits of the centralized problem. Their formulation for the centralized control problem where

there is only a single component and no admission control on the end-product is a special case of

the problem considered in this paper which considers a general multi product setting through a

two-stage production and assembly system.

Our work is also related to the general assemble-to-order manufacturing systems literature

involving multiple products assembled from a selection of intermediate components. As stated

in Song and Zipkin (2003), optimal policies regarding such general systems are still unknown.

Several authors have focused on control policies assuming an independent base-stock order policy

along with some allocation rule, such as committing inventories to the earliest backlog or simply

following a first come first serve allocation. Examples of such work include those of Hausman et

al (1998), Song et al (1999), and Akcay and Xu (2004). Our formulation may be regarded as a

special case of the general system in the sense that it only allows demands - in addition to the

demand for the end product - for one component at a time rather than an arbitrary selection of

multiple components. Albeit limited compared to a general product portfolio architecture, our

model enables us to characterize the structure of the optimal policies.

The remainder of the paper is organized as follows. In Section 2, we provide the problem

formulation. In Section 3, we characterize the structure of the optimal policies for the production

and rationing decisions regarding individual components and the assembly and admission decisions

for the end-product. We investigate various sensitivity characteristics of the optimal policy and

discuss extensions to the original model. In Section 4, we provide numerical results to evaluate

the performance of a heuristic solution tested for a variety of problem instances. We conclude in

Section 5.

2 Problem Formulation

We consider a two-stage assembly system as shown in Figure 1. In the first stage, N interme-

diate components (also referred to as intermediate products) are produced-to-stock in exclusive

subassembly lines and in the second stage, they are assembled into a single end-product. There

are two types of demand sources in the system. The first type of demand is for the end-product,

arriving based on a Poisson distribution with rate λ0. The second type of demand is directly for

the intermediate components. Customers requesting a specific component i also arrive following

a Poisson process with a demand rate λi, i = 1, 2, ...N . As a side note, for after-sales operations
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Production Line 1
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Demand for comp. N

( Accept or Reject ? )

on-hand inv.
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Demand for 
end-product( Admit to queue

or Reject ? )

Figure 1: The assembly system demonstrating the demand for intermediate components as well as
the end-product and the corresponding decisions.

that were mentioned in the motivation section, the demand arrival rate for each component in the

future may be positively correlated with the current sales of end-products (which itself is influenced

by both the end-product demand rate as well as the control policies used by the firm). However,

to preserve the tractability of our analysis, we ignore such correlation effects.

We assume that production of a unit of component i (i = 1, 2, ...N) takes an exponentially

distributed amount of time with mean 1
µi

. The subassembly lines feed a single downstream assembly

line, referred to as the second stage of the manufacturing system. During this assembly stage, one

unit of each type of component is drawn from its inventory, and assembled into a single end-product.

We let the assembly operation for the product also take an exponentially distributed amount of

time with mean 1
µ0

.

Let the state (X(t), Y (t)) ∈ S where X(t) = (X1(t), X2(t), ..., XN (t)) and Xi(t) ≥ 0, ∀ i =

1, ..., N be defined such that X1(t), X2(t), ..., XN (t) denote the amount of inventory of components

1 through N respectively, and Y (t) denotes the inventory position for the end-product at time

t. The states at which Y (t) < 0 correspond to customer orders waiting in the assembly queue

whereas states at which Y (t) > 0 indicate that there is available inventory ready to satisfy end-

product demand. The firm incurs inventory holding and backorder costs at the rate c(X(t), Y (t)) =∑N
i=1 hiXi(t) +h0Y

+(t) + b0Y
−(t) where Y +(t) := max(Y (t), 0), Y −(t) := −min(Y (t), 0), hi is the

unit holding cost for each component i kept in stock, h0 and b0 is the unit holding and backorder

cost for each product kept in stock and order kept in the assembly queue, respectively. We note

that preemptions are allowed during both the assembly and production operations. In addition,

we exclude the cost of subassembly and assembly operations from the model since, without loss

of generality, we can define the revenues from individual component and end-product demands as

marginal revenues.

The decision epochs considered in this model consists of all demand arrivals together with
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the production and assembly completions. At each decision epoch, a policy specifies whether a

production server should stay idle or produce a unit of the corresponding component and whether

the assembly line should stay idle or initiate the assembly of another end-product. At decision

epochs corresponding to demand arrivals for the end-product or to individual components, the

policy determines whether to accept or reject the orders.

The profit is the revenue from accepted orders minus the inventory holding and backorder costs.

The goal is to find a policy which maximizes the following average profit per unit time:

lim
T→∞

inf
1
T
Eπ

[∫ T

0
−c(X(t), Y (t))dt+

N∑
i=0

RiNi(T )

]
(1)

where the expectation is taken under a policy π and Ni(T ) denotes the number of orders of each

component (i = 1, ..., N) and the product (i = 0) that has been accepted up to time T .

Following Lippman (1975), we analyze a uniformized version of the problem given in (1) by

defining a transition rate Λ =
N∑
i=0

(λi + µi). We let v(x, y) denote the relative value function of

being in state (x, y) and g be the average profit per transition (see proof of Theorem 1 for the

existence of an average profit), resulting in an average profit per unit time of gΛ.

Before proceeding further, we first introduce a set of operators to represent the firm’s decisions

in order to simplify the presentation of the formulation and to assist us in the analysis to follow.

First, we will consider the end-product demand admission decision. When an order for the

end-product arrives, if the end-product inventory is positive, the order is met immediately from

inventory. However, if there is no available end-product inventory, the firm has the option to accept

or reject the order. Each accepted order generates a revenue of R0. If an order is rejected, it is

considered as lost sales. If the end-product inventory is zero, and we accept the order, we incur a

backorder cost. Operator T 1
0 represents this decision regarding product admission.

T 1
0 v(x, y) =

 v(x, y − 1) +R0 if y > 0

max[v(x, y − 1) +R0, v(x, y)] if y ≤ 0

Similarly, there is an admission decision associated with each demand arrival for any of the

intermediate components. Acceptance of a demand for a specific component i leads to a revenue

of Ri whereas rejection of an order leads to lost sales. Since components are produced to stock,

an order for a component may be accepted only if the inventory of the corresponding component

is positive. Thus, component demand cannot be backordered. The operator T 1
i defined below

corresponds to the component demand admission decision where I(·) denotes the indicator function

and ei is the ith unit vector.
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T 1
i v(x, y) = max

[
(v(x− ei, y) +Ri) · I(xi>0) + v(x, y) · I(xi=0), v(x, y)

]
Finally, operators T 2

0 and T 2
i defined below correspond to the assembly initiation and component

production decisions, respectively.

T 2
0 v(x, y) = max

[
(v(x− 1, y + 1)) · I(xi>0 ∀i) + v(x, y) · I(∃ i | xi=0), v(x, y)

]
T 2
i v(x, y) = max[v(x + ei, y), v(x, y)]

We now present the average profit infinite horizon dynamic programming formulation.

v(x, y) + g =
1
Λ

(
−c(x, y) +

N∑
i=0

(
λi T

1
i v(x, y) + µi T

2
i v(x, y)

))
(2)

In subsequent sections, we refer to the right hand side of (2) by operator T defined such

that v(x, y) + g = Tv(x, y). In (2), the terms 1
Λ(c(x, y)) denote, respectively, the expected costs

per decision epoch due to holding of component inventories, holding of end-product inventories,

and backordering customer orders in the queue. The terms multiplied by λi, (i = 0, 1, 2, ..., N)

correspond to transitions and revenues generated with the arrival of a demand for the end-product

when i=0 and the components when i=1,...,N . Similarly, the terms multiplied by µi correspond to

transitions and revenues generated by a product assembly when i=0 and by a component production

completion opportunity when i = 1, ...N .

3 Characterization of the Optimal Policy Structure

3.1 Structure and Sensitivity of Optimal Production, Assembly and Admission

Policies

In this section, we characterize the optimal production, assembly and admission policies. The

main questions of interest are the following: (1) Should the firm produce an additional unit of a

component or not? (2) If a demand arrives for an individual component, should this demand be

satisfied or rejected in order to keep the components available for the end-product assembly? (3)

When there are available components, should another unit of an end-product be assembled? (4)

When a demand arrives for the end-product while no inventory is available, should the firm admit

the demand to the assembly queue or reject it?

First, we introduce the following difference operators that will facilitate the characterization of

the optimal policy structure. For any real valued function v on the state space, we define:
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Div(x, y) = v(x + ei, y)− v(x, y) ∀ i = 1, . . . , N ,

Dpv(x, y) = v(x, y + 1)− v(x, y),

D-1,pv(x, y) = v(x, y + 1)− v(x + 1, y).

Di represents the additional value of an additional unit of component type-i inventory under

value function v. Dp is the additional value of an additional unit of end-product inventory. Finally,

D-1,p refers to the value of having an additional unit of an end-product relative to the value of

keeping the components in component inventories.

Let V be the set of functions defined on the state space such that if v ∈ V , then ∀ i, j = 1, . . . N

where j 6= i;

(i) Div(x, y) ↓ xi, ↑ xj , ↓ y ∀ i = 1, . . . , N

(ii) Dpv(x, y) ↓ xi, ↓ y, and ≤ R0 for y > 0

(iii) D-1,pv(x, y) ↑ xi, ↓ y

The above conditions are the second-order monotonicity conditions on v and characterize the

structure of the optimal component production and rationing policies. For example, in (i), Di ↓ xi
indicates that v(x, y) is concave in each of the state variables xi. Equivalently, this means that the

additional value gained by producing a unit of component type-i gets smaller with each additional

unit of component type-i inventory. Hence, if it is optimal not to produce component type-i in state

(x, y), it remains optimal not to produce it in state (x + ei, y). This implies that if condition (i)

holds, the component production policies follow state-dependent base-stock policies. The following

conditions, Di ↑ xj and Di ↓ y mean, respectively, that v(x, y) is supermodular in (xi, xj) and

submodular in (xi, y). These conditions imply that the base-stock level for component type-i is

nondecreasing with the inventory of other components and nonincreasing with the end-product

inventory. Consequently, since backorders for the end-product imply a negative inventory position

for this product, as the number of customers waiting in the assembly queue increases, the base-stock

level for component type-i increases. In (ii), Dp ↓ y means that v(x, y) is concave in y. This implies

that if condition (ii) holds, end-product admission policy will be of a threshold type. Dp ↓ xi
(which is equivalent to Di ↓ y) is a submodularity condition that implies that the admission

threshold is nondecreasing with component inventories. Similarly, in (iii), the supermodularity

condition D-1,pv(x, y) ↑ xi implies that the additional value of assembling another end-product

gets larger with each additional unit of component inventory, while the submodularity condition

D-1,pv(x, y) ↓ y means that the additional value of assembling another end-product gets smaller

with each additional unit of end-product in inventory.

We further introduce secondary difference operators followed by a set of additional sub- and

super-modularity conditions that facilitate our derivation of the optimal policy structure.
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D1v(x, y) = v(x + 1, y)− v(x, y)

Di,jv(x, y) = v(x + ei + ej , y)− v(x, y) ∀ i, j = 1, . . . , N where j 6= i

D−i,pv(x, y) = v(x, y + 1)− v(x + ei, y)

Di,−1,pv(x, y) = v(x + ei, y + 1)− v(x + 1, y)

Lemma 1. If a value function v satisfies conditions (i)-(iii), then v also satisfies the following

conditions ∀ i, j, k = 1, . . . N where i, j, k are distinct:

(iv) D1v(x, y) ↓ xi, ↓ y

(v) Di,jv(x, y) ↓ xi, ↓ xj , ↑ xk, ↓ y

(vi) D−i,pv(x, y) ↑ xi, ↓ xj , ↓ y

(vii) Di,−1,pv(x, y) ↓ xi, ↑ xj , ↓ y

Proof: The proof of Lemma 1 and all subsequent results are provided in the Appendix.

As Lemma 1 reveals, the above relations are implied solely by conditions (i)-(iii). Although

they do not have direct ramifications on the optimal policy structure, their frequent appearances

in the analysis of the following lemma warrant their universal treatment. Lemma 2 shows that the

conditions (i)-(iii) are preserved under the operator T .

Lemma 2. If v ∈ V then, T 1
0 v, T 1

i v, T 2
0 v, T 2

i v, and Tv ∈ V ∀i = 1, . . . , N .

We now present the main result. The policies defined below reflect the structure of the optimal

policy for our model.

Definition 1. Consider the N -dimensional integer valued vectors (x−i, y) and (x) where x−i

denotes the inventory level of all components except component type-i. Define the following (state-

dependent) component rationing and product admission policies:

(a) Rationing policy for component type-i: A demand for component type-i is satisfied if the

amount of inventory for the component is greater than or equal to a rationing threshold αi(x−i, y),

i.e. if xi ≥ αi(x−i, y). If xi < αi(x−i, y), the demand for the component is rejected.

(b) Admission policy for end-product: A demand for the end-product is admitted if the end-

product inventory position is greater than or equal to an admission threshold β(x), i.e. if y ≥ β(x).

If y < β(x), the end-product demand is rejected.

Definition 2. For the integer valued vectors (x−i, y) and (x), define the following (state-

dependent) base-stock policies for component production and product assembly:

(a) Base-stock policy for component type-i: An additional unit of component type-i is produced

if the inventory for component type-i is less than a production threshold γi(x−i, y), i.e. if xi <

γi(x−i, y) . If xi ≥ γi(x−i, y), the production resource for the component stays idle.
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Figure 2: Structure of the optimal policies. (a) admission decisions for component type-1 and the
end-product. (b) production decisions for component type-1 and the end-product.

(b) Base-stock policy for end-product: When all components are available, the assembly oper-

ation is initiated if the end-product inventory position is lower than an assembly threshold level

δ(x), i.e. if y < δ(x). For y ≥ δ(x), the assembly resource for the product stays idle.

The following theorem gives the characterization of the optimal policy structure.

Theorem 1. (a) Demand admissions for each individual component type-i, i = 1, . . . , N , follows

a rationing policy characterized by the rationing threshold αi(x−i, y). Furthermore, αi(x−i, y) is

non-decreasing with xj, j = 1,...,N , j 6= i, and non-increasing with y.

(b) Admissions for end-product demand follow an admission policy characterized by the threshold

β(x) which is non-increasing with xi, ∀i = 1,..., N .

(c) Production policy for each component type-i is defined by a base-stock policy with a production

threshold γi(x−i, y). Furthermore, γi(x−i, y) is non-decreasing with xj, j = 1,...,N , j 6= i, and non-

increasing with y.

(d) Assembly policy for the end-product follows a base-stock policy with an assembly threshold

δ(x) which is non-decreasing with xi, ∀i = 1,..., N .

Figure 2 illustrates the structure of the optimal policies described in Theorem 1 for an example

problem with two components with the following parameters: λ0 = 5, λ1 = 3, λ2 = 4, µ0 = 8,

µ1 = µ2 = 10, R0 = 40, R1 = 20, R2 = 10, b0 = 4, h0 = 2, and h1 = h2 = 1. The results are

obtained by solving the average profit dynamic programming equation given in (2) using the value

iteration algorithm (see, for example, Tijms (1986)). The value iteration algorithm is terminated

10



-25 

-20 

-15 

-10 

-5 

0 
0 5 10 15 20 25 

En
d-

pr
od

uc
t 

in
ve

nt
or

y 
po

si
ti
on

, 
y 

α1


β


Component 1 inventory, x1 

(a) 

ADMIT product 
ADMIT component 1 

ADMIT product 
REJECT component 1 

REJECT product 
ADMIT component 1 

REJECT product 
REJECT component 1 

α'1


β' 

-15 

-10 

-5 

0 

5 

10 

15 

20 

0 5 10 15 20 

Component 1 inventory, x1 

γ1


δ


En
d-

pr
od

uc
t 

in
ve

nt
or

y 
po

si
ti
on

, 
y 

ASSEMBLE product 
IDLE component 1 

ASSEMBLE product 
PRODUCE component 1 

IDLE product 
IDLE component 1 

IDLE product 
PRODUCE component 1 

(b) 

γ'1


δ' 

Figure 3: Changes in optimal policies due to a decrease in the end-product revenue: R′0 < R0

when five-digit precision is attained. The resulting relative values for each state reveal the optimal

control action corresponding to the demand admission, production and assembly decisions at that

stage.

The switching curves α1 and β in Figure 2 (a) depict the component rationing (for component

type-1) and end-product admission threshold levels, respectively. Figure 2 (b) displays the struc-

ture of the optimal component production and end-product assembly policies represented by the

switching curves γ1 and δ, respectively. Similar switching curves exist for the type-2 component.

For this example problem consisting of two components, the optimal threshold values are defined

by switching surfaces in three dimensions. The solid and the dotted curves in both figures are results

of two-dimensional cuts on the switching surfaces at two separate values of the type-2 component

inventory levels. For a general problem with N components, each threshold is defined by a switching

surface embedded in an N + 1 dimensional space.

Next, we will examine how the optimal policies described in Theorem 1 change as the end-

product revenue decreases. We will use the prime symbol (’) while referring to the relative value

function and parameters of the modified problem.

Theorem 2. Suppose that µ′i = µi, λ
′
i = λi and h′i = hi for i=0,1,...,N; b′0 = b0, and R′i = Ri for

i = 1, ..., N whereas R′0 < R0. Then, α′i(x−i, y) ≤ αi(x−i, y), β′(x) ≥ β(x), γ′i(x−i, y) ≤ γi(x−i, y),

and δ′(x) ≤ δ(x).

Regarding the admission policies, Theorem 2 states that as the revenue from the end-product

gets smaller, it may be optimal to switch from accepting a demand for the end-product to rejecting
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Figure 4: Counter examples for the optimal policy sensitivity on (a) component revenues, (b)
backorder cost, and (c) product assembly rate

it, and from rejecting a demand for the intermediate product to accepting it. In terms of the

production and assembly policies, it may be optimal to switch from assembling another end-product

to staying idle, and from producing a component to staying idle. Figure 3 illustrates the changes

in the optimal admission and production/assembly policies due to a product revenue change from

R0 = 40 to R′0 = 25 with remaining parameters set as λ0 = 6, λ1 = 2, λ2 = 3, µ0 = 8, µ1 = µ2 = 10,

R1 = 20, R2 = 10, b0 = 5, h0 = 2, and h1 = h2 = 1.

A decrease in the revenue of the end-product reduces the relative importance of satisfying an

end-product demand compared to that of satisfying an individual component demand. Therefore,

the system tends to admit less end-product demand in the assembly queue, and instead, it accepts

more of the demand for the intermediate products. Consequently, this results in fewer end-products

to be assembled. For component production, the decreased requirements due to fewer products

assembled outweighs the increased requirement due to a higher number of individual component

demands satisfied. As a result, fewer components of each type are produced.

Although the optimal policies are monotonic with respect to the end-product revenue, they

don’t necessarily have uniform monotonicities with respect to other problem parameters. We will

show three such cases by way of counter examples. The solid lines in Figure 4 (a)-(c) display the

threshold curves for assembly, component production, and component rationing, respectively for a

two-component problem with parameters λ0 = 3, λ1 = λ2 = 2, µ0 = 4, µ1 = µ2 = 6, h0 = 2, h1 =

h2 = 1, b0 = 2, R0 = 30, R1 = 10, and R2 = 12. In each of these figures, the dashed lines refer to

the corresponding policies with one of the parameters modified as discussed below.

In Figure 4 (a), we observe the effects of lowering the revenue from a type-2 component on

the optimal product assembly threshold. We observe that the threshold curves δ and δ′ cross each
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other, hence the optimal policy does not possess monotonicity with respect to a change in R2. A

low value of R2 shifts the priority from satisfying individual component type-2 demands towards

producing end-products instead. This generates two sorts of dynamics. On the one hand, the prior-

ity shift towards the end-product enables the assembly line to have smoother access to component

inventories thereby lowers the assembly threshold. On the other hand, as selling individual com-

ponents separately brings in relatively lower revenues compared to selling them as an end-product,

it is more favorable to turn the components into products, thus increasing the assembly threshold.

Through numerical studies, we observe the former effect to have a higher influence when compo-

nent inventories are low to moderate. This makes sense as the competition between the assembly

operation and the individual component demands on a component is more critical when component

inventories are scarce. At system states with high inventories for both components, the latter effect

is more dominant resulting in a higher assembly threshold.

We analyze the effect of increasing the backorder cost on the optimal component production

policies in Figure 4 (b). A higher backorder cost requires more of the product demand to be met

from inventory and discourages demand admissions to the assembly queue if there are already

a high number of backorders in the system. Therefore, for states with on-hand inventories or

moderate backorders, we tend to produce more components as we try to meet as much of the

product demand as possible without further backordering. However, when there is already a high

number of customers waiting in the queue, further product demand admission is prevented, hence

the requirement for components decreases.

Finally, in Figure 4 (c) we observe the changes in the optimal component rationing policy based

on an increase in the assembly process rate. We again observe two different dynamics. A faster

assembly line can make up for a delayed availability of individual components. Therefore it enables

more of the individual component demand to be satisfied resulting in lower component rationing

thresholds. On the other hand, in order to utilize its fast pace, the assembly operation also requires

high component availability allowing quick supplies. We observe that the first effect is stronger

at system states where there is on-hand product inventory or only a few customers waiting in the

assembly queue. However, when there is a high amount of backorders in the queue, the second

effect is influential, saving the components for assembly purposes to quickly lower the number of

backorders.

3.2 Extensions to the Model

It is straightforward to extend our model to include multiple customer classes that are willing to pay

different amounts for the same end-product as in Benjaafar et al (2010) given that end-products
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supplied to any customer class require the same processing time and that they have identical

backorder costs under which the original state space representation may be retained. In fact, we

can also include multiple customer classes for the component demand. For example, let the demand

for a type-i component arise by Mi customer classes with arrival rates λmi where m = 1, 2, ...,Mi,

generating a revenue of Rmi ranked such that R1
i ≥ R2

i ≥ ... ≥ RMi
i . In this modified problem,

Mi operators of the form T 1,m
i v(x, y) = max

[
(v(x− ei, y) +Rmi ) · I(xi>0) + v(x, y) · I(xi=0), v(x, y)

]
replace the original operator T 1

i , resulting in the original problem given by (2) to have the terms
Mi∑
m=1

λmi T 1,m
i v(x, y) instead of the term λi T

1
i v(x, y). The conditions set forth in the analysis of

Lemma 2 and Theorem 1 suffices to show that the optimal policy has a similar structure as the one

described in Theorem 1, except for a replacement of the component demand admission thresholds

αi(x−i, y) with multiple component admission threshold levels α1
i (x−i, y) ≤ α2

i (x−i, y) ≤ ... ≤

αMi
i (x−i, y).

We also consider another extension to the basic model that takes into account a more general

revenue collecting scheme. It is common practice in many businesses that if a customer is to be

made to wait for an end-product, only an upfront partial payment for the item is collected rather

than the item’s full revenue. Consequently, the firm receives the remaining price of the item at the

time of delivery. In such a setting, a discounted profit formulation is more valid since we would like

to account for the time value of money. Interestingly, the policy structure described in Theorem 1

remains exactly the same with this more general revenue collection scheme.

Let r0 denote the upfront payment amount received when a customer is admitted to the product

assembly queue such that R0 ≥ r0 ≥ 0. Further, let the operators corresponding to the product

demand admission and product assembly decisions be modified as follows:

T 1
0 v(x, y) =

 v(x, y − 1) +R0 if y > 0

max[v(x, y − 1) + r0, v(x, y)] if y ≤ 0

T 2
0 v(x, y) =


max

[
(v(x− 1, y + 1)) · I(xi>0 ∀i) + v(x, y) · I(∃ i | xi=0), v(x, y)

]
if y ≥ 0

max[(v(x− 1, y + 1) +R0 − r0) · I(xi>0 ∀i)

+v(x, y) · I(∃ i | xi=0), v(x, y)] if y < 0

Then, using uniformization with Λ = φ+
N∑
i=0

(λi + µi) where φ denotes the discount factor, we can

rewrite the problem given in (2) as a discounted infinite horizon dynamic program as follows:

v(x, y) =
1
Λ

(
−

N∑
i=1

(hi xi)− h0 y
+ − b0 y− +

N∑
n=0

(
λj T

1
j v(x, y) + µn T

2
j v(x, y)

))
(3)
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The following theorem depicts the optimal policy structure.

Theorem 3. For the problem given in (3), the optimal demand admission, component production

and product assembly policies follow the optimal policy structure described in Theorem 1. That is,

demand admission for the end-product and the components are characterized by state-dependent ad-

mission thresholds and production and assembly decisions follow state-dependent base-stock policies

with similar monotonicity properties as set forth in Theorem 1.

4 A Heuristic Policy

The optimal policy structure determined by Theorem 1 is fairly complex. In addition to the assem-

bly and admission control decisions for the end-product, the firm also needs to make production

and rationing decisions for each component. As shown in the previous section, all of these decisions

are characterized by state dependent threshold levels. For a general problem with N components,

each threshold is defined by a switching surface embedded in an N + 1 dimensional space. Since

the number of possible system states grows exponentially as the number of components gets larger,

computing the optimal policy in such cases ceases to be a practical task.

For problems with a limited number of components, however, the optimal switching surfaces may

be computed with relative ease as we have previously illustrated in Figure 2. Hence, motivated by

the ease of computation for a two-component problem and the prohibitive inefficiencies associated

with problems of large sizes, we introduce the following heuristic solution approach. Regarding

component production and rationing decisions, for each component type-i, we construct a two-

component subproblem Pi that assumes its type-1 component as the component type-i of interest

and aggregates all the remaining components into a type-2 component. In the original problem of N

components, at each decision epoch corresponding to a demand arrival or production opportunity

for component type-i, the heuristic policy maps the system state (x, y) to state (xi,min{xj , j =

1, ..., N, j 6= i}, y) in subproblem Pi and imitates the corresponding decision given at this state for

component type-i.

By adopting proxy two-component subproblems, our heuristic policy essentially retains much

of the characteristics of the optimal component production and rationing policy structure. For

example, the admission decision for a component demand remains a state-dependent rationing

policy where this rationing level is nondecreasing with the inventory level of the other component

and nonincreasing with the end-product inventory. The underlying assumption that leads us to

construct two-component subproblems lies in the intuitive expectation that the production and

rationing decisions for a certain component is influenced strongly by the component with the
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lowest inventory level as opposed to by others with higher inventory levels. In other words, it is the

limiting component that mostly impacts the assembly capabilities and hence influences the amount

of inventory to hold for others. Although exceptions to this conjecture may occur when there are

discrepancies among component production rates, we will maintain this assumption as it allows us

to develop a simpler heuristic.

Let the symbol (ˆ) denote the parameters for the constructed two-component subproblem Pi.

We define the revenues and cost parameters as R̂0 = R0, R̂1 = Ri, R̂2 =
∑
j 6=i

Rj , ĥ1 = hi, ĥ2 =∑
j 6=i

hj , ĥ0 = h0, and b̂0 = b0. The demand arrival, production and assembly rates for component

type-1 and the end-product in problem Pi are set identically at their values in the original problem.

Hence we define λ̂0 = λ0, λ̂1 = λi, µ̂0 = µ0, and µ̂1 = µi.

We handle the production and demand arrival rates corresponding to the type-2 component in

subproblem Pi rather differently as this component reflects an aggregation of all the remaining ones.

Since upon a demand arrival for component type-2, we receive the sum of the revenues from all

remaining components, we adjust the demand arrival rate based on the time it takes for a demand

to arrive for all components. This rate adjustment calls for a maximum of exponentially distributed

random variables where this maximum itself no longer follows exponential distribution. The mean

of the maximum of several random variables appears frequently in the reliability literature when

calculating the reliability of a system consisting of several servers in parallel. Following equation

(7.27) in Billinton and Allan (1983), the mean of the maximum of n independent random variables

(Z1, . . . , Zn) where each random variable Zi is exponentially distributed with mean 1/λi is given

by

E[max(Z1, . . . , Zn)] =
(

1
λ1

+ 1
λ2

+ · · ·+ 1
λn

)
−
(

1
λ1+λ2

+ 1
λ1+λ3

+ · · ·+ 1
λi+λj

+ · · ·
)

+
(

1
λ1+λ2+λ3

+ 1
λ1+λ2+λ4

+ · · ·+ 1
λi+λj+λk

+ · · ·
)
− · · ·+ (−1)n+1 1Pn

i=1 λi

When calculating the demand arrival rate for the type-2 component, we will treat the inverse

of the mean time as the corresponding rate. For the production rate, we set µ̂2 as the average of

the production rate of all the remaining components, i.e., µ̂2 = (
∑
j 6=i

µj)/(N − 1).

For the component production and rationing decisions, we therefore construct a total of N such

two-component subproblems Pi (i = 1, . . . , N). As for the end-product admission and assembly

decisions, we follow an analogous argument by forming a single one-component subproblem P0,

where the parameters for the component are determined by aggregating all the components in

a similar fashion. At each decision epoch corresponding to an end-product arrival or assembly

opportunity, the heuristic policy maps the system state (x, y) to state (min{xi, i = 1, ..., N}, y) in
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problem P0 and imitates the corresponding decision given at this state. Likewise, a single component

proxy subproblem also possesses much of the optimal policy structure for the end-product, that is,

admissions and assembly decisions for the end-product follow state-dependent threshold levels with

more units admitted and assembled if the component inventory is higher.

Next, we evaluate the performance of the heuristic policy. Tables 1 and 2 compare the prof-

its obtained by the optimal and the heuristic policies for 24 example problems each for systems

consisting of three and four identical components, respectively. For each problem, we report the

profits per unit time obtained by the optimal policy, our state-dependent heuristic policy and an

independent “strawman” heuristic policy we picked from the literature. As opposed to our heuris-

tic policy described above, the “strawman” heuristic policy is a base-stock/rationing policy for

each product where a base-stock and a rationing level is set independently for each product which

ignores the inventory levels for all other products. For the three- and four-component problems,

we identify the independent base-stock and rationing levels by an exhaustive search on the state

space. At each decision epoch corresponding to a production opportunity, the strawman heuristic

policy leads to the production of another unit of the product only if its current inventory level

is below its independent base-stock level. Similarly, at decision epochs corresponding to demand

arrivals, a demand for the product will be accepted only if the product’s inventory level is above its

independent rationing level. Independent base-stock and rationing heuristic policies are commonly

used in the related literature such as in the works of Song et al. (1999) and Benjaafar et al. (2010).

For each problem instance, the profits reported for the optimal policy is obtained by solving the

corresponding MDP by value iteration algorithm with a five-digit accuracy termination criteria.

For our heuristic policy, we first solve the N + 1 constructed MDPs, recording the decisions for

each component and product, and then apply these decisions for the original-sized MDP. For

the independent base-stock and rationing policy, we first identify the appropriate base-stock and

admission threshold levels for each component and product which are then implemented in the

value iteration algorithm.

In Tables 1 and 2, the parameters varied include the revenues from the intermediate and end-

products, the demand arrival rates for the intermediate and end-products, and the utilizations

for the production and assembly lines. The revenue parameters are selected to allow the testing

of the heuristics for cases where the revenue from an end-product is higher, equal to, or lower

than the sum of the revenues from intermediate components. Specifically, for both the three- and

four-component problems, we evaluate the heuristics where the end-product revenue is 2
3 , 1,

4
3 times

the sum of the individual component revenues. For example, for the case of three intermediate

components, the price pair R0 = 30 and Ri = 15 corresponds to a revenue ratio of 2
3 while the price

17



Table 1: Performance of the heuristics and independent base-stock/rationing policy for a system
with three identical intermediate products

Optimal Heuristic Indep. BS&R
No R0 Ri λ0 λi ρ0 ρi Profit Profit % diff. Profit % diff.
1 30 10 4 3 0.5 0.5 193.2 193.1 0.02 191.4 0.91
2 30 10 4 3 0.5 0.9 178.6 177.4 0.68 175.2 1.89
3 30 10 4 3 0.9 0.5 178.9 178.9 0.01 177.0 1.03
4 30 10 4 3 0.9 0.9 167.0 166.6 0.24 164.4 1.56
5 30 10 6 0.5 0.5 0.5 181.2 181.2 0.01 178.2 1.70
6 30 10 6 0.5 0.5 0.9 162.0 161.3 0.46 158.6 2.10
7 30 10 6 0.5 0.9 0.5 163.2 163.1 0.02 159.8 2.04
8 30 10 6 0.5 0.9 0.9 150.5 150.3 0.11 148.4 1.38
9 30 15 4 3 0.5 0.5 232.7 232.2 0.19 230.1 1.08
10 30 15 4 3 0.5 0.9 213.1 209.9 1.51 208.7 2.08
11 30 15 4 3 0.9 0.5 217.7 217.6 0.07 216.4 0.61
12 30 15 4 3 0.9 0.9 201.6 200.9 0.36 199.3 1.15
13 30 15 6 0.5 0.5 0.5 185.3 185.3 0.04 172.2 7.08
14 30 15 6 0.5 0.5 0.9 163.3 161.9 0.87 158.8 2.81
15 30 15 6 0.5 0.9 0.5 165.9 165.8 0.03 162.4 2.08
16 30 15 6 0.5 0.9 0.9 150.4 150.0 0.25 148.4 1.35
17 60 15 4 3 0.5 0.5 346.9 346.9 0.00 344.1 0.81
18 60 15 4 3 0.5 0.9 323.7 323.0 0.21 316.4 2.25
19 60 15 4 3 0.9 0.5 319.2 319.1 0.02 316.9 0.72
20 60 15 4 3 0.9 0.9 300.2 299.9 0.09 295.1 1.70
21 60 15 6 0.5 0.5 0.5 358.5 358.5 0.00 353.1 1.51
22 60 15 6 0.5 0.5 0.9 324.6 323.7 0.28 321.8 0.87
23 60 15 6 0.5 0.9 0.5 323.9 323.9 0.00 319.1 1.50
24 60 15 6 0.5 0.9 0.9 302.0 301.8 0.09 297.6 1.47

pair R0 = 60 and Ri = 15 corresponds to a revenue ratio of 4
3 . Generally, due to further processing,

the end-product revenue may be at least as much as the sum of the revenues of its constituents.

However, there may be examples where the reverse holds, such as after-sales parts that are sold

at much higher prices. The revenue ratio of 2
3 enables us to investigate the performance of the

heuristics in such settings. We also change the intermediate and end-product demand arrival rates

between a high and a low ratio to observe the cases where individual sales are a significant part of

the business and the cases where the focus is overwhelmingly on the end-product with occasional

demands arising for intermediate products. Finally, we vary both component production and

assembly utilizations between low and high values by selecting µ0 and µi such that λ0
µ0

= ρ0 and
λi+λ0
µi

= ρi ∀ i = 1, ..., 4. Throughout these example problems, we assume b0 = 0.2R0, h0 = 0.1R0,

and hi = 0.1Ri ∀ i = 1, . . . , N .

In Table 1, the average difference between the profits obtained by the optimal and the heuristic

policy is 0.23% whereas the profit difference between the optimal policy and the independent base-

stock/rationing policy is 1.74%. By making use of the inventory positions of the end-product and the

limiting component, the heuristic policy performs better than the independent base-stock/rationing

18



policy which only uses local inventory information. In fact, we observe that the heuristic policy-

outperforms the independent base-stock/rationing policy in all instances of the example problems.

Regarding product revenues, we find that the profit attained by the heuristic policy differs from

that of the optimal policy for an average value of 0.41, 0.19 and 0.09 corresponding to product

revenue ratios of 2
3 , 1, and 4

3 , respectively, i.e. averages from problems No. 9-16, 1-8 and 17-24.

Thus, we observe that the performance of the heuristic policy improves as the revenue from the

end-product increases with respect to the sum of the revenues from intermediate components. In

terms of demand arrival rate ratios, we find that the heuristic policy performs slightly better at

high arrival rates for the end-product and low arrival rates for intermediate products. These two

properties suggest that the heuristic policy is also capable of controlling pure assembly systems

with no exogenous demand for the intermediate components. Lastly, we observe that the heuristic

policy performs very well for problem instances where utilization for the production line is low with

an average difference of 0.04% between the profits obtained by the optimal and the heuristic. This

is somewhat expected since the heuristic plans the production of an item based on the inventory

of the limiting product. A faster production rate allows withholding the processing of an item

until the inventory position of the limiting item is restored. In settings where the production line

utilization is high and the assembly line utilization is low, however, we find that the performance

of the heuristic policy is degraded to an average difference of 0.67%. On the other hand, settings

with low assembly utilizations also lead to even lower performance by the independent policy with

an average difference of 2.09% and a maximum difference of up to 7.08% as observed in problem

No.13.

Table 2 is constructed in a similar fashion to Table 1 in order to evaluate the performance of

the heuristic policy when applied to systems with a larger number of intermediate products. We

find that the average difference between the optimal and the heuristic profit is 0.31% while the

average difference between the optimal profit and the profit obtained by the independent base-

stock/rationing policy is 1.91%. Comparing the three- and four-component results, an important

characteristic of the heuristic policy seems to be its retained robustness moving from a three-

component problem to a four-component one. In accordance with the results obtained by Table 1,

a closer look into Table 2 also reveals that the performance of the heuristic policy is strongest in

settings where the revenue from the end-product is higher compared to the sum of the revenues

from intermediate components, when the demand rate for the end-product is higher compared to

the demand rate for intermediate components, and when the production line utilizations are low.

The heuristic is robust with respect to the assembly line utilization.

Next, we test how the heuristic policy performs in systems with asymmetric rate, revenue and
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Table 2: Performance of the heuristics and an independent base-stock/rationing policy for a system
with four identical intermediate products

Optimal Heuristic Indep. BS&R
No R0 Ri λ0 λi ρ0 ρi Profit Profit % diff. Profit % diff.
1 40 10 4 3 0.5 0.5 257.1 257.0 0.07 254.8 0.91
2 40 10 4 3 0.5 0.9 236.9 234.7 0.90 232.2 1.97
3 40 10 4 3 0.9 0.5 238.0 237.9 0.04 235.6 1.02
4 40 10 4 3 0.9 0.9 221.5 220.7 0.35 216.3 2.34
5 40 10 6 0.5 0.5 0.5 240.9 240.8 0.05 235.7 2.17
6 40 10 6 0.5 0.5 0.9 213.1 211.7 0.67 208.6 2.13
7 40 10 6 0.5 0.9 0.5 216.8 216.7 0.00 212.4 2.04
8 40 10 6 0.5 0.9 0.9 198.2 198.0 0.07 195.3 1.45
9 40 15 4 3 0.5 0.5 309.6 309.2 0.14 305.0 1.49
10 40 15 4 3 0.5 0.9 282.3 277.1 1.82 272.4 3.50
11 40 15 4 3 0.9 0.5 289.5 289.4 0.05 287.2 0.79
12 40 15 4 3 0.9 0.9 267.0 266.1 0.36 264.1 1.11
13 40 15 6 0.5 0.5 0.5 246.2 245.9 0.11 227.1 7.76
14 40 15 6 0.5 0.5 0.9 214.0 211.2 1.33 208.1 2.76
15 40 15 6 0.5 0.9 0.5 220.0 219.9 0.06 215.7 1.96
16 40 15 6 0.5 0.9 0.9 197.4 196.8 0.33 194.1 1.69
17 80 15 4 3 0.5 0.5 461.9 461.7 0.05 457.9 0.86
18 80 15 4 3 0.5 0.9 429.7 428.4 0.32 417.8 2.79
19 80 15 4 3 0.9 0.5 424.8 424.6 0.05 421.5 0.76
20 80 15 4 3 0.9 0.9 398.6 398.0 0.15 393.7 1.22
21 80 15 6 0.5 0.5 0.5 476.9 476.8 0.02 471.8 1.05
22 80 15 6 0.5 0.5 0.9 428.0 426.2 0.41 425.1 0.67
23 80 15 6 0.5 0.9 0.5 430.7 430.6 0.01 422.7 1.85
24 80 15 6 0.5 0.9 0.9 399.1 398.4 0.16 393.1 1.49

cost parameters. In Table 3, we construct a base case labeled as problem No. 0, for which we set

R0 = 50, R1 = 20, R2 = 15, R3 = 10, R4 = 5 for revenues, λ0 = 10, λ1 = 1, λ2 = 2, λ3 = 3, λ4 = 4

for demand arrival rates, ρ0 = 0.7, ρ1 = 0.8, ρ2 = 0.9, ρ3 = 0.5, ρ4 = 0.6 for utilizations, and

b0 = 0.2R0, h0 = 0.1R0, Ri = 0.1∀i for backorder and holding cost parameters. In the 18 instances

to follow, a parameter corresponding to the end-product and one of the intermediate products

(product type-1) is either increased or decreased. For this experiment, we keep the parameters

for the remaining intermediate products unchanged and hence omit representing their values in

Table 3. In example 1, the revenue from the end-product is much higher than the sum of the

revenues from intermediate products. In example 2, on the other hand, the end-product revenue

is lower. Similarly, examples 3 and 4 depict instances when the revenue from the intermediate

product type-1 is high and low. Examples 5-8 correspond to high and low demand arrival rates

for the end-product and the intermediate product. Examples 9-12 explore the effects of high and

low assembly and production utilizations. Finally, in examples 13-15 we change the backorder and

holding costs for the end-product and the intermediate product type-1.

In Table 3, we observe that the difference between the profits obtained by the optimal and the
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Table 3: Performance of the heuristics and an independent base-stock/rationing policy for an
asymmetric system with four intermediate products

Optimal Heuristic Indep. BS&R
No R0 R1 λ0 λ1 ρ0 ρ1 b0 h0 h1 Profit Profit % diff. Profit % diff.
0 50 20 10 1 0.7 0.8 10 5 2 552.1 551.0 0.20 540.8 2.05
1 100 20 10 1 0.7 0.8 10 5 2 1058.2 1057.7 0.05 1044.9 1.26
2 30 20 10 1 0.7 0.8 10 5 2 356.5 349.8 1.88 345.8 3.00
3 50 40 10 1 0.7 0.8 10 5 2 571.4 570.3 0.19 561.4 1.75
4 50 5 10 1 0.7 0.8 10 5 2 538.8 537.8 0.17 526.8 2.22
5 50 20 20 1 0.7 0.8 10 5 2 1046.6 1045.9 0.07 1035.2 1.09
6 50 20 5 1 0.7 0.8 10 5 2 307.0 306.0 0.32 299.0 2.62
7 50 20 10 5 0.7 0.8 10 5 2 630.5 629.6 0.13 612.4 2.87
8 50 20 10 0.2 0.7 0.8 10 5 2 536.3 535.3 0.17 527.5 1.64
9 50 20 10 1 0.9 0.8 10 5 2 528.3 527.7 0.15 522.2 1.15
10 50 20 10 1 0.5 0.8 10 5 2 560.6 560.0 0.11 532.1 5.09
11 50 20 10 1 0.7 0.9 10 5 2 545.5 543.0 0.47 537.0 1.56
12 50 20 10 1 0.7 0.4 10 5 2 559.7 559.2 0.09 548.9 1.93
13 50 20 10 1 0.7 0.8 20 5 2 544.5 542.8 0.31 535.7 1.61
14 50 20 10 1 0.7 0.8 5 5 2 560.3 559.7 0.11 552.1 1.47
15 50 20 10 1 0.7 0.8 10 10 2 545.1 544.5 0.11 539.6 1.01
16 50 20 10 1 0.7 0.8 10 2 2 562.9 561.5 0.26 554.8 1.45
17 50 20 10 1 0.7 0.8 10 5 4 545.0 543.6 0.26 526.5 3.39
18 50 20 10 1 0.7 0.8 10 5 1 557.2 556.4 0.14 550.3 1.24

heuristic policy is 0.27% whereas the difference between the profits attained by the optimal and the

independent base-stock/rationing policy is 2.02%. Hence, we find that the heuristic policy maintains

its performance when there are differences in the rate, revenue, and cost parameters of various

intermediate products. In addition, as was the case in Tables 1 and 2, the heursitic policy performs

better than the independent base-stock/rationing policy in every problem instance. Through the

experiment in Table 3, we observe that the performance of the heuristic policy improves when the

end-product revenue and demand rate is high and when production line utilization is low. The

heuristic also performed better when assembly backorder cost was low, end-product holding cost

was high, and intermediate product holding cost was low. The heuristic has been robust with

respect to changes in the revenue and demand rate of the intermediate component as well as the

assembly utilization.

Contemplating the performance of our heuristic policy against the optimal policy across Tables

1-3, we observe that the largest deviation of profits between the heuristics and the optimal policy

occurs at instances when the end-product revenue is low compared to the revenue from individual

products and when production line utilization is high (e.g., Instance No. 10 in Tables 1 and 2, and

instances No. 2 and No. 11 in Table 3). As we have shown in Theorem 2, the firm assembles fewer

end-products when the end-product revenue is low. In addition, high utilization in production

lines impedes the firms ability to coordinate and delay production of an item with respect to
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Table 4: Performance of the heuristics and an independent base-stock/rationing policy for an
asymmetric system with six intermediate products

Heuristic Indep. BS&R
No R0 R1 λ0 λ1 ρ0 ρ1 Profit (95% C.I.) Profit (95% C.I.) % diff.
0 150 75 10 1 0.7 0.8 1574.4 (± 6.6) 1526.5 (± 5.1) 3.04
1 200 75 10 1 0.7 0.8 2057.2 (± 5.9) 1987.2 (± 6.7) 3.40
2 100 75 10 1 0.7 0.8 1099.3 (± 4.1) 1058.0 (± 4.8) 3.76
3 150 100 10 1 0.7 0.8 1581.9 (± 6.4) 1525.4 (± 6.0) 3.57
4 150 25 10 1 0.7 0.8 1552.8 (± 5.8) 1529.6 (± 6.8) 1.49
5 100 75 20 1 0.7 0.8 3052.2 (± 9.5) 3010.2 (± 11.5) 1.38
6 150 75 5 1 0.7 0.8 839.5 (± 3.4) 765.8 (± 5.3) 8.78
7 150 75 10 4 0.7 0.8 1786.7 (± 5.5) 1749,6 (± 8.4) 2.08
8 150 75 10 0.2 0.7 0.8 1510.9 (± 6.0) 1459.8 (± 5.3) 3.38
9 150 75 10 1 0.9 0.8 1493.5 (± 6.2) 1440.2 (± 6.1) 3.57
10 150 75 10 1 0.5 0.8 1602.1 (± 6.4) 1569.5 (± 6.2) 2.03
11 150 75 10 1 0.7 0.9 1516.2 (± 6.0) 1430.0 (± 6.0) 5.69
12 150 75 10 1 0.7 0.6 1625.8 (± 7.2) 1604.8 (± 6.9) 1.29

the inventory positions of other items. These two characteristics diminishes the importance of

coordination among component production and inhibit the advantages of the heuristic policy which

is designed to coordinate production of components based on limiting inventories.

We are also interested to see the performance of the heuristic policy for even larger systems.

Although we can compute the decisions for the heuristic policy with ease for an arbitrarily large

system, it is not possible to evaluate the profits from the optimal and heuristic policies by solving

MDPs since the computational load grows exponentially with the number of products. Therefore,

we resort to a simulation approach to test the performance of our heuristic policy against the

independent strawman base-stock and rationing heuristic policy. For a large system, finding the

appropriate base-stock and rationing parameters for the strawman heuristic policy is a strenuous

task. Hence, we adapt the following simpler procedure. To find the base-stock and rationing levels

for component type-i, we form a two customer class, single server system that produces to stock.

The first customer class is the original demand process for the individual component type-i whereas

the second customer class represents the end-product bringing in a revenue of R0(Ri/
∑
Ri) with an

arrival rate of λ0. Utilizing this model, we can easily identify both the base-stock and rationing level

for component type-i which serves as our estimate for the independent base-stock and rationing

level. For the assembly process, we form a single server, single demand class system that allows

backorders in order to identify an appropriate base stock and admission threshold level for the

end-product.

Table 4 summarizes the results from various instances of a six-component problem. The base

case, labeled as problem No. 0 corresponds to a problem where the revenues are set as R0 =

150, R1 = 75, R2 = 30, R3 = 25, R4 = 10, R5 = R6 = 5, the arrival rates are λ0 = 10, λ1 =
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1, λ2 = λ3 = 2, λ4 = λ5 = λ6 = 3, utilizations are ρ0 = 0.7, ρi = 0.8∀i, and backorder and

holding costs are b0 = 0.2R0, h0 = 0.1R0, hi = 0.1Ri∀i. In the next 12 instances, a parameter

corresponding to the end-product and one of the intermediate products (product type-1) is either

increased or decreased, similar to the instances studied in Table 3. For each of the problem instances,

we run 25 simulations of 80,000 events (e.g., demand arrivals, production opportunities) each to

calculate the average profit obtained by our heuristic policy and the independent base-stock and

rationing heuristic policy. We report the mean value for the average profits as well as their 95%

confidence intervals. In each of the instances, we observe that our heuristic policy outperforms the

independent base-stock and rationing heuristic policy with non-overlapping confidence intervals.

The average difference between the profits obtained by our heuristic policy and the independent

base-stock/rationing policy is 3.34%.

We would like to end this section with a note on systems with a larger number of components.

The computational requirements for the heuristic policy grow linearly with the number of compo-

nents (a total of N + 1 subproblems need to be constructed and solved optimally for a system with

N components). As the results in Tables 1-4 corresponding to three to six-component problems

imply, we expect the heuristic to maintain a highly satisfactory level of performance for systems

with a moderate large number of components. Therefore, due to its performance in the problems

tested, ease of implementation, and requirement of only a manageable number of subproblems, we

believe this heuristic policy would be very effective and beneficial for the control of such systems

in practice.

5 Conclusions

In this paper, we studied production and demand admission decisions in an assembly system where

there is demand for both the end-product and intermediate products. For a general system com-

posed of an arbitrary number of components, we showed that demand admission for the end-product

and for any of the intermediate products are characterized by state-dependent rationing and admis-

sion threshold levels while both component production and product assembly follow state-dependent

base-stock levels. We explored the sensitivity properties of the optimal policy to various problem

parameters. In addition, we provided two extensions for the basic model, one concerning with

multiple customer classes based on revenue in addition to the classes based on the type of item

they request, and the other, investigating the effects of a partial payment scheme on the optimal

policy structure. Since the optimal policies were rather complex and defined by switching surfaces

in a multidimensional space, we also introduced a heuristic policy that performed well under a va-

riety of example problems. Extensions that allow customer demands for a selection of components
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may constitute interesting and challenging problems for future research. The scope of this paper

may be regarded as a special case of the general assemble-to-order problem for which assembly is

done from a selection of components chosen by a customer. The optimal policies have not been

fully characterized for such systems and extensions to this research may provide valuable additional

results and insights applicable to these problems.
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6 Appendix

Proof of Lemma 1: For brevity, we only show the proof for (iv) as the analysis for the remaining

conditions are similar. D1v(x, y) ↓ xi: D1v(x + ei, y) − D1v(x, y) = v(x + ei + 1, y) − v(x +

ei, y) − v(x + 1, y) + v(x, y) ≤ v(x + ei + 1, y) − v(x + ei, y + 1) − v(x + 1, y) + v(x, y + 1) =

−D-1,pv(x + ei, y) + D-1,pv(x, y) ≤ 0 where the first and second inequalities follow from (i) and

(iii), respectively. D1v(x, y) ↓ y: By expanding and regrouping the terms we get D1v(x, y + 1) −

D1v(x, y) = Dpv(x+1, y)−Dpv(x, y) ≤ 0 where the inequality follows from successive applications

of Dp ↓ xi in (ii).

Proof of Lemma 2: For brevity, we only present the proofs for the preservation of the super-

modularity condition given in (i), i.e. v(x, y) is supermodular in (xi, xj), and the submodularity

condition given in (iii), i.e. D-1,pv(x, y) ↓ y, as the proofs corresponding to the remaining conditions

are similar. Topkis (1998) shows that maximizing a function that is supermodular in its action

and state arguments retains this property. In our setting however, the operators yield functions

that are supermodular in some action and states while simultaneously exhibiting submodularity in

others. Although this prevents us from using the results in Topkis (1998) directly, we follow the

approach therein and use the framework given in works such as Ha (1997a), Carr and Duenyas

(2000), Benjaafar et al (2010).

To prove v(x, y) is supermodular in (xi, xj), we show that if v satisfies Div(x, y) ↑ xj , then

T 1
0 v, T 1

i v, T 1
j v, T 1

k v, T 2
0 v, T 2

i v, T 2
j v, T 2

k v, and Tv (where i, j, k are distinct) all satisfy the same

condition. Koole (2006) provides propagation results for a rich set of properties and operators

that are frequently encountered in the analysis of production systems including single server and
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tandem settings. The propagation results for the operators T 1
0 v, T 1

i v, T 1
j v, T 1

k v, T 2
i v, T 2

j v, and

T 2
k v follow similarly from Definitions 5.2 and 6.3, and Theorem 7.2 in Koole (2006). We show the

results for the operator T 2
0 v corresponding to the end-product assembly decisions which does not

follow immediately from the tandem operators considered in Koole (2006).

For xi > 0 ∀i, we have

DiT
2
0 v(x + ej , y) = max[v(x + ei + ej − 1, y + 1), v(x + ei + ej , y)]

−max[v(x + ej − 1, y + 1), v(x + ej , y)] (4)

DiT
2
0 v(x, y) = max[v(x + ei − 1, y + 1), v(x + ei, y)]−max[v(x− 1, y + 1), v(x, y)] (5)

Eliminating the infeasible outcomes due to (iii), the result for (4) is either Div(x + ej − 1, y + 1),

v(x + ei + ej − 1, y + 1) − v(x + ej , y), or Div(x + ej , y) and simple algebra shows that (4)-(5)

≥ 0 in all three cases and the corresponding outcomes of (5). For boundary states where xi = 0,

xj = 0, or xk = 0, the analysis for the feasible cases are similar.

The result for the operator T follows immediately. By definition, T is formed by (a) the addition

and multiplication of positive constants with the functions T 1
nv and T 2

nv for n = 0,...,N that are

shown to be ↑ xj and (b) linear inventory holding and assembly queue backorder costs. Therefore,

DiTv ↑ xj as well.

Next, we show D-1,pv(x, y) ↓ y. We only present D-1,pT
1
0 v(x, y) ↓ y as the analysis for the

remaining operators T 1
i v, T 2

0 v, T 2
i v, and Tv are similar. For y > 0, as we satisfy the demand from

available inventory, D-1,pT
1
0 v(x, y + 1) − D-1,pT

1
0 v(x, y) = D-1,pv(x, y) − D-1,pv(x, y − 1) ≤ 0 by

D-1,pv ↓ y. For y ≤ 0, we have

D-1,pT
1
0 v(x, y + 1) = max[v(x− 1, y + 1), v(x− 1, y + 2)]−max[v(x, y), v(x, y + 1)] (6)

D-1,pT
1
0 v(x, y) = max[v(x− 1, y), v(x− 1, y + 1)]−max[v(x, y − 1), v(x, y)] (7)

We need to show that (6) minus (7) ≤ 0. The only feasible outcomes for (6) are D-1,pv(x, y + 1),

v(x− 1, y+ 1)− v(x, y+ 1), and D-1,pv(x, y) for which simple algebra yields (6) minus (7) ≤ 0 for

all three cases and the corresponding outcomes of (7). �

Proof of Theorem 1: Consider a value iteration algorithm to solve the optimal policy for the

problem given in (2) where initial values v0(x, y) = 0 are used for every state (x, y). Conditions

(i)-(iii) are trivially satisfied by v0(x, y), hence v0(x, y) ∈ V . We apply vk+1(x, y) = Tvk(x, y) for

k = 0, 1, 2, ... to determine the relative value functions for successive iterations. Suppose now that

the value functions in iteration k satisfy (i)-(iii), i.e. vk(x, y) ∈ V . Then, Lemma 1 shows that

vk+1(x, y) also satisfy (i)-(iii). Therefore vk+1(x, y) ∈ V .
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We note that, without loss of optimality, we can add the following constraints to the original

problem that we cannot admit a product demand when R0 < b0 y−/Λ, we cannot produce a

component type-i when hi xi/Λ > max(Ri, (b0 +
N∑
i=1

hi/Λ)), and we cannot assemble another end

product when h0 y
+/Λ > max(R0, ((

N∑
i=1

hi)− h0)/Λ). For example, if b0 y−/Λ > R0, this suggests

that the amount of backorder cost incurred until the next transition is greater than any potential

revenue of R0 that would be received if the next event were a product demand arrival. (As another

example, if hi xi/Λ > max(Ri, (b0 +
N∑
i=1

hi/Λ)), this indicates that the amount of holding cost due

to a type-i component incurred during a transition epoch is greater than the potential benefits of

(a) selling that component for a revenue of Ri were the next event a demand arrival for component

i, and (b) assembling another unit of a backordered product that would save backorder and holding

costs for a transition epoch if the next event were a product assembly opportunity.) Thus, the

original problem can be converted to a finite state, finite action set problem. The underlying

Markov chain is also unichain. Thus, Theorem 8.4.5 of Puterman (1994) ensures the existence of a

long-run average profit and the validity of the value iteration algorithm to determine it.

To complete the proof of Theorem 1, we note that conditions (i)-(iii) are sufficient to demonstrate

the structural properties of the optimal policy. Due to (i), if it is optimal not to produce component

i in state (x, y), it remains optimal not to do so in state (x + ei, y), implying a base-stock pro-

duction policy. Further, the sub- and super-modularity conditions imply that the base-stock level

is nondecreasing with the inventory of other components and nonincreasing with the end-product

inventory. Condition (i) also implies that if it is optimal to accept a demand for component i in

state v(x, y), i.e., Ri ≥ v(x, y)− v(x− ei, y), it is also optimal to accept a demand for component i

in state v(x + ei, y), i.e. Ri ≥ v(x + ei, y)− v(x, y). Thus component demand admission follows a

rationing policy. Similarly, the sub- and super-modularity conditions imply that the rationing level

for a component is nondecreasing with the inventory of other products and nonincreasing with the

end-product inventory position.

Condition (ii) indicates that if v(x, y − 1) +R0 ≥ v(x, y), then v(x, y) +R0 ≥ v(x, y + 1), thus

implying an admission threshold for the end-product. Moreover, D−P ↑ xi implies that the state

dependent admission threshold is nondecreasing with the amount of component inventories. Finally,

condition (iii) implies the structure of the optimal product assembly policy. D-1,p ↓ y means that

the additional value gained by assembling an end-product gets smaller with each additional unit of

end-product in the inventory, implying that product assembly follows a state dependent threshold

structure. D-1,p ↑ xi suggests that the assembly threshold level is non-decreasing with the amount

of component inventories. �

Proof of Theorem 2: We construct two systems that are identical in all problem parameters
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except the end-product revenues which are chosen such that R′0 < R0. We refer to the original

problem where the end product revenue is R0 as problem A, and the modified setting with R′0 as

problem B. We initialize problems A and B with v0(x, y) = 0 and v′0(x, y) = 0, respectively. We

then apply vk+1(x, y) = Tvk(x, y) and v′k+1(x, y) = Tv′k(x, y). By Lemma 2, vk(x, y) and v′k(x, y)

satisfy conditions (i)-(iii) ∀ k. Hence both vk and v′k ∈ V . We first prove the following lemma.

Lemma 3. Let vk and v′k ∈ V for ∀ k. For each state (x, y) and for every k = 0, 1, 2, . . ., the
following conditions jointly hold:

(a) Div
′
k(x, y)−Divk(x, y) ≤ 0

(b) Dpv
′
k(x, y)−Dpvk(x, y) +R0 −R′0 ≥ 0

(c) D-1,pv
′
k(x, y)−D-1,pvk(x, y) ≤ 0

Proof: The proof of Lemma 3 is by induction. Conditions (a)-(c) hold trivially for v0(x, y)

and v′0(x, y). We assume the conditions hold for iteration k and show that they are preserved in

iteration k+ 1. For brevity, we only present the proof that Dpv
′
k(x, y)−Dpvk(x, y) +R0−R′0 ≥ 0.

The proofs of other conditions are similar and hence omitted. Since vk+1(x, y) = Tvk(x, y) and

v′k+1(x, y) = Tv′k(x, y), we have

Dpv
′
k+1(x, y)−Dpvk+1(x, y) = DpTv

′
k(x, y)−DpTvk(x, y)

As in the proof of Lemma 2, we start by showing DpT
1
0 v
′
k(x, y)−DpT

1
0 vk(x, y) +R0 −R′0 ≥ 0

and proceed to show that the condition holds for the remaining operators T 1
i , T 2

0 , T 2
i , and T .

DpT
1
0 v
′
k(x, y)−DpT

1
0 vk(x, y) +R0 −R′0

= max[v′k(x, y) +R′0, v
′
k(x, y + 1)]−max[v′k(x, y − 1) +R′0, v

′
k(x, y)] (8)

−max[vk(x, y) +R0, vk(x, y + 1)] + max[vk(x, y − 1) +R0, vk(x, y)] +R0 −R′0

In order to simplify the analysis, we adapt a similar notation used in Carr and Duenyas (2000)

and introduce two functions w and w′ on {0, 1} x S. Let w be defined as

w(u,x, y) =

 vk(x, y − 1) +R0 if u = 1

vk(x, y) if u = 0

and w′ be defined similarly with the corresponding value function v′k and product revenue R′0.

Therefore T 1
0 vk(x, y) = maxu∈0,1w(u,x, y) and T 1

0 v
′
k(x, y) = maxu∈0,1w

′(u,x, y). We let u(x,y) =

argmaxuw(u,x, y) and u′(x,y) = argmaxuw′(u,x, y).

By condition (ii) (Dp ↓ y), we have u′(x,y+1) ≥ u′(x,y) and u(x,y+1) ≥ u(x,y). By condition (b),

we further have u(x,y) ≥ u′(x,y) and u(x,y+1) ≥ u′(x,y+1). Hence the vector (u′(x,y+1), u
′
(x,y), u(x,y+1),
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u(x,y)) has the following six possible values: (0, 0, 0, 0), (0, 0, 1, 0), (1, 0, 1, 0), (0, 0, 1, 1), (1, 1, 0, 1),

and (1, 1, 1, 1). It follows from algebra that (8) analyzed for each of these six cases is ≥ 0.

Next, we show the result for operator T 1
i and first consider the states away from boundary, i.e.,

xi > 0.

DpT
1
i v
′
k(x, y)−DpT

1
i v
′
k(x, y) +R0 −R′0

= max[v′k(x− ei, y + 1) +Ri, v
′
k(x, y + 1)]−max[v′k(x− ei, y) +Ri, v

′
k(x, y)] (9)

−max[vk(x− ei, y + 1) +Ri, vk(x, y + 1)] + max[vk(x− ei, y) +Ri, vk(x, y)] +R0 −R′0

We redefine w and w′ as

w(u,x, y) =

 vk(x− ei, y) +Ri, if u = 1

vk(x, y) if u = 0

with w′ again defined similar to w, using its corresponding value function v′k. Using the defini-

tions of u and u′ with the new functions w and w′, we have T 1
i vk(x, y) = maxu∈0,1w(u,x, y) and

T 1
i v
′
k(x, y) = maxu∈0,1w

′(u,x, y).

Condition (i) (Di ↓ y), implies u(x,y+1) ≥ u(x,y) and u′(x,y+1) ≥ u′(x,y). Further, by condition (a),

we have u′(x,y) ≥ u(x,y) and u′(x,y+1) ≥ u(x,y+1).

Hence the vector (u′(x,y+1),u
′
(x,y),u(x,y+1),u(x,y)) now has the following six possible values: (0, 0, 0, 0),

(1, 0, 0, 0), (1, 1, 0, 0), (1, 0, 1, 0), (1, 1, 1, 0), and (1, 1, 1, 1). It follows from algebra that (9) for each

of these cases is ≥ 0.

For the boundary states with xi = 0, only case (0,0,0,0) applies and (9) results in Dpv
′
k(x, y)−

Dpvk(x, y) +R0 −R′0 which is ≥ 0 by condition (b).

For Operator T 2
0 , we first consider the states (x, y) for which xi > 0 ∀i.

DpT
1
i v
′
k(x, y)−DpT

1
i v
′
k(x, y) +R0 −R′0

= max[v′k(x− 1, y + 2), v′k(x, y + 1)]−max[v′k(x− 1, y), v′k(x, y)] (10)

−max[vk(x− 1, y + 2), vk(x, y + 1)] + max[vk(x− 1, y), vk(x, y)] +R0 −R′0

We redefine w and w′ as

w(u,x, y) =

 vk(x− 1, y + 1) if u = 1

vk(x, y) if u = 0

with w′ defined similar to w. We let T 2
0 vk(x, y) = maxu∈0,1w(u,x, y) and T 2

0 v
′
k(x, y) =

maxu∈0,1w
′(u,x, y). By condition (iii) (D−1,p ↓ y) we have u′(x,y) ≥ u′(x,y+1) and u(x,y) ≥ u(x,y+1).
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Further, by (c), we also have u(x,y) ≥ u′(x,y) and u(x,y+1) ≥ u′(x,y+1). The vector (u′(x,y+1),u
′
(x,y),u(x,y+1),u(x,y))

therefore has the six possible values: (0, 0, 0, 0), (0, 0, 0, 1), (0, 0, 1, 1), (0, 1, 0, 1), (0, 1, 1, 1), and

(1, 1, 1, 1). We analyze (10) for each of these six cases. All cases except for (0, 1, 0, 1) are very

similar to the ones analyzed previously, hence we only show that case (0, 1, 0, 1) yields D1v
′
k(x −

1, y + 1) − D1vk(x − 1, y + 1) + R0 − R′0 ≥ 0 which is implied by jointly by conditions (b) and

(c). For the states where xi = 0 for some component i, the only feasible case (0, 0, 0, 0) yields

Dpv
′
k(x, y)−Dpvk(x, y) +R0 −R′0 ≥ 0 by (b).

The analysis for operator T 2
i is very similar to the one for operator T 1

i and is thus omitted. The

results hold for operator T as this operator is formed by addition and multiplication of positive

constants with the functions T 1
nv and T 2

nv for n = 0,...,N and linear inventory holding and assembly

queue backorder costs. �

To complete the proof of Theorem 2, we note that conditions (a)-(c) are sufficient for the

sensitivity results to hold. For example, condition (a) implies that if v′k(x + ei, y) − v′k(x, y) > 0,

then vk(x+ei, y)−vk(x, y) > 0. Hence, if it is optimal to produce an additional unit of component

i at state (x, y) in problem B, then it is also optimal to produce an additional unit of component

i in state (x, y) in problem A. Therefore γ′i(x−i, y) ≤ γi(x−i, y). Through a similar argument, (a)

also implies the shift in the component admission threshold αi(x, y).

In terms of the product demand admission policy, Condition (ii) implies that if v′k(x, y−1)+R′0 ≥

vk(x, y), then vk(x, y − 1) + R0 ≥ vk(x, y). Hence, if it is optimal to admit a demand for the end

product in problem B, it remains optimal to admit a product demand at that state in problem

A resulting in β′(x) ≥ β(x). As for the optimal assembly policies, analogous arguments yield

δ′(x) ≤ δ(x). �

Proof of Theorem 3: The proof of Theorem 3 closely follows the steps in the proof of Theorem

1. Therefore, we only provide the sufficient conditions implying the structure of the optimal policy

and show that they are preserved across transitions in the following Lemma. We note that, as

described in the proof of Theorem 1, without loss of optimality, the problem may be converted to a

finite state and finite action space problem. Therefore, a stationary policy for the discounted profit

infinite horizon problem exists by Theorem 6.2.10 of Puterman (1994).

Let V be the set of functions defined on the state space such that if v ∈ V , then ∀ i, j = 1, . . . N

where j 6= i;
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(i’) Div(x, y) ↓ xi, ↑ xj , ↓ y ∀ i = 1, . . . , N

(ii’) Dpv(x, y) ↓ xi, ↓ y, and ≤ R0 for y > 0

Dpv(x, 0)−Dpv(x,−1) ≤ R0 − r0

(iii’) D-1,pv(x, y) ↑ xi, ↓ y

D-1,pv(x, 0)−D-1,pv(x,−1) ≤ R0 − r0

Conditions (i’)-(iii’) are similar to the ones (i)-(iii) associated with the original problem except

for the conditions given in (ii’) and (iii’) which enable the optimal policy to hold at the boundary

states as well.

Lemma 4. If v ∈ V then, T 1
nv, T 2

nv, and Tv ∈ V ∀n = 0, . . . , N .

Proof: For brevity, once again we only present the proof for the supermodularity condition

given in (i’). We will show that if v satisfies Div(x, y) ↑ xj , then T 1
0 v, T 1

i v, T 1
j v, T 1

k v, T 2
0 v, T 2

i v,

T 2
j v, T 2

k v, and Tv (where i, j, k are distinct) all satisfy the same condition. As the operators T 1
0 and

T 2
0 are the ones that have been modified and the analysis for the remaining operators are similar to

the ones in the proof of Lemma 2, we restrict our illustration of the proof for these two operators.

For operator T 1
0 and for y > 0, we have DiT

1
0 v(x + ej , y)−DiT

1
0 v(x, y) = Div(x + ej , y − 1)−

Div(x, y − 1) ≥ 0 by Div ↑ xj . For y ≤ 0, we have

DiT
1
0 v(x + ej , y) = max[v(x + ei + ej , y − 1) + r0, v(x + ei + ej , y)]

−max[v(x + ej , y − 1) + r0, v(x + ej , y)] (11)

DiT
1
0 v(x, y) = max[v(x + ei, y − 1) + r0, v(x + ei, y)]−max[v(x, y − 1) + r0, v(x, y)] (12)

We need to show that (11) minus (12) ≥ 0. The outcome v(x+ei+ej , y)−v(x+ej , y−1)−r0 is not

feasible for (11) due to Dp ↓ xi in (ii’). The three remaining feasible outcomes are Div(x+ej , y−1),

v(x + ei + ej , y − 1)− v(x + ej , y), and Div(x + ej , y) for which simple algebra yields (11) minus

(12) ≥ 0 in all three cases.

For operator T 2
0 we only show the result for y < 0 as the cases for y ≥ 0 are identical to the

ones analyzed in Lemma 2. For xi > 0 ∀i, we have

DiT
2
0 v(x + ej , y) = max[v(x + ei + ej − 1, y + 1) +R0 − r0, v(x + ei + ej , y)]

−max[v(x + ej − 1, y + 1) +R0 − r0, v(x + ej , y)] (13)

DiT
1
1 v(x, y) = max[v(x + ei − 1, y + 1) +R0 − r0, v(x + ei, y)]

−max[v(x− 1, y + 1) +R0 − r0, v(x, y)] (14)

Eliminating the infeasible outcomes due to (iii’), each of the remaining cases where (13) results in
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either Div(x + ej − 1, y+ 1), v(x + ei + ej − 1, y+ 1) +R0− r0− v(x + ej , y), or Div(x + ej , y+ 1)

results in (13) minus (14) ≥ 0 through simple algebra. Similar steps also yields the results for

boundary states where xi = 0, xj = 0, or xk = 0. �
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