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A�������: For a large class of time-dependent non-Hermitain Hamiltonians expressed in

terms linear and bilinear combinations of the generators for an Euclidean Lie-algebra re-

specting different types of PT-symmetries, we find explicit solutions to the time-dependent

Dyson equation. A specific Hermitian model with explicit time-dependence is analyzed

further and shown to be quasi-exactly solvable. Technically we constructed the Lewis-

Riesenfeld invariants making use of the metric picture, which is an equivalent alternative

to the Schrödinger, Heisenberg and interaction picture containing the time-dependence

in the metric operator that relates the time-dependent Hermitian Hamiltonian to a static

non-Hermitian Hamiltonian.

1. Introduction

Quasi-exactly solvable (QES) quantum systems are characterized by the feature that only

part of their infinite energy spectrum and corresponding eigenfunctions can be calculated

analytically. Systematic studies of such type of systems have been carried out by casting

them into the form of Lie algebraic quantities [1, 2] and making use of the property that the

eigenfunctions of the corresponding Hamiltonian systems form a flag which coincides with

the finite dimensional representation space of the associated Lie algebras. QES systems

that can be cast into such a form are usually referred to as QES models of Lie algebraic type

[3, 4]. The relevant underlying algebras are either of sl2(C)-type, with their compact and

non-compact real forms su(2) and su(1, 1), respectively [5], or of Euclidean Lie algebras

type [6, 7, 8]. The latter class was found to be particularly useful when dealing with certain

types of non-Hermitian systems.

While many QES models have been studied in stationary settings, little is known

for time-dependent systems. So far a time-dependence has only been introduced into

the eigenfunctions in form of a dynamical phase [9, 10]. However, no QES systems with

explicitly time-dependent Hamiltonians have been considered up to now. The main purpose
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of this article is to demonstrate how they can be dealt with and to initiate further studies of

such type of systems. We provide the analytical solutions to a QES Hamiltonian quantum

system with explicit time-dependence. As a concrete example we consider QES systems of

E2-Lie algebraic type. Technically we make use of the metric picture [11, 12], which is an

alternative to the Schrödinger, Heisenberg and interaction picture. It will allow us to solve

a Hermitian time-dependent Hamiltonian system by solving first a static non-Hermitian

system as an auxiliary problem with a time-dependence in the metric operator.

Systems build up from Euclidean Lie algebras, in particular of E2, have a wide range

of physical applications. They have been employed for instance in the formal quantisation

of strings on tori [13]. Depending on the chosen representation of the algebra one can

describe a large number of concrete physical systems. Common representations for E2 may

lead to two dimensional systems or most commonly in optical settings, the trigonometric

representation, see below, correspond to Mathieu potentials and variations thereof. The

latter have proven be useful and accurate in the decription of energy band structures in

crystals [14] and especially in the experimental and theoretical study of optical solitons

[15, 16, 17, 18, 19, 20]. Here we consider explicitly time-dependent versions of these type

of systems and keep our discussion generic, that is independent of the choice a concrete

representation for the underlying algebra.

The Hermitian Hamiltonian systems we study here are of the general form

h(t) = µJJ(t)J
2 + µJ(t)J + µu(t)u+ µv(t)v + µuu(t)u

2 + µvv(t)v
2 + µuv(t)uv, (1.1)

where the time-dependent coefficient functions µi, i ∈ {J, JJ, u, v, uu, vv, uv}, are real and
u, v and J denote the three generators that span the Euclidean-algebra E2. They obey the

commutation relations

[u, J ] = iv, [v, J ] = −iu, and [u, v] = 0. (1.2)

Considering here only Hermitian representations with J† = J , v† = v and u† = u, the

Hamiltonian in equation (1.1) is clearly Hermitian. Standard representation are for instance

the trigonometric representation J := −i∂θ, u := sin θ and v := cos θ or a two-dimensional

representation J := ypx − xpy, u := x or v := y with x, y, px, py denoting Heisenberg

canonical variables with non-vanishing commutators [x, px] = [y, py] = i. We have set here

and mostly in what follows to � = 1.

We briefly recall from [11, 12] what is meant by the metric picture. It is well known

that the Schrödinger and the Heisenberg picture are equivalent with the former containing

the time-dependence entirely in the states and the latter entirely in the operators. PT -
symmetric/quasi-Hermitian systems [21, 22, 23] allow for yet another equivalent variant in

which the time-dependence is contained entirely in the metric operator. In order to see that

we first need to solve the time-dependent Dyson relation [24, 25, 26, 27, 28, 11, 12, 29, 30, 31]

which in general reads

h(t) = η(t)H(t)η−1(t) + i�∂tη(t)η
−1(t), (1.3)

involving a time-dependent non-Hermitian Hamiltonian H(t) �= H†(t) and the Dyson op-

erator η related to the metric operator ρ as ρ = η†η. For our purposes we will even-
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tually take the Hamiltonian to be time-independent H(t) → H, with h(t) satisfying the

time-dependent Schrödinger equation h(t)φ(t) = i�∂tφ(t) and H the time-independent

Schrödinger equation Hψ = Eψ with energy eigenvalue E. The corresponding wavefunc-

tions are related as φ(t) = η(t)ψ.

Before we solve a concrete system in a quasi-exactly solvable fashion we consider first

the fully time-dependent Dyson relation with time-dependent non-Hermitian Hamiltonian

H(t) and investigate which type of Hamiltonians can be related to the Hermitian Hamil-

tonian h(t) in (1.1). We will see that in some cases we are even forced to take H(t) or part

of it to be time-independent. As not many explicit solutions to the time-dependent Dyson

relation are known, this will be a valuable result in itself.

Our manuscript is organized as follows: In section 2 we explore various types of PT -
symmetries that leave the Euclidean E2-algebra invariant and investigate time-dependent

non-Hermitian Hamiltonians in terms E2-algebraic generators that respect these symme-

tries. We find new solutions to the time-dependent Dyson relation for those type of Hamil-

tonians by computing the corresponding Hermitian Hamiltonians and the Dyson map.

In section 3 we provide analytical solutions for a concrete model respecting a particular

PT -symmetry. We compute the eigenstates of the Lewis-Riesenfeld invariants and the
time-dependent Hermitian Hamiltonian in a quasi-exactly solvable fashion. A three-level

system is presented in more detail. Our conclusions are stated in section 4.

2. Solutions to the time-dependent Dyson equation for E2-Hamiltonians

A key property in the study and classification of Hamiltonian systems related to the E2-

algebra are the antilinear symmetries [32] that leave the algebra (1.2) invariant. Given

the general context of PT -symmetric/quasi-Hermitian systems we call these symmetries
PT i, i = 1, 2, . . . As discussed in more detail in [33, 34], there are many options which all

give rise to models with qualitatively quite distinct features. It is easy to see that each of

the following antilinear maps leave all the commutation relations (1.2) invariant

PT 1 : J →−J, u→−u, v →−v, i→−i,
PT 2 : J →−J, u→ u, v → v, i→−i,
PT 3 : J → J, u→ v, v → u, i→−i,
PT 4 : J → J, u→−u, v → v, i→−i,
PT 5 : J → J, u→ u, v →−v, i→−i.

(2.1)

Next we seek non-Hermitian Hamiltonians that respect either of these symmetries. Fo-

cussing here on time-dependent Hamiltonians consisting entirely of linear and bilinear

combinations of E2-generators they can all be cast into the general form

HPT i(t) = µJJ(t)J
2 + µJ(t)J + µu(t)u+ µv(t)v + µuJ(t)uJ + µvJ(t)vJ (2.2)

+µuu(t)u
2 + µvv(t)v

2 + µuv(t)uv.

Demanding that [HPT i(t),PT i] = 0, the symmetries are implemented by taking the co-

efficient functions to be either real, purely imaginary or relate different functions to each

— 3 —
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other by conjugation. For the different symmetries in (2.1) we are forced to take

PT 1 : (µJ , µu, µv) ∈ iR, (µJJ , µuJ , µvJ , µuu, µvv, µuv) ∈ R,
PT 2 : (µJ , µuJ , µvJ) ∈ iR, (µu, µv, µJJ , µuu, µvv, µuv) ∈ R,
PT 3 : (µJJ , µJ , µuv) ∈ R, µu = µ∗v, µuJ = µ∗vJ , µuu = µ∗vv
PT 4 : (µu, µuJ , µuv) ∈ iR, (µJ , µv, µJJ , µvJ , µuu, µvv) ∈ R,
PT 5 : (µv, µvJ , µuv) ∈ iR, (µJ , µu, µJJ , µuJ , µuu, µvv) ∈ R.

(2.3)

Except for very specific combinations of the coefficient functions, the HamiltoniansHPT i(t)

are non-Hermitian in general.

We now solve the time-dependent Dyson relation (1.3) for η(t) by mapping different

PT i-symmetric versions of H(t) to a Hermitian Hamiltonian h(t) of the form (1.1). For

the time-dependent Dyson map we make an Ansatz in terms of all the E2-generators

η(t) = eτ(t)veλ(t)Jeρ(t)u. (2.4)

At this point we allow λ, τ, ρ ∈ C, keeping in mind that η(t) does not have to be Hermitian.
We exclude here unitary operators, i.e. λ, τ, ρ ∈ iR, as in that case η(t) just becomes a

gauge transformation. The adjoint action of this operator on the E2-generators is computed

by using the standard Baker-Campbell-Haussdorff formula

ηJη−1 = J + iρ cosh(λ)v − [iτ + ρ sinh(λ)]u, (2.5)

ηuη−1 = cosh(λ)u− i sinh(λ)v, (2.6)

ηvη−1 = cosh(λ)v + i sinh(λ)u. (2.7)

The gauge-like term in (1.3) acquires the form

iη̇η−1 = iλ̇J +
�
iρ̇ cosh (λ) + τλ̇

�
u+ [ρ̇ sinh (λ) + iτ̇ ] v. (2.8)

As common, we abbreviate here time-derivatives by overdots. For the computation of the

time-dependent energy operator H̃(t), see below, we also require the term

iη−1η̇ = iλ̇J + [iρ̇+ τ̇ sinh (λ)]u+
�
ρλ̇+ iτ̇ cosh (λ)

�
v. (2.9)

Using (2.5)-(2.7) we calculate next the adjoint action of η on H(t) and add the expression in

(2.8). Demanding that the result is Hermitian will constrain the time-dependent functions

µi(t), λ(t), τ(t) and ρ(t). We need to treat each PT -symmetry separately.

2.1 Time-dependent PT 1-invariant Hamiltonians

For convenience we take the coefficient function µJJ to be time-independent. Of course

the general scenario with µJJ(t) is also possible to consider, but leads to more cumbersome

expressions. For the PT 1-invariant Hamiltonian with coefficient functions as specified in
(2.3) we have to be aware that for µJ = µuJ = µvJ = 0 the Hamiltonian HPT 1(t) becomes

Hermitian. Substituting the general form for HPT 1(t) into (1.3), using (2.5)-(2.7), (2.8),

reading off the coefficients in front of the generators and demanding that the right hand

— 4 —
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side becomes Hermitian enforces to take the functions λ, τ, ρ ∈ R in (2.4). The resulting
Hermitian Hamiltonian is

hPT 1 = J2µJJ +
[µvJ tanhλ− µJµvJ ] sinhλ

2µJJ
u− µJµuJ tanhλ sechλ

2µJJ
v (2.10)

+

�
µuu −

µ2uJ tanh
2 λ

4µJJ

�
u2 +

�
µuu +

cosh2(λ)µ2vJ − µ2uJ
4µJJ

�
v2 + µuvuv,

+
µuJ
2

sechλ{u, J}+ µvJ
2

coshλ{v, J}

with 7 constraining relations

λ = −
� t

µJ(s)ds, τ =
µvJ sinhλ

2µJJ
, ρ =

µuJ tanhλ

2µJJ
, µvv = µuu +

µ2vJ − µ2uJ
4µJJ

, (2.11)

µuv =
µuJµvJ
2µJJ

, µu =
µJµuJ − µ̇uJ tanhλ

2µJJ
+

µvJ
2

, µv =
µJµvJ − µ̇vJ tanhλ

2µJJ
− µuJ

2
.

Thus from the original 12 free parameters, i.e. the 9 coefficient functions µi and the 3

functions λ, τ, ρ in the Dyson map, we can still freely choose 5. In comparison with the

other PT i-symmetries, this is the most constrained case. We also note that this system is
the only one in which all three functions in the Dyson map are constrained when we take

the coefficient functions µi as primary quantities.

2.2 Time-dependent PT 2-invariant Hamiltonians

The Hamiltonian HPT 2(t) becomes Hermitian for µJ = 0, µuJ = 2µu, µvJ = −2µu, but is
non-Hermitian otherwise. Preceding as in the previous section the implementation of (1.3)

enforces to take τ, ρ ∈ R and λ ∈ iR in (2.4), which makes the Dyson map PT 2-symmetric.
The Hermitian Hamiltonian is computed to

hPT 2 = µJJJ
2 + λ̇J +

��
µu +

µvJ
2

�
cosλ+

�µuJ
2
− µv

�
sinλ

�
u (2.12)

+
��

µv −
µuJ
2

�
cosλ+

�
µu +

µvJ
2

�
sinλ

�
v +

��
µ2uJ − µ2vJ

8µJJ
+

µuu − µvv
2

�
cos(2λ)

−
�
µuJµvJ
4µJJ

+
µuv
2

�
sin(2λ) +

µ2uJ + µ2vJ
8µJJ

+
µuu + µvv

2

	
u2

+

��
µ2uJ
4µJJ

+ µuu

�
sin2 λ+

�
µuJµvJ
4µJJ

+
µuv
2

�
sin 2λ+

�
µ2vJ
4µJJ

+ µvv

�
cos2 λ

	
v2

+

��
µ2uJ − µ2vJ

4µJJ
+ µuu − µvv

�
sin(2λ) +

�
µuJµvJ
2µJJ

+ µuv

�
cos(2λ)

	
uv,

with 5 constraining relations

τ =
µuJ
2µJJ

secλ, ρ = −µvJ + µuJ tanλ

2µJJ
, µJ = µ̇uJ = µ̇vJ = 0. (2.13)

We note that we have less constraints as in the previous section, but some of the coefficient

functions can no longer be taken to be time-dependent and one even has to vanish. One of

the three functions in the Dyson map, e.g. λ, can be freely chosen. Compared to the other

cases this is the only one for which η has the same PT i-symmetry as the corresponding
non-Hermitian Hamiltonian HPT i(t) when taking the constraints on τ, ρ, λ into account.

— 5 —
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2.3 Time-dependent PT 3-invariant Hamiltonians

The Hamiltonian HPT 3(t) becomes Hermitian for µvJ = µuu = 0 and µuJ = 2µv. Using

the same arguments as above, we are forced to take τ, ρ ∈ R and λ ∈ iR in (2.4). The

Hermitian Hamiltonian is computed to

hPT 3 = J2µJJ +
�
µJ − λ̇

�
J + cosλ

�
µu −

µvJ
2

�
(u+ v) + sinλ

�
µu −

µvJ
2

�
(v − u) (2.14)

+

�
µvv +

µ2vJ
4µJJ

�

u2 + v2

�
+

�
µ2vJ
4µJJ

− µuv
2

�
sin(2λ)



u2 − v2

�

+
µuJ
2

cosλ [{v, J}+ {u, J}] + µuJ
2

sinλ [{v, J} − {u, J}]

+ cos(2λ)

�
µuv −

µ2vJ
2µJJ

�
uv,

with 5 constraining relations

τ =
µvJ
2µJJ

secλ, ρ =
µvJ − µvJ tanλ

2µJJ
, µv =

µvJ
2

+
µJµvJ
2µJJ

, µuv = −
µvJµuJ
2µJJ

, µ̇vJ = 0.

(2.15)

Once again one of the coefficient functions has to be time-independent and one of the three

functions in the Dyson map can be chosen freely.

2.4 Time-dependent PT 4-invariant Hamiltonians

The Hamiltonian HPT 4(t) becomes Hermitian for µuJ = µuv = 0 and µvJ = 2µu. By the

same reasoning as above we have to take τ, ρ ∈ R and λ ∈ iR in (2.4). The Hermitian

Hamiltonian results to to

hPT 4 = J2µJJ +
�
µJ − λ̇

�
J + sinλ

�µuJ
2
− µv

�
u+ cosλ

�
µv −

µuJ
2

�
v (2.16)

+

�
µuu − µvv +

µ2uJ
4µJJ

�
sin(2λ)uv − µvJ

2
sinλ{u, J}+ µvJ

2
cosλ{v, J}

+

��
µuu − µvv

2
+

µ2uJ
8µJJ

�
cos(2λ) +

�
µuu + µvv

2

�
+

µ2uJ
8µJJ

	
u2

+

��
µuu +

µ2uJ
4µJJ

�
sin2 λ+ cos2 λµvv

	
v2,

with 5 constraining relations

τ =
µuJ
2µJJ

secλ, ρ = −µuJ tanλ

2µJJ
, µu =

µvJ
2

+
µJµuJ
2µJJ

, µuv =
µvJµuJ
2µJJ

, µ̇uJ = 0.

(2.17)

This case is similar to the previous one with one of the coefficient functions forced to be

time-independent and one of the three functions in the Dyson map being freely choosable.

— 6 —
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2.5 Time-dependent PT 5-invariant Hamiltonians

The Hamiltonian H becomes Hermitian for µvJ = µuv = 0 and µuJ = −2µv. Here we have
to take ρ ∈ R and λ, τ ∈ iR in (2.4). The Hermitian Hamiltonian is computed to

hPT 5 = J2µJJ +
�
µJ − λ̇

�
J +

�
τµJ +

µuJ
2

cosλ
�
{u, J}+ µuJ

2
sinλ{v, J} (2.18)

+
�
τ
�
µJ − λ̇

�
+ cosλ

�
µu +

µvJ
2

��
u+

�
sinλ

�
µu +

µvJ
2

�
− τ̇

�
v

+

�
τ2µJJ + sin2 λ

�
µ2vJ
4µJJ

+ µvv

�
+ τ cosλµuJ + cos2 λµuu

	
u2

+sinλ

�
2 cosλ

�
µuu − µvv −

µ2vJ
4µJJ

�
+ ττµuJ

	
uv

+

��
µ2vJ
4µJJ

+ µvv

�
cos2 λ+ µuu sin

2 λ

	
v2,

with only 4 constraining relations

ρ = − µvJ
2µJJ

, µv = −
µuJ
2

+
µJµvJ
2µJJ

, µ̇vJ = 0, µuv =
µvJµuJ
2µJJ

. (2.19)

In comparison with the other symmetries, this is the least constraint case. From the three

functions in the Dyson map only one is constraint and the others can be chosen freely.

However, one of the coefficient functions needs to be time-independent.

3. Time-dependent quasi-exactly solvable systems

We will now specify one particular model and show how it can be quasi-exactly solved

in the metric picture. Since the PT 2 symmetry appears to be somewhat special, in the
sense that it is the only case for which the Dyson map respects the same symmetry as the

Hamiltonian, we consider a particular non-Hermitian PT 2-symmetric time-independent
Hamiltonian of the form

Ĥ = mJJJ
2 +mvv +mvvv

2 + imuJuJ. (3.1)

Given the constraining equations (2.13), we could in principle take mv, mvv to be time

dependent, but to enforce the metric picture we take here all four coefficients mJJ , mv,

mvv and muJ to be time-independent real constants. According to the analysis in section

2.2, the time-dependent Dyson map

η(t) = eτ(t)veiλ(t)Je̺(t)u, τ(t) =
µuJ
2µJJ

secλ(t), ̺(t) = − µuJ
2µJJ

tanλ(t), (3.2)

with λ, τ, ρ ∈ R, maps the time-independent non-Hermitian Hamiltonian Ĥ to the time-

dependent Hermitian Hamiltonian

ĥ(t) = mJJJ
2 − λ̇J + sinλ

�muJ

2
−mv

�
u+ cosλ

�
mv −

muJ

2

�
v (3.3)

+

�
cos(2λ)

�
m2
uJ

8µJJ
− mvv

2

�
+

m2
uJ

8µJJ
+

mvv

2

	
u2

+

�
m2
uJ

4µJJ
sin2 λ+mvv cos

2 λ

	
v2 + sin(2λ)

�
m2
uJ

4µJJ
−mvv

�
uv.

— 7 —
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Here we are free to chose the time-dependent function λ(t). As previously pointed out

for non-Hermitian systems with time-dependent metric, one needs to distinguish between

the Hamiltonian, that is a non-observable operator, and the observable energy operator.

This feature remains also true when the non-Hermitian Hamiltonian is time-independent,

but the metric is dependent on time. In reverse, it simply means that when one identifies

the non-Hermitian Hamiltonian with the energy operator one has made the choice for the

metric to be time-independent. With η(t) as specified in (3.2), the energy operator is

computed with the help of (2.9) to

H̃(t) = η−1(t)h(t)η(t) = Ĥ + i�η−1(t)∂tη(t) (3.4)

= mJJJ
2 +mvv +mvvv

2 + imuJuJ − λ̇J − i
muJ

mJJ
λ̇u. (3.5)

We note that H̃(t) is also PT 2-symmetric when we include ∂t → −∂t into the symmetry
transformation. In order to demonstrate that this system is quasi-exactly solvable we

specify the constants in the Hamiltonian (3.1) further to mJJ = 4, muJ = 2(1 − β)ζ,

mvv = −βζ2, mv = 2ζN so that it becomes

H(N, ζ, β) = 4J2 + i2(1− β)ζuJ − βζ2v2 + 2ζNv, β, ζ,N ∈ R. (3.6)

This Hamiltonian can be obtained from one discussed in [8] by transforming θ → θ/2,

J → 2J in the trigonometric representation. The constants in H(N, ζ, β) are chosen so

that it exhibits an interesting double scaling limit limζ→0,N→∞H(N, ζ, β) = 4J2+2gv when

assuming that g := ζN . In the trigonometric representation this limiting Hamiltonian is

the Mathieu Hamiltonian.

The Hermitian Hamiltonian (3.3) simplifies in this case to

h(t,N, ζ, β) = 4J2 − λ̇J + ζ (2N + β − 1) (cosλv − sinλu) +
γ2

4
(cosλu+ sinλv)2 + βζ2C

(3.7)

where we denoted the Casimir operator by C := v2 + u2 and abbreviated γ := (1 + β)ζ.

In the aforementioned double scaling limit we obtain a time-dependent Hamiltonian of the

form limζ→0,N→∞ h(t,N, ζ, β) = 4J2 − λ̇J + 2g (cosλv − sinλu).

3.1 Quasi-exactly solvable Lewis-Riesenfeld invariants

The most efficient way to solve the time-dependent Dyson equation (1.3) is to use the Lewis-

Riesenfeld approach [35] and compute at first the respective time-dependent invariants Ih(t)

and IH(t) for the Hamiltonian h(t) and H(t), see [36, 37, 30], by solving the equations

∂tIH(t) = i� [IH(t),H(t)] , and ∂tIh(t) = i� [Ih(t), h(t)] . (3.8)

Unlike the corresponding Hamiltonians that have to obey (1.3), the invariants are related

by a similarity transformation

Ih(t) = η(t)IH(t)η
−1(t). (3.9)

— 8 —
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Computing the eigenstates of the invariants

Ih(t)
���φ̃(t)



= Λ

���φ̃(t)


, IH(t)

���ψ̃(t)


= Λ

���ψ̃(t)


, with Λ̇ = 0 (3.10)

the solutions to the time-dependent Schrödinger equations for |φ(t)
, |ψ(t)
 are simply
related by a phase factor to the eigenstates of the invariants |φ(t)
 = eiαh(t)/�

���φ̃(t)


,

|ψ(t)
 = eiαH(t)/�
���ψ̃(t)



. It is easy to to derive that the two phase factors have to be

identical αh = αH = α. They can be determined from

α̇ =
�
φ̃(t)

��� i�∂t − h(t)
���φ̃(t)



=
�
ψ̃(t)

��� η†(t)η(t) [i�∂t −H(t)]
���ψ̃(t)



. (3.11)

Taking now H to be time-independent, we may assume IH = H + cI with c being some

constant. The Lewis-Riesenfeld then just becomes a dynamical phase factor

α̇ =
�
ψ̃
��� ρ(t) [i�∂t −H]

���ψ̃


=
�
ψ̃
��� ρ(t) [cI−IH ]

���ψ̃


= c− Λ = −E, (3.12)

such that α(t) = −Et.

Next we quasi-exactly construct the Lewis-Riesenfeld invariants together with its eigen-

states for the time-dependent Hermitian and time-independent non-Hermitian systems

(3.3) and (3.1), respectively.

3.1.1 The quasi-exactly solvable symmetry operator IĤ

We make a general Ansatz for the invariant of Ĥ of the form

IĤ = νJJJ
2 + νJJ + νuu+ νvv + νuJuJ + νvJvJ + νuuu

2 + νvvv
2 + νuvuv, (3.13)

with unknown constants νi. The invariant for the time-independent system is of course

just a symmetry and we only need to compute the commutator of IĤ with Ĥ to determine

the coefficients in (3.13). We find the most general symmetry or invariant to be

IĤ = νJJJ
2 +mv

νJJ
mJJ

v + imuJ
νJJ
mJJ

uJ +

�
νvv −mvv

νJJ
mJJ

�
u2 + νvvv

2 (3.14)

= Ĥ + (βζ2 + νvv)C, (3.15)

where in the last equation we have taken νJJ = mJJ . Since the last term only produces

an overall shift in the spectrum we set νvv = 0 for convenience.

Next we compute the eigensystem for IĤ by solving (3.10). Assuming the two linear

independent eigenfunctions to be of the general forms

ψ̃
c
Ĥ(θ) = ψ0

∞�

n=0

cnPn(Λ) cos(nθ), and ψ̃
s
Ĥ(θ) = ψ0

∞�

n=1

cnQn(Λ) sin(nθ), (3.16)

with constants cn = 1/ζn(N + β)(1 + β)n−1 [(1 +N + 2β)/(1 + β)]n−1 where [a]n :=

Γ (a+ n) /Γ (a) denotes the Pochhammer symbol. The ground state ψ0 = e−
1

2
ζ cos(θ) is

taken to be PT 2-symmetric. The constants cn are chosen conveniently to ensure the sim-
plicity of the polynomials Pn(Λ), Qn(Λ) in the eigenvalues Λ. We then find that the
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functions ψ̃
c
Ĥ and ψ̃

s
Ĥ satisfy the eigenvalue equation provided the coefficient functions

Pn(Λ) and Qn(Λ) obey the three-term recurrence relations

P2 = (Λ− 4)P1 + 2ζ
2 (N − 1) (N + β)P0, (3.17)

Pn+1 = (Λ− 4n2)Pn − ζ2 [N + nβ + (n− 1)] [N − (n− 1)β − n]Pn−1, (3.18)

Q2 = (Λ− 4)Q1, (3.19)

Qm+1 = (Λ− 4m2)Qm − ζ2 [N +mβ + (m− 1)] [N − (m− 1)β −m]Qm−1, (3.20)

for n = 0, 2, . . . and for m = 2, 3, 4, . . . Setting P0 = 1 and Q1 = 1, the first solutions for

(3.17) - (3.20) are found to be

P1 = Λ, (3.21)

P2 = Λ2 − 4Λ− 2ζ2(N − 1)(β +N),

P3 = Λ3 − 20Λ2 +
�
ζ2


2β2 + 7β − 3N2 − 3(β − 1)N + 2

�
+ 64

�
Λ+ 32ζ2(N − 1)(β +N),

and

Q2 = (Λ− 4) , (3.22)

Q3 = (Λ− 20)Λ + ζ2(β −N + 2)(2β +N + 1) + 64,

Q4 = Λ3 − 56Λ2 +
�
2ζ2



4β2 + 9β −N2 − βN +N + 4

�
+ 784

�
Λ

+8ζ2
�
5N2 + 5(β − 1)N − 12− β(12β + 29)

�
− 2304.

The well-known and crucial feature responsible for a system to be quasi-exactly solvable

is the occurrence of the three-term recurrence relations and that they can be forced to

terminate at certain values of n. This is indeed the case and for our relations (3.18), (3.20)

and can be achieved for some specific values n = n̂ or m = n̂, respectively. To see this

we take N = n̂+ (n̂− 1)β and note that the polynomials Pn and Qm factorize for n ≥ n̂,

m ≥ n̂ as

Pn̂+ℓ = Pn̂Rℓ and Qn̂+ℓ = Qn̂Rℓ, (3.23)

where the first Rℓ-polynomials are

R1 = Λ− 4n̂2, (3.24)

R2 = 16n̂2(n̂+ 1)2 +Λ [Λ− 4− 8n̂(n̂+ 1)] + 2n̂γ2. (3.25)

Since according to (3.23) the polynomials Pn̂ and Qn̂ are factor in all Pn and Qm for n ≥ n̂

andm ≥ n̂, respectively, all higher order polynomial vanish when setting Pn̂(Λ) = Qn̂(Λ) =

0. These latter constraints are the quantization conditions for Λ. Thus setting Pn̂(Λ) = 0

at the different levels n̂, we find the real eigenvalues

n̂ = 1 : Λc1 = 0, (3.26)

n̂ = 2 : Λc,±2 = 2± 2
�
1 + γ2, (3.27)

n̂ = 3 : Λc,ℓ=0,±13 =
4

3

�
5 + 2κ cos

�
ℓπ

3
− 1

3
arccos

�
35− 18γ2

κ3

�	�
, (3.28)
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with κ =
�
13 + 3γ2, and from Qn̂(Λ) = 0 we find the real eigenvalues

n̂ = 2 : Λs2 = 4, (3.29)

n̂ = 3 : Λs,±3 = 10± 2
�
9 + γ2, (3.30)

n̂ = 4 : Λs,ℓ=0,±14 =
8

3

�
7 + κ̃ cos

�
ℓπ

3
− 1

3
arccos

�
143− 18γ2

κ̃3

�	�
, (3.31)

with κ̃ =
�
49 + 3γ2.

Thus Ĥ is a QES system with eigenfunctions identical to those in (3.16) and energies

E = Λ− βζ2.

3.1.2 The quasi-exactly solvable invariant Iĥ

Next we construct the invariant Iĥ together with their eigenfunctions. In principle we have

to solve the second equation in (3.8) for this purpose, however, since we already know the

Dyson map we can simply use (3.9) and act adjointly with η(t), as given in (3.2), on IĤ as

specified in (3.14). This yields the time-dependent invariant for ĥ(t) as

Iĥ = η(t)IĤ(t)η
−1(t) = ĥ+ λ̇J + βζ2C (3.32)

We convince ourselves that the relation (3.8) is indeed satisfied by Iĥ as given in (3.32)

and ĥ(t) as in (3.7). The eigenfunctions for Iĥ are then simply obtained as φ̃ = ηψ̃. From

(3.16) we compute

φ̃
c
ĥ(θ) = φ0

∞�

n=0

cnPn(Λ) cos [n(θ + λ)] , φ̃
s
ĥ(θ) = φ0

∞�

n=1

cnQn(Λ) sin [n(θ + λ)] . (3.33)

with ground state wavefunction φ0 = e−
1

4
ζ(1+β) cos(θ+λ) and coefficients cn, Pn(Λ), Qn(Λ)

as defined above. According to the above arguments, the solutions to the time-dependent

Schrödinger equation are φc,s
ĥ
(θ) = e−iEt/�φ̃

c,s

ĥ (θ).

3.2 A time-dependent three level system

For each integer value of n̂ we have now obtained a time-dependent QES system with a finite

dimensional Hilbert space. Since it is the easiest non-trivial example and time-dependent

three-level systems are of some interest in the literature [38, 39, 40] we present here the

case for n̂ = 2 in more detail. From (3.33) we obtain three orthonormal wavefunctions

φ±(θ, t) =

√
γ

2
√
πN±

e−
1

4
γ cos[θ+λ(t)]−iE±t

�
γ + (1±

�
1 + γ2)

�
cos [θ + λ(t)] , (3.34)

φ0(θ, t) =

√
γ

2
√
πN0

e−
1

4
γ cos[θ+λ(t)]−iE0t sin [θ + λ(t)] , (3.35)

with normalization constants

N± = γ
�
1 + γ2 ±

�
1 + γ2

�
I0 (γ/2)−

�
2 + 2γ2 ± (2 + γ2)

�
1 + γ2

�
I1 (γ/2) , (3.36)

N0 = I1 (γ/2) , (3.37)
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and eigenenergies E0 = 4 − βζ2, E± = 2 − βζ2 ± 2
�
1 + γ2. The In (z) denote here the

modified Bessel function of the first kind. The functions in (3.34) and (3.35) solve the time-

dependent Schrödinger equation for ĥ(t) and are orthonormal on any interval [θ0, θ0 +2π]

�φn(θ, t) |φm(θ, t)
 =:

� θ0+2π

θ0

φ∗n(θ, t)φm(θ, t)dθ = δn,m n,m ∈ {0,±}. (3.38)

We may now compute analytically all time-dependent quantities of physical interest. For

instance, the expectation values for the generators in the trigonometric representation

result to

�
φ±(θ, t)

��u
��φ±(θ, t)

�
= −M±

N±
sin [λ(t)] , �φ0(θ, t)|u |φ0(θ, t)
 =

I2 (γ/2)

I1 (γ/2)
sin [λ(t)] , (3.39)

�
φ±(θ, t)

�� v
��φ±(θ, t)

�
=

M±

N±
cos [λ(t)] , �φ0(θ, t)| v |φ0(θ, t)
 = −

I2 (γ/2)

I1 (γ/2)
cos [λ(t)] , (3.40)

�φℓ(θ, t)| J |φℓ(θ, t)
 = 0, ℓ ∈ {0,±}, (3.41)

where we abbreviated

M± = γ
�
1− γ2 ±

�
1 + γ2

�
I1 (γ/2) +

�
2 + 2γ2 ± (2 + γ2)

�
1 + γ2

�
I2 (γ/2) . (3.42)

Similarly we may obtain any kind of n-level system from (3.33).

4. Conclusions

We have provided new analytical solutions for the time-dependent Dyson equation. The

time-dependent non-Hermitian Hamiltonians (2.2) considered are expressed in terms linear

and bilinear combinations of the generators for an Euclidean E2-algebra respecting the

PT i-symmetries defined in (2.3). Restricting the coefficient functions appropriately, the
corresponding time-dependent Hermitian Hamiltonians were constructed. We expect a

different qualitative behaviour for Hamiltonians belonging to different symmetry classes.

A specific PT 2-symmetric system was analyzed in more detail. For that model we

assumed the non-Hermitian Hamiltonian to be time-independent so that we could employ

the metric picture. This enabled us to compute the corresponding eigensystems in a quasi-

exactly solvable fashion using Lewis-Riesenfeld invariants. Thus we found for the first

time quasi-exactly solvable systems for Hamiltonians with explicit time-dependence. A

time-dependent Hermitian three-level system is presented in more detail.

Evidently there are many open issues and problems for further investigations left.

Having solved the time-dependent Dyson equation for a large class of models in section 2,

it would be interesting to solve their corresponding time-dependent Schrödinger equation

as carried out for the model in section 3. Furthermore, it is desirable in this type of analysis

to allow an explicit time-dependence also in the non-Hermitian Hamiltonians. Clearly one

may also generalize these studies to Euclidean algebras of higher rank and other types of

Lie algebras.
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