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Abstract

In various fields of applications such as capital allocation, sensitivity analysis and sys-

temic risk evaluation, one often needs to compute or estimate the expectation of a random

variable given that another random variable is equal to its quantile at some pre-specified

probability level. A primary example of such an application is the Euler capital allocation

formula for the quantile (often called the Value-at-Risk), which is of crucial importance

in financial risk management. It is well known that classic nonparametric estimation for

the above quantile allocation problem has a slower rate of convergence than the standard

rate. In this paper, we propose an alternative approach to the quantile allocation problem

via adjusting the probability level in connection with an expected shortfall. The asymp-

totic distribution of the proposed nonparametric estimator of the new capital allocation is

derived for dependent data under the setup of a mixing sequence. In order to assess the

performance of the proposed nonparametric estimator, AR-GARCH models are proposed

to fit each risk variable and further, a bootstrap method based on residuals is employed

to quantify the estimation uncertainty. A simulation study is conducted to examine the

finite sample performance of the proposed inference. Finally, the proposed methodology

of quantile capital allocation is illustrated for a financial data set.

Key-words: Bootstrap; Capital allocation; Expected Shortfall; Nonparametric esti-

mation; Sensitivity analysis; Value-at-Risk.
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1 Introduction

1.1 VaR, ES, and capital allocation

In the banking regulatory frameworks of Basel II and III, as well as the insurance reg-

ulatory regimes such as Solvency II and Swiss Solvency Test (see BCBS (2016), Sandström

(2010), EIOPA (2011) and IAIS (2014)), an institution is required to hold a certain capital

according to a pre-specified regulatory risk measure. These regulatory environments set the

capital via two standard risk measures: Value-at-Risk (VaR) and Expected Shortfall (ES).

For a random variable Y representing the future loss of a financial institution, the VaR at

probability level p ∈ (0, 1) is defined as

VaRp(Y ) := qp(Y ) := inf
{
x ∈ R : P(Y 6 x) > p

}
.

Further, the ES at probability level p ∈ (0, 1) is defined as

ESp(Y ) := cp(Y ) :=
1

1− p

∫ 1

p
VaRq(Y )dq.

Moreover, if Y has a finite mean, let ES0(Y ) = E[Y ].

Risk measures such as VaR and ES are not only used externally for calculating regulatory

capital, but also internally for risk management and performance measurement. In the internal

use of risk measures, a crucial problem is the allocation of total capital to individual business

lines in order to assess the performance of each business line (performance analysis), for

instance via their Return on Risk-adjusted Capital (RORAC).

Suppose that a financial institution has d different lines of business, each with an indi-

vidual risk Xj , j = 1, . . . , d. Let S be the total risk of this firm, that is, S := X1 + · · ·+Xd.

The allocation of the total regulatory capital, set via either ESp(S) or VaRp(S), is typically

carried out in practice via the Euler capital allocation rule (see Section 8.5 of McNeil et al.

(2015)). Roughly speaking, the Euler allocation rule calculates how much extra capital would

be needed if one business line increases its size by a small portion, or in other words, how

much extra capital it consumes to generate one unit of its return. As such, it is shown to be

the only RORAC compatible capital allocation rule (see Section 8.5.3 of McNeil et al. (2015)).

If the total regulatory capital for the aggregate risk S is calculated via ESp(S), then the

Euler allocation rule for the risk vector (X1, . . . , Xd) is given by

Cp(Xi|S) := E[Xi|S > qp(S)], i = 1, . . . , d.
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This allocation satisfies that ESp(S) =
∑d

i=1Cp(Xi|S), which is a natural and required con-

dition for any capital allocation rules. On the other hand, if the total regulatory capital is

calculated via VaRp(S), then the Euler allocation rule for (X1, . . . , Xd) is given by

Qp(Xi|S) := E[Xi|S = qp(S)], i = 1, . . . , d.

Once again, we have VaRp(S) =
∑d

i=1Qp(Xi|S).

A crucial observation is that, for a classic nonparametric estimator of Qp(Xi|S), the con-

vergence rate is slower than the standard convergence rate n−1/2 of a nonparametric estimator

for Cp(Xi|S), where n is the sample size. This is due to the fact that Qp(Xi|S) is a conditional

expectation on a slice {S = qp(S)} of the probability space, as opposed to Cp(Xi|S), which is a

conditional expectation on {S > qp(S)}, an event of non-zero probability. Therefore, a practi-

cal question is whether one could find an allocation (C1, · · · , Cd) such that
∑d

i=1Ci = VaRp(S)

and each of C1, . . . , Cd could be estimated nonparametrically at the standard rate of conver-

gence n−1/2. Ideally, this new allocation should also be close to Qp(Xi|S), so that it roughly

gives the Euler allocation.

1.2 Sensitivity analysis

Another major interpretation of Cp(Xi|S) and Qp(Xi|S) is in the context of sensitivity

analysis, which refers to the evaluation of the impact of some model inputs over the model

outputs. Reasonable quantifications of the uncertainty with the input variables and model

parameters represent standard ways to understand how sensible the model predictions are

and the limitations of a model as part of the model validation. These are of particular interest

when the performance measures are associated with the model outputs, which assist with

achieving effectiveness, one of the primary aims of any business model. Parameter sensitivity

analysis appears to be quite popular amongst academics and practitioners as it is easier to

interpret and communicate the outcomes of such analysis. If a parameter is estimated or

an expert opinion-based evaluation is in place, then sensitivity analysis illustrates sufficient

information about acceptable modeling errors for such parameters. On the other hand, if a

parameter is controllable by the decision-maker, then sensitivity analysis provides valuable

information on how likely the outputs meet some desired standards, i.e., achieve effectiveness.

A performance measurement is usually chosen to match the common practice across a
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specific sector and quite often, it is due to external pressures, i.e., government regulations or

independent rating agencies. One of the most common performance measurements is based

on quantiles and therefore, quantile sensitivity becomes a topical area of research.

Let h(X, θθθ) be a random outcome that depends on an observable random input X and

a given parameter vector θθθ, where X := (X1, · · · , Xd) ∈ Rd and θθθ := (θ1, · · · , θk) ∈ Rk.

The sensitivity of qp(h(X, θθθ)) and that of cp(h(X, θθθ)) with respect to each component of the

parameter θθθ are defined, respectively, as

q(i)p (θθθ) =
d

dθi
qp(h(X, θθθ)) and c(i)p (θθθ) =

d

dθi
cp(h(X, θθθ)), i = 1, . . . , k.

Under sufficient continuity and differentiability assumptions on h and X, one has

q(i)p (θθθ) = E
[

d

dθi
h(X, θθθ)

∣∣∣h(X, θθθ) = qp(h(X, θθθ))

]
, (1.1)

and

c(i)p (θθθ) = E
[

d

dθi
h(X, θθθ)

∣∣∣h(X, θθθ) > qp(h(X, θθθ))

]
. (1.2)

See Theorem 2 of Hong (2009) and Theorem 3.1 of Hong and Liu (2009) for details.

By taking Yi = d
dθi
h(X, θθθ) and Y = h(X, θθθ), (1.1) and (1.2) read as q

(i)
p (θθθ) = Qp(Yi|Y )

and c
(i)
p (θθθ) = Cp(Yi|Y ), the key quantities studied in this paper. Moreover, if d = k and

h(X, θθθ) =
∑d

i=1 θiXi, then q
(i)
p (111) = Qp(Xi|S) and c

(i)
p (111) = Cp(Xi|S), where 111 = (1, . . . , 1) ∈

Rd and S := h(X,111). Thus, the Euler allocation rules for VaR and ES are given as special

cases of (1.1) and (1.2).

As sensitivity analysis and capital allocation problems both boil down to similar mathe-

matical formulations, i.e., Qp(X|Y ) and Cp(X|Y ) for suitably chosen random variables X and

Y , we simply focus on the interpretation of the capital allocation in the rest of the paper.

1.3 Related literature

Euler allocation rules are extensively studied in Denault (2001) and Kalkbrener (2005);

we refer to Section 8.5 of McNeil et al. (2015) for a general treatment. Indeed, the allocation

rule proposed in this paper is briefly mentioned in Kalkbrener (2005) without either formal

theoretical development or statistical analysis; it is our intention to give a theoretical treatment

of this idea and to provide an efficient inference procedure.
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If (X1, . . . , Xd) is modeled by a parametric distribution family and independent observa-

tions are available, Glasserman (2005) and Glasserman and Li (2005) employed importance

sampling technique to estimate Cp(Xi|S) and Qp(Xi|S) with applications to portfolio credit

risk, but without addressing the uncertainty issue in fitting the parametric family. Nonpara-

metric estimation for Cp(Xi|S) has been studied in Scaillet (2004, 2005). For estimating

Qp(Xi|S) nonparametrically, we refer to Gourieroux et al. (2000), Liu and Hong (2009), Hong

(2009), where, as mentioned previously, these methods suffer from a slower convergence rate

than the standard convergence rate n−1/2. Under some special cases, Qp(Xi|S) could be

written as a ratio of two quantities and each quantity is estimated nonparametrically at the

standard rate of convergence, i.e., Qp(Xi|S) is estimated at the standard rate of convergence;

see Fu et al. (2009) and Jiang and Fu (2015).

Sensitivity analysis regarding input variables requires the concept of directional deriva-

tives and it has been applied to capital modeling problems in Tasche (2009). A much wider

scope within risk analysis is discussed in Tsanakas and Millossovich (2016). Quantile sensi-

tivity has appeared in the literature in various forms. For example, the linear risk portfolio is

discussed in Gourieroux et al. (2000); kernel estimation and importance sampling techniques

are combined by Tasche (2009) for a portfolio credit risk model; other nonparametric esti-

mations are employed via infinitesimal perturbation analysis (see Hong (2009)); importance

sampling techniques for a parametric portfolio credit risk model are detailed in Glasserman

(2005) and Glasserman and Li (2005) for both quantiles and average tail risk. Finally, sen-

sitivity analysis for the VaR-based and ES-based measures of performance are investigated

by using the special features of Fourier Transform Monte Carlo in Siller (2013) within the

portfolio credit risk setting.

The main reason for us to tackle the question of capital allocation is simply that we would

like both VaR-based allocation and ES-based allocation to be estimated nonparametrically

with the standard rate of convergence. This paper does not intend to discuss which risk

measure is more appropriate, although we are well aware of debates/discussions on these two

risk measures, briefly summarized below.

In the recent Basel documents (see e.g., BCBS (2016)), a move from VaR to ES as the

standard risk measure for market risk has been initiated and confirmed. But VaR and ES

co-exist in insurance regulation in different parts of the world (e.g., Solvency II vs the Swiss
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Solvency Test). This situation has stimulated extensive academic and industry debates on the

desirable properties of VaR and ES; see Embrechts et al. (2014) and Emmer et al. (2015) for

comprehensive discussions. As a result, various quantitative concepts enter into the discussion

and model uncertainty becomes the central focus. For instance, robustness of risk measures are

addressed in Cont et al. (2010), Kou et al. (2013), Krätschmer et al. (2014) and Embrechts

et al. (2015); for recent advances on elicitability and forecasting, see Ziegel (2016), Fissler

and Ziegel (2016), and Kou and Peng (2016); for development on model uncertainty in risk

aggregation, see Embrechts et al. (2013), Bernard and Vanduffel (2015) and Cai et al. (2018).

In summary, ES and VaR both have various advantages and disadvantages. Finally, the Euler

allocation formula Cp(Xi|S) finds mathematical similarity to the systemic risk measure CoES

studied in Adrian and Brunnermeier (2016) and Acharya et. al. (2012), where S represent the

overall economy; see also Acharya (2009), Chen et al. (2013) and Rogers and Veraart (2013)

for more recent results on measures of the systemic risk.

2 An ES-based approach to quantile capital allocation

We work with an atomless probability space (Ω,F ,P) and let Lq be the set of random

variables with finite q-th moment. For p ∈ (0, 1) and random variables X and Y , the key

quantities Qp(X|Y ) and Cp(X|Y ) are defined before. Recall that qp(X) = Qp(X|X) and

cp(X) = Cp(X|X).

For Y ∈ L1 and p ∈ (0, 1), let p∗ ∈ (0, 1) be given by the following equation

p∗ := inf{t ∈ [0, 1] : ct(Y ) > qp(Y )}. (2.1)

Note that in the above notation, we omit the dependence of p∗ on Y and p, which is clear

from the context. First, let us verify the existence of p∗.

Proposition 2.1. For Y ∈ L1 and p ∈ (0, 1), assume E[Y ] 6 qp(Y ). Then p∗ ∈ [0, p].

Moreover, if Y is continuously distributed, then cp∗(Y ) = qp(Y ).

All proofs are relegated in Section 7. Note that in insurance and financial applications,

p is typically close to 1 (e.g., p = 0.99, 0.995, 0.999, . . .), which makes the condition from

Proposition 2.1, E[Y ] 6 qp(Y ), a realistic assumption.
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The primary application of the above proposition is the capital allocation outlined in

Section 1.1, where, for a portfolio of risks X := (X1, . . . , Xd), we take X = Xi and Y =

X1 + · · · + Xd. In the sequel, we shall refer to Cp∗(X|Y ) as the ES-based allocation for

the p-quantile. If Y is continuously distributed, an immediate feature of the allocation

(Cp∗(X1|Y ), . . . , Cp∗(Xd|Y )) is

d∑
i=1

Cp∗(Xi|Y ) = Cp∗

(
d∑
i=1

Xi

∣∣∣Y) = cp∗(Y ) = qp(Y ). (2.2)

Therefore, (Cp∗(X1|Y ), . . . , Cp∗(Xd|Y )) indeed gives an allocation of the VaR-based total risk

capital qp(Y ).

Statistical inference for the new allocation Cp∗(Xi|Y ) is given in Section 3. Before ap-

proaching the estimation for Cp∗(Xi|Y ), we first discuss some useful properties. As mentioned

in Section 1.1, we would like the new allocation Cp∗(Xi|Y ) to be close to Qp(Xi|Y ). Indeed,

for elliptically distributed (X,Y ), we have the equality Cp∗(X|Y ) = Qp(X|Y ), as illustrat-

ed by the following example. The elliptical family includes the multivariate normal and t-

distributions. Due to its ease of implementation, this family of distributions is commonly

used in risk management, see McNeil et al. (2015), and credit risk analysis, see Glasserman

(2005) and Glasserman and Li (2005). Further results on the relation between Cp∗(X|Y ) and

Qp(X|Y ) are presented in Section 5.

Example 2.1 (Elliptical distributions). For a vector µ = (µ1, µ2) and a positive semi-definite

matrix Σ = (σij) ∈ R2×2, let (X,Y ) follow from an elliptical distribution E2(µ,Σ, φ), where

φ is the generator of E2(µ,Σ, φ) (see Cambanis et al. (1981)). Assume E[|Y |] < ∞. By

Corollary 5 of Cambanis et al. (1981), for p ∈ (0, 1),

Qp(X|Y ) = E[X|Y = qp(Y )] = µ1 +
σ12
σ22

(qp(Y )− µ2).

Analogously, (see, e.g., Theorems 2-3 of Landsman and Valdez (2003)), for p ∈ (0, 1),

Cp(X|Y ) = E[X|Y > qp(Y )] = µ1 +
σ12
σ22

(cp(Y )− µ2).

If p ∈ [1/2, 1), then p∗ ∈ [0, 1). Therefore, we have Cp∗(X|Y ) = Qp(X|Y ) for p > 1/2. In

the capital allocation setting, if (X1, . . . , Xd) ∼ Ed(µ,Σ, φ) and Y = X1 + · · · + Xd is non-

degenerate and integrable, then (Xi, Y ) is elliptically distributed for all i = 1, . . . , d, and in
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turn, for p > 1/2 we have that

(Cp∗(X1|Y ), . . . , Cp∗(Xd|Y )) = (Qp(X1|Y ), . . . , Qp(Xd|Y )),

which can also be derived from Corollary 8.43 of McNeil et al. (2015).

Next, we build up a simple example to show that Qp(X|Y ) 6= Cp∗(X|Y ) is possible,

although the two values are typically quite close. This example is recalled again later when

we discuss the asymptotic equivalence of Qp(X|Y ) and Cp∗(X|Y ).

Example 2.2 (Pareto risks). For α > 1, take X ∼ Pareto(2α), i.e., P(X > x) = x−2α, x > 1.

Let Y = X2 and therefore, Y ∼ Pareto(α). One may calculate, for t > 1,

y(t) = E[Y |Y > t] =

∫∞
t αy−αdy

t−α
= t

α

α− 1
,

and hence, E[X|Y = y(t)] =
√
t α
α−1 . On the other hand,

E[X|Y > t] = E[X|X >
√
t] =
√
t

2α

2α− 1
.

Therefore,

E[X|Y = y(t)]

E[X|Y > t]
=

√
α
α−1
2α

2α−1
=

2α− 1

2
√
α(α− 1)

6= 1. (2.3)

For some p with qp(Y ) > E[Y ], we can replace t by qp∗(Y ). Then y(t) = cp∗(Y ) = qp(Y ), and

(2.3) gives that Qp(X|Y ) 6= Cp∗(X|Y ). Moreover we note that the value in (2.3) is quite close

to 1 if α > 2 (e.g., it is 1.06066 for α = 2 and 1.00416 for α = 6), which motivates our study

on the asymptotic equivalence in Section 5.

Remark 2.1. It might be worth noting that the applicability of the proposed ES-based

allocation for a quantile does not rely on the fact that the total capital is calculated via

qp(Y ). Indeed, if the total capital is C, then one may always write p∗ = inf{t ∈ [0, 1] :

ct(Y ) > C} and calculate
(
Cp∗(X1|Y ), . . . , Cp∗(Xd|Y )

)
to arrive at an allocation rule satisfying

Cp∗(X1|Y ) + · · · + Cp∗(Xd|Y ) = C. Certainly, the nice interpretation of the Euler allocation

(e.g., RORAC compatibility) cannot be discussed in this case, because we are not given the

formula of the total capital. Note that in practice, there might be many adjustments to the

total capital allocation (e.g., stress scenarios, moving averages and liquidity adjustments; see

BCBS (2016)). Our method could be easily adapted to such cases, as the total capital C is

always known in practical capital allocation problems.
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3 Nonparametric inferences

Throughout this section, for the purpose of illustration, we again adopt a capital alloca-

tion setting. Let p ∈ (0, 1) and (X1, . . . , Xd) be a random vector such that Y := X1 + · · ·+Xd

is continuously distributed. For simplicity, write Cj = Cp∗(Xj |Y ) for all j = 1, . . . , d, which

is our target to estimate. Let {Xt = (X1,t, · · · , Xd,t)}nt=1 be a stationary sequence from the

distribution of (X1, . . . , Xd) and write Yt := X1,t + · · ·+Xd,t for all t = 1, . . . , n.

A nonparametric estimator p̂∗ for p∗ in (2.1) is obtained by solving the following equation

for t ∈ [0, 1),
1

1− t

∫ 1

t
G−n (s) ds = G−n (p),

where Gn(s) := 1
n

∑n
t=1 I(Yt 6 s) and G−n denotes the generalized inverse function of Gn. It is

not difficult to check that the above equation has a unique solution when
∫ 1
0 G

−
n (s) ds < G−n (p).

Therefore, a nonparametric estimator for Cj = Cp∗(Xj |Y ) is given by

Ĉj :=
1

1− p̂∗
1

n

n∑
t=1

Xj,tI(Yt > G−n (p̂∗)). (3.1)

To derive the asymptotic distribution of the above estimator,
{
Xt := (X1,t, · · · , Xd,t)

}∞
t=−∞

is assumed to be a strictly stationary α-mixing sequence, i.e.,

αX(k) := sup
{∣∣P(A ∩B)− P(A)P(B)

∣∣ : A ∈ F i−∞, B ∈ F∞i+k,−∞ < i <∞
}
→ 0

as k →∞, where Fba denotes the σ-field generated by {Xt}bt=a.

Let Fj and G denote the distribution function of Xj,t and Yt, respectively. Further, define

C(x, y; j) := P
(
Fj(Xj,t) 6 x, 1−G(Yt) 6 y

)
, Cn(x, y; j) :=

1

n

n∑
t=1

I(Fj
(
Xj,t) 6 x, 1−G(Yt) 6 y

)
,

C(x1, · · · , xd−1, y) := P
(
F1(X1,t) 6 x1, · · · , Fd−1(Xd−1,t) 6 xd−1, 1−G(Yt) 6 y),

and

Cn(x1, · · · , xd−1, y) :=
1

n

n∑
t=1

I
(
F1(X1,t) 6 x1, · · · , Fd−1(Xd−1,t) 6 xd−1, 1−G(Yt) 6 y).

A key technique in deriving our theoretical results is the following weighted approximation

of empirical copula process. Under the regularity condition C1) given in the next paragraph,

it follows from Proposition 4.4 of Berghaus et al. (2017) that
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sup
06x1,··· ,xd−1,y61

|
√
n
(
Cn(x1, · · · , xd−1, y)− C(x1, · · · , xd−1, y)

)
−W (x1, · · · , xd−1, y)| = op(1)

(3.2)

and

sup
1/n6u1,u261−1/n

∣∣√n(Cn(u1, u2; j)− C(u1, u2; j)
)
−W (u1, u2; j)

∣∣
{min(u1, u2, 1− u1, 1− u2)}δ

= op(1) (3.3)

for any δ ∈ (0, 1/2), where W (u1, u2; j) is W (x1, · · · , xd−1, y) with xj = u1, y = u2 and the

rest being one, Wd(y) = W (1, · · · , 1, y), and W (x1, · · · , xd−1, y) is a multivariate centered

Gaussian process with covariance

Cov
(
W (x1, · · · , xd−1, y),W (x̃1, · · · , x̃d−1, ỹ)

)
=

∑∞
i=−∞Cov

(
I
(
F1(X1,1) 6 x1, · · · , Fd−1(Xd−1,1) 6 xd−1, 1−G(Y1) 6 y

)
,

I
(
F1(X1,1+i) 6 x̃1, · · · , Fd−1(Xd−1,1+i) 6 x̃d−1, 1−G(Y1+i) 6 ỹ

))
.

Throughout we assume the following regularity conditions:

C1) αX(k) = O(ak) for some a ∈ (0, 1);

C2) E[Y ] < qp(Y );

C3) G is differentiable, G′(x) is continuous at G−(p) and C(2)(x, y; j) = ∂
∂yC(x, y; j) is con-

tinuous at 1− p∗ for all x ∈ [0, 1];

C4) There exist η0 > 0 and δ0 > 0 such that E
[
|Yt|2+δ0I

(
Yt > G−(p∗)− η0

)]
<∞,

E
[
|Xj,t|2+δ0I

(
St > G−(p∗)− η0

)]
<∞ and sup

|s−p∗|6η0

∫ 1

0
C(2)(x, 1− s; j)dF−j (x) <∞

for j = 1, · · · , d− 1.

Theorem 3.1. Under conditions C1)–C4), for a given p ∈ (0, 1), we have

√
n(p̂∗−p∗) = − 1

G−(p)−G−(p∗)
∫ 1
p∗

Wd(1−s)
G′(G−(s)) ds

+ (1−p∗)Wd(1−p)
G′
(
G−(p∗)

)(
G−(p)−G−(p∗)

) + op(1),
(3.4)

√
n(Ĉj−Cj)

=
(
− 1
G−(p)−G−(p∗)

∫ 1
p∗

Wd(1−s)
G′(G−(s))ds+ (1−p∗)Wd(1−p)

G′(G−(p∗))(G−(p)−G−(p∗))

)
×(

1
(1−p∗)2

∫ 1
0 F

−
j (x)dC(x, 1− p∗; j) + 1

1−p∗
∫ 1
0 C

(2)(x, 1− p∗; j)dF−j (x)
)

+ 1
1−p∗

(
−
∫ 1
0 W (x, 1−p∗; j)dF−j (x) +Wd(1−p∗)

∫ 1
0 C

(2)(x, 1−p∗; j)dF−j (x)
)

+op(1) for j = 1, · · · , d− 1,

(3.5)
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and √
n
∑d

j=1(Ĉj − Cj)

=
(
− 1
G−(p)−G−(p∗)

∫ 1
p∗

Wd(1−s)
G′(G−(s))ds+ (1−p∗)Wd(1−p)

G′(G−(p∗))(G−(p)−G−(p∗))

)
×(

1
(1−p∗)2

∫ 1
p∗ G

−(y) dy + G−(p∗)
1−p∗

)
− 1

1−p∗
∫ 1
p∗Wd(1− x)dG−(x) +op(1).

(3.6)

Remark 3.1. Similarly to Fermanian and Scaillet (2003), a smoothed version of Ĉj can be

employed. We do not study the smoothed estimation here as it is known that a smoothed

distribution estimation only improves the empirical distribution in the sense of the second

order error (see Cheng and Peng (2002)).

Remark 3.2. The asymptotic distribution of
√
n(Ĉd − Cd) follows from (3.5) and (3.6).

Further we can estimate the percentage Cj/
∑d

i=1Ci = Cj/qp(Y ) by Ĉj/
∑d

i=1 Ĉi and its

asymptotic distribution readily follows from (3.5) and (3.6) by noting that

√
n

(
Ĉj∑d
i=1 Ĉi

− Cj∑d
i=1Ci

)
=

√
n(Ĉj − Cj)∑d

i=1Ci
− Cj

(
∑d

i=1Ci)
2

√
n

d∑
i=1

(Ĉi − Ci) + op(1).

Obviously, Theorem 3.1 shows that Cj can be estimated nonparametrically at the stan-

dard rate of convergence n−1/2 and the asymptotic distribution of the proposed nonparametric

estimator Ĉj is normal, but with a complicated asymptotic variance. To construct a confi-

dence interval for Cj , one may simply employ the blockwise bootstrap method for a mixing

sequence. However, because we are dealing with quantiles, nonparametric inferences become

very inefficient due to a small number of blocks. A simple remedy is to model the dependence

of each {Xi,t}nt=1 by a time series model and then to employ a bootstrap method based on

residuals to construct confident intervals. Specifically, we assume that each {Xi,t}nt=1 follows

an AR-GARCH model (for details, see Chen and Fan (2006)), i.e.,

Xj,t = µj +

Pj∑
i=1

aj,iXj,t−i+ ej,t, ej,t = h
1/2
j,t ηj,t, hj,t = wj +

qj∑
i=1

αj,ie
2
j,t−i+

pj∑
k=1

βj,khj,t−k (3.7)

for all j = 1, . . . , d, where
{
ηt := (η1,t, . . . , ηd,t)

}
is a sequence of independent and identically

distributed random vectors with zero means and variances of one.

In order to estimate the asymptotic variance of Ĉj via a bootstrap method, one has

to estimate ej,t, which requires estimation of the unknown parameters in (3.7). An obvious

estimator is the so-called quasi maximum likelihood estimator; its asymptotic normality is

available in Francq and Zaköıan (2004), which requires finite fourth moments of both ej,t and

11



ηj,t. However, it is quite often in practice that
∑qj

i=1 αj,i +
∑pj

k=1 βj,k are close to one, and

thus, assuming Ee4j,t <∞ may be questionable. Here, we propose to employ the self-weighted

estimator from Ling (2007) with the following weights

δj,t =

{
max

(
1,

1

dj

t−1∑
k=1

|Xt−k|I
(
|Xt−k| > dj

)
k9

)}−4
to estimate

θj = (µj , aj,1, . . . , aj,Pj , αj,1, . . . , αj,qj , βj,1, . . . , βj,pj ),

say θ̂j , where the asymptotic normality only requires E[|ej,t|] < 1 and E[η2j,t] <∞. Here, dj is

chosen as the 90% sample quantile of {Xj,t}nt=1, as suggested in Zhu and Ling (2011).

After obtaining θ̂1, . . . , θ̂d, we get our estimators for ηt, t = 1, . . . , n, say η̂t. Therefore,

we resample from {η̂t}nt=1 with sample size n and then refit models (3.7) to obtain bootstrap

samples X∗j,t for j = 1, . . . , d and t = 1, . . . , n. Based on this bootstrap sample, one may cal-

culate the bootstrapped estimator of Ĉj . By repeating this procedure, a bootstrap confidence

interval for Cj via Ĉj could be constructed.

Remark 3.3. If Xt can not be modeled by (3.7) directly such as stock prices, but one can

write Xt = k(Xt−1,Zt) with a known function k and Zt being modeled by (3.7), then a

so-called one-step-ahead conditional capital allocation Cp∗(Xj,n+1|Yn+1) given X1, · · · ,Xn

become more meaningful due to nonstationarity of {Xt}. In this case, the above proposed

nonparametric inference is still valid.

4 Numerical results

4.1 Real data analysis

The proposed nonparametric estimator is now investigated for financial data. The boot-

strap method is applied to the 100 times log-returns of IBM stock price (X1,t) and S&P 500

index (X2,t) from December 1, 2005 to December 31, 2015. Hence, Yt := X1,t +X2,t.

First, we compute the proposed nonparametric estimates Ĉp̂∗(X1,1|Y1) and Ĉp̂∗(X2,1|Y1)

for levels p = 0.95 and 0.99. To examine the closeness of these new allocations to the VaR-

based allocations Qp(X1,1|Y1) and Qp(X2,1|Y1), we estimate them nonparametrically by

Q̂p(X1,1|Y1) =

∑n
t=1X1,tk(Yt−θ̂h )∑n
t=1 k(Yt−θ̂h )

and Q̂p(X2,1|Y1) =

∑n
t=1X2,tk(Yt−θ̂h )∑n
t=1 k(Yt−θ̂h )

,

12



where θ̂ is the p-th sample quantile of Yt’s. We use k(x) = 3
4(1 − x2) for x ∈ (−1, 1)

and h = 0.5n−1/5, n−1/5, 1.5n−1/5, which have the same rate of convergence as the opti-

mal bandwidth in terms of minimizing the mean squared error. We also estimate the per-

centages
Cp∗ (X1,1|Y1)

Cp∗ (X1,1|Y1)+Cp∗ (X2,1|Y1) and
Cp∗ (X2,1|Y1)

Cp∗ (X1,1|Y1)+Cp∗ (X2,1|Y1) by
Ĉp̂∗ (X1,1|Y1)

Ĉp̂∗ (X1,1|Y1)+Ĉp̂∗ (X2,1|Y1)
and

Ĉp̂∗ (X2,1|Y1)
Ĉp̂∗ (X1,1|Y1)+Ĉp̂∗ (X2,1|Y1)

, respectively. Because the sum of these two estimators is one, it is

easy to check that these two estimators have the same standard deviation. Hence we only

report results for the first estimator.

To compute the standard deviations of the proposed estimators by the bootstrap method

given after Theorem 3.1, which uses the self-weighted quasi maximum likelihood estimation

in Ling (2007) to fit AR(1)-GARCH(1,1) models to our data. The estimates are µ1 = 0.0389, a1,1 = −0.0264, w1 = 0.1201, α1,1 = 0.1187, β1,1 = 0.8161,

µ2 = 0.0770, a2,1 = −0.063, w2 = 0.0366, α2,1 = 0.1386, β2,1 = 0.8393.
(4.1)

Based on the above estimates and drawing 1, 000 bootstrap samples, we compute the boot-

strapped standard deviations for Ĉp̂∗(X1,1|Y1), Ĉp̂∗(X2,1|Y1), Q̂p(X1,1|Y1) and Q̂p(X2,1|Y1). We

also compute the bootstrapped correlation coefficients between Ĉp̂∗(X1,1|Y1) and Ĉp̂∗(X2,1|Y1),

and between Q̂p(X1,1|Y1) and Q̂p(X2,1|Y1). These results are reported in Table 1. We remark

the bootstrapped standard deviations of Q̂p(X1,1|Y1) and Q̂p(X2,1|Y1) are incorrect as Hall

(1990) showed that bootstrap method can not catch the asymptotic bias in kernel density

estimation.

From Table 1, we observe that i) the new allocations are close to their corresponding

VaR-based allocations; ii) the capital allocation estimate for S&P 500 index has a larger

variance than that for the IBM stock price, which may be due to the fact that β2,1 + α2,1 is

closer to one than β1,1 +α1,1; iii) the variance for each estimate increases as p becomes larger;

iv) the variances for the VaR-based allocation estimates are quite sensitive to the choice of

bandwidth, which may be explained by the inconsistency of the employed bootstrap method

as argued in Hall (1990); v) the variances of the VaR-based allocation estimates are larger

than those for the new allocation estimates when p = 0.99, which may be explained by the

faster rate of convergence of the new allocation estimates.

To distinguish different time periods, we use 10-day return data and a moving window

of 250 or 500 observations to compute p̂∗ and the percentage of capital allocated to the S&P

500 index with respect to the level p = 0.99. These estimates are reported in Figures 1-2.
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Table 1: Estimates, Bootstrapped Standard Deviations and Bootstrapped Correlation Co-

efficient. Estimates and bootstrapped standard deviations are reported for Ĉp̂∗(X1,1|Y1),

Ĉp̂∗(X2,1|Y1), Q̂p(X1,1|Y1) and Q̂p(X2,1|Y1) for levels p = 0.95 and 0.99. The bootstrapped

correlation coefficients between Ĉp̂∗(X1,1|Y1) and Ĉp̂∗(X2,1|Y1) are −0.0891 for p = 0.95 and

−0.2432 for p = 0.99. The bootstrapped correlation coefficients between Q̂p(X1,1|Y1) and

Q̂p(X2,1|Y1) with h = 0.5n−1/5, n−1/5, 1.5n−1/5 are, respectively, −0.4493,−0.2008, 0.0427 for

p = 0.95 and −0.5996,−0.6117,−0.4389 for p = 0.99.

p = 0.95 p = 0.99

Estimate Bootstrapped SD Estimate Bootstrapped SD

p∗ 0.8484 0.0084 0.9687 0.0035

Cp∗(X1,1|Y1) 1.9441 0.1318 3.3539 0.3921

Cp∗(X2,1|Y1) 1.7000 0.1817 3.3379 0.5869

Qp(X1,1|Y1), h = 0.5n−1/5 1.8889 0.2000 3.4250 0.7938

Qp(X2,1|Y1), h = 0.5n−1/5 1.7562 0.2097 3.2555 0.8989

Qp(X1,1|Y1), h = n−1/5 1.9545 0.1632 3.3627 0.6044

Qp(X2,1|Y1), h = n−1/5 1.6771 0.1789 3.3111 0.7781

Qp(X1,1|Y1), h = 1.5n−1/5 2.0329 0.1395 3.3840 0.4862

Qp(X2,1|Y1), h = 1.5n−1/5 1.5974 0.1643 3.2869 0.6773

Cp∗ (X1,1|Y1)
Cp∗ (X1,1|Y1)+Cp∗ (X2,1|Y1) 0.5335 0.0344 0.5012 0.0645

During a majority of time spots reported in Figures 1, the value of p∗ is slightly less than

0.975, indicating two conclusions for this particular data set. First, the Basel Committee

on Banking Supervision recently replaced VaR0.99 by ES0.975 as the risk measure for 10-day

market risk (BCBS (2016)). Figure 1 shows that the transition from VaR0.99 to ES0.975 will

slightly increase the capital requirement for market risk. Second, as p∗ ≈ 0.974 for normal

risks, the plots in Figure 1 show that the 10-day return data have a heavier tail than normal

distribution; see McNeil et al. (2015) for more general discussions on this phenomenon. In

Figure 2, we observe that the percentage of the capital allocated to S&P takes the smallest

value during the financial crisis. This may be explained by the fact that the IBM stock
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volatility were high during the period of 2007-2009, and at the same time the value of S&P

decreased drastically (hence, a less portion of the portfolio is invested in S&P).

Figure 1: p̂∗ based on real data. p̂∗ is calculated for p = 0.99 based on ten days’ returns with

a moving window of observations 250 or 500.
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Finally, in order to simulate data close to these two real data sets, we need to fit a

parametric family to ηt. Although we could use the R package ’sn’ to fit a skewed bivariate

t-distribution, the mean and variance of ηj,t may not be zero and one, respectively, which

are required by the models (3.7). Instead, we simply use the R function ’stdFit’ to fit a t

distribution to each marginal and use the R package ’copula’ to fit a t copula to the copula of

ηt. This gives marginal distributions t(4.9504) and t(5.3462), and the t copula with ρ = 0.6976

and ν = 5.3355. These parameters will be employed to generate samples to examine the finite

sample performance of the proposed nonparametric estimator and its bootstrap method in the

next subsection.

4.2 Simulation study

In this subsection, we examine the finite sample performance of the proposed nonpara-

metric estimation by considering the models described in (3.7) with d = 2, θ1 and θ2 as given

in (4.1), while η′ts are independent random vectors with t-copula and t-distributed marginals

with all parameters obtained as in the above real data analysis.
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Figure 2: Percentage estimate based on real data.
Ĉp̂∗ (X1,1|Y1)

Ĉp̂∗ (X1,1|Y1)+Ĉp̂∗ (X2,1|Y1)
is calculated for

p = 0.99 based on ten days’ returns with a moving window of observations 250 or 500.
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Note that our new capital allocation Cp∗(Xj |Y ) could be different from the studied one

Qp(Xj |Y ) in the literature, and our proposed nonparametric estimator for Cp∗(Xj |Y ) has a

faster rate of convergence than the one for Qp(Xj |Y ). Unlike the nonparametric estimator

for Qp(Xj |Y ), the proposed nonparametric estimator for the new capital allocation does not

need to choose a bandwidth. Moreover, there is no existing results in the literature of quan-

tile capital allocation and sensitivity analysis on quantifying the inference uncertainty based

on dependent sequence due to the difficult choice of bandwidth in terms of coverage accura-

cy. Hence we do not compare the newly proposed quantity and its inference with the Euler

allocations based on VaR.

Firstly, in order to obtain the true values of C1 and C2 at p = 0.95 and 0.99, we draw

100, 000 random samples of size n = 100, 000 from our models. The next step is to approximate

the true values by the averages of these Ĉ1 and Ĉ2, which are 2.7294 for p = 0.95 and 5.6655

for p = 0.99, as reported in Table 2.

Secondly, we draw 400 random samples of size n = 2000 and 3000 from the above models

and then compute Ĉ1 and Ĉ2, whose mean and standard deviation based on these 400 estimates

are reported in Table 2 as well. The reason why we do not repeat a larger number of times

is that the bootstrap method for a time series model is computationally intensive, because
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one has to refit the time series model to the resampling from the residuals. Due to the

computational constraint, the bootstrap estimates of the standard deviations of the proposed

estimates, as described after Theorem 3.1, are based on 400 repetitions, which are reported

in Table 2. From Table 2, we observe that the proposed nonparametric estimator becomes

more accurate in terms of mean squared errors when the sample size increases. Moreover, the

asymptotic variance increases as p becomes larger, while Ĉ1 has a smaller variance than Ĉ2

under the considered setting, which is consistent with the observation in the real data analysis.

Table 2: Nonparametric Estimate: the true values and proposed nonparametric estimates are

given when p = 0.95 and 0.99; the numbers in brackets are the standard deviations of Ĉ1 and

Ĉ2, respectively.

(p, n) True C1 Ĉ1 Bootstrap SD True C2 Ĉ2 Bootstrap SD

(0.95, 2000) 1.9062 1.9137 (0.1451) 0.1545 1.6872 1.6778 (0.2678) 0.2648

(0.99, 2000) 3.2956 3.3177 (0.4242) 0.5265 3.1799 3.1391 (1.0224) 1.1787

(0.95, 3000) 1.9062 1.9055 (0.1216) 0.1203 1.6872 1.6546 (0.2106) 0.2018

(0.99, 3000) 3.2956 3.3138 (0.3835) 0.3741 3.1797 3.0588 (0.6767) 0.9099

5 Properties of the new allocation

Two examples in Section 2 show that the new allocation Cp∗(X|Y ) may be equal to or

different from Qp(X|Y ). As the level p given in risk management is always close to one, we

would like Cp∗(X|Y ) to be close to Qp(X|Y ) for a larger p. That is, we investigate when

Qp(X|Y )

Cp∗(X|Y )
→ 1 as p ↑ 1. (5.1)

Again recall that p∗ depends on p.

Assuming that Y is continuously distributed with X and Y being unbounded from above,

i.e., qp(X)→∞ and qp(Y )→∞ as p ↑ 1, it is obvious that (5.1) is equivalent to

E[X|Y = y(t)]

E[X|Y > t]
→ 1 as t→∞, (5.2)

where y(t) = E[Y |Y > t]. The next result shows that (5.2) holds (and therefore, (5.1) holds

as well), under some assumptions.
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Theorem 5.1. Let X,Y ∈ L1, unbounded from above, and Y is continuously distributed.

(i) If lim
t→∞

E[X|Y = t]/t exists, is finite and non-zero, then (5.2) holds.

(ii) Assume that X > 0, there exists t0 > 0 such that E[X|Y = t] < ∞ for all t > t0, and

further,

lim
t→∞

P(X > tx|Y = t) := g1(x) (5.3)

holds uniformly on R+ := [0,∞) with g1 being integrable on R+. Then, E[X|Y = t]/t→∫∞
0 g1(x) dx as t→∞ and in turn, (5.2) holds as long as

∫∞
0 g1(x) dx > 0.

(iii) Assume that x0 := sup{x ∈ R : F (x) = 0} > −∞ and there exists t0 > 0 such that

E[X|Y = t] <∞ for all t > t0. If

lim
t→∞

P(X > x|Y = t) := g2(x) (5.4)

holds uniformly on [x0,∞), then (5.2) holds whenever x0 +
∫∞
x0
g2(x) is finite and non-

zero.

(iv) Assume that (X,Y ) has a density function f such that

lim
t→∞

f(tx, ty)

v(t)
:= q(x, y) for (x, y) ∈ R2, (5.5)

where v(t) is a regularly varying function at infinity with index −α for some α > 2 (that

is, limt→∞ v(tx)/v(t) = x−α for all x > 0). Then, (5.2) holds as long as
∫∞
−∞ zq(z, 1)dz

and
∫∞
−∞ q(z, 1)dz are finite and nonzero.

(v) If X and Y are jointly log-normally distributed, i.e., (logX, log Y ) is bivariate normal,

then (5.2) holds.

Now, let us try to better understand the limits (5.3) and (5.4). If F and G are continuous,

then there exists a unique survival copula Ĉ such that

P(X > x, Y > y) = Ĉ
(
F (x), G(y)

)
for all (x, y) ∈ R2

+

(see Sklar (1959)). The partial derivatives of Ĉ with respect to first and second argument are

denoted by Ĉ1 and Ĉ2, respectively, which exists almost surely (for details, see Nelsen (2006)).

Clearly, P(X > tx|Y = t) = Ĉ2

(
F (tx), G(t)

)
for all x > 0. Now, if the following limits exist

lim
u↓0

Ĉ2(ux, u) := L1(x) and lim
t→∞

F (tx)

G(t)
:= l(x) for all x > 0,
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such that the image of l, l(R+), is a subset of the continuity set for L1, CL1 , then (5.3) holds

with g̃1 = L1 ◦ l on R+. This condition is not restrictive as L1 is monotone and therefore,

its discontinuity set, R \ CL1 , is at most countable. A sufficient condition for (5.3) to hold

uniformly is for g1 to be continuous on R+.

The strength of upper tail dependence is stronger in condition (5.3) as compared to

(5.4), which makes the main difference between them. A sufficient condition for (5.4) to hold

uniformly is for g2 to be continuous on [x0,∞). As before, if F and G are continuous with

survival copula Ĉ, then

lim
u↓0

Ĉ2(x, u) := L2(x), x ∈ [0, 1] (5.6)

implies that (5.4) holds with g̃2 = L2◦F on [x0,∞). Many copulas with a weak tail dependence,

known as asymptotic independence, satisfy this condition, and the trivial independence copula

is the simplest example.

Recall that, in Example 2.2, the ratio

Qp(X|Y )

Cp∗(X|Y )
=

2α− 1

2
√
α(α− 1)

which does not converge to 1 as p → ∞. In this example, E[X|Y = t]/t → 0 as t → ∞ and

limt→∞ P(X > x|Y = t) = 1 for all x ∈ R, suggesting that Theorem 5.1 does not apply.

Robustness issues are essential to various risk management procedures, including capital

allocation and sensitivity analysis. We refer to Huber and Ronchetti (2009) for robust statistics

and in particular, see Kou et al. (2013), Embrechts et al. (2015) and Kou and Peng (2016) for

robustness in risk capital calculation. In the latter context, robustness refers to the continuity

of the underlying quantity with respect to a small perturbation in the underlying model,

typically modeled by a convergence in distribution.

In the following, we address the robustness issue of Cp∗(X|Y ). Consider a sequence

{(Xn, Yn)}n∈N, let p∗ be given by (2.1) and p∗n := inf{t ∈ [0, 1] : ct(Yn) > qp(Yn)}, n ∈ N.

By convention, inf ∅ = 0. To show the appropriate weak convergence, we do not assume any

particular structure for {(Xn, Yn)}n∈N, except for its uniform integrability and weak conver-

gence to the true distribution of (X,Y ). For statistical inference, such assumptions are almost

always satisfied if (Xn, Yn) represents the empirical distribution of (X,Y ) from n stationary

observations.
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Theorem 5.2. Let p ∈ (0, 1) and {(Xn, Yn)}n∈N be a sequence of uniformly integrable random

vectors converging to a random vector (X,Y ) in distribution. Assume that qt(Y ) is continuous

and strictly increasing in t ∈ (0, 1). If E[Y ] 6 qp(Y ), then

(i) p∗n → p∗ as n→∞;

(ii) Cp∗n(Xn|Yn)→ Cp∗(X|Y ) as n→∞.

The uniform integrability condition in Theorem 5.2 may be replaced by assuming that the

sequence {(Xn, Yn)}n∈N is componentwise uniformly bounded from below and the convergence

in expectation holds, i.e., (E[Xn],E[Yn])→ (E[X],E[Y ]) as n→∞. This assertion is a direct

consequence of Theorem 3.6 of Bilingsley (1999).

Theorem 5.2 suggests that if one estimates Cp∗(X|Y ) using an empirical distribution of

observations from (X,Y ), then as long as the empirical distribution converges to the true

distribution, an empirical version of Cp∗(X|Y ) (similar to (3.1)) converges to Cp∗(X|Y ) and

thus it yields a consistent estimator.

The result in Theorem 5.2 directly applies to the capital allocation problem. If the

following convergence in distribution

{(X1,n, . . . , Xd,n)}n∈N → (X1, . . . , Xd)

holds as n → ∞ such that {(X1,n, . . . , Xd,n)}n∈N is uniformly integrable, qt(Y ) is continuous

and strictly increasing in t ∈ (0, 1), then Theorem 5.2 implies that Cp∗n(Xj,n|Yn)→ Cp∗(Xj |Y )

as n→∞ for all j = 1, . . . , n, where Y := X1 + · · ·+Xd, and Yn := X1,n + · · ·+Xd,n, n ∈ N.

We remark that the robustness property of Cp∗(X|Y ) in Theorem 5.2 cannot be expected

for Qp(X|Y ). Typically, one needs stronger continuity assumptions to ensure the convergence

of Qp(Xn|Yn) to Qp(X|Y ). We illustrate this by the following simple example.

Example 5.1. Let Y1, Z1, Y2, Z2, . . . be an iid standard normal sequence, and let Xn =

Zn+Z2
nI{−1/n<Yn<1/n}, n = 1, 2, . . . . It is clear that (Xn, Yn) converges to a standard bivariate

normal random vector (X,Y ) in distribution as n→∞, and all assumptions in Theorem 5.2

are satisfied. However, Q1/2(Xn|Yn) = E[Xn|Yn = 0] = 1 and Q1/2(X|Y ) = 0, suggesting that

the robustness property in Theorem 5.2 does not hold for Qp(X|Y ).

Remark 5.1. Theorem 5.2 shows that the ES-based capital allocation is robust, although

one might normally expect that an estimation for E[X|Y > qp(Y )] might be more prone to

20



outliers than that for E[X|Y = qp(Y )]. Note that in Theorem 5.2, we assumed that the

sequence {(Xn, Yn)}n∈N is uniformly integrable. For such a sequence, “outliers” are confined

to a certain magnitude, and this condition is important for the robustness result to hold. For

robustness of ES on uniformly integrable sets, see e.g., Theorem 3.5 of Pesenti et al. (2016).

6 Conclusions

Capital allocation or sensitivity analysis based on both VaR and ES have been studied

in the literature on many occasions. Because the problems are mathemtically equivalent,

we decided to focus on the capital allocation formulation and its lingo associated with when

we presented our results. Nonparametric estimation for an allocation based on VaR has a

slower rate of convergence than that based on ES. This disadvantage is overcome in this

paper by proposing to change the risk level via a connection with an ES-based allocation,

so that the total capital still equals the reference quantile-based capital level. Therefore, the

new allocation could be estimated nonparametrically at the standard rate of convergence. The

asymptotic normality of the proposed nonparametric estimator for the new allocation is derived

under the setup of a mixing sequence. In order to assess the performance of the estimation,

a multivariate time series model and a bootstrap method based on residuals are proposed. A

simulation study shows the effectiveness of the proposed inference. It is straightforward to

generalize the idea in this paper to cover the case of netting agreement developed in Fermanian

and Scaillet (2005).

7 Proofs

Proof of Proposition 2.1. First, note that ct(Y ) is an increasing function in t ∈ [0, 1). By

definition, cp(Y ) > qp(Y ), thus p∗ 6 p. Because c0(Y ) = E[Y ] < qp(Y ), we know that

p∗ > 0. If Y is continuously distributed, then ct(Y ) = ESt(Y ) which is a continuous function

of t ∈ [0, 1). Therefore, cp∗(Y ) = qp(Y ).

Proof of Theorem 3.1. Denote first Un(y) = 1
n

∑n
t=1 I

(
G(Yt) 6 y

)
. Then, it follows from
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Proposition 4.4 of Berghaus et al. (2017) that for any δ ∈ (0, 1/2), λ ∈ (0, 1) and δn → 0,
sup0<y<1

|
√
n(Un(y)−y)|
yδ(1−y)δ = Op(1), sup1/nλ<y61−1/nλ

|
√
n(U−n (y)−y)|
yδ(1−y)δ = Op(1)

sup|u1−u2|+|v1−v2|6δn
|
√
n{Cn(u1,v1;j)−C(u1,v1;j)}−

√
{Cn(u2,v2;j)−C(u2,v2;j)}|

max{|u1−u2|δ+|v1−v2|δ,n−δ}
= op(1).

(7.1)

By Proposition 2.1, we have

G−(p) = − 1

1− p∗

∫ ∞
G−(p∗)

s d{1−G(s)} = G−(p∗) +
1

1− p∗

∫ ∞
G−(p∗)

{1−G(s)} ds.

Hence we can write

0 = 1
1−p̂∗

∫ 1
p̂∗ G

−
n (s) ds−G−n (p)

= 1
1−p̂∗

∫ 1
p̂∗ G

−
n (s) ds− 1

1−p∗
∫ 1
p∗ G

−
n (s) ds+ 1

1−p∗
∫ 1
p∗ G

−
n (s) ds−G−n (p)

= 1
1−p̂∗

∫ 1
p̂∗ G

−
n (s) ds− 1

1−p∗
∫ 1
p∗ G

−
n (s) ds− 1

1−p∗
∫∞
G−n (p∗) s d

(
1−Gn(s)

)
−G−n (p)

= 1
1−p̂∗

∫ 1
p̂∗ G

−
n (s) ds− 1

1−p∗
∫ 1
p∗ G

−
n (s) ds+G−n (p∗) + 1

1−p∗
∫ G−(p∗)
G−n (p∗)

(
1−Gn(s)

)
ds

+ 1
1−p∗

∫∞
G−(p∗)

(
1−Gn(s)

)
ds−G−n (p)

= 1
1−p̂∗

∫ 1
p̂∗ G

−
n (s) ds− 1

1−p∗
∫ 1
p∗ G

−
n (s) ds+G−n (p∗)−G−(p∗)

+ 1
1−p∗

∫ G−(p∗)
G−n (p∗)

(
1−Gn(s)

)
ds+ 1

1−p∗
∫∞
G−(p∗)

(
G(s)−Gn(s)

)
ds−

(
G−n (p)−G−(p)

)
= (p̂∗ − p∗)

−G−n (p̃)(1−p̃)+
∫ 1
p̃ G
−
n (s) ds

(1−p̃)2 +
(
G−n (p∗)−G−(p∗)

)
+ 1

1−p∗
∫ G−(p∗)
G−n (p∗)

(
1−Gn(s)

)
ds

+ 1
1−p∗

∫ 1
p∗

(
s− Un(s)

)
dG−(s)−

(
G−(U−n (p))−G−(p)

)
= I1 + · · ·+ I5,

(7.2)

where p̃ is between p∗ and p̂∗.

Note first that equations (7.2), (3.3) and (7.1) imply that

p̂∗
p→ p∗ as n→∞. (7.3)

By noting that

Cn(1, y; j) = 1− Un(1− y) +Op

(
1

n

)
, (7.4)

it follows from (7.1), (7.3), C3) and C4) that

−G−n (p̃)(1− p̃) +
∫ 1
p̃ G

−
n (s) ds

(1− p̃)2
=
−G−(p∗)(1− p∗) +

∫ 1
p∗ G

−(s) ds

(1− p∗)2
+ op(1) (7.5)

=
G−(p)−G−(p∗)

1− p∗
+ op(1).
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Using (7.1), C3) and C4), we can show that

√
n{I2 + I3} =

√
n

1− p∗

∫ G−(p∗)

G−(U−n (p∗))
{1−G(s)− (1− p∗)} ds = op(1). (7.6)

By (3.3), (7.1), (7.4) and the fact that W (1, y; j) = Wd(y), we have

sup
0<s<1

∣∣√n(Un(s)− s
)

+Wd(1− s)
∣∣

{min(s, 1− s)}δ
= op(1) (7.7)

for any δ ∈ (0, 1/2), which implies that

sup
0<s<1

∣∣√n(U−n (s)− s
)
−Wd(1− s)

∣∣ = op(1). (7.8)

By (7.7) and C4), we have

√
nI4 =

1

1− p∗

∫ 1

p∗
Wd(1− s) dG−(s) + op(1). (7.9)

Now, equation (7.8) suggests that

√
nI5 = −Wd(1− p)

G′(G−(p))
+ op(1). (7.10)

Hence, the asymptotic distribution of p̂∗ follows from equations (7.2), (7.5), (7.6), (7.9)–(7.10),

i.e., (3.4) holds.
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Next write

1

n

n∑
t=1

Xj,tI
(
Yt > G−n (p̂∗)

)
=

1

n

n∑
t=1

F−j
(
Fj(Xj,t)

)
I
(
1−G(Yt) 6 1− U−n (p̂∗)

)
=

∫ 1

0
F−j (x) d

(
Cn
(
x, 1− U−n (p̂∗); j

)
− C

(
x, 1− U−n (p̂∗); j

))
+

∫ 1

0
F−j (x) d

(
C
(
x, 1− U−n (p̂∗); j

)
− C

(
x, 1− p̂∗; j

))
+

∫ 1

0
F−j (x) d

(
C(x, 1− p̂∗; j)− C(x, 1− p∗; j)

)
+

∫ 1

0
F−j (x) dC(x, 1− p∗; j)

= −
∫ 1/n

0

(
Cn
(
x, 1− U−n (p̂∗); j

)
− C

(
x, 1− U−n (p̂∗); j

))
dF−j (x) (7.11)

−
∫ 1−1/n

1/n

(
Cn
(
x, 1− U−n (p̂∗); j

)
− C

(
x, 1− U−n (p̂∗); j

))
dF−j (x)

−
∫ 1

1−1/n

(
Cn
(
x, 1− U−n (p̂∗); j

)
− C

(
x, 1− U−n (p̂∗); j

))
dF−j (x)

−
∫ 1

0

(
C
(
x, 1− U−n (p̂∗); j

)
− C(x, 1− p̂∗; j)

)
dF−j (x)

−
∫ 1

0

(
C(x, 1− p̂∗; j)− C(x, 1− p∗; j)

)
dF−j (x) +

∫ 1

0
F−j (x) dC(x, 1− p∗; j)

= J1 + · · ·+ J6.

Using (3.3), (7.1), (7.8), C3) and C4), we can show that

√
nJ1 = op(1),

√
nJ3 = op(1),

√
nJ2 = −

∫ 1−1/n

1/n
W
(
x, 1− U−n (p∗); j

)
dF−j (x) + op(1),

√
nJ4 = Wd(1− p∗)

∫ 1

0
C(2)(x, 1− p∗; j) dF−j (x) + op(1),

and
√
nJ5 =

√
n(p̂∗ − p∗)

∫ 1

0
C(2)(x, 1− p∗; j) dF−j (x) + op(1),

which imply that

1√
n

n∑
t=1

(
Xj,tI

(
Yt > G−n (p̂∗)

)
−
∫ 1

0
F−j (x) dC(x, 1− p∗; j)

)
= −

∫ 1

0
W (x, 1− p∗; j) dF−j (x) +Wd(1− p∗)

∫ 1

0
C(2)(x, 1− p∗; j) dF−j (x) (7.12)

+
√
n(p̂∗ − p∗)

∫ 1

0
C(2)(x, 1− p∗; j) dF−j (x) + op(1).
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Therefore, the asymptotic limit of Ĉj follows from (3.4), (7.12) and the fact that

√
n(Ĉj − Cj) =

√
n

(
1

1− p̂∗
1

n

n∑
t=1

Xj,tI
(
Yt > G−n (p̂∗)

)
− Cj

)

=

√
n(p̂∗ − p∗)

(1− p̂∗)(1− p∗)
1

n

n∑
t=1

Xj,tI
(
Yt > G−n (p̂∗)

)
+

√
n

1− p∗

(
1

n

n∑
t=1

Xj,tI
(
Yt > G−n (p̂∗)

)
− E

(
Xj,1I

(
G(Y1) > p∗

)))
,

i.e., (3.5) holds.

Similarly to (7.11), we have

√
n{ 1n

∑n
t=1 YtI(Yt > G−n (p̂∗))−

∫ 1
p∗ G

−(y) dy}

=
∫ 1
U−n (p̂∗)G

−(y) d
√
n{Un(y)− y}+

√
n
∫ p̂∗
U−n (p̂∗)

G−(y) dy +
√
n
∫ p∗
p̂∗ G

−(y) dy

= −
∫ 1
U−n (p̂∗)

√
n{Un(y)− y} dG−(y)−G−(p∗)

√
n(p̂∗ − p∗) + op(1)

=
∫ 1
p∗Wd(1− y) dG−(y)−G−(p∗)

√
n(p̂∗ − p∗) + op(1).

(7.13)

Hence, the asymptotic distribution of
∑d

j=1 Ĉj follows from (3.4), (7.7), (7.13) and the facts

that W (1, y; j) = Wd(y) and

√
n
∑n

j=1(Ĉj − Cj)

=
√
n
(

1
1−p̂∗

1
n

∑n
t=1 YtI

(
Yt > G−n (p̂∗)

)
−
∑d

j=1Cj

)
=

√
n(p̂∗−p∗)

(1−p̂∗)(1−p∗)
1
n

∑n
t=1 YtI

(
Yt > G−n (p̂∗)

)
+
√
n

1−p∗
(

1
n

∑n
t=1 YtI

(
Yt > G−n (p̂∗)

)
− E

(
Y1I
(
G(Y1) > p∗

)))
,

i.e., (3.6) holds.

Proof of Theorem 5.1. (i) Assume that E[X|Y = t]/t → r as t → ∞. Without loss of gener-

ality r > 0 is further assumed. Then, for any δ > 0 there exists a sufficiently large t0 such

that

1− δ < E[X|Y = t]

rt
< 1 + δ for all t > t0.

Integrating the latter with respect to the distribution of Y on (t1,∞), where t1 > t0, one

arrives at
E[X|Y > t1]

E[Y |Y > t1]
=

∫∞
t1

E[X|Y = t]P(Y ∈ dt)∫∞
t1
tP(Y ∈ dt)

∈
(
(1− δ)r, (1 + δ)r

)
.

Letting t1 →∞ and noting that δ is arbitrary, we have that E[X|Y >t]
E[Y |Y >t] → r as t→∞. Thus,

E[X|Y = y(t)]

E[X|Y > t]
=

E[X|Y = y(t)]

y(t)
× E[Y |Y > t]

E[X|Y > t]
→ r × r−1 = 1 as t→∞,
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because y(t)→∞ as t→∞.

(ii) Note that E[X|Y = t] <∞ for all t > t0 and thus, a simple change of variable implies

that

E(X|Y = t)

t
=

1

t

∫ ∞
0

P(X > z|Y = t) dz

=

∫ ∞
0

P(X > tx|Y = t) dx

→
∫ ∞
0

g1(x) dx as t→∞,

where the last implication is due to the fact that (5.3) holds uniformly on R+.

(iii) Similar to the proof of Part (ii), as (5.4) holds uniformly on [x0,∞), one may integrate

(5.4) to get

E(X|Y = t) = x0 +

∫ ∞
x0

P(X > x|Y = t) dx→ x0 +

∫ ∞
x0

g2(x) dx as t→∞,

where the identity holds due to the fact that E[X|Y = t] <∞ for all t > t0.

(iv) The marginal density f2 of Y satisfies

f2(ty)

tv(t)
=

∫ ∞
−∞

f(x, ty)

tv(t)
dx =

∫ ∞
−∞

f(tz, ty)

v(t)
dz →

∫
q(z, y)dz as t→∞,

due to some simple change of variables and Potter’s bound of a regular variation in (5.5) in

the last step. It follows that

E[X|Y = t]/t =

∫ ∞
−∞

xf(x, t)dx/
(
tf2(t)

)
=

∫ ∞
−∞

zf(tz, t)

v(t)
dz × tv(t)

f2(t)

→
∫∞
−∞ zq(z, 1)dz∫∞
−∞ q(z, 1)dz

as t→∞,

where the derivations are again based on change of variables and Potter’s bound of a regular

variation in (5.5). Consequently, our claim holds as
∫∞
−∞ zq(z, 1)dz and

∫∞
−∞ q(z, 1)dz are finite

and nonzero.

(v) Assume that Z and W are both N(0, 1) random variables with correlation coefficient

ρ ∈ [−1, 1]. Note that for w ∈ R, Z|W = w follows a normal distribution with mean ρw and

variance 1−ρ2. That is, Z|W = w is identically distributed as T +ρw, where T is N(0, 1−ρ2)

distributed. If ρ = 0, then Z and W are independent and we have Qp(f(Z)|g(W )) = E[f(Z)] =
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Cp∗(f(Z)|g(W )). In the following, we assume that ρ 6= 0. Define the functions f and g on R

by f(z) = C1e
az and g(w) = C2e

bw for some C1, C2, a, b > 0. Let φ and Φ be the pdf and cdf

of the standard normal distribution. Recall now the elementary relationship

lim
w→∞

φ(w)

w(1− Φ(w))
= 1. (7.14)

For w ∈ R, let zw ∈ R be such that g(zw) = E[g(W )|W > w]. Thus,

lim
w→∞

g(zw)

g(w)
= lim

w→∞

E[g(W )|W > w]

g(w)
= lim

w→∞

−g(w)φ(w)

−g(w)φ(w) + (1− Φ(w))g′(w)
,

where the L’Hôpital’s rule is applied (if the limit exists). By the definition of g and (7.14),

lim
w→∞

(1− Φ(w))g′(w)

g(w)φ(w)
= lim

w→∞

b

w
= 0,

which in turn gives that

lim
w→∞

eb(zw−w) = lim
w→∞

g(zw)

g(w)
= 1,

implying that zw − w → 0 as w →∞.

On the other hand,

lim
w→∞

E[f(Z)|W > w]

E[f(Z)|W = w]
= lim

w→∞

1

1− Φ(w)

∫∞
w E[f(Z)|W = x]dΦ(x)

E[f(Z)|W = w]

= lim
w→∞

∫∞
w E[f(T + ρx)]φ(x)dx

(1− Φ(w))E[f(T + ρw)]

= lim
w→∞

−E[f(T + ρw)]φ(w)

−E[f(T + ρw)]φ(w) + (1− Φ(w))E[f ′(T + ρw)ρ]
,

where the L’Hôpital’s rule is applied once again. By the definition of f and (7.14),

lim
w→∞

(1− Φ(w))E[f ′(T + ρw)]

E[f(T + ρw)]φ(w)
= lim

w→∞

E[f ′(T + ρw)]

wE[f(T + ρw)]
= lim

w→∞

a

w
= 0.

Therefore,

lim
w→∞

E[f(Z)|W > w]

E[f(Z)|W = w]
= 1. (7.15)

Moreover, using the fact zw − w → 0 as w →∞, we obtain that

lim
w→∞

E[f(Z)|W = zw]

E[f(Z)|W = w]
= lim

w→∞

E[f(T + ρzw)]

E[f(T + ρw)]
= lim

w→∞

E[f(T + ρw)]eaρ(zw−w)

E[f(T + ρw)]
= 1.

By (7.15), we have

lim
p↑1

Cp∗(f(Z)|g(W ))

Qp(f(Z)|g(W ))
= lim

w→∞

E[f(Z)|g(W ) > g(w)]

E[f(Z)|g(W ) = g(zw)]
= lim

w→∞

E[f(Z)|W > w]

E[f(Z)|W = zw]
= 1.

Therefore, by taking X = f(Z) and Y = g(W ), (5.1) holds for any jointly log-normally

distributed X and Y .
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Proof of Theorem 5.2. (i) By the convergence in distribution of {(Xn, Yn)}n∈N to (X,Y ), we

have qt(Xn)→ qt(X) for all t ∈ (0, 1) such that the quantile function of X is continuous and

qt(Yn) → qt(Y ) for all t ∈ (0, 1). Because qt(Yn) is an increasing function in t, and qt(Y )

is continuous in t, we have that qt(Yn) → qt(Y ) as n → ∞ holds uniformly on any interval

[a, b] ⊂ (0, 1).

Because {(Xn, Yn)}n∈N is uniformly integrable, ct(Yn)→ ct(Y ) as n→∞ for all t ∈ [0, 1).

As a consequence, the functions fn : [0, 1)→ R, t 7→ ct(Yn)− qp(Yn) converge to ct(Y )− qp(Y )

as n → ∞ for each t ∈ (0, 1). Note that both qt(Y ) and ct(Y ) are continuous and strictly

increasing functions of t ∈ [0, 1). Because the function f : [0, 1) → R, t 7→ ct(Y ) − qp(Y ) is

continuous and strictly increasing in t, we have p∗n → p∗ as n→∞.

(ii) We utilize the result from Part(i). The uniform convergence of qt(Yn) → qt(Y ) as

n→∞ in a neighbourhood of p∗ and the convergence p∗n → p∗ as n→∞ yield that

|qp∗n(Yn)− qp∗(Y )| 6 |qp∗n(Yn)− qp∗n(Y )|+ |qp∗n(Y )− qp∗(Y )| → 0.

Writing A = {Y > qp∗(Y )}, An = {Yn > qp∗n(Yn)} and Bn = {Yn > qp∗(Y )} for all n ∈ N, we

have

Cp∗n(Xn|Yn) =
E [XnI(An)]

P(An)
=

E [XnI(An)]

1− p∗n
.

Note that (Xn, Yn) → (X,Y ) in distribution as n → ∞. In addition, the mapping (x, y) 7→

xI(y > qp∗(Y )) has discontinuity points D = {(x, qp∗(Y )) ∈ R2 : x 6= 0} with P((X,Y ) ∈

D) = 0. By the Continuous Mapping Theorem (for example, see Theorem 2.7 of Bilingsley

(1999)), {XnI(Bn)} converges to XI(A) in distribution as n→∞.

Note that for any x ∈ R, |P(XnI(An) 6 x) − P(XnI(Bn) 6 x)| 6 E[|I(An) − I(Bn)|].

Whenever qp∗n(Yn) 6 qp∗(Y ), then Bn ⊂ An and

E[|I(An)− I(Bn)|] = P(An \Bn) = P(qp∗n(Yn) < Yn 6 qp∗(Y )).

Further, for any ε > 0 and a sufficiently large n, the following is true

P(qp∗n(Yn) < Yn 6 qp∗(Y )) 6 P(qp∗(Y )− ε < Yn 6 qp∗(Y )),

which converges to P(qp∗(Y ))−ε < Y 6 qp∗(Y )) when n→∞, as Y is continuously distributed.

As ε is arbitrarily chosen, we have E[|I(An)− I(Bn)|]→ 0 as n→∞. Similarly, if qp∗n(Yn) >

qp∗(Y ), we also have E[|I(An) − I(Bn)|] → 0 when n → ∞. In summary, |P(XnI(An) 6
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x)−P(XnI(Bn) 6 x)| → 0 as n→∞. Because {XnI(Bn)} converges to XI(A) in distribution

as n → ∞, we conclude that {XnI(An)} also converges to XI(A) in distribution as n → ∞.

Noting that {XnI(An)}n∈N is uniformly integrable, we have E[XnI(An)] → E[XI(A)] when

n→∞. Consequently,

lim
n→∞

Cp∗n(X|Y ) = lim
n→∞

E[XnI(An)]

1− p∗n
=

E[XI(A)]

1− p∗
= Cp∗(X|Y ).

Acknowledgments

We thank two reviewers and the co-editor, Professor Vadim Linetsky, for helpful com-

ments. Peng’s research was partly supported by the Simons Foundation. Wang acknowledges

financial support form the Natural Sciences and Engineering Research Council of Canada

(RGPIN-2018-03823/RGPAS-2018-522590).

References

Acharya, V.V. (2009). A Theory of Systemic Risk and Design of Prudential Bank Regulation. Journal
of Financial Stability, 5(3), 224–255.

Acharya, V., Engle, R. and Richardson, M. (2012). Capital Shortfall: A New Approach to Ranking
and Regulating Systemic Risks. American Economic Review, 102(3), 59-64.

Adrian, T. and Brunnermeier, M. K. (2016). CoVaR. American Economic Review, 106, 1705–1741.

BCBS (2016). Standards. Minimum Capital Requirements for Market Risk. January 2016. Basel Com-
mittee on Banking Supervision. Basel: Bank for International Settlements.
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Tasche, D. (2009). Capital Allocation for Credit Portfolios with Kernel Estimators. Quantitative Fi-
nance, 9(5), 581–595.

31



Tsanakas, A. and Millossovich, P. (2016). Sensitivity Analysis using Risk Measures. Risk Analysis,
36(1), 30–48.

Zhu, K. and Ling, S. (2011). Global Self-weighted and Local Quasi-maximum Exponential Likelihood
Estimators for ARMA-GARCH/IGARCH models. Annals of Statistics, 39, 2131–2163.

Ziegel, J. (2016). Coherence and Elicitability. Mathematical Finance, 26, 901–918.

32


	Introduction
	VaR, ES, and capital allocation
	Sensitivity analysis
	Related literature

	An ES-based approach to quantile capital allocation
	Nonparametric inferences
	Numerical results
	Real data analysis
	Simulation study

	Properties of the new allocation
	Conclusions
	Proofs

