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Key to abbreviations 
 

Abbreviation Full form 
AAE American Academy of Endodontics 

AERS Adverse Event Reporting System 

AMD Age-related macular degeneration 

AOP Association of Optometrists 

APDG Advanced Patient Data Generator 

API Application Program Interface 

AT Argumentation Theory 

BFO Basic Formal Ontology 

CC Chief Complaint 

CDR Cognitive Dispositions to Respond 

CDSS Clinical Decision Support System(s) 

CET Continuing Education and Training 

CHF Chronic Heart Failure 

COPD Chronic Obstructive Pulmonary Disease 

DDS Dental Diagnostic System 

DIM Dental Information Model 

DL Description Logics 

DS Model Disease-Symptom Model 

EHR Electronic Health Record(s) 

EMR Electronic Medical Record(s) 

FDA Federal Drug Administration 

FHIR Fast Healthcare Interoperability Resources 

FN False Negative 

FOAF Friend of a Friend 

FOL First Order Logic 

FP False Positive 

GOC General Optical Council 

GP General Practitioner(s) 

GUI Graphical User Interface 

HES Hospital Eye Service 

HL7 Health Level Seven 

HTTP Hypertext Transfer Protocol 

IOP IOP 

MCAD Mast Cell Activation Disorder 

NDCG Normalized Discounted Cumulative Gain 

NICE National Institute for Health and Clinical Excellence 

NTG Normal Tension Glaucoma 

ODO Ocular Disease Ontology 

OGMS Ontology for General Medical Science 

OHD Oral Health and Disease Ontology 
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OHT Ocular Hypertension 

OMB Oculomotor Balance 

OWL Web Ontology Language 

PHR Personal Health Record(s) 

POAG Primary Open Angle Glaucoma 

RCT Root Canal Treatment 

RDF Resource Description Framework 

RDFS RDF Schema 

REST Representational state transfer 

RIF Rule Interchange Format 

SNODENT Systematized Nomenclature of Dentistry 

SNOMED CT Systematized Nomenclature of Medicine - Clinical Terms 

SPARQL SPARQL Protocol and RDF Query Language 

SPIN SPARQL Inferencing Notation 

SUS System Usability Scale 

SWRL Semantic Web Rule Language 

TN True Negative 

TP True Positive 

UMLS Unified Medical Language System 

URI Uniform Resource Identifier 

URL Uniform Resource Locator 

vs Versus 

W3C World Wide Web Consortium 

WWW World Wide Web 
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Glossary 
 

Term Definition 

Early diagnostic recommendations Diagnostic recommendations that are provided by the CDSS early in the 
diagnostic encounter before all the data from the patient has been 
collected 

Late diagnostic recommendations Diagnostic recommendations that are provided by the CDSS late in the 
diagnostic encounter after all the data from the patient has been collected 

Early guideline recommendations Guideline recommendations that are provided by the CDSS during the 
diagnostic encounter before all the data from the patient has been 
collected 

Pulpal Pertaining to the pulp of the tooth 

Apical Pertaining to the apex (root tip) of the tooth 

Joint observation Combination of two or more clinical observations to form a single 
observation 
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Abstract 
Diagnostic error is a significant problem in medicine and a major cause of concern for patients and clinicians and is 
associated with moderate to severe harm to patients. Diagnostic errors are a primary cause of clinical negligence and 
can result in malpractice claims. Cognitive errors caused by biases such as premature closure and confirmation bias 
have been identified as major cause of diagnostic error. Researchers have identified several strategies to reduce 
diagnostic error arising from cognitive factors. This includes considering alternatives, reducing reliance on memory, 
providing access to clear and well-organized information. Clinical Decision Support Systems (CDSSs) have been 
shown to reduce diagnostic errors.  

Clinical guidelines improve consistency of care and can potentially improve healthcare efficiency. They can alert 
clinicians to diagnostic tests and procedures that have the greatest evidence and provide the greatest benefit.  
Clinical guidelines can be used to streamline clinical decision making and provide the knowledge base for guideline 
based CDSSs and clinical alert systems. Clinical guidelines can potentially improve diagnostic decision making by 
improving information gathering. 

Argumentation is an emerging area for dealing with unstructured evidence in domains such as healthcare that are 
characterized by uncertainty. The knowledge needed to support decision making is expressed in the form of 
arguments. Argumentation has certain advantages over other decision support reasoning methods. This includes the 
ability to function with incomplete information, the ability to capture domain knowledge in an easy manner, using 
non-monotonic logic to support defeasible reasoning and providing recommendations in a manner that can be easily 
explained to clinicians. Argumentation is therefore a suitable method for generating early diagnostic 
recommendations. Argumentation-based CDSSs have been developed in a wide variety of clinical domains. 
However, the impact of an argumentation-based diagnostic Clinical Decision Support System (CDSS) has not been 
evaluated yet.   

The first part of this thesis evaluates the impact of guideline recommendations and an argumentation-based 
diagnostic CDSS on clinician information gathering and diagnostic decision making. In addition, the impact of 
guideline recommendations on management decision making was evaluated. The study found that argumentation is 
a viable method for generating diagnostic recommendations that can potentially help reduce diagnostic error. The 
study showed that guideline recommendations do have a positive impact on information gathering of optometrists 
and can potentially help optometrists in asking the right questions and performing tests as per current standards of 
care. Guideline recommendations were found to have a positive impact on management decision making. The 
CDSS is dependent on quality of data that is entered into the system. Faulty interpretation of data can lead the 
clinician to enter wrong data and cause the CDSS to provide wrong recommendations.  

Current generation argumentation-based CDSSs and other diagnostic decision support systems have problems with 
semantic interoperability that prevents them from using data from the web. The clinician and CDSS is limited to 
information collected during a clinical encounter and cannot access information on the web that could be relevant to 
a patient. This is due to the distributed nature of medical information and lack of semantic interoperability between 
healthcare systems. Current argumentation-based decision support applications require specialized tools for 
modelling and execution and this prevents widespread use and adoption of these tools especially when these tools 
require additional training and licensing arrangements.  

Semantic web and linked data technologies have been developed to overcome problems with semantic 
interoperability on the web. Ontology-based diagnostic CDSS applications have been developed using semantic web 
technology to overcome problems with semantic interoperability of healthcare data in decision support applications. 
However, these models have problems with expressiveness, requiring specialized software and algorithms for 
generating diagnostic recommendations.  

The second part of this thesis describes the development of an argumentation-based ontology driven diagnostic 
model and CDSS that can execute this model to generate ranked diagnostic recommendations. This novel model 
called the Disease-Symptom Model combines strengths of argumentation with strengths of semantic web 
technology. The model allows the domain expert to model arguments favouring and negating a diagnosis using 
OWL/RDF language. The model uses a simple weighting scheme that represents the degree of support of each 
argument within the model. The model uses SPARQL to sum weights and produce a ranked diagnostic 
recommendation. The model can provide justifications for each recommendation in a manner that clinicians can 
easily understand. CDSS prototypes that can execute this ontology model to generate diagnostic recommendations 
were developed. The decision support prototypes demonstrated the ability to use a wide variety of data and access 
remote data sources using linked data technologies to generate recommendations. The thesis was able to 
demonstrate the development of an argumentation-based ontology driven diagnostic decision support model and 
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decision support system that can integrate information from a variety of sources to generate diagnostic 
recommendations. This decision support application was developed without the use of specialized software and 
tools for modelling and execution, while using a simple modelling method. 

The third part of this thesis details evaluation of the Disease-Symptom model across all stages of a clinical encounter 
by comparing the performance of the model with clinicians. The evaluation showed that the Disease-Symptom 
Model can provide a ranked diagnostic recommendation in early stages of the clinical encounter that is comparable 
to clinicians. The diagnostic performance can be improved in the early stages using linked data technologies to 
incorporate more information into the decision making. With limited information, depending on the type of case, 
the performance of the Disease-Symptom Model will vary. As more information is collected during the clinical 
encounter the decision support application can provide recommendations that is comparable to clinicians recruited 
for the study. The evaluation showed that even with a simple weighting and summation method used in the Disease-
Symptom Model the diagnostic ranking was comparable to dentists. With limited information in the early stages of 
the clinical encounter the Disease-Symptom Model was able to provide an accurately ranked diagnostic 
recommendation validating the model and methods used in this thesis.  
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1 Chapter 1 - Introduction 
1.1 Motivation and outline 
Medical diagnosis is a key component of the clinical encounter and forms the basis for understanding the 
problem(s) faced by the patient and helps the clinician implement a suitable treatment. Diagnosis is 
essentially constructing a hypothesis about the disease a patient is suspected of having based upon direct 
and indirect, observations and findings obtained from the patient during clinical examination.  However 
diagnostic error is a significant problem and can occur in 5-20% of the cases (Sonderegger-Iseli et al., 
2000; Singh, Meyer and Thomas, 2014). It is a major cause of concern for patients and clinicians, and is 
associated with moderate and severe harm to the patient (Sevdalis et al., 2010; Saber Tehrani et al., 2013; 
Singh et al., 2013a). Diagnostic errors are a primary cause of negligence on behalf of the clinician and can 
result in malpractice claims (Ely, Kaldjian and D’Alessandro, 2012a; Graber, 2013; Saber Tehrani et al., 
2013).  

There are several reasons for diagnostic errors and Graber et al (Graber, Gordon and Franklin, 2002a) 
classified diagnostic errors based on aetiology into: 

● No-fault errors 
o Masked or unusual presentation of disease 
o Patient-related error (uncooperative, deceptive or inconsistent patients) 
o Limited medical knowledge about condition 

● System-related errors 
o Technical failure and equipment problems 

▪ E.g. Lack of appropriate equipment 
o Organizational failures 

▪ E.g. Policy failures 
● Cognitive errors 

o Faulty knowledge 
o Faulty data gathering 
o Faulty information gathering 
o Faulty information synthesis 

 
Diagnostic errors are considered multifactorial and several factors can influence the decision-making 
process of the clinician. Graber’s later work (Graber, 2005) showed that cognitive errors are far more 
common than errors caused by knowledge gaps.  It showed that the main type of cognitive error was 
premature closure bias. Premature closure bias is the tendency of the clinician to stop early and not order 
further tests or inquire further information to prove/disprove his/her hypothesis. Premature closure bias 
will prevent the clinician from gathering more information and integrating this information to formulate a 
new hypothesis. Clinician accept the diagnosis before it has been verified and do not seek other 
information (Dailey, 1952; Wellbery, 2011). Confirmation bias is the tendency of the clinician to look for 
data that supports his/her hypothesis (Wellbery, 2011). Even when presented with data that is of superior 
quality the clinician may rely on inferior or ambiguous data. For example, the clinician may rely on a 
history of fever as reported by the patient. Based on this history of fever the clinician may arrive at a 
diagnostic conclusion and look for more information that supports this wrong conclusion. There are 
other types of cognitive errors and Croskerry (Croskerry, 2002) has collectively called them ‘Cognitive 
Dispositions to Respond’ (CDR). He has identified several cognitive debiasing strategies to reduce the 
occurrence of CDR’s. These include considering alternatives, decreasing reliance on memory, providing 
access to clear, concise and well-organized information.   
 
Diagnostic CDSSs have been identified by researchers as a key intervention to reduce diagnostic errors 
(Graber, Gordon and Franklin, 2002a; Croskerry, 2003c; Croskerry, Singhal and Mamede, 2013c). 
However studies have shown that CDSSs have not been adopted for widespread clinical use even though 
it has improved other areas of clinical practice, such as: improved adherence to guidelines, improved 
prescribing, and improved use of preventive healthcare measures (Garg et al., 2005a). The performance of 
current diagnostic decision support tools like differential diagnosis generator systems has been average so 
far (the best system scored 3.45 out of 5) (Bond et al., 2012a; Umscheid and Hanson, 2012). These 
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diagnostic CDSS tools have not shown a marked improvement in performance even after years of 
continuous development since they were evaluated nearly two decades back (Berner et al., 1994a). 
  
The reasons for this lack of impact on diagnostic decision making are not apparent from these studies, 
but researchers believe it is partly due to the quality of input data. As the famous maxim goes “Garbage 
in, garbage out”. Cognitive errors play the key role during the information gathering phase of the clinical 
encounter. Cognitive errors (example confirmation bias) lead the clinician (medical doctor or dentist) to 
biased hypotheses which can in turn influence the input data leading to further diagnostic errors or an 
incomplete diagnosis. Clinical guidelines have been suggested as a possible solution that could positively 
impact diagnostic decision making by standardising the process of collecting, analysing and verifying 
clinical data. Clinical guidelines have several benefits and limitations (Woolf et al., 1999). Clinical 
guidelines improve consistency of care and can potentially improve healthcare efficiency. They can alert 
clinicians to diagnostic tests and procedures that have the greatest evidence and provide the greatest 
benefit.  Clinical guidelines can be used to streamline clinical decision making and provide the knowledge 
base for guideline based CDSSs and clinical alert systems (Garg et al., 2005a). Improving the information 
gathering of clinicians can potentially improve diagnostic performance. Evidence based guideline 
recommendations can help improve the information gathering of clinicians by providing timely alerts to 
the clinician about abnormal values and explaining the importance of the abnormal value and why it’s 
important. Guideline recommendations can provide the clinician with information on how to interpret 
tests and investigations results. Similarly, guideline recommendations can help the clinician by providing 
evidence-based guidance about the next steps to be taken such as tests/investigations to be ordered.  

In a recent review on the use of health information technology to reduce diagnostic errors (El-Kareh, 
Hasan and Schiff, 2013) the authors classified existing tools into different categories: 

● Tools that assist in information gathering 
● Tools that improve cognition through improved organization and display of information 
● Tools that assist in generating a differential diagnosis 
● Tools that assist in weighing the diagnosis 
● Tools that support selection of diagnostic tests and plans 
● Tools that enable access to diagnostic reference material and guidelines 
● Tools that enable patient follow-up and continued assessment of patient course and response to 

treatment 
● Tools that support screening by alerting presence of disease 
● Tools that assist in diagnostic collaboration 
● Tools that facilitate feedback and insight into diagnostic performance 

 
A differential diagnosis is the process of “distinguishing of a disease or condition from others presenting 
with similar signs and symptoms”(Merriam-Webster, 2016). As the clinician is enquiring about the 
patient’s condition, completing the physical examination and performing diagnostic tests he/she is 
formulating the diagnosis in his/her mind. The clinician is creating a mental model of the patient’s 
condition and is constantly generating a differential diagnosis in the mind. Clinicians rely on the 
differential diagnosis to identify presence or absence of a disease when there are multiple alternatives 
available (Heneghan et al., 2009). A clinician examining a patient goes through a multi-step procedure to 
attain a differential diagnosis. According to the hypothetico-deductive model of clinical reasoning 
(Elstein, Schwartz and Schwarz, 2002) clinicians (especially novice clinicians) obtain a diagnosis following 
the steps described below (Harbison, 1991).  

 At first, they obtain information by taking clinical history, complete the physical examination and 
conduct diagnostic tests if needed.  

 A working diagnosis (hypothesis) is generated and the clinicians consider all possible diagnoses in the 
form of a mental list.  

 Further information is sought from the patient to confirm or refute the working diagnosis (if 
needed). 

 The diagnosis is verified by weighting and combining information from all sources and then arriving 
at a conclusion that confirms one of the working diagnoses.  
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Illness script theory provides a framework that describes how clinicians organize knowledge obtained 
from clinical literature and experience (Schmidt and Rikers, 2007a). Based on observations seen in the 
patient certain illness scripts are triggered in the mind of the clinician. The clinician will traverse the 
network of knowledge in their memory gained from experience, supplemented by biomedical knowledge, 
to find the script that best suits/explains the clinical situation in front of him/her. In this manner, the 
clinician will generate several different hypotheses and reject the hypothesis that does not fit his/her 
mental model and arrive at a diagnosis. Illness scripts are an efficient way of organizing knowledge and 
allows the clinician to rapidly seek information, search for the appropriate illness script, find the right 
script and verify the values (Charlin et al., 2007). 

The Dual Process Theory explains how individuals make decisions and judgments under uncertainty with 
limited information (Kahneman and Egan, 2011; Evans and Stanovich, 2013). It can be adapted to 
explain how a clinician reasons when presented with a clinical case. Making a diagnostic decision in the 
early stages of the clinical encounter is a classic example of this scenario as he/she clinician is faced with 
limited information and is working under uncertainty regarding the patient’s condition. The dual process 
theory consists of 2 types of processes, System 1 and System 2 (Evans and Stanovich, 2013). System 1 
process of reasoning is used by clinicians to make rapid judgements about a patient. It is mostly activated 
in cases with routine clinical presentations and is dependent on the clinician’s experience. It is used by 
busy clinicians to deal with patients with familiar clinical presentations. System 1 requires some previous 
experience and knowledge about the patient. If the patient has atypical signs and symptoms, and the 
clinician is unfamiliar with the case then the clinician slows down the process of reasoning. This is called 
System 2 process of reasoning. In System 2 the reasoning is slow, methodical and analytical. Both System 
1 and System 2 process of reasoning work in tandem to help the clinician in formulating a diagnosis.  

Croskerry et al. (Croskerry, 2002, 2003a) have suggested several techniques to prevent premature closure 
bias and confirmation bias. This includes considering alternatives, reducing reliance on memory, 
providing access to clear and well-organized information. Other proposed techniques include allowing 
more time for clinical consultation, use of clinical algorithms, making available local disease prevalence 
statistics, use of CDSSs. (Phua and Tan, 2013). Croskerry et al have presented a review of cognitive 
debiasing strategies that can be adopted to tackle cognitive related diagnostic errors (Croskerry, Singhal 
and Mamede, 2013a, 2013c) which includes obtaining clinical information in a more structured manner.  
There is evidence suggesting that early diagnostic recommendations can help reduce diagnostic error 
(Kostopoulou et al., 2015a).  
 
However, a problem facing current diagnostic CDSS applications is that its ability to support decision 
making is limited to the data collected during the clinical encounter. Most of the tools that claim to assist 
the clinician in diagnosis by providing a differential diagnosis or help in weighing the diagnosis at the end 
of a clinical encounter after collecting all data. The reason why CDSS applications have been designed in 
this manner is because of the nature of clinical diagnosis in a clinical encounter. The data collected during 
the early stages of the clinical encounter will be incomplete.  
 
However, to reduce diagnostic errors arising from premature closure bias and confirmation bias a CDSS 
should be able to able to provide some recommendations early in the diagnostic encounter. CDSSs 
should recommend alternative diagnoses, provide justifications for making the recommendation, provide 
the recommendation and justifications in a format that is easy to understand by the clinician. If the CDSS 
makes the recommendations early in the encounter, then the clinician can look at the alternate diagnoses 
and reasons and compare that with the mental model created in the clinician’s mind. As the clinician is 
obtaining information from the patient the clinician is forming a list of diagnostic hypotheses. A list of 
alternate diagnoses provided by the CDSS can help the clinician consider diagnoses that he/she may not 
have considered without the help of the CDSS. The reasons for making the recommendation can help 
trigger illness scripts. This can guide the clinician in asking the next set of questions and open a new line 
of investigation. The list of alternate diagnosis and reasons can help slow down the thinking process of 
the clinician and help improve System 2 process of reasoning.  
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Similarly, guideline recommendations have a potential impact on helping improve information gathering. 
Guideline recommendations can alert abnormal values and can provide a context for these values. It can 
provide clinical evidence suggesting clinical conditions the abnormal values can be seen. This can trigger 
illness scripts for a diagnosis. The guideline recommendations can provide the clinician with information 
on how to interpret tests and investigations results. Similarly, the guideline recommendations can help the 
clinician by providing evidence-based guidance about the next steps to be taken such as 
tests/investigations to be ordered. All these steps can potentially improve information gathering of 
clinicians. Improved information presentation results in the clinician having all the information needed to 
make a diagnosis. Therefore, improving information gathering can help reduce diagnostic errors indirectly 
(Thammasitboon and Cutrer, 2013). Guideline recommendations have been shown to have an impact on 
management decisions as well (Glasspool et al., 2003).  
 
Argumentation Theory (AT) is an emerging area for dealing with unstructured evidence in domains such 
as healthcare that are characterized by uncertainty (Fox et al., 2007). The knowledge needed to support 
decision making is expressed in the form of arguments. AT explains how the arguments can be expressed, 
sustained and rejected during the process of decision making. For each decision a set of positive and 
negative arguments are created. Argumentation is a model that is based on construction and evaluation of 
competing arguments (Ouerdane, Maudet and Tsoukiàs, 2010). AT evolved as a sub-discipline of 
philosophical logic and is an important area of logic-based AI research. In recent years it has found 
several applications in cognitive science and information technology (Fox et al., 2007).  

Argumentation uses non-monotonic logic and therefore is capable of retracting existing conclusions and 
formulate new conclusions. Diagnostic hypotheses formulated early in the clinical encounter are always 
tentative. As more information is obtained a clinician confirms or rejects a hypothesis. Similarly, 
argumentation-based CDSSs has the capacity to support defeasible reasoning, where initial conclusions 
are discarded, and new ones formed considering current information. Argumentation is well suited for 
generating diagnostic recommendations in the presence of incomplete information. Argumentation based 
CDSSs model arguments using qualitative methods.  It does not rely on complex numerical probabilities 
for modelling uncertainty. Argumentation is therefore able to provide reasons and explanations for 
making the diagnosis in a manner that is easy to understand by clinicians and is presented in a structured 
manner.  Argumentation uses a process very similar to that of clinicians. Clinicians use arguments in 
routine decision making. The clinician looks at the list of diagnostic hypotheses generated and cognitively 
makes arguments for and against each diagnosis. If the arguments supporting a diagnosis are very strong 
then the clinician finds more information supporting his/her diagnostic hypotheses. However, the CDSS 
should be able to provide arguments against a diagnosis to help the clinician overcome confirmation bias. 
An argumentation-based CDSS can provide arguments favouring and negating a diagnosis. Due to all 
these factors an argumentation-based diagnostic CDSS is well suited for providing early diagnostic 
recommendations to reduce diagnostic error. However, it is not known if an argumentation-based CDSS 
can help in reducing diagnostic error. Studies so far using argumentation-based CDSS have focussed 
efforts in developing risk assessment and treatment planning applications in medicine. There are a few 
argumentation-based diagnostic CDSSs. The studies have not evaluated how well an argumentation-based 
CDSS can help reduce diagnostic error and if argumentation is a feasible approach for developing 
diagnostic CDSSs.  
 
Therefore, the first part of this thesis investigates feasibility and impact of an argumentation-based 
diagnostic CDSS on diagnostic performance of primary care clinicians. The study investigates impact of 
guideline recommendations on information gathering. Optometrists were recruited for this study. The 
study used clinical vignettes simulating real life clinical scenarios and optometrists were asked to diagnose 
and manage these vignettes. Clinical guideline recommendations were provided at various stages of the 
clinical encounter. Argumentation-based diagnostic recommendations were similarly provided at the end 
of the simulated clinical encounter. In addition, impact of guideline recommendations on management 
decision making was studied.  
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The results of the study showed that guideline recommendations do have a role in helping improve the 
optometrist’s information gathering especially in cases where there is a clear pathology. The guidelines 
can help the optometrists ask the right questions and perform the right tests and investigations. The 
argumentation-based diagnostic recommendations helped improve diagnostic performance of 
optometrists in some cases, especially in sight-threatening cases. Guideline recommendations were shown 
to improve management decision making. Optometrists found the CDSS easy to use and 
recommendations useful and easy to understand.  

This study demonstrated feasibility of using argumentation-based diagnostic recommendations in 
diagnostic CDSSs and how the diagnostic recommendations can help reduce diagnostic error. However 
current generation argumentation-based CDSSs use proprietary formats and need specialized tools for 
modelling and execution. CDSS applications built with current generation argumentation-based CDSS 
tools require extensive interface engines to be able to integrate with Electronic Health Records (EHRs) 
and other sources of patient data. This lack of semantic interoperability has hampered widespread 
adoption of argumentation-based diagnostic CDSSs and diagnostic CDSSs in general (Marco-Ruiz and 
Bellika, 2015).  

The lack of semantic interoperability results in CDSSs not being able to integrate data from different 
healthcare and other potential sources of data and use them in diagnosis. The problem facing clinicians or 
a CDSS supporting the clinician at present is he/she/CDSS is unable to access this information as 
healthcare information is locked away in information silos that do not communicate with each other. 
Problems coordinating data from multiple sources is one reason for cognitive errors (Graber, Gordon 
and Franklin, 2002b). The clinician or CDSS cannot this access this additional source of information to 
support diagnostic decision making. The more information available to decide, the better the clinical 
decision making. The CDSS should be able to integrate all this information and present results in a 
manner that is easily understood by clinicians.  
 
There are reference materials available online that can be used, however, the challenge is to link the CDSS 
to these data sources and help clinicians compare the data collected from the patient with this reference 
material. The data needed for decision making can reside in other clinical practices and data relevant for 
current diagnosis may reside in different data repositories. Similarly, patients are increasingly getting 
access to Personal Health Records (PHRs) (Tang et al., 2006) which are controlled by the patient and 
more patients are recording information on online platforms such as social networking sites relevant to 
healthcare (Wicks et al., 2010). The CDSS must traverse these disparate databases particularly on the web 
to find information that is relevant to the diagnosis and help clinicians in diagnostic decision making.  
 
Semantic web and linked data technologies have been developed to help improve semantic 
interoperability. Semantic web tools and standards such as RDF, OWL, SPARQL are parts of a stack of 
technology that works together to realise the goal of semantic interoperability. RDF (Resource 
Description Framework) is a data model that lets you capture the meaning of information in the form of 
triples. It is a flexible data model and is being considered as a universal language for healthcare (Booth, 
2014b, 2015c). RDF enables smarter data use and automated data translations. Multiple data models and 
vocabularies can be easily combined and interrelated using RDF. RDF captures the information present 
in data and not the syntax. RDF is easy to map from one data representation to another and RDF is self-
describing. OWL (Web Ontology Language) is the de-facto standard language for representing ontologies 
on the web and is based on RDF and Description Logics (DL). SPARQL is both a protocol and query 
language for RDF databases called triple stores. It can model rules and access remote data via SPARQL 
endpoints. All these properties make RDF a suitable candidate for building a diagnostic inference model 
in OWL language that can integrate information from disparate sources using SPARQL. 
 
Ontology driven diagnostic CDSSs have been built before that tried to address the issue of semantic 
interoperability. Due to limitations in modelling uncertainly using the OWL language researchers have 
tried several methods to overcome the problem. Some researchers have captured the degree of 
uncertainty outside the ontology model using external probabilistic tools to generate diagnostic 
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recommendations (García-Crespo et al., 2010a). Other methods include representing the diagnostic 
criteria using OWL axioms (Ongenae et al., 2010; Donfack Guefack et al., 2012; Bau, Chen and Huang, 
2014; Sherimon and Krishnan, 2016). However due to limits in expressiveness of DL-based axioms these 
methods are not well suited for representing uncertainty and cannot work with incomplete data. Most 
ontology-based CDSSs identified in literature do not provide a ranked diagnostic recommendation. The 
ontology-based diagnostic CDSSs that provide a ranked recommendation rely on complex ranking 
algorithms and specialized software to generate the ranking (Oberkampf et al., 2012). The diagnostic 
CDSSs do not explain the reasons for making the recommendation by making use of argumentation or 
similar methods.  

This thesis proposes the development of an argumentation-based ontology driven diagnostic model and 
CDSS. The model combines the strengths of argumentation with the strengths of semantic web 
technology. The proposed model provides a novel method that allows the domain expert to capture 
arguments favoring and negating a diagnosis in OWL/RDF model. The model overcomes problems of 
integrating information and semantic interoperability faced by current generation argumentation-based 
CDSSs. The model uses argumentation and currently available semantic web and linked data technologies 
to provide a ranked diagnostic recommendation that can be generated using any off-the-shelf tools 
without the need for specialized software and algorithms. All the information needed to generate the 
diagnostic recommendation will be captured within the same model. This simplifies the modelling process 
and enables easier sharing for collaboration. The proposed model and CDSS can generate diagnostic 
recommendations without the need for specialized software and algorithms using widely available 
standards and tools. CDSS prototypes that can use the ontology model to generate diagnostic 
recommendations will be developed. The CDSS prototypes will demonstrate how the proposed model 
called Disease-Symptom Model (DS Model) can help integrate information from a wide variety of sources 
to provide a ranked diagnostic recommendation. 
 
The first part of this thesis evaluates the impact of guideline recommendations and an argumentation-
based diagnostic CDSS on clinician information gathering and diagnostic decision making. In addition, 
the impact of guideline recommendations on management decision making was evaluated. The study 
found that argumentation is a viable method for generating diagnostic recommendations that can 
potentially help reduce diagnostic error. The study showed that guideline recommendations do have a 
positive impact on information gathering of optometrists and can potentially help optometrists in asking 
the right questions and performing tests as per current standards of care. Guideline recommendations 
were found to have a positive impact on management decision making. The decision support system is 
dependent on quality of data that is entered into the system. Faulty interpretation of data can lead the 
clinician to enter wrong data and cause the decision support system to provide wrong recommendations.  

Current generation argumentation-based clinical decision support systems and other diagnostic decision 
support systems have problems with semantic interoperability that prevents them from using data from 
the web. The clinician and clinical decision support system is limited to information collected during a 
clinical encounter and cannot access information on the web that could be relevant to a patient. This is 
due to distributed nature of medical information and lack of semantic interoperability between healthcare 
systems. Current argumentation-based decision support applications require specialized tools for 
modelling and execution and this prevents widespread use and adoption of these tools especially when 
these tools require additional training and licensing arrangements.  

Semantic web and linked data technologies have been developed to overcome problems with semantic 
interoperability on the web. Ontology-based diagnostic clinical decision support applications have been 
developed using semantic web technology to overcome problems with semantic interoperability of 
healthcare data in decision support applications. However, these models have problems with 
expressiveness, requiring specialized software and algorithms for generating diagnostic recommendations.  

In the second part of this thesis, the DS Model was developed using semantic web and linked data 
technologies and can integrate information from disparate sources such as web-based patient data and 
provide a recommendation across all stages of the clinical encounter. The domain expert can use this 
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model to capture arguments favouring and negating a diagnosis. The weights that represent a degree of 
support of each argument can be represented in the same model. Using SPARQL rules a CDSS can 
access patient data and update the model for observations that are present or absent. SPARQL can sum 
the weights for each argument and generate a ranked diagnostic recommendation. The reasons for 
making a recommendation can be provided. CDSS architectures that utilize this model and generate the 
recommendations for the clinician have been developed and described in separate case studies. Case 
studies demonstrate how the DS Model can be used with a wide variety of patient information and can 
access information from remote sources with help of SPARQL. An extension to DS model was 
developed that demonstrated how the model can be extended to generate sub-diagnostic 
recommendations.  

In the third part of this thesis, the DS Model was evaluated across different stages of the clinical 
encounter. An implementation of the DS Model in dentistry was developed for the purposes of 
evaluation. An existing information model currently used in dentistry was used as the basis to define 
different stages of the clinical encounter, for example, Clinical Tests, Radiographic Examination.  

The evaluation measured the effectiveness of the diagnostic recommendation in early and late stages of 
the clinical encounter using dentistry as a test domain. This evaluation was performed using clinical 
vignettes verified by domain experts. Primary care dentists were recruited for the study and were asked to 
diagnose the dental clinical vignettes. The performance of the CDSS in all stages of the clinical encounter 
was compared to the ranked final diagnostic recommendation of the dentists. Normalized Discounted 
Cumulative Gain and Precision-Recall metrics were used for evaluating the performance. 

The evaluation identifies sections of the diagnostic encounter where the DS Model is deficient when 
compared to dentists and could potentially be enhanced with additional data obtained using linked data 
technologies. The results show that the diagnostic performance of the dental instance of the DS Model is 
comparable to dentists across most stages of the clinical encounter and improves in the later stages 
eventually providing a ranked diagnostic recommendation that is better than the dentists recruited in this 
study. As more information is obtained the diagnostic performance of the DS Model improves. In the 
later stages of the clinical encounter when confirmatory evidence from clinical tests and radiographic 
examination is obtained the CDSS was able to provide diagnostic recommendations that are better than 
dentists recruited for this study. If the clinicians are provided with right diagnostic recommendations, 
then there is a potential for increased savings in time and money as the patient is not subject to 
unnecessary tests and radiographs to confirm or reject a diagnosis. In this study all the information 
needed to decide was provided to both the dentists and the CDSS. In real-life situations in the presence 
of incomplete information a decision support tool that can integrate information can be valuable even in 
the late stages. 

The DS Model showed a dip in clinical performance in the intermediate stages of the clinical encounter. 
The clinicians using the DS Model based CDSS needs to be aware of the potential for this occurrence. 
The overall ranking of the diagnostic recommendation made by the DS Model was comparable to that of 
dentists. The study demonstrated how the DS Model built using argumentation-based methods and 
semantic web technology can deliver effective diagnostic recommendations that are comparable to 
dentists across all stages of the clinical encounter.  

1.2 Aims 
The aim of this thesis is a) to investigate the role of clinical guideline and argumentation-based diagnostic 
recommendations on primary care diagnosis and information gathering; b) to investigate and develop an 
argumentation-based model that can use data from disparate sources to assist in providing diagnostic 
recommendations across all stages of the clinical encounter; c) to develop CDSS prototypes that can use 
the model to deliver the diagnostic recommendations; d) to evaluate the model at different stages of the 
clinical encounter to see how a CDSS implementing the model will perform and identify areas of deficient 
performance of the model.  
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1.3 Research Questions  
1. How do guideline recommendations and argumentation-based diagnostic recommendations 

affect information gathering and diagnostic decision making in primary care clinicians? 
2. Can an argumentation-based diagnostic CDSS developed using semantic web and linked data 

technologies generate early diagnostic recommendations? 
3. How does an ontology driven diagnostic CDSS perform across all stages (early and late) of a 

clinical encounter?  

1.3.1 The specific objectives of this research are: 
Objective 1: To review the literature on models of diagnostic reasoning and identify models used by 
diagnostic CDSSs to represent knowledge and formulate diagnostic recommendations and their role in 
reducing diagnostic error. Review state of the art web technologies to identify how they address the 
problem of semantic interoperability and their application in CDSSs.   

Objective 2: Develop a diagnostic CDSS based on current argumentation-based CDSS technology and 
evaluate its effect on primary care clinician decision making and information gathering. 

Objective 3: Develop a semantically interoperable diagnostic inference model that can integrate 
information from disparate sources and uses argumentation to generate diagnostic recommendations. 

Objective 4: Implement a working CDSS prototype that implements the semantically interoperable 
diagnostic inference model and provides diagnostic recommendations.   

Objective 5: Evaluate the CDSS prototype and the diagnostic inference model and its ability to support 
diagnostic decision making at all stages of the clinical encounter. 

 

Figure 1-1 - Overall methodology 

1.4 Contributions 
The thesis evaluated feasibility and impact of argumentation-based CDSSs on diagnostic performance of 
optometrists. An off-the-shelf argumentation-based modelling tool and execution engine was used to 
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develop a diagnostic CDSS that can generate diagnostic recommendations. The thesis found that 
argumentation is a viable method for generating diagnostic recommendations that can potentially help 
reduce diagnostic error especially in sight-threatening cases in optometry. The thesis found that guideline 
recommendations do have a positive impact on information gathering of optometrists and can potentially 
help optometrists in asking the right questions and performing tests as per current standards of care. 
Guideline recommendations were found to have a positive impact on management decision making. The 
CDSS is dependent on the quality of data that is entered into the system. The faulty interpretation of 
medical images can lead the clinician to enter the wrong data and causing the CDSS to provide wrong 
clinical recommendations and supporting the wrong diagnostic hypothesis of the clinician. This problem 
can be remedied by improving the quality and quantity of arguments used for diagnosis. The optometrists 
found the CDSS easy to use and found its recommendations useful. This is one of the first studies 
looking at evaluating guideline based CDSSs amongst community optometrists. Results of this study can 
be used to better design and develop guideline-based and diagnostic CDSSs for optometry. 

This thesis then continues from study with optometrists and develops an argumentation-based ontology 
driven diagnostic CDSS model and CDSS prototypes that can generate early diagnostic 
recommendations. The ontology model called DS Model can capture domain expertise in an ontology 
model using arguments in favour and against each diagnosis. This novel approach to developing ontology 
driven diagnostic CDSSs combines argumentation and current semantic web technologies. DS Model can 
be modelled using any off-the-shelf the ontology modelling tools. The thesis expands upon research in 
areas of argumentation-based CDSSs and ontology based CDSSs. DS Model developed for this thesis 
takes the strengths of argumentation (where the modelling process is a lot easier and the diagnostic 
recommendations can be explained to the clinician) and combines it with the strength of semantic web 
technologies. The current generation argumentation-based CDSS tools use proprietary software and 
formats and have problems with semantic interoperability. Using semantic web technologies, the thesis 
was able to demonstrate the ability of CDSSs using the DS Model to integrate data in a wide variety of 
formats to generate diagnostic recommendations. The ontology model used a simple weighting method 
developed for the optometry study CDSS prototype to model the degree of support of each argument 
favouring and negating a diagnosis. The ontology model demonstrated a novel summation method using 
SPARQL that can generate diagnostic recommendations without the use of specialized software and 
algorithms and expands upon current generation ontology driven diagnostic CDSSs. The thesis explored 
the development of an extension to this ontology-driven diagnostic model that can provide 
recommendations for sub-diagnostic states where necessary.  

Lastly, an evaluation of the DS Model in all stages of a clinical encounter was performed. The evaluation 
showed that the DS Model can provide a ranked diagnostic recommendation in early stages of the clinical 
encounter that is comparable to dentists. The diagnostic performance can be improved using linked data 
technologies to incorporate more information into the decision making. As more information is collected, 
depending on the type of case, the performance of the DS Model decreases, and ranking adjusts itself to 
provide ranked recommendation that is better than dentists. The evaluation that showed even with a 
simple weighting method and summation method used in the DS Model the diagnostic recommendation 
was comparable to dentists. With limited information in the early stages of the clinical encounter the DS 
Model was able to provide an accurate ranked diagnostic recommendation validating the model and 
methods used in this thesis. 

1.5 Summary 
This chapter introduces the thesis. The next chapter of this thesis describes a review of literature in 
diagnostic error, diagnostic CDSSs, argumentation and ontology driven diagnostic CDSSs. In Chapter 3, 
the research outline has been described. Chapter 4 describes a study involving community optometrists 
that investigates the role of clinical guideline and diagnostic recommendations on information gathering 
of optometrists and diagnostic decision making. Chapter 5 details the development of an argumentation-
based diagnostic inference model that is built on current semantic web standards and details development 
of CDSS prototypes that can access disparate datasets to support decision making. Chapter 6 discusses 
the evaluation of DS model and a CDSS prototype by comparing its performance with community 



26 
 

dentists to test ability of the CDSS using the diagnostic inference model to support diagnostic decision 
making across all stages of the clinical encounter.  
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2 Chapter 2 - Literature review 
 

2.1 The problem of diagnostic error 
The Institute of Medicine, the health division of the National Academy of Sciences published a crucial 
report called ‘To Err is Human: Building A Safer Health System’ (Kohn, Corrigan and Donaldson, 1999). It 
highlighted several key problems with the healthcare system in the United States and pointed out that 
between 44,000 and 98,000 deaths per years can be attributed to preventable medical errors. Most these 
deaths are due to medication errors or surgical errors, but diagnostic errors play a key role in preventable 
deaths (up to 17 percent of cases). More recent studies have shown that diagnostic error rate has not 
shown much difference even with advances in technology and improvement in reporting of errors 
(Graber, 2013). Diagnostic errors are an important problem facing clinical practice as it often leads to 
improper and unnecessary investigations and management. It can result in delayed treatment causing 
significant harm or even death.  Since the publication of the Institute of Medicine report several steps 
have been taken to address concerns highlighted by the report, including accelerated adoption of EHR 
systems (Leape and Berwick, 2005), however diagnostic errors have not received much attention when 
compared to other aspects of patient safety (Wachter, 2010). Researchers from different fields including 
medical cognition, medical education and health informatics have been working for the past several 
decades to understand and address problems in patient safety arising due to diagnostic error (Berner, 
2009). However, these groups have been working in relative isolation with few instances of collaboration. 
Recently several independent organizations have been established with the sole purpose of bringing 
together various stakeholders involved in patient safety and clinical diagnosis 
(www.improvediagnosis.org). 

One of the reasons why diagnostic errors have been side-lined in patient safety research is because of the 
difficulty in getting good estimates about frequency of diagnostic errors in various settings. Measuring 
diagnostic errors have been a challenge and several methods have been identified, including autopsy 
reports, self-reports, data from malpractice claims and medical records reviews, but they all have their 
limitations (Graber, 2013). A recent study attempted estimating the frequency of outpatient diagnostic 
errors in US adult population by collating data from other studies. They estimated that approximately 12 
million patients (5%) in the US could potentially experience diagnostic errors each year (Singh, Meyer and 
Thomas, 2014). Studies have estimated that one-half of diagnostic errors have potential to cause severe 
harm (Singh et al., 2013a).  

Systematic reviews have found that diagnostic errors have been identified in a wide range of conditions 
and wide range of settings (Ely, Kaldjian and D’Alessandro, 2012a). Conditions like cancer are 
misdiagnosed due to their rarity, due to their atypical presentation or because of features common to 
other conditions that are less serious, but more commonly found. Comorbidity causes one condition to 
mask presence of another condition and can result in missed diagnosis (Kostopoulou, Delaney and 
Munro, 2008a; Zwaan et al., 2010). The most common reason leading to error was assigning a common 
benign diagnosis to a less common but serious diagnosis (Ely, Kaldjian and D’Alessandro, 2012a). 

In the UK, General Practitioners (GP) are first point of contact and most do not perform high risk 
procedures and prescribe medications with serious side-effects.  Diagnosis is a key part of primary care 
practitioner’s daily routine and therefore diagnostic errors have a greater potential for doing harm in 
primary care than in any other setting (Kostopoulou, Delaney and Munro, 2008a; Jones et al., 2014). In 
some chronic conditions like Chronic Obstructive Pulmonary Disease (COPD) the opportunity for early 
diagnosis is being missed in vast majority of cases(up to 85%), in 5 years before diagnosis of condition 
(Jones et al., 2014). 

Many errors were related to clinical processes, especially patient-clinician encounter, during steps like 
eliciting medical history, performing physical examination and ordering diagnostic tests (Singh et al., 
2013a). This shows that clinical presentation was highly influential in affecting the accuracy of diagnosis 
in primary care. When compared to other types of medical errors, once the diagnostic error has been 
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made there is little scope for remedial measures to reduce the impact on the patient as treatment of the 
patient in most cases is dependent on diagnosis and a delay in treatment can adversely affect prognosis 
(Bradford et al., 2009). Wrong diagnosis can lead to invasive treatments or incorrect diagnostic tests that 
can in turn cause unnecessary harm (Epner, Gans and Graber, 2013). Diagnostic errors must be 
prevented and any intervention to reduce these errors must be proactive. Therefore, there is a need to 
develop tools to improve data gathering and synthesis during the patient-clinician encounter. There is  
some evidence suggesting that providing clinicians with early diagnostic recommendations can help 
improve diagnostic accuracy (Kostopoulou et al., 2015b).  

When nature of medical expertise was explored by researchers for understanding causes of diagnostic 
errors they realised that an expert clinician reasons differently in comparison to a novice clinician. Expert 
clinicians form an accurate diagnosis more efficiently and effectively, using less clinical information and 
produce less diagnostic errors (Groves, O’Rourke and Alexander, 2003; Crespo, Torres and Recio, 2004). 
The main reason for this better performance is not necessarily because expert clinicians know more when 
compared to intermediates or novices. In fact evidence suggests that with increasing expertise there is a 
decreased application of biomedical knowledge (Boshuizen and Schmidt, 1992). It is argued that this 
increase in diagnostic performance is due to improved organisation of clinical knowledge memory by 
expert clinicians through several years of clinical practice (Schmidt and Rikers, 2007b). The ability of the 
clinician to maintain context and coherence during a diagnostic problem solving task is key to reducing 
diagnostic error (Sibbald, Panisko and Cavalcanti, 2011). Context for diagnostic decision making can 
include clinical history, clinical signs and symptoms, clinician, patient and other environmental factors 
(Teunissen et al., 2009). Experts can quickly and efficiently build a composite picture of the patient of a 
series of clinical observations based on the context in which these observations are made.  

2.1.1 Cognitive causes of diagnostic errors 
Diagnosis is primarily a cognitive task and medical diagnosis is essentially a categorization task that allows 
a clinician to make sense of the patient data in front of him/her and make appropriate treatment 
decisions.  Human error plays a significant role in diagnostic error even if other systemic factors may be 
primarily responsible. Clinical diagnosis is considered an example of the naturalistic decision-making 
model, i.e. decision-making in the real-world settings.  

Factors like risk, time pressure, stress, uncertainty, distractions, ambiguity, uncertain shifting and 
conflicting goals, along with resource and organizational restrictions can complicate the decision making 
process and contribute to errors (Patel, Kaufman and Arocha, 2002; Klein, 2008a). It is difficult to 
identify what the exact cause of the error was due to problems in self-reporting and review. Difficulties 
such as hindsight bias and poor memory can affect results of self-reporting by clinicians.  Diagnostic 
errors are not immediately noticed and there are problems with delayed feedback from secondary care 
regarding accurate diagnosis (Kostopoulou, 2008). While diagnostic errors are a serous cause of concern, 
the exact cause of diagnostic errors is still a matter of debate. 

Researchers are of the opinion in a vast majority of cases, especially in domains like internal medicine 
(Graber, Franklin and Gordon, 2005a) and emergency medicine (Kachalia et al., 2007), cognitive errors 
either alone or in conjunction with other factors, play a crucial role in the formulation of error. As 
classified by Graber (Graber, Gordon and Franklin, 2002b), cognitive errors can be due to faulty 
knowledge of the clinician, faulty data gathering, faulty information synthesis or faulty metacognition.  

Cognitive biases and heuristics have been studied extensively as a cause of diagnostic error (Croskerry, 
2002). Croskerry (Croskerry, 2003b) has given an extensive list of cognitive biases and heuristics, 
collectively called Cognitive Dispositions to Respond, that may lead to diagnostic error. Some key ones 
include (Norman, 2009): 

● Availability bias: The clinician will choose a diagnosis based on the diagnostic hypothesis that can 
be easily retrieved from memory. If a disease has not been observed by the clinician for a long 
time, then chances of it being considered as a diagnosis goes down. 

● Base rate neglect: Clinicians sometimes tend to ignore true prevalence rate of disease. Clinicians 
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can consider rare and exotic diseases when other more common and prevalent diseases may need 
to be considered. 

● Representativeness bias: Clinicians can be misguided by the features of a disease. The 
prototypical features of a disease may help in diagnosing common disorders, but they can mislead 
the clinician when a disease with atypical features presents. 

● Premature closure bias: It is the tendency of a clinician to prematurely halt the diagnostic 
decision-making process before all data has been obtained and diagnosis has been fully verified. 
The clinician does not consider all alternative diagnoses. Most diagnostic errors are due to 
premature closure biases (Ely, Kaldjian and D’Alessandro, 2012b). 

● Confirmation bias:  This can lead the clinician to look for evidence to support his/her diagnostic 
hypothesis, rather than looking for evidence to reject. 

 

Graber et al. (Graber, Gordon and Franklin, 2002a; Graber, Franklin and Gordon, 2005b) has identified 
several reasons for cognitive errors. The key factors include: 

o Faulty knowledge or skills:  
o The clinician has inadequate knowledge about the patient’s condition and this 

predisposes to cognitive errors 
o The clinician does not have required skill in a clinical condition 

o Faulty data gathering:  
o Clinician has problems coordinating data from multiple sources 
o Clinician fails to collect appropriate information during history and examination 
o Incorrect diagnostic test ordered 

o Faulty information processing 
o Clinician fails to generate appropriate context 
o Clinician overestimates/underestimates the relevance of a finding 

o Faulty information synthesis- Most common cause of cognitive based errors 
o Premature closure bias 
o Clinician fails to follow up on an appropriate test 

 

It has been identified that diagnostic error is multi-factorial in nature and one error can lead to another. 
Cognitive errors are the most common cause of diagnostic error and faulty information synthesis is the 
main cause of cognitive related diagnostic error (Graber, Franklin and Gordon, 2005b). Gaps in physician 
knowledge or application of knowledge are a major cause of cognitive related errors (Zwaan et al., 2010). 

2.1.2 What can be done about cognitive errors? 
Researchers have identified several possible solutions/interventions to reduce the role played by cognitive 
errors while acknowledging that diagnostic errors due to cognitive factors cannot be completely 
eliminated (Graber, Gordon and Franklin, 2002a; Thammasitboon and Cutrer, 2013). 

Measures such as improving the quality of medical training (Bordage, 1999; Trowbridge, Dhaliwal and 
Cosby, 2013), problem based learning (Hmelo, 1998), metacognitive training (Croskerry, 2003c, 2003a) 
have been proposed as possible solutions to reduce cognitive errors. Other proposed solutions include 
improving perception, availing second opinions (Kronz, Westra and Epstein, 1999) and improving 
availability of expertise (Espinosa and Nolan, 2000). 

Clinical guidelines are another solution that could impact diagnostic decision making by standardising the 
process of collecting, analysing and verifying clinical data. Clinical guidelines have several benefits and 
limitations (Woolf et al., 1999). Clinical guidelines improve consistency of care and can potentially 
improve healthcare efficiency. They can alert clinicians to diagnostic tests and procedures that have the 
greatest evidence and provide the greatest benefit.  Clinical guidelines can be used to streamline clinical 
decision making and provide the knowledge base for guideline based CDSSs and clinical alert systems 
(Garg et al., 2005a). 
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The most important limitation of clinical guidelines is the potential for flawed recommendations (Lenzer, 
2013a; Boudoulas et al., 2015). Evidence for one particular sub-group may not translate into benefit for 
the patient in front of the clinician (Institute of Medicine, 2011). Clinicians find guidelines from different 
organizations conflicting and confusing (Hogeveen et al., 2012). Rigid clinical guidelines and algorithms 
may not truly reflect the complexity of daily clinical practice and can lead to frustration on behalf of 
clinicians (Woolf et al., 1999).  

Recently there have been numerous debates concerning credibility and scientific basis of clinical 
guidelines, especially regarding treatment recommendation guidelines, and the presence of biased 
guidelines (Lenzer, 2013b). Though clinical guidelines have been shown to be effective in reducing 
treatment and medication errors there is very little evidence to show a similar impact on diagnostic errors 
(Ioannidis and Lau, 2001). Guidelines themselves are heuristics, or rules of thumb to manage complex 
problems in a limited time frame, and the inherent biases or preferences of a guideline development body 
may influence recommendations that a guideline provides thereby undermining local considerations and 
professional autonomy. Clinicians themselves may feel available guideline is not applicable for their 
patient and may reject a guideline believing their patient is somehow unique or atypical. This 
phenomenon is called an Aggregate bias (Saposnik, Redelmeier, Christian C Ruff, et al., 2016).  

Croskerry (Croskerry, 2003a) has identified several strategies to reduce diagnostic errors to ‘Cognitive 
Dispositions to Respond’ (Croskerry, 2002). This includes considering alternatives, reducing reliance on 
memory, providing access to clear and well-organized information. Other proposed techniques include 
allowing more time for clinical consultation, use of clinical algorithms, making available local disease 
prevalence statistics and use of CDSSs (Phua and Tan, 2013). Croskerry et al have presented a review of 
cognitive debiasing strategies that can be adopted to tackle cognitive related diagnostic which includes 
obtaining clinical information in a more structured manner (Croskerry, Singhal and Mamede, 2013b, 
2013d). 

Researchers are of opinion that diagnostic CDSSs and other computer aided diagnostic tools will help 
reduce cognitive errors by reducing the cognitive burden and improving decision making (Graber et al., 
2012a; Croskerry, Singhal and Mamede, 2013c; El-Kareh, Hasan and Schiff, 2013; Thammasitboon and 
Cutrer, 2013). CDSSs help in mitigating system related factors that cause diagnostic errors as well (Schiff 
and Bates, 2010; Singh et al., 2012a). A low-tech counterpart of diagnostic CDSS is to use checklists, but 
they can become too cumbersome when dealing with complex diagnostic scenarios (Ely, Graber and 
Croskerry, 2011; Sibbald, de Bruin and van Merrienboer, 2013). In trying to reduce diagnostic errors, 
there is a need to consider a problem of trade-offs. CDSSs can slow down the decision-making process if 
it requires clinicians to go through multiple checks and numerous data entry fields to reach a diagnosis. 
Therefore, CDSSs should be able to reach an optimum balance between monitoring and preventing 
cognitive errors and maintaining efficiency of diagnostic decision making. There are problems with 
existing CDSSs as most CDSSs do not impact the data gathering and synthesis phase of the patient-
clinician encounter and this affects the quality of the data gathered (Wright, Phansalkar, Bloomrosen, 
Robert A Jenders, et al., 2010).  

Diagnostic reasoning models such as the hypothetico-deductive model for clinical reasoning (Elstein, 
Schwartz and Schwarz, 2002) explain how clinicians (especially novice clinicians) obtain a diagnosis 
following steps described below (Harbison, 1991).  

 At first, they obtain information by taking clinical history, complete physical examination and 
conduct diagnostic tests if needed.  

 Some working hypotheses are generated, and clinician considers all possible diagnoses in the form of 
a mental list.  

 Further information is sought from patient to confirm or refute working hypotheses (if needed). 
 The diagnosis is verified by weighing and combining information from all sources and then arriving 

at a conclusion that confirms one working hypotheses.  
 

The working hypotheses for a clinical case are generated early in the diagnostic encounter based on a few 
clinical patterns that are observed in a patient. These working hypotheses may not always be accurate and 
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are tested by acquiring additional information from a patient. Some hypotheses are rejected, and other 
hypotheses are added as a clinical encounter progresses. The working hypotheses are generally limited in 
number as human memory only allow a few diagnoses to be stored simultaneously (Miller, 1956). Patterns 
used to trigger diagnostic hypotheses are more developed in experts than in novice clinicians. According 
to Evans and Patel (Patel, Evans and Groen, 1989), experts rarely use biomedical knowledge and causal 
reasoning to arrive at diagnoses. Early in career a novice clinician is most likely to primarily rely on 
biomedical knowledge for diagnostic reasoning and this biomedical knowledge is subsequently replaced 
by cognitive heuristics to help identify the diagnostic hypotheses (Patel, Arocha and Kaufman, 1994). The 
‘Illness script’ is a widely accepted concept that tries to provide a framework for understanding how 
clinicians organize the knowledge that they gain from literature and clinical experience and use it to 
diagnose and treat patients (Charlin, Tardif and Boshuizen, 2000). A script can be described as a set of 
attributes each with a set of values. 

Based on observations present in the patient, the illness script(s) for that condition is triggered and 
clinicians looks for default value in a patient (Schmidt and Rikers, 2007a). If default value is not present 
or unacceptable values are found for attributes, another illness script is triggered, and clinicians looks for 
attributes and values in that script. The clinician will traverse the network of knowledge in their memory 
gained from experience, supplemented by biomedical knowledge, to find a script that best suits/explains 
the clinical situation in front of him/her. In this manner, the clinician will generate several different 
hypotheses and reject the hypothesis that does not fit his/her mental model and arrive at a diagnosis. 
Illness scripts are an efficient way of organizing knowledge and allows a clinician to rapidly seek 
information, search for an appropriate illness script, find the right script and verify values (Charlin et al., 
2007).  

Using illness script(s) model, the working hypotheses is triggered early in the diagnostic encounter. 
Generating the working hypotheses early in the encounter helps the clinician to narrow the solution 
space. Using the working hypothesis, further information is gathered until one of the working hypotheses 
is confirmed. The diagnostic CDSS should help the clinician in generating the working hypotheses and 
help in gathering additional information about the patient to help confirm or refute working hypotheses. 
The diagnostic CDSS must then help in confirming the diagnosis after all information has been collected 
and act as an aid to suggest alternative diagnoses if needed.  

The Dual Process Theory explains how individuals make decisions and judgments under uncertainty with 
limited information (Kahneman and Egan, 2011; Evans and Stanovich, 2013). It can be adapted to 
explain how a clinician reasons when presented with a clinical case. Making a diagnostic decision in the 
early stages of a clinical encounter is a classic example of this scenario. The clinician is faced with limited 
information and is working under uncertainty regarding the patient’s condition. The dual process theory 
consists of 2 types of processes, System 1 and System 2 (Evans and Stanovich, 2013). 

System 1 is the process that is associated with pattern recognition. It is intuitive, efficient and fast and is 
used to make most common decisions (Saposnik, Redelmeier, Christian C. Ruff, et al., 2016). It is mostly 
activated in cases with a routine clinical presentation and is dependent on the clinician’s experience. It is 
used by busy clinicians to deal with patients with familiar clinical presentations. Both Illness scripts and 
System 1 thinking require some previous experience with a case or at least knowledge of the most 
common signs and symptoms of the disorder. However diagnostic errors are highly associated with 
atypical presentations (Kostopoulou, Delaney and Munro, 2008b). When the clinical presentation of a 
case is atypical, and a clinician is not familiar with the case, the clinical reasoning automatically switches to 
System 2 process of reasoning.  

System 2 is the process that is associated with slow, methodical, analytical reasoning. This process is 
deliberate and is most commonly activated when a patient presents with an atypical clinical presentation. 
An atypical presentation forces the clinician to slow down and consider all probable causes for the 
patient’s current condition. Medical students and clinicians with less experience tend to use System 2 for 
reasoning and are therefore slower and more methodical when trying to diagnose a patient.  
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System 1 and System 2 reasoning work in tandem and support each other (Saposnik, Redelmeier, 
Christian C. Ruff, et al., 2016). When a clinician takes time to consider all the signs and symptoms and 
reflect on the patient’s condition, then System 2 can override System 1 thinking. System 1 helps quickly 
identify patterns and formulate hypothesis, while System 2 slows down the thinking process and prevents 
the clinician from forming a diagnostic hypothesis without considering all the clinical data.  

The diagnostic CDSS should be able to support both System 1 and System 2 processes. Using checklists 
and considering alternatives have been proposed to improve System 1 reasoning process (Graber et al., 
2012b). Using evidence based-medicine and normative decision making have been proposed as measures 
to improve System 2 reasoning process (Graber et al., 2012b). Other measures proposed include the using 
guidelines and algorithms to reduce reliance on memory and provided focussed decision support on a 
specific condition.   

However, an issue with providing early diagnostic recommendations is unavailability of decent quality 
information to generate accurate diagnoses by the CDSS. The poor quality of existing/historical data in 
EHR systems is a well-known problem (Wagner and Hogan, 1996). This in turn affects the quality of the 
results generated by a CDSS. If poor data quality can be addressed, existing data in EHR systems can help 
in identifying previous symptoms, signs, clinical tests that may be relevant to the patient’s current 
problem and help in generating early diagnostic recommendations. However, if a patient doesn’t have a 
previous history in the EHR that is relevant to the current problem, the diagnostic CDSS will not have 
enough information to generate accurate diagnostic recommendations. Guideline and algorithms have 
been proposed by researchers are measured to help reduce diagnostic error (Graber et al., 2012b). 
Evidence based guideline recommendations can potentially help improve information gathering of 
clinicians by providing timely alerts to a clinician about abnormal values and explaining importance of an 
abnormal value and why it’s important. The guideline recommendations can provide clinicians with 
information on how to interpret tests and investigations results. Similarly, guideline recommendations can 
help a clinician by providing evidence-based guidance about next steps to be taken including 
tests/investigations to be ordered.  

When the clinician asks a patient a question regarding health and patient gives an answer, this data is 
recorded in EHR. A guideline-based CDSS can look up the data in the EHR and provide alerts. The 
alerts can indicate the type of diagnoses where the abnormal values can be found. The alerts can help 
trigger illness scripts which may not be triggered without the help of CDSSs. Guideline recommendations 
can then guide a clinician towards appropriate tests to be taken. Illness scripts triggered by abnormal 
values and corresponding guidance can help a clinician formulate diagnostic hypotheses. The clinician 
forms a mental model of next steps to be taken. The clinician can then compare his/her mental model 
with that of the guideline recommendations. If the mental model matches that of the CDSS 
recommendation the clinician can confidently continue along line of questioning or investigations. 
Guideline recommendations can help a clinician interpret test results and potentially reduce errors in 
interpretation. All these steps improve the quality of data collected during the clinical encounter. 
Guideline recommendations can help in improving management decision made after a diagnosis by 
providing evidence-based guidance of next steps to be taken after a diagnosis.  

Guideline recommendations can therefore potentially improve information gathering of clinicians by 
reducing reliance on memory by acting as memory aids and providing context specific and patient specific 
recommendations in a structured format. If information gathering of clinicians improves, then it ensures 
that a clinician has all the information needed to make a diagnosis. If all information is available to a 
clinician, then it could correspondingly help reduce diagnostic errors caused by biases such as premature 
closure where the clinician halts the information gathering processes and finalizes a diagnosis. However, 
this is reliant on clinicians having adequate knowledge and experience. Without adequate experience a 
clinician will not have a knowledge base of illness scripts to rely on to guide information gathering to 
confirm/reject diagnostic hypotheses. Novice clinicians do not have adequate experience. Novice 
clinicians benefit the most from CDSSs. Clinicians can compare his/her mental model of a patient to a 
ranked diagnostic recommendation generated by the CDSS. The ranked diagnostic recommendation 
should be able to give reasons for making a recommendation. The reasons should be given in a format 
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that is easy to understand. Diagnostic recommendations may not be completely accurate as all 
information has not been collected yet. However, ranked recommendations must contain the right 
diagnosis in the top to help a clinician focus his/her efforts on next steps of diagnostic encounter.  

Researchers believe the intervention with the best scope for improving diagnostic decision making is 
diagnostic CDSSs. However some of the early CDSSs were plagued with problems including non-
acceptance by clinicians (Sittig et al., 2006). Researchers have identified several dimensions of ambulatory 
care (primary care) where diagnostic errors are likely to arise (Singh and Weingart, 2009). These are 
provider-patient encounter, performance and interpretation of diagnostic tests, follow-up of patients and 
diagnostic test results, subspecialty consultation and patient specific behaviours. Later studies have 
confirmed that the most common dimension where diagnostic errors can be found is provider-patient 
encounter (84.2% of cases) and the most common cause of the errors in the provider-patient encounter is 
problems in data gathering and synthesis (medical history, physical examination and ordering of 
diagnostic tests) (Singh et al., 2013b). 

During provider-patient (clinician-patient) encounter, a provider/clinician may not have access to 
accurate and reliable data. Singh and Weingart (Singh and Weingart, 2009) suggests that this may be due 
to inaccurate and second hand information obtained from colleagues or trainees or sometimes directly 
from the patients themselves. One strategy proposed by Singh and Weingart (Singh and Weingart, 2009) 
to reduce diagnostic errors in clinician-patient encounter is better integrated EHR systems with improved 
access to accurate medical history information with patient web portals playing an important role in the 
process of gathering information.  

A review (Singh et al., 2012b) of system-related interventions to reduce diagnostic error only found 2 
studies that provided empirical outcomes of interventions to reduce diagnostic error in the clinician-
patient encounter. System-related interventions are those interventions that address diagnostic error issues 
arising from systemic issues such as technical failure of equipment or organizational problems like faulty 
healthcare policy or protocols implemented in hospitals (Graber, Gordon and Franklin, 2002b). One 
study (Perno et al., 2005) implemented a designated trauma response team that helped reduce the 
incidence on delayed diagnosis of injury in trauma patients. The other study (Howard et al., 2006) 
implemented a tertiary examination procedure where a comprehensive re-examination of patient and 
review of all laboratory results and radiology studies is conducted within 24 hours of admission. This was 
found to reduce the number of missed injuries in trauma patients.  

2.2 Diagnostic decision support systems 
2.2.1 History of diagnostic decision support systems 
Computer based CDSSs have been in development for several decades. Since the earliest days of 
computers researchers have indicated the possibility of using machines in clinical diagnosis (Ledley and 
Lusted, 1959). The main decisions CDSSs can support include diagnosis and treatment planning. 
Treatment planning is intrinsically linked to the diagnosis and other factors including medical history, 
patient status and related factors such as patient values and needs. The early applications of diagnostic 
CDSSs built during early 1970’s have required clinicians to adapt his/her diagnostic reasoning process to 
the mathematical and logical reasoning suitable for computation (Miller, 1994). However, it was soon 
realized that clinicians were not willing to adapt to this style of reasoning. Traditional decision making 
models including probability theory and utility theory are being slowly replaced by more naturalistic 
decision making models which are more suitable for real life scenarios (Klein, 2008b). This led to the 
development of knowledge-based systems that model the clinician’s diagnostic reasoning process.  These 
systems used categorical reasoning and probabilistic reasoning alongside the knowledge-based models to 
offer better explanation of the patient’s symptoms.  The term knowledge-based system is broad and can 
denote any computer program that uses a knowledge base to solve problems.  

According to Shu-Hsien Liao (Shu-Hsien Liao, 2005a), Expert System (ES) methodologies generally fall 
into following categories: “rule-based systems, knowledge-based systems, neural networks, fuzzy ESs, 
object oriented methodology, case-based reasoning, system architecture, intelligent agent systems, 
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database methodology, modelling and ontology” based systems. Knowledge based system and expert 
system are sometimes used synonymously. Expert systems are primarily applications that are attempts to 
solve a problem normally done by a human expert (Hayes-Roth, Waterman and Lenat, 1983). Knowledge 
based systems represent the knowledge explicitly in the form of knowledge representation formalisms 
rather than computer code. Almost all expert systems available today are knowledge based, however not 
all knowledge-based systems are expert systems. When applied to clinical diagnosis, these knowledge-
based systems/expert systems reason in a systematic manner, generating multiple hypotheses based on 
clinical data and arrive at conclusions to explain the symptoms that the patient has.  

CDSSs can be roughly classified into three categories based on their application (Musen, Shahar and 
Shortliffe, 2006).   

● Tools for information management: Tools that perform information storage and retrieval and 
provide the clinicians with the data and knowledge required to perform a task (Oberkampf, 
Zillner and Bauer, 2012b). These tools do not apply the information to the task. Implementation 
of the information and adapting the knowledge to the particular patient is accomplished by the 
clinician (Sullivan, Gardner and van Rijsbergen, 1999). 

● Tools for focussing attention:  These tools flag abnormal values and alert the clinician to possible 
drug-drug interactions and other events. These tools can assist in diagnosis when they alert the 
clinician toward abnormal values which may indicate the need for further tests and may indicate 
the presence of pathology. Other uses include drug-allergy checking, basic dosing guidance, 
formulary decision support and duplicate therapy checking (Kuperman et al., 2007). 

● Tools for providing patient specific recommendations: These tools provide recommendations 
based on the patient’s clinical conditions. Diagnostic assistants such as DXplain (Barnett et al., 
1987a) analyse the clinical findings such as symptoms, signs and lab results to produce a ranked 
list of possible diagnosis. It provides a justification of why each diagnosis is present in the list and 
indicates other unusual manifestations that may be present in the patient and therefore needs to 
be considered.  Other systems include QMR (Quick Medical reference) (Miller, Masarie and 
Myers, 1986) which was developed from the INTERNIST-1 program (Miller, Pople and Myers, 
1982). QMR provides access to more than 750 diseases to support internists in daily practice and 
has a knowledge base of more than 5000 clinical findings. 

 
An early successful version of a successful knowledge based system was PUFF (Aikins et al., 1983). PUFF 
was built using EMYCIN (van Melle, 1979), which in turn was built using an earlier system called 
MYCIN. MYCIN was a rule based expert system for diagnosis and treatment recommendation in 
infections. The clinical knowledge was represented in the form of IF-THEN rules. MYCIN provided an 
early demonstration of the ability of rules to represent clinical knowledge (Shortliffe et al., 1975). 
EMYCIN (Essential MYCIN) is an expert system shell that can be used to build diagnostic expert 
systems.  Rules contain small and independent segments of domain knowledge that are easier to modify 
than knowledge embedded into the computer code. However, modifications to one rule affect the 
behaviour of other rules and can result in errors and as the number of rules increase the application 
becomes more and more unmanageable. However techniques for automatic discovery using data mining 
methods and optimisation of rules have been developed which can address some of these issues and has 
led to a renewed interest in rule based systems (Kwiatkowska et al., 2007). PUFF was one of the first 
knowledge-based systems to be routinely used in clinical practice. 

MYCIN (Shortliffe et al., 1975), one the best known expert systems, is built around a set of concepts such 
as clinical history of patient and infectious organisms.  The main aim of the system was to play a similar 
role of a human specialist in infectious disorders. The system will interact with a clinician to collect 
relevant information about the patient and analyse the information to provide a diagnosis and treatment 
recommendation. MYCIN models the chain of reasoning used by specialist diagnosticians and encode the 
knowledge in the form of production rules.  

INTERNIST-1 (Miller, Pople and Myers, 1982) differs from other diagnostic decision support system 
previously developed. It did not follow Bayesian statistical methods and pattern recognition to perform 
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diagnostic reasoning. It is impractical to estimate the probabilities of diseases for all the diseases within 
internal medicine as some of the diseases as rare and not well described in literature. Pattern matching is 
difficult to perform in complex cases with multiple competing hypotheses and incomplete information. It 
relied on symbolic reasoning which was being developed around the same time and a ranking algorithm 
to perform complicated processing on information to arrive at a diagnosis.  

2.2.1.1 Causal models in diagnostic decision support systems 
Causal models play a crucial role in medical reasoning. Knowledge of causal relations helps the clinician 
understand the disease process, describe temporal processes in diseases, cluster symptoms into groups 
based on causal relations, and understand relations between diseases. 

Causal models in diagnostic reasoning were first explored in the causal-associational network (CASNET) 
(Weiss et al., 1978). It was first developed in the glaucoma domain. It was proposed as a general model for 
diagnosis. The CASNET model uses different layers of knowledge modelling for diagnostic reasoning. 
The model consists of three main components or layers: observation of the patient, pathophysiological 
states and categories for diagnosis, prognosis and treatment.  

When the clinician examines the patient he/she records the clinical observations which are associated 
with certain intermediate states. The physiological states modelled summaries of abnormal physiological 
events. The states are causally related to each other. These states and their causal relationships form a 
directed acyclic graph network. Diseases are represented as pathways within the network. The progression 
of the disease was modelled by following pathways within the network. This was done by following the 
pathway from a starting node through admissible pathway of nodes. The admissible pathway passed 
through either confirmed or unconfirmed nodes and excludes denied nodes.  

The CASNET model is different from mathematical models as it relies on causal links and temporal 
progression of disease to perform the diagnosis. CASNET was among the first type of knowledge-based 
system that represented knowledge in the form of different levels of abstraction.  However, CASNET is 
limited by difficulty in manipulating the causal relations and dealing with comorbidities.  

The Present Illness Program (Pauker et al., 1976a)  uses causal relations to denote relations between 
different diseases and their clinical states using relations such as cause-of, caused-by etc. The domain 
knowledge is organized into collections of facts called Frames.  

These frames are like the Illness Script concept used in medical cognition research. According to this 
concept the physicians organize their knowledge of disease, clinical manifestations, and other conditions 
in which diseases are known to occur in the form of ‘scripts’. As the clinician gains more experience the 
causal pathophysiological knowledge becomes encapsulated into diagnostic labels. The encapsulated 
knowledge becomes translated into scripts called Illness scripts (Schmidt and Rikers, 2007a). Illness 
scripts are essentially networks of knowledge that can be adapted to achieve the goals of the clinical task. 
When the script is adapted for diagnostic purposes it is called a diagnostic script. When the clinician 
examines a patient the incoming information obtained from questioning and examinations triggers the 
relevant script, then directs the clinician’s knowledge gathering behaviour and helps in hypothesis 
formation and testing (Custers, Boshuizen and Schmidt, 1996; Charlin, Tardif and Boshuizen, 2000). 

Within each frame of the Present Illness Program there exists a similar structure and each frame is 
centred on a disease and includes typical findings of the disease, scoring parameters, causal factors 
(caused-by, maybe-cause-of etc.) and rules for fitting the frame to individual case. These frames are in 
turn linked to other frames forming an elaborate network quite like the knowledge organization structure 
used by expert clinicians. Other links include complications (complication-of, complicated-by) and 
associations between diagnoses. Each hypothesis frame has 3 states that it can have; active, semi-active 
and inactive state. The state is determined by the match between the input date and the information held 
within the frames. When there is positive match, the frame is placed in the active state. Any frames that 
are linked to that frame are put in semi-active mode. Reasoning under uncertain conditions was 
performed by calculating a likelihood estimate for each active frame. When the likelihood estimate passed 
a threshold, the frame is confirmed, and if it fell below a threshold it was returned to the semi-active state. 
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The likelihood estimate was calculated as an average of a binding score and matching score. The binding 
score estimated the extent to which a hypothesis explained the findings of the patient. The matching 
score estimated the extent to which the observed findings were appropriate for the hypothesis. The semi-
active frames were designed to replicate the hypotheses/scripts that are activated by the clinician during 
the diagnostic reasoning process. Present Illness Program was among the first expert systems to explicitly 
use human cognitive models to model the diagnostic reasoning mechanism within CDSSs. 

Use of causal relations in diagnostic reasoning frameworks were  explored in INTERNIST-II (Pople, 
1982) and then in CADUCEUS (Myers, Pople and Miller, 1982) and to remedy some of the problems 
associated with CASNET. INTERNIST-I (Miller, Pople and Myers, 1982) used a single hierarchy to 
present taxonomic knowledge while CADUCEUS tried to improve upon this by organizing the 
knowledge base using several different hierarchies utilizing a lattice-like structure with each hierarchy 
organised around a concept. The disease within each hierarchy and area related to other diseases using 
causal links. 

CADUCEUS used links to represent relations between nodes. These include ‘Causal links’ to represent 
pathophysiological relations, ‘Planning links’ to represent possible causal relations and ‘Spanning links’ to 
summarize the collections of causal links. Constrictor links associate the diagnosis with key findings that 
give a strong indication of a diagnosis. 

The pathophysiological relations between clinical states are predefined in CASNET, while CADUCEUS 
can hypothesise the presence or absence of such a relation. The knowledge model in CASNET only has a 
single level of detail while CADUCEUS can vary the causal links and granularity based on the available 
evidence. However both CASNET and CADUCEUS does not adequately address the problem caused by 
interactions between multiple disorders on diagnosis (Patil and Senyk, 1987). Some diseases can affect the 
clinical presentation of other diseases. 

ABEL (Patil, Szolovits and Schwartz, 1981) attempted to solve the problem of interaction between 
multiple disorders in the domain of acid-base electrolyte disorders. In this system, the knowledge base 
was modelled on causal hierarchical networks. The model consists of a multi-level hierarchy of 
representation. At the shallowest level, it will consist of causal relations between syndromes and diseases 
and at the deepest level it consists of pathophysiological knowledge. The knowledge at lower levels is 
aggregated into upper levels of abstract levels of knowledge. The authors argue that this method of 
representation in multiple hierarchies enables the system to handle disorders with multiple causes and 
interactions between multiple disorders. Each node has several attributes and each node is linked to other 
nodes through causal relations. Each level contained a semantic network of nodes and causal links 
between these nodes. Each node represents a normal or abnormal state of a physiological condition and 
the link represent the relations between different states. The link between the cause and effect nodes 
contains a set of constraints between the attributes of these nodes. The causal links help to constrain the 
number of nodes evaluated during the diagnostic reasoning process.  

CHECK (Molino et al., 1986) combines heuristic knowledge and causal knowledge within the same 
system. CHECK has two-level architecture with different representations of the domain knowledge in the 
form of causal and heuristic knowledge interacting with each other. The heuristic representation consists 
of productions rules and frames to assist in diagnosis. The causal representation consists of a hierarchy of 
interrelated nodes. The knowledge in the causal network is used to confirm hypotheses generated from 
the surface level, representing heuristic knowledge. 

The surface level contains knowledge frames representing classifications of liver diseases and sub-
classifications of these diseases. The causal network consists of several nodes which have a set of 
attributes: Initial causes, states, actions, findings, hypotheses. These nodes are linked to each other with 
arcs: cause of, has a manifestation, defined as, loops.   

Another expert system that uses causal models for reasoning is the CHF (Chronic Heart Failure) Advisor 
(Long, 1989). This system was developed mainly to assist the clinician in diagnosis and management of 
patient with a condition that can cause heart failure. The cardiovascular domain is replete with uncertain 
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causal mechanisms. CHF Advisor used a probabilistic causal model to model the domain. In this model, 
there exist relations between cause and effect with a probability of a cause producing the effect. This 
model has attempted to include enough intermediate nodes to represent to represent causal mechanism in 
considerable detail. They developed a heuristic method to generating differential diagnosis based on 
causal pathways, starting from causes to findings and building the hypothesis, one finding at a time.  

Other systems that use probabilistic causal networks include MUNIN (Andreassen et al., 1987) which  has 
causal links between nodes with conditional probabilities and apriori probabilities of the system are 
updated using Bayesian inference mechanisms. 

Probabilistic causal models based on directed probabilistic graphs such as Bayesian networks have  been 
developed for diagnostic reasoning in uncertain conditions (Onisko, Druzdzel and Wasyluk, 1998). Each 
node in the graph represents a random variable the arcs represent a direct relationship between the 2 
variables. The graphs structure represents the causal structure of the domain. 

One of the earliest attempts to implement diagnostic reasoning under uncertainty was (de Dombal et al., 
1972) developed to diagnose abdominal pain and recommend the need for surgery. It used a naïve 
Bayesian approach for diagnostic inference and overall diagnostic accuracy of the system was higher than 
clinicians involved in evaluation. The system provides access to definitions of signs and symptoms of 
patients with abdominal pain, information about patients with abdominal pain and outcomes for patients 
with similar signs and symptoms etc. The database contains over 50,000 cases. When the patient’s history, 
signs and symptoms are entered, the correct database is selected. Using Bayesian statistical analysis, the 
patient’s clinical data is compared to data in the database which generates the probability of the most 
likely diagnosis. The system has been evaluated several times and has been found to improve diagnostic 
accuracy, reduction in readmissions and unnecessary surgical procedures (Gunn, 1991). 

However, reasoning in causal models can be computationally expensive especially for routine cases. The 
knowledge about the actual causal mechanism in several diseases is unavailable and therefore 
implementation of CDSSs based on causal reasoning is still lacking. Causal models have problems 
representing temporal reasoning. Another issue with causal systems is the level of detail that is required 
for modelling causal relations.  

2.2.2 Differential diagnosis generator systems 
Differential diagnosis generator systems are software that uses clinical data (clinical history, symptoms, 
etc.) entered by clinicians to generate a list of possible diagnoses that clinicians need to consider when 
making a diagnosis. Differential diagnosis generators are one of the different types of computer based 
decision support tools available that can help reduce diagnostic error (El-Kareh, Hasan and Schiff, 2013).  

DXplain (Barnett et al., 1987b) analyses the patient’s medical history, clinical examination findings and 
laboratory findings to produce a ranked differential diagnosis list. The database has over 2000 diseases 
and over 4000 clinical terms to describe these diseases.  Iliad is an expert system that was originally 
developed as a training tool for medical students (Warner, 1989) and has been evaluated as a diagnostic 
recommender system as well (Bouhaddou, Lambert and Morgan, 1995). Other early differential diagnosis 
recommender systems include MEDITEL (Waxman and Worley, 1990) and Quick Medical Reference 
(Miller, Masarie and Myers, 1986). The performance of these early systems left much to be desired 
(Berner et al., 1994b). These systems  produced a large differential diagnosis list and clinicians took a long 
time to input the data required to produce the list (Graber and VanScoy, 2003). This limited their 
usefulness in real world settings. These systems used either Bayesian logic or pattern matching algorithms 
to make diagnostic recommendations when the clinician selected clinical findings from a menu. 

To overcome some of the problems with these early systems several 2nd generation systems were 
introduced. These systems used free-text or natural language processing technology to process findings 
entered by the clinicians and used newer information retrieval and pattern matching algorithms to process 
the data and produce a list of diagnostic recommendations. Some of these web based systems have 
reduced the time taken for data entry (Graber and Mathew, 2008a), but overall diagnostic performance 
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has not improved substantially (Bond et al., 2012b). However DxPlain performed well in comparison to 
other 2nd generation systems such as ISABEL (Greenough, 2002; Vardell and Moore, 2011). Other well-
known 2nd generation systems include Diagnosis Pro (Diagnosis Pro®, 2014), PEPID (PEPIDTM, 2014), 
VisualDx (Vardell and Bou-Crick, 2012) etc. Current (3rd generation) differential diagnosis generators 
using semantic web technologies (García-Crespo et al., 2010b) are  being developed which use ontologies 
as a knowledge base (See section - 2.5).  

A recent review of differential diagnosis generator systems identified 23 different systems currently in use 
clinical practice and for teaching (Bond et al., 2012b). It identified some potential barriers to widespread 
adoption of these tools which includes lack of integration with EHR systems, limitation of the user 
interface and lack of access to linked content including evidence based and non-evidence-based content.  

2.2.3 Guideline-based CDSSs 
Clinical management guidelines are an important part of improving standards of care, quality and clinical 
outcomes in healthcare. Text-based clinical guidelines are developed by domain experts such as healthcare 
scientists and expert clinicians using a consensus-based approach. Guidelines are based on scientific 
evidence and the best guidelines are based on review of randomized controlled trials. There has been a 
steady move towards greater use of evidence-based medicine and clinical guidelines is one several 
measures that have been proposed for realizing vision of using scientific evidence where possible in 
clinical practice. Clinical guidelines have been developed with aim of helping clinicians with decision 
making for common situations encountered in clinical practice. Guidelines can help the clinician reduce 
errors such as diagnostic and management errors, improve efficiency in clinical practice, employ best 
practices, reduce variation in clinical practice and improve overall clinical outcomes. 

Though clinical guidelines are based on evidence their implementation has not been universally successful 
(Lenzer, 2013b). Main problem associated with paper-based clinical guidelines is that guidelines are 
designed for general population and process of personalizing guidelines for an individual patient for a 
specific context has be performed manually by the clinician (Woolf et al., 1999). Textual content in these 
paper-based guidelines are narrative in nature and is often written in a relaxed language and it is up to a 
clinician to interpret contents based on his/her clinical judgement. The paper-based guidelines are bulky 
and not easily accessible at bed-side where decisions are made. Algorithms and flow-charts have been 
developed from these clinical guidelines to make the content more easily accessible at the bed-side. These 
clinical algorithms present the logic and the flow of care for a single patient and generally focusses on a 
single medical condition.  

The logic within these algorithms and workflows can be represented in a formal manner that can be 
executed by computers providing automated inference and providing patient specific guideline 
recommendations (de Clercq et al., 2004). CDSSs that can consume these formal models to provide 
clinical decision support recommendations are called guideline-based CDSSs. There are several 
formalisms that exist which can formally represent guidelines into a format that can be computer 
executable (Peleg, 2013).  

Many of these guideline representation formalisms have a process-flow like representation called Task-
Network Models (Peleg et al., 2003). The steps in guidelines are represented as a series of tasks. Tasks are 
then joined with each other to form a network of tasks. Tasks can comprise of actions, decisions, 
enquiries etc.  

Asbru is a skeletal plan representation language. Asbru represents the medical guideline as skeletal plan 
with several sub-plans. This language represents actions as well as goals of a plan. The main components 
of an Asbru plan includes Preferences, Intentions, Conditions, Effect and Plan-body (Seyfang, Miksch 
and Marcos, 2002). AsbruView is a tool developed for visualizing and developing the model.  

Arden Syntax is a standard procedural language to represent protocols and plans in clinical guidelines as 
knowledge modules called Medical Logic Modules (Hripcsak, 1994). Medical Logic Modules execute as a 
sequence of logic statements, queries and calculations. The logic in each Medical Logic Module is 
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sufficient for a single medical decision. Medical Logic Modules can be embedded in clinical information 
systems to provide alerts, messages, warnings etc. Medical Logic Modules can be written using a text-
editor without knowledge of any programming language. Arden Syntax cannot represent complex medical 
guidelines that involve multiple decisions or process flow sequences but can be used to model clinical 
alerts and other warnings that have an IF-THEN-ELSE representation. The Medical Logic Modules can 
invoke other Medical Logic Modules. Another drawback of Medical Logic Modules is the ‘curly braces 
problem’. In Medical Logic Modules all references to specific clinical data must be contained within curly 
braces. Arden’s syntactic description does not allow any data modelling. Definition of data is therefore 
left to local implementers. Therefore, each Medical Logic Module must be adapted to the architecture of 
individual clinical systems thereby decreasing interoperability and reusability (Samwald et al., 2012).  

EON defines an architecture comprised of a set of components that cooperate with each other and 
automates various tasks associated with a clinical guideline (Tu and Musen, 2001). EON provides 
recommendations that are patient specific and provides alerts if the actions of a clinician diverges from 
published guideline recommendations. EON models have a declarative and a procedural component. The 
declarative component is modelled as an ontology. The procedural component is defined by a directed 
graph. EON is well suited for modelling clinical algorithm and flow-charts. However, the flow-chart like 
representation limits the ability of EON to model complex guidelines.  

GLIF 3 (Guideline Interchange Format Version 3) is an object-oriented format (Patel et al., 1998). It 
consists of classes, attributes and relationships between classes. Clinical knowledge is represented as a 
relationship between medical concepts. GLIF 3 provides a framework for modelling guidelines as 
flowcharts (Boxwala et al., 2004). This limits ability of the model to represent complex guidelines 
especially where there is a temporal component to a guideline. GLEE (Guideline Execution Engine) is 
the only commercially available execution engine that can execute GLIF models.  

PROforma is a guideline representation language that was developed by Advanced Computation 
Laboratory of Cancer Research UK (Fox, Patkar and Thomson, 2006a). Tallis is a toolset that domain 
experts can use to model pathway of a guideline. The toolset contains a graphical editor and an enactment 
engine to execute a guideline. A PROforma model is composed of 4 classes of tasks. These are Actions, 
Enquiries, Decisions and Plans (Sutton and Fox, 2003). Tasks are represented as a graph of nodes and 
edges represent the scheduling constraints. PROforma has precise syntax and semantics. All tasks share 
common attributes such goals, control-flow, preconditions and post-conditions. The Decision 
recommendations are generated using Argumentation Theory (AT) as basis (Fox et al., 2007). The choices 
for a decision are represented as Candidates. Each Candidate has a set of arguments that either supports 
or negates a Candidate (Fox, Krause and Elvang-Gøransson, 1993). The PROforma models must be 
executed using proprietary tools like Tallis (Sutton, Taylor and Earle, 2006). The inability to use off-the-
shelf technology for execution is a main limitation of current generation guideline-based CDSSs that 
prevents widespread adoption.  

2.2.4 Argumentation Theory and CDSSs 
Argumentation Theory (AT) is an emerging area for dealing with unstructured evidence in domains such 
as healthcare characterized by uncertainty (Fox et al., 2007). Knowledge needed to support decision 
making is expressed in the form of arguments. AT explains how arguments can be expressed, sustained 
and rejected during process of decision making. For each decision a set of positive and negative 
arguments are created. Argumentation is a model that is based on construction and evaluation of 
competing arguments (Ouerdane, Maudet and Tsoukiàs, 2010). AT evolved as a sub-discipline of 
philosophical logic and is an important area of logic-based AI research. In recent years it has found 
several applications in cognitive science and information technology (Fox et al., 2007).  

Non-monotonic logic is a type of formal logic where conclusions can be invalidated by adding more 
knowledge. Non-monotonic logic is particularly useful in real-life situations such as diagnosis where all 
information about a domain is not fully available. Using available information, non-monotonic logic-
based system should be able to make tentative conclusions that can be retracted later when more 
information is available. In classical logical reasoning methods such as propositional logic, predicate logic 
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etc. conclusions that were formed cannot be modified or withdrawn considering new information. This 
phenomenon is called Monotonicity. Real life reasoning is not always monotonic. The hypothetico-
deductive model for clinical reasoning suggests that clinicians use initial information to gain additional 
information to support a diagnostic hypothesis. Therefore, diagnostic reasoning is a dynamic process 
where conclusions keep on changing as new facts are obtained. Non-monotonic logics were therefore 
explored by AI researchers due to limitations posed by monotonic reasoning used in classical logics. Non-
monotonic logics were initially developed by McCarthy and John (McCarthy and John, 1977), McDermott 
and Doyle (McDermott and Doyle, 1980) and Reiter (Reiter, 1980). Defeasible reasoning is a process used 
by humans where existing conclusions can be discarded in the light of new information or evidence. Non-
monotonic logics were developed to provide a formal framework where defeasible inference and 
defeasible knowledge representation can be adequately represented. Using non-monotonic logics, the 
reasoners can arrive at a conclusion and retract conclusions in the light of new information. Reiter (Reiter, 
1987) provides an example of this type of reasoning process:  

 Birds fly 

 Tweet is a bird 

 Therefore, Tweety flies 

Using this logic if Tweety is a type of a bird then we can arrive at a conclusion that Tweety is capable of 
flying. However, if Tweety is a special type of bird that cannot fly, for example a penguin, then the 
original conclusion is false. Penguins cannot fly. However, the original statement describing ‘birds fly’ is 
still true. Tweety is a penguin, and therefore not a typical bird. Therefore, we must assume that if Tweety 
is a typical bird, then by default we can assume it can fly. We can safely assume that Tweety flies until we 
have additional information that states otherwise.  Different type of non-monotonic reasoning 
formalisms has emerged including default logic (Reiter, 1987), auto-epistemic logic (Moore, 1985) etc. 
Argumentation is one type of non-monotonic logic (Prakken and Vreeswijk, 2001).  

Argumentation was derived from work done in the 1950’s by Toulmin and others to explain how the 
process of argumentation happens in day-to-day decision making. There are 3 main parts to a Toulmin 
model (Toulmin, 1958). There are Claims, Support and Warrants. Claims are statement or assertions an 
agent is aiming to prove. In a diagnostic context ‘patient has dental abscess’ is a claim. Support are 
statements that can support a claim. For example, ‘presence of pain’ is a statement that supports the claim 
of dental abscess in a patient. Warrants provide underlying reasons linking claim and support. Tests that 
can prove the presence of pain are types of warrants.  

Argumentation provides a framework to formalize defeasible reasoning (Fox, Krause and Elvang-
Gøransson, 1993). This type of reasoning is especially useful for diagnosis where an initial hypothesis is 
used to collect more information. Based on the new information the existing hypothesis is either 
reinforced or discarded completely to form a new hypothesis. Defeasible reasoning is particularly useful 
in situations where the information is incomplete or uncertain (Longo, Kane and Hederman, 2012). Early 
diagnosis is one area where the information is incomplete the diagnosis is uncertain. A clinician has not 
collected all information needed to make a diagnosis and meaning of symptoms and signs must be 
confirmed using clinical tests and investigations.  

Clinicians and other healthcare practitioners prefer tools that can provide better explanation about the 
patient’s condition. The reasoning used in clinical decision making is both non-monotonic and 
explanatory in nature (Fox, Krause and Elvang-Gøransson, 1993). Numerical tools that can predict 
probability of presence of a disease is useful, however clinicians benefit more when the CDSS is able to 
explain why a diagnosis has been recommended (Labrie and Schulz, 2014). Subjective probabilities are 
sometimes used by clinicians to perform medical decision making. The costs and benefits of a decision 
are weighed alongside their probabilities. However, in most real-life situations, clinicians tend to use 
qualitative reasoning rather than numerical calculations to solve problems such as diagnosis. Reliable 
probabilities are not easily available for all domains to build decision models.  
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Using an argumentation-based approach delivers several advantages to a clinician using a CDSS (Fox and 
Parsons, 1998). The clinician will be able to get a good overview of the options available to him/her. A 
good choice amongst these decisions can be presented and the reasons underlying this decision can be 
presented in natural language and in a format that is easy to understand (Ouerdane, Maudet and Tsoukiàs, 
2010). Argumentation allows us to model with greater expressivity the preferences needed to decide and 
allows partial specification of preferences especially in decisions where there are multiple options.  

In argumentation-based models such as PROforma the degree of support of each argument is assigned a 
numeric weight (Fox et al., 2007). The argumentation process begins by formalizing arguments for a 
decision candidate. A decision has multiple candidates. Arguments supporting a candidate are specified 
alongside arguments negating a candidate. The weight can be used as the basis for ranking the candidates 
once the arguments have been aggregated and a decision is to be made. PROforma’s argumentation-based 
decision model supports a natural form of explaining reasons/justifications for each decision (Fox, Johns 
and Rahmanzadeh, 1998). Despite simplicity of argumentation-based models such as PROforma, it is a 
practical way to develop CDSSs and has high acceptability amongst clinicians (Fox, Patkar and Thomson, 
2006a).   

Argumentation-based applications have been in developed in medicine and other areas to support 
decision making. Argumentation-based CDSS applications have been developed to support decision 
making about medical treatments in patients (Atkinson, Bench-Capon and Modgil, 2006). An agent called 
the Drama agent orchestrates information from multiple sources to supply a set of arguments based on 
which a decision regarding treatment can be taken. arguEIRA, is a CDSS and was developed as an 
extension of the existing CDSS called EIRA (Grando et al., 2013) by providing it with an argumentation-
based justification system that formalizes and communicates to clinicians reasons why a patient did not 
respond to treatment.   

Argumentation based CDSSs have been shown to improve decision making in certain areas such as 
prescribing. A study by Walton et al. (Walton et al., 1997) using simulated cases show that CDSSs 
improved prescribing patterns, resulted in faster decision making and improved compliance with 
prescribing guidelines. Participants in the study found the CDSS easy to use and most of them were likely 
to use in clinical practice.  

LISA is another argumentation-based CDSS for advising clinicians about drug dose adjustment for 
treating children with acute lymphoblastic leukemia. A study using simulated cases, questionnaire study 
and semi-structured interviews shows that LISA helped improve accuracy of dosage calculations (Bury et 
al., 2004). Another study using retrospective cases showed that LISA helped improve adherence to drug 
dose protocols and reduce prescribing errors. Clinicians who did not use LISA deviated from trial 
protocol on 37% of occasions, however when they were given decision support the number dropped to 
zero. The clinicians who participated in the study said they would use LISA if it were routinely available 
(Bury et al., 2005).  

Due to the absence of concrete numerical estimates of uncertainty, argumentation-based CDSSs are well 
suited for risk assessment. An argumentation-based CDSS called RAGs (Risk Assessment in Genetics) 
was used to evaluate genetic risk of cancer (Emery et al., 1999; Coulson et al., 2001). The doctor enters a 
patient’s details into a user interface. The patient’s family tree is built using data provided. Once pedigree 
has been established the RAGs application assesses a patient’s genetic risk of cancer. Domain experts 
provided the set of rules for building arguments for a patient’s increased or decreased genetic risk. A 
simple total risk score is generated from the arguments. Based on the score a patient is put into high, 
medium or low category. An evaluation of user interface showed that when compared to other software 
and paper-based tools the clinicians preferred RAGs 91.7% of the time (Emery et al., 2000).  

Argumentation-based CDSS models have been developed to help clinician develop a plan of action for 
the patient. REACT (Risks, Events, Action and their Consequences over Time) developed by Glasspool 
et al. (Glasspool et al., 2003) provides argumentation based support for clinicians and patients involved in 
medical planning. A study evaluating REACT using actors simulating patients showed that 7/8 geneticists 
who used the tool were very supportive of it (Glasspool et al., 2003).  
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CADMIUM imaging system is an argumentation-based CDSS that helps clinicians in interpreting images 
by combining image processing and automated interpretation of images. A study using radiographers as 
test subjects showed that the system increased rate of correct classifications of malignant and benign 
abnormalities in routine breast cancer screening (Taylor, Fox and Pokropek, 1999).  

Retrogram® developed by InferMed is an argumentation-based CDSS that advises clinicians on the use of 
anti-retroviral drugs for HIV positive patients. Around 250 clinicians around the world are using this 
CDSS. The CDSS provided genotype interpretation alongside other decision recommendations. A multi-
centre clinical trial showed that the CDSS helped improve patient outcomes by reducing viral loads to 
target levels (Tural et al., 2002).  

An argumentation-based guideline driven CDSS was built using PROforma to support triple assessment 
of cancer. A balanced crossover evaluation of the CDSS using breast cancer clinicians showed that there 
was significantly more deviation from guideline recommendations without help of decision support 
(Patkar et al., 2006). More critical errors occurred when clinicians did not have support of decision 
support. Opinion of clinicians was generally positive towards the CDSS. 

Argumentation-based CDSSs have been developed to support diagnostic decision making. A distributed 
architecture to support the diagnostic and treatment of cancer using PROforma has been proposed. 
Argumentation was used as the basis for developing a CDSS to help diagnosis dementia (Lindgren, 2011). 
Likelihood for diagnosis was displayed in the form of different types of support such as possible, unlikely, 
probable and excluded.  

In medicine, argumentation-based CDSS tools have been developed in several areas including diagnosis, 
treatment planning, prescription etc. Diagnostic CDSS tools developed to date have been tools that can 
help interpret data and do not provide diagnostic recommendations. However, the studies to date have 
not shown the impact of an argumentation-based diagnostic CDSS on diagnostic decision making. There 
is a need to evaluate impact of an argumentation-based CDSS on the diagnostic behavior of clinicians, 
particularly primary care clinicians. Argumentation is a good candidate for developing a diagnostic CDSS 
for generating diagnostic recommendation in early stages of a clinical encounter. 

2.2.5 Argumentation and other CDSS models 
This section gives an outline of some of commonly used decision support models in healthcare and its 
limitations when compared to an argumentation-based approach.  

Machine learning approaches are a major branch of AI and have been used to develop several CDSS 
applications. Intelligent behaviour of a CDSS is built by learning from data such as patient data from 
EHRs. Training data that consists of features of a diagnosis is provided to a learning algorithm alongside 
the correct diagnosis. Subsequently when the learning algorithm is provided a large enough dataset it can 
learn from the data and predict a diagnosis. The main advantage of machine-learning approaches is there 
is no need to develop a specific algorithm for a domain. As more data becomes available, accuracy of 
learning algorithms can be improved. The main disadvantage of using machine learning approaches 
(especially neural network-based techniques) for diagnostic CDSSs is that some of these algorithms have 
a black-box approach and decisions made by the CDSS cannot be explained easily. Argumentation-based 
methods are a simple knowledge based approach that can capture the expertise of domain experts and 
explain decision made by CDSSs in a manner that clinicians can understand and have high acceptability 
among clinicians (Fox, Patkar and Thomson, 2006a; Fox et al., 2007).  

Longo et al. (Longo, Kane and Hederman, 2012) have identified some advantages of Argumentation-
based methods and models that machine learning techniques do not have. They include: 

 The ability to deal with incomplete and missing data. Process of decision making can be 
completed even if all data is not available. This is important for providing diagnostic 
recommendations early in the diagnostic encounter. 

 Argumentation-based models can capture expertise of domain experts in an organised manner.  
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 Argumentation is not based on statistics and probability and is therefore very close to the way in 
humans make decisions. If needed, statistical evidence can be incorporated into the decision 
model. Though subjective probabilities are used in medical decision-making, clinicians often 
appear to make decisions based on qualitative reasoning based on domain specific knowledge. 

 Argumentation-based methods can better explain reasons for deciding. The arguments in favour 
and against a hypothesis can be presented and a clinician can weigh the evidence. This is 
important when dealing with substantial amounts of data that could potentially be available to 
clinicians from linked web of data.  

 Argumentation is extensible and allows retraction of a decision based on new evidence. It can be 
updated. This is useful in providing early diagnosis where the CDSS retracts the old decision and 
provides a new diagnostic recommendation considering current information.   

There are primarily 3 categories of human diagnostic reasoning that have been formally represented by 
CDSSs to provide diagnostic recommendations. These are probabilistic, causal and deterministic. 
Probabilistic models include models such as Brunswik’s lens model (BRUNSWIK, 1955), Bayesian 
methods (WARNER et al., 1961) and decision analysis (Thornton, Lilford and Johnson, 1992). These 
probabilistic models use statistical association between clinical variables such as observations and 
complex mathematical models to generate diagnostic recommendations. Clinicians consider prevalence 
and other probabilistic data about probability of a clinical observation within a population during 
diagnostic reasoning (Elstein, Shulman and Sprafka, 1978). For example, when clinicians are faced with a 
patient that complains of a lesion on the skin they are trained to look for common causes of skin lesions 
including infections. Once they have ruled out all common causes of lesion they will look for relatively 
rare causes like skin cancer. However, studies have shown that clinicians are not very good at 
incorporating real statistical data into their daily diagnostic decision making especially when dealing with 
uncertainty (Dawes, Faust and Meehl, 1989). Clinicians have problem reasoning with probabilities and 
studies have shown wide variability in assigning diagnostic probabilities (Cahan et al., 2003).  

Bayesian networks have been used by CDSS applications for making decisions under uncertainty. The 
Bayesian network can represent relation between diseases and its symptoms. Given a set of symptoms 
Bayesian network-based CDSSs can provide probability of a disease being present. Bayesian network 
represents uncertainties using probabilities. Bayesian network is a directed acyclic graph over which is a 
probability distribution is represented. The nodes of a Bayesian network graph represent random 
variables or events. Directed links between variables represent causal relationships. A link from one 
variable to another indicates that one variable can cause other. The earliest example of a Bayesian network 
CDSS was a program developed for diagnosis of acute abdominal pain (de Dombal et al., 1972). In 
domains where causal knowledge is well known and can be captured easily the Bayesian network can be 
modelled easily and can provide accurate diagnostic recommendations (Wasyluk, Oniśko and Druzdzel, 
2001; Chang, Hung and Juang, 2013). Bayesian networks perform well when incomplete or noisy data are 
available (Sesen et al., 2013).  

However, in domains where causal knowledge is not well defined it is very difficult to model a Bayesian 
network. Translating domain expert’s clinical knowledge is difficult especially when there are several 
signs, symptoms, clinical test results and associated diagnoses to consider. The argumentation-based 
model simplifies this process of capturing the domain knowledge by using a simple technique to generate 
diagnostic recommendation. Presence/absence of an observation is used to provide supporting/negating 
arguments. The weights are a subjective representation of degree of support of each argument places on 
each diagnosis. The domain expert therefore does not need to know statistical probability of an 
observation being present and probability of a diagnosis given presence of an observation. The 
argumentation-based model is therefore much simpler to use to capture domain expertise. A machine-
readable and machine-understandable representation of a CDSS model that uses argumentation can 
automatically derive the arguments from other ontologies such as SNOMED-CT. Bayesian Network 
Classifiers uses Bayes formal rule to classify patients. This approach involves representing each decision 
as a class and computing probability that a patient will fall within a class. CDSSs can recommend an 
option (e.g. a diagnosis) that has the highest probability given a set of data such as symptoms or signs 
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(Langarizadeh and Moghbeli, 2016). However, the amount of evidence needed to build a robust Bayesian 
Network Classifier is very high (Maria Yaneli et al., 2013). It is very difficult to translate a clinician’s 
domain knowledge into a Bayesian network.  

Deterministic models such as production rules used in Expert systems based on IF-THEN rules are  used 
to provide decision recommendation to clinicians (Horvitz, Breese and Henrion, 1988). The expert 
system is typically composed of 2 parts: inference engine and knowledge base. The knowledge base is 
composed of rules that have an IF-THEN representation. The use of natural language to model the rules 
make it appealing to clinicians. However, the main problem with expert systems is limitation associated 
with collection of knowledge from experts. They have limitations dealing with uncertainty, in translating 
domain expertise into the rules and they do not perform well in dynamic conditions where data keeps 
changing. Arguments in an argumentation-based system can be represented in natural language and 
argumentation supports defeasible reasoning where the decision can be retracted in the light of new 
information.  

Fuzzy logic and fuzzy rules were developed to deal to uncertainties in decision making when using 
production rules. It was based on Fuzzy theory and has an advantage of modelling human reasoning that 
was vague. Fuzzy logic is better suited for handling different types of uncertainties that arise in clinical 
decision making (Warren, Beliakov and van der Zwaag, 2000).  However, there are problems in 
translating domain expertise into fuzzy rules and difficulties capturing the subjective perception of what 
the fuzzy values mean to the clinicians. Argumentation-based methods are more intuitive and can be used 
to easily capture the expertise of domain experts.  

Case-based reasoning techniques are another that can provide intuitive decision recommendation to 
clinicians (Begum et al., 2011). In case-based reasoning the knowledge base is generated from previous 
clinical cases and evidence. This is similar in nature to clinicians using their memory to recall similar cases 
to solve the case in front of them. In theory this it is a natural technique for generating diagnostic 
recommendations. However, when the corpus of previous cases is limited case-based approaches can give 
faulty advice (HOLT et al., 2005). Argumentation-based methods are not reliant on a corpus of previous 
cases for decision making. However, existing cases can be used to help formulate arguments for an 
argumentation-based CDSS.  

2.3 The World Wide Web and CDSSs  
We are living in an era of open healthcare data (Kayyali, Knott and Van Kuiken, 2013). As more 
healthcare providers switch to EHRs, availability of healthcare data increases. Easy availability of 
healthcare data raises some challenges. Healthcare data by its very nature comes in different shapes and 
sizes representing source of data (Raghupathi et al., 2014).  

The World Wide Web (WWW) has been a convenient and natural place for people to publish their data 
(Rodolfo et al., 2016). This system is not owned by any government, individual, group or corporation. 
With dissemination of mobile phones and personal computers everyone has power to publish his/her 
data, including healthcare data on the web. However, with explosion of personal data available on the 
web it has become extremely difficult to find this data and use it to support clinical decision making. The 
different data sources that are available on the web can be structured, semi-structured or unstructured. 
Data can exist in many different syntaxes and data formats. This makes the task of integrating the diverse 
data sources for supporting clinical decision making very difficult.  

The web allows anyone to add information via web pages that are linked to each other via hyperlinks and 
share this information with each other. It allows anyone to contribute to the world-wide knowledge of 
web and communicate with each other. From a diagnosis point of view, the utility of the web in helping 
clinicians diagnose and manage diseases can be illustrated with the example of rare diseases. The 
information that can potentially help a clinician diagnose a rare disease includes knowledge repositories 
on the web that contain information about all sorts of diseases that  includes rare diseases (Pauer et al., 
2016). Since patients with a rare disease do not frequently present to a clinic, signs and symptoms of the 
disease will be unfamiliar to a clinician. Some diseases are so rare that clinicians, especially primary care 
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clinicians such as General Practitioners (GP) and Dentists, are unlikely to see even one such rare case in 
their whole career (DoH, 2013). Even researchers and scientists studying certain rare diseases do not have 
a complete picture of the most common signs and symptoms. Therefore, patients and researchers are 
increasing using web to share information about a rare disease of interest. The patients are using web 
resources to find more information about a disease, find other people that may have a similar disease, 
share information about their own condition or find latest treatments and clinical groups involved in 
diagnosing and managing the disease (Powell, Darvell and Gray, 2003). Clinicians and researchers are 
using these resources to find more information about a disease and  recruit patients for cutting edge 
medical treatments (Raredisease.org, 2013; NORD, 2016). However due to time constraints and 
increasing workload clinicians do not have time to search these information repositories even though the 
incidence of diagnostic error in the community is increasing and rare diseases play an important role in 
this increase (Kostopoulou, Delaney and Munro, 2008b). Failure to diagnose causes considerable stress 
and wastage of time and resources for the patient and healthcare system and delays treatment.  

2.3.1 History of knowledge representation on the web 

2.3.1.1 Semantic Networks 
Semantic Networks are a type of knowledge representation method which consists of vertices which 
represent concepts and edges representing relations between concepts. The edges/arcs are directed i.e. 
they are directed from one concept to another and they are labelled.  Semantic networks are inspired by 
the semantic network models used in cognitive psychology to represent human memory (Smith, Shoben 
and Rips, 1974).  

Semantic networks are commonly used to represent taxonomic relations. Nodes can represent concepts, 
objects, actions, events etc. It can represent individuals or classes of individuals. Arcs represent relations 
and associations between these nodes. The labels of the arcs denote the meaning of a relation. Some 
commonly used types of arcs include: 

▪ IS-A (instance of) 
▪ PART-OF 
▪ AKO (a-kind-of) 
▪ COMPOSED_OF 

The information about a domain is stored with help of interconnecting nodes and their arcs. One of the 
main types of reasoning mechanism over semantic networks is inheritance of values where the ‘is-a’ and 
other instance relationships can be used to find subclass and instance links.  A node can have several 
super-classes and child nodes can inherit properties of its parent nodes. Semantic networks can be used to 
query if two concepts are related or not. For example, what are the relations between these concepts, and 
what is the nearest concept to another pair of concepts? Figure 2-1 is an example of a simple sematic 
network representing relationships between people. This network can be used to find relationships 
between people. CASNET, ABEL and CHECK use a limited set of arcs to represent knowledge between 
nodes of different layers of knowledge. The Semantic Web (Web 3.0) and Web of data (Linked data) are 
essentially a large semantic network with interconnected databases (Shadbolt, Berners-Lee and Hall, 
2006).  

Semantic networks cannot represent certain types of knowledge easily, for example Non-taxonomic 
knowledge. Lack of formal semantics means that there is no agreed upon definition of concepts and their 
relations. This results in ambiguities when representing knowledge. The system will be limited by a user’s 
understanding of links between concepts. 
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Figure 2-1 - Semantic networks 

2.3.1.2 Frames 
Semantic networks developed into the Frame representation languages during the ‘70s and ‘80s. The 
‘Frame’ concept was first proposed in 1970’s (Minsky, 1975) and subsequently developed into several 
tools for representing knowledge.  A frame is represented as having a set of slots. A slot represents a 
relation to another frame or a value. A slot can have a range of possible values and a default value. 
Frames are used to present knowledge in narrow domains while sematic networks are used for knowledge 
representation of broad domains. Frames allow nodes to have a structure while semantic networks do not 
have that feature. The frame is like a record and fields and values of a record correspond to slots of a 
frame. A group of slots together represent an object within the domain. From semantic network shown in 
Figure 2-1, the following frame representing Mary can be created. 

Mary: 
 Sex: Female 
 Spouse: Bob 
 Child: (John) 
Sex, Spouse and Child are slots. The slots can hold multiple values. 

Frames can inherit features of parent node. So, a feature that is common to all members of a class need 
only be represented once in the superclass. Like semantic networks, frame languages do not have 
standards for representation frames. Present Illness Program (Pauker et al., 1976b) uses a frame based 
representation to model its knowledge. Knowledge base can be organized as a hierarchy of different 
frames. Frames can model real-world objects by using generic knowledge for representing majority of an 
object’s attributes and use specific knowledge only where needed. Frames representing more generic 
concepts are at the top of a hierarchy and individual/instance level representation lies at bottom levels of 
a hierarchy. This is like class hierarchies in object-oriented languages. Frames can be classified based on 
their applications into: 

▪ Situational frame: Contains knowledge of what to expect in each situation 
▪ Action frame: Contains knowledge of actions to perform under different conditions 
▪ Combination: A combination of situational and action frames can be used to represent causal 

knowledge and cause-effect relationships between concepts.  
 

Frame based representation techniques have advantage of simplicity and ease of understanding and 
therefore makes it an ideal candidate for knowledge representation in modern applications such as 
semantic web (Lassila and McGuinness, 2001). 

2.3.1.3 Description Logics 
Description logics (DL) are a family of logic-based knowledge representation languages that allows the 
representation of knowledge within a domain in a structured manner (Baader et al., 2003). DL evolved 
from a combination of Frames, Predicate logic, Semantic networks and KL-ONE (Brachman and 
Schmolze, 1985) another knowledge representation language developed from semantic networks. Frames 
and semantic networks lacked formal logic-based semantics and DL were introduced to overcome this 
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limitation. DL enables knowledge representation alongside logic-based semantics and reasoning 
capability. This limits expressiveness of the language when compared to First Order Logic based systems 
but improves computability. DL differ from semantic networks and frames because it is equipped with 
formal logic-based semantics. 

First Order Logic (FOL) has very high expressivity. It is possible to model any domain knowledge using 
FOL. However, it is too complex for modelling and domain experts will have difficulty arriving at a 
consensus because of the different methods used to represent the same concept in FOL. It has problems 
with decidability.  Therefore, DL were developed as a fragment of FOL, to overcome some of the 
problems with FOL.  DL are decidable and have enough expressivity to model real world domains. 

DL consists of a set of axioms called a Terminological Box (TBox) and an Assertional Box (ABox) 
(Baader et al., 2003). The knowledge base is the combination of TBox and ABox. TBox contains 
knowledge about concepts of a domain whereas ABox contains knowledge about individuals within a 
domain. DL have ‘Constructors’ which can be used to create complex concepts and roles from simpler 
concepts and roles. Some of these constructors include Conjunction, Disjunction, Negation, etc. 

With the rise of Semantic Web there was a requirement for a web ontology language to represent the 
domain knowledge comprising the web. This led to development of (Web Ontology Language) 
(Harmelen and McGuinness, 2004). OWL is based on DL and exploits around 15 years of DL research. 

2.3.2 Limitations of the current web in supporting diagnosis 
The main problem with information on the web in its current form is that information on the web has 
been primarily designed for human consumption. How can information in these web repositories be used 
for supporting diagnosis in clinical practice? For example, if a clinician wants to search for Mast Cell 
Activation Disorder (MCAD-a rare disease) he/she must open the browser, enter the term of interest into 
a search engine, browse through the list of resources retrieved by the search engine and enter the 
resource, in this case a website for MCAD. Within the resource, he/she must search for appropriate type 
of information, for example, most common signs of MCAD. Data on the resource may be outdated and 
may not have all the information a clinician need. The clinician will then have to open another resource 
and look for additional information that he/she needs. This process takes time and effort. The CDSS 
application in the clinician’s clinic is not able to access information on the web in its current form.  

Tools like ISABEL (Ramnarayan et al., 2003) are web based and include a large repository of knowledge 
that acts as knowledge base. It is however a standalone differential diagnostic generator application that 
cannot exchange data with a patient’s EHR and cannot find other information about a patient and other 
information on the web that may relate to that patient. ISABEL uses web-based technology to deliver 
recommendations though tools like ISABEL do not fully exploit the full potential of the web. One of the 
reasons why the tools are not able to fully exploit the data on the web is the data is not machine readable 
or sometimes only partially machine readable (metadata). The content described on the website cannot be 
understood by the machine i.e. CDSS (machine understandable) and synthesized to support the clinician 
in clinical decision making. 

Another issue with data on the web is that data is frequently outdated and resources that depend on this 
data are  therefore outdated (Purcell, Wilson and Delamothe, 2002). Data needs to be synchronized so 
that when one resource is updated all the other resources that depend on this updated resource are 
updated with the up-to-date information. This is particularly crucial for rare diseases as new research 
findings pertaining to the rare disease should be incorporated into the web resources. At present this 
process is done manually and organizations must spend a lot of money in maintaining the content of 
these resources. The other major problem with information on web is that information is locked away in 
data islands or data silos. Information about drugs and treatment for MCAD will be hosted and 
maintained by one organization while information about clinical trials and latest research in field of 
MCAD will be maintained by another organization. The task of synthesizing information from all these 
disparate sources is a challenge and ensuring information is up-to-date is a major challenge.  
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Information on the web has a diverse range of representation formats and data structures (Bizer et al., 
2012). The information in one resource will be represented using a format and model that is specific to an 
organization maintaining the information. For example, a website for patients describing MCAD signs 
may describe symptoms and signs using terminology commonly used by patients to describe their signs 
and symptoms. However, another website for researchers may describe these same signs and symptoms 
using technical terminology favoured by researchers and clinicians. Traditional search engines can find the 
right information, if you know and can enter the right search terms (keywords). However, if a clinician is 
conducting an exploratory search to find all information about MCAD, he/she may not know right terms 
being used at outset. Therefore, a clinician must spend a lot of time going through disparate sources to 
find right terms and then query other sources using search engine.  

One way of ensuring that different web resources are linked up and share data is to have a centralized 
repository of data that collects and stores the data from several different sources (Weber et al., 2009). 
Linking data from these sources requires writing purpose-built code that can then update all dependant 
resources appropriately when a central database record is changed or updated. This type of centralized 
management of data is not scalable beyond a point and discourages people from putting their data and 
information on the web. Having a centralized repository for all information on the web  requires the 
different stakeholders interested in information about a rare disease to come together and agree on 
terminology to be used to describe terms used in their resources, which again is difficult to achieve for 
rare diseases as funding sources are limited (Griggs et al., 2009).   

So, the goal is to have a decentralized web which allows people to add data to the web in any format and 
intelligent software agents including CDSS applications will be able to search for the right up-to-date 
information and present this information to the clinician in a format that can be readily consumed by a 
clinician. The current web infrastructure allows the linking disparate web pages with each other with help 
of Uniform Resource Locaters (URL). The same concept of URLs can be extended to point one data 
item to another with the help of Uniform Resource Identifiers (URI). This is where the concept of the 
Semantic Web can help solve some of the problems with the current web. The semantic web supports 
distributed web at the level of data (Berners-Lee, Hendler and Lassila, 2001). The information about a 
resource can be located anywhere on the web and linked to each other with help of URIs. Information 
about MCAD drugs can be in one web resource. Information about MCAD drug indications and 
contraindications can be held in another resource, information about MCAD and its signs and symptoms 
can be in another resource. Semantic web technology allows us to link these datasets and query them for 
right information as if they are located on the same database. The different organizations involved in 
maintaining information can release their information in both a machine readable and human readable 
format (Rakhmawati et al., 2013). The semantic web infrastructure allows smart applications and 
intelligent agents to use the machine readable data to drive applications such as primary care CDSS 
applications (Hendler, 2001).  

2.4 The Semantic Web 
According to Berners Lee et al. (Berners-Lee, Hendler and Lassila, 2001), the semantic web has been 
intended as an extension of the current web (Web 2.0). The semantic web provides a framework for 
sharing data across disparate applications or organizational boundaries. It is commonly referred to as Web 
3.0 and is primarily concerned with meaning (semantics) of the data, rather than the structure. One of the 
core principles of the semantic web is the concept of AAA (Anyone can say Anything about Any topic) 
(Allemang and Hendler, 2011). According to this principle anyone can publish whatever they like about 
any topic on the web. This means that an MCAD patient can publish information about his/her signs and 
symptoms on a web site in a manner that is not just human readable but machine readable and can be 
combined with other resources. A patient may decide to use any terms that he/she prefers that best 
describes the condition. As more and more patients add information to the web the data from all these 
patients can be linked to each other. Gradually a web of data emerges that can then be linked to other 
similar webs of data. Researchers can add latest information about MCAD obtained from latest clinical 
trials to a repository that can then be linked to the data added by the patients. A semantic web driven 
CDSS application can then find this information based on just signs and symptoms of a patient 
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presenting to the clinic. The CDSS application can query the patient’s PHR (once authenticated and 
authorized) for additional information about the patient’s experience with MCAD and link them to 
current data being collected in the clinic. This additional information present on the web can be used for 
supporting clinical decision making and driving CDSS applications. However, the information on the web 
can have many challenges that prevent routine use in clinics. The data on the web could be wrong and 
sometimes information can be added to intentionally deceive others. The semantic web driven CDSS 
application must navigate these challenges when providing decision support recommendations. There are 
concerns about patient privacy and ethical concerns of publishing data on the semantic web. 

The semantic web is primarily concerned with 3 types of standards that can help resolve some of these 
challenges. They are: RDF, RDFS/OWL and SPARQL. Other standards and technology that are part of 
the ‘Semantic Web Layer Cake’ (W3C®, 2007) can be seen in the image below (Figure 2-2). 

 

Figure 2-2 - Semantic Web Layer Cake 

2.4.1 RDF 
RDF stands for “Resource Description Framework”. RDF is a W3C (World Wide Web Consortium) 
(W3C®, 2014) international standard and was developed by W3C for the purpose of representing 
information and has been used in a wide variety of areas including biomedical and pharmaceutical 
domains (Samwald et al., 2013). RDF, RDFS and OWL are the basic representation languages of the 
semantic web (Allemang and Hendler, 2011). The 3 languages allow varying levels of expressivity. RDF is 
the simplest data representation model. It allows a person modelling a world around him/her to make 
certain basic statements about the world. For example, a MCAD patient named “Bob” describing pain 
can represent a fact/assertion that he has pain in following format.  

PREFIX ex: <http://../PatientData> 
PREFIX ont: <http://../ontology> 
 
ex:patient124 ont:fullName “Bob Dillon”. 
ex:patient124 ont:value ont:PainPresent. 
 
Each assertion has a Subject, Predicate/Property and an Object/Value. A Subject, Predicate and Object 
together form a “triple”. The above triple states that a patient with record number 124 has a full name of 
“Bob Dillon”. It stated that the patient has a value called “PainPresent”. A set of triples can be taken to 
form a graph structure. The graph structures can be extremely complex and can comprise of billions of 
triples when scaled to the World Wide Web (Corcoglioniti et al., 2015). 

RDF uses URIs to uniquely identify resources on the web. This makes it easy to link existing resources. 
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For example, if an existing terminology/ontology used in biomedical informatics such as SNOMED CT 
(Spackman, Campbell and Côté, 1997; Cimino and Zhu, 2006a) has a term indicating “Abdominal Pain” 
then that can be used to annotate a field within an EHR. This reduces the ambiguity in defining terms 
and helps in finding the definition of terms. This is useful for clinical decision support, as different EHRs 
can have different terms to describe the same concept. If they are linked to the same 
vocabulary/terminology/ontology definitions and terminology codes, then a CDSS can operate across 
multiple EHR systems without the need for adapting a CDSS for each EHR system. If 2 web-based 
applications want to refer to the same resource, then they agree on a common URI for that resource. This 
way a CDSS application can uniquely identify a patient using URI and identification number used to 
denote a patient. It can possible uniquely identify the symptom described by the patient by linking it to a 
reference terminology. 

 

Figure 2-3 - Patient data RDF representation 

In the figure above (Figure 2-3) a patient has described his/her symptoms on a web resource (for 
example, a website for rare disease patients) and has described his/her symptoms using a standardised 
terminology. Another patient data has described a patient’s clinical findings in more detail and has 
described the pain as abdominal pain. Using the common URI with a value of “:124” we can link the data 
of both these resources and infer that they are from the same patient. The CDSS will be able to use the 
data from both these resources and use them for diagnosis even though the data was described in 
different ways in the different systems.  

RDF is a highly flexible data model and can incorporate various other data models including relational 
models and other graph models. The relational data model can be translated to an RDF data model and 
can be combined with an existing graph. It is format independent. RDF can be represented as 
RDF/XML, Turtle, N-triples, JSON (W3C®, 2013a) and various other serialization formats. So, data 
from multiple sources using multiple data models can be integrated with ease (if the data is mapped to a 
RDF data model). The emphasis of representing information using RDF is on the meaning (semantics) of 
the information.  

2.4.1.1 qnames 
For ease of representation of URI, a simplified version of URI called ‘qnames’ are used. ‘qnames’ have 2 
parts: a namespaces and the identifier (Allemang and Hendler, 2011). In the figure above (Figure 2-3), 
“:124” is the identifier and the namespace can be any model that has been used to describe that instance 
(for example, a hospital patient data representation model). 

:hasSnomedID 

:hasClinicalObservation
s 

:hasHospitalID 

:hasSnomedID 

:hasSymptom 

:hasPatientID :patient124 :124 

     :Pain in stomach :patientX 

:21522001   :Abdominal Pain 
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2.4.2 Semantic Interoperability 
Different healthcare systems use different vocabularies and formats to represent their data, even though 
from a point of view of semantics the data may have the similar meaning. In order to achieve semantic 
interoperability the different systems should be able to exchange data in such a way that both the systems 
are able to “automatically interpret the information exchanged meaningfully and accurately in order to 
produce useful results as defined by the end users of both systems” (EN 13606 Association, 2016). The 
lack of semantic interoperability is a significant problem in healthcare and according to some estimates 
proper semantic interoperability can create savings up to $30 Billion (West Health Institute, 2016).  

2.4.2.1 RDF as a Universal Healthcare Language 
The Yosemite Project (Yosemiteproject.org, 2016) aims to achieve semantic interoperability of all 
structured healthcare information. They have released a roadmap for achieving this goal and one of the 
key steps includes using RDF as a universal healthcare information representation. Using RDF as a 
universal information representation format will provide health informaticians a common way to 
represent the meaning of the data. In medical diagnosis RDF gives us a standardised way to represent the 
relations between the diagnosis and observations that either support or negate a diagnosis.  

Yosemite Project has  identified several reasons why they think RDF is the best candidate to act as a 
universal healthcare information representation standard (Booth, 2014b, 2015c) : 
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 RDF enables smarter data use and automated data translation: RDF supports inference 
which allows you to derive new assertions from old assertions. For example, if you are querying 
for family history of diabetes and if the patient has a grandparent that has a history of diabetes, 
you can automatically infer that the patient has a family history of diabetes without asserting this 
fact directly. So even if the patient’s EHR does not contain any record of family history but a 
social worker’s record has details of the patient’s diabetic grandparent, you can still infer the fact 
that a patient has a family history of diabetes by simply asserting the fact that the patient has the 
same grandparent as the one mentioned in the social worker’s record.    

 Multiple data models and vocabularies can be easily combined and interrelated: RDF 
allows multiple schemas and data models to co-exist and be semantically interconnected. There 
are several different data models and vocabularies in healthcare. The decision logic that drives 
one decision support system and utilizes data from an EHR that uses one information model and 
vocabulary cannot be reused in another decision support without considerable effort and cost. 
RDF allows different data models, vocabularies and decision models to co-exist by assisting in 
translations from one data model to another. For example, different organizations and 
researchers have different interpretations of which diagnostic criteria are accurate. Some 
researchers might insist upon a more comprehensive diagnostic criterion for diagnosis; however, 
others may have a simpler diagnostic criterion for the same diagnosis. Both these models will be 
able to co-exist when represented in RDF and can be translated easily from one model to 
another. 

 RDF captures information-not syntax: RDF is format independent and can be represented in 
different syntaxes i.e. Turtle, RDF/XML, N3 etc. All these formats represent the same RDF 
information.  Data from diverse sources having different syntaxes but the same meaning can be 
exchanged easily. The emphasis is placed on the meaning of the data rather than syntax. 
Diagnostic criteria are generally published as text-based representation in clinical guidelines or 
text books. The machine-readable formats can include several different formats including RDF, 
XML, CSV, JSON etc.  

 RDF is easy to map from other data representations: RDF is composed of atomic assertions 
or Triples. A triple comprises of a Subject-Object-Predicate structure. This makes it easy to 
represent any form of data and incorporate any data model. Diagnostic CDSSs must use 
information from diverse sources that may represent data in different formats. For example, 
family history of a disease may be recorded in primary care, but not necessarily in other places. 
Blood pressure recorded in a wearable computing device will be a different format from that 
recorded in primary care. However, the decision support systems should be able to integrate all 
this information at the right place and time and assist the clinician in decision making. As 
mentioned previously one of the main reasons for cognitive error is faulty information gathering 
and synthesis. Modelling knowledge in RDF will help facilitate the process by capturing the 
information in a domain neutral syntax-independent manner. Semantic web tools can then 
integrate this information for the decision support to make diagnostic recommendations. 

 RDF is self-describing: RDF uses URI (Uniform Resource Identifiers) to identify resources. 
This makes it possible to link the identifier to authoritative definitions or vocabularies. This helps 
reduce ambiguity when describing resources. The observations and diagnoses in a diagnostic 
decision support can be linked to ontologies/taxonomies/vocabularies that define these 
concepts. 

 

2.4.3 RDF Schema (RDFS) 
To make sense of the RDF data we use a data definition specification called RDF Schema (RDFS). It is 
officially called the “RDF Vocabulary Description Language”. RDFS contains the definition of the 
classes, properties and restrictions (Brickley and Guha, 2014). It contains definitions of subclasses and 
super classes, and sub-properties and super-properties that link these different classes to each other and 
to literal values. RDFS is the schema definition language for RDF datasets (Allemang and Hendler, 2011). 
RDFS can be used to define a data model that can be used to create simple ontologies and was an early 
attempt at producing an ontology representation language.  
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2.4.3.1 Ontologies 
Ontologies are one of the different types of knowledge representation formalisms currently available and 
the most popular. Ontologies are  considered one the key pillars of the Semantic web (Klaczynski et al., 
2012).  

An ontology can be defined as an “explicit, formal specification of a shared conceptualization” (Gruber, 1993). 
Conceptualization is the forming of an abstract model by identifying the classes and relations within a 
domain of interest. When all the concepts within the domain are defined, it is considered explicit. If there 
are any undefined concepts, then the ontology will fail. Formalization enables the model to be machine 
understandable, not just machine readable. The machine can interpret the meaning of the content. The 
model can be considered a shared model once there is consensus regarding the concepts and the relations 
within the domain.  

The information within the semantic web is given a well-defined meaning which allows computers and 
humans to share information and work in cooperation. However, two different databases may refer the 
same concept using different terms. For example, one terminology may use one term to define a concept, 
while a different terminology may use another term. Databases that are annotated with these different 
terminologies will not be able to share data since they use different standards. Ontologies, by providing 
the explicit representation of a concept allow a program to compare the two databases and combine the 
data within them. The success of the semantic web is dependent on whether ontologies are widely 
accepted and used. 

Ontologies can have Classes, Properties and Instances and is modelled using languages such as OWL. 
The classes represent the concepts within the domain.  The classes have certain attributes that can be 
used to describe it. The members of a class share the attributes. The classes can be related to other classes 
through properties.  In a clinical/biomedical ontology the classes and relations represent the concepts and 
their relations that are needed to represent that clinical domain. Thus, ontologies can be used to formalize 
the knowledge of domain experts such as dentists and other clinicians. The instances/individuals 
represent concrete objects such as people, drugs etc. Ontologies provide a means for classifying these 
instances, even though instances are not explicitly part of the ontology. 

In addition, certain constraints can be placed over these classes and relations to define what classes and 
relations are allowed in a domain of interest.  For example, in Figure 2-4 the disjunction constraint can be 
placed on the subclass relationship to define that both Man and Woman belong to disjoint classes. Or a 
member of the ‘Man’ class cannot belong to ‘Woman’ class as well.   

The classes, relations and constraints can be combined to form certain ‘Axioms’ which describe parts of 
the knowledge that cannot be described by other components. A set of axioms that provide logical 
assertions about classes, relations and instances form an ontology representation.  

DL based ontologies can exploit DL based reasoning tools to provide inference capability. Therefore, 
machines can infer implicit knowledge from explicitly defined knowledge bases. DL based reasoning 
support can be used to ensure quality control in ontologies. These reasoning tools can be used during 
ontology design phase and test for contradictions in concept and property representation. Reasoning 
tools can be used for integrating different ontologies together. 

Ontology combines artificial intelligence and machine language to assist in sharing and reusing existing 
knowledge and combining ontologies to create new knowledge sources(Neches et al., 1991). In the clinical 
domain, ontologies can be used to model diseases, symptoms, causes of diseases, their relationship to 
other aspects of the disease process and so forth.  Other uses of ontologies include information retrieval, 
natural language processing, knowledge management, etc. (Uschold and Gruninger, 2009). Ontologies 
have  found use in areas such as Big Data analysis and interlinking medical and dental data and 
performing cross-domain data analysis (Shah, Rabhi and Ray, 2014). 

2.4.3.2 RDFS models 
:Planet rdf:type rdfs:Class. 
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:Earth rdf:type :Planet. 
 
The triples above state that Planet is a class and Earth is type of Planet that belongs to the Class 
“Planets”. RDFS is based on formal semantics and this allows RDFS to obtain valid inferences from 
existing data. For example, we can state that MCAD is a type of immunological disorder using the triple: 

:Immunological_disease rdf:type rdfs:Class. 
:MCAD rdf:type rdfs:Class. 
:MCAD rdfs:subClassOf :Immunological_disease . 
 
We can state that a patient (:124) has a disease MCAD using the following triple: 

:124 :hasDisease :MCAD. 

From this triple, we can infer that the patient has an immunological disease since MCAD is a sub-class of 
immunological disease: 

:124 :hasDisease :Immunological_disease 

However, RDFS is limited by its ability to represent complex knowledge that can be read by machines. 
For example, in Figure 2-4, both Man and Woman are subclasses of Human. However, individuals 
belonging to Man and Woman cannot belong to the both classes. We cannot represent such disjunctive 
class relationships using RDFS.  

 

 

 

 

 

 

The other key problem of RDFS models is that RDFS cannot be used to denote negations. For example, 
if we denote that a clinical observation is present then it does not automatically infer that another 2nd 
clinical observation is absent. RDF and all other semantic web languages follow an Open World 
Assumption. In a closed world if one clinical observation is present, then the fact that the 2nd observation 
is absent is automatically inferred.  In an open world unless we assert/infer the statement that the 2nd 
clinical observation is absent we cannot say for sure that the 2nd observation is absent or not. The open 
world assumption assumes that the information is incomplete. We cannot therefore automatically infer 
that the 2nd clinical observation is absent if the 1st observation is present. Therefore, there is need 
knowledge representation models that are based on mathematical logic or a formal knowledge 
representation that is capable of more semantic expressivity for expressing the relationships between 
these concepts. 

2.4.4 OWL 
OWL (Web Ontology Language) is the de-facto standard language for representing ontologies on the 
web. The current version is OWL 2.0 (W3C OWL Working Group, 2012). RDFS allows us to model 
simple classes, properties and the relations between these classes. OWL has vastly increased semantic 
expressivity and overcomes some of the shortcomings of RDFS language. 

OWL comes in different types, ranging between First Order Logic based representations to plain concept 
hierarchies varying in semantic expressivity: 

● OWL Full  

 Human 

Man 

Woman 

Figure 2-4 - Subclass relationship example 
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● OWL DL 
● OWL Lite 

 
OWL DL is the only decidable version and is based on DL SROIQ(D). OWL DL was developed so that 
users can have maximum expressiveness without losing computational capability and decidability since 
DL are a family of formal knowledge representation languages that have more semantic expressivity than 
propositional logic, but has higher decidability than First Order Logic (Baader et al., 2003).  

OWL enables the knowledge engineer to model concepts in such a way to enable maximum reuse of 
concepts. So concepts and their relations that are defined in ontologies such as the Oral Health and 
Disease (OHD) ontology (Ontobee.org, 2016) can be defined once and reused in inference models, 
information models and  for linking existing terminology models. 

2.4.5 Types of ontologies 
The more knowledge about a domain that can be captured in the form of ontologies the better 
knowledge-based systems can the process information and communicate results. According (Noy and 
Mcguinness, 2001) some of the reasons for developing ontologies include: 

● “To share common understanding of the structure of information among people or software 
agents 

● To enable reuse of domain knowledge 
● To make domain assumptions explicit 
● To separate domain knowledge from the operational knowledge 
● To analyse domain knowledge” 

 
van Heijst et al (van Heijst, Schreiber and Wielinga, 1997)have classified ontologies based on two 
dimensions:  

● The amount and type of conceptualization: 
o Terminological ontologies: Specify terms used within the domain (Cimino and Zhu, 

2006b). 
o Information ontologies: Used to represent the data structure of databases. 
o Knowledge modelling ontologies: These ontologies are used to specify 

conceptualizations of the knowledge within the domain of discourse.  They have far 
greater detail in representing the knowledge. 

● The subject of conceptualization: 
o  Application ontologies: Model the knowledge required for an application 
o Domain ontologies: Model the knowledge of a domain 
o Generic ontologies: Like domain ontologies but have more generic concepts that are 

applicable across several domains 
o Representation ontologies: Domain neutral knowledge representations 

 
Similarly Guarino (Guarino, 1997) classified ontologies into: 

● Top level ontologies/Upper-ontologies: Ontologies that describe general concepts like space, 
time, events, etc. and are independent of a domain. They are cross domain ontologies and are 
used primarily in philosophy to classify the world around them. 

● Domain ontologies and Task ontologies: These ontologies are focussed on a domain or a specific 
problem/ task. 

● Application ontologies: These are specialization of domain or task ontologies and are oriented 
towards application of these ontologies in an application. 

 

Ontologies can belong to different types/categories based on their level of complexity (Lassila and 
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McGuinness, 2001) : 

● Controlled vocabulary 
● Glossary 
● Thesauri 
● Taxonomies 

o Informal IS-A Hierarchy 
o Formal IS-A Hierarchy 
o Formal Instance 

● Frames 
● Value restrictions 
● General logical constraints 
● Disjointness, Inverse, part-of etc. 

2.4.5.1 Biomedical Ontologies 
When ontologies describe the classes, relations and properties of the biomedical domain it is called a 
Biomedical Ontology. Biomedical terminologies are a collection of terms used within the biomedical 
domain, while biomedical ontologies describe the concepts and the relations of that domain as well. 
Several biomedical ontologies are currently available that are stored in large ontology repositories and can 
represent anything from the molecular level, to clinical and public health level as well. These ontologies 
primarily help in standardising terminologies and can be used for standardised information exchange and 
knowledge management. Development of the domain ontology is a crucial step in the development of a 
clinical knowledge management system.  

Once the domain knowledge has been captured in the form of ontologies it forms a common 
understanding of the domain by acting as a source of well-defined terms. The ontology can then be 
consumed by humans and/or machines and used for communication purposes.  The use of semantic web 
and related technologies in CDSSs, especially diagnostic systems have been increasing in recent years 
(Blomqvist, 2014). Ontologies are normally represented using standard machine-readable languages like 
RDF or OWL. RDF lacks the description of a relationship and therefore can be complemented by OWL. 

GALEN (Generalised Architecture for Languages, Encyclopaedias, and Nomenclatures in medicine) was 
developed to provide a re-usable application independent terminology for clinical information systems 
(Rector and Nowlan, 1994) . The language used to describe this terminology was called GRAIL (GALEN 
Representation And Integration Language)(Rector et al., 1997). It can be described using OWL. An open-
source foundation called OpenGALEN was later developed to distribute the GALEN reference model 
and provide a platform for developers and vendors to use the model in developing applications (Rector et 
al., 2003). 

The UMLS (Unified Medical Language System) is collection of various controlled vocabularies within 
biomedical science (Lindberg, 1990).  The Metathesaurus forms the foundation of UMLS and consists of 
1 million concepts and 5 million concept names. Each concept in the Metathesaurus belongs to one or 
more semantic types and is linked to one another through semantic relationships. However the separate 
vocabularies used with UMLS does not have a common architecture and therefore cannot be mapped 
easily and combined to work in a single system (Campbell, Oliver and Shortliffe, 1998). 

The Systematized Nomenclature of Medicine (SNOMED) Clinical Terms (CT) was developed by 
combining SNOMED Reference Terminology (RT) and Clinical Terms Version 3 (CTV3) (previously 
called Read Codes)(Wang et al., 2001). SNOMED RT was developed by College of American Pathologists 
and CTV3 was developed by the National Health Service (NHS) in the United Kingdom. SNOMED CT 
is a multinational and multilingual terminology and is the most comprehensive biomedical terminology 
currently available (Lee et al., 2014).  

Within dentistry, SNODENT is diagnostic vocabulary designed for use in dental EHR systems (Goldberg 
et al., 2005). However it suffers from problems in clinical coverage of terms when compared to 



57 
 

SNOMED CT (Torres-Urquidy and Schleyer, 2006) and will require the use of other 
ontologies/terminologies to overcome deficiencies. Another standardised dental terminology used in 
dentistry is the Dental Diagnostic System(DDS) (Kalenderian et al., 2011a). 

The Open Biomedical Ontologies (OBO) Foundry is an effort by several international organizations to 
create controlled vocabularies that can be shared across different domains  and “create and maintain an 
evolving collection of non-overlapping interoperable ontologies that will offer unambiguous 
representations of the types of entities in biological and biomedical reality” (Ceusters and Smith, 2010).  
The aim is to develop a family of interoperable and accurate representations of biomedical reality. OGMS 
(Ontology for General Medical Science) is an ontology that has been developed to describe all the entities 
that the clinician can encounter during a patient encounter (Scheuermann, Ceusters and Smith, 2009). 
OGMS uses terms that are applicable across a wide range of medical disciplines and is currently available 
in the OBO Foundry. OGMS uses BFO (Basic Formal Ontology) as an upper level ontology to link 
different ontologies that use the same upper level ontology (Grenon, Smith and Goldberg, 2004). OGMS 
can be further elaborated to develop disease specific ontologies like OHD (Oral Health and Disease 
Ontology) (Schleyer et al., 2013a) or ODO (Ocular Disease Ontology) (Ray and Diehl, 2013).  

WordNet is a lexical database that groups English words into sets of synonyms called ‘synsets’ (Fellbaum, 
2010). It provides definitions of these words and records sematic relations between these synsets. This 
general language ontology has been used in information retrieval and other clinical applications such as 
processing of natural language in medical records (Chankai, Prestrud and Brooks, 2005). 

2.4.6 Rules on the semantic web 
Rules have been used developing intelligent applications for several decades (Grosan and Abraham, 
2011). Rules are more expressive than using the OWL language alone and can be used to describe 
relations between concepts that cannot be described using DL (Schröder and Wagner, 2003). The 
knowledge represented in ontologies is declarative in nature. Rules are a common type of procedural 
knowledge that is widely used in knowledge engineering. The knowledge of the domain expert is captured 
in the form of rules that have an IF->THEN format. When rules are used in conjunction with OWL or 
RDFS models then some of the weaknesses in expressivity of OWL or RDFS can be overcome. Rules 
languages that can be used with RDF data include N3 rules, Jena rules, SWRL (Semantic Web Rule 
Language), SPIN rules etc. (Schröder and Wagner, 2003). 

A rule contains an antecedent and a consequent. The antecedent forms the body of the rule and the 
consequent form the head of the rule. The antecedent is composed of atomic statements and the 
consequent consists of conclusions that can be made from these statements. The rule can be interpreted 
in the following manner; if the body is true, then the head must be true as well (Sherimon and Krishnan, 
2016). The rules can be represented in different formats and languages. Currently there are several 
different rule based systems and semantic web rule languages in use today (w3.org, 2005). One of the 
earliest proposals for a rules language for the semantic web was the Semantic Web Rules Language 
(SWRL) (Horrocks et al., 2004). SWRL combines OWL with RuleML (Rule Markup Language). RuleML 
is a subset of Datalog rule language (Boley, 2006). For example, if we want to express the rule that a 
person has an uncle another person we can express this rule in the format below: 

hasParent(?x,?y) ^ hasBrother(?y,?z) -> hasUncle(?x, ?z) 

According to this rule if the instance represented by ?x has a parent ?y, and ?y has a brother ?z, then we 
can conclude that ?x has uncle ?z.  

2.4.7 SPARQL (SPARQL Protocol and RDF Query Language)  
Once the data has been represented in the form of RDF triples (with or without OWL/RDFS models)  
standardised mechanism is needed for accessing the data or querying the data (W3C®, 2013b). RDF 
triples are traditionally stored in a RDF store, commonly called a Triple Store. It is  possible to translate 
existing relational data into RDF and use that as the source of RDF data (C. Bizer and Seaborne, 2004). 
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RDF stores are different from relational databases in its ability to allow merging of datasets regardless of 
the schema used.  Just like SQL allows the user to access data stored in a relational database, SPARQL 
language allows the user to access and manipulate data present in RDF format. It allows the user to 
traverse a graph pattern and retrieve specific RDF patterns. The current version SPARQL 1.1 is a W3C 
standard, and is gaining wide adoption within the informatics community (Sahoo, Sheth and Zhang, 
2012). 

SPARQL query can be used to query previously unknown relations. This is quite important when 
handling rare cases, especially when diagnostic decisions must be made quickly. SPARQL can be used to 
query heterogeneous databases using a single query. Therefore, patient data and other clinical data 
residing in disparate databases can be queried easily. The SPARQL query will traverse the entire RDF 
graph and match the triple pattern within the query against RDF triples within the knowledge base.  
Processing of a SPARQL query is essentially matching of graph patterns that exist within the knowledge 
base. 

Schleyer et al. (Schleyer et al., 2013b) has demonstrated the use of the OHD ontology to annotate data 
from multiple commercial dental EMR databases and used SPARQL to query the data to answer 
questions such as “How long will this filling last?”   

 A SPARQL query is an RDF graph with variables. Consider the following example triple:  

ex:patient124 ont:fullName “Bob Dillon”. 
ex:patient124 ont:value ont:PainPresent. 
 
If we replace the Subject, Predicate or Object with variables (?x , ?y) we get the basic structure of a 
SPARQL query. 

?x ont:fullName “Bob Dillon”. 
?y ont:value ont:PainPresent. 
 
If we want to query a database for all Subjects that has the Predicate ont:fullName and Object of “Bob 
Dillon” we use the following query. 

Prefix ont: http://../ontology 

 

 
 
 
 
 

2.4.7.1 SPARQL rules 
In addition to SELECT, there are other return clauses including ASK, DESCRIBE and CONSTRUCT 
(Gearon, Passant and Polleres, 2013). CONSTRUCT keyword can be used to introduce a graph pattern 
that can be used as a template for constructing new graph patterns. It allows us to specify templates of 
new information based on patterns present within the existing information. This type of pattern can be 
considered a rule. A sample rule may have the following assertion: “If the patient data has pain present, 
then it supports the Reversible Pulpitis diagnosis”. These rules can be logical rules or business rules. 

Using the RDF data represented above we can write the following rule. 

CONSTRUCT {?Patient :hasDiagnosis :Diagnosis1 } 

WHERE{ :x :hasValue :PainPresent} 

SELECT  ?person 
FROM <http://example.com/dataset.rdf> 
WHERE { 
  ?person ont:fullName “Bob Dillon”. 
} 
ORDER BY  ?person 
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This rule specifies that if the data :x has value :PainPresent, create/construct a RDF statement stating that 
an instance of a ?patient has diagnosis Diagnosis1. The same CONSTRUCT template can be used to 
insert new values into the database by replacing the CONSTRUCT keyword with INSERT. It is possible 
to INSERT the data into a specified named graph using the INSERT INTO clause. This gives us several 
advantages over other rule languages. It is possible to insert data into one graph, while the patient data 
and the OWL model are on different graphs. It is possible to query/insert data that is present in the 
completely different triple store through a SPARQL endpoint. Since SPARQL is a W3C standard it is 
supported by all triples stores that can store data as RDF triples. There is no need for an additional rule 
engine for executing rule. The SPARQL rules can be executed using the SPARQL engine of the triple 
store. The rules can be expressed using SPARQL construct or insert statements as shown above. 
Therefore, there is no need to learn a different rule language to express rules for semantic web 
applications.  

SPIN (SPARQL Inferencing Notation) is a SPARQL based rule and constraint language developed for 
the semantic web (Knublauch, Hendler and Idehen, 2011). It is a W3C recommendation as a rule 
language. Since it is based on SPARQL there is no need to learn another proprietary rule language to 
implement rules. SPIN and SPARQL has been used to identify data quality problems for data available 
for semantic web and linked data activities (Fürber and Hepp, 2010).  

2.4.7.2 SPARQL endpoints 
SPARQL endpoints are RDF triple stores that can be accessed via the web via HTTP protocol. SPARQL 
is not just a query language, but a protocol to access data and manipulate data over the web. The 
SPARQL query will be processed and the results will be sent back to a user.  This is helpful for exploring 
public datasets that can be accessed via the endpoints (Buil-Aranda et al., 2013). It allows transformation 
of data from one vocabulary to another. 

It is possible to store the SPARQL queries as triples. SPARQL queries are generally written as .rq 
SPARQL files. A semantic web framework such as Jena can read the SPARQL query file and then query 
a RDF triple store. The RDF triple store can be accessed via a SPARQL server such as Jena Fuseki 
(Apache Software Foundation, 2015). 

2.4.7.3 Federated querying of data 
The RDF data model was designed to support federated querying of data (Quilitz and Leser, 2008). 
Federation is the process of virtually combining data but allowing the data to retain its identity (Allemang 
and Hendler, 2011). After translating data from different data sources into RDF and the data is published 
via a SPARQL endpoint the data can be queried with the help of SPARQL. The SERVICE keyword 
defined in the SPARQL allows the data application to merge the data from dissimilar sources distributed 
across the web. The information required by the CDSS application pertaining to a patient may reside in 
another EHR, PHR or any web application that the patient uses. The CDSS application does not need to 
know where the data is coming from. A single SPARQL query can therefore query multiple data sources 
and present the result to the CDSS. This is important for clinicians as the patient’s own record may be 
incomplete.  

Integrating data from disparate data sources remains a major challenge in health informatics (Searls, 2005; 
Louie et al., 2007). Researchers and scientists in healthcare have to gather, merge and query data from 
publicly available databases such as PubMed (NCBI, 2016) to find the information that they need. At 
present, this is done manually or with the help of scripts that scrape the website/dataset for the right data. 
This process is extremely tedious even for experienced researchers. A clinician examining a patient has 
limited time to diagnose and manage a patient and will not have the resources to find all the information 
needed to decide.  Patients themselves may not have accurate information about their previous history of 
disease. Centralized and distributed approaches have been proposed to make the process of integrating 
data easier. The centralized approach involves collecting and merging related data into central data 
repositories called data warehouses. These data warehouses can then be queries directly. The data must be 
carefully curated, and the sources of the data must be chosen carefully to make the queries more efficient. 
Bio2RDF (Belleau et al., 2008) is an example of this approach in bioinformatics. Hospital networks have  
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used the data warehousing approach to integrate data within the organisation (Evans, Lloyd and Pierce, 
2012). In the distributed approach, the data sources implement a web service providing access to the 
datasets. The query is split into subqueries and the client queries the data sources independently and 
merges the results. The distributed techniques of accessing disparate datasets have several advantages 
over the centralized data warehousing approach (Mandl and Kohane, 2015).  There is no single point of 
failure as the data sources are distributed across a network. Additional web services can be added to the 
network without affecting other services and therefore the system become more scalable. Even data from 
existing warehouses can be included as part of the network. However, there is the additional cost of 
maintaining the endpoints through which data can be accessed and coordinating access to the endpoints. 
The quality of the data that can be accesses through these distributed networks is  an issue as there is little 
or no cleaning of data (Louie et al., 2007).  

Linked data is a distinct type of accessing data that is distributed in nature. Linked data uses web 
standards and web technology as a means of sharing and connecting data or information. The Web is an 
ideal medium due to its inherent distributed and scalable nature and a mature technology stack (Heath 
and Bizer, 2011).  

One of the widely-used methods for making structured data available on the web is the use of Web APIs 
(Application Programming Interfaces). Web APIs allows an application to perform a query on a 
structured data set via the HTTP protocol, for example Flickr API (flickr.com, 2016). Application called 
‘Mashups’ combine data from several different sources. Each source of data has an API that is custom to 
the dataset. Significant effort is still required to integrate the data from each specialized API into a single 
application. Another problem with the data published and accessed through Web APIs is the use of 
identifiers to describe data (for example id: 21534 to identify a drug). When the data is examined outside 
the context of the Web API the data becomes meaningless.  There is no standard way to describe the data 
returned from Web APIs. The data accessible through current Web APIs cannot be linked to other 
datasets. Therefore the data obtained from these Web API remain isolated an required significant effort 
to link them to each other to form a Web of data (Bizer, Heath and Berners-Lee, 2009; Heath and Bizer, 
2011).  

2.4.8 Linked data 
In order to maximise utility of disparate data sources Linked Data approaches have been developed and it 
provides a framework of international standards and best practices for publishing and disseminating data 
on the web (Berners-Lee, 2006).  Linked data tools and technologies provide a mechanism for combining 
data from several different source and formats from across the web. Once the data has been published on 
the web based on these linked data principles the data can be linked together to form a Linked Open 
Data Cloud that integrates data from all over the web. Linked open datasets are publicly available data set 
that are identified with the help of an URI and is accessible via HTTP protocol.  

The data sets are linked together using URI and uses URIs for naming things on the web. URIs are 
HTTP URIs and therefore people can look up the names used to describe things. Linked data resources 
provide a means of accessing information when someone looks for information, for example SPARQL 
for querying the data. Linked datasets include links to other URI so people can discover more 
information about the thing. These 4 principles are collectively called the Linked data principles (Berners-
Lee, 2006).  Current web of linked data includes 9960 datasets which consists of >150 billion facts and 
>39 million links between these datasets (lod2.eu, 2016).  

2.4.8.1 Linked data applications in healthcare 
When linked data solutions are implemented for healthcare CDSSs and other healthcare applications they 
will be able to overcome information silos and obtain a comprehensive and holistic view of the patient’s 
data (Bizer, 2009). The CDSS application is no longer restricted by data available at the point of care. 
Documents and data from disparate sources can be semantically integrated and form part of the linked 
web of data. In a recent review of the state of the art in semantic web application in healthcare Zenuni et 
al. (Zenuni et al., 2015) have described some of the linked data applications in use today.  
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CardioSHARE (Vandervalk, McCarthy and Wilkinson, 2008) is decentralized framework based on linked 
data principles and provides a SPARQL endpoint for querying data related to heart diseases. Statistical 
data about public health is highly relevant for research and policy making. The data is currently available 
in the repositories such as the Global Health Observatory of the United Nations’ World Health 
Organization (WHO). However, these datasets are only available as spreadsheets and therefore cannot be 
queried easily without significant effort in processing the data. Zaveri et al. (Zaveri et al., 2013) converted 
these datasets into a RDF format from the native formats. They have setup a SPARQL endpoint to 
enable ease of querying the data. 

 Linking Open Drug Data is a project that surveys publicly available datasets on drugs and publishes them 
and interlink the datasets using RDF (Samwald et al., 2011). The linked data is available as the linked data 
cloud. The information about drugs can include medicinal chemistry results, impact of drugs on gene 
expressions and outcomes of drug clinical trials.  

LinkedCT (Hassanzadeh and Miller, 2015) is a project that publishes the results of clinical trials data using 
linked data principles. Existing sources of clinical trial data are transformed to RDF format and typed 
links between the different datasets and other information resources such as PubMed are generated.  

Bio2RDF (Belleau et al., 2008) is one of the largest linked data repositories that publishes biological data 
and provides a SPARQL endpoint for querying the data. The linked data includes data from clinical trials, 
PubMed and other biological data. Bio2RDF scripts convert data from formats such as flat-files, tab-
delimited files, dataset specific formats, SQL, XML etc. into RDF. 

2.5 Ontologies in clinical decision support systems 
There are several advantages to using semantic web technologies and ontologies in diagnostic CDSSs. An 
ontology is a natural way of organizing information which is highly flexible and provides a 
multidimensional structure to information. Ontologies hold great potential for supporting CDSSs due to 
its ability to support semantic interoperability (Schulz and Martínez-Costa, 2013). Ontologies have 
therefore been used to make existing decision support application more intelligent (Blomqvist, 2014). 
According to Blomqvist (Blomqvist, 2014), RDF and OWL have been used to integrate data from several 
different sources which can then be used by the decision support applications in both clinical and non-
clinical applications. Ontologies are used to model concepts that are common to these datasets and 
languages like SPARQL are used to query and OWL reasoning engines are used to perform reasoning 
across these datasets.   

In addition to helping integrate data ontologies and semantic web technologies have been used to 
indirectly support decision making by helping retrieve information for the clinician. Ontologies have been 
used to improve the accuracy of search and the query string can be expanded using concepts from the 
domain ontology (Hasan et al., 2015). Ontologies are  helpful for refining the query string by reducing the 
use of ambiguous terms (Sendhilkumar, Mahalakshmi and Rajasekar, 2009; Rajendran and Swamynathan, 
2015).  Domain ontologies are  used for cross-referencing and for determining related concepts (Smith et 
al., 2007). Ontologies are  helpful in exploratory search when dealing with rare and atypical cases 
(Sarntivijai et al., 2016) especially in cases where the clinician is not sure which query string to use and  
which domain to look in for the right information (Roitman et al., 2011) .  

2.5.1 Ontology Driven Diagnostic CDSSs 
Ontologies are both machine and human readable and can be used by people and intelligent software 
agents to share information. Thereby ontologies help makes knowledge reusable. Knowledge bases 
developed using ontologies can then be reused for different applications. Utilizing existing general-
purpose ontology reasoners allow easy maintenance of the knowledge base. One of the major problems 
that expert systems in the 80’s faced was the difficulty in maintaining large rule bases, and several 
different methodologies including ontologies were developed to overcome the shortcomings with these 
traditional expert systems (Shu-Hsien Liao, 2005b). Ontologies can represent the domain knowledge of 
large and complex domains and their ability represent this knowledge in a machine and human readable 
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form make them well suited for used in decision support. The availability of domain ontologies makes the 
process of reusing existing knowledge much easier. In this section, how ontologies and semantic web 
technologies have been used in diagnostic CDSSs is detailed.  

Reyes-Ortiz et al (Reyes-Ortiz et al., 2013) have used 3 sub ontologies to develop their ontology model 
called Diagnostic Ontology which include Diseases, Symptoms and Risk Factors alongside the relations 
between them. A similar approach has been used by Hadzic & Chang (Hadzic and Chang, 2005) to 
develop ontological models consisting of sub-ontologies that act as a reference point to link other existing 
ontologies. However, the main aim of this ontology is to provide a common language to allow multi-
agent to interact and coordinate their activities in a more efficient manner. Information required for 
clinical diagnosis may reside in separate locations and healthcare knowledge in general is highly 
distributed in nature. Therefore ontologies can act as inter-lingua to coordinate the information residing 
in different databases and assist in communication of multi-agents systems (Hu et al., 2011). The ontology 
model can be setup as a web service which can be accessed by intelligent mobile agents to coordinate 
their activities and avoid misunderstandings during communications (Wu Zhao, He Yanxiang and Jin 
Hui, 2005). 

Romero-Tris et al (Romero-Tris, Riaño and Real, 2010; Riaño et al., 2012) have developed an ontology 
called the Case Profile Ontology as part of the K4CARE project aimed at developing knowledge based 
healthcare model for providing home care to senior citizens.  The application that was built on this 
ontology communicates with the clinician and helps him during the diagnostic procedure and helps 
validate the final diagnosis. The tool tailors the ontology to a patient’s profile. The ontology consists of all 
healthcare related concepts needed for care of chronically ill patients. These concepts include diseases 
that can affect chronically ill patients, the signs and symptoms of these diseases etc. The relationships 
between concepts are formally represented with the help of an OWL ontology. The ontology is then used 
to personalize information about each patient. The personalization gives the users an overall idea about 
the patient; identify the actors involved in treating the patient, incorporate this personalized knowledge 
into the patients EHR and produce a knowledge structure that can then be utilized by CDSS applications. 
The case profile ontology and the personalized ontology of the patient are then used by the CDSS 
application to provide a ranked diagnostic recommendation.  Each sign or symptom in the case ontology 
has a weight attached to it. The weight is determined by the total number of diseases (diagnoses) that are 
related to that sign.  

Zhang et al. (Zhang et al., 2014) developed and evaluated an ontology driven diagnostic CDSS for the 
diagnosis of mild cognitive impairment. They encoded the knowledge needed to diagnose mild cognitive 
impairment from Magnetic Resonance Imaging (MRI). In addition, the MRI image data set was mined 
using C4.5 algorithm to classify key features in the images which were then used to generate a rule set for 
diagnosing mild cognitive impairment. The rules were then encoded in OWL and combined with the 
ontology. With the help of the OWL inference engine a diagnostic recommendation was generated. 

Sanchez et al. (Sanchez et al., 2011) developed a framework for diagnosis of Alzheimer’s disease. In this 
paper they outlined a technique for encoding the diagnostic criteria for Alzheimer’s disease in OWL 
ontology with the help of supporting ontologies such as Semantic Web Application in Neuromedicine 
(SWAN)(Gao et al., 2006) ontology and the SNOMED CT. In the framework, they have outlined several 
layers including a data layer, translation layer, ontology and reasoning layer and an application layer. The 
data layer contains the patient data obtained from EHR, Picture Archiving and Communication Systems 
(PACS) etc. The translation layer consists of interface applications that can read the patient data and 
matches them with the ontologies that contain the diagnostic criteria stored in the OWL ontology 
(knowledge model) contained in the ontology and reasoning layer. A reasoning model performs sematic 
reasoning based on rules provided by domain experts. The results are then forwarded to the application 
layer where a natural language processing application translates the rules and the output of the reasoner. 
The results are then presented to the clinician.  

Rodriguez et al. (Rodriguez et al., 2009) developed an OWL ontology that contains 4 classes, namely 
Disease, Symptoms, Laboratory tests, Medicines and Consult. Consult is a class that contains the 
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instances of the consultations that was made using the ontology model. There are several object 
properties that link the classes to each other. For example, the ‘hasSymptom’ property links the Disease 
class with the Symptoms class. The approach, called ADONIS, involved a combination of OWL and Jena 
rules to model the diagnostic criteria and generate diagnostic recommendations. SPARQL was not used 
for the diagnostic inference process as they felt the version of SPARQL at the time was not expressive 
enough. The current version of SPARQL (version 1.1) was released later (Gearon, Passant and Polleres, 
2013). However, the method did not allow for weighting of symptoms to produce a ranked list of 
diagnostic recommendations. Symptoms and laboratory tests that negated a diagnosis could not be 
modelled and the presence and absence of a clinical observation could not be linked to the diagnosis. The 
software architecture that generated the recommendations was called ODDX (Rodríguez et al., 2009a) 
and used the Jena semantic web framework. García-Crespo et al. (García-Crespo et al., 2010a) further 
improved upon this software architecture to include probabilistic reasoning. Each symptom was given a 
weight of Very Low, Low, Medium, High, and Very High. Each disease has probability of its being 
present or not. Using the weights of the symptoms a probability for each disease is calculated by the 
probabilistic component of the system. Once the diagnosis is inferred using the probabilistic component 
of the system generates probability of the disease being present based on the weight of the symptoms. 
The weights and the probabilities were not modelled within the OWL ontology model and created 
separately and linked to the diagnosis. The ADONIS approach was not capable of multi-level diagnosis. 
Diseases sometimes have other disease as its findings. For example, Common Cold has Laryngitis as a 
finding. However, laryngitis has sore throat, cough and aphonia as its finding. CDSS based on ADONIS 
approach was only capable of obtaining diagnosis over a single layer. So, the finding of Laryngitis should 
be made explicit by the clinician. Laryngitis cannot be inferred from cough, sore throat etc. (Alejandro 
Rodríguez-González, Torres-Niño, Mayer, et al., 2012).  

Rodríguez-González et al. (Rodríguez-González et al., 2011)  developed another diagnostic ontology 
model to support diagnostic CDSS. This model called the Diagnosis ontology has several sub ontologies 
which includes the Clinical findings ontology and the Drugs Ontology. The Clinical Findings ontology 
has 3 further sub ontologies called Signs, Diagnostic Tests and Diseases ontology. Their approach 
involved using the SNOMED ontology (Spackman, Campbell and Côté, 1997) to extract terms to 
annotate the terms within the Diagnosis ontology and its sub ontologies.  

SeDeLo (A Rodríguez-González et al., 2012) improved upon some of the weaknesses of the ADONIS 
approach of modelling diagnostic criteria using DL and rules. The SeDeLo approach was capable of 
multi-level diagnosis. So, laryngitis can be automatically inferred from its findings, and laryngitis will then 
support the diagnosis of Common Cold. The system based on the SeDeLo approach was found to be 
faster, more efficient and more capable than the previous methods (Rodríguez-González et al. 2012). 
Rodríguez-González & Alor-Hernández (Rodríguez-González and Alor-Hernández, 2013) combined the 
SeDeLo approach with the Diagnosis ontology described by Rodríguez-González et al. (Rodríguez-
González et al., 2011) to develop a new system that  provided diagnostic recommendations. However, 
these techniques still did not model the uncertainty of the clinical observations within the ontology 
model. The effect of the presence and absence of clinical observations and the impact on the diagnosis 
was not modelled in the ontology model and decision support system. These CDSS applications did not 
use linked data technologies to access patient data from other data sets.  

Rodríguez-González et al. (Rodríguez-González et al. 2012) describes a multi-agent architecture is 
proposed to parallelize a reasoning system based on semantic web technologies. They found using multi-
agents greatly reduced the inference times when compared to an approach that did not use multi agents 
and relied only on DL based inference for generating diagnostic recommendations.  

Mohammed et al (Mohammed, Benlamri and Fong, 2012) have used an alignment algorithm to align two 
existing ontologies (Human Disease Ontology and Symptom Ontology). With the help of an Ontology 
Matching and Ontology Linking algorithm the ‘Diseases-Symptom’ ontology has been created. 
Oberkampf et al. (Oberkampf, Zillner and Bauer, 2012b) have proposed a similar Disease-Symptom 
ontology model extending the Human Disease Ontology (DOID)(Schriml et al., 2012), and have 
developed a system that provide a ranked list of likely diseases and helps plan next clinical examinations.  
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In the approach for modelling diagnostic criteria described by Oberkampf et al. (Oberkampf, Zillner and 
Bauer, 2012a) the Disease-Symptom ontology model has 2 main classes; the Disease class and the 
Symptom class. These classes contain subclasses for specific diseases. The symptoms were further 
classified into present symptoms, absent symptoms and open symptoms. Absent symptoms are important 
as they are needed to rule out the presence/absence of a diagnosis. The proposed method of producing a 
ranked list of diagnosis involved using a ranking algorithm (Oberkampf et al., 2012). The algorithm took 
into consideration 3 different factors that influenced the likelihood of a disease: Disease specific factors, 
Disease-symptom relations and Symptom specific factors. The disease specific factors involved 
considering factors such as the relative incidence of the disease in the population. Disease-symptom 
relations factored in the importance of the symptoms with respect to the disease.  Leading symptoms that 
are indicative of a disease are given a higher weight. Symptom specific factors included all the factors that 
contributed to the importance of the symptom in a situation. Symptoms have a basic importance and that 
varies between different symptoms and is determined by the domain expert.  The ranking algorithm takes 
into consideration all these factors and produces a ranked list of diagnosis. The weights used in this 
method were not encoded in the ontology model.   

Researchers have used several approaches to integrate OWL ontologies and SWRL and other semantic 
web rule languages like Jena rules. Some have proposed using existing ontologies, but this would require 
creating instances for the classes within the ontology as SWRL reasons on instance data. Once the 
instances have been created, SWRL can be used to encode the diagnostic criteria (Bertaud Gounot et al., 
2011a). The combination of OWL, SWRL and other rule languages is a recognised expert system 
framework and has been widely used in semantic web based decision support applications (Ongenae et al., 
2010; Donfack Guefack et al., 2012; Bau, Chen and Huang, 2014; Sherimon and Krishnan, 2016). This is 
largely due to the availability of ontology reasoners that are compatible with both OWL and SWRL (Sirin 
et al., 2007a). SWRL can overcome some of the weaknesses of OWL as it can handle numerical functions 
better than OWL. OWL cannot express all relations and therefore by using SWRL the expressivity of 
OWL can be extended at the slight expense of decidability (Prcela, Gamberger and Jovic, 2008).  

In real-world clinical scenarios domain knowledge contains uncertain knowledge and the difficulty in 
modelling real world clinical situations in OWL is compounded by the presence of incomplete/ imprecise 
information.  To deal with partial, imprecise and vague information researchers have proposed several 
different formalisms including Fuzzy logic and Bayesian probability. Fuzzy ontologies are one proposed 
solution to the problem of vague information. Lee & Wang (Lee and Wang, 2011) proposed a five layer 
fuzzy ontology model to develop an ontology in the diabetes domain for diagnosis and recommend a 
personalised dietary plan (Chang-Shing Lee, Mei-Hui Wang and Hagras, 2010). SWRL has  been used to 
develop a fuzzy rule base to develop a fuzzy diagnostic model (Liang, Zhai and Li, 2013). Similarly 
techniques for decision support using Bayesian networks have  been described (Farooq et al., 2012) 
(Bucci, Sandrucci and Vicario, 2011).  

Even though there are several reasoners that are available and can perform reasoning on OWL/SWRL 
knowledge bases the most popular ones do not support SWRL by default. SWRL is currently not a 
standard and there are no standard rules languages for the semantic web. Not all reasoners have in-built 
support for reasoning with SWRL. For example, Jena reasoner supports Jena Rules syntax by default. Jena 
is a general-purpose rule-based reasoner and supports rule-based inference over RDF datasets 
(jena.apache.org, 2016).The Jena reasoner provides support forward chaining inference, backward 
chaining inference, and a hybrid execution model. In order to use SWRL rules in a Jena based triple store 
or semantic web application another reasoner (for example Pellet reasoner (Sirin et al., 2007b)) will have 
to be integrated with the Jena application.  

In order to overcome the problem of interoperability due to the proliferation of rules languages another 
standard called the Rule Interchange Format (RIF) was introduced (Kifer and Boley, 2013). The RIF 
standard acts as an interchange format between the different rule engines. So, the rules can be expressed 
in any rule language. RIF will allow different rule systems to exchange certain type of rules with other rule 
systems. So, knowledge base encoded in OWL and a one rule language can be integrated with another 
knowledge base in OWL and different rule language and it will be possible to run inference over both 



65 
 

datasets. 

Increasingly patient records are being stored in EHR systems which make it easier to store, retrieve and 
analyse data. However, to extract data from data warehouses that store this data, analyse the data and use 
the data to create decision support tools healthcare organizations need to invest a lot of resources in 
manpower which includes clinicians, analysts, data miners and software developers. Haug et al. (Haug et 
al., 2013) has demonstrated a system using real life patient data extracted from data warehouses that uses 
ontologies alongside data analysis applications that analyses the data to create diagnostic models. The 
system called the ‘ontology-driven diagnostic modelling system’ helps reduce the resource burden needed 
to develop diagnostic CDSS applications.  

Corrigan (Corrigan, 2015) implemented a clinical evidence service to support diagnosis. Once a clinician 
has recorded signs and symptoms of a patient in a primary care EHR, decision support application 
accesses clinical evidence modelled as OWL ontologies and provides a ranked diagnostic 
recommendation.   

The flexibility of ontologies allows the development of hybrid application using different methodologies. 
In addition to representing diagnostic criteria in the form of OWL axioms and rule the knowledge 
representation capability of ontologies has been used to enhance the performance of Case Based 
Reasoning systems (Bichindaritz, 2006; Wang and Tansel, 2013). The ontology can be used to annotate 
data present in clinical databases, which are excellent sources of case-based knowledge for decision 
support. This allows the system to solve problems from relevant experience from a knowledge base of 
similar cases. 

Obtaining a medical history of the patient is a key part of the process of diagnostic reasoning. Improving 
the quality of information gathered can assist the clinician in making a better judgement regarding the 
condition of the patient. Ontology based information collection has been demonstrated in (Bouamrane, 
Rector and Hurrell, 2008) which has the potential to reduce the number of questions asked during the 
information gathering process by using context-sensitive adaption of the questionnaire. This is different 
from static questionnaires currently used in clinical practices. Once a patient’s medical history has been 
extracted in the OWL format, the OWL reasoner can be used to provide recommendations based on 
clinical guidelines.  

Once the diagnosis has been made, the next step in the care process includes the treatment 
recommendations and ontologies have been used in generating treatment recommendations as well 
(Douali, De Roo and Jaulent, 2012).  

2.5.2 The disease-symptom pattern for modelling ontologies in 
diagnostic CDSSs 

Ontologies, especially OWL ontologies help to represent concepts like Diagnosis, Symptoms, Signs, 
Clinical Test results, Radiographic examination results and the relations between these concepts etc. in a 
machine-readable manner that can be shared between different CDSS applications. The section above 
(See section - 2.5.1) details the different techniques through which OWL ontologies have been used in 
diagnostic CDSSs.  

The literature shows that there is a common pattern for representing the relations between the concepts 
that represent the diagnosis and the concepts that represent the different clinical observations that either 
support or negate the diagnosis. Diagnosis is a label given to a disease once a clinician has confirmed the 
presence of the disease taking into consideration the different manifestations that the disease can take in 
the human body. Presence or absence of a disease is confirmed by the presence/absence of certain signs, 
symptom or clinical observations that are recorded by a clinician in the presence of a patient. The most 
important group of observations are the symptoms as they are normally reported by the patient or the 
patient’s caregivers. The clinician then uses these symptoms to formulate certain diagnostic hypotheses. 
The diagnostic hypotheses will then be used by the clinician to illicit further signs and symptoms and 
order diagnostic tests as needed.  
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The concepts that are used to represent the Diagnoses in the ontology models used in diagnostic CDSSs 
can be collectively called the Disease concept. The different observations that comprise the signs, 
symptoms and clinical observations can therefore be labelled the Symptoms concept. This pattern of 
Disease(s) and Symptom(s) can be found in several ontology-based diagnostic CDSS models in literature. 
Reyes-Ortiz et al (Reyes-Ortiz et al., 2013) uses 3 sub-ontologies to develop a Diagnostic ontology and the 
sub-ontologies include a Diseases, Symptoms and Risk factors ontologies. The complex ontology model 
developed by Romero-Tris et al (Romero-Tris, Riaño and Real, 2010; Riaño et al., 2012) for chronically 
patients provides a formal representation of the all concepts needed for care of chronically ill patients at 
home (i.e., syndromes, diseases, social issues, signs and symptoms, problem assessments, and 
interventions). However, in this model signs and symptoms and all other clinical observations needed to 
make a diagnosis was not composed into a single concept as the aim of their model was to develop a 
personalized care plan based on the diagnosis.  

Rodriguez et al. (Rodriguez et al., 2009) and García-Crespo et al. (García-Crespo et al., 2010a)  developed 
ontology based models to that represent the Disease, Symptoms, Laboratory tests, Medicine etc. 
Rodríguez-González et al. (Rodríguez-González et al., 2011) later developed another ontology model 
called the Diagnosis ontology that had a Clinical Findings ontology. The Clinical Findings ontology had 
several sub-ontologies such as Signs and Diagnostic Tests.  

The reason for modelling the Diseases and Symptoms either within a single ontology model or as sub-
ontologies is to take advantage of the presence of existing ontologies that models theses relations. For 
example, Rodríguez-González et al. (Rodríguez-González et al., 2011) used the SNOMED-CT ontology 
to annotate terms within the Diagnosis ontology and its sub-ontologies.  

Oberkampf et al. (Oberkampf, Zillner and Bauer, 2012a) the Disease-Symptom ontology model has 2 
main classes; the Disease class and the Symptom class. These classes contain subclasses for specific 
diseases. The symptoms were further classified into present symptoms, absent symptoms and open 
symptoms. 

The method used by the CDSSs using these ontology-based diagnostic models to generate diagnostic 
recommendations differs in different implementations. Oberkampf et al. (Oberkampf, Zillner and Bauer, 
2012a) used a ranking algorithm to generate the recommendations. Others (Bertaud Gounot et al., 2011a) 
have modelled the Disease and Symptoms in OWL and encoded in diagnostic criteria in SWRL or other 
semantic web rule languages such as Jena Rules (Rodriguez et al., 2009). Separate tools for probabilistic 
reasoning have  been implemented that takes into account probability of a disease being present (García-
Crespo et al., 2010a).  

2.5.3 Linked data for clinical decision support 
CDSS development is expensive and therefore to share the functionality of CDSS applications Service 
Oriented Architectures (SOA) have been proposed. The functionality of the CDSS application can be 
wrapped in a SOA application and provided as a web service which can then be accessed by different 
client applications. However, problem with client-service semantic interoperability remain especially 
around understanding the semantics of the CDSS service when shared amongst different healthcare 
organizations. Marco-Ruiz et al (Marco-Ruiz et al., 2016) have developed ontologies to provide 
descriptions of CDSS services that are machine interpretable and helps in semantic interoperability and 
reuse of the models. This Linked Service helps expose the CDSS service and the CDSS knowledge based 
as Linked data.   

Hoekstra et al. (Hoekstra et al., 2015) translated legacy datasets of the Adverse Event Reporting System 
(AERS) dataset of the Federal Drug Administration (FDA) into RDF. The legacy data was in the form of 
dollar separated tables. After checking integrity of the data, it was imported into a relational database. The 
data was then converted into RDF using the D2RQ method (Christian Bizer and Seaborne, 2004). The 
RDF data was then imported into triple store. Using an Annotation Ontology, they annotated relevant 
parts of clinical guidelines and other medical literature. The user interface allows users to find relevant 
information about a patient using several SPARQL endpoints. When the user selects a patient, detailed 
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information enriched with information from the Linked Life Data SPARQL endpoint are provided. 
Clinical guideline annotations that match the patient’s descriptions are retrieved and displayed to the user. 
Similar cases that are present in the AERS dataset are displayed to the user. The AERS dataset is available 
through a SPARQL endpoint. 

2.6 Rationale for research and ontology driven CDSS for early 
diagnosis 

This chapter gave an outline of the literature around diagnostic error and the cognitive causes of 
diagnostic error. Literature showcased the role played by diagnostic CDSSs in reducing diagnostic error. 
Faulty data gathering, faulty information processing and faulty information synthesis have been identified 
as some of the reasons for diagnostic error (See section - 2.1.1). Clinical management guidelines have 
been developed to assist a clinician in gathering information properly. Using checklists, providing 
alternative diagnosis and providing focussed decision support for a condition has been proposed for 
reducing diagnostic errors using CDSS tools.  

Guideline recommendation can help improve information gathering by providing alerts, assisting in 
interpreting test and investigations and providing guidance on the next steps to be taken before diagnosis. 
Improved information gathering can potentially help in improving diagnosis by improving the quality of 
data collected. The guideline recommendations should be presented alongside diagnostic 
recommendations and both recommendations can work in tandem to help reduce diagnostic error. 
Literature suggests a need for early diagnostic support to reduce diagnostic error. Ranked diagnostic 
recommendations provide alternative diagnoses to a clinician. Clinician can compare his/her mental 
model with diagnostic recommendations. CDSSs will have to provide reasons for making the 
recommendations. The clinician can then view the reasons alongside the guideline recommendations and 
decide next steps to be taken in a diagnostic encounter. As more information is collected the clinician can 
use the information to confirm/reject diagnostic hypotheses and narrow the list of hypotheses.  

The CDSS should be able to explain the patient’s condition in a manner that suits the clinician’s own line 
of reasoning. The CDSS should likewise provide alternative diagnoses and explain why it believed the 
patient may have a diagnosis. The model that captures the expert’s domain knowledge must be able to 
capture the information in an easy and organised manner.  It should similarly be able to perform when 
there is incomplete data as early diagnosis is characterised by the presence of incomplete data. The 
literature suggests that argumentation-based methods are a suitable solution for providing diagnostic 
recommendations in early diagnosis. Argumentation-based methods do not have the problem associated 
with other CDSS reasoning strategies such as difficult capturing the domain expertise. Argumentation 
using non-monotonic logic where existing conclusions has can be discarded in the light of current 
information and new conclusion can be formed. Early diagnosis is characterised by incomplete 
information. The clinician has not collected all the information needed to make a diagnosis. The clinician 
uses this incomplete information to form initial diagnostic hypotheses. Using this information, a clinician 
then obtains additional information about a patient and then uses the information to confirm or reject a 
hypothesis. The alternative diagnoses provided at different stages of the clinical encounter helps trigger 
appropriate illness scripts that can then be used by the clinician to find more information about the 
patient. The alternative diagnoses help in the process of generating the working hypotheses and help in 
gathering additional information about the patient to help confirm or refute working hypotheses. The 
alternate diagnostic recommendations presented in various stages of a clinical encounter alongside 
detailed reasons for recommendations could potentially help reduce premature closure bias by informing 
the clinician about alternate diagnoses. This may stop the clinician from halting the diagnostic 
information gathering process and consider other alternatives. 

Argumentation-based methods have been used for creating guideline-based CDSS applications using the 
PROforma language. Though argumentation-based CDSSs have been developed for improving medical 
decision making in areas such as diagnosis, management, treatment planning, risk assessment etc., studies 
so far have not evaluated the impact of an argumentation-based diagnostic CDSSs on the diagnostic 
performance of clinicians. Therefore, the initial stage of the thesis evaluates the impact of guideline 
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recommendations on information gathering of clinicians and the feasibility and impact of argumentation-
based diagnostic CDSSs on diagnostic performance of clinicians. The impact of guideline 
recommendations on management decision making will be studied.  

Existing argumentation-based tools such as Tallis uses a proprietary format to represent the PROforma 
model. The model can only be modelled and executed using proprietary software such as Tallis. 
Integration with EHRs for collecting patient data to generate diagnostic recommendations will need 
expensive interface engines that can translate patient data from different formats to a format that can be 
understood by the Tallis inference engine. Existing argumentation-based tools and other diagnostic 
CDSSs tools face a semantic interoperability problem in integrating information from diverse sources.  

The main problem associated with providing early diagnostic decision support is the availability of data to 
generate meaningful diagnostic recommendations. The clinicians have not collected all the information 
needed to decide. Therefore, CDSSs must access information from other sources to complement the 
decision making. The web is a major source of data including patient data that can be used for generating 
diagnostic decision recommendations. However, the variety of data representation make integrating this 
information difficult. One of the main challenges facing diagnostic CDSS applications even today is lack 
of semantic interoperability (See section - 2.4.2). Semantic web and linked data technologies have been 
developed to improve semantic interoperability. RDF is a strong contender for becoming the universal 
information representation format for healthcare interoperability. Improved semantic interoperability will 
help intelligent agents find the information needed for diagnostic decision support and integrate the 
information easily.  

Even though some of the ontology driven CDSS applications do try to solve the problem of semantic 
interoperability by modelling the diagnostic inference models in OWL/RDF based languages there 
remains some deficiencies. The degree of uncertainty of diagnosis is captured outside the OWL ontology 
model in many ontology models outlined in this literature review. Existing ontology-based models for 
diagnostic CDSSs have used several techniques to deal with the uncertainty in diagnosis. Some methods 
have used an external probabilistic system to generate probabilities and generate the ranked diagnostic 
recommendations (García-Crespo et al., 2010a). Other methods include representing the diagnostic 
criteria using OWL axioms (Ongenae et al., 2010; Donfack Guefack et al., 2012; Bau, Chen and Huang, 
2014; Sherimon and Krishnan, 2016). However due to limits in expressiveness of DL-based axioms these 
methods are not well suited for representing uncertainty and cannot work with incomplete data. Most 
ontology-based CDSSs identified in literature do not provide a ranked diagnostic recommendation. A 
ranked diagnostic recommendation is important in early diagnostic CDSSs as the clinician can use the 
ranking to guide the next steps for gaining more information. The ontology-based CDSSs that provide a 
ranked recommendation rely on complex ranking algorithms and specialized software to generate the 
ranking (Oberkampf et al., 2012). The diagnostic CDSSs do not explain reasons for making a 
recommendation by making use of argumentation or similar methods.  

The models and the CDSS applications do not demonstrate how data in linked data repositories can be 
accessed to support clinical decision making (See section - 2.5.1). The review of linked data resources 
identified a lack of publicly available of clinical data in linked data format that can be used in CDSS 
applications. Translating patient data from one form to another and exposing data via SPARQL 
endpoints to be consumed by the ontology driven CDSS will be further explored in this thesis.  

Current ontology driven diagnostic CDSS use different types of rules languages to model diagnostic 
criteria and generate diagnostic recommendations. Using SPARQL rules to generate diagnostic 
recommendations have not yet been demonstrated as a technique (See section - 2.4.6 and section - 2.5.1). 
Current generation of ontology driven CDSS application have other limitations as well. Use of linked data 
in CDSSs is still in the infancy stage though there has been numerous ontology driven CDSS 
demonstrations (See section - 2.5.3). However, as more and more datasets become available via linked 
data on the web, CDSS applications should be able to use this data via SPARQL endpoints to provide 
diagnostic recommendations to the clinicians. The use of SPARQL endpoints to access patient data for 
the CDSS will be explored in this thesis. 
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This thesis proposes the development of an argumentation-based ontology-driven CDSS that can provide 
early diagnostic decision support. The model called Disease-Symptom Model (DS Model) combines the 
strengths of argumentation with the strengths of semantic web technology. The proposed model provides 
a novel method that allows the domain expert to capture arguments favoring and negating a diagnosis in 
OWL/RDF model. The model overcomes problems of integrating information and semantic 
interoperability faced by current generation argumentation-based CDSSs. The model uses argumentation 
and currently available semantic web and linked data technologies to provide a ranked diagnostic 
recommendation that can be generated using any off-the-shelf tools without need for specialized software 
and algorithms. CDSS prototypes that can use the ontology model to generate diagnostic 
recommendations will be developed. CDSS prototypes will demonstrate how the DS Model can help 
integrate information from a wide variety of sources to provide a diagnostic recommendation. The DS 
Model can integrate this information to generate a diagnostic recommendation in the early stages of the 
clinical encounter. Current generation diagnostic CDSS tools are limited to information gathered during 
the clinical encounter. Performance of the DS Model will be evaluated across all stages of the clinical 
encounter.  

The first part (Chapter 4) of the thesis describes the development and evaluation of an argumentation-
based diagnostic CDSS using off-the-shelf technology. In the study guideline recommendations are given 
to study the effect of these guideline recommendations on the information gathering of community 
optometrists. Impact of guideline recommendations on management decision making will be evaluated. 
Argumentation-based diagnostic recommendations are provided. This pilot study will demonstrate the 
feasibility of using argumentation-based methods for diagnostic decision making and study the effect of 
argumentation-based diagnostic recommendations on optometry diagnostic decision making.  

The next part (Chapter 5) involves development of the ontology using argumentation-based methods. 
The ontology model uses argumentation to model arguments supporting and negating a diagnosis. It will 
be built using semantic web and linked data technologies. The CDSS using this model can integrate 
information using semantic web and linked data technologies.  

In the next part (Chapter 6) the CDSS and diagnostic recommendations generated by the ontology model 
in early diagnosis are evaluated by comparing its performance with community dentists.  

The next chapter outlines the research questions and research objectives.  
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3 Chapter 3 - Research outline 
 

3.1 Introduction 
The first part of the thesis explores how clinical guideline recommendations and argumentation-based 
diagnostic recommendations can help clinicians in information gathering and diagnostic decision making.  

The second part of the thesis explores the development of an argumentation-based ontology model for 
representing diagnostic criteria and CDSSs that can use this ontology model and exploit linked data and 
semantic web technology for generating diagnostic recommendations.  

The third part of the thesis investigates the performance of the ontology based CDSS in generating 
diagnostic recommendations across all stages of the diagnostic encounter.  

3.2 Research Questions  
1. How do guideline recommendations and argumentation-based diagnostic recommendations 

affect information gathering and diagnostic decision making in primary care clinicians? 
2. Can an argumentation-based diagnostic CDSS developed using semantic web and linked data 

technologies generate early diagnostic recommendations? 
3. How does an ontology driven diagnostic CDSS perform across all stages (early and late) of a 

clinical encounter?  

3.3 Outline of research 
The following section outlines how objectives of this thesis was achieved and how research questions 
were answered in this thesis. Research methodology for each study has been described in the subsequent 
chapters in more detail.  

To recap, specific objectives of this research are: 

Objective 1: To review the literature on models of diagnostic reasoning and identify models used by 
diagnostic CDSS to represent knowledge and formulate diagnostic recommendations and their role in 
reducing diagnostic error. Review state of the art web technologies to identify how they address the 
problem of semantic interoperability and their application in CDSS.  

Objective 2: Develop a diagnostic CDSS based on current argumentation-based CDSS technology and 
evaluate its effect on primary care clinician decision making and information gathering. 

Objective 3: Develop a semantically interoperable diagnostic inference model that can integrate 
information from disparate sources and uses argumentation to generate diagnostic recommendations. 

Objective 4: Implement a working CDSS prototype that implements the semantically interoperable 
diagnostic inference model and provides diagnostic recommendations.   

Objective 5: Evaluate the CDSS prototype and the diagnostic inference model and its ability to support 
diagnostic decision making at all stages of the clinical encounter. 

3.3.1 Objective 1 
Objective 1 (Figure 3-1) has been addressed by literature search and the results of literature review have 
been presented in Chapter 2. The literature identified the common causes of diagnostic error and what 
role CDSSs can play in mitigating diagnostic error. The literature review provided an overview of 
diagnostic CDSSs and how the web can play a role in CDSSs. It identified the advantages of an 
argumentation-based approach when compared to other CDSS reasoning methods. Semantic web and 
linked data technologies such as RDF, OWL, SPARQL etc. and their applications in CDSSs was outlined. 
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Ontology driven diagnostic CDSS applications and some of shortcomings of the approaches takes by 
these systems have been identified.  

 

Figure 3-1 - Objective 1 

3.3.2 Objective 2 
From literature, it is known that quality of data that has been gathered during the patient encounter 
impacts CDSS recommendations (section - 2.1.1). The literature suggested that faulty information 
gathering, processing and synthesis combined with faulty knowledge and skills are responsible for 
diagnostic errors due to cognitive causes.  Clinical guidelines and guideline-based CDSSs have been 
introduced to help in the process of collecting, analysing and verifying clinical data based on the latest 
clinical evidence. Guideline recommendations have been designed to help the clinician in information 
gathering and synthesis. Existing argumentation-based CDSS tools was identified. Argumentation 
provides certain advantages over other CDSS reasoning methods especially in capturing domain expertise 
and presenting the diagnostic recommendations to the clinician in an easy to understand manner. 
Argumentation works well with limited information and can support defeasible reasoning using non-
monotonic logic. However, studies so far have not evaluated the role of argumentation-based CDSS in 
reducing diagnostic error especially in primary care. 

Objective 2 (Figure 3-2) has been accomplished by developing and testing the effect of guidelines and 
guideline-based decision support systems on information gathering of primary care clinicians. The effect 
of an argumentation-based diagnostic CDSS on the diagnostic decision making of clinicians was studied. 
In addition, the effect of guideline recommendations on management decision making was studied.    

Chapter 4 describes research methodology used and development of argumentation-based diagnostic 
CDSS prototype. An off-the-shelf CDSS guideline modelling and execution tool was used to create a 
prototype CDSS and used to study the impact of guideline recommendations and argumentation-based 
diagnostic recommendations. The language used to formally represent the guidelines called PROforma 
uses argumentation for decision making. Optometry was chosen as the test domain and the CDSS was 
tested using clinical vignettes (patient scenarios). Data obtained from optometrists using clinical vignettes 
and CDSS implemented in PROforma was compared to an earlier study where another group of 
optometrists was asked to diagnose and manage the same vignettes without help of any CDSS. Results of 
the study have been presented in the same chapter.  
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Figure 3-2 - Objective 2 

3.3.3 Objectives 3 and 4 
Literature identified several methods for representing diagnostic criteria for developing models to support 
diagnostic CDSSs. Argumentation-based CDSSs have been developed and evaluated in several domains. 
However current generation argumentation tools suffer from interoperability problems. These tools rely 
on proprietary formats and specialized tools for modelling and execution that prevents widespread use 
and adoption.  

OWL based ontologies that can be used to represent diagnostic criteria have been identified and some of 
the shortcomings of CDSS applications that deploy these models have been described (See section - 
2.5.1). The uncertainty involved in diagnostic decision making have been modelled outside the ontology 
model. Separate tools and software are needed to generate the diagnostic recommendations. Existing 
ontology driven CDSS applications have not demonstrated using linked data to integrate information. 

Objective 2 saw the development of an argumentation-based diagnostic CDSS and demonstrated the 
feasibility of using argumentation as a method to generate diagnostic recommendations. In Chapter 5, 
the development of an argumentation-based OWL/RDF ontology driven model that models arguments 
that support or negate a diagnosis has been described.  

Dentistry was chosen as the test domain to test and demonstrate the model. The model was called 
Disease-Symptom Model (DS Model) and Chapter 5 details development of the model using dental 
examples. This chapter describes how SPARQL rules were used to map patient data that were 
represented in different formats to the DS Model and obtain recommendations from these diverse data 
representations. The literature review indicated some of the advantages of SPARQL rules when 
compared to other rules languages on the web (See section - 2.4.7.1). The use of SPARQL rules to 
generate a ranked diagnostic recommendation and generation of weights have been described in detail in 
Chapter 5. 
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In addition to DS Model (Figure 3-3) the chapter describes the development of an extension to DS 
Model called Multi-level DS Model. There are clinical situations where a CDSS may have to make sub-
diagnostic recommendations. These sub-diagnostic states called a Finding, can be used to cluster together 
observations or represent concepts that may have clinical significance in certain scenarios. The Multi-level 
DS Model is an extension of the basic DS Model and can be used with any of the CDSS architectures 
described in this chapter. The chapter (Chapter 5) describes how the observations are linked to the 
findings and subsequently the findings to the diagnosis. A ranked diagnostic recommendation is 
generated along with weights for each diagnosis in a manner like DS Model recommendations. 

 

Figure 3-3 - Objective 3 

Chapter 5 describes the development of several prototype CDSS applications that demonstrates the 
different architectures through which the DS Model can be deployed (Figure 3-4). The strengths and 
weaknesses of these architectures are likewise described. The prototypes show how data can be 
represented in different formats and how SPARQL endpoints can be used as a source of patient data to 
support early diagnosis. SPARQL endpoints and federated querying of data allows the data to be stored in 
disparate locations and allows the data to be queried and merged easily (See sections - 2.4.7.2 & 2.4.7.3).  
The literature suggested that providing early diagnosis could potentially help reduce diagnostic error 
(Kostopoulou et al., 2015b). However, the data needed to make a diagnostic recommendation is stored in 
disparate data sources on the web. Semantic web and linked data technologies can be used to integrate 
this information and use them to support diagnostic CDSSs. The prototypes demonstrate how semantic 
web and linked data technologies can be used with the DS Model to generate diagnostic 
recommendations. Evaluation of DS Model was completed in Chapter 6.  
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Figure 3-4 - Objective 4 

3.3.4 Objective 5 
The literature review (Chapter 2) outlined cognitive causes of diagnostic error and some of the cognitive 
biases that contribute to diagnostic error (See section - 2.1.1). Studies show that cognitive biases like 
premature closure bias cause the clinician to form a diagnostic hypothesis early in the clinical encounter 
and prevents him/her from gathering more information that can potentially negate the hypothesis 
(Graber, Franklin and Gordon, 2005b). There is some evidence suggesting that providing diagnostic 
recommendation early in the diagnostic encounter can potentially help reduce diagnostic error 
(Kostopoulou et al., 2015b).  

The DS Model developed in Objective 3 and the CDSS prototypes developed in Objective 4 showed how 
a ranked diagnostic recommendation can be generated. The DS Model uses a simple weighting scheme to 
represent weights and a simple summation method to generate diagnostic rankings. The effectiveness of 
this weighting scheme and summation method needs to be evaluated. In Objective 5 the ranking 
generated by the CDSS was evaluated. The DS Model can generate diagnostic rankings by integrating 
information from disparate sources using argumentation-based methods. Before linked patient data can 
be used to integrate patient data from disparate sources to support diagnosis, there is a need to know in 
which areas this additional knowledge can be used to improve diagnostic performance of the CDSS (if it 
needs improvement). Does the CDSS perform as good as clinicians in the early stages and the late stages 
of the clinical encounter? Once the areas where the DS Model is deficient are identified then the 
appropriate linked patient data can be discovered and more effectively used by the CDSS.  

Chapter 6 describes how a dental information model was used as basis to identify the different stages of 
the clinical encounter (Figure 3-5). Dentistry was chosen as the test domain primarily due to the 
background of the author in this domain. An information model is generally used to define the 
information architecture of dental EHRs and define data that is collected during the clinical encounter. 
The information model is demarcated into different sections. These sections were used as basis for the 
identifying different stages of a clinical encounter.  The DS Model will be evaluated at all these stages and 
the diagnostic performance compared to that of primary care clinicians.  
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A dental version of the DS Model that can provide diagnostic recommendations for dental pain (in the 
field of Endodontics) was developed for the purposes of evaluation. A CDSS prototype developed in 
Chapter 5 was used for the evaluation. Several dental clinical vignettes were developed. An expert dentist 
in the field of Endodontics (Endodontist) provided ranked diagnostic recommendation for these clinical 
vignettes. The expert’s opinion was considered gold standard. The diagnostic performance of dentists was 
used as benchmark against which performance of the CDSS using the DS Model was compared. 

Community (primary care) dentists were recruited as test subjects for the study. The participating dentists 
were asked to provide their Rank 1 and Rank 2 recommendations. A RDF representation of the vignettes 
was created and the CDSS using DS Model provided a ranked diagnostic recommendation. The 
performance of the CDSS was evaluated at each stage. The ability to provide a ranking was measured 
using Normalized Discounted Cumulative Gain (NDCG) and ability of the CDSS to accurately provide a 
Rank 1 and Rank 2 recommendation was measured using Precision-Recall metrics. Using these metrics, 
the performance of the CDSS was compared to dentists. Methodology and results of evaluation are 
described in more detail in Chapter 6. 

 

Figure 3-5 - Objective 5 
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4 Chapter 4 - Study investigating the role of clinical 
guideline recommendations and argumentation-based 
diagnostic decision support on clinician performance 

 

4.1 Introduction 
The main aim of this study is to implement a decision support that uses Argumentation Theory (AT) as 
the basis for generating diagnostic recommendations and study its effect on diagnostic performance. The 
literature review suggests that there is a need for decision support that can integrate information from 
disparate sources and provide diagnostic recommendations to the clinician at various stages of the clinical 
encounter. Once data has been integrated results have to be collated and presented to the clinician in a 
manner that is easy to understand by the clinician. AT evolved from its origins as a sub-discipline of 
philosophical logic and has emerged as a critical area of Artificial Intelligence (AI) research. AT and 
argumentation-based techniques have been used to develop decision support applications. Argumentation 
has been identified from literature as suitable for generating diagnostic recommendations that are easy to 
understand and easy for knowledge representation. PROforma is one such language that is used to 
develop guideline-based CDSSs. PROforma uses AT as the basis for making decision recommendations. 
This study used PROforma language-based tools to develop a prototype CDSS that can provide 
diagnostic recommendations. This study uses existing tools to study the impact an argumentation-based 
diagnostic CDSS has on clinical decision making. Before ontology-based model using argumentation-
based approaches can be built it was decided to build a prototype based on existing tools and evaluate it 
with real clinicians using vignettes. This pilot study correspondingly evaluates the feasibility of providing 
diagnostic recommendation in the form of arguments. The subsequent studies in the remaining chapters 
will use argumentation-based approaches for building an ontology based CDSS and improve upon some 
limitations of existing argumentation-based CDSS tools.  

The literature showed that guideline recommendations improve guideline adherence. The guideline alerts 
can indicate the type of diagnoses where the abnormal values can be found. The alerts can help trigger 
illness scripts which may not have been triggered without the help of a CDSS. The guideline 
recommendations can then guide the clinician towards the appropriate tests to be taken. The illness 
scripts triggered by the abnormal values and corresponding guidance can help the clinician form 
diagnostic hypotheses. The clinician forms a mental model of the next steps to be taken. The clinician can 
then compare his/her mental model with that of the guideline recommendations. If the mental model 
matches that of the CDSS recommendation the clinician can confidently continue along the line of 
questioning or investigations. Guideline recommendations can help the clinician interpret test results and 
potentially reduce errors in interpretation. All these steps improve the quality of data collected during the 
clinical encounter. Guideline recommendations can potentially help in improving management decision 
made after a diagnosis by providing evidence-based guidance of next steps to be taken after a diagnosis.  

The study was performed using community optometrists as participants. The aim of this study is to 
investigate the role of clinical guideline and argumentation-based diagnostic recommendations on primary 
care diagnosis and information gathering. This study looks at impact of guideline recommendations on 
information gathering of optometrists in addition to impact of argumentation-based diagnostic 
recommendations on diagnostic performance of optometrists. The CDSS developed in this study 
provides guideline recommendations to guide/alert the optometrist about abnormal values, questions to 
ask the patient in the presence of abnormal values and tests to perform. Guideline recommendations are 
guidance from clinical guidelines that advices the clinicians to take appropriate steps during the clinical 
encounter. Guidance was provided on how to perform some of test or interpret the results of the tests. 
Guideline recommendations were given to help the optometrists in management decision making.  
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Once the optometrist collects all the data, the CDSS provides diagnostic recommendation using 
argumentation. The CDSS provides arguments in favour and against each diagnosis. The optometrist is 
free to choose a diagnosis based on given recommendations. These recommendations could include a 
ranked list of different diagnoses relevant to a patient’s condition. In this study, the diagnostic 
recommendations were only provided after a clinician (optometrist) has collected all the information 
about the patient. Once the diagnosis has been provided the optometrist is asked to provide management 
recommendations. Guideline recommendations are provided to help the clinician in making management 
decisions. The guideline recommendations were provided at all stages of the clinical encounter.  

4.1.1 Clinical Domain Selection 
Glaucoma is one of the world’s leading causes of irreversible blindness. Glaucoma is a progressive 
condition of the optic nerve that gradually results in loss of vision. The condition is asymptomatic in the 
early stages. Early detection is crucial to prevent irreversible loss of vision. In all studies to date in the 
developed world, only one half of all glaucoma cases in the community are diagnosed and receiving 
therapy (Bettin and Di Matteo, 2013). 

Case detection of glaucoma patients in the community is generally by community optometrists. Diagnosis 
of glaucoma involves combining many sources of information including clinical and family history, 
examination findings and diagnostic test results. Once detected the risk of progression is dependent on a 
variety of risk factors. Therefore, diagnosing glaucoma is crucial for any guiding any further actions that 
the clinician can take.  

Clinical management guidelines have been developed by the National Institute for Health and Clinical 
Excellence (NICE) and professional bodies including the College of Optometrists, Royal College of 
Ophthalmologists and European Glaucoma Society. Guidelines aim to improve care quality and decrease 
practice variation. However studies have shown that there are wide variations in practice and 
implementation of paper-based guidelines in optometry (Vernon and Ghosh, 2001; Khan, Clarke and 
Kotecha, 2012) may have unintended consequences. The NICE guidelines for diagnosis and management 
of chronic open angle glaucoma and Ocular Hypertension (OHT) did not include guidance on the 
detection and referral of suspected glaucoma patients by community optometrists (Shah and Murdoch, 
2011; Ratnarajan et al., 2013). The Association of Optometrists (AOP) however recommended that all 
patients with Intraocular pressure (IOP) greater than 21 mmHg should be referred to the Hospital Eye 
Service (HES) based on these guidelines. This resulted in a 40% increase in false positive referrals to the 
HES for suspected glaucoma (Vernon et al., 2011; Ratnarajan et al., 2013). The guideline 
recommendations have since been updated and other guidelines have been produced to remedy this 
situation and endorsed by the AOP (College of Optometrists and Royal College of Ophthalmologists, 
2010). None-the-less there is a history of poor compliance with guideline recommendations and more 
needs to be done to reduce the problem of false-positive (Morley and Murdoch, 2006; Edgar et al., 2010).  

There is increasing adoption of EHR systems. Electronic referral systems can bridge communication gaps 
between primary care and secondary care and enable continuity of care. Guideline based CDSSs formalize 
the clinical guidelines into a computerised format and the latest guideline recommendations can be 
delivered to the clinician. They have been shown to increase the adherence of the practitioners to clinical 
guidelines by providing the clinician with real time, patient-specific guideline recommendations at the 
point of care (Garg et al., 2005b; Bryan and Boren, 2008; Shalom et al., 2015). The reasons given above 
motivated the decision to select glaucoma and community optometry as test domain for conducting this 
study. 

4.2 Methods 
The creation of a complete CDSS is a large and expensive task. To evaluate clinician performance in the 
presence of guideline and argumentation-based diagnostic decision support recommendations clinical 
vignettes were used as substitutes for real life scenarios. Clinical vignettes are a valid tool for measuring 
clinician performance (Peabody et al., 2004; Shah, Edgar and Evans, 2010). The study is a non-
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randomised controlled group study. The author was involved in setting up and running the intervention 
arm of this study.  

The study tries to answer the following questions. Do the guideline recommendations have an impact on 
the information gathering and management decision making of optometrists? Guideline 
recommendations were given to the optometrists at various stages of the clinical encounter and during 
management decision making. In addition, the study tries to answer if the argumentation-based diagnostic 
recommendations have an impact on the diagnostic decision making of optometrists. The study looks at 
the overall feasibility of the argumentation-based approach and guideline recommendations with the help 
of a usability survey of optometrists.  

𝐻: The null hypothesis is that guideline recommendations have no impact on the optometrist’s 
information gathering and management decision making. 

𝐻: The null hypothesis is that argumentation-based diagnostic recommendations have no impact on the 
optometrist’s diagnostic decision making. 

The following are the main steps followed in executing the study: 

 Study setup 

◦ Vignette development 

◦ Description of vignette study involving optometrists (Control group study) 

◦ Decision support study with vignettes involving optometrists (Intervention group study) 

▪ PROforma modelling. PROforma is a language for formally representing clinical 
guidelines (See -4.2.3.2).  

 Procedure 

◦ Recruitment 

◦ Data collection 

 Statistical analysis 

 

 

4.2.1 Vignette development 
The vignettes (n=4) were developed by a group of experts including ophthalmologists, optometrists and 
clinical researchers with an interest in primary care optometry (Murdoch, Lawrenson and Myint, 2015). 
The images used in the study were obtained from real patients after data anonymization. The vignettes 
were used in the control group study involving community optometrists in England, U.K. Data from 
control group study was used to compare the results of intervention group study involving another group 
of community optometrists in England, U.K using same vignettes but with additional help of a CDSS.  

4.2.2 Vignette study involving optometrists (Control group study) 
In the control group study 4 vignettes were presented to 102 optometrists who provided a diagnosis and 
management strategy. The control group study was conducted by another group of researchers (Murdoch, 
Lawrenson and Myint, 2015). 

The vignettes included in this study involved diagnosing and managing Normal, Wet Age-related macular 
degeneration (Wet AMD), Ocular Hypertension (OHT) and Normal Tension Glaucoma (NTG) 
scenarios. 

Wet AMD is an ophthalmological condition that requires early diagnosis as there is an acute risk of 
blindness if the condition is not detected early. It is a condition affecting the macula of the eye where 
abnormal blood vessels form underneath the macula and causes damage to the cells (NHS Choices, 
2015). Dry AMD is another type of AMD. Dry AMD is more common, however Wet AMD is 
responsible for majority of blindness and severe loss of vision (NHS Choices, 2015).  
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OHT is a condition where the pressure of the inside of the eye (IOP) is higher than normal (Boyd, 2017). 
In OHT the fluid of the inside of the eye will not drain properly and result in higher pressures inside the 
eye. When the condition is not detected and treated the increased eye pressure results in damage to the 
eye and this condition is called Glaucoma (Boyd, 2017).  

Primary Open-Angle Glaucoma (POAG) is the most common type of glaucoma. The disease usually does 
not cause any symptoms until advanced vision loss has set in (Khawaja et al., 2016). People with POAG 
have raised IOP measurements.  

NTG is a type of POAG where the IOP measurements are consistently normal or lower than normal (21 
mmHg) (Stein and Challa, 2007). The signs and symptoms are like POAG with some exceptions. 
Therefore, it is important for the community optometrist to accurately detect these conditions early to 
prevent onset of blindness.  

The 4 vignettes are based on commonly found scenarios that the average optometrist encounters in the 
community clinic. The optometrists were not notified which clinical conditions the vignettes were based 
on. The aim of control group study was to study the diagnostic and management decision making 
capability of optometrists using clinical vignettes. 

Each optometrist completed approximately 4 vignettes each. Some optometrists completed all 4 while 
others did not. Therefore, the OHT vignette was completed by 100 optometrists, Normal by 102 
optometrists, NTG by 101 optometrists, and Wet AMD by 100 optometrists. 

The optometrists were recruited using a list of optometrists maintained by the General Optical Council 
(GOC). Using a random number generator, 100 optometrists from London, 50 from Birmingham, 50 
from Manchester, 50 from Glasgow and 50 from Edinburgh were invited from the list maintained by the 
GOC by personalised letter to participate. An incentive of £75 and 1 Continuing Education and Training 
(CET) point on completion for each vignette was offered. A reminder letter was sent, and due to lack of 
respondents a further 25 letters for participants in Manchester were sent. N=65 (64%) optometrists in the 
control group study did not have any post-graduate qualifications. Majority (54%) of the optometrists in 
the control group study graduated as optometrists in the 1995-2010 time-period (Figure 4-5).  

In this control group study, the vignettes were delivered to the optometrists via a web-based application. 
Vignettes can be delivered in the form of paper vignettes. However, paper vignettes cannot simulate a 
real-life patient encounter in terms of interaction and therefore a web-based option was chosen.  
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Figure 4-1 - Vignette study involving optometrists (Control group) observations 

The optometrists that agreed to participate were sent a link that pointed to a website. The website 
contained a web-based form that contained the vignette. Each optometrist had to complete 4 vignettes. 
The images Figure 4-1 & Figure 4-4 shows how the vignettes were delivered via the web form. 

There are a series of buttons that are related to questions normally asked by the optometrist during a 
routine clinical encounter. For example, in Figure 4-1 the question “Reason for visit” has been embedded 
into the button. When the optometrist clicks on the button, the answer to the question is displayed below 
the button. This process simulates a real-life encounter where the optometrist asks a series of questions to 
the patient and the patient responds accordingly. The optometrist is not required to ask all the questions, 
only those that he/she feels are relevant.  

When the optometrist starts the clinical encounter by asking a question the website displays the total time 
completed for the clinical encounter on the top (Figure 4-1). Whenever the optometrist clicks on a 
question the timer automatically adds a set amount of time to the total time available for the encounter. 
For example, in the clinical history section the time added will be 30 seconds for each question. In the 
investigations section the time added will be greater and can range from 5-10 minutes depending on the 
type of investigation. The timer simulates the progress of time and gives the optometrist a sense of time 
that cannot be accurately captured using paper-based clinical vignettes. An Australian study involving 
optometrists showed that the average time spent on several types of consultation are: 45 minutes for a 
first visit, 15 minutes for subsequent visits, and 60 minutes for a contact lens consultation (Horton, Kiely 
and Chakman, 2006). This included time spent on administration, clinical letters etc. The total time was 
displayed at the end of the clinical encounter. The optometrists are trained to complete clinical 
examinations and investigations within 60 minutes. If all the questions and investigations are performed 
the overall time will exceed 60 minutes. However, optometrists in this control group study were not 
penalised in anyway and allowed to continue full examination and diagnosis as needed. In real-life clinical 
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encounters some clinical encounters may take more time than average depending on the complexity of 
the case.  

The table below (Table 4-1) shows an extract of the questions and the answers in the symptoms and 
history section of the OHT vignette. All the vignettes in paper-based format can be seen in Appendix 17. 

OHT Vignette question Answer 
Reason for Visit Routine 
Date of last eye examination? 2 years ago 
Do you wear spectacles? Yes, varifocals. Full time wear, 2 years old.  

How is your distance vision? Fine with spectacles 
How is your near vision? Not as good as it used to be, my arms are not long 

enough 
Do you experience any headaches/suffer from 
migraines? 

Once a week, associated with a heavy workload 

Do you ever get any pain or discomfort relating to 
your eyes? 

No 

Do you ever notice your eyes becoming red? No 
Do you experience double vision? No 
Do you see any floaters in your vision? No 
Do you experience flashing lights? No 

Table 4-1 - OHT Vignette extract 

In addition to text-based information, images were provided to the optometrists to take part in grading of 
these images. For example, the images from the Van Herick test are shown below (Figure 4-2)(Figure 
4-3). Van Herick is a test for glaucoma that is based on grading of images of the front (anterior) of the 
eye. The optometrist must grade the images (0-4) based on the clinical appearance of images. 

 

Figure 4-2 - Van Herick Left Eye image 
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Figure 4-3 - Van Herick Right Eye image 

Similarly, the optometrist is provided with a choice of investigations in the form of buttons. When the 
optometrist clicks on the button the results of the investigation is provided. Based on the data in the 
vignette the optometrist must select a diagnosis from a list of diagnoses from a drop-down menu (Figure 
4-4).  He/she must provide management recommendations such as the location where the vignette 
patient needs to be referred, when the patient needs to be recalled for the next appointment, 
supplementary tests to be ordered and any eye prescriptions if needed. All the information needed to 
make the diagnosis was provided in the same web page and the optometrist had access to the 
question/investigation that he/she answered or performed.  

No decision support recommendations in the form of guideline recommendations or diagnosis 
recommendations were provided at any stage of the patient encounter. The data was collected and 
analysed later once the decision support study with vignettes involving optometrists (Intervention group) 
was completed.  
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Figure 4-4 - Vignette study involving optometrists (Control group) diagnosis and management 

 

The next section (section - 4.2.3) details the ‘intervention group study’ where a prototype CDSS 
application was created for the same 4 vignettes which were then presented to a different group of 
optometrists with the aim of assessing any change in diagnosis and referral outcomes. The author was 
involved in developing the CDSS prototypes based on the vignettes and setting up and running a web-
based experiment evaluating and comparing the results of the effect of a diagnostic CDSS on the 
intervention group optometrists with that of the control group optometrists.  

4.2.3 Decision support study with vignettes involving optometrists 
(Intervention group study) 

4.2.3.1 Participants  
In the intervention group study, the vignettes created for the control group study were presented to a 
group of optometrists (n=42). The community optometrists in the intervention group was a different set 
of optometrists from the control group study. The optometrists were recruited via email using the 
opportunistic sampling method (See Appendix 1- section 1.1). The optometrists belonging to a high-
street optometry chain in addition to other optometrists practising in high street optometry clinics were 
recruited and invitations to participate were sent to 150 optometrists. 42 optometrists agreed to 
participate. Each optometrist was asked to complete 1 clinical vignette and provide diagnostic and 
management recommendations for that vignette. Some optometrists agreed to complete more than 1 
vignette, therefore the vignettes were completed a total of 49 times by a total of 42 optometrists.  

The author was not involved in developing the vignettes, developing the web-based vignette 
application or data collection in the control group study.   
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The OHT vignette was completed by 13 optometrists, Normal by 9 optometrists, NTG by 13 
optometrists and Wet AMD by 14 optometrists.  

Out of the 42 optometrists who completed the vignettes (provided diagnosis and recommendations) only 
36 provided demographic information and completed the usability survey. The demographic details of the 
optometrists who completed the demographic information are reported in Table 4-2. Demographic 
information (Age group, Type of practice and Gender) for the control group optometrists was not 
available for comparison. The control group had a larger proportion of optometrists who did not have 
post-graduate qualifications (64%). Both groups had similar number of years of experience practising as 
an optometrist (Figure 4-5). The intervention group results are presented under the heading ‘With CDSS’ 
as they had the support of CDSS recommendations. The control group results are presented under the 
heading ‘Without CDSS’ as they did not have the support of a CDSS. 

Participating optometrists in the intervention group study received 1 CET point for each vignette 
completed from the GOC for participation in the study.  

Demographics Value With CDSS N=36 (%) 
Age group (years) <25 1 (3%) 
 25-34 10 (28%) 

35-44 7 (19%) 
45-54 12 (33%) 
55-65 6 (17%) 

Type of practice Multiple / group 17 (47%) 
 Independent 7 (19%) 

Locum 11 (31%) 
Joint venture 1 (3%) 

Gender Male (%) 12 (33%) 
Post graduate qualification No (%) 17 (47%) 

Table 4-2 - Demographics of participants 

 

 

Figure 4-5 - Optometrist year of qualification 

4.2.3.2 PROforma modelling 
There are several different methods for modelling clinical guidelines and developing guideline based 
CDSS applications (Peleg, 2013). PROforma is one such language and has been evaluated several times 
for modelling clinical guidelines and clinical processes and develop guideline based CDSSs (de Clercq et 
al., 2004; Fox, Patkar and Thomson, 2006a; Sutton, Taylor and Earle, 2006; Patkar et al., 2012). Tallis 
composer (COSSAC, 2011) is the toolset that is used to model the guidelines and clinical processes into 
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the guideline based CDSS based on the PROforma language. PROforma was chosen as the modelling 
language because of the mature toolset (Tallis composer) that allowed for modelling of the guideline 
recommendations in the PROforma language and easily setup a prototype CDSS. PROforma allows us to 
map the workflow based on data selected by the optometrists and provide recommendations that are 
specific to each vignette. PROforma  uses argumentation as the basis for generating the decision 
recommendations (Sutton and Fox, 2003). In this study the main decision was diagnosis decision and the 
diagnostic recommendations were provided. The CDSS uses the information that was provided to 
generate arguments in favour and against each diagnosis. Weights are provided that represent the degree 
of support supporting or negating each diagnosis.  

In the PROforma guideline model a computerised guideline to be used in the guideline based CDSS is 
modelled as a set of tasks and data items (Sutton and Fox, 2003; Sutton, Taylor and Earle, 2006). 
PROforma captures complex clinical workflows using 4 types of tasks - Actions, Decisions, Plans and 
Enquiries (data collections tasks). Actions are represented as blue squares, decisions as pink circles and 
enquiries as green diamonds (Figure 4-6 & Figure 4-9). Plans are represented as red rounded rectangles 
and can be seen in Figure 4-10. 

Actions are used to represent procedures that need to be carried out (for example, administering drugs). 
Here Actions were used to provide the guideline recommendations. Enquiries are used to model steps in 
the guideline where some information needs to be collected. This information can come from the patient 
in the form of clinical history or symptoms. The information can come from other sources of data such 
as lab test results from a database. In this study, the clinical data in the vignettes from control group study 
was used to model the enquiry nodes of the PROforma model. For example, in the image below (Figure 
4-6- Top section) the different sections of the OHT vignette can be seen. These are Symptoms, Medical 
History, Previous Ocular History, Family History, General History. Each enquiry has several data sources 
(Figure 4-6- Bottom right section). The data sources correspond to the data items in the vignettes from 
the control group study (Table 4-1 and Figure 4-15).  

 

Figure 4-6 - Tallis composer – Symptoms and History as enquiry 

When the PROforma computerised guideline is executed, the data sources get translated to questions for 
the patient to be asked by the optometrist and is enacted via a web page (Figure 4-7). In this study, the 
answers are hard coded into the fields of the form in the web page, as the purpose of this prototype is to 
simulate a real-life clinical encounter. However, in real applications the answers will not be present, and 
the user will be presented with blank fields or options to select based on clinical information.  

The next steps taken by the CDSS application were determined by the data entered or the option selected. 
For example, in the image below (Figure 4-7), there is a question (data source) “Is there a family history 
of glaucoma?”. If the optometrist clicks on the drop-down menu the answer is revealed: “Yes, my aunt 
and grandmother”. Clinical guidance suggesting the optometrist ask this question is given above the 
questions with the heading “GUIDELINE ALERT”, alongside the source of the guidance.  



86 
 

The optometrist can decide to not ask the question. However, if the optometrist selects the option and 
clicks submit, the clinical guidance from the College of Optometrists (College of Optometrists, 2016) is 
given (Figure 4-8) in the next screen. The workflow can be seen in Figure 4-6 (Positive Family History – 
blue square node). This guideline recommendation will only be provided if the optometrist selects the 
answer, i.e. simulating the process of asking a question and receiving an answer from the patient. If the 
optometrist does not ask the question, an answer will not be provided.   

 

Figure 4-7 - Tallis enactment/execution of guideline via webpage 
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Figure 4-8 - Positive family history recommendation 

Decision nodes (pink circles) are steps in the guidelines process where a decision must be made. The 
outcome of the decision as chosen by the optometrist, will decide how the next steps of the guideline 
process are executed. The decision can encompass any decision including a diagnostic decision or a risk 
assessment (Low, Moderate or High risk). Plans (Red rounded squares) are tasks that are used to group 
together other tasks that share something in common. For example, a plan can be used to execute a set of 
tasks together (Figure 4-10).  

The clinical guidelines used as the basis for providing the guideline recommendations in this prototype 
CDSS based on the vignettes included the NICE Glaucoma diagnosis and management guidelines 
(NICE, 2009), European Glaucoma Society guidelines(European Glaucoma Society, 2008), College of 
Optometrists Clinical Management guidelines (College of Optometrists, 2016), College of Optometrists 
and the Royal College of Ophthalmologists Joint Supplementary College Guidance on Supervision in 
relation to Glaucoma-related Care by Optometrists (College of Optometrists and Royal College of 
Ophthalmologists, 2010). 

In the PROforma model for this study there is only one Decision node (Decision Support Diagnosis in 
Figure 4-9), as diagnosis was main outcome in addition to appropriateness of management (including 
referral). The management recommendations in turn are based on the diagnostic decision. For example, if 
OHT is selected as the diagnosis by the optometrist then the recommendations for that diagnosis are 
displayed to the optometrist (Figure 4-9).  The decision node provides recommendations to the 
optometrist to help choose an item from the different options available. In this CDSS application, the 
options are different diagnoses that the patient may have, and the optometrist must choose one. 
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Figure 4-9 - Optometry decision support PROforma diagnosis and management workflow 

4.2.3.3 Decision Support Arguments and Candidates 
PROforma decisions have Candidates and Arguments for each decision (Sutton and Fox, 2003). 
Argumentation is a logical technique that helps in making decisions by weighing the arguments for and 
against a proposition (Fox, Krause and Elvang-Gøransson, 1993). The method used by PROforma to 
weigh in the different arguments and generate a recommendation is based on the argumentation. Each 
candidate can have multiple arguments that either support or negate a candidate. In a diagnostic CDSS 
such as the one described in this study, the candidate will be a diagnosis and the arguments will be 
observations that are present in the patient and either support or negate a diagnosis. Candidates and 
arguments can be used to model other CDSSs such as risk assessment applications where the candidates 
become the risk level (High, Moderate or Low) and the arguments become the clinical observations that 
support or negate the risk level. In this study, the candidates are diagnoses as the effect of diagnostic 
recommendations on optometrist decision making is being evaluated.  

The degree to which the argument (clinical observations) can either support or negate is represented by 
Symbolic support or Numeric Weights (See support in Table 4-3). Numeric weights were used in this 
study to represent degree of support as the domain experts found them more intuitive and easier to 
understand. The weights do not signify a statistical probability of an argument. The weights are a 
qualitative measure of the degree of support of each argument. If needed, statistical evidence can be used 
to form weights by using machine learning techniques to automatically update the weights. But this 
requires the availability of large repositories of high quality structured clinical data and this is difficult to 
obtain. Therefore, in this study a much simpler method for determining weights was used.  

The weight for each argument were determined by domain experts. Since there were not many studies 
that evaluated argumentation-based CDSSs for diagnosis decision making, no standard way for 
representing weights exist. Therefore, a simple weighting scheme for creating weights was devised. If a 
clinical observation is present/absent and it supports a diagnosis, a weight of +1 was given. If the clinical 
observation is present/absent and it negates a diagnosis a weight of -1 was given. If the observation 
strongly supports a diagnosis a weight of +2 was given. If it strongly negates a diagnosis a weight of -2 
was given. Some observations are highly indicative of pathology. These observations are given a weight 
above 2.  This can be easily explained to optometrists. The real benefit of using argumentation-based 
models is the argument itself. The weights help in ranking the diagnosis and help explain why the 
diagnosis was ranked above others in the diagnostic recommendation. The ability to better explain the 
patient’s condition is the reason why argumentation-based CDSS tools was chosen to create the 
diagnostic CDSS.  

In the decision support application that modelled the OHT vignette there were 4 diagnosis candidates. 
These candidates were “OHT”, “Primary Open Angle Glaucoma (POAG)”, “Normal-Repeat tests” and 
“Normal-No referral”.  The diagnosis candidates for OHT vignette (and the other vignettes) were chosen 
by the experts based on their similarity to the actual diagnosis. For example, POAG has signs and 
symptoms that are clinically like OHT and could be confused for OHT. Other diagnosis candidates (for 
example, Normal) are chosen to balance the diagnosis candidates and avoid giving the optometrists clues 
about the actual diagnosis of the vignettes determined by the experts.   
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The table below (Table 4-3) shows a sample of the arguments either supporting or negating the OHT 
candidate in OHT vignette. Table 4-3  includes a description of the arguments. For example, the 
argument Visual_fields_Right_Humphrey = "Normal" AND Visual_fields_Left_Humphrey = "Normal" 
means that if the visual field test Humphrey is normal in both left and right eye, then it supports the 
candidate OHT. So, if the normal value is present then the Tallis application will add a total of +2 
towards the OHT candidate.  The total weight for each candidate is calculated based on the arguments 
that are activated based on the data and the weights are attached to the candidate. The total weights are 
used as the basis to generate a ranked list of candidates (diagnoses) (Figure 4-20). (See Appendix 2 - 
section 2.1 for other candidates in the OHT vignette). Similarly, there are arguments supporting or 
negating all candidates for all 4 vignettes (See Appendix 2 – sections 2.1 to 2.4).  The weights and 
arguments were validated by domain experts using test scenarios. Data was entered in the CDSS and 
results were validated by the domain experts using test scenarios and changes made accordingly.  
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OHT candidate Support 

IOP  
Intraocular pressure in mmHg - IOP is the fluid pressure of the eye.  
Non-contact tonometry (NCT) is one of the tests for measuring IOP.  
The other test is Goldmann applanation tonometry (GAT). If the IOP measurements is greater than 21mmHg then 
it is higher than normal and it indicates OHT, but not Glaucoma. 

 

IOP_NCT_Right_Reading_Average > 21 OR IOP_NCT_Left_Reading_Average > 21 2 

IOP_GAT_Left = "24" OR IOP_GAT_Right = "23" 2 

Visual Fields Humphrey  
Visual fields is a method for measuring the patient’s entire scope of vision. 
Humphrey is a type of visual fields test. In OHT there is no pathology, only elevated IOP. Therefore, the visual 
fields tests will be normal. 

 

Visual_fields_Right_Humphrey = "Normal" AND Visual_fields_Left_Humphrey = "Normal" 2 

Visual_fields_Right_Humphrey = "Abnormal" OR Visual_fields_Left_Humphrey = "Abnormal" -2 

(Visual_fields_Right_Humphrey = "Uncertain" AND Visual_fields_Left_Humphrey = "Uncertain") OR 
(Visual_fields_Right_Humphrey = "Uncertain" OR Visual_fields_Left_Humphrey = "Uncertain") -1 

Visual Fields Henson 
Henson is another type of visual fields test. In OHT there is no pathology, only elevated IOP. Therefore, the 
visual fields tests will be normal. 

 

Visual_fields_Right_Henson = "Normal" AND Visual_fields_Left_Henson = "Normal" 2 

Visual_fields_Right_Henson = "Abnormal" OR Visual_fields_Left_Henson = "Abnormal" -2 

(Visual_fields_Right_Henson = "Uncertain" AND Visual_fields_Left_Henson = "Uncertain") OR 
(Visual_fields_Right_Henson = "Uncertain" OR Visual_fields_Left_Henson = "Uncertain") -1 

Optic disc status 
Optic disc is the part of the optic nerve that is clinically visible on examination. The optometrist must look at images 
of the back of the eye and grade the images (Normal/Uncertain/Abnormal) based on the status of the optic disc. In 
OHT there is no pathology, only elevates IOP. Therefore, the optic discs will be normal. 

 

Optic_Disc_Status_Right = "Abnormal" OR Optic_Disc_Status_Left = "Abnormal" -2 

Optic_Disc_Status_Right = "Normal" AND Optic_Disc_Status_Left = "Normal" 2 

(Optic_Disc_Status_Right = "Uncertain" AND Optic_Disc_Status_Left = "Uncertain") OR 
(Optic_Disc_Status_Right = "Uncertain" OR Optic_Disc_Status_Left = "Uncertain") -1 

Van Herick 
Van Herick is another test for glaucoma that is based on grading of images of the front of the eye. The optometrist 
must grade the images (0-4) based on the clinical appearance of images. A grade of >2 means that there is no 
pathology and therefore supports OHT.  

 

Van_Herick_Right =< 2 OR Van_Herick_Left =< 2 -1 

Van_Herick_Right > 2 AND Van_Herick_Left > 2 1 

Table 4-3 - OHT candidate with arguments and weights for OHT vignette 

4.2.3.4 CDSS development 
Tallis uses PROforma (Fox, Patkar and Thomson, 2006b) guideline modelling language for modelling the 
different stages of clinical diagnostic encounter i.e. Symptoms and History, Refraction, Anterior Eye 
Examination, Posterior Eye Examination, Investigations, Oculomotor balance (OMB) and Diagnosis and 
executing the decision  making pathway. The different stages of the clinical encounter, the questions 
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asked in each stage, the images used for grading tests and all the data were based on the vignettes in the 
control group study (Figure 4-1 & Figure 4-4). The vignettes modelled in PROforma can be seen in 
Appendix 3 – section 3.2. 

A consensus panel comprising of a consultant ophthalmologist and an expert optometrist had 
independently reviewed the clinical vignettes and decided the appropriate diagnostic criteria for the CDSS 
and triggers for guideline recommendations (Murdoch, Lawrenson and Myint, 2015).  

The CDSS application is a stand-alone web-based application and the optometrist inputs data from the 
vignette examination in this software. The optometrist is required to enter data relevant to make a 
decision, which includes symptoms, history, results of examinations and investigations etc. The program 
runs through a series of questions that will guide the optometrist through relevant pathways, ensuring that 
the optometrists follow proper guidelines and protocols when obtaining information about the patient. 
PROforma technology assists the optometrists in confirming a diagnosis providing a differential diagnosis 
and provides referral and management recommendations based on the individual characteristics of the 
vignette. The CDSS application modelled in Tallis allows recording of data in a database and all the data 
were recorded in a MySQL database for analysis. 

4.2.3.5 Procedure (intervention group study) 
The study was approved by City University London Department of Computer Science Research Ethics 
Committee (See Appendix 1 – section 1.2). Participants were given the information about the study via 
email (See Appendix 1 – section 1.1). The information contained details of the study purpose, duration, 
right to withdrawal from study, optometrist data confidentiality, CET point information, ethical 
committee clearances and study team contact details.  

If the participants had any questions they were encouraged to contact the study team. Once the 
participant had read the information and agreed to its contents he/she can click on the link provided 
which will take them to the study application with the online consent form.  Only when the participants 
have agreed to the terms and conditions specified in the consent form will they be taken to the study start 
page.  

 

4.2.3.5.1 Step by Step process taken by the optometrists when accessing the decision support 
application 

 

Figure 4-10 - Outline of the optometry study in PROforma 

1. The optometrists were sent an email with a link to the study vignette (See Appendix 3 – section 
3.1).  The decision support application can be accessed via a standard web browser. When the 
optometrist clicked on the link s/he was forwarded to the website which ran the experiment. 
OpenClinical.net (OpenClinical.net, 2015) was used as the platform to conduct the experiment.  

2. The optometrist is redirected to a consent form (Figure 4-11) on the via web application via a 
link forwarded through email.  Once consent has been provided he/she is asked to enter the 
email ID. The vignette information is automatically recorded in a MySQL database.  
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Figure 4-11 - Consent form 

3. The study instructions are provided to the optometrists outlining the various steps to be taken 
which includes video-based instructions (Figure 4-12). 
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Figure 4-12 - Study Instructions 

4. At the Study Home Page, they are given the option of either accessing the Tutorial Case or go 
directly to the Study Case (Figure 4-13). Workflow can be seen in Figure 4-10. The Tutorial Case 
provides an overview of the tasks the optometrist is required to perform for the study, for 
example grading images, diagnosis selection etc.  
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Figure 4-13 - Study Home page 

 

5. On the Study Case page, they can access the different sections representing the different sections 
of the patient data including Symptom and History, Refraction, Oculomotor Balance, Anterior 
Eye Examination, Posterior Eye Examination, Investigations and Diagnosis and Management 
(Figure 4-14). In some sections, the optometrist clicks the drop-down to reveal the answer to the 
question (Figure 4-15). This simulates a question-answer session where the patient provides an 
answer to a question provided by the optometrist.  
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Figure 4-14 - History, Examination & Investigations 
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Figure 4-15 - Symptoms and History 

 

6. The optometrists were presented with guidance from current clinical management guidelines (See 
GUIDELINE ALERT !! in Figure 4-16) that recommend the optometrist ask appropriate 
questions or select appropriate investigations. It is up to the clinician to ask these questions 
(Figure 4-16) or perform the tests (Figure 4-17). 

 

 

Figure 4-16 - Clinical guideline recommendations 
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Figure 4-17 - Investigations 

 

7. In other sections, especially Anterior Eye Examination and Posterior Eye Examination, the 
optometrists were given images relevant to the case and they graded the images from the options 
given (Figure 4-18). Clinical guidance on how to grade the images is provided. The location of 
these recommendations and the terminology and wording used in the recommendations was 
determined by the clinical experts and the guideline recommendations are specific to the 
questions being asked or the task the optometrist is asked to perform. For example, in Figure 
4-18 the different grades that the image can take is given based on the European Glaucoma 
Society guideline: Terminology and Guidelines for Glaucoma – 3rd Edition (European Glaucoma 
Society, 2008). The guideline recommendation tells the optometrist when the Van Herick test is 
appropriate and how to interpret and grade the images.  
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Figure 4-18 - Image grading - Van Herick 

8. Once all the data that the optometrist thinks is relevant is collected, he/she can proceed to 
Diagnosis and Management for the case. The optometrist is given the option to go back and 
check any data that is needed before going to the Diagnosis and Management section. Initially 
the optometrist is asked to select the right diagnosis from a list. Only data that was enquired were 
provided to help select the diagnosis (Figure 4-19). The only decision support provided up to this 
point will be the different guideline recommendations provided at different stages of the process. 
The list of diagnoses provided in this list is the same as that of the control group study.  
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Figure 4-19 - Diagnosis selection by optometrist with observations 

 

9. Once the optometrist has selected his/her diagnosis the CDSS will provide the diagnoses that it 
thought was appropriate (Figure 4-20). Instructions on how to interpret the recommendations 
provided by the decision support are given (Figure 4-21 & Figure 4-22).  The weights to be 
attached to each argument supporting or negating a candidate was determined by the clinical 
experts and based on their professional judgement (See section - 4.2.3.3). The ranking of 
diagnostic recommendations is calculated based on the data collected from the patient, i.e. 
questions asked, and clinical tests and investigations performed. If the optometrist does not 
perform certain tests and investigations, or if the optometrist grades images incorrectly the 
diagnostic ranking and weights associated with the diagnosis will change. The prototype CDSS 
simulates a real-life CDSS which provides a list of most likely diagnoses based on data collected. 
The list of diagnoses provided by the CDSS is smaller than the list from which the optometrist 
first selects the diagnosis without diagnostic decision support. Since it was beyond the scope of 
this study to model the arguments and weights for all optometry diagnoses it was decided to use 
a smaller list which simulates a real-life CDSS that provides a list of most likely diagnosis. In the 
OHT vignette the candidates are OHT, POAG, Normal-no referral, No-repeat tests. The 
findings in the OHT vignette suggest that patient can have elevated IOP but is otherwise normal 
and should be managed in the community. There the 2 Normal candidates were given as 
recommendations. Elevated IOP can indicate possible POAG and therefore that was given as a 
candidate. Similarly, other candidates were chosen for the other vignettes because the findings 
could indicate similar conditions. The diagnostic recommendations are ranked according to the 
weights (Figure 4-20) with the diagnosis with the highest weight located on top of the list. The 
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diagnostic recommendations include the arguments in favour and against a diagnosis. In Figure 
4-20 the arguments for each diagnosis is seen below the diagnosis. It shows what is the weight 
for each argument. In the figure Right or Left IOP-GAT greater than 21 mmHg is shown with a 
weight of +2. This means what the patient has been found with an IOP greater than 21mmHg 
during the GAT test. A weight of +2 has been attached to the diagnosis. The Tallis reasoner 
sums the weights of each argument based on the data that was collected. The total score of +2 
was given to Primary Open Angle Glaucoma since the other arguments had a weight of +1 and -
1 and therefore cancelled each other. The real benefit of the argumentation-based diagnostic 
CDSS is the ability to obtain a ranked diagnostic recommendation while getting the reasons for 
the recommendation in an easy to understand manner for the clinician.  

 

 

Figure 4-20 - Diagnosis candidate with arguments supporting/negating 

 

Figure 4-21 - Symbols denoting support/negation 
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Figure 4-22 - Interpreting the symbols 

 

10. The optometrist is free to reject the recommended decision support diagnosis and select what 
he/she thinks is appropriate. The optometrist is asked to select the diagnosis twice. The 1st time 
the optometrist will select the diagnosis without any diagnostic recommendations (Figure 4-19). 
The 2nd time the optometrist were given a ranked list of diagnostic recommendations and the 
optometrist can select from this list. The workflow can be seen in Figure 4-9.  

11. Once a diagnosis provided in the diagnosis recommendation list is selected (Figure 4-20) the 
optometrist is then asked to provide management and referral recommendations for the patient 
(Figure 4-23). Clinical guidance recommendations are provided based on the diagnosis selected 
by the optometrists. For example, the recommendations in Figure 4-23 are shown if the 
optometrist selects OHT from diagnosis recommendation list.  
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Figure 4-23 - Management advice 

 

12. The optometrist was then asked to fill a survey form based on System Usability Scale (Brooke, 
1996) (Figure 4-24) to obtain qualitative feedback about the decision support application and 
basic demographic and background information about the optometrist were  collected (Figure 
4-25).   
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Figure 4-24 - Survey form (1) 

 

Figure 4-25 - Survey form (2) 

 

4.2.4 Statistical Analysis 
The data stored in the MySQL database was collected for analysis once the data collection was completed. 
After the data had been cleaned, the data was imported into the statistical package R (version 3.3.1) for 
data analysis (R Core Team, 2013). The differences between the intervention group studied in the current 
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study (With CDSS) and the control group (Without CDSS) were statistically analysed with the Pearson 
chi-square test with Yates continuity correction and Fishers exact test for categorical data. A p-value of 
0.05 or less was used to indicate statistical significance.   

The chi-square test is used to test if there is a possible relationship between 2 categorical variables and if 
the observed difference between the 2 variables has arose by chance. In this test a 2-way table is generated 
after the data has been counted and divided into categories.  

In this study the total number of optometrists who asked the questions to the vignette patient was 
recorded. The total number of clinical test/investigations performed was recorded. The chi-square test 
was used to see if the CDSS guideline recommendations has any impact on the optometrists asking 
questions or performing clinical investigations. The function chisq.test in R was used to perform the test 
(See Appendix 18 for raw data). 

The total number of optometrists from both control and intervention group who got the diagnosis and 
management right or wrong was calculated. The right diagnosis was determined by the experts when they 
developed the vignettes for the control study. The chi-square test will test if the CDSS had any impact on 
the decision making of the optometrists or the likelihood of the optometrists getting the diagnosis and 
management right/wrong is due to chance. The function chisq.test in R was used to perform the test. 
(See Appendix 16 for raw data). 

The Pearson’s chi-squared test is one the most popular types of chi-square tests and is often used in 
clinical research (McHugh, 2013). The Yates continuity correction is applied when in any given cell, the 
count is below 5 and therefore there is not enough data to conduct a chi-square test. In this study the 
count in the intervention group was below 5 in several instances and therefore the Yates continuity 
correction was applied throughout for the chi-square test (Larntz, 1978).  

In addition to the chi-square test the Fisher’ exact test was applied for the diagnostic and management 
numbers. The Fisher’s test is considered more accurate when the sample size is small (Routledge, 
Routledge and Rick, 2005). The function fisher.test in R was used to perform the test. (See Appendix 16 
for raw data). The significance level 𝛼 was set at 0.05.  
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4.3 Results 
4.3.1 History and Investigations 
This section outlines the total numbers of history/investigations that were answered/performed for the 
Intervention group and the control group optometrists. The chi-square significance test results have been 
summarised in Appendix 18. This section outlines the impact of guideline recommendations on 
information gathering. 

The vignettes presented to both control group and Intervention group optometrists were presented in 
different sections. The sections are: 

 History 
o Symptoms 
o Medical History 
o Previous Ocular History 
o Family History 
o General History 

 Clinical Tests and Investigations 
o Oculomotor balance (OMB) Habitual 
o OMB New Rx (New prescription)  
o Anterior Exam 1 (Van Herick test) 
o Anterior Exam 2 (Slit lamp investigations) 
o Posterior Exam (Ophthalmoscopy) 
o Ophthalmoscopy 
o Amsler grid 
o Colour vision 
o IOP GAT (Intraocular Pressure Goldmann Applanation Tonometry) 
o IOP NCT (Intraocular Pressure Non-Contact Tonometry) 
o Stereopsis 
o Visual field Henson 
o Visual field Humphrey 
o Refraction 

4.3.1.1 OHT 
The following section presents the total numbers of history/investigations answered and the statistically 
significant results of the history/investigations chi-square test of the OHT vignette. OHT is a condition 
where the pressure inside the eye (Intraocular pressure or IOP) is greater than normal. People with OHT 
are considered to be at risk of glaucoma and therefore needs to be regularly monitored by the optometrist 
for signs of glaucoma (Mowatt et al., 2008).  

Total number of history/investigations in the OHT vignette is n=83. The total number of 
history/investigations where there is a statistically significant difference in the answered/unanswered 
questions between the intervention and control group is n=15 (18.07%). The significant results have been 
outlined in Table 4-4. The remaining results have been outlined in Appendix 18.1.1. 

Section, 
Question/Investigation, 
Chi-square, 
p-value,  
Significance (α= 0.05) 

Answered with 
guideline rec 
(Intervention) 

Not answered 
with guideline 
rec 
(Intervention) 

Answered 
without CDSS 
(Control) 

Not answered 
without CDSS 
(Control) 

Section: Symptoms, 
Do you ever notice your 
eyes becoming red?, 

10 (76.92%) 3 (23.08%) 39 (39.00%) 61 (61.00%) 
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Chi-square: 5.281, 
p-value: 0.022 

Section: Symptoms, 
Do you see any floaters in 
your vision?, 
Chi-square: 4.105, 
p-value: 0.043 

13 (100.00%) 0 (0.00%) 69 (69.00%) 31 (31.00%) 

Section: Symptoms, 
Do you experience 
flashing lights?, 
Chi-square: 4.809, 
p-value: 0.028 

13 (100.00%) 0 (0.00%) 66 (66.00%) 34 (34.00%) 

Section: Medical History, 
Are you diabetic?, 
Chi-square: 3.883, 
p-value: 0.049 

13 (100.00%) 0 (0.00%) 70 (70.00%) 30 (30.00%) 

Section: Ocular History, 
Have you ever been told 
you have lazy eye?, 
Chi-square: 6.058, 
p-value: 0.014 

11 (84.62%) 2 (15.38%) 44 (44.00%) 56 (56.00%) 

Section: General History, 
Smoker, 
Chi-square: 4.904, 
p-value: 0.027 

12 (92.31%) 1 (7.69%) 56 (56.00%) 44 (44.00%) 

Section: OMB Habitual, 
Motility, 
Chi-square: 7.142, 
p-value: 0.008 

11 (84.62%) 2 (15.38%) 41 (41.00%) 59 (59.00%) 

Section: OMB Habitual, 
NPC, 
Chi-square: 3.898, 
p-value: 0.048 

6 (46.15%) 7 (53.85%) 18 (18.00%) 82 (82.00%) 

Section: OMB Habitual, 
Cover test Near, 
Chi-square: 6.395, 
p-value: 0.011 

13 (100.00%) 0 (0.00%) 60 (60.00%) 40 (40.00%) 

Section: OMB New Rx, 
Fixation Disparity 
Distance, 
Chi-square: 6.107, 
p-value: 0.013 

6 (46.15%) 7 (53.85%) 14 (14.00%) 86 (86.00%) 

Section: Anterior Exam 1, 
Left Eye Van Herick, 

13 (100.00%) 0 (0.00%) 53 (53.00%) 47 (47.00%) 



107 
 

Chi-square: 8.616, 
p-value: 0.003 

Section: Anterior Exam 1, 
Right Eye Van Herick, 
Chi-square: 8.616, 
p-value: 0.003 

13 (100.00%) 0 (0.00%) 53 (53.00%) 47 (47.00%) 

Section: Anterior Exam 2, 
Tears, 
Chi-square: 6.756, 
p-value: 0.009 

8 (61.54%) 5 (38.46%) 23 (23.00%) 77 (77.00%) 

Section: IOP NCT, 
IOP NCT Left Eye 
Reading 1, 
Chi-square: 6.041, 
p-value: 0.014 

6 (46.15%) 7 (53.85%) 81 (81.00%) 19 (19.00%) 

Section: IOP NCT, 
IOP NCT Right Eye 
Reading 1, 
Chi-square: 6.041, 
p-value: 0.014 

6 (46.15%) 7 (53.85%) 81 (81.00%) 19 (19.00%) 

Section: Refraction, 
Subjective Findings, 
Chi-square: 6.395, 
p-value: 0.011 

13 (100.00%) 0 (0.00%) 60 (60.00%) 40 (40.00%) 

Table 4-4 - OHT vignette significant chi-square results 

The guideline recommendations in the OHT vignette are in Appendix 19. The results of comparing the 
questions/investigations answered/not answered show that there is a significant difference in the 
proportions in n=15 (18.07%) questions/investigations. Some questions in the Symptoms section were 
answered more in the intervention group than the control group. These questions are part of the routine 
clinical history taking and needed to formulate early diagnostic hypotheses. In the Family History section, 
the optometrists were given the guidance to check Family History of Glaucoma but there was no 
significant difference between the intervention group (n=13 (100.00%)) and the control group (n=94 
(94.00%)) in the asking the patient for an answer. Greater proportion of optometrists performed the 
Anterior Exam 1(Van Herick test) in the intervention group (n=13 (100.00%)) compared to the control 
group (n=53 (53.00%)). The Van Herick test is an important test for identifying OHT patients. Since 
OHT patient only have elevated IOP and no other clinical pathology is present the Van Herick test can 
identify the presence of pathology. However other tests such as Visual Fields Humphrey that provides 
more detailed information about the visual field of the patient did not see a difference in the numbers 
between the intervention group and control group optometrists. 

OMB tests are not needed for the OHT patient but have been performed more in the intervention group 
than the control group. Guidance was provided to the intervention group optometrists to perform 4 
readings for the IOP NCT test and the average taken as the final reading. However, there was no 
difference in the control and intervention group for the 4th reading. Overall the use of the guideline 
recommendations only showed a difference in the performing on Anterior Exam 1(Van Herick test). 
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4.3.1.2 Normal 
The following section presents the total numbers of history/investigations answered and the statistically 
significant results of the history/investigations chi-square test of the Normal vignette. Total number of 
history/investigations in the Normal vignette is n=90. The total number of history/investigations where 
there is a statistically significant difference in the answered/unanswered questions between the 
intervention and control group is n=19(21.1%). The significant results have been outlined in Table 4-5. 
The remaining results have been outlined in Appendix 18.1.2. 

Section, 
Question/Investigation, 
Chi-square, 
p-value,  
Significance (α= 0.05) 

Answered with 
guideline rec 
(Intervention) 

Not answered 
with guideline 
rec 
(Intervention) 

Answered 
without CDSS 
(Control) 

Not answered 
without CDSS 
(Control) 

Section: Symptoms, 
Do you ever get any pain 
or discomfort relating to 
your eyes?, 
Chi-square: 4.141, 
p-value: 0.042 

9 (100.00%) 0 (0.00%) 61 (59.80%) 41 (40.20%) 

Section: Medical History, 
Do you have any 
allergies?, 
Chi-square: 5.915, 
p-value: 0.015 

9 (100.00%) 0 (0.00%) 53 (51.96%) 49 (48.04%) 

Section: Medical History, 
Do you have high blood 
pressure?, 
Chi-square: 4.716, 
p-value: 0.030 

8 (88.89%) 1 (11.11%) 46 (45.10%) 56 (54.90%) 

Section: General History, 
Smoker, 
Chi-square: 5.429, 
p-value: 0.020 

9 (100.00%) 0 (0.00%) 55 (53.92%) 47 (46.08%) 

Section: OMB Habitual, 
Accommodation BIN, 
Chi-square: 14.529, 
p-value: <0.000 

6 (66.67%) 3 (33.33%) 12 (11.76%) 90 (88.24%) 

Section: OMB Habitual, 
Accommodation Left 
Eye, 
Chi-square: 12.313, 
p-value: <0.000 

6 (66.67%) 3 (33.33%) 14 (13.73%) 88 (86.27%) 

Section: OMB Habitual, 
Accommodation Right 
Eye, 
Chi-square: 12.313, 
p-value: <0.000 

6 (66.67%) 3 (33.33%) 14 (13.73%) 88 (86.27%) 
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Section: OMB Habitual, 
Confrontation, 
Chi-square: 4.755, 
p-value: 0.029 

4 (44.44%) 5 (55.56%) 12 (11.76%) 90 (88.24%) 

Section: OMB Habitual, 
PD, 
Chi-square: 10.487, 
p-value: 0.001 

8 (88.89%) 1 (11.11%) 30 (29.41%) 72 (70.59%) 

Section: OMB New Rx, 
Fixation Disparity 
Distance, 
Chi-square: 9.085, 
p-value: 0.003 

5 (55.56%) 4 (44.44%) 12 (11.76%) 90 (88.24%) 

Section: OMB New Rx, 
Fixation Disparity Near, 
Chi-square: 9.085, 
p-value: 0.003 

5 (55.56%) 4 (44.44%) 12 (11.76%) 90 (88.24%) 

Section: Anterior Exam 1, 
Right Eye Van Herick, 
Chi-square: 10.890, 
p-value: 0.001 

9 (100.00%) 0 (0.00%) 38 (37.25%) 64 (62.75%) 

Section: Anterior Exam 1, 
Left Eye Van Herick, 
Chi-square: 10.890, 
p-value: 0.001 

9 (100.00%) 0 (0.00%) 38 (37.25%) 64 (62.75%) 

Section: Anterior Exam 2, 
Shafers Sign, 
Chi-square: 6.665, 
p-value: 0.010 

7 (77.78%) 2 (22.22%) 30 (29.41%) 72 (70.59%) 

Section: Anterior Exam 2, 
Tears, 
Chi-square: 5.800, 
p-value: 0.016 

8 (88.89%) 1 (11.11%) 42 (41.18%) 60 (58.82%) 

Section: IOP NCT, 
IOP NCT Left Eye 
Reading 1, 
Chi-square: 9.012, 
p-value: 0.003 

3 (33.33%) 6 (66.67%) 84 (82.35%) 18 (17.65%) 

Section: IOP NCT, 
IOP NCT Right Eye 
Reading 2, 
Chi-square: 3.969, 
p-value: 0.046 

3 (33.33%) 6 (66.67%) 73 (71.57%) 29 (28.43%) 

Section: IOP NCT, 
IOP NCT Right Eye 
Reading 1, 

3 (33.33%) 6 (66.67%) 84 (82.35%) 18 (17.65%) 
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Chi-square: 9.012, 
p-value: 0.003 

Section: Refraction, 
Current Rx, 
Chi-square: 23.418, 
p-value: <0.000 

6 (66.67%) 3 (33.33%) 102 (100.00%) 0 (0.00%) 

Section: Refraction, 
Subjective Findings, 
Chi-square: 4.340, 
p-value: 0.037 

9 (100.00%) 0 (0.00%) 60 (58.82%) 42 (41.18%) 

Table 4-5 - Normal vignette significant chi-square results 

The guideline recommendations in the Normal vignette are in Appendix 19. In the Normal vignette there 
were no abnormal findings and general guideline recommendations were given. Guidance regarding 
asking Family History of Glaucoma was given but there was no significant difference between the groups 
in asking the patient. Like the OHT vignette, greater proportion of optometrists asked the Symptoms and 
Medical History questions. The OMB tests were not needed for the patient and greater proportion of 
control group optometrists did not perform the tests. More intervention group optometrists performed 
the Anterior Exam 1(Van Herick test) when compared to the control group (n=9 (100.00%) vs n=38 
(37.25%)). The Current Rx-Refraction tests were performed more by the control group (n=102 
(100.00%)) when compared to the intervention group (n=6 (66.67%)). However, the intervention group 
optometrists (n=9 (100.00%)) performed the Subjective-Refraction tests more when compared to the 
control group (n=60 (58.82%)). Overall the guideline recommendation had a minimal impact on 
influencing the optometrist’s decision to ask certain questions or perform investigations.  

4.3.1.3 Normal Tension Glaucoma 
The following section presents the total numbers of history/investigations answered and the statistically 
significant results of the history/investigations chi-square test of the Normal Tension Glaucoma (NTG) 
vignette. NTG is a type of glaucoma where the pressure inside the eye (IOP) is not raised and the lies 
within the normal range. However, there are signs of damage to the nerves of the eye that can be found 
during examination of the eye.  

 Total number of history/investigations in the NTG vignette is n=84. The total number of 
history/investigations where there is a statistically significant difference in the answered/unanswered 
questions between the intervention and control group is n=24(28.6%). The significant results have been 
outlined in Table 4-6. The remaining results have been outlined in Appendix 18.1.3. 

Section, 
Question/Investigation, 
Chi-square, 
p-value,  
Significance (α= 0.05) 

Answered with 
guideline rec 
(Intervention) 

Not answered 
with guideline 
rec 
(Intervention) 

Answered 
without CDSS 
(Control) 

Not answered 
without CDSS 
(Control) 

Section: Symptoms, 
Do you ever notice your 
eyes becoming red?, 
Chi-square: 5.880, 
p-value: 0.015 

11 (84.62%) 2 (15.38%) 45 (44.55%) 56 (55.45%) 

Section: Medical History, 
Do you have high blood 
pressure?, 

12 (92.31%) 1 (7.69%) 54 (53.47%) 47 (46.53%) 
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Chi-square: 5.624, 
p-value: 0.018 

Section: Medical History, 
Are you diabetic?, 
Chi-square: 4.264, 
p-value: 0.039 

13 (100.00%) 0 (0.00%) 69 (68.32%) 32 (31.68%) 

Section: General History, 
Smoker, 
Chi-square: 5.061, 
p-value: 0.024 

12 (92.31%) 1 (7.69%) 56 (55.45%) 45 (44.55%) 

Section: OMB Habitual, 
Accommodation BIN, 
Chi-square: 4.543, 
p-value: 0.033 

2 (15.38%) 11 (84.62%) 1 (0.99%) 100 (99.01%) 

Section: OMB Habitual, 
Confrontation, 
Chi-square: 6.946, 
p-value: 0.008 

6 (46.15%) 7 (53.85%) 13 (12.87%) 88 (87.13%) 

Section: OMB Habitual, 
NPC, 
Chi-square: 4.245, 
p-value: 0.039 

7 (53.85%) 6 (46.15%) 23 (22.77%) 78 (77.23%) 

Section: OMB Habitual, 
PD, 
Chi-square: 5.137, 
p-value: 0.023 

9 (69.23%) 4 (30.77%) 33 (32.67%) 68 (67.33%) 

Section: OMB New Rx, 
Cover test Distance, 
Chi-square: 5.774, 
p-value: 0.016 

10 (76.92%) 3 (23.08%) 38 (37.62%) 63 (62.38%) 

Section: OMB New Rx, 
Cover test Near, 
Chi-square: 5.774, 
p-value: 0.016 

10 (76.92%) 3 (23.08%) 38 (37.62%) 63 (62.38%) 

Section: OMB New Rx, 
Fixation Disparity 
Distance, 
Chi-square: 8.881, 
p-value: 0.003 

7 (53.85%) 6 (46.15%) 15 (14.85%) 86 (85.15%) 

Section: OMB New Rx, 
Fixation Disparity Near, 
Chi-square: 12.824, 
p-value: <0.000 

8 (61.54%) 5 (38.46%) 15 (14.85%) 86 (85.15%) 

Section: Anterior Exam 1, 
Right Eye Van Herick, 

12 (92.31%) 1 (7.69%) 41 (40.59%) 60 (59.41%) 
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Chi-square: 10.390, 
p-value: 0.001 

Section: Anterior Exam 1, 
Left Eye Van Herick, 
Chi-square: 9.939, 
p-value: 0.002 

12 (92.31%) 1 (7.69%) 42 (41.58%) 59 (58.42%) 

Section: Anterior Exam 2, 
Shafers Sign, 
Chi-square: 4.631, 
p-value: 0.031 

8 (61.54%) 5 (38.46%) 28 (27.72%) 73 (72.28%) 

Section: IOP GAT, 
IOP Contact, 
Chi-square: 8.549, 
p-value: 0.003 

11 (84.62%) 2 (15.38%) 38 (37.62%) 63 (62.38%) 

Section: IOP NCT, 
IOP NCT Right Eye 
Reading 2, 
Chi-square: 9.959, 
p-value: 0.002 

2 (15.38%) 11 (84.62%) 66 (65.35%) 35 (34.65%) 

Section: IOP NCT, 
IOP NCT Left Eye 
Reading 3, 
Chi-square: 4.383, 
p-value: 0.036 

2 (15.38%) 11 (84.62%) 51 (50.50%) 50 (49.50%) 

Section: IOP NCT, 
IOP NCT Left Eye 
Reading 2, 
Chi-square: 9.959, 
p-value: 0.002 

2 (15.38%) 11 (84.62%) 66 (65.35%) 35 (34.65%) 

Section: IOP NCT, 
IOP NCT Left Eye 
Reading 1, 
Chi-square: 18.196, 
p-value: <0.000 

2 (15.38%) 11 (84.62%) 78 (77.23%) 23 (22.77%) 

Section: IOP NCT, 
IOP NCT Right Eye 
Reading 1, 
Chi-square: 18.196, 
p-value: <0.000 

2 (15.38%) 11 (84.62%) 78 (77.23%) 23 (22.77%) 

Section: IOP NCT, 
IOP NCT Right Eye 
Reading 3, 
Chi-square: 4.383, 
p-value: 0.036 

2 (15.38%) 11 (84.62%) 51 (50.50%) 50 (49.50%) 

Section: Visual Field 
Humphrey, 

12 (92.31%) 1 (7.69%) 60 (59.41%) 41 (40.59%) 
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Fields Humphrey Right, 
Chi-square: 4.038, 
p-value: 0.044 

Section: Refraction, 
Current Rx, 
Chi-square: 8.149, 
p-value: 0.004 

11 (84.62%) 2 (15.38%) 101 (100.00%) 0 (0.00%) 

Section: Refraction, 
Subjective Findings, 
Chi-square: 5.624, 
p-value: 0.018 

12 (92.31%) 1 (7.69%) 54 (53.47%) 47 (46.53%) 

Table 4-6 - NTG vignette significant chi-square results 

Guideline recommendations in the Normal Tension Glaucoma (NTG) vignette are in Appendix 19. The 
OMB tests were not relevant to the NTG vignette and are part of routine examination. More control 
group optometrists did not perform the test when compared to the intervention group. The Anterior 
Exam 1(Van Herick test) is an important test for this vignette and guidance on how to interpret the 
images were given. Greater proportion of intervention group optometrists performed this when 
compared to the control group (n=12 (92.31%) vs n=42 (41.58%)). IOP GAT is another test that is 
important for this vignette. Guidance was given on selecting the right IOP test. The optometrists were 
asked to select either IOP GAT or IOP NCT test and the guidance recommended that if the patient is to 
be referred based on IOP readings alone then IOP GAT offers better accuracy and therefore it is 
recommended. More number of intervention group optometrists (n=11 (84.62%)) selected the IOP 
GAT test when compared to the control group optometrists (n=38 (37.62%)). Visual field Humphrey is 
another test that is recommended for NTG patients to determine the field of vision and guidance was 
provided on how to read the visual field reports. Greater proportion of intervention group optometrists 
(n=12 (92.31%)) performed the Visual Field Humphrey test when compared to the control group (n=60 
(59.41%)). Overall the guideline recommendation had some impact on guiding the optometrists towards 
performing certain key tests for the NTG vignette.  

4.3.1.4 Wet AMD 
The following section presents the total numbers of history/investigations answered and the statistically 
significant results of the history/investigations chi-square test of the AMD vignette. Wet AMD is a 
condition of the eye that causes the patient to lose the central vision. It is different from glaucoma where 
the peripheral vision is progressively reduced. Wet AMD is an acute condition and can quickly lead to loss 
of vision if not detected early.  

Total number of history/investigations in the AMD vignette is n=83. The total number of 
history/investigations where there is a statistically significant difference in the answered/unanswered 
questions between the intervention and control group is n=24(28.9%). The significant results have been 
outlined in Table 4-7. The remaining results have been outlined in Appendix 18.1.4. 

Section, 
Question/Investigation, 
Chi-square, 
p-value,  
Significance (α= 0.05) 

Answered with 
guideline rec 
(Intervention) 

Not answered 
with guideline 
rec 
(Intervention) 

Answered 
without 
CDSS 
(Control) 

Not 
answered 
without 
CDSS 
(Control) 

Section: Symptoms, 
Do you ever get any pain or 
discomfort relating to your 
eyes?, 

13 (92.86%) 1 (7.14%) 54 (54.00%) 46 (46.00%) 
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Chi-square: 6.133, 
p-value: 0.013 

Section: Medical History, 
Are you diabetic?, 
Chi-square: 6.657, 
p-value: 0.010 

14 (100.00%) 0 (0.00%) 61 (61.00%) 39 (39.00%) 

Section: Medical History, 
Do you have high blood 
pressure?, 
Chi-square: 12.757, 
p-value: <0.000 

14 (100.00%) 0 (0.00%) 45 (45.00%) 55 (55.00%) 

Section: Ocular History, 
Have you ever had any other 
eye 
injuries/infections/surgeries?, 
Chi-square: 5.525, 
p-value: 0.019 

13 (92.86%) 1 (7.14%) 56 (56.00%) 44 (44.00%) 

Section: General History, 
Smoker, 
Chi-square: 5.522, 
p-value: 0.019 

14 (100.00%) 0 (0.00%) 65 (65.00%) 35 (35.00%) 

Section: General History, 
Driver, 
Chi-square: 4.744, 
p-value: 0.029 

14 (100.00%) 0 (0.00%) 68 (68.00%) 32 (32.00%) 

Section: OMB Habitual, 
Confrontation, 
Chi-square: 7.049, 
p-value: 0.008 

10 (71.43%) 4 (28.57%) 31 (31.00%) 69 (69.00%) 

Section: OMB Habitual, 
Motility, 
Chi-square: 40.064, 
p-value: <0.000 

13 (92.86%) 1 (7.14%) 13 (13.00%) 87 (87.00%) 

Section: OMB Habitual, 
Cover test Near, 
Chi-square: 4.888, 
p-value: 0.027 

11 (78.57%) 3 (21.43%) 43 (43.00%) 57 (57.00%) 

Section: OMB Habitual, 
PD, 
Chi-square: 31.589, 
p-value: <0.000 

9 (64.29%) 5 (35.71%) 6 (6.00%) 94 (94.00%) 

Section: OMB New Rx, 
Cover test Distance, 
Chi-square: 29.787, 
p-value: <0.000 

11 (78.57%) 3 (21.43%) 12 (12.00%) 88 (88.00%) 
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Section: OMB New Rx, 
Cover test Near, 
Chi-square: 29.787, 
p-value: <0.000 

11 (78.57%) 3 (21.43%) 12 (12.00%) 88 (88.00%) 

Section: OMB New Rx, 
Fixation Disparity Distance, 
Chi-square: 15.140, 
p-value: <0.000 

4 (28.57%) 10 (71.43%) 81 (81.00%) 19 (19.00%) 

Section: OMB New Rx, 
Fixation Disparity Near, 
Chi-square: 11.258, 
p-value: 0.001 

5 (35.71%) 9 (64.29%) 81 (81.00%) 19 (19.00%) 

Section: Anterior Exam 1, 
Right Eye Van Herick, 
Chi-square: 21.669, 
p-value: <0.000 

14 (100.00%) 0 (0.00%) 31 (31.00%) 69 (69.00%) 

Section: Anterior Exam 1, 
Left Eye Van Herick, 
Chi-square: 20.852, 
p-value: <0.000 

14 (100.00%) 0 (0.00%) 32 (32.00%) 68 (68.00%) 

Section: Anterior Exam 2, 
Tears, 
Chi-square: 11.030, 
p-value: 0.001 

10 (71.43%) 4 (28.57%) 24 (24.00%) 76 (76.00%) 

Section: Ophthalmoscopy, 
Macula Left, 
Chi-square: 12.757, 
p-value: <0.000 

14 (100.00%) 0 (0.00%) 45 (45.00%) 55 (55.00%) 

Section: Colour Vision, 
Colour Vision City, 
Chi-square: 29.322, 
p-value: <0.000 

5 (35.71%) 9 (64.29%) 0 (0.00%) 100 (100.00%) 

Section: Colour Vision, 
Colour Vision Ishihara, 
Chi-square: 21.773, 
p-value: <0.000 

4 (28.57%) 10 (71.43%) 0 (0.00%) 100 (100.00%) 

Section: Colour Vision, 
Colour Vision Other, 
Chi-square: 14.439, 
p-value: <0.000 

3 (21.43%) 11 (78.57%) 0 (0.00%) 100 (100.00%) 

Section: IOP NCT, 
IOP NCT Right Eye Reading 
4, 
Chi-square: 8.423, 
p-value: 0.004 

5 (35.71%) 9 (64.29%) 77 (77.00%) 23 (23.00%) 
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Section: IOP NCT, 
IOP NCT Left Eye Reading 
3, 
Chi-square: 9.535, 
p-value: 0.002 

6 (42.86%) 8 (57.14%) 9 (9.00%) 91 (91.00%) 

Section: IOP NCT, 
IOP NCT Right Eye Reading 
3, 
Chi-square: 8.434, 
p-value: 0.004 

6 (42.86%) 8 (57.14%) 10 (10.00%) 90 (90.00%) 

Section: Visual Field Henson, 
Fields Henson, 
Chi-square: 5.813, 
p-value: 0.016 

5 (35.71%) 9 (64.29%) 72 (72.00%) 28 (28.00%) 

Table 4-7 - Wet AMD vignette significant chi-square results 

The guideline recommendations in the AMD vignette are in Appendix 19. Greater proportion of the 
intervention group optometrists asked questions in the Symptoms (n=13 (92.86%) vs n=54 (54.00%)), 
Medical History (n=14 (100.00%) vs n=61 (61.00%)), Ocular History (n=13 (92.86%) vs n=56 
(56.00%)) and General History (n=14 (100.00%) vs n=65 (65.00%)) when compared to the control 
group optometrists. This could be partly explained by guideline alerts flagging up Blurry vision as an 
abnormal value in the Symptoms section. The optometrists were encouraged to ask further questions 
about the condition. There was no difference between the two groups in performing tests for refraction. 
However, when the Current Rx-Refraction tests were performed the decision support alerted the 
optometrist to the reduced visual acuity in one eye and recommended additional tests such as Anterior 
Exam 1 and 2 and OMB tests be performed.  

The result show that that tests such as OMB Habitual Confrontation (n=10 (71.43%) vs n=31 
(31.00%)), OMB Habitual Motility (n=13 (92.86%) vs n=13 (13.00%)), OMB Habitual Cover Test Near 
(n=11 (78.57%) vs n=43 (43.00%)) a greater proportion of intervention group optometrists performed 
the test. N=94 (94.00%) control group optometrists did not perform the OMB Habitual PD test 
compared to only n=5 (35.71%) in the intervention group. Similarly, n=88 (88.00%) of the control group 
optometrists did not perform the OMB New Rx Cover Test Distance and Near. However, greater 
proportion of control group optometrists did perform the OMB New Rx Fixation Disparity Distance and 
Near (n=81 (81.00%)) when compared to the intervention group optometrists (n=4 (28.57%)). 

A greater proportion of the intervention group optometrists (n=14 (100.00%)) performed the Anterior 
Exam 1 (Van Herick test) when compared to the control group optometrists (n=32 (32.00%)). A greater 
proportion of the intervention group optometrists (n=10 (71.43%)) performed the Anterior Exam 2-
Tears test when compared to the control group (n=24 (24.00%)). 

The results show that the intervention group optometrists (n=14 (100.00%)) performed the 
Ophthalmoscopy Macula Left test more than the control group (n=45 (45.00%)).  

The results show that when the optometrists were alerted to an abnormal value and asked to perform 
certain tests a significant number of optometrists did perform tests. The intervention optometrists were 
asked to check the OMB, Anterior and Posterior regions of the eye and they did this more when 
compared to the control group optometrists.  The guideline recommendations therefore did have some 
impact in guiding and encouraging the optometrists to perform certain tests in the AMD vignette. As the 
optometrists were not penalised in any manner the optometrists choose the tests entirely based on their 
clinical judgement with the help of the guideline recommendations.  
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4.3.2 Summary of results - Diagnostic accuracy and appropriateness of 
management 

Comparison between the intervention group and control group optometrist has been done in 2 stages. In 
the first stage, the number of correct/incorrect diagnoses in the intervention group and control group 
(before the CDSS provides its diagnostic recommendation) is compared. The optometrists are required to 
select a diagnosis from a drop-down list of diagnoses (See Figure 4-19). This step is done before the 
CDSS provides its diagnostic recommendation. The correct and incorrect numbers have been 
summarised in Appendix 20.  

The OHT vignette was completed by 13 optometrists, Normal by 9 optometrists, NTG by 13 
optometrists and Wet AMD by 14 optometrists in the intervention group.  

The OHT vignette was completed by 100 optometrists, Normal by 102 optometrists, NTG by 101 
optometrists, and Wet AMD by 100 optometrists in the control group.  

The total number of correct diagnoses in the OHT vignette is 8 (61.54% - intervention group) vs 71 
(71.00% - control group). The total number of correct diagnoses in the Normal vignette is 7 (77.78% - 
intervention group) and 84 (82.35% - control group). The difference in numbers is explained by the 
smaller sample size in the intervention group study. 

The total number of correct diagnoses in the NTG vignette is 10 (76.92%% - intervention group) vs 64 
(63.37% - control group). The total number of correct diagnoses (intervention vs control) in the Wet 
AMD vignette is 12 (85.71%% - intervention group) vs 71 (71.00% - control group). 

The results of the chi-square and fisher’s tests (See section 4.3.5) show that there is no significant 
difference is the proportions between the intervention group and control group. This shows that with the 
help of the guideline recommendations alone the results of the intervention group and control group are 
similar.  

In the second stage of analysis the total number of correct/incorrect diagnoses in the intervention and 
control group are compared after the CDSS has provided its diagnostic recommendation. The CDSS 
provides a list of diagnoses that are most likely to be present based on the data collected in the patient 
vignette. Each diagnosis has arguments supporting or negating the diagnosis and the weight are given 
representing the degree of support for each argument. This is dynamic, and changes based on the data 
that is collected or entered in the CDSS (See Figure 4-19). Once the diagnosis is selected the optometrist 
provides management recommendations. 

Diagnostic accuracy and appropriateness of management is shown in Table 4-8. The results in Table 4-8 
shows the impact of diagnostic decision support and the intervention group (With CDSS) is compared to 
the control group (Without CDSS). The results that are significant (light red cells) have been marked with 
* (Chi square test) and # (Fisher’s test) to denote the tests that showed significance.  

The study showed that diagnostic accuracy significantly improved with the help of the CDSS in the NTG 
and Wet AMD vignette (P<0.05). In the OHT and Normal vignettes there was no change in diagnostic 
accuracy when compared to the control group of optometrists (See section - 4.3.3 for detailed 
information). There was no improvement in referral decision in any of the 4 vignettes. The optometrists 
who were presented with the NTG vignette showed significant improvement in giving accurate re-
examination intervals and ordering supplementary tests (Fields and Goldmann Tonometry) (See section - 
4.3.4 for detailed information). Similarly, optometrists who were given the Wet AMD vignette showed 
improvement in ordering supplementary tests (Fields, Goldmann Tonometry and Dilation). The OHT 
vignette only showed improvement in ordering of Fields supplementary test. There was a significant 
difference in the proportion of optometrists who did not order Goldmann Tonometry test for the 
Normal vignette and the control group did much better (93%) in this area.  
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 OHT Normal NTG Wet AMD 
 Without 

CDSS  
N=100 

With 
CDSS 
N=13 

Without 
CDSS  
N=102 

With 
CDSS 
N=9 

Without 
CDSS 
N=101 

With 
CDSS 
N=13 

Without 
CDSS 
N=100 

With 
CDSS 
N=14 

Diagnosis - n (%) 
Correct 

71 (71%) 8 (67%) 84 (82%) 9 
(100%) 

64  
(63%) 

13 *# 
(100%) 

71  
(71%) 

13 # 
(93%) 

Management 
referral - n (%) 
Correct 

48 
(48%) 

4 
(33%) 

93 
(91%) 

8 
(89%) 

77 
(76%) 

13 
(100%) 

88 
(88%) 

14 
(100%) 

Management re-
examination 
Interval 
n (%) Correct 

59 
(59%) 

8 
(67%) 

90 
(88%) 

7 
(78%) 

75 
(74%) 

13 # 
(100%) 

82 
(82%) 

14 
(100%) 

Supplementary 
tests - Fields-n 
(%) Correct 

30 
(30%) 

8 *# 
(67%) 

77 
(75%) 

4 
(44%) 

20 
(20%) 

9 *# 
(69%) 

5 
(5%) 

4 *# 
(29%) 

Supplementary 
tests - Goldmann 
Tonometry - n 
(%) Correct 

36 
(36%) 

8 
(67%) 

95 *# 
(93%) 

6 
(67%) 

16 
(16%) 

9 *# 
(69%) 

1 
(1%) 

2 *# 
(14%) 

Supplementary 
tests - Dilation-n 
(%) Correct 

10 
(10%) 

2 
(17%) 

98 
(96%) 

8 
(89%) 

12 
(12%) 

4 
(31%) 

22 
(22%) 

8 *# 
(57%) 

Table 4-8 - Significance tests summary (α = 0.05) (Chi square * / Fishers test #) 

 

4.3.3 Diagnosis 
This section outlines the total numbers of correct and incorrect diagnosis results for the intervention 
group and the control group. The significance test results have been summarised in section - 4.3.5 

4.3.3.1 OHT 
OHT is a condition where the pressure inside the eye (Intraocular pressure or IOP) is greater than 
normal. People with OHT are considered to be at risk of glaucoma and therefore needs to be regularly 
monitored by the optometrist for signs of glaucoma (Mowatt et al., 2008). Its correct diagnosis is 
therefore important to reduce unwanted referrals coming into secondary care and misdiagnosis increase 
the risk of the patient becoming blind due to glaucoma. 

OHT Correct Incorrect 

With Diagnostic CDSS 8 (61.54%) 5 (38.46%) 

Without CDSS 71 (71.00%) 29 (29.00%) 

Table 4-9 - OHT diagnosis correct vs incorrect numbers 
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Figure 4-26 - OHT diagnosis correct vs incorrect proportion 

Table 4-9 shows the total number of correct and incorrect diagnosis with the help of guideline 
recommendations alone and with the help of the diagnostic recommendations. These numbers were 
compared to the control group where the sample size was much larger (N=100). The different 
proportions are visualized in Figure 4-26 which shows the proportion of the correct and incorrect with 
the help of the diagnostic recommendations. The early guideline recommendations and late diagnostic 
recommendations in the intervention group optometrists did not have a statistically significant impact 
showing improvement in diagnosis over the control group according to both chi square and fisher’s tests. 

4.3.3.2 Normal 
The optometrist should be able to correctly identify the Normal cases as sometimes certain observations 
can confuse the optometrist. The CDSS should be able to correctly identify the Normal cases. 
Misdiagnosis in Normal cases can result in unwanted clinical tests being performed, unwanted referral to 
hospitals and can unnecessarily increase the workload in secondary care.  

Normal Correct Incorrect 

With Diagnostic CDSS 9 (100.00%) 0 (0.00%) 

Without CDSS 84 (82.35%) 18 (17.65%) 

Table 4-10 - Normal diagnosis correct vs incorrect numbers 
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Figure 4-27 - Normal diagnosis correct vs incorrect proportion 

The early guideline recommendations and late diagnostic recommendations in the intervention group 
optometrists did not have a statistically significant impact showing improvement in diagnosis over the 
control group (Table 4-10) (Figure 4-27) according to both chi square and fisher’s tests. 

4.3.3.3 Normal Tension Glaucoma 
NTG is a type of glaucoma where the pressure inside the eye (IOP) is not raised and the lies within the 
normal range. However, there are signs of damage to the nerves of the eye that can be found during 
examination of the eye. Since the IOP is not raised NTG is one condition where is a chance for 
misdiagnosis which can lead to more severe forms of glaucoma.     

Normal Tension Glaucoma Correct Incorrect 

With Diagnostic CDSS 13 (100.00%) 0 (0.00%) 

Without CDSS 64 (63.37%) 37 (36.63%) 

Table 4-11 - NTG diagnosis correct vs incorrect numbers 
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Figure 4-28 - NTG diagnosis correct vs incorrect proportion 

The late diagnostic recommendations in the intervention group did have a statistically significant impact 
showing improvement in diagnosis over the control group (Figure 4-28)  according to both chi square 
and fisher’s tests. The early guideline recommendations did not have a statistically significant impact 
showing diagnosis improvement over the control group (Table 4-11) according to both chi square and 
fisher’s tests. 

4.3.3.4 Wet AMD 
Wet AMD is a condition of the eye that causes the patient to lose the central vision. It is different from 
glaucoma where the peripheral vision is progressively reduced. Wet AMD is an acute condition and can 
quickly lead to loss of vision if not detected early. This condition was included in the vignettes so that 
there are a variety of vignettes for the optometrists to diagnose rather than all vignettes being restricted to 
glaucoma related conditions.  

Wet AMD Correct Incorrect 

With Diagnostic CDSS 13 (92.86%) 0 (0.00%) 

Without CDSS 71 (71.00%) 29 (29.00%) 

Table 4-12 - Wet AMD diagnosis correct vs incorrect numbers 
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Figure 4-29 - Wet AMD diagnosis correct vs incorrect proportion 

The late diagnostic recommendations in the intervention group did have a statistically significant impact 
showing diagnosis improvement over the control group (Figure 4-29) according to fisher’s tests. The early 
guideline recommendations did not have a statistically significant impact showing improvement in 
diagnosis over the control group (Table 4-12) according to both chi square and fisher’s tests 

4.3.4 Management Recommendations 
There are 5 types of management outcomes that were recorded as part of this study. These are: 

 Referral 

 Re-examination interval 

 Supplementary tests 
o Fields 
o Goldmann tonometry 
o Dilation 

Referral decisions are made by the optometrist and include recommendations as to where the patient 
needs to be referred for further management if needed or not referred and managed in the community. 
For example, the referral for OHT diagnosis is like the Normal diagnosis where the patient does not have 
to be referred to an ophthalmologist or GP by the optometrist. However, the patient will need to be 
recalled for re-examination at regular intervals for continuous monitoring to prevent deterioration into 
glaucoma.  

Re-examination interval is the time-period before recalling the patient for the next review. Supplementary 
tests are those additional tests that need to be advised (if needed) for each diagnosis.  There are 3 types of 
supplementary tests that can be ordered for each of the diagnosis when managing the patient. In OHT 
diagnosis it is recommended that Fields, Goldmann tonometry and Dilation be performed to confirm the 
diagnosis before making a final decision. Fields (Visual Fields) are a type of routine diagnostic eye test 
that test the range of vision both vertically and horizontally. Goldmann tonometry is a type of test that 
tests the IOP of the eye. It is recommended that the test be performed if not already done. Dilation of 
the eye allows the optometrist to better visualize the back of the eye.   

The decisions recorded by the optometrists with the help of the CDSS guideline recommendations were 
recorded and compared to the control group optometrists. See Appendix 4 for the correct answers for 
each vignette as determined by the clinical domain experts (Murdoch, Lawrenson and Myint, 2015). The 
following sections (4.3.4.1 - 4.3.4.4) detail the management decisions that were found to be statistically 
significant for each diagnosis. All the management results for each vignette (significant and insignificant) 
have been detailed in Appendix 4. The significance test results have been summarised in section - 4.3.6. 
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4.3.4.1 OHT 

4.3.4.1.1 OHT – Supplementary Tests – Fields 
The CDSS was shown to have a statistically significant impact and improved the ability of the 
optometrists to order Fields supplementary test in the OHT vignette (Table 4-13) (Figure 4-30) according 
to both chi square and fisher’s tests.  

OHT – Supplementary Tests – 
Fields 

Correct Incorrect 

With CDSS 8 (61.54%) 4 (30.77%) 

Without CDSS  30 (30.00%) 70 (70.00%) 

Table 4-13 - OHT – Supplementary Tests – Fields correct vs incorrect numbers 

 

Figure 4-30 - OHT – Supplementary Tests – Fields correct vs incorrect proportion 

 

4.3.4.2 Normal 

4.3.4.2.1 Normal-Supplementary Tests – Goldmann Tonometry 
In the Normal vignette, the CDSS was shown to have a statistically significant negative impact on the 
ability of optometrists to order Goldmann tonometry supplementary test when compared to the control 
group (Table 4-14)(Figure 4-31) according to both chi square and fisher’s tests. The performance of the 
intervention group optometrists was worse than the control group optometrists.  

Normal-Supplementary Tests 
– Goldmann Tonometry 

Correct Incorrect 

With CDSS 6 (66.67%) 3 (33.33%) 

Without CDSS  95 (93.14%) 7 (6.86%) 

Table 4-14 - Normal-Supplementary Tests – Goldmann Tonometry correct vs incorrect numbers 
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Figure 4-31 - Normal-Supplementary Tests – Goldmann Tonometry correct vs incorrect proportion 

4.3.4.3 NTG 

4.3.4.3.1 NTG – Re-examination Interval 
The patient should be recalled every 3-12 months as needed for regular repeat eye examinations in the 
NTG vignette. The CDSS was shown to have a statistically significant impact and improved the ability of 
the optometrists in the intervention group to recall the patients when compared to the control group 
(Table 4-15)(Figure 4-32) according to both chi square and fisher’s tests. 

NTG – Re-examination 
Interval 

Correct Incorrect 

With CDSS 13 (100.00%) 0 (0.00%) 

Without CDSS  75 (74.26%) 26 (25.74%) 

Table 4-15 - NTG – Re-examination Interval correct vs incorrect numbers 

 

 

Figure 4-32 - NTG – Re-examination Interval correct vs incorrect proportion 
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4.3.4.3.2 NTG – Supplementary Tests – Fields 
The optometrists in the intervention group performed statistically significantly better than the control 
group in the NTG vignette ordering Fields supplementary test for the NTG vignette (Table 4-16) (Figure 
4-33) according to both chi square and fisher’s tests.  

NTG – Supplementary Tests – 
Fields 

Correct Incorrect 

With CDSS 9 (69.23%) 4 (30.77%) 

Without CDSS  20 (19.80%) 81 (80.20%) 

Table 4-16 - NTG – Supplementary Tests – Fields correct vs incorrect numbers 

 

 

Figure 4-33 - NTG – Supplementary Tests – Fields correct vs incorrect proportion 

 

4.3.4.3.3 NTG – Supplementary Tests – Goldmann Tonometry 
The optometrists in the intervention group performed statistically significantly better than the control 
group in ordering Goldmann tonometry supplementary test for the NTG vignette (Table 4-17) (Figure 
4-34) according to both chi square and fisher’s tests.  

NTG – Supplementary Tests – 
Goldmann Tonometry 

Correct Incorrect 

With CDSS 9 (69.23%) 4 (30.77%) 

Without CDSS  16 (15.84%) 85 (84.16%) 

Table 4-17 - NTG – Supplementary Tests – Goldmann Tonometry correct vs incorrect numbers 
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Figure 4-34 - NTG – Supplementary Tests – Goldmann Tonometry correct vs incorrect proportion 

 

4.3.4.4 Wet AMD 

4.3.4.4.1 Wet AMD – Supplementary Tests – Fields 
The total number of incorrect answers was higher than the correct in the Wet AMD vignette in both 
intervention and control group when ordering Fields supplementary tests (Table 4-18). However, the 
intervention group performed better than the control group (Figure 4-35). The difference between the 
intervention group and the control group was found to be statistically significant according to both chi 
square and fisher’s tests.  

Wet AMD – Supplementary 
Tests – Fields 

Correct Incorrect 

With CDSS 4 (28.57%) 10 (71.43%) 

Without CDSS  5 (5.00%) 95 (95.00%) 

Table 4-18 - Wet AMD – Supplementary Tests – Fields correct vs incorrect numbers 
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Figure 4-35 - Wet AMD – Supplementary Tests – Fields correct vs incorrect proportion 

4.3.4.4.2 Wet AMD – Supplementary Tests – Goldmann Tonometry 
The incorrect answers for ordering Goldmann Tonometry supplementary tests were increased in both the 
control and intervention groups (Table 4-19)(Figure 4-36). However, the intervention group performed 
statistically significantly better than the control group in ordering Goldmann tonometry supplementary 
tests according to both chi square and fisher’s tests.  

Wet AMD – Supplementary 
Tests – Goldmann Tonometry 

Correct Incorrect 

With CDSS 2 (14.29%) 12 (85.71%) 

Without CDSS  1 (1.00%) 99 (99.00%) 

Table 4-19 - Wet AMD – Supplementary Tests – Goldmann Tonometry correct vs incorrect numbers 

 

 

Figure 4-36 - Wet AMD – Supplementary Tests – Goldmann Tonometry correct vs incorrect proportion 
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4.3.4.4.3 Wet AMD – Supplementary Tests – Dilation 
The intervention group optometrists  performed significantly better than the control group in ordering 
Dilation supplementary tests for the Wet AMD vignette (Table 4-20) (Figure 4-37) according to both chi 
square and fisher’s tests.  

Wet AMD – Supplementary 
Tests – Dilation 

Correct Incorrect 

With CDSS 8 (57.14%) 6 (42.86%) 

Without CDSS  22 (22.00%) 78 (78.00%) 

Table 4-20 - Wet AMD – Supplementary Tests – Dilation correct vs incorrect numbers 

 

 

Figure 4-37 - Wet AMD – Supplementary Tests – Dilation correct vs incorrect proportion 

 

4.3.5 Significance Tests-Diagnosis 

4.3.5.1 Chi-square test 
In this section, Pearson’s chi-square test with Yates continuity correction is outlined. The chi-square test 
is performed to check if the difference in correct and incorrect numbers in the control and intervention 
groups has risen due to chance or not. (See Appendix 16 for raw data) 
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Diagnosis Intervention group 
Optometrist compared to 
Control group 

𝛸ଶ𝑡𝑒𝑠𝑡 (𝛼= 0.05) Critical value = 3.841 Significant 
Differences 

OHT Before Diagnostic CDSS 𝛸ଶ= 0.1431, df = 1, p-value = 0.7052 
With Diagnostic CDSS 𝛸ଶ= 0.1431, df = 1, p-value = 0.7052 

Normal Before Diagnostic CDSS 𝛸ଶ=0, df = 1, p-value = 1 
With Diagnostic CDSS 𝛸ଶ =0.8193, df = 1, p-value = 0.3654 

NTG Before Diagnostic CDSS 𝛸ଶ=0.4295, df = 1, p-value = 0.5123 
With Diagnostic CDSS 𝛸ଶ5.4787, df = 1, p-value = 0.01925 

Wet AMD Before Diagnostic CDSS 𝛸ଶ=0.7026, df = 1, p-value = 0.4019 
With Diagnostic CDSS 𝛸ଶ=3.6653, df = 1, p-value = 0.05556 

Table 4-21 - Diagnosis chi square test (df = Degrees of freedom) 

The test shows that the CDSS only has a significant positive impact (i.e. improved the diagnosis) on the 
NTG diagnosis (p<0.05) (Table 4-21). The Wet AMD diagnosis is very close though not significant. 
Before diagnostic decision support there was no statistically significant difference between the control 
group and the intervention group. When the diagnostic recommendations were considered there was an 
improvement for the NTG vignette.  

 

4.3.5.1 Fisher’s test 
The Fisher’s test results (Table 4-22) shows that the diagnostic recommendations had a positive impact 
and helped the intervention group optometrist improve their diagnosis in both NTG and Wet AMD 
diagnosis (p<0.05). However, before diagnostic CDSS do not show any difference in diagnosis in any 
vignettes when compared to the control group. (See Appendix 16 for raw data) 



130 
 

Diagnosis Intervention group 
Optometrist compared to 

Control group 

95 % 
confidence 

interval 

Fishers Test (𝛼= 0.05) Significant 
Differences 

OHT Before Diagnostic CDSS 0.1719065 --
2.7712269 

p-value = 0.5268 
With Diagnostic CDSS 0.1719065 --

2.7712269 
p-value = 0.5268 

Normal Before Diagnostic CDSS 0.1280912 --
8.0060129 

p-value = 0.6636 
With Diagnostic CDSS 0.3813777 --

Inf 
p-value = 0.3504 

NTG Before Diagnostic CDSS 0.4544748 --
11.5210407 

p-value = 0.5381 
With Diagnostic CDSS 1.630925 --  

Inf 
p-value = 0.008774 

Wet AMD Before Diagnostic CDSS 0.4939871 --
23.7476188 

p-value = 0.3445 
With Diagnostic CDSS 1.143497--   

Inf 
p-value = 0.02031 

Table 4-22 - Diagnosis Fisher’s test 

 

4.3.6 Significance Tests-Management 

4.3.6.1 Chi square test 
The chi-square test for significance in the management section of the decision-making shows that the 
CDSS has been effective in improving ordering of Fields supplementary tests in OHT, NTG and Wet 
AMD (Table 4-23). Even though the CDSS was not effective in improving the diagnosis of OHT if 
overall the CDSS can help the optometrists order the supplementary Fields test accurately then that 
would detect the absence/presence of any pathology during the referral stage and reduce the chance of 
misdiagnosis.  

In the Normal diagnosis, the optometrists in the intervention group was found to significantly worse than 
the control group in ordering Goldmann tonometry tests. In the Normal diagnosis, there is no need for 
supplementary tests. The reason for this can be partially explained by the nature of the case represented in 
the Normal vignette. The optometrists may order the supplementary tests just in case they missed any 
significant finding during routine examination or if they are unsure of the findings. This could explain 
why the optometrists would order the supplementary test if given the option just to be on the safe-side. 
(See Appendix 16 for raw data) 
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Diagnosis Management - Intervention 
group compared to Control 

group 

𝛸ଶ𝑡𝑒𝑠𝑡 (𝛼= 0.05) Significant 
Differences 

OHT Referral 𝛸ଶ=0.4308, df = 1, p-value = 0.5116 
Re-examination interval 𝛸ଶ=0.0401, df = 1, p-value = 0.8412 
Supplementary Tests – 
Fields 

𝛸ଶ=4.8942, df = 1, p-value = 0.02695 
Supplementary Tests – 
Goldmann Tonometry 

𝛸ଶ=3.0366, df = 1, p-value = 0.08141 
Supplementary Tests – 
Dilation 

𝛸ଶ=0.0448, df = 1, p-value = 0.8324 
Normal Referral 𝛸ଶ=0, df = 1, p-value = 1 

Re-examination interval 𝛸ଶ=0.146, df = 1, p-value = 0.7023 
Supplementary Tests – 
Fields 

𝛸ଶ=2.6208, df = 1, p-value = 0.1055 
Supplementary Tests – 
Goldmann Tonometry 

𝛸ଶ=4.2088, df = 1, p-value = 0.04021 
Supplementary Tests – 
Dilation 

𝛸ଶ=0.025153, df = 1, p-value = 0.874 
NTG Referral 𝛸ଶ=2.6138, df = 1, p-value = 0.1059 

Re-examination interval 𝛸ଶ=2.9964, df = 1, p-value = 0.08345 
Supplementary Tests – 
Fields 

𝛸ଶ=12.344, df = 1, p-value = 0.0004423 
Supplementary Tests – 
Goldmann Tonometry 

𝛸ଶ=16.184, df = 1, p-value = 5.748e-05 
Supplementary Tests – 
Dilation 

𝛸ଶ=2.02, df = 1, p-value = 0.1552 
Wet AMD Referral 𝛸ଶ=1.7919, df = 1, p-value = 0.1807 

Re-examination interval 𝛸ଶ=1.6462, df = 1, p-value = 0.1995 
Supplementary Tests – 
Fields 

𝛸ଶ=6.422, df = 1, p-value = 0.01127 
Supplementary Tests – 
Goldmann Tonometry 

𝛸ଶ=4.0692, df = 1, p-value = 0.04367 
Supplementary Tests – 
Dilation 

𝛸ଶ=6.1144, df = 1, p-value = 0.01341 
Table 4-23 - Management chi square test 
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4.3.6.1 Fisher’s test 
The Fisher’s test results (Table 4-24) were similar to the chi-square test with the additional improvement 
in re-examination interval in NTG diagnosis for the intervention group when compared to the control 
group. (See Appendix 16 for raw data) 
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Diagnosis Intervention group 
compared to Control 

group 

95 % 
confidence 

interval 

Fishers Test (𝛼= 0.05) Significant 
Differences 

OHT Referral 0.1126035--  
2.1916062 

p-value = 0.3766 
Re-examination 
interval 

0.3433793-- 
6.7143945 

p-value = 0.7594 
Supplementary Tests 
– Fields 

1.128325-- 
22.489322 

p-value = 0.02041 
Supplementary Tests 
– Goldmann 
Tonometry 

0.8687381-- 
17.0795453 

p-value = 0.05904 
Supplementary Tests 
– Dilation 

0.167855-- 
10.379354 

p-value = 0.6152 
Normal Referral 0.08526982-- 

38.12310901 
p-value = 0.5867 

Re-examination 
interval 

0.07645199-- 
5.15524514 

p-value = 0.3168 
Supplementary Tests 
– Fields 

0.04833037 --
1.32841955 

p-value = 0.05835 
Supplementary Tests 
– Goldmann 
Tonometry 

0.02484175-- 
1.13496490 

p-value = 0.0336 
Supplementary Tests 
– Dilation 

0.02786504-- 
18.06897043 

p-value = 0.3501 
NTG Referral 0.8652904--       

Inf 
p-value = 0.06693 

Re-examination 
interval 

0.9663487--       
Inf 

p-value = 0.03753 
Supplementary Tests 
– Fields 

2.208887-- 
43.635272 

p-value = 0.0005166 
Supplementary Tests 
– Goldmann 
Tonometry 

2.82374-- 
57.90175 

p-value = 0.0001241 
Supplementary Tests 
– Dilation 

0.6332234-- 
14.1320047 

p-value = 0.08481 
Wet 
AMD 

Referral 0.6494739--       
Inf 

p-value = 0.1213 
Re-examination 
interval 

0.520873-- 
18.745904 

p-value = 0.1055 
Supplementary Tests 
– Fields 

1.255113-- 
41.035676 

p-value = 0.01292 
Supplementary Tests 
– Goldmann 
Tonometry 

0.7663269-- 
975.1985847 

p-value = 0.03936 
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Supplementary Tests 
– Dilation 

1.264146-- 
18.157418 

p-value = 0.009226 
Table 4-24 - Management Fisher’s test 

 

4.3.7 Usability survey results 
 

 

Figure 4-38 - Usability survey results 

 

Q1. I am very likely to use the decision support system in my practice. 
Q2. I thought the system was easy to use. 
Q3. I think that I would need the support of a technical person to be able to use this system. 
Q4. I found the system unnecessarily complex. 
Q5. I feel that most people would learn to use this system very quickly. 
Q6. I found the system very cumbersome to use. 
Q7. I needed to learn a lot of things before I could get going with this system. 
Q8. I felt very confident using the system. 
Q9. I found the various clinical recommendations provided by the system relevant. 
Q10. I thought there was too much inconsistency in this system. 
Q11. This decision support system will help me improve my clinical decision making. 
 

The survey results (Figure 4-38) show that most of the optometrists found the CDSS easy to use and did 
not need the support of a technical person to complete the tasks. They felt the CDSS in its present form 
was something they could learn to use quite easily. Ease of use is a key factor in helping improve adoption 
of CDSS applications for routine clinical use (Fossum et al., 2011). Most clinicians felt that the CDSS 
recommendations were relevant and helped improve their clinical decision making.  

4.4 Discussion 
This study investigated the development of a CDSS that delivered diagnostic recommendations based on 
argumentation-based models. CDSSs based on other artificial intelligence model such as case-based 
reasoning, Bayesian probability-based reasoning, fuzzy logic reasoning and machine learning can deliver 
diagnostic recommendations. These systems require the availability of well-structured clinical data to 
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provide diagnostic recommendations. Some of these models such as machine learning-based models are 
developed by learning from historical clinical data. They present the diagnostic recommendation in a 
manner that is not always intuitive to the clinician.  

The literature suggested the need for diagnostic CDSSs that can integrate information from disparate 
sources and provide diagnostic recommendations at different stages of the clinical encounter. Even if the 
information can be integrated from disparate sources there is a need to collate this information and 
present the information to the clinician in a format that is intuitive and easy to understand. Clinicians and 
other healthcare practitioners generally prefer systems that can provide better explanations for the 
patient’s condition. They can then compare this information with their own arguments for each diagnosis 
and then make a final decision. The CDSS should be able to provide the arguments supporting or 
negating a diagnosis. The CDSS should be able to provide a diagnostic recommendation in the presence 
of incomplete information and should be capable of defeasible reasoning. In defeasible reasoning the 
system should be able to retract the decision in the light of current information and provide a new 
diagnostic recommendation with the updated knowledge.  

Argumentation-based models have been shown to provide these capabilities and was therefore chosen as 
the basis for generating early diagnostic recommendations (See Chapter 5). AT based CDSSs are 
increasingly being used to supporting clinical decision making in areas such as referral management, risk 
assessment, treatment planning etc. (Emery et al., 1999; Fox, Patkar and Thomson, 2006b; Sutton, Taylor 
and Earle, 2006). However, studies so far have not evaluated the role played by argumentation-based 
diagnostic CDSSs in reducing diagnostic error. This study developed a prototype diagnostic CDSS that is 
based on the PROforma language. CDSS applications based on PROforma used AT as the basis for 
generating decision recommendations. Therefore, it was decided to initially develop a CDSS based on 
PROforma tools and test is with real clinicians (optometrists) before developing the ontology-based 
model for early diagnostic recommendations.  

The study looked at different aspects of the CDSS on the optometrist’s performance. Guideline 
recommendations were provided at different stages of the clinician encounter. Some of these guideline 
recommendations alerted the optometrists towards abnormal values and provided guidance on what steps 
need to be taken next. Other guideline recommendations provided guidance on how to interpret images 
or clinical test results (See Appendix 19 for all guideline recommendations). The optometrists were asked 
to provide their diagnosis and the CDSS would then provide its diagnostic recommendations and 
arguments supporting and negating each diagnosis.  

The results of the study looking at the effect of guideline recommendations show that the guideline 
recommendations have some impact on the information gathering of the optometrists. OHT and Normal 
vignettes are characterised by having not many abnormal values. The Normal vignette did not have any 
abnormal values. OHT is a condition where there is elevated IOP, but no significant pathology exists. 
The optometrists should not refer the patient to secondary care and should monitor the OHT patient in 
the community. A greater proportion of intervention group optometrists have performed tests such Van 
Herick test that could potentially identify cases of OHT. The guideline recommendations only had a 
minimal impact on the optometrists in the Normal vignette. No abnormal values were present. So, 
vignette specific guideline recommendations that could help orient the optometrist towards appropriate 
tests were not present.  

In the NTG and Wet AMD vignettes a pathology was present and guideline recommendations alerted the 
optometrist to these abnormal values. In the NTG vignette the optometrists were given guidance that 
suggested that the IOP GAT test offered better accuracy for IOP readings. IOP GAT is not routinely 
performed in optometry practices due to issues related to costs. IOP NCT is more routinely performed 
however it offers less accurate readings. NTG patients have normal IOP but has other pathology that is 
causing problems in vision. Tests such as Visual Fields Humphrey provide a better picture of the patient’s 
condition. Guidance was provided that recommended that the Visual Fields examination be performed as 
well. Greater proportion of the intervention group optometrists performed this Visual Fields test. In the 
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Wet AMD vignette the symptoms showed abnormal values. The optometrists were recommended to ask 
further questions about the patient’s condition and medical history.  

When the optometrist performed the refraction tests they were alerted to the reduced visual acuity in one 
eye and recommended tests such as OMB, Anterior Exam and Macula (Posterior Exam-
Ophthalmoscopy). The intervention group optometrists performed these tests more when compared to 
the control group optometrists. When the optometrists are alerted to the presence of an abnormal value 
and provided guidance that recommended asking certain tests and investigations the optometrists 
responded accordingly. All vignettes were of patients aged >40. Guidance was provided that 
recommended that the ‘Family History of Glaucoma’ be enquired to check for positive family history of 
glaucoma. No significant difference in the proportions were seen in all the vignettes for this question. 
This could suggest that the guidelines may only have an impact on information gathering in non-routine 
questions. Optometrists are trained to ask a set of questions as part of the routine examination and 
guideline may not have an impact on such questions, such as asking all patients aged>40 about family 
history of glaucoma. More studies are needed in this area to fully understand the nature of guideline 
recommendations and their impact on information gathering by optometrists.  

The results show that the diagnostic CDSS was not able to show significant improvement in the 
diagnostic and management for the OHT vignette. However, it could demonstrate improvement in 2 
potentially sight threatening conditions NTG and Wet AMD. The 4 diagnosis candidates for the OHT 
vignette are - OHT, POAG, Normal-repeat tests and Normal-No referral. OHT and Primary Open 
Angle Glaucoma (POAG) had similar arguments that were either supporting or negating the diagnosis. If 
the optometrist made a mistake in grading the images the CDSS would rank the POAG diagnosis higher 
than the OHT diagnosis. Instructions on how to properly grade the images were provided to the 
intervention group optometrists (Figure 4-18). The arguments for OHT candidate can be seen in Table 
4-3 and the corresponding arguments for the POAG candidate can be seen in Appendix 2 – section 2.1.2. 
The arguments for differentiating between the OHT and POAG candidate included IOP, Visual Fields 
(Humphrey), Visual Fields (Henson), Optic disc status and Van Herick. Excluding IOP all the arguments 
are based on interpretation of the images. The weights for IOP argument are the same for OHT (Table 
4-3) and POAG (Appendix 2 – section 2.1.2). So, the ranking of the diagnosis in the OHT vignette will 
be dependent on the quality of grading done by the optometrists.  

If the optometrist had selected POAG from the drop-down list (Figure 4-19 - Diagnosis selection by 
optometrist with observations) and the CDSS confirmed his/her decision (Figure 4-20 - Diagnosis 
candidate with arguments supporting/negating) then the optometrist would most likely follow the 
recommendations provided by the CDSS. In relatively straightforward cases this should not be a problem. 
However, the vignettes chosen for this study were selected for their ambiguity in observations, especially 
relevant clinical observations in images.  

The Normal vignette requires a lot more information to discount all the other diagnosis and the 
optometrist may order additional tests to rule out any pathology.  In vignettes where the pathology was 
apparent and there were clear definitions for supporting a diagnosis the CDSS tended to guide the 
optometrist towards the right diagnosis and therefore resulted in better management recommendations 
when compared to the control group optometrists. In cases like Wet AMD where there is an acute risk of 
blindness the CDSS could potentially assist in early diagnosis and referral of patients to secondary care for 
treatment. Since there was no improvement in referral decision making in any of the 4 diagnoses the 
CDSS will need to be improved in this area.  

The CDSS is only as good as the information provided to it. Guideline based CDSSs may improve 
compliance with guidelines (Shalom et al., 2015) as all vignettes showed improvements in prescribing 
supplementary tests. The guideline had some impact on guiding optometrists towards appropriate enquiry 
and clinical tests especially in cases where there is a definite pathology and the guidelines alert the 
optometrist towards abnormal values. The guideline recommendations did have positive impact on 
management decision making and helped optometrists in prescribing tests as shown in other studies (Fox, 
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Patkar and Thomson, 2006b). This could potentially lead to improved clinical outcomes in the long run, 
however more studies are needed to explore this area in greater depth.  

The ability of the CDSS to improve diagnosis will depend on the type of case. The results of this study  
confirm some of the findings from previous studies on diagnostic CDSS applications and EHR systems 
(Grace et al., 2013) where the quality of data entered affects the outcome. One of the recommended best 
practices for CDSS applications is to maintain high quality and complete data (Wright, Phansalkar, 
Bloomrosen, Robert A. Jenders, et al., 2010). The data quality and correctness problems in EHR systems 
are well known (Wagner and Hogan, 1996; Hogan and Wagner, 1997; Curtis, Bollard and Dickson, 2002; 
Majeed, Car and Sheikh, 2008). If the optometrist grades the images in the wrong manner it will result in 
the CDSS wrongly weighting the diagnostic recommendations. So, a diagnosis that would ideally be 
ranked lower the diagnostic list would be ranked higher incorrectly. This problem can be remedied by 
increasing the quality and quantity of arguments needed to decide.  

This study showed that the opinion of optometrists towards the CDSS was generally positive and even 
with minimal training and instructions the optometrists did not find the CDSS difficult or cumbersome to 
use (See section - 4.3.7). Almost half of the respondents are very likely to use the CDSS in their clinical 
practice. A majority felt the system was easy to use and felt that most people would find system easy to 
use. Most respondents felt that the CDSS was easy to learn and they didn’t need the help of another 
individual for using the system. More than half of the respondents felt that the system helped improve 
their decision making and they are likely to use the CDSS in practice. This could have implications for 
further development and evaluation. One optometrist pointed out that the CDSS could be particularly 
useful to new registrants while another felt the experience was superior to flow charts, the traditional way 
of delivering clinical guidelines.  

This confirms findings from other studies that show that the clinicians find the decision 
recommendations from an argumentation-based CDSSs easy to understand and more suited to their own 
pattern of clinical cognition (Emery et al., 1999; Fox, Patkar and Thomson, 2006b; Sutton, Taylor and 
Earle, 2006; Longo, Kane and Hederman, 2012; Longo and Hederman, 2013).  The results of this study 
show that the diagnostic recommendations have been shown to improve clinical diagnosis in certain sight 
threatening conditions and therefore there is potential for wider randomised controlled studies into the 
impact of argumentation-based diagnostic CDSSs on diagnosis. The guideline recommendations that 
were part of the CDSS had some impact on guiding the optometrists towards appropriate clinical tests 
and enquiry. This study demonstrated the effectiveness of an argumentation-based diagnostic CDSSs on 
diagnostic decision making. Argumentation-based models could therefore be used as the basis for 
generating early diagnostic recommendations in an ontology-based CDSS that can integrate information 
from disparate sources.   

The survey highlighted several negative aspects of CDSSs, especially guideline based CDSSs that have 
been raised elsewhere. The negative comments include: 

 The CDSS discouraged clinician thinking 

 The CDSS could have pushed the clinician towards misdiagnosis 

 More recommendations/advice needed 

 Time consuming 

The survey results indicate that there is a potential for greater acceptance of CDSSs if the decision 
support recommendations are integrated with the existing workflow of the clinicians as indicated by 
earlier studies (Kawamoto et al., 2005).  

4.4.1 Implications for further research 
The results support the further development and evaluation of decision support with a larger set of 
vignettes and with decision support integrated with the EHR ideally with real patients in real life settings. 
The effect of improved guideline recommendations and instructions on the final diagnosis optometrists 
will need to be studied. The prototype developed in this study demonstrates the concept of using 
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PROforma and Tallis based CDSS applications to develop CDSSs and can be expanded to develop a full 
CDSS for optometry practices in future if needed. 

4.4.2 Summary and Conclusions 
This chapter outlined a pilot study evaluating the use of an argumentation-based diagnostic CDSS using 
clinical vignettes and evaluating the impact of the guideline and diagnostic recommendations on the 
information gathering and diagnostic performance of optometrists. The argumentation-based diagnostic 
CDSS was built using off-the-shelf tools (Tallis) that used PROforma as the modelling language. 
PROforma uses AT as the basis for generating decision recommendations. Argumentation-based models 
use arguments to support or negate a candidate decision. It is inherently easier to explain to clinicians and 
closely resembles the cognitive process involved in diagnostic decision making of clinicians (Labrie and 
Schulz, 2014).  

The CDSS prototype developed in this study can provide guideline recommendations and diagnostic 
recommendations. The aim of the study was to see the impact of the CDSS on information gathering and 
diagnostic decision making of the optometrists. The results showed that the guideline recommendations 
have some impact on orienting optometrists towards appropriate history enquiry, clinical tests and 
investigations, especially in cases where there is a definite pathology and the CDSS can flag abnormal 
values. The guideline recommendations can then guide the optometrists towards the right clinical tests. 
The diagnostic recommendations helped the improve the diagnostic decision making of optometrists in 2 
of the vignettes, especially in sight threatening cases such as NTG and Wet AMD. These conditions 
require care in a hospital setting and needs to be referred accordingly. The guideline recommendations 
helped improve management decision making. The usability survey showed that the optometrists found 
the recommendations useful and the system easy to use.  

The CDSS prototype built in this study can use information from the clinical encounter or historical data 
from the EHR to make diagnostic recommendations. The results from this study show that guidelines 
recommendations can be provided at various stages of the clinical encounter. The guideline 
recommendations improve adherence to evidence-based clinical guidelines and could potentially improve 
clinical outcomes. Reminding the optometrist to ask the right questions and perform the right tests could 
similarly help the optometrist collect all the appropriate data and guideline recommendations could help 
interpret the clinical data from tests/investigations. This can help the optometrists form accurate 
diagnostic hypotheses focus their efforts on confirming the right diagnosis. The CDSS is particularly 
helpful for novice optometrists who may not have experience to diagnose and manage rare and complex 
cases. The right diagnosis can correspondingly help reduce unwanted referral to the hospital and help 
reduce costs. The diagnostic recommendations based on argumentation-based methods are easy to 
understand and help the optometrist make sense to lots of clinical data.  

Integration with EHR will require connecting the Tallis CDSS application to the EHR database. This 
could be challenging with respect to optometry practices as not all optometry practices have access to an 
optometry EHR. The optometry EHRs that exist are not all designed for data exchange and 
interoperability. When an optometrist is entering information into EHR data is captured in a database. 
The PROforma pathway can be modified to provide diagnostic recommendations at all stages of the 
diagnostic encounter. However, the data upon which the CDSS can make the diagnostic 
recommendations will be restricted to the clinical encounter. The CDSS cannot access data from other 
clinical data repositories and provide a diagnostic recommendation at all stages of the encounter due to 
lack of semantic interoperability. The PROforma model is a proprietary model and the inference engine is 
built using proprietary software tools. The PROforma model can only be read using the Tallis toolset and 
therefore the diagnostic recommendations cannot be generated by openly available semantic web-based 
tools such as OWL/RDFS inference engines.  

The PROforma model is a knowledge-based model. It is designed to capture the expertise of domain 
experts. The domain experts provide their subjective arguments for and against each diagnosis and 
determine the weights that need to be assigned to each argument. This is captured in the PROforma 
model and the Tallis engine then generates the decision recommendations. However, the other domain 
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experts and clinicians may not agree with the arguments and weights. Therefore, a website named 
OpenClinical.net (Fox et al., 2015) was developed to provide a platform for domain experts to collaborate 
on developing PROforma based models including diagnostic CDSS models. Once the model has been 
published on the website after prolonged discussion and validation, optometry practices and hospitals can 
deploy the CDSS in their clinics. However, if the model needs to be updated when clinical evidence 
changes, the CDSS instances must be informed manually and updated manually. The users will have to be 
updated about the changes and how the change affects their decision making. Studies evaluating the use 
of machine-learning algorithms to learn from historical clinical data and automatically update the 
PROforma model arguments and weights are under progress. However, to automatically update the 
arguments and weights the intelligent agents should be able to read and understand the model. Semantic 
interoperability is an issue for automatically updating the CDSS instances as well.  

RDF data model provides several capabilities that can address issues regarding semantic interoperability. 
Semantic web and linked data tools can help in integrating data from diverse sources into a single model 
and can generate diagnostic recommendations. The next chapter (Chapter 5) demonstrates how an 
ontology driven CDSS built using OWL/RDF can be developed that uses argumentation as the basis for 
delivering diagnostic recommendations. The ontology driven CDSS uses a model called the Disease-
Symptom Model (DS Model) that uses semantic web and linked data technologies to integrate 
information from diverse sources to generate a diagnostic recommendation. However, once the 
information has been integrated there is still a need to explain the results to the clinician in an easy to 
understand manner.  

The DS Model will have to be knowledge-based capturing the domain expertise of expert clinicians. The 
DS Model should be able to represent the domain expertise in an easy manner and generate a diagnostic 
recommendation that can be easily understood by the clinician. The model will have to generate 
diagnostic recommendations in the presence of incomplete data. The model should be able to recalculate 
and revise its decision based on current information which is called defeasible reasoning. Argumentation 
based models are inherently capable of doing this. Therefore, the DS Model uses the power of semantic 
web and linked data to integrate information and uses argumentation as the basis for generating the 
diagnostic recommendation. A machine-readable representation that can be processed by intelligent 
agents provides additional advantages when updating knowledge bases built using DS Model. Chapter 5 
describes the development of the DS Model and Chapter 6 then evaluates it using clinical vignettes.   
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5 Chapter 5 - DS Model and decision support prototypes 
development 

 

5.1 Introduction 
This chapter details the development and modelling of the DS Model and demonstrates how the DS 
Model can help in integrating information from diverse sources and generate diagnostic 
recommendations using argumentation as the basis. The chapter tries to answer the following research 
question: Can an argumentation-based diagnostic CDSS developed using semantic web and linked data 
technologies generate early diagnostic recommendations? 

The literature review showed the need for improved interoperability and showed how semantic web and 
linked data technologies can help improve semantic healthcare data interoperability. The literature review 
described Argumentation Theory and how argumentation-based models can help the domain experts 
capture domain expertise in an easy manner. The Chapter 4 optometry study demonstrated the feasibility 
of using an argumentation-based diagnostic CDSS to support diagnostic decision making in primary care 
optometrists. The diagnostic recommendations generated by the argumentation-based CDSSs can be 
easily understood in a manner that is like the clinician’s own line of thinking.  

As patients are increasingly getting access to PHRs and smartphones patients can record their data in 
these applications. Additional data can be captured by wearable devices and social media applications. 
Crucial data that can be used for clinical diagnosis is therefore locked away in these ‘data islands’ in a 
multitude of data representation formats and standards. The DS Model demonstrates the ability to 
integrate information from these diverse sources while generating diagnostic recommendations that is 
easy to understand. The diagnostic recommendation can be delivered at all stages of the clinical encounter 
and the CDSS is not restricted to data that is gathered during the clinical encounter.  

The DS Model demonstrates how an argumentation-based ontology model can be built using currently 
available ontology modelling tools. The CDSS prototypes demonstrate how the argumentation-based 
diagnostic CDSS recommendations can be generated without the use of specialized software for 
inference.  

The next section details DS Model and how diagnostic recommendations can help reduce diagnostic 
errors due to cognitive factors.  

5.2 Disease-Symptom Model (DS Model) 
The DS Model in this thesis is a representation of relationships between a diagnosis and its observations 
alongside SPARQL rules that define the presence/absence of observations and SPARQL rules that 
calculate weights of the observations to provide a diagnostic recommendation. The presence of 
observations/absence of observations can be arguments for and against a diagnosis.  

The patient presenting to a clinic may have no disease or multiple diseases. Diagnosis is the term used to 
denote state of the patient. A patient having no disease can have a diagnosis called “Normal”.  The 
patient can present with a multitude of symptoms. The clinician records these symptoms, checks for 
further signs of the disease(s) and orders further clinical tests if needed. ‘Observation’ is an umbrella term 
used to denote all clinical observations recorded by the clinician or patient with respect to the patient’s 
condition. This can include signs, symptoms and clinical test results. These observations are used by the 
clinician or the diagnostic CDSS to help make a diagnosis. The clinician uses the presence or absence of 
clinical observations to support or negate a diagnostic hypothesis. The presence or absence of clinical 
observations are therefore arguments either supporting or negating a diagnosis and are captured 
in the DS Model.  
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From an early diagnosis point of view, the symptoms play a greater role as they are the first observations 
reported by the patient. The clinician looks for further signs based on the symptoms reported by the 
patient and orders clinical tests accordingly. Therefore, the model was called the Disease-Symptom Model 
A simple representation of the link between a Diagnosis and Observations can be seen in Figure 5-1.   

 

Figure 5-1 - Disease Symptom Model 

The need for diagnostic triggers in a CDSS can be substantiated using the ‘Illness script theory’, which is a 
medical specialization of the more general ‘Script theory’ in cognitive science.  Script theory tries to 
explain how human beings try to gather and structure information to interpret events in his/her 
surroundings (Schank and Abelson, 1977). When an individual encounter an environment he/she 
accesses memory to retrieve prior knowledge and uses that information as the basis for building a model 
of an object or event of interest. The individual then uses that information to predict what information 
he/she should be receiving from objects or events in the environment (Schank and Abelson, 1977; Frith, 
2007). The brain attempts to create meaning about the environment by actively comparing the attributes 
of the mental model to the information he/she is receiving from the objects or events in the environment 
(Lubarsky et al., 2015). Once the mental model of the individual ‘approximately’ matches the attributes of 
the information from the environment he/she will then take appropriate next steps if needed. Next steps 
can include obtaining additional information about the environment or specifically from an event or 
object of interest within the environment. Additional information gathered can then trigger additional 
mental models. When the individual is satisfied that the information coming from the environment 
adequately matches the mental model, then he/she will stop collecting more information. Knowledge 
artefacts of an individual that are structured in a particular way that makes it easy to retrieve and match to 
the attributes of the information obtained from the events and objects in the environment is called 
‘Scripts’ (Schank and Abelson, 1977).  

The guideline recommendations in the Chapter 4 optometry study demonstrated the role of guidelines in 
helping trigger the mental models by flagging abnormal values and giving additional information about 
the next steps. The guideline recommendations can greatly help guide the clinician in figuring out how to 
collect the next bit of information relevant to the patient. However, guideline recommendations cannot 
provide arguments favouring and negating each diagnosis. The guideline recommendations cannot give an 
overview of the patient’s current condition. This is where argumentation-based CDSS models can help 
provide a better understanding of the patient’s condition. The CDSS provides arguments in favour and 
against a diagnosis with weights explaining the level of support of each argument. The information 
collected in early stages of a clinical encounter are limited in nature since not all information has been 
collected yet. However, argumentation-based models are better suited for explaining the patient’s current 
condition based on limited or uncertain information (Longo, Kane and Hederman, 2012). Argumentation 
models use non-monotonic logic and can retract existing conclusions and formulate new conclusion in 
the light of current information. The clinician can view the arguments for each diagnosis and match the 
arguments with the mental model created by the clinician from the data received from the environment 
i.e. the patient. The early diagnostic recommendations could in theory act as a tool (in conjunction with 
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the guideline recommendations) in helping create a better overall picture of the patient and help in the 
information gathering process. Guideline recommendations and early diagnostic recommendations work 
in concert with each other. Guideline recommendations can help guide the clinician towards the 
appropriate tests and explain how the perform the tests and interpret the test results. The data from these 
tests can help in formulating the diagnostic recommendation by the CDSS.  

The ‘Illness script’ concept is a widely accepted concept that tries to provide a framework for 
understanding how clinicians organize the knowledge that they gain from literature and clinical experience 
and use it to diagnose and treat patients (Charlin, Tardif and Boshuizen, 2000). A script can be described 
as a set of attributes each with a set of values. The script has default values corresponding to each 
attribute. For example, when a dentist examines a patient with dental pain he/she first asks what the 
chief/primary complaint of the patient is. The patient may respond by saying that he/she has pain in 
lower jaw with recent onset. This triggers/activates a set of illness scripts which may include a ‘dental 
abscess script’, ‘tooth fracture script’ etc. The dental abscess script has a default value for nature of pain. 
Each attribute within the script will have different probabilities of occurring. The value with greatest 
chance of occurring is the default value. The dentist may use this script to further enquire about the 
nature of pain. If the answer provided by the patient matches the default value of the attribute in the 
script, then the dentist will gather further information that conforms to this illness script. The answers 
provided by the patient or the data collected from the patient may in turn trigger other scripts. The 
number of illness scripts activated will depend on the experience of the dentist and the level of prior 
knowledge of the dentist. If there is an unexpected symptom or sign that does not conform to the earlier 
activated scripts the dentist will then activate another set of scripts to explain this unexpected clinical 
observation. The dentist will continue to gather information, weigh the information until he/she is 
satisfied. If the information provided does not match the default value of the illness script, then another 
illness script is activated. The illness scripts are not standardised, and the scripts are formed through a mix 
of biomedical knowledge, clinical evidence and experience gained through years of clinical practice 
(Charlin, Tardif and Boshuizen, 2000). Guideline recommendations can help trigger illness scripts by 
providing clinicians with context specific information about the clinical encounter.  

The Dual Process Theory explains how individuals make decisions and judgments under uncertainty with 
limited information (Kahneman and Egan, 2011; Evans and Stanovich, 2013). It can be adapted to 
explain how a clinician reasons when presented with a clinical case. Making a diagnostic decision in the 
early stages of the clinical encounter is a classic example of this scenario. The clinician is faced with 
limited information and is working under uncertainty regarding the patient’s condition. The dual process 
theory consists of 2 types of processes, System 1 and System 2 (Evans and Stanovich, 2013).  

Diagnostic CDSSs should be able to support both System 1 and System 2 processes. The CDSS should 
be able to make reasonably accurate diagnostic recommendations with limited data available from the 
patient during the clinical encounter. The clinician can then use the information from the patient and 
compare that to the information provided by the guideline recommendations and early diagnostic 
recommendations provided by the CDSS. The guideline recommendations and diagnostic 
recommendations can trigger illness scripts and trigger System 1 process of thinking. The arguments of 
the diagnostic recommendation can force the clinician to think about the observations and weigh the 
arguments in favour of each diagnosis called System 2 process of reasoning. It prevents the clinician from 
forming a diagnostic hypothesis without considering all clinical data. This way the arguments can 
potentially help reduce incidence of premature closure bias.  

The CDSS should be able to use the web to help find data that is related to the patient to make this 
diagnostic recommendation. The clinician is therefore freed from the job of integrating the information. 
As the clinician is gathering data from a patient during a clinical encounter the CDSS should be able to 
make use of all available evidence to suggest a recommendation and help the clinician in data gathering 
process. This is where the use of semantic web and linked data technologies can help the CDSS in the 
data gathering process. The intelligent agent in a CDSS can find and integrate all relevant data in the 
semantic web of data and provide a diagnostic recommendation as the clinician is performing the 
examination of the patient.  
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The data needed to make a diagnosis can come from various sources including PHR, EHR of the patient, 
disease registries, clinical trial data, laboratory test results, pathology test results, patient surveys and other 
research data. There is a lot of research around the use of Big Data in healthcare (Murdoch and Detsky, 
2013; Raghupathi et al., 2014). Big data is generally defined using 3 V’s (Volume, Velocity and Variety) 
(Laney, 2001). Volume describes the large volume of data generated by healthcare applications such as 
EHRs and from clinical trials and from biomedical and genomic sources. Velocity describes the high 
speed at which data especially healthcare data can be generated from applications such as wearable 
computing devices. However Variety is the aspect of big data that prevents its use in clinical applications 
such as decision support systems (Sittig et al., 2008). Traditionally the data for these applications have 
come from EHRs or standalone applications (Osheroff et al., 2007). The data that can be used for clinical 
applications such as diagnostic CDSSs can come from several different types (varieties) of datasets in 
different forms-structured, unstructured and semi-structured (Raghupathi et al., 2014) including datasets 
residing on the web.  

The amount of data available to the clinician for making decisions are increasing. While this shift in data 
and information availability is good in some respects it introduces additional problems. The clinician will 
have to spend lots of additional time trying to make sense of all this additional data. There is considerable 
pressure on primary care clinicians already to spend more time with patients with ever decreasing budgets 
and resources available to provide optimum care (Dugdale, Epstein and Pantilat, 1999). Therefore, there 
is a need for a framework that can help in aggregating the knowledge and help the clinician cope with the 
inconsistency and uncertainty associated with decision making. Argumentation can provide one such 
framework.  

To illustrate how argumentation can be used by the CDSS to generate a diagnosis recommendation we 
use the example of a dentist attempting to diagnose a patient with dental pain. First the dentist tries to 
locate the source of pain. Then the dentist will enquire type and nature of pain and type of triggers for the 
pain. Once this has been ascertained the dentist will try to locate a probable cause for the pain. If the pain 
is a sharp type of pain, then the origin of the pain will be more likely to be pulpal in origin (originating in 
the pulp of the tooth). The most of common causes are dental caries or tooth fracture leading to 
exposure of the pulp. However, if the dentist finds no dental caries or problems with the tooth then 
his/her attention turns to tissues surrounding the tooth. Based on signs and symptoms reported by the 
patient there are arguments in favour of the pain originating in the pulp or the gums surrounding the 
tissue. The chances of the pain being pulpal in origin are greater. The signs and symptoms may trigger 
illness scripts or pattern recognition (System 1) that support this sub-diagnosis. However, once the dentist 
has completed examination there are no apparent problems with the tooth and the dentist’s attention is 
focussed on the gums as probable origin of the pain. The weak argument in favour of the pain originating 
from the gums has now become stronger. These are knowledge-based arguments that have been 
formulated through years of expertise. This form of reasoning process is called defeasible reasoning 
(Longo, Kane and Hederman, 2012). In defeasible reasoning, the conclusions are defeasible i.e. the 
conclusion(s) can be retracted or modified in the light of new evidence. This is crucial for providing 
diagnostic recommendations in the early stages of the clinical encounter.  

Argumentation evolved from its origins as a sub-discipline of philosophical logic and has emerged as a 
critical area of Artificial Intelligence (AI) research. Argumentation is particularly suitable for healthcare as 
the information available to decide is often incomplete and clinicians will have to make decisions when 
there is conflicting information. Argumentation based techniques have been used to develop CDSS 
applications in healthcare since the mid-80s (Labrie and Schulz, 2014). PROforma used argumentation-
based methods to model its decision making (Sutton and Fox, 2003; Fox, Patkar and Thomson, 2006a) . 
A modeller can model arguments in favour and against a candidate. The candidate can be a diagnosis or 
some other clinical hypotheses, for example clinical risk. The Chapter 4 Optometry study uses PROforma 
to model the CDSS and generate diagnostic recommendations. The results of the study in Chapter 4 
optometry study shows that the providing argumentation-based diagnostic recommendation to the 
clinician can help improve diagnostic performance in certain clinical conditions. The study showed how 
the argumentation-based diagnostic recommendations can help in generating diagnostic 
recommendations that can potentially reduce diagnostic errors while providing recommendations that are 
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easy to understand. Studies have shown that guideline-based CDSSs can help improve guideline 
adherence (Adams et al., 2012; Forrest et al., 2013) and has helped improve clinical outcomes (Garg et al., 
2005a). The results of the Chapter 4 optometry study showed that guideline recommendations can help 
the optometrist in information gathering before diagnosis. The qualitative survey of the Chapter 4 
Optometry study CDSS showed that the optometrists found the various clinical recommendations 
provided by the system relevant and the CDSS easy to use and understand (See section - 4.3.7). The 
argumentation-based models used in the Chapter 4 optometry study CDSS to generate the diagnostic 
recommendations have been used to develop CDSS applications in several domains (Emery et al., 1999; 
Fox, Patkar and Thomson, 2006b; Sutton, Taylor and Earle, 2006), however there studies so far have not 
studied the impact of argumentation-based CDSSs on the diagnostic performance of clinicians. 
Therefore, Chapter 4 Optometry study was needed.  

Use of semantic web and linked data technologies help integrate patient information from various 
sources. However, once the data has been retrieved the CDSS that uses the proposed DS Model should 
be able to merge the information in such a way to provide a diagnosis that can be easily explained to the 
clinician. The clinician should be able to see and weigh information and understand why a diagnosis has 
been ranked above others in the diagnostic recommendation. This is another area where argumentation-
based models have an advantage over other CDSS models. Argumentation provides a method to easily 
explains the arguments for each diagnosis. When this is combined with data from several sources it 
provides an effective mechanism for delivering diagnostic recommendations early in the clinical 
encounter.  

To impact System 1 process of reasoning the CDSS should be able to produce a ranked list of 
recommendations with different weights that support each diagnosis. The clinician would then look at the 
ranked list of diagnoses and this triggers pattern recognition or activation of illness scripts that the 
clinician can use to elicit further information from the patient. Clinician enters this information into the 
EHR and the CDSS uses this additional information to collect more information if needed or generate an 
updated list of diagnostic recommendations.  

If the clinician is interested in learning why a diagnosis is ranked high/low in the recommendation list, 
then the CDSS should be able to provide suitable arguments as to why the diagnostic decision was made. 
The clinician should be able to look up the arguments for and against a diagnosis and consider the 
weights for each argument. This process should trigger the System 2 process of reasoning and help slow 
down the thinking process of the clinician, help analyse all the clinical data available and consider all 
probable causes for the patient’s current condition.  

The semantic web/linked data framework helps in data integration and data interoperability and helps an 
intelligent agent identify and retrieve data that is related to the patient and the patient’s condition. The 
decision model in the form of arguments helps the CDSS provide a recommendation to the clinician that 
can be easily understood and closely matches the clinician’s own line of reasoning. The model can be 
easily updated in the light of current information and quickly generate a new diagnostic recommendation. 
The diagnostic recommendation of the CDSS in the form of ranked recommendations could in theory 
influence System 1 and System 2 processes of reasoning and help the clinician in reducing diagnostic error 
arising from cognitive factors.  

Using ontologies to represent disease-symptom pattern has been done several times before (See Section - 
2.5). However, these models differ from DS Model is many ways. OWL and rules such as Jena and SWRL 
rules have been used to model the diagnostic criteria. The combination of OWL, SWRL and other rule 
languages is a recognised expert system framework and has been widely used in semantic web based 
decision support applications (Ongenae et al., 2010; Donfack Guefack et al., 2012; Bau, Chen and Huang, 
2014; Sherimon and Krishnan, 2016). This is largely due to the availability of ontology reasoners that are 
compatible with both OWL and SWRL (Sirin et al., 2007a). SWRL can overcome some of the weaknesses 
of OWL as it can handle numerical functions better than OWL. However, the studies that evaluated the 
use of OWL and rule languages have not demonstrated the ability to access remote datasets to integrate 
patient information. The DS Model uses SPARQL to model the rules that inform the inference engine 
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about the presence/absence of an observation and obtains a ranking based on the weights attached to 
each argument. SPARQL has the additional capacity to query federated databases for data and can 
integrate that information into decision making.  

Oberkampf et al. (Oberkampf et al., 2012) demonstrated the use of a Disease-Symptom Ontology to 
capture the relation between the Diseases and Symptoms. Each Disease is related to the Symptoms using 
the ‘hasSymptom’ property (Oberkampf, Zillner and Bauer, 2012a). They have demonstrated use of a 
ranking algorithm to generate a ranked diagnosis. No specifics were given on how the ranking system was 
implemented.  

The DS Model differs from this approach by using argumentation as the basis for generating the 
diagnosis. Existing diagnostic CDSS applications developed using argumentation-based languages such as 
PROforma can be directly mapped to the DS Model if needed. The semantics of argumentation can be 
captured using the DS Model. PROforma requires proprietary tools such the Tallis inference engine to 
generate the diagnostic recommendations. DS Model does not require any special tools to develop the 
ontology model.  

Modelling can be performed using open-source ontology modelling tools like Protégé. The DS Model can 
be uploaded to any triple-store that supports simple RDFS reasoning. The SPARQL rules can then 
generate the ranked diagnostic recommendations. A separate diagnostic ranking algorithm was not 
required. Existing ontologies can be reused to capture the Diseases and the Symptoms. This vastly 
reduces the time taken to create the models when compared to PROforma. Argumentation reduce the 
time needed to capture the domain expertise linking the Diseases and their symptoms. Domain experts 
can easily add the weights to the same ontology model. Using semantic web technologies makes the 
process of sharing the model easy. Linked data technologies used in the DS Model help integrate 
information from diverse sources. These clinical observations can come from a variety of sources 
including PHR, EHR, wearable computing devices, social media website etc. Argumentation-based 
methods used to generate the diagnostic recommendation can help explain the recommendations to the 
clinicians. All these steps used in the development of the DS Model can be used to effectively deliver 
early diagnostic recommendations.  

This section has explained the link between the DS Model and the CDSS prototype developed in Chapter 
4. It explains how the DS Model and its diagnostic recommendations can help in reducing diagnostic 
error. The next section details the development of the DS Model. OWL, RDF, SPARQL and other 
languages and technologies used to develop the DS Model have been explained in Chapter 2. The full DS 
Model can be accessed from the following link (Further instructions in Appendix 5): 

https://drive.google.com/drive/folders/0B67O3_av5-CVUzZmVzBVYktTUk0?usp=sharing 

5.3 Disease-Symptom Model represented in RDF/OWL 
In this section, the method thorough which the DS Model has been represented in OWL classes, 
properties and instances is discussed.  

The degree to which each observation supports or negates a diagnosis varies from observation to 
observation. The same observation can support 2 different diagnoses to different extents. Some 
observations are more apparent than others. The clinician may not have all the tools required at his/her 
disposal to confirm the presence of these observations.  For example, the clinician may suspect the 
presence of Tempero-mandibular joint (joint that connects the lower jar to the skull) problems but may 
not have the radiographic facility in the clinic to confirm this. This degree of support is represented in the 
form of weights that are attached to the observation’s presence or absence. 

Figure 5-2 gives an outline of the Class hierarchy that was used to model the DS Model in OWL. The 
diagnosis and observation classes have been expanded in the image. The top-level classes (Diagnosis, 
Observation, Observation Status) belong to the base DS Model. The role of Finding and Finding Status 
classes will be explained in section - 5.5 - Multi-level diagnosis with DS Model.  
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Figure 5-2 - Outline of DS Model Class hierarchy 

A modeller building a DS Model for a domain will use the base classes and extend the model using classes 
from their domain. In this thesis, the DS Model was built using dentistry as an example. The image 
(Figure 5-2) shows that terminology used for the observations has come from the domain of dentistry. 
The main reason dentistry was chosen as a domain to develop the diagnostic inference model is because 
of the background of the author in dentistry and because dentistry is mainly a primary healthcare service.   

Example of Reversible Pulpitis diagnosis is used to demonstrate how the DS model was developed in 
OWL and explain how the model is executed by the CDSS prototype to deliver diagnostic 
recommendations. Reversible Pulpitis is an acute condition affecting teeth. The centre of a tooth consists 
of living tissue called Pulp. It is a connective tissue consisting of blood vessels and nerves. When there is 
tooth decay and the decay extend to the pulp of the tooth it can cause inflammation of the pulp. 
Sometimes the inflammation is reversible, and the tooth can be saved. Other times the inflammation is 
irreversible (Irreversible Pulpitis) and can result in the pulp undergoing necrosis (death) later. It is 
therefore important to distinguish between the reversible and irreversible states of the pulp. However, 
symptoms in both conditions are similar and clinical history and examination is important to distinguish 
between both disease states. Failure to distinguish appropriately can result in the patient undergoing 
unnecessary expensive and invasive treatments such as Root Canal Treatment (RCT). 
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Turtle syntax has been used to represent the RDF triples in the DS Model (Beckett et al., 2014). In this 
thesis, Properties are denoted in italics, Classes have been Capitalized and Instances have been 
underlined. The DS Model was modelled using the Protégé 5.0 ontology editing environment (Gennari et 
al., 2003). The class structure was captured from Web-Protégé (Figure 5-2). Web-Protégé is a light weight 
open-source web-based ontology editor based on Protégé that is useful for collaborative ontology editing 
(Tudorache et al., 2013) . 

rp: is the prefix of the DS Model. This prefix will be used to denote classes, properties and individuals 
that belong to the DS Model ontology. The prefix is used to associate a label with a URI. In this thesis, 
the rp: prefix is used to denote the DS Model ontology model and all the classes, properties and 
individuals that belong to this ontology model. If a term belongs to another ontology, example RDFS, 
then rdfs: prefix is used to denote objects that belong to RDFS ontology (example rdfs:subClassOf). 
Prefixes are widely used in RDF serializations such as Turtle (Beckett et al., 2014). 

For example, PREFIX rp: <http://www.semanticweb.org/abjb788/ontologies/2015/3/untitled-ontology-208#> is 
the prefix used to denote the DS Model ontology in this thesis.  

5.3.1 Classes 
An OWL class (owl:Class) is used to represent a group of individuals that belong together and share some 
common properties (Harmelen and McGuinness, 2004).The main classes in the DS model include 
the Diagnosis class (Figure 5-3) and the Observation class (Figure 5-4). The subclasses of these 2 
classes may vary depending on the domain.  

 

Figure 5-3 - Diagnosis class in DS Model 

The diagnosis class has subclasses rp:Apical_Disease and rp:Pulpal_Disease. These classifications are 
relevant in dentistry as the Pulpal and Apical diagnoses are obtained separately and a composite picture of 
the tooth’s pulpal and apical tissues is created from the clinical observations. Pulpal refers to the pulp of 
the tooth, while Apical refers to the apex (tip of the root) of the tooth.  
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Figure 5-4 - Observation class 

In addition, there is a rp:ObservationStatus class (Figure 5-5). This class has the subclasses 
rp:ObservationAbsent and rp:ObservationPresent.  

 

 

Figure 5-5 - Observation Status class 

The Observation class and instances belonging to the subclasses of the Observation class reflect the 
members of the information model of the EHR. It is divided in the same way the information model is 
classified. The Dental Information Model (DIM) which was used as a basis for developing the class 
structure has a similar structure (Acharya, Mital and Schleyer, 2009a). DIM is one of the few dental 
information models currently available and has been used as the basis for developing dental EHR and 
research systems (Figure 5-6) (Liu et al., 2013). DIM was used as a source for some of the terms in the 
dental representation of the DS Model. Since the terms and the structure were derived from an existing 
dental information model any future mapping to a real dental EHR will be easier. The basic structure was 
adapted from DIM and extended where needed. Terms were included from the DDS (Dental Diagnostic 
System) (Kalenderian et al., 2011b) dental terminology.  
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Figure 5-6 - Dental Information Model outline (DIM) 

The following image (Figure 5-7) shows how DIM has organized information within Clinical Extra Oral 
Examination. 

 

 

Figure 5-7 - Clinical Extra Oral Examination 

In the DIM model, the ‘Lymph node observations’ is arranged under Head and Neck Examination, which 
comes under Clinical Extra Oral Examination, which comes under Patient Dental Examination. The 
image above (Figure 5-7) shows that the information model only presents a single field for adding 
information about the lymph nodes, such as the condition of the lymph nodes. In the DS Model, this 
field was further expanded based on expert opinion and author’s own clinical knowledge to include the 
different lymph node states, i.e. lymph node firm, lymph node swollen, and lymph node tender (Figure 
5-8). 
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Figure 5-8 - Lymph node examination 

The observations were further expanded to include the different observation states that the observation 
may have with respect to the patient. Having a “Present” or “Absent” observation may not be necessary 
in all cases. The presence of a “Firm Lymph Node” may support a Diagnosis, while the absence may 
support a completely different diagnosis.  

The image below (Figure 5-9) shows the rp:Duration_of_pain class, and the different values that it can 
have in the EHR is represented as its subclasses. The presence of rp:Hours_duration_of_pain has more 
value than the absence, and therefore only the value itself is needed from a decision support point of 
view. The decision to add the present and absent states of an observation is dependent on the domain 
and can vary from domain to domain. However, it is advisable to create the present and absent states 
during modelling as different decision support applications may have different domain requirements. In 
this diagnostic decision support implementation, it was not considered necessary and was therefore not 
modelled. In the Lymph node tender example above (Figure 5-8), the presence and absence are relevant 
for making diagnostic decisions and was therefore included in the DS Model.  

 

Figure 5-9 - Pain observation 

5.3.2 Properties 
There are 2 main types of properties (rdf:Property) in OWL. There are object properties which link 
individuals belonging to different classes together, and datatype properties that link individuals with 
datatype literals such as string or integers (Harmelen and McGuinness, 2004).  

The main object property in the DS Model include the rp:Observation_Diagnosis_properties, and the sub-
properties (Figure 5-10) of this property include:  
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 rp:diagnosisHasNegatingObservation 

 rp:diagnosisHasSupportingObservation 

 rp:observationAbsenceNegatesDiagnosis 

 rp:observationPresenceSupportsDiagnosis 
 

 

Figure 5-10 - Observation-Diagnosis properties 

In addition, there is the rp:hasObservationStatus property that has a domain of rp:Observation and range of 
rp:ObservationStatus. The main datatype properties include the rp:hasDiagnosisObsWeight which link the 
diagnosis individuals to the weights represented by integers. The datatype property rp:hasWeight links the 
observation individuals to their respective weights.   

5.3.3 Individuals 
Individuals are instances of the classes represented in the DS Model. Individuals within the DS 
Model are crucial to providing the decision support capability. SPARQL inference is used to 
inform/update the DS Model about the presence/absence of different observations. The 
individuals of the DS Model and the methods through which the properties link the different classes 
together are explained below with the help of an example of rp:Reversible_Pulpitis diagnosis class. 
rp:Reversible_Pulpitis is a subclass of Pulpal_Disease and primarily denotes a state of the pulp. In 
Reversible Pulpitis, the inflammation of the pulp is only temporary and it does not have observations that 
can indicate the presence of infections, inflammation or cancer that can lead to firm/swollen lymph 
nodes. 

rp:1_Reversible_Pulpitis_DIAG is an individual or a type of the class rp:Reversible_Pulpitis (Table 5-1). 
The rdfs:label of the individual is “Reversible Pulpitis”. The label will be displayed to end-users while the 
name of the individual will be used for modelling. The name is a dereferenceable URI 
(http://www.semanticweb.org/abjb788/ontologies/2015/3/untitled-ontology-
208#1_Reversible_Pulpitis_DIAG) and it is technically possible to access this resource with help of a 
browser and view the HTML page representing the resource (if hosted online), or the RDF 
representation of the resource with all the individuals. 

subject predicate object 

rp:1_Reversible_Pulpitis_DIAG rdf:type owl:NamedIndividual 

rp:1_Reversible_Pulpitis_DIAG rdf:type rp:Reversible_Pulpitis 

Table 5-1 - Reversible Pulpitis Individual 

1_Reversible_Pulpitis_DIAG has the following object property assertions (Table 5-2). These assertions 
are made by the domain expert (Endodontist). In this case the assertions were made from clinical 
experience of the author in addition to referring clinical textbooks on the subject and help from the 
domain expert. These assertions are arguments that either favour or negate a diagnosis.  
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subject predicate object 

rp:1_Reversible_Pulpitis_DIAG rp:diagnosisHasSupportingObservat
ion 

rp:Lymph_node_tender_absent
_Plus_1 

rp:1_Reversible_Pulpitis_DIAG rp:diagnosisHasNegatingObservatio
n 

rp:Lymph_node_firm_present_
Minus_1 

Table 5-2 - Reversible Pulpitis and Observations relationship 

 

 

 

Figure 5-11 - Graph representation of Reversible Pulpitis and observations 

The image above (Figure 5-11) shows a graph representation of Reversible Pulpitis and its relations to the 
different instances of observations that either support or negate the diagnosis. The yellow circles denote 
Classes, Maroon diamonds denote Individuals and Orange diamonds denote literal values (integers in this 
case). 

rp:Lymph_node_firm_present_Minus_1 is an individual of rdf:type rp:Lymph_node_firm_present (Table 
5-3). rp:Lymph_node_firm_present is a subclass of rp:Lymph_node_firm (Figure 5-13). 
rp:Lymph_node_firm is a subclass of rp:Lymph_node_examination which is subclass of rp:Observation 
(Figure 5-12).  
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Figure 5-12 - Observations 

The weights have been placed in the name of the individual for the sake of better explaining which 
individuals belong to which class of observations and explaining their links to a diagnosis in this thesis. In 
a real-world application the names of the individual can be a coded reference. Having a coded reference 
will make the process of updating weights easier as the names do not have to be changed. The names 
visible to the domain experts will be a string literal that can be displayed using the rdfs:label property.  

 

Figure 5-13 - Lymph node firm status 

 

subject predicate object 

rp:Lymph_node_firm_present_Minus_1 rdf:type owl:NamedIndividual 

rp:Lymph_node_firm_present_Minus_1 rdf:type rp:Lymph_node_firm_present 

Table 5-3 - Lymph node firm present 

rp: Lymph_node_firm_present_Minus_1 has been given a weight of -1, (where the weight can be a 
positive or negative integer) (Table 5-4). Similarly, rp: Lymph_node_firm_absent_Plus_1 has weight of 
+1.  

The decision to give the weight of +1 and -1 is based on clinical judgement and the experience of 
the domain expert. Since there are not many studies on argumentation-based CDSSs for 
diagnostic decision support the weighting scheme used in the Chapter 4 optometry study was 
used to create the weights for each argument (See Section - 4.2.3.3).  
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When developing DS Models for clinical use the weights can be determined by an expert panel. The panel 
can be given a diagnosis and asked to provide the arguments for each diagnosis. In argumentation theory 
each decision candidate is either supported or negated by arguments either in favour or against a 
candidate. Similarly, the domain experts in the expert panel can be asked to provide arguments in favour 
or against each diagnosis. They can be asked to provide a numerical value quantitatively support their 
argument. An integer of +1 can be provided to arguments that support a diagnosis. An integer of -1 can 
be given to arguments that negate a diagnosis. In DS Model the arguments are the presence or 
absence of observations. If the presence of an observation supports a diagnosis, then +1 can be 
given to that argument. If the presence strongly supports a diagnosis, then +2 can be given. If 
there is conflict among the members of the expert panel regarding the weights then the decision can be 
put to vote or decided through a group decision making process like the Delphi method (Van de and 
Delbecq, 1974) to arrive at a consensus. Web based platforms like OpenClinical.net (Fox et al., 2015) have 
been developed to facilitate this discussion process and allow content creators and domain experts to 
model computerised clinical guidelines using languages like PROforma. The same platform can be used to 
create DS Models for each domain with domain experts creating diagnostic models for CDSS 
applications and using the platform to discuss and resolve conflict and disagreements about the 
arguments and the weights for each argument. 

The argumentation-based approach used in DS Model uses a natural method for explaining how the 
diagnosis is support by the presence of absence of the observation. The positive integers denote the 
degree to which the presence or absence of the observations support the diagnosis. If the 
presence/absence of an observation highly supports diagnosis, then a weight of +2 is given in 
the DS Model. Depending on the domain and the type of diagnosis the weight can be increased. If the 
presence/absence of an observation (argument) negates a candidate (diagnosis) then a weight 
using negative integers can be given.  

 

Figure 5-14 - Reversible Pulpitis and Observations relationship 

The weights represent the degree to which the instance of that observation supports/negates a diagnosis. 
In the image above (Figure 5-14) 1_Reversible_Pulpitis_DIAG has a negating observation of 
Lymph_node_present_Minus_1. Since the presence of a firm lymph node negates the diagnosis of 
Reversible Pulpitis, if a firm lymph node is present (in the patient data) a SPARQL query (Figure 5-17) 
subtracts -1 from the total weight attached to OWL individual representing the Reversible Pulpitis 
diagnosis.  

Again, from the image above (Figure 5-14), since Reversible Pulpitis has a supporting observation of 
rp:Lymph_node_firm_absent_Plus_1, and if a firm lymph node is absent from the record, then the state 
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of the observation supports the diagnosis of Reversible Pulpitis and adds +1 to the total weight of 
Reversible Pulpitis.  

subject predicate object 

rp:Lymph_node_firm_present_Minus_1 rp:hasWeight -1 

rp:Lymph_node_firm_absent_Plus_1 rp:hasWeight 1 

Table 5-4 - Lymph node firm weight 

Once all the weights are added up, factoring in the observations that are present and absent, a ranked list 
of diagnoses is obtained with the most probable diagnosis being the diagnosis with the highest total score. 
The SPARQL queries that add up the weights and produces the ranked list has been described below in 
the section called SPARQL inference (See section - 5.3.4 ). The weights are used for ranking the 
diagnoses. The real benefit of using the argumentation-based approach is the ability to explain the 
arguments using natural language to the clinician. The clinician can look at the arguments and get a good 
overall picture of the patient. The arguments can trigger illness scripts and System 1 process of reasoning. 
This is turn can help the clinician find more information about the patient.  

The type of relation between the diagnosis and the observation(s) is called an N-ary relation (Noy et al., 
2006). In OWL and RDF, a property connecting 2 individuals or an individual to a value is a binary 
relation. However, when we must link individuals to more than 1 individuals or values N-ary relations are 
used.  The 1_Reversible_Pulpitis_DIAG diagnosis individual is connected to several other individuals 
that are types of observations. Each of these individuals is linked to several values that form the weights.  

The rp:lymph_node_firm_present or rp:lymph_node_firm_absent observations can be either present or 
absent depending on the patient data. The observations that are present/absent can be updated directly. 
It is possible to query patient data in RDF or relational format. If the clinician observes a firm lymph 
node in the patient then the rp:lymph_node_firm_present observation is present, and the 
rp:lymph_node_firm_absent observation is absent. This information needs to be updated in the model. If 
the clinician observes that the patient does not have a firm lymph node, then the 
rp:lymph_node_firm_absent observation is present (in the patient data), and the 
rp:lymph_node_firm_present observation is absent.  

The following SPARQL insert query (Figure 5-15) will insert the Observation present or Observation 
absent status into the triple store. 

 

 PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>  
 PREFIX owl: <http://www.w3.org/2002/07/owl#>  
 PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>  
 PREFIX foaf:<http://xmlns.com/foaf/0.1/>  
 PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>  
 PREFIX rp: <http://www.semanticweb.org/abjb788/ontologies/2015/3/untitled-ontology-208#>  
 PREFIX wasp:<http://wasp.cs.vu.nl/apdg#> 
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Figure 5-15 - SPARQL present/absent insert query 

Using the query above (Figure 5-15), the SPARQL query engine (ARQ) will query the patient data and if 
the patient data has the value “No”, it inserts into the default graph the triple rp:Lymph_node_absent 
rp:hasObservationStatus rp:9_ObservationPresent.  The “9” in rp:9_ObservationPresent has been used to 
distinguish this individual from the other individuals in the DS Model. It does not have any other clinical 
significance. 

The SPARQL insert query can be adapted to conform to any patient data model. In the current example, 
an archetype model of structuring information for evaluation and testing was used (see section - 5.4.3). 
An archetype is a model or pattern for capturing clinical information (Leslie, 2012). An archetype model 
was used within the Advanced Patient Data Generator (APDG) (Huang et al., 2013) tool to generate RDF 
patient data sets (See Appendix 9). The prefix wasp: denotes the ontology used in the APDG. In the 
model used in wasp: ontology, information is represented in the form of several archetypes. Each 
archetype can contain another archetype themselves. The archetype contains a slot which represents a 
discrete unit of information. For example, the slot “x” contained within the archetype “y” shown in Table 
5-5 has the label “Lymph node firm”. This slot can have different values such as “Yes” or “No”.  

Consider the following RDF data: 

subject predicate object 

:y rdf:type :Archetype 

:y wasp:hasLabel “Lymph node exam” 

:y wasp:hasSlot :x 

:x wasp:hasLabel “Lymph node firm” 

:x wasp:hasValue :No 

Table 5-5 - Sample RDF data 

The data has been extracted from an EHR that has the following simplified information model. The text 
highlighted in red below (Table 5-6) has been represented in RDF graph format above (Table 5-5).  

 

 INSERT  {?Observation1 rp:hasObservationStatus rp:9_ObservationPresent}  

 WHERE 

{SELECT ?value ?Observation1  

  {?Observation1 a rp:Lymph_node_firm_absent.  

  ?s wasp:hasSlot ?o.  

  ?o rdfs:label ?slot.  

  ?o wasp:value ?value.  

   FILTER (str(?slot) = "Lymph_node_firm")  

   FILTER (str(?value) = "No")}  

 } 
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Archetype Slot Value 

Patient Demographics   

Clinical History   

 Pain Present Yes 

  No 

Clinical Examination   

Lymph node exam   

 Lymph node firm Yes 

  No 

 Lymph node swelling Yes 

  No 

 Lymph node tenderness Yes 

  No 

Clinical Tests   

Diagnosis and Treatment Planning   

Table 5-6 - Sample information model 

 

Lymph node firm (slot) can take the values “Yes” or “No”. If the slot takes the value “No” the SPARQL 
query above (Figure 5-15) will insert the triple which implies “the rp:Lymph_node_firm_absent 
observation in the DS model is present”.  
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Figure 5-16 - SPARQL present/absent conditional insert query 

If the patient data has the value “Yes” in the slot for Lymph_node_firm, then the SPARQL query 
above (Figure 5-16) will insert the triple which implies that rp:Lymph_node_firm_present 
observation has observation status rp:9_ObservationPresent.  

rp:9_ObservationPresent is an individual of class rp:ObservationPresent. Similarly, 
rp:9_ObservationAbsent is rdf:type rp:ObservationAbsent (Table 5-7).  

This is how the CDSS using SPARQL present/absent query will update the DS Model based on the data 
present. The domain expert models the DS Model representing the links between the observations and 
the diagnosis. The SPARQL insert query (Figure 5-15 and Figure 5-16) will inform/update the 
model about the observations that are present/absent in the data. Another SPARQL insert query 
(Figure 5-17) will sum the weights of the observations that are present and assign them to a 
diagnosis. Another SPARQL select query (Figure 5-18) will then produce a ranked list of 
diagnoses based on observations that are present/absent.  

subject predicate object 

rp:9_ObservationPresent rdf:type rp:ObservationPresent 

rp:9_ObservationAbsent rdf:type rp:ObservationAbsent 

Table 5-7 - Observation present/absent 

The SPARQL present/absent insert query above (Figure 5-16) roughly has a “IF..THEN..” rule like 
representation. This query can be considered a special type of rule called a production rule. A production 
rule allows us to infer new facts from the existing facts, if the new facts can be expressed in the language 
(in this case OWL/RDF).  When the antecedent condition(s) are satisfied, the rule will fire and the 
consequent will result in new facts or modifications in the knowledge base.  

The query above (Figure 5-16) can be represented in natural language in the following manner: “If the 
information model has a slot Lymph_node_firm and the slot has value ‘Yes’ then give the individuals 
belonging to rp:Lymph_node_firm_present observation in the DS Model the observation status 
rp:9_ObservationPresent”.  

The rule can be represented in semantic web rule languages such as Semantic Web Rule Language 
(SWRL) (Horrocks et al., 2004) and Jena Rules (Apache Jena, 2016). SWRL and Jena is limited to 

 INSERT  {?Observation1 rp:hasObservationStatus rp:9_ObservationPresent}  

 WHERE 

{ SELECT ?value ?Observation1  

{?Observation1 a rp:Lymph_node_firm_present.  

?s wasp:hasSlot ?o.  

?o rdfs:label ?slot.  

?o wasp:value ?value.  

FILTER (str(?slot) = "Lymph_node_firm")  

FILTER (str(?value) = "Yes")}  

 } 
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reasoning over the A-box, or individuals/instances present in the OWL knowledge base. In this project, 
we are interested in disparate datasets containing patient data and therefore these languages were not 
considered suitable. The DS Model requires weights to be summed and stored temporarily and retrieved 
later to provide a ranked list which the rules languages mentioned above (SWRL and Jena) cannot 
represent due to limitations in expressivity. Rules expressed in SPARQL (SPARQL Rules) were 
considered more appropriate for the task at hand.  

SPARQL Inferencing Notation (SPIN) is language that was built on top of the capabilities that SPARQL 
(Knublauch, Hendler and Idehen, 2011).  The syntax allows us to express business rules in SPARQL 
without having to implement another rules language. It is possible to store SPARQL queries as triples and 
store the queries (SPARQL Rules) with the RDF data.  In the case studies below (See section - 5.4), the 
SPARQL rules were written in files or in programming functions. Storing the rules as RDF will make the 
process of implementing rules easier. However, SPIN was not used/evaluated further in this research 
project as it was not considered essential for demonstrating the concept of using SPARQL rules for 
generating diagnostic recommendations.  

Once the query engine has queried the patient data and inserted the observation status for all 
observations the following query (Figure 5-17)  will sum the weights and rank the diagnosis by the total 
score. The weights can be determined through statistical approaches. The weighting can be determined 
from evidence obtained from literature from clinical and epidemiological studies. However, even though 
some studies have shown that clinicians use prevalence and probability when making a diagnosis (Elstein, 
Shulman and Sprafka, 1978) other observational and experimental studies have shown that the clinicians 
do not routinely use statistics in diagnostic decision making (Dawes, Faust and Meehl, 1989).  

5.3.4 SPARQL Inference 

 

Figure 5-17 - SPARQL insert query calculating weights 

The query above (Figure 5-17) sums the weight of all observations present. Here the observation 
present refers to the observation class in the DS Model ontology, and not the observations present in the 
patient. The data may have the value Lymph_node_firm = “No”, which means there is no firm lymph 
nodes in the patient. However, this means that the rp:Lymph_node_firm_absent in the DS Model will 
have the status rp:9_ObservationPresent . 

The sum of all weights of observations either supporting or negating a diagnosis is added to a 
diagnosis using the insert query above (Figure 5-17) which adds the following triple to the triple 
store=>  

?Diagnosis  rp:hasDiagnosisObsWeight  ?DiagnosisObsWeight.  

 INSERT { ?Diagnosis rp:hasDiagnosisObsWeight ?DiagnosisObsWeight} 

 WHERE 

  {SELECT (SUM (?Weight)AS ?DiagnosisObsWeight) ?Diagnosis 

   { ?Diagnosis ?property ?Observation. 

 ?property rdfs:subPropertyOf rp:Observation_Diagnosis_properties. 

?Observation rp:hasWeight ?Weight. 

?Observation rp:hasObservationStatus rp:9_ObservationPresent. 

   } 

 GROUP BY ?Diagnosis 

  } 
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The ?Diagnosis variable is any individual that belongs to the class rp:Diagnosis. Once all the instances of 
the Diagnosis have the weight attached to it, the following queries (Figure 5-18 and Figure 5-19) will rank 
them in descending order of weights.  The Pulpal and Apical diagnoses are ranked separately as the 
clinician will be interested in the current status of the pulp and if the inflammation has spread to the apex 
(root end) of the tooth. 

 

 

Figure 5-18 - Pulpal diagnosis ranked list SPARQL select query 

 

Figure 5-19 - Apical diagnosis ranked list SPARQL select query 

The following tables (Table 5-8 & Table 5-9) describe the results obtained after running the DS Model 
against a test scenario/vignette that has a Pulpal diagnosis of ‘Symptomatic Irreversible Pulpitis’ and 
Apical diagnosis of ‘Symptomatic Apical Periodontitis’. In a real-world clinical application, the names of 
the individuals of the DS Model will not be displayed. In its place the rdfs:label of the instance/class can 
be displayed to make the results more clinician friendly (Hayes and Patel-Schneider, 2014).  

Pulpal Diagnosis Diagnosis Weight 

rp:1_Symptomatic_Irreversible_Pulpitis_DIAG 14 

rp:1_Pain_of_Nonodontogenic_Origin_DIAG 9 

rp:1_Asymptomatic_Irreversible_Pulpitis_DIAG 6 

rp:1_Pulp_Necrosis_DIAG 4 

rp:1_Reversible_Pulpitis_DIAG 3 

 SELECT ?PulpalDiagnosis ?DiagnosisWeight 

 WHERE 

{?PulpalDiagnosis  rp:hasDiagnosisObsWeight ?DiagnosisWeight. 

?PulpalDiagnosis a ?Diagnosis. 

?Diagnosis rdfs:subClassOf* rp:Pulpal_Disease. 

 } ORDER BY desc (?DiagnosisWeight) 

 SELECT ?ApicalDiagnosis ?DiagnosisWeight 

 WHERE 

{?ApicalDiagnosis  rp:hasDiagnosisObsWeight ?DiagnosisWeight. 

?ApicalDiagnosis a ?Diagnosis. 

?Diagnosis rdfs:subClassOf* rp:Apical_Disease. 

 } ORDER BY desc (?DiagnosisWeight) 
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rp:1_Normal_Pulp_DIAG 2 

rp:1_Dentinal_Hypersensitivity -4 

Table 5-8 - Pulpal Diagnosis 

Apical Diagnosis Diagnosis Weight 

rp:1_Symptomatic_Apical_Periodontitis_DIAG 10 

rp:1_Pain_of_Nonodontogenic_Origin_DIAG 9 

rp:1_Acute_apical_abscess_DIAG 5 

rp:1_Normal_Apical_Tissues_DIAG 4 

rp:1_Asymptomatic_Apical_Periodontitis_DIAG 3 

rp:1_Chronic_Apical_Abscess_DIAG 1 

Table 5-9 - Apical Diagnosis 

The DS Model needs to know which observations are present/absent to make a diagnostic decision. The 
observations can be ‘Pain Present’ observation or the ‘Pain Absent’ observation. The key aspect of the 
DS Model is that ‘Pain Present’ is the observation. It is easy to misrepresent ‘Pain’ as the observation 
when talking in clinical terms. However, in the DS Model ‘Pain Present’ observation can have the state of 
being present/absent. Once the clinician has completed the enquiry/examination he/she records the data 
in EHR or CDSS application directly. 

The argumentation-based diagnostic recommendations in the Chapter 4 Optometry study provided a 
ranked diagnostic recommendation alongside the weights. The arguments for each diagnosis is presented 
below the diagnosis (See Figure 4-20). The SPARQL query in Appendix 21 details how the DS 
Model can provide explanations/justifications for each diagnosis. For example, if the patient is 
complaining of pain the dentist will record in the EHR that pain is present. The CDSS will look at the 
patient data and set the Pain_present_Plus_1 observation status to present. The ranked diagnostic 
recommendations are generated. The SPARQL query in Appendix 21 can then detail how each 
Diagnosis is linked to the Observation via the property. The query will provide the result in a triple 
format such as rp:1_Symptomatic_Irreversible_Pulpitis_DIAG rp:diagnosisHasSupportingObservation 
rp: Pain_present_Plus_1. This means that Symptomatic Irreversible Pulpitis has a supporting observation 
called Pain Present with a weight of +1 and this observation is present in the patient. A natural language 
description of the result can be provided to the dentist. For example, the explanation can include 
statements like ‘Since the patient has complained of pain this supports the Symptomatic Irreversible 
Pulpitis diagnosis’. This argumentation-based approach allows the dentist to get a good overall picture of 
the patient. Similar arguments against the diagnosis can be given. The dentist can then use this 
information to compare with his/her mental model of the patient and find more information as needed. 
The DS Model allows us to generate these arguments without the need for specialized software as seen in 
the Tallis CDSS.  
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5.3.5 Summary 
This section details the development of the DS Model. It demonstrates how argumentation has been used 
to generate diagnostic recommendations. The next section details the development of CDSS prototypes 
that can use the DS Model to generate diagnostic recommendations.  

Argumentation-based CDSS tools have been shown to improve decision making when modelled using 
PROforma to make guideline based CDSS tools (Fox et al., 2007). The DS Model uses argumentation 
theory to model the arguments using semantic web technology and helps integrate information from 
multiple sources easily. The main advantage of using argumentation-based methods to model the 
arguments in DS Model to generate diagnostic recommendations is to better explain the reasons given by 
the CDSS for each recommendation. The arguments for each diagnosis and the weights are captured in a 
single model that can be easily understood by the domain expert during modelling process. When data 
from multiple sources are integrated the CDSS can rapidly update the recommendation considering latest 
information and inform the clinician about the change in data and explain in simple terms why the 
recommendation was made. The simple technique of summing the weights means there is no need for 
special software (for example Bayesian reasoning engine) to perform calculations. Any triple-store capable 
of simple RDFS reasoning and process SPARQL queries can perform these calculations. PROforma 
based models require Tallis graphical user interface to model the arguments. The Tallis reasoning engine 
is required to perform reasoning and generate the diagnostic recommendations as demonstrated in the 
Chapter 4 optometry study. The DS Model can be modelled using existing ontology modelling tools such 
as Protégé and Web-Protégé and can be used to make the process of creating arguments that support or 
negate a diagnosis easier and to help domain experts develop DS Models in their domain and help them 
discuss and collaboratively make changes to the model where necessary. Web-Protégé has been developed 
to help better support collaborative development of OWL ontologies (Tudorache et al., 2013). Any triple-
store capable of accepting RDF data and has a SPARQL processor can generate the diagnostic 
recommendations. The simplicity of the modelling process using argumentation-based methods, 
the simple weighing scheme used to assign weights, the simple technique used to sum the 
weights and ability to use existing off-the-shelf semantic web tools to generate the diagnostic 
recommendations gives the DS Model and the CDSS several advantages over conventional 
methods for generating diagnostic recommendations.  

Clinical knowledge keeps on changing and the arguments and the weight for each diagnosis will needs 
updating when needed. The Learning Healthcare System is a proposed system where data is frequently 
collected from the EHR of every patient in the system, routinely analysed to answer specific clinical 
questions and used to continuously learn from real-world data (Friedman, Wong and Blumenthal, 2010). 
The results of this analysis are fed back into the system where the outcomes are routinely monitored and 
the data in analysed further. This results in a continuously learning healthcare system that can in theory 
lead to better quality, patient outcomes, effectiveness and efficiency in the healthcare system and more 
patient-centred care.  

CDSSs are a central part of this learning healthcare ecosystem (Foley and Vale, 2017). CDSSs help deliver 
up-to-date patient-centred content and recommendations directly to the clinician. The results of analysis 
of patient data in a learning healthcare system can be used to update the logic and content of the CDSSs 
and the system can monitor patient data to see how the change has affected the clinical outcomes and 
understand where the CDSSs models can be improved. Platforms like OpenClinical.net (Fox et al., 
2015) are collaborating with organisations like the Learning Healthcare Project (The Learning 
Healthcare Project, 2017) to design and develop machine readable content for deploying in a learning 
healthcare system (Fox, 2015).This content can then be implemented in clinical environments and the 
outcomes analysed using machine learning and other data analytics methods and changes needed are 
studied and pushed to the clinical environment and the outcomes analysed further.  

The DS Model can help in this process as the model is machine readable and understandable and built 
using existing semantic web technologies. The OWL ontology-based DS Model can be published on the 
web and CDSS applications can retrieve the DS Model using a SPARQL query to run the model on their 
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patient data. When changes are needed the model can be updated and all CDSS applications using the 
model will receive the updates. Since the DS Model has been built using a linked data framework the 
main DS Model can be updated using a SPARQL query and all the CDSSs using the outdated version of 
the DS Model can be updated using another SPARQL query. RDF uses URIs to uniquely identify 
resources on the web. This makes it easy to link existing resources. The resource defined in the DS Model 
will have a unique identification. For example, the resource 
rp:1_Symptomatic_Irreversible_Pulpitis_DIAG and rp:diagnosisHasSupportingObservation and rp: 
Pain_present_Plus_1 all have a unique resource identifier. Intelligent agents can find the resource and 
find all information associated with the resource. The published DS Model is inherently more suited for 
sharing and collaborating than the proprietary format used in current generation PROforma and other 
argumentation-based CDSS tools.  

Healthcare data interoperability and a proper data infrastructure is central to the proper functioning of the 
learning healthcare system. Semantic web-based systems can help improve interoperability by providing 
support for semantic interoperability. Semantic web-based systems can help in machine learning and 
analysis. A Semantic Data Lake provides a semantic layer comprising of tools and models on top of 
existing systems that can integrate information from multiple systems (Archer, 2017). A SPARQL query 
can then find the individual bits of information needed for answering patient specific questions. 
Semantic Data Lakes have been setup to integrate data in healthcare systems such as the Montefiore 
Health System for data analysis (Mirhaji, 2016). Deep learning with the help of machine learning 
algorithms and better predictive analytics are therefore possible as the data is integrated from several 
different sources and includes data that is unavailable from a single source. The DS Model, patient data 
and all other information needed to make a clinical decision becomes part of the linked web of data when 
integrating data using platforms like semantic data lakes. An intelligent agent can traverse this linked web 
of data to find the information needed and help the CDSS using the DS Model to make a clinical 
decision.  

To develop DS Models in other domains from scratch, the relations between the Diseases and their 
symptoms can be reused from existing ontologies such as SNOMED-CT or other ontologies developed 
specifically to map these relations (Bertaud-Gounot, Duvauferrier and Burgun, 2012a; Mohammed, 
Benlamri and Fong, 2012). When ontologies like SNOMED-CT changes the relations between the 
Diagnosis and Observations in the DS Model can be updated automatically as the content is machine 
readable and the content in the DS Model can be semantically annotated and linked with the base 
ontology model from which the relations were obtained. Domain experts can then evaluate the changes 
to see if the weights need to be changed or if the arguments need updating. Once the domain experts 
have approved the changes and the DS Model modified, the updated DS Model (in a domain) can be 
pushed to the web and all CDSS applications using (subscribing) the DS Model will receive the updated 
DS Model.  

If the DS Model is part of a learning healthcare system, the clinicians and patients can be informed about 
the changes and the system can monitor outcomes (patient and clinician) to see if the changes have 
caused any adverse impact. This provides a system where data from the EHR and other electronic patient 
record sources can provide the real-world evidence needed to provide constant monitoring and 
upgradation of the DS Model and the real-world impact of the DS Model can be monitored and changes 
made as necessary. 

The next section provides an overview of the CDSS prototypes development.  

5.4 Decision support prototype development 
The DS Model described in the earlier sections was tested using several different CDSS architectures. 
These architectures will be introduced in the form of 4 cases studies detailing the development of 
prototypes. A summary evaluation of these architectures will be provided. The following case studies 
details the different ways in which the clinicians can record the observations and how the CDSS 
application using the DS Model will be able to provide diagnostic recommendations. The most common 
ways in which patient data can be accessed has been demonstrated using the case studies. The DS Model 
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development focusses on the model and how argumentation was used as the basis to generate diagnostic 
recommendations. The case studies show how the DS Model can be used in real-life settings to integrate 
patient information and generate diagnostic recommendations.  

Case Study 1 prototype uses a triple store as the backend to store the patient data. It demonstrates how a 
standalone CDSS application can use the DS Model to generate diagnostic recommendation. One of the 
key advantages of the DS Model when compared to the existing argumentation-based tools like Tallis is 
the ability to use off-the-shelf reasoning available with most triple stores. It demonstrates how data 
annotated with existing ontologies and terminology can be used in conjunction with the DS Model. This 
architecture was chosen because stand-alone CDSSs that are not connected to EHR are commonly used 
in today’s clinical practices.  

Case Study 2 demonstrates how data stored in relational database can be translated to RDF format 
using the D2RQ method. This case study demonstrates how linked data technology can be used in 
conjunction with the DS Model to integrate information from multiple sources. The D2R server exposes 
the data in a MySQL relational database in the form of a SPARQL endpoint. Existing applications using 
relational databases as their backend can expose their data via the SPARQL endpoint. Linked data 
technology can then identify data that belongs to the patient, provided the data is described using 
standard ontologies. The CDSS application can then use this data to generate early diagnostic 
recommendations and do not have to rely entirely on the data provided by the patient during the clinical 
encounter. Case Study 2 demonstrates how a CDSS application using the DS Model can use the data via a 
SPARQL endpoint to provide diagnostic recommendations. Linked data can be stored in triple stores or 
relational database and exposed via a SPARQL endpoint. The Case Study 2 prototype application can 
then access this data to provide diagnostic recommendations using the SERVICE keyword within the 
SPARQL query. The patient data can be stored in multiple SPARQL endpoints, and the CDSS 
application can access this data. Relational databases are a common form of storage in healthcare 
information systems. The architecture demonstrates how the DS Model can access this data via a 
SPARQL endpoint. 

Case Study 3 shows how the data in a EHR can be represented in a standardised manner using 
archetypes can be used by the CDSS to generate diagnostic recommendations. A published dental 
information model was represented as archetypes and separated into different sections. The different 
sections represent the major steps in the diagnostic encounter. This cases study shows how the CDSS 
using the DS Model can integrate information from existing EHRs that used information standards to 
represent information. Case Study 3 shows how the DS Model helps the CDSS use different forms of 
patient data by modifying the SPARQL rules. This demonstrates how the DS Model can work with 
current healthcare information systems using standard information models.  

Case Study 4 expands on the architecture described in Case Study 2 and used the dental information 
model to represent patient data in an open-source EHR. The data stored in the relational database of 
the EHR was then exported into the RDF format using software that translated relational data to RDF. 
The RDF data was then uploaded to a triple store alongside the DS Model and the patient data was used 
to generate diagnostic recommendations. Case Study 4 shows how the patient data stored in currently 
available and widely used open-source EHR systems can be used by the CDSS using the DS Model.  

5.4.1 Case study 1-Stand-alone CDSS implementation 
The first prototype (Figure 5-20) is the simplest method of deploying the DS Model and obtaining 
diagnostic recommendations. The prototype was built using the RDFLib library (RDFLib Team, 2013). 
RDFLib is a Python library that is used for working with RDF graphs. 
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Figure 5-20 - Case Study 1- CDSS architecture 

Since the DS Model is based on OWL/RDF language this library was chosen. Python was chosen 
because of the ability to develop simple Graphical User Interfaces (GUI). The author has more 
experience writing software in the Python language.  

 

 

All the queries in this case study will use the prefixes defined above (Figure 5-21). The rp: prefix is the 
prefix used to denote the DS Model. The current dental DS Model includes the base classes of the DS 
Model and the dental classes required for dental decision support. All cases studies use the same dental 
implementation of the DS Model. The SPARQL queries may vary depending on the application. Some 
additional prefixes will be needed for other case studies and will be indicated accordingly. All other 
prefixes are standard ontologies, schemas or specifications used in OWL/RDFS/RDF based applications.  

The DS Model is added to the triple store when the application is initiated. An empty graph model is 
created and the triples from the DS Model RDF file are added to the default graph. The present/absent 
insert queries are then added to this default graph that contains the DS Model. 

 PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> 
 PREFIX owl: <http://www.w3.org/2002/07/owl#> 
 PREFIX xsd: <http://www.w3.org/2001/XMLSchema#> 
 PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#> 
 PREFIX rp: <http://www.semanticweb.org/abjb788/ontologies/2015/3/untitled-ontology-208#> 

Figure 5-21 - Prefixes for Select/Insert SPARQL queries 
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Figure 5-22 - Case Study 1 user interface diagnosis recommendations 

When the clinician clicks on the Pain Present- ‘Yes’ or the Pain Present- ‘No’ button (Figure 5-22) a 
SPARQL insert query is executed on the in-memory triple store, like a SQL query executed on a relational 
database to store a data item. Figure 5-23 below shows an example of the present/absent insert query. 
Here the SPARQL query inserts the triple {Observation1 rp:hasObservationStatus 
rp:9_ObservationPresent} to the triple store. Observation1 variable denotes all the individuals that 
belong to the class rp:Pain_present. 

 

 

The rp:Pain_present class is a subclass of the rp:Pain_status class. The sibling class of the rp:Pain_present 
class is the rp:Pain_absent class (Figure 5-24).  

 

Figure 5-24 - Pain status class 

The subclasses of the rp:Pain_status class indicates the different states that the rp:Pain_status observation 
can exist in. The Pain_present class has different individuals that belong to the class depending on the 
weights that the individual may have. In this example the rp:Pain_present class has 2 individuals 
rp:Pain_present_Plus_1 and rp: Pain_present_Minus_1 (Figure 5-25).  

 

 

Figure 5-25 - Pain present individuals 

rp:Pain_present_Plus_1 has the owl:DatatypeProperty rp:hasWeight with the value 1. Similarly, the 
rp:Pain_present_Minus_1 individual will have the weight -1. The figure below (Figure 5-26) shows the 
description for the individual rp:Pain_present_Plus_1. The ontologist or modeller can add SNOMED-CT 

  INSERT  {?Observation1 rp:hasObservationStatus rp:9_ObservationPresent} 

  WHERE 

{?Observation1 a rp:Pain_present. 

   } 

Figure 5-23 - Pain Present insert query 
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terminology codes as a property. In this example the SNOMED-CT concept code: 27355003 was used to 
annotate the individual. This concept code indicates a Toothache finding (SNOMED-CT, 2016) . 
Existing ontology definitions and terminologies can be used to link the terms in the DS Model to these 
terminologies. However not all classes/individuals in DS Model can be annotated as concepts like 
Pain_absent may not have an equivalent term.  

 

Figure 5-26 - Pain present Plus 1 description of individual 

When the decision support application inserts the triple defined in Figure 5-23 , using SPARQL inference 
all the individuals of the rp:Pain_present class will have the owl:ObjectProperty  rp:hasObservationStatus 
with the value rp:9_ObservationPresent. rp:9_ObservationPresent is an individual that belongs to the 
rp:ObservationPresent class.  

In this prototype implementation, only the Pain Present (Yes/No) functions were implemented (Figure 
5-22). In a full CDSS application, all enquiries and corresponding values will be presented to the clinician 
in the form of buttons, drop-down menus or radio-buttons. Once the clinician has entered all the data 
required he/she can press the ‘Get Diagnosis’ button to obtain a ranked list of possible diagnoses and 
their weights (Figure 5-22).  

When the clinician clicks on the ‘Get Diagnosis’ button another SPARQL insert query is sent to the triple 
store that sums up all the weights of the observations that are present/absent. This query has been 
explained previously in this chapter (Figure 5-17). The weights are only summed for observations that 
have the rp:hasObservationStatus with the value rp:9_ObservationPresent. All other observations are 
ignored.  

The weights are inserted into the triple store and can be retrieved later if needed. It is possible to store the 
weights from an early diagnosis and compare it to the final diagnosis. Once the weights have been 
calculated and attached to each instance of a diagnosis, another SPARQL select query is sent that 
retrieves the ranked list of diagnosis and the attached weights. The pulpal and apical diagnoses are 
retrieved as separated ranked lists. The Pulpal and Apical diagnosis ranked list select query has been 
previously described in Figure 5-18 and Figure 5-19. 

This architecture used in this case study differs from the other case studies below in that the DS Model is 
inserted into an empty graph and the CDSS prototype informs the model directly about observations that 
are present/absent. This is a much simpler architecture to implement but can only be used for stand-
alone applications. The files for Case Study 1 can be accessed via Appendix 6.  
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5.4.2 Case Study 2-Stand-alone CDSS with relational database backend 
In Case Study 1 the observations that are present/absent are recorded directly in an in-memory graph that 
is created during run-time. This configuration will be suitable for creating stand-alone CDSS applications. 
However, the most common way in which data is stored by EHR and CDSS applications is in a relational 
database. Relational databases have a long history of implementation (Borok, 1995), are more reliable and 
several clinical applications store their data in relational databases routinely. NoSQL databases, graph 
databases and RDF triple stores have their advantages when dealing with data in different formats but will 
take several years to reach a critical mass of user adoption (Leavitt, 2010). 

 

Figure 5-27 - Case Study 2- CDSS architecture 

Since the DS Model is based on OWL/RDF how can the model be implemented with a CDSS 
application that uses a relational database as a backend to store patient data?  In this case study, the 
application that was developed in Case Study 1 was modified to store the data in a relational database 
(MySQL) instead of a triple store (Figure 5-27). The clinician can complete history, physical examination, 
clinical tests etc. and can record which observations are present/absent in the relational database. 

D2RQ was used to translate the relational data into RDF triples (C. Bizer and Seaborne, 2004). D2RQ 
method uses the D2RQ mapping language that describes the relationship between the database schema 
and OWL ontologies. In this case study, the data in the relational database was mapped to the 
classes/individuals in the DS Model.  

Obs_id Pain_present_name hasWeight hasObservationStatus 

111 Pain_present_Plus_1 1 9_ObservationPresent 

112 Pain_present_Plus_1 2 9_ObservationPresent 

113 Pain_absent_Plus_1 1 9_ObservationAbsent 
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114 Pain_absent_Plus_1 2 9_ObservationAbsent 

Table 5-10 - Case Study 2 prototype database pain_present table 

The clinician interacts with the user interface of the prototype. When he/she selects the Pain Present 
‘Yes’/ ‘No’ button the corresponding data is entered the table in the database (Figure 5-28). The schema 
of the test MySQL database table ‘pain_present’ is shown above (Table 5-10).  

 

Figure 5-28 - Case Study 2 user interface 'Yes' selected 

The data is translated to the virtual RDF graphs using the D2R mapping language (Cyganiak et al., 2012). 
The mapping/translation creates individuals in the D2R virtual RDF graph that has the object property 
rp:hasObservationStatus  and value “9_ObservationPresent”. For example, rp:Pain_present_Plus_1 
rp:hasObservationStatus “9_ObservationPresent” is created in the D2R server representing the same 
individuals from the DS Model. In this case study the translated RDF data is exposed in the form of a 
SPARQL endpoint. The SPARQL endpoint accepts SPARQL queries and returns the result in different 
formats (XML/JSON) that can be consumed by software agents. In addition, the translated data can be 
made available in the form of an RDF data dump that can be uploaded to a local triple store for analysis.  

Once the patient data is available in RDF format the CDSS application can then query the SPARQL 
service for data that is present/absent either directly or via another SPARQL endpoint as demonstrated 
in the CDSS architecture above (Figure 5-27).  

The DS Model is added to a Jena (Carroll et al., 2004) triple store when the clinician clicks the ‘Add DS 
Model’ button. A Jena Fuseki 2.3.0 server was used to store the DS Model.  

D2R server and endpoint is “read only” at present. We cannot insert data directly into the triple store 
using SPARQL insert queries. It should be done via the MySQL database.  

The prototype in this case study copies the DS Model from a named graph into the default graph. The 
DS Model can therefore be stored on the web and a copy retrieved via HTTP web protocol and stored in 
the local triple store during runtime. We can then calculate weights using a similar SPARQL insert query 
mentioned before. This query sums the weight of all the observations that have rp:hasObservationStatus  
“9_ObservationPresent”. The query instructs the Fuseki server to query the D2R server endpoint (which 
contains the patient data) for the right value and calculates the weights. The change from the earlier 
SPARQL insert query is the extra information added to the SPARQL query pointing the D2R SERVICE 
(See text highlighted in Red in below - Figure 5-29).  
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Figure 5-29 - SPARQL insert query calculating weights for Case Study 2 

In this case study a string literal was used as the object (Subject-Predicate-Object) for the 
property(predicate) rp:hasObservationStatus.  rp:9_ObservationPresent can be used as the object as 
mentioned in Case Study 1.  

The weights are then attached to the diagnosis that is either supported/negated by the presence of the 
observation. A SPARQL select query is then sent to the Jena Fuseki server by the Python RDFLib 
application which retrieves a ranked list of the diagnosis (Figure 5-30). RDFLib has a library called 
SPARQLWrapper (Fernández et al., 2016) that provides an interface to access SPARQL endpoints. The 
select query is the same as mentioned before (Figure 5-18). 

 

Figure 5-30 - Case Study 2 user interface diagnosis recommendations 

This approach demonstrated in this case study has several advantages.  In addition to the advantages of 
using relational databases, the patient data can reside in several different RDF data stores. This is 
important for early and final diagnosis. In addition to the data that is collected as part of a routine clinical 
encounter, additional data can be collected from other patient data repositories to help in formulating a 
diagnosis. Intelligent multi-agent systems can access all the data of the patient using unique patient 
identifiers and combine this information with information collected during the current encounter to 
provide a better picture of the patient’s condition than relying only on the information collected during 
the clinical encounter. This is one of the main advantages of using SPARQL endpoints. The D2R server 
described in this case study can be located remotely, and the Fuseki server with the DS Model and 
diagnostic recommendations can provide its services remotely using HTTP protocol for any healthcare 
linked data applications.  The approach described in Case Study 1 is limited as the in-memory triple store 
cannot access remote SPARQL endpoints, nevertheless is still useful for building standalone CDSS 
applications.  

The ability to access remote endpoints is one of the distinguishing features of semantic web or linked 
data-based systems. The idea of the Web of Linked Data is to form a single, globally distributed dataspace 
(D’Aquin et al., 2008; Hartig, Bizer and Freytag, 2009). This is enabled by finding resources with the help 
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of URIs (Uniform Resource Identifiers) and accessed via HTTP. An entity residing in one dataset can be 
linked to another entity via the URI. A smartphone app collecting information about patient’s dental pain 
can annotate their data using terms from established ontologies and vocabularies or even terms defined in 
the DS Model (rp: 9_ObservationPresent). The data stored in the relational database of the smartphone 
application can be translated to RDF and exposed with the help of a SPARQL endpoint. A CDSS can 
then access this data and provide the clinician with a history of previous dental pain that is more accurate 
than what the patient will be able to remember from memory alone. Similarly, the concept of dental pain 
can be linked to all information available in the web of linked data and relevant facts can be retrieved and 
presented to the clinician in an early diagnosis situation. The clinician does not have to retrieve the 
information himself/herself. The CDSS application can use this information to support clinical decision 
making.  

This approach is different from the traditional methods used to access information from disparate 
sources of data. The traditional approach uses proprietary Web APIs to access the data. The problem 
with this approach is the data is locked away in small data islands. When the underlying data structure 
changes, the API changes. The data representation formats are varied. The data can be stored in the form 
of structured, semi-structure or unstructured data. There are significant costs involved in linked these 
disparate sources together using APIs to produce mashups. Since the cost of linking is high, developers 
have not fully exploited the use of data available on the web to support clinicians.  It is physically 
impossible for the clinician to manually query these databases to find data appropriate for clinical decision 
making.  

Using semantic web and linked data technologies the data locked away in these data islands are 
represented in a common data representation format (RDF) and accessed via HTTP with the help of 
URIs. Linking different entities together and describing them using OWL ontologies allows the intelligent 
agents and software applications to discover facts that was previously not considered. For example, 
linking the presence of the dental pain to medication that the patient had previously taken will allow the 
decision support software to find out more information about this medication and find other medication 
that could be helpful for this patient based on profiles of similar patients. No specialized Web API is 
therefore needed to access the data.  

Querying multiple sources is shown in Figure 5-29. The data in the sample patient database is exposed via 
a SPARQL endpoint. The method of using SPARQL to query disparate linked databases is called 
Federated SPARQL querying (Rakhmawati et al., 2013). Using federated SPARQL queries we can define 
using the service keyword the service or SPARQL endpoint (Figure 5-29) that the client needs to access 
to retrieve the data. In this case study, a local endpoint was used for demonstration purposes.  

Standardised representation of patient data will allow intelligent agents to access patient data in EHR 
systems. Current web based health informatics standards such as HL7 FHIR (Fast Healthcare 
Interoperability Resources) (HL7, 2016) try to solve the problem of semantic interoperability via 
standardised information representation accessed via RESTful APIs (Rob Zazueta, 2013). Data source 
using the FHIR standard can still be accessed via HTTP.  However, since the entities in the data are not 
represented using RDF and linked using URI the intelligent agent or decision support application cannot 
access other data sources available on the wider web of data. There are around 600,000 query able 
datasets (Verborgh, 2015) currently available via the Linked Open Cloud (Cyganiak, 2014) which can be 
potentially accessed using linked data technologies. The files for Case Study 2 can be accessed via 
Appendix 7.  

5.4.3 Case Study 3-Patient data vignettes in RDF format 
In Case Study 1 and 2 the DS Model was informed about present/absent observations directly, either by 
inserting triples into the triple store or by translating relational data by mapping data to DS Model 
ontology.  However, in real life scenarios patient data conforms to different information models. The 
decision support model must demonstrate interoperability with all these different information models.  
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Figure 5-31 - Case Study 3 architecture of CDSS using patient data in RDF format 

In this case study, the use of patient data in RDF format that is based on an archetype-based information 
model used in EHR systems is explored. Advanced Patient Data Generator (APDG) is a tool that allows 
researchers to create synthetic patient data. APDG uses the archetype model and Patient Data Definition 
Language (PDDL) to create patient data instances (Huang et al., 2013). OpenEHR is another example of 
an information architecture standard used in EHR systems that is based on archetypes (openEHR 
Foundation, 2016).  

The CDSS prototype was developed using Jena Semantic Web framework (Figure 5-31). The role of the 
CDSS prototype is to upload the patient data along with the DS Model into an empty default graph 
model in a Jena Fuseki server. Jena Fuseki server provides access to the data via a SPARQL endpoint.  

In the sample patient data shown below for the archetype Clinical History there is a slot called Pain 
Present (highlighted in Red) (Table 5-11).  

This slot can take two values “Yes” and “No”. In the sample data below (Table 5-11) it has taken the 
value “Yes”. When the clinician selects the value from the EHR or CDSS user interface the value is 
inserted into the database. This case study simulates this process and the process of exporting the data in 
RDF format with the help of the APDG generator. APDG can export in several different formats 
including XML and RDF. The APDG application, XML files and the RDF data can be accessed via 
Appendix 9.  

Archetype Slot Value 

Patient Demographics   

Clinical History   
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Archetype Slot Value 

 Pain Present Yes 

  No 

Clinical Examination   

Lymph node exam   

 Lymph node firm Yes 

  No 

 Lymph node swelling Yes 

  No 

 Lymph node tenderness Yes 

  No 

Clinical Tests   

Diagnosis and Treatment Planning   

Table 5-11 - Sample patient data showing Archetype-Slot-Value model 

Once the patient data and DS Model have been uploaded to the Jena Fuseki server the CDSS prototype 
will insert a triple rp:hasObservationStatus rp:9_ObservationPresent based on the data present in the patient 
data (Figure 5-32).  

 

 PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>  
 PREFIX owl: <http://www.w3.org/2002/07/owl#>  
 PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>  
 PREFIX foaf:<http://xmlns.com/foaf/0.1/>  
 PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>  
 PREFIX rp: <http://www.semanticweb.org/abjb788/ontologies/2015/3/untitled-ontology-208#>  
 PREFIX wasp:<http://wasp.cs.vu.nl/apdg#> 
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If the Pain Present slot has the value “Yes”, then the SPARQL insert query will insert the triple 
Observation1 rp:hasObservationStatus rp:9_ObservationPresent where Observation1 is all individuals that 
belong to the class rp:Pain_present in the DS Model. rp: Pain_present is class of observations that is sub-
class of rp:Pain_status (Figure 5-24), which in turn is a sub-class of rp:Observation. 

5.4.3.1 Iso-semantic models 
The ideal way to promote semantic interoperability is to have just one model representing all medical 
information. However, this is not feasible in practical terms. Different healthcare systems and institutions 
may have their own unique way of representing the same information depending on the use case. An Iso-
semantic model is the term used to define the use of multiple models to represent the same information 
(Huff et al., 2014). This concept can be further illustrated using the example below.  

In Table 5-12, the Archetype “Clinical History” has the Slot “Pain Present” which can take either “Yes” 
or “No” values. The same information can be represented using a different Slot called “Pain” which can 
take the values “Pain Present” and “Pain Absent”.  For the sake of simplicity most models may use the 
former model, but the DS Model must work with any information representation in the real world.  
Sometimes the information modellers must take a decision to pre-coordinate or post-coordinate the 
information model.  For example, a Slot called “Location of pain” can have the value “Area around upper 
right region of cheek” (highlighted in Red in below - Table 5-12). 

 

Archetype Slot Value 

Patient Demographics   

Clinical History   

 Pain Present Yes 

  No 

 INSERT     {?Observation1 rp:hasObservationStatus rp:9_ObservationPresent.  

                    ?Observation2 rp:hasObservationStatus rp:9_ObservationAbsent}  

 WHERE 

{ SELECT ?value ?Observation1 ?Observation2  

{?Observation1 a rp:Pain_present.  

?Observation2 a rp:Pain_absent.  

?s wasp:hasSlot ?o.  

?o rdfs:label ?slot.  

?o wasp:value ?value.  

FILTER (str(?slot) = "Pain Present")  

FILTER (str(?value) = "Yes")}  

 } 

Figure 5-32 - Case Study 3 - SPARQL present/absent insert query 
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Archetype Slot Value 

 Location of pain Area around upper 
right region of 
cheek 

  Area around lower 
right region of 
cheek 

Table 5-12 - Pre-coordinated model 

The table above (Table 5-12) shows an Archetype-Slot-Value that takes a pre-coordinated approach. The 
concept “Area around upper right region of cheek” may be linked to terminology that defines the 
concept/term. The same information can be represented in the post-coordinated manner seen below 
(Table 5-13). The concept “Area around upper right region of cheek” can be combined by joining several 
terms/concepts from different systems. For example, the term cheek can be defined in the Formal Model 
of Anatomy ontology.  

Archetype Slot Value 

Patient Demographics   

Clinical History Pain Present Yes 

  No 

     Location of pain Area Cheek 

  Lip 

 Jaw affected Upper 

  Lower 

 Side affected Right 

  Lower 

Table 5-13 - Post-coordinated model 

The post-coordinated approach is more verbose but makes it easier to analyse the data (example, an 
analyst may want to query instances where the pain may have started in the right side of the face). 
However, for simple diagnostic decision support systems the pre-coordinated approach may result in a 
much simpler user-interface (for example in patient facing CDSS tools). The additional data may not be 
required. Both these models can result in the same diagnosis. The same information has been structured 
differently. The DS Model must therefore operate with either of the models.  

It is highly recommended that the DS Model itself be modelled using the pre-coordinated approach 
unless otherwise specified. For example, “pain in the area around the upper region of the cheek” is 
common symptom of Pulpal abscess (abscesses tooth) and maxillary sinusitis (inflammation of the sinus 
of the upper jaw). This observation (“pain in the area around the upper region of the cheek”) when 
combined with a decayed tooth in the upper jaw with a deep cavity makes Pulpal abscess highly suspect. 
Therefore, it is theoretically possible to model “Pain in the upper jaw with deep dental caries” as an single 



176 
 

observation that supports Pulpal abscess if it is present (rp:hasObservationStatus rp:9_ObservationPresent). 
There are other observations that are so highly indicative of a diagnosis in their presentation that it is 
usually better to model these concepts as a single term, rather than trying to combine then by combining 
several different terms. In this current thesis, a mix of pre-coordinated and post-coordinated approaches 
were used for the sake of simplicity. 

The advantage of using the SPARQL present/absent insert queries is that it can used to map different 
(iso-semantic) models to the same DS Model. By adding additional filter conditions and modifying the 
SPARQL insert query we can dictate the conditions under which the observation can be declared as 
present/absent. This is demonstrated by using different SPARQL present/absent insert queries in Case 
Study 3 & 4.  

There are 276 individual present/absent insert queries within this CDSS prototype. The number of 
queries can increase with an increase in the number of items within the information model. Each query is 
stored in a separate query file. Multiple queries can be stored within the same query file. If the data 
changes for some reason, for example if the clinician feels that he has recorded the wrong observation, 
the inserted triple can be deleted and another inserted using the same query. The use of RDF, RDFS, 
OWL and SPARQL allows the flexibility to model both the information model and DS Model using 
different modelling paradigms.  

Once the clinician has completed the patient enquiry or physical examination the patient data is exported 
in the RDF format. In this case study, the data was exported into a Jena Fuseki server. However, the same 
data can be exposed via a SPARQL endpoint and queried directly. The DS Model is uploaded by the 
CDSS prototype and based on the data that is present/absent the CDSS prototype inserts the appropriate 
present/absent triples.  

 

Figure 5-33 - DIM Chief Complaint 

In this case study, the Dental Information Model (DIM)(Acharya, Mital and Schleyer, 2009b) was used to 
structure the EHR data (Figure 5-33). DIM is segregated into several sections such as Chief Complaint, 
Intra Oral Examination, Extra Oral Examination, Clinical Tests and Radiographic Examination and 
Diagnosis. A detailed explanation of the different sections of the information model has been given in 
section - 6.2 -Sections of the Information Model. The sections of DIM were used as the basis for 
developing the archetypes (Table 5-11) in the APDG patient data generator and generate the RDF patient 
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data needed for the CDSS prototype (Figure 5-31). The present/absent insert queries can be restricted to 
data that has been collected. For example, if we are interested in early diagnosis after the Chief Complaint 
section of the DIM model then we can complete the present/absent insert queries for that section which 
informs the model of the observations that are present/absent, calculate the weights and then obtain a 
ranked list of diagnosis.  

However, in the architecture developed for this case study if we want to obtain a diagnosis after both 
Chief Complaint and Extra-Oral Examination sections of the DIM model we must delete all the data, 
complete inserting present/absent queries for both these sections based on the patient data, recalculate 
the weights and obtained another ranked list as the DS Model and the patient data was stored in the 
default graph model of the triple store. This architecture was found to be suitable for the purposes of 
evaluating the DS Model in early and late diagnosis. In real world applications, named graphs can be used 
to store the weights, remove the weights attached to each diagnosis when new patient data is added, 
recalculate the weights and obtain another diagnosis.  

This architecture (Figure 5-31) was used to evaluate the DS Model (Chapter 6) because it easier to 
generate patient data based on the patient vignettes using the APDG patient data generator and evaluate 
the diagnostic accuracy. The architecture demonstrated here show how you can use different patient 
datasets with the same DS Model. The data can be in different SPARQL endpoints. Different sections of 
the DIM model can be in different endpoints if needed. The files for Case Study 3 can be accessed via 
Appendix 8. 

 

5.4.4 Case Study 4-Patient data stored in open-source EHR and 
relational databases 

 

Open source EHR/EMR are very popular for capturing healthcare information (Karopka, Schmuhl and 
Demski, 2014). Most of these EHR systems capture data in relational databases such as MySQL. 
However, the information models and schemas used by the open/closed source systems are not 
standardised now. There are ongoing efforts such as HL7 FHIR to achieve a standardised interface to the 
data stored by these systems using REST protocols (HL7, 2016).  
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Figure 5-34 - Case Study 4- CDSS architecture of relational to RDF data 

 

In this case study, the use of semantic web/linked data technology to convert the relational data stored in 
existing open source EHR systems into a RDF representation that can then be consumed by CDSS 
applications is demonstrated. This case study (Figure 5-34) is like Case Study 2 (Figure 5-27) in its 
architecture. In this study, the custom mapping used in Case Study 2 is not utilized.  

OpenEMR (OpenEMR, 2016) was used as the test EHR platform (Figure 5-35). It is very popular EHR 
system developed using PHP language (Note: EHR and EMR has been used interchangeably here) (Noll, 
Beecham and Seichter, 2011). It is developed and maintained by a small group of enthusiastic 
programmers and clinicians. The data is stored in a MySQL database. The OpenEMR platform allows the 
users to create custom forms in addition to the other built-in functionality such as practice management.   

DIM V.1.0 (Acharya, Mital and Schleyer, 2009a) was used as the basis for creating forms within 
OpenEMR. As mentioned in Case Study 3, DIM separates the information collected during a dental 
encounter into various processes and sub-processes. This includes Chief Complaint, Extra Oral 
Examination, Intra Oral Examination, Radiographic Examination followed by final Diagnosis.  
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Figure 5-35 - Case Study 4- OpenEMR user interface 

The data stored in the relational database was then converted to RDF using the D2RQ platform 
(Christian Bizer and Seaborne, 2004). However, in this case study the default mapping used by D2RQ 
was used to create the RDF representation of the OpenEMR patient data. The advantage of this 
approach is RDF representation is mapped to the default representation of data in the database and not 
mapped to the DS Model ontology. It is easier to setup and extract data using the default mapping. The 
approach used in Case Study 2 requires detailed mapping to the DS Model ontology that is difficult for 
healthcare applications with complex schemas. Until healthcare interoperability solutions such as HL7 
FHIR becomes mainstream we may have to resort to similar techniques prescribed in this case study to 
access patient data in existing EHR systems.  

A mapping will still need to be created to inform the DS Model which observations are present/absent. 
In this case study, SPARQL present/absent insert queries like the one mentioned previously (Figure 5-16) 
and in Case Study 3 was used. 

When the clinician selects a value in the OpenEMR user interface shown above (Figure 5-35) the data is 
recorded in the MySQL database. D2RQ server then translates the relational data into RDF format which 
can then be accessed via a SPARQL endpoint.  D2RQ server becomes sluggish when there is multiple 
FILTER or LIMIT conditions in the query. Especially since there are 276 SPARQL present/absent insert 
queries in this case study. Solutions for scalable SPARQL queries over relational data are available, though 
they were considered beyond the scope of this thesis (Zhu et al., 2014). 

The poor performance of D2RQ with multiple FILTER statements is a well-known problem as the 
virtual RDF graph is a view that resides on top of the relational model (Bizer and Cyganiak, 2007). The 
problem can be remedied by exporting the data in RDF format. Therefore, in this case study the 
translated data was exported in RDF format after experiencing difficulties obtaining diagnostic 
recommendations quickly when accessing the patient data via the SPARQL endpoint. Accessing the 
patient data via the SPARQL endpoint is not a significant problem if the application has a simple 
database schema like Case Study 2. Instant response times to queries are crucial for early diagnostic 
recommendations as a ranked differential diagnosis list will need to be generated at different stages of the 
clinical encounter. In this case study, a recommendation can be generated after each main 
section/category of the DIM information model (example Chief Complaint) since the data was exported 
as RDF.  

The Jena semantic web framework was used to develop the CDSS prototype. The role of this CDSS 
prototype is to upload the patient data exported using D2RQ from the OpenEMR database into a triple 
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store accessed via the Jena Fuseki server. The DS Model file was uploaded onto the same default graph 
model in the triple store.  

The CDSS prototype then queried the patient data for values using a SPARQL insert query. For example 
the SPARQL insert query inserted the triple => Observation1 rp:hasObservationStatus 
rp:9_ObservationPresent, where Observation1 is rdf:type rp:Pain_present. 

 

 

 

The SPARQL insert query above (Figure 5-36) will inform the DS Model which observations are 
present/absent (rp:hasObservationStatus rp:9_ObservationPresent). Once all the present/absent insert 
queries are complete the CDSS prototype will calculate weights and another select SPARQL query returns 
a ranked list of recommendations (Figure 5-18). The recommendations that are returned can be modified 
to be more user-friendly. The rdfs: label can be displayed instead of the name of the class/individual 
(Figure 5-37).  

 PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>  
 PREFIX owl: <http://www.w3.org/2002/07/owl#>  
 PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>  
 PREFIX foaf:<http://xmlns.com/foaf/0.1/>  
 PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>  
 PREFIX rp: <http://www.semanticweb.org/abjb788/ontologies/2015/3/untitled-ontology-208#>  
 PREFIX map: <http://localhost:2020/resource/#>  
 PREFIX db: <http://localhost:2020/resource/>  
 PREFIX vocab: <http://localhost:2020/vocab/>  

 INSERT  {?Observation1 rp:hasObservationStatus rp:9_ObservationPresent.  

                  ?Observation2 rp:hasObservationStatus rp:9_ObservationAbsent}  

 WHERE{  

  { {  

  SELECT (max(?encounter_id)as ?Recent_encounter_id)  

  WHERE  

{?form vocab:forms_encounter ?encounter_id.} }  

{  

?form vocab:forms_form_id ?form_id.  

?form vocab:forms_deleted ?deleted.  

?s vocab:lbf_data_form_id ?lbf_form_id.  

?s vocab:lbf_data_field_id ?field_id.  

?s vocab:lbf_data_field_value ?field_value.  

?form vocab:forms_encounter ?Recent_encounter_id.  

} }  

  FILTER (?deleted=0 )  

FILTER (?form_id = ?lbf_form_id)  
Figure 5-36 - Case Study 4 - present/absent SPARQL insert query 
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In this case study, the diagnostic recommendations were return to a webpage written using the 
sparqllib.php library that can query SPARQL endpoints (Fuseki server endpoint in this example). The 
sparqllib.php library is part of the Graphite Linked Data library built of top of another RDF PHP library 
called ARC2 (Gutteridge, 2012b, 2012a). The diagnostic recommendations in the form of ranked list and 
associated weights below (Figure 5-38). Since OpenEMR is a PHP based open-source EHR the 
application can be integrated into an EHR user interface without much difficulty.  

 

Figure 5-38 - Case Study 4-Diagnostic recommendations user interface 

The main problem with the approach demonstrated in this case study is the need for an elaborate 
mapping SPARQL insert queries that are mapped to the schema of the open source EHR. When the 
schema changes, the SPARQL insert queries will need adapting as well. This problem exists even if the 
D2RQ mapping file approach used in Case Study 2 is utilized. However, the D2RQ mapping file-based 
approach is a more standardised approach.  

The other major problem with the approach in this case study is the need to export the patient data as 
RDF data to upload to a triple store. If the diagnosis recommendations are only needed at the final stage, 
then the clinician can export the data after all the patient data has been collected. However, for early 
recommendations the clinician must export the data at each section of the DIM model described 
previously in Case Study 3 (Also see section - 6.2). This is not a feasible approach in the long run as it can 
slow down the process of obtaining a clinical diagnosis.  

Another problem of querying RDF data translated from relational data obtained directly from EHR 
systems is that when patient data is changed the data must be exported again into the triple store (Jena 

 SELECT ?Label ?DiagnosisWeight 

 WHERE 

  {?PulpalDiagnosis  rp:hasDiagnosisObsWeight ?DiagnosisWeight. 

?PulpalDiagnosis a ?Diagnosis. 

?Diagnosis rdfs:subClassOf* rp:Pulpal_Disease. 

?Diagnosis rdfs:label ?Label 

 } ORDER BY desc (?DiagnosisWeight) 

Figure 5-37 - SPARQL Diagnosis recommendations select query - User friendly version 
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triple store with Fuseki server). Also, the patient data is stored as clinical encounters. In this case study 
the most recent patient encounter was used as the source of patient data. If the CDSS must access data 
from other encounters the queries should be modified accordingly. The query should check if the form is 
still active, as the data from deleted forms are recorded in the database.  

Overall the implementation is more complex using the methods described in this case study when 
compared to the other case studies. However, the functioning of a CDSS that uses the DS Model and 
patient data from an existing open-source EHR to deliver diagnostic recommendations was 
demonstrated. Some of the problems encountered in this case study will be solved with the wide spread 
adoption of standard RESTful APIs such as FHIR. FHIR is both a healthcare information representation 
standard and an API. FHIR can be serialised in several different formats including JSON, XML and 
RDF.  

Another recent development of interest is the RDF representation of FHIR and related FHIR ontology 
(HL7, 2015). The D2RQ mapping technique can be used to map the data in OpenEMR to concepts in 
the FHIR ontology. Having a standardised information representation will make it easier to write 
SPARQL present/absent insert queries that can then inform the model which observations are present. It 
is possible to modify the DS Model to use terms from the FHIR ontology. However, the FHIR ontology 
was still under development at the time of writing this thesis and could not investigated further. The files 
for Case Study 4 can be accessed via Appendix 8. 

5.4.5 Summary 
The case studies in the above section demonstrate how the DS Model can be used with different type of 
patient data and integrate this patient data to generate diagnostic recommendations. The next section 
details the development of the Multi-level DS Model which is an extension to the DS Model that can 
generate more detailed explanations, generate recommendations for sub-diagnostic states and generate 
diagnostic recommendations. The Multi-level DS Model can be used with any architecture 
described in the case studies by replacing the DS Model with the Multi-level DS Model. The 
Multi-level DS Model has additional SPARQL rules that need to be fired to generate the 
recommendations. Multi-level DS Model is additional work carried out to cover certain scenarios 
that the DS Model cannot fulfil without modifications.  

5.5 Multi-level diagnosis with DS Model 
The DS Model allows us to model the relationships between the Diagnosis and Observation class. A 
diagnosis can have a set of observations that are either supporting or negating the diagnosis. In the table 
below (Table 5-14) an archetype model with different slots and values have been represented.  

Archetype Slot Value 

Clinical History   

 Pain Present Yes 

  No 

   

 Pain Initiated By Cold food and drink 

  Hot food and drink 

  Jumping 
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Archetype Slot Value 

  Mastication or Chewing or Eating 

  Palpation 

  Supination 

  Sweets 

  Tilting head forward 

  No apparent reason 

Table 5-14 - Multi level diagnosis sample information model 

The Clinical History archetype has 2 slots “Pain Present” and “Pain Initiated By”. An example patient 
data has been highlighted in red and the Pain Present slot takes the value “Yes” and the ‘Pain Initiated By’ 
slot takes the value “Cold food and drink”.  Pain Present = “Yes” has been represented in the DS Model 
as a class rp:Pain_present and the individuals rp:Pain_present_Plus_1 and rp:Pain_present_Minus_1 
belong to this class. 

rp:Pain_present_Plus_1 supports the Diagnosis rp:Dentinal_Hypersensitivity as shown in the figure 
(Figure 5-39) below.  

 

Figure 5-39 - rp:Pain_present_1_Plus_1 supports the Diagnosis rp:Dentinal_Hypersensitivity 

However, the same rp:Pain_present_Plus_1 observation can negate a different diagnosis such as Normal 
Pulp, represented by the class rp:Normal_pulpal, which has the individual named 
rp:1_Normal_Pulp_DIAG as shown in the figure below (Figure 5-40). 
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Figure 5-40 - rp:Pain_present_1_Minus_1 negates the Diagnosis rp:Normal_pulpal 

So, if a patient complains of pain that supports the diagnosis Dentinal Hypersensitivity. However, if a 
patient complains of pain then it can negate the Normal Pulp diagnosis as the pulp is normal and no 
apparent pathology is present.  

Similarly, the class rp:Cold_pain_initiation_factor represents the value “Cold food and drink” of the slot 
“Pain Initiated By” (Table 5-14). rp:Cold_pain_initiation_factor has the individual 
rp:Cold_pain_initiation_factor_Plus_1 which when present supports the diagnosis Dentinal 
Hypersensitivity (Figure 5-41).  
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Figure 5-41 - rp:Cold_pain_initiation_factor_Plus_1 supports the Diagnosis rp:Dentinal_Hypersensitivity 

 

5.5.1 Classes  

5.5.1.1 The need for sub-diagnostic states 
The ‘presence of pain’ and ‘presence of pain initiated by cold food and drink’ can have different sub-
diagnostic interpretations other than diagnosis. For example, the “presence of pain that is initiated by cold 
food and drink” could indicate the ‘presence of inflammation of pulp’. The CDSS can then trigger an 
alert informing the clinician that the patient may be suffering from a potential inflammation of the pulp. 
The need for these sub-diagnostic triggers can be substantiated using the ‘Illness script theory’, which is a 
medical specialization of the more general ‘Script theory’ in cognitive science.  Script theory tries to 
explain how human beings try to gather and structure information to interpret events in his/her 
surroundings (Schank and Abelson, 1977). The Dual Process Theory  explains how individuals make 
decisions and judgments under uncertainty with limited information (Kahneman and Egan, 2011; Evans 
and Stanovich, 2013). It can be adapted to explain how a clinician reasons when presented with a clinical 
case. The dual process theory consists of 2 types of processes, System 1 and System 2. System 1 is 
associated with pattern recognition and System 2 is associated with the slower, more analytical process of 
reasoning (Evans and Stanovich, 2013).  

In addition to providing diagnostic recommendations during the clinical encounter the CDSS may have to 
provide sub-diagnostic recommendations or explanations in certain scenarios. There are clinical situations 
where a sub-diagnostic recommendation provides more value to the clinician than the diagnostic 
recommendation. Using a dental example, when there is ‘presence of pain initiated by cold food and 
drink’ this indicates a possible reversible inflammation of the pulp. The exact status of the pulp can be 
confirmed using clinical tests and radiographic examination at a later stage of the clinical encounter. 
However, if the CDSS can indicate/alert the clinician about the inflammation of the pulp, this could 
potentially trigger illness scripts associated with inflammation of the pulp and help the clinician ask 
questions or trigger a line of investigation to confirm or rule out the presence of inflammation of the 
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pulp. The sub-diagnostic recommendations can trigger System 1 process of reasoning. In the early stages 
of the clinical encounter these sub-diagnostic recommendations can help slow down the reasoning 
process and assist the clinician in investigating all possible causes for this ‘presence of pain initiated by 
cold food and drink’. The aim of the Multi-level DS Model is to allow the domain experts to model the 
sub-diagnostic recommendations and allow the CDSS to provide sub-diagnostic 
recommendations/explanations to the clinician, in addition to the diagnostic recommendations. The 
system can be adapted to provide only the sub-diagnostic recommendations and provide the explanations 
for making this recommendation.  

In the early stages of the clinical encounter there could be more value in providing sub-diagnostic 
recommendations as well as there is not enough information to fully justify a diagnostic recommendation. 
However, this has not been substantiated in literature. For example, to fully diagnose a Reversible Pulpitis 
diagnosis, the clinician will need to perform a pulp vitality test. However, in the early stages the clinician 
only has sufficient information to support a sub-diagnosis such as inflammation of the pulp, rather than 
Reversible Pulpitis. It is therefore useful for the clinician to see a diagnostic recommendation and the sub-
diagnostic recommendations as well and understand why the CDSS made these recommendations and 
track them to the presence or absence of the clinical observations that triggered these recommendations.  

The Multi-level DS Model uses the argumentation theory to provide diagnostic recommendations like the 
DS Model. Instead of presence/absence of observations supporting or negating a diagnosis, the presence 
or absence of observations can support or negate a sub-diagnostic state. The presence or absence of this 
sub-diagnostic state in the Multi-level DS Model can in turn support or negate a diagnosis. When the 
System 2 process is activated in the clinician and the clinician wants to understand why the CDSS 
provided a diagnostic recommendation, the clinician can obtain the arguments for the sub-diagnostic state 
as well. To model these sub-diagnostic states another class was introduced into the DS Model. This class 
is called Finding (represented as rp:Finding in the DS Model) (Figure 5-42). Finding class can be used to 
represent these sub-diagnostic states. The model that expands the DS Model (detailed in previous 
sections) and contains the Diagnosis, Findings and Observations is called the Multi-level DS Model.  

 

Figure 5-42 - DS Model outline with Finding class 
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Figure 5-43 - Multi-level diagnosis with DS Model 

The figure above (Figure 5-43) shows the relationships between the diagnosis, finding and 
observations in the Multi-level DS Model. The finding class is located between the diagnosis and 
observation classes and adds another layer of decision making and provides the sub-diagnostic 
recommendations. Each finding can have a set of observations that are either supporting or 
negating it. Similarly, the diagnosis may have a set of findings that are present and either 
supporting or negating the diagnosis.  

In the coming sections the example of “Pain present and Initiated by Cold” was used to represent a 
Finding. During a clinical examination the presence of pain is an interesting observation and could 
provide crucial information about the state of the dental pulp. However, when this clinical observation is 
combined with the observation that the pain is initiated by cold food and drink that narrows the 
possibilities and could indicate the presence of inflammation. Therefore, this was used as an example to 
demonstrate how the observations can support the finding and how the finding can in turn provide 
arguments to support or negate a Diagnosis. The finding was represented in the Multi-level DS Model as 
a class: rp:Pain_present_and_Initated_by_cold.  

This class has a subclass called rp:Pain_present_and_Initated_by_cold_present. A class called 
rp:Finding_status represents the different states of the findings and has the subclasses rp:Finding_absent 
and rp:Finding_present (Figure 5-42).  

The modelling of sub-diagnostic states has relevance when using the linked web of data to support 
decision making. The patient’s data may be distributed among different clinical systems. The clinical 
observations present in those systems may only support a sub-diagnostic state and there may not be 
sufficient information to fully support a diagnosis. If there is enough evidence to support a sub-diagnostic 
state, then the CDSS can make the recommendation using the data in the disparate clinical systems. In 
addition, sub-diagnostic state can be used as a trigger for guideline recommendations instead of 
relying on abnormal values alone.   
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Other ontology driven diagnostic CDSS tools have demonstrated the use of multi-level diagnosis to 
support decision making. SeDeLo (A Rodríguez-González et al., 2012) is an ontology driven diagnostic 
CDSS that models diagnostic criteria using DL and rules. The SeDeLo approach was capable of multi-
level diagnosis. So, laryngitis can be automatically inferred from its clinical observations, and laryngitis will 
then support the diagnosis of Common Cold. In SeDeLo laryngitis becomes the sub-diagnostic state like 
the ‘pulp inflammation’ example and the ‘pain present and initiated by cold’ example described in this 
section above. The system based on the SeDeLo approach was found to be faster, more efficient and 
more capable than the previous methods (Rodríguez-González et al. 2012).  The Multi-level DS Model 
differs from SeDeLo by using the argumentation approach to explain how the presence or absence of 
observations support/negate findings (sub-diagnostic state) and how the presence or absence of findings 
either support/negate diagnoses. The degree to which the observations support/negate a diagnosis or 
finding is provided by the Multi-level DS Model and is something that is not supported by the SeDeLo 
approach. The linked data approach used in the DS Model and the Multi-level DS Model helps in 
integration of data from multiple sources with relative ease, which is something not inherently built into 
the SeDeLo approach.  

The Multi-level DS Model can be implemented using any architecture demonstrated in the 
previous cases studies. The DS Model can be replaced by the Multi-level DS Model and the 
diagnostic recommendations can be displayed to the clinician. The Multi-level DS Model has the 
additional advantage of providing the recommendations in the form in intermediate states in 
addition to the diagnostic recommendations. Arguments for and against each finding and arguments 
for and against each diagnosis can be displayed to the clinician to help decide. 

5.5.2 Properties 
The object property linking Observations to Findings is the rp:Observation_Finding_properties and its sub-
properties (Figure 5-44). 

 

Figure 5-44 - rp:Observation_Finding_properties and its sub-properties 

The object property linking Findings to Diagnosis is the rp:Finding_Diagnosis_properties and its sub-
properties (Figure 5-45). 

 

Figure 5-45 - rp:Finding_Diagnosis_properties and its sub-properties 

In addition, there is the rp:hasFindingStatus property that has a domain of rp:Finding and range of 
rp:FindingStatus.  

The main datatype properties include: 
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 rp:hasDiagnosisFindWeight 

 rp:hasAssignedFindingWeight 

 rp:hasDiagnosisObsWeight 

 rp:hasDiagnosisFindWeight 

 rp:hasTotalFindingWeight 

 rp:hasDiagnosisTotalWeight 

 rp:hasFindingWeight 
 

These datatype properties allow the modeller to add the different weights to the findings and 
observations and denote the degree to which they support or negate a finding or diagnosis.  

5.5.3 Individuals 
The main individuals in this example that belong to the Finding class 
rp:Pain_present_and_Initated_by_cold_present include: 

 rp:2_Pain_present_and_Initated_by_cold_present_Minus_2 

 rp:2_Pain_present_and_Initated_by_cold_present_Plus_2 
 

The following figure (Figure 5-46) illustrates the relations between the observations and the findings in a 
graph structure. The (*) near rdfs:subClassOf* denotes a transitive relationship.  

 

 

Figure 5-46 - Observation-Finding relations 

The figure above (Figure 5-46) shows how the different individuals belonging to Observation classes are 
linked to the individuals belonging to the Finding classes. The individuals that are rdf:type rp:Finding has 
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an assigned finding weight of +2 and -2 respectively. The assigned weight is given by the domain expert 
and describes the degree to which the Finding will support or negate a diagnosis.  

In the DS Model existing ontologies such as SNOMED-CT can be reused for obtaining the relations 
between diagnoses and observations. However, in the Multi-level DS Model only those relations between 
the diagnoses and observations can be reused. The intermediate states represented by findings and the 
relations between the observations and findings followed by findings and diagnoses cannot be reused as 
ontologies that map these relations do not exist. The domain experts will therefore have to map these 
relations from scratch and capture the weights for the arguments in favour and against each finding and 
diagnoses.  

This is a major disadvantage of the Multi-level DS Model when compared to the DS Model.  Whenever 
there is a change in knowledge the model should be updated easily, and the changes need to be pushed to 
CDSSs in clinical practice. The DS Model captures the relationship between the diagnoses and the 
observations. Ontologies like SNOMED-CT already capture this relationship in varying degrees of 
granularity. Other OWL based ontologies have  been developed to capture this relationship (Bertaud-
Gounot, Duvauferrier and Burgun, 2012a; Mohammed, Benlamri and Fong, 2012). Whenever the 
knowledge changes the base model (SNOMED-CT) the DS Model can be updated automatically. 
Domain experts will then have to review the weights to see where the DS Model needs to be updated and 
then the changes can be pushed to CDSSs using the DS Model in their domain.  

Implementing the Multi-level DS Model will make this process much more difficult as existing ontologies 
that capture the intermediate states are not available and therefore domain experts will have to capture the 
intermediate states in separate OWL ontologies and integrate them with the simpler DS Model when 
needed. The Multi-level DS Model extends the DS Model and therefore this integration is possible. 

5.5.4 SPARQL Inference 
When the CDSS application that is using the DS Model with multi-diagnosis is run the following 
SPARQL insert query is run and the triple: ?Finding rp:hasFindingWeight ?FindingWeight is inserted into 
the default graph. 

 

 

Figure 5-47 - SPARQL insert query calculating Finding Weights 

The SPARQL insert query (Figure 5-47) calculates the “Finding Weight” from the observations that are 
present.  

INSERT {?Finding rp:hasFindingWeight ?FindingWeight} 

WHERE 

{SELECT (SUM (?Weight)AS ?FindingWeight) ?Finding 

  {?Finding ?property ?Observation. 

  ?property rdfs:subPropertyOf rp:Observation_Finding_properties. 

?Observation rp:hasWeight ?Weight. 

?Observation rp:hasObservationStatus rp:9_ObservationPresent. 

  } 

GROUP BY ?Finding} 
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Figure 5-48 - Finding present SPARQL insert 

 

 

Figure 5-49 - Finding absent SPARQL insert 

Two different SPARQL insert queries (Figure 5-48 & Figure 5-49) then sets the status for the Finding 
using the Finding Weight.  Any finding that has Finding Weight less than or equal to 0 is given the 
Finding Status of rp:9_FindingAbsent. Since only findings that has finding status of 
rp:9_FindingPresent are used for obtaining the diagnosis this technique ensures that findings 
with finding status of rp:9_FindingAbsent are discarded. rp:9_FindingAbsent is an individual of 
rdf:type rp:FindingAbsent. 

 

 

Figure 5-50 - SPARQL insert calculating Total Finding Weight 

The SPARQL insert query described above (Figure 5-50) calculates the Total Finding Weight. The Total 
Finding Weight is the product of the Assigned Finding Weight and the Finding Weight. The Assigned 

INSERT {?Finding rp:hasFindingStatus rp:9_FindingPresent.} 

WHERE 

{?Finding rp:hasFindingWeight ?FindingWeight. 

 FILTER (?FindingWeight > 0 ) 

} 

INSERT  {?Finding rp:hasFindingStatus rp:9_FindingAbsent.} 

WHERE 

{?Finding rp:hasFindingWeight ?FindingWeight. 

  FILTER (?FindingWeight <= 0 ) 

} 

INSERT {?Finding rp:hasTotalFindingWeight ?TotalFindingWeight} 

WHERE{ 

SELECT  ?Diagnosis ?Finding ((?AsignFindingWeight * ?FindingWeight) AS 
?TotalFindingWeight) ?FindingWeight ?AsignFindingWeight 

{ 

?Diagnosis ?property ?Finding. 

 ?property rdfs:subPropertyOf rp:Finding_Diagnosis_properties. 

  ?Finding rp:hasAssignedFindingWeight ?AsignFindingWeight. 

  ?Finding rp:hasFindingWeight ?FindingWeight. 

  ?Finding rp:hasFindingStatus rp:9_FindingPresent. 

  } 

} 
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Finding Weight has been assigned to each individual Finding by the domain expert. The Finding Weight 
is calculated by the observations that are present and either support or negates a Finding.  

The following 2 figures (Figure 5-51 & Figure 5-52) illustrates the relationships between the Diagnosis 
individuals and the individuals belonging to the Finding classes. The example shown in (Figure 5-51) 
shows the relationship between the Dentinal Hypersensitivity (Diagnosis) and the Pain present and 
Initiated by Cold (Finding). The figure shows that the Finding has an individual 
rp:Pain_present_and_Initiated_by_cold_present_Plus_2 has an Assigned Finding Weight of +2, and its 
supports the individual belonging to the Dentinal Hypersensitivity Class.  

 

 

Figure 5-51 - rp:Pain_present_and_Initiated_by_cold_present_Plus_2 supports the Diagnosis rp:Normal_pulpal 

 

The example shown in (Figure 5-52) shows the relationship between the Normal Pulp Diagnosis and the 
Pain present and Initiated by Cold Finding. The figure shows that the Finding has an individual 
rp:Pain_present_and_Initiated_by_cold_present_Minus_2 .  

This individual has an Assigned Finding Weight of -2, and it supports the individual belonging to the 
Normal Pulp class. 
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Figure 5-52 - rp:Pain_present_and_Initiated_by_cold_present_Minus_2 negates the Diagnosis rp:Normal_pulpal 

The different Diagnosis candidates can have Observations and Findings supporting/negating them at the 
same time. Some Observations may support/negate a Diagnosis directly while other Observations may 
support/negate a Finding, which then supports/negate a Diagnosis. A CDSS application with a Multi-
level DS Model should consider both Observations and Findings. Figures (Figure 5-39) and (Figure 5-40) 
show the direct relationships between the Observations and Diagnosis. A Diagnosis-Observation Weight 
is calculated using a SPARQL Insert query below (Figure 5-53) based on Observations that are Present. 
This Diagnosis-Observation Weight is attached to each Diagnosis. This process of calculating the 
Diagnosis-Observation Weight is like the DS Model (but without a Multi-level structure) as shown in 
(Figure 5-17).  

 

 

INSERT {?Diagnosis rp:hasDiagnosisObsWeight ?DiagnosisObsWeight} 

WHERE 

{SELECT (SUM (?Weight)AS ?DiagnosisObsWeight) ?Diagnosis 

  {?Diagnosis ?property ?Observation. 

  ?property rdfs:subPropertyOf rp:Observation_Diagnosis_properties. 

?Observation rp:hasWeight ?Weight. 

?Observation rp:hasObservationStatus rp:9_ObservationPresent. 

   } 

GROUP BY ?Diagnosis 

} 
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Figure 5-53 - SPARQL Insert Diagnosis-Observation Weight 

In the Multi-level diagnosis model a Diagnosis-Finding Weight is added to the weights obtained from 
observations. Certain observations support a diagnosis directly. However, some observations can support 
a finding which in turn can support the same diagnosis. The sum of weights of observations becomes 
total weight of the finding. The total weight of the finding will in turn affect the total weight of the 
diagnosis. Therefore, the final weight of the diagnosis can be influenced by the observation directly and 
through findings indirectly in some cases. However, the negative weights can reduce the weights of 
findings in certain cases.  

The Diagnosis-Finding Weight is calculated from the Findings that are present and either support or 
negates a Diagnosis (See Figure 5-47 to Figure 5-50). This Diagnosis-Finding Weight is calculated using 
the SPARQL Insert query below (Figure 5-54).  

 

Figure 5-54 - SPARQL Insert Diagnosis-Finding Weight 

Once the Diagnosis-Observation Weight and the Diagnosis-Finding Weight has been calculated the Total 
Diagnosis Weight is attained by summing => (Diagnosis-Observation Weight + Diagnosis-Finding 
Weight). This is done using the SPARQL Insert query below (Figure 5-55). The Total Diagnosis Weight 
is then attached to each Diagnosis and is used as the basis for obtaining the ranked diagnostic 
recommendations.  

 

 

Figure 5-55 - SPARQL Insert Total Diagnosis Weight 

INSERT {?Diagnosis rp:hasDiagnosisFindWeight ?DiagnosisFindWeight } 

WHERE 

{SELECT ?Diagnosis (SUM (?TotalFindingWeight)AS ?DiagnosisFindWeight)   

  {?Diagnosis ?property ?Finding. 

  ?property rdfs:subPropertyOf rp:Finding_Diagnosis_properties. 

?Finding rp:hasTotalFindingWeight ?TotalFindingWeight. 

?Finding rp:hasFindingStatus rp:9_FindingPresent. 

  } 

  GROUP BY ?Diagnosis } 

INSERT {?Diagnosis rp:hasDiagnosisTotalWeight ?TotalDiagnosisWeight } 

WHERE 

{SELECT ?Diagnosis  (SUM (?DiagnosisFindWeight+ ?DiagnosisObsWeight)AS 
?TotalDiagnosisWeight)  

  { 

?Diagnosis  rp:hasDiagnosisObsWeight ?DiagnosisObsWeight. 

  ?Diagnosis rp:hasDiagnosisFindWeight ?DiagnosisFindWeight. 

  } 

GROUP BY ?Diagnosis } 
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Once all the instances of the Diagnosis have the weight attached to it, the following queries (Figure 5-56 
& Figure 5-57) will rank them in descending order of weights.  The pulpal and apical diagnoses are ranked 
separately. 

 

Figure 5-56 - Pulpal diagnosis (Multi-level) ranked list SPARQL select query 

 

 

Figure 5-57 - Apical diagnosis (Multi-level) ranked list SPARQL select query 

The following tables (Table 5-15 & Table 5-16) describe the results obtained after running the DS Model 
against a test scenario/vignette using only the observations and the findings that are present in the patient 
data example in Table 5-14. 

Pulpal Diagnosis Diagnosis Weight 

rp:1_Dentinal_Hypersensitivity 6 

rp:1_Reversible_Pulpitis_DIAG 2 

rp:1_Symptomatic_Irreversible_Pulpitis_DIAG 2 

rp:1_Pain_of_Nonodontogenic_Origin_DIAG 0 

rp:1_Pulp_Necrosis_DIAG 0 

rp:1_Asymptomatic_Irreversible_Pulpitis_DIAG -1 

rp:1_Normal_Pulp_DIAG -4 

Table 5-15 - Pulpal Diagnosis (Multi-level) 

 SELECT ?PulpalDiagnosis ?DiagnosisTotalWeight 

WHERE 

{?PulpalDiagnosis  rp:hasDiagnosisTotalWeight ?DiagnosisTotalWeight. 

?PulpalDiagnosis a ?Diagnosis. 

?Diagnosis rdfs:subClassOf* rp:Pulpal_Disease. 

} ORDER BY desc (?DiagnosisTotalWeight) 

SELECT ?ApicalDiagnosis ?DiagnosisTotalWeight 

WHERE 

{?ApicalDiagnosis  rp:hasDiagnosisTotalWeight ?DiagnosisTotalWeight. 

?ApicalDiagnosis a ?Diagnosis. 

?Diagnosis rdfs:subClassOf* rp:Apical_Disease. 

} ORDER BY desc (?DiagnosisTotalWeight) 
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Apical Diagnosis Diagnosis Weight 

rp:1_Acute_apical_abscess_DIAG 1 

rp:1_Asymptomatic_Apical_Periodontitis_DIAG 0 

rp:1_Chronic_Apical_Abscess_DIAG 0 

rp:1_Normal_Apical_Tissues_DIAG 0 

rp:1_Pain_of_Nonodontogenic_Origin_DIAG 0 

rp:1_Symptomatic_Apical_Periodontitis_DIAG 0 

Table 5-16 - Apical Diagnosis (Multi-level) 

 

5.5.5 Summary 
The Multi-level DS Model can be accessed via Appendix 5 alongside the DS Model. The CDSS prototype 
demonstrating the generation of diagnostic recommendations can be accessed via Appendix 8. 

The Multi-level DS Model can be used with any of the case studies described in Section 5.4. The Multi-
level DS Model need additional SPARQL rules that indicate which Observations are present for 
the Findings and which Findings are present for the Diagnosis. These additional SPARQL rules 
will need to be added to the CDSS alongside the Multi-level DS Model to generate the 
recommendations. 

The Multi-level DS Model expands upon the DS Model and gives its more granularity when modelling 
intermediate states/sub-diagnostic states like Findings. It is a demonstration of how the sub-diagnostic 
states can be modelled by reusing an existing DS Model if the requirements dictate its development.   

The next section discusses the key findings and conclusions of this chapter. 

5.6 Discussion 
In this chapter, development of the DS Model was outlined. The different sections of the DS Model were 
explained using dentistry as an example. The DS Model was implemented using several CDSS 
architectures with each one outlining the different methods through which the DS Model can be 
implemented. The techniques used to model the DS Model can be used to create diagnostic inference 
models in domains other than dentistry.  

The DS Model uses argumentation-based methods to generate diagnostic recommendations. In 
Argumentation Theory the decision is characterised by having one or more candidates. Each candidate 
has a set of arguments that support or negate the candidate. The Chapter 4 optometry demonstrated the 
feasibility of using argumentation-based methods in optometry. The DS Model applies argumentation to 
support diagnostic decision making. The candidates are the different diagnoses and the arguments are the 
presence of absence of observations. The DS Model demonstrates how these diagnostic arguments can 
be modelled using OWL/RDF using existing ontology modelling tools.  

The DS Model demonstrates how the domain expert can capture his/her knowledge in an OWL model in 
the form of arguments. It allows the domain expert to add the degree of support for an argument in the 
form of weights within the same OWL ontology model. A simple weighting scheme of using +1 numeric 
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weight is used if the presence/absence of an observation supports a diagnosis. Similarly, +2 is used if the 
observation is highly indicative of a diagnosis and strongly support the diagnosis. Likewise, a negative 
numeric weight is used if the presence/absence of the observation negates a diagnosis. Weights above +2 
or below -2 can be used for observations that can confirm or completely negate a diagnosis. This 
weighting scheme is easy to understand for domain experts and can be used to provide effective 
diagnostic recommendations for the clinicians as demonstrated in the Chapter 4 Optometry study. The 
DS Model uses the same weighting scheme but in the domain of dentistry. However, one of the main 
problems associated with using a simple weighting scheme is the potential for clashes. Many observations 
can share the same weight for a diagnosis. In the early stages of the clinical encounter where there is little 
information there is potential for many diagnoses to share the same rank. Therefore, it is critical to study 
how accurate the rankings are in the early stages of the clinical encounter. Chapter 6 studies this aspect in 
more detail. The use of argumentation and modelling diagnostic arguments using semantic web 
technologies makes the DS Model different from other researchers who have developed ontology driven 
CDSSs. 

The work done by García-Crespo et al. (García-Crespo et al., 2010a) demonstrates the use of a diagnostic 
CDSS using OWL ontologies that is based on an external probabilistic system. The use of probabilities 
requires the use of an external probabilistic system to process the probabilities. The literature shows how 
argumentation-based methods have an advantage over other reasoning techniques such Bayesian 
reasoning. It is easier for the domain expert to capture his/her knowledge in the form of arguments. 
Translating the domain expert’s knowledge into Bayesian probabilities is only easy in well understood 
domains. The DS Model has demonstrated how diagnostic recommendations can be generated without 
the use of any external tools or specialized software.  

Others have demonstrated the use of OWL ontologies for medical diagnosis but have relied upon DL 
and SWRL/Jena rules to map the relationships between diagnosis and observations and provide 
diagnostic recommendations (Bertaud Gounot et al., 2011b; A Rodríguez-González et al., 2012; Bertaud-
Gounot, Duvauferrier and Burgun, 2012b; Donfack Guefack et al., 2012). However, these the models 
cannot represent the degree of support of a diagnosis due to limitations in the expressiveness of DL.  

DL were developed as a subset of First Order Logic and is based on First Order Logic (Krötzsch, 
Simancik and Horrocks, 2012). First Order Logic is highly expressive and can be used to express any fact. 
However, First Order Logic is very complex and is only semi-decidable. Therefore, it is not suitable for 
reasoning facts given a set of data, especially on the web. The reasoner could potentially run forever and 
not be able to provide a suitable inference from a set of data. DL are a family of logics that were derived 
from First Order Logics to remedy some of the problems with decidability. DL are more decidable and 
are simpler when compared to First Order Logics. There are several variations in DL and some variants 
are more decidable than others. OWL DL is the DL variant of the OWL language (Harmelen and 
McGuinness, 2004).  

DL uses the Open World Assumption. In Open World Assumption what is not known to be true is 
considered as an unknown entity. In the alternate Closed World Assumption what is not known to be 
true is considered false. The Open World Assumption is useful when working with distributed data and 
data from the web. When working with distributed data a new fact can be discovered at any time. The 
Closed World Assumption works when the system has complete information. This is used by many 
database applications. If a patient is not registered in the hospital EHR system and if you query for the 
patient’s details, then the system will look in the database and return a negative result if the patient is not 
found.  

However, in the Open World Assumption, the system operates with incomplete information particularly 
when the information is located on the web. Open World Assumption is helpful when we use inference 
engines and ontologies to infer new information from existing ones. If the patient’s EHR doesn’t have 
information about allergy to a medicine, we cannot assume that the patient doesn’t have allergy to the 
medicine. If someone queries for the patient’s medication allergy a system operating with an Open World 
Assumption will return an ‘unknown’ as result.  



198 
 

The Open World Assumption is used in DS Model to infer if a clinical diagnosis/observation belongs to 
a class of diagnoses/observations in the DS Model. We can use OWL DL axioms to define the criteria 
with which the diagnosis/observation belongs to a class or subsumed by another class. For example, if 
the data has been annotated using a SNOMED-CT code representing dental pain then this information 
can be used to infer the fact that the patient has previously complained about dental pain. We can use 
OWL axioms to represent this fact in the DS Model and the OWL reasoners can infer this fact 
automatically.  

However, for the CDSS to make a diagnostic decision the CDSS must know which observations are 
present or absent. It must use this information to give a definitive recommendation about the patient. DL 
cannot be used to represent ‘negation as failure’, as it uses an Open World Assumption. In ‘negation as 
failure’, the CDSS tries to prove that the observation is present. If the observation is present (i.e. it is 
proven) by examining the patient data, then its negation i.e. not (observation is present) fails. Therefore 
‘observation is absent’ fails.  

If the result of a query is unknown the CDSS cannot decide. It must use the information currently 
available to make the decision. Therefore, the Closed World reasoning must be used. DS Model uses 
SPARQL rules to close the world and infer which observations are present/absent based on the patient 
data. Other researchers have used OWL axioms to represent diagnostic criteria and use SWRL rules to 
overcome the limitations of DL to infer additional facts (Bertaud Gounot et al., 2011b; A Rodríguez-
González et al., 2012; Bertaud-Gounot, Duvauferrier and Burgun, 2012b; Donfack Guefack et al., 2012). 
However, SWRL cannot model disjunctions and negation as failure. SWRL cannot be used to model 
complex calculations using weights and query remote endpoints to retrieve patient information.  

The DL reasoners such as Pellet (Sirin et al., 2007a), can be used to infer facts about the patient and used 
for consistency checking during model development of the DS Model. The SPARQL rules help query 
remote endpoints for patient information, assert which observations are present/absent based on the 
patient data and calculate the weights for each diagnosis. The diagnostic recommendation is then 
presented using argumentation-based methods and the reasons for the recommendation are provided. 
The DS Model provides a simple method of modelling that takes advantage of all modelling capabilities 
of OWL and its DL reasoners to help in the modelling process. The use of OWL helps in reusing existing 
ontologies to capture the relations between Diagnoses and Observations. SPARQL rules overcome the 
limitation of existing semantic web rules languages and uses the weighting mechanism in the DS Model to 
generate a clinician friendly diagnostic recommendation.  

Most ontology driven diagnostic CDSS applications identified in literature do not provide a ranked 
diagnostic recommendation. The ones that do provide a ranked recommendation use external algorithms 
that incorporate other factors such as relative incidence of the disease into the decision making 
(Oberkampf et al., 2012; Oberkampf, Zillner and Bauer, 2012b). The CDSS applications in this study uses 
SPARQL rules on the DS Model to generate the ranking. There is no need for another rule language or 
custom ranking algorithm when using SPARQL rules to map the patient data to the DS Model and 
provide the diagnostic ranking. SPARQL is a W3C standard (W3C®, 2013b) and is widely implemented 
in several commercial and open-source triple stores. Therefore, additional software to generate the 
rankings are not needed. Any triple store capable of accepting RDF data and processing SPARQL queries 
could be used to generate diagnostic recommendations. The simple weighting scheme used and using 
SPARQL inference to sum the weights means the diagnostic recommendations and associated weights 
can be generated easily when compared to other methods. This is crucial for generating early diagnostic 
recommendations. The data needed to make the early diagnostic recommendation will come from the 
diagnostic encounter. The use of semantic web technology means that the data can be integrated easily. 
Using a light-weight mechanism to generate the rankings means large quantities of data can be processed 
to quickly generate the diagnostic recommendation in the early stages of the clinical encounter.  

The use of argumentation-based methods will result in a simple explanation of the patient’s condition. 
The clinician is presented with alternative diagnoses for the patient. The literature suggests that providing 
alternative diagnoses can help in System 1 reasoning process and help reduce diagnostic error. Similarly, 
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Croskerry (Croskerry, 2003a) has identified several strategies to reduce diagnostic errors due to cognitive 
causes. This includes considering alternatives, reducing reliance on memory, providing access to clear and 
well-organized information etc. The working hypotheses for the clinical case is generated early in the 
diagnostic encounter based on a few clinical patterns that are observed in the patient. These working 
hypotheses may not be accurate always and are tested by acquiring additional information from the 
patient. Using the illness script model, the working hypotheses is triggered early in the diagnostic 
encounter. Generating the working hypotheses early in the encounter helps the clinician to narrow the 
solution space. Using the working hypothesis, further information is gathered until one of the working 
hypotheses is confirmed. The argumentation-based diagnostic recommendations generated by the DS 
Model can help in this process by providing a list of diagnosis at various stages of the clinical encounter. 
It provides the reasons for making these recommendations in the form of arguments. This helps in the 
process of generating the working hypotheses and help in gathering additional information about the 
patient to help confirm or refute working hypotheses. The argumentation-based CDSS can help 
organizing the expert’s knowledge into arguments and provide recommendations that are easy to 
understand.   

The use of linked data technology and use of RDF will allow the CDSS implementing the DS Model to 
access disparate sources of data and use the data in diagnostic decision making. Case Study 1 
demonstrates a prototype CDSS application that uses the DS Model as the inference model to provide 
diagnostic recommendations in a standalone desktop application. Case Study 1 prototype uses a triple 
store as the backend to store the patient data. It demonstrates how a standalone CDSS application can 
use the DS Model to generate diagnostic recommendation. This case study demonstrates how the existing 
triple-stores and semantic web technology can be used to generate the diagnostic recommendations 
without the use of any other specialized tools. It cannot access linked data directly but can be modified if 
needed to access data from other sources, rather than relying entirely on the clinician input.  

Case Study 2 demonstrates how data stored in relational database can be translated to RDF format using 
the D2RQ method. The D2R server exposes the data in a MySQL relational database in the form of a 
SPARQL endpoint. Existing applications using relational databases as their backend can expose their data 
via the SPARQL endpoint. Linked data technology can then identify data that belongs to the patient, 
provided the data is described using standard ontologies. For example, the FOAF (Friend of a Friend) 
ontology provides a set of terms that can be used to describe people and link people with other types of 
information on the web (Brickley and Miller, 2014). The patient currently being examined by the clinician 
can be linked to the ‘foaf profile’ of the patient published on the web. If a web resource such as a PHR 
can describe the data using FOAF and other clinical terminologies, intelligent agents and other software 
can find the relevant information about the patient and can then use it in CDSS applications. The CDSS 
application can then use this data to generate early diagnostic recommendations and do not have to rely 
entirely on the data provided by the patient during the clinical encounter. Case Study 2 demonstrates how 
a CDSS application using the DS Model can use the data via a SPARQL endpoint to provide diagnostic 
recommendations. Linked data can be stored in triple stores or relational database and exposed via a 
SPARQL endpoint. The Case Study 2 prototype application can then access this data to provide 
diagnostic recommendations using the SERVICE keyword within the SPARQL query. The patient data 
can be stored in multiple SPARQL endpoints, and the CDSS application can access this data.  

Case Study 3 showed how the data in an EHR can be represented in a standardised manner using 
archetypes. The DIM model was represented as archetypes and separated into different sections. The 
different sections represent the major steps in the diagnostic encounter. The architecture developed in 
Case Study 3 will be used in Chapter 6 for evaluating the DS Model, and the diagnostic performance of 
the DS Model will be compared to that of dentists. APGD was used to generate patient data based on the 
archetype model in the RDF data format. The RDF data was added to a triple store alongside the DS 
Model and the CDSS application could use the data to generate the diagnostic recommendations. This 
Case Study demonstrates how patient data can be represented in different formats and using SPARQL 
rules the patient data can be mapped to inform/update the DS Model. To generate early diagnostic 
recommendations based on linked data on the web the CDSS must be able to use patient data in different 
formats and stored in disparate locations. Case Study 2 shows how the data can be accessed when stored 
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in disparate locations. Case Study 3 shows how the DS Model helps the CDSS use different forms of 
patient data by modifying the SPARQL rules.  

Case Study 4 expands on the architecture described in Case Study 2 and used the DIM to represent 
patient data in an open-source EHR. The data stored in the relational database of the EHR was then 
exported into the RDF format using the D2RQ software. The RDF data was then uploaded to a triple 
store alongside the DS Model and the patient data was used to generate diagnostic recommendations. 
One of the challenges facing current differential diagnosis generator systems is the problem of integration 
with EHR systems (Bond et al., 2012a) and this has affected the wide spread uptake of these systems in 
routine clinical practice. Case Study 4 shows how the patient data stored in currently available EHR 
systems can be used by the CDSS using the DS Model. However, exposing patient data via the SPARQL 
endpoints on EHR databases and querying them using complex SPARQL queries may result on slow 
performance and therefore the data should be exported for the CDSS application to use. This is not 
conducive for early diagnosis as the clinician will need diagnostic recommendations at each stage of the 
clinical encounter.  

One of the main challenges faced during development of the prototypes was the availability of actual 
patient data via linked data repositories. This is mainly due to concerns about patient data confidentiality 
and issue concerning the individual’s privacy on the linked web of data (Corsar, Edwards and Nelson, 
2013). Relational databases and healthcare web services go to extraordinary lengths to protect the 
patient’s privacy and providing complete protection remains a challenge (Sachdeva, Mchome and Bhalla, 
2010; Harman, Flite and Bond, 2012). Linked data and semantic web technologies have been developed 
to increase data sharing and interoperability. Ensuring privacy and confidentiality on the linked web of 
data is a challenge and some research has been done in area (Aron, 2013) though more needs to be done 
in the area of privacy and confidentiality of linked healthcare data.  

Case Study 3 and Case Study 4 prototypes show how the same DS Model can be used with different 
representations of patient data. The patient data in Case Study 3 is an archetype based model and patient 
data in OpenEMR is a model that is specific to that system. The same patient data can be represented in 
different forms and ability to generate diagnostic recommendations across these iso-semantic models (See 
5.4.3.1) is a key strength of the DS Model. By making minor modifications to the SPARQL 
present/absent insert queries the same CDSS prototype in both cases studies could generate diagnostic 
recommendations. The SPARQL rules that mapped the patient data to the DS Model was specific to that 
patient data model. If a standardised patient data representation is available, the mapping will need to be 
created only once. Such efforts are currently being undertaken by several different healthcare standards 
organizations such as OpenEHR and HL7. However, until a common patient data representation is 
available we will need rules for mapping the patient data to inference model.  

Developing a common standard that can be applicable across all healthcare environments has not been 
achieved due to a variety of reasons. The nature of medicine and the complexities associated with it 
means finding a standard that can suit a diverse set of use cases is difficult. The process of creating 
standards and adopting them is time consuming process. This results in a situation where there is 
competition amongst healthcare standards vying to become the common model (Booth, 2015d) although 
this does not achieve the aim of improving healthcare semantic interoperability.    

The Yosemite Project (Yosemiteproject.org, 2016) tries to address the problem of semantic 
interoperability amongst healthcare standards by using RDF as a universal representation language. The 
patient data can be represented in any format (including non-RDF formats). RDF captures the semantics 
of the data and can then be used to transform the data from one format to another. The figure below 
(Figure 5-58) from yosemiteproject.org (Booth, 2015a) illustrates how the meaning of different formats 
(HL7 v2.X  and FHIR) can be captured in a RDF graph structure.  
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Figure 5-58 - Different source formats, same RDF 

RDF enables us to capture the information content and the meaning of the content, separate from the 
data format and that quality makes RDF a suitable candidate for a universal information representation 
language (Booth, 2014b). One of the long-term goals of the Yosemite Project is to build a collaborative 
crowd-sourced translation rules hub that would hold the translation rules for translating data from one 
format to another (Booth, 2014a). SPARQL rules can be used alongside other rules languages or 
programming languages (Jena rules, SPIN, N3, Python) to perform this translation.  

The figure below (Figure 5-59) from yosemiteproject.org (Booth, 2015b) shows how the rules stored in 
the translation hub will help perform the translation. 

 

Figure 5-59 - Translating patient data 

Once these translation rules are in place there is no need for a common standard or data model or 
vocabulary across healthcare. The SPARQL present/absent insert rules used in this study can work in 
conjunction with the SPARQL rules of the Yosemite project to map one data representation to another 
and map the patient data to the DS Model.  

The Multi-level DS Model expands upon the DS Model and gives its more granularity when modelling 
intermediate states/sub-diagnostic states like Findings. It is a demonstration of how the sub-diagnostic 
states can be modelled by reusing an existing DS Model if the requirements dictate its development.  

The same DS Model can be expanded to include intermediate states via the Multi-level DS Model. The 
ability to model multiple levels has been a challenge faced by other researchers as well (Rodríguez et al., 
2009b). They had attempted to solve the problem of multi-level diagnosis by using an approach similar to 
the Multi-level DS Model where the diagnosis is supported by a finding, which in turn can be supported 
by another set of findings (Alejandro Rodríguez-González, Torres-Niño, Mayer, et al., 2012). They have 
used the term ‘finding’ to denote all clinical observations.  
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The Multi-level DS Model is an extension to the DS Model that can capture additional detail in the form 
in intermediate sub-diagnostic states. Argumentation-based methods used in the DS Model was used to 
develop arguments that supported each Finding. The presence or absence of the Finding was used as 
arguments to support a diagnosis.  The Finding is a sub-diagnostic state and there are use-cases where 
additional explanation needs to be provided to the clinician. Certain diagnostic tests are indicated when 
the dentist needs to confirm the status of the pulp. The finding ‘Inflammation of the pulp’ can be 
triggered by the observations (“Pain present” and “Pain initiated by cold”) during the clinical encounter 
and a ranked list of findings can be displayed to the clinician to help the clinician choose the appropriate 
test based on these findings or let the CDSS application choose the right test for the clinician. The 
findings can therefore be used as a trigger for generating guideline recommendations as well. However, 
Chapter 4 Optometry study showed how the guideline recommendations can be generated without the 
presence of findings, instead the Tallis CDSS uses abnormal values as triggers.  
 
In this study, the example of a joint observation was used to represent a finding and to demonstrate the 
CDSS generating a diagnostic recommendation in the Multi-level DS Model. A joint observation is an 
observation that is a combination of 2 different observations that are present. The presence of 2 clinical 
observations can have other interpretations as well. For example, the presence of pain and the 
observation “pain is initiated by cold” is a possible indication of inflammation of pulp. There are areas 
where this additional level of explanation is needed for the clinician.  

However, this additional level of explanation comes at the cost of increased complexity. The domain 
experts will need to model the relationships between the observations and the findings. In the DS Model 
the Diagnoses and the Observations can be reused from existing ontologies such as SNOMED-CT. 
Findings as a sub-diagnostic state are not captured in existing ontologies at present. Existing DS Models 
can be expanded to develop the Multi-level DS Model.  

The literature review did not provide examples of models like the Multi-level DS Model in other 
argumentation-based languages such as PROforma. Examples from literature that demonstrated 
modelling multiple levels of observations using ontologies did not model sub-diagnostic states as 
demonstrated in the Multi-level DS Model (Alejandro Rodríguez-González, Torres-Niño, Mayer, et al. 
2012). These can be adapted to create Multi-level DS Models in future if they find widespread use 
however, they have not found wide applicability to date.  

The guideline recommendations can be generated using abnormal values as triggers as demonstrated in 
the Chapter 4 study. Therefore, the efforts needed to develop the more complex Multi-level DS Model is 
not justified for routine diagnostic CDSS applications. Chapter 4 optometry study demonstrates the use 
of argumentation-based methods to generate diagnostic recommendations that are easy to understand. 
The DS Model used argumentation as well in addition to using semantic web technologies to model the 
arguments and to integrate information from disparate sources. In situations where the requirements 
dictate a need for findings as shown in the sections above, the Multi-level DS Model can be developed.  

This thesis is focussed on developing an ontology model capable of early diagnostic recommendations. 
The DS Model offers an elegant solution to this problem and expands on existing research in the use of 
argumentation-based methods and the use of ontologies for CDSSs. Developing a fully modelled Multi-
level DS Model that can generate recommendations for sub-diagnostic states and diagnosis and evaluating 
the results with clinical vignettes and comparing the results to dentists was considered beyond the scope 
of this thesis. Therefore, evaluation was restricted to the DS Model and Case Study 3 prototype in 
Chapter 6. The Case Study 3 prototype was chosen because of the use of APDG patient data generator 
tool that allows us to generate RDF patient vignettes easily for the purposes of evaluation.  

5.6.1 Conclusions 
Health information technology have been used to reduce diagnostic errors (El-Kareh, Hasan and Schiff, 
2013) and the existing tools can be classified into different categories: 

● Tools that assist in information gathering 
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● Tools that improve cognition through improved organization and display of information 
● Tools that assist in generating a differential diagnosis 
● Tools that assist in weighing the diagnosis 
● Tools that support selection of diagnostic tests and plans 
● Tools that enable access to diagnostic reference material and guidelines 
● Tools that enable patient follow-up and continued assessment of patient course and response to 

treatment 
● Tools that support screening by alerting presence of disease 
● Tools that assist in diagnostic collaboration 
● Tools that facilitate feedback and insight into diagnostic performance 

 
The DS Model CDSS belongs to the category of helping in information gathering. It helps the clinician in 
information in improving cognition through improved organization and display of information using 
argumentation. It helps in generating a differential diagnosis and the weights and arguments help in 
weighing the diagnosis.  

The DS Model demonstrates the ability to capture the expert’s knowledge in easy to understand manner 
using argumentation-based methods. The DS Model demonstrates how using arguments the diagnostic 
criteria can be modelled in OWL language. The case study prototypes show how data in various forms 
can be used with the DS Model and how using semantic web and linked data technologies data can be 
integrated to generate diagnostic recommendations. DS Model likewise demonstrates how the model can 
be created using existing ontology modelling tools and the diagnostic recommendations generated 
without the use of specialized software tools to perform inference. The ranking was generated using a 
simple weighting scheme that was demonstrated in Chapter 4. The diagnosis, ranking and the weights 
together better explain the patient’s condition for early diagnosis and thereby help reduce diagnostic 
error.  

In the next chapter, the DS Model will be evaluated with the help of the architecture developed in Case 
Study 3. Clinical vignettes were developed and used to evaluate the DS Model by comparing the results of 
ranked diagnostic recommendations with that of dentists.  

  



204 
 

6 Chapter 6 - Model evaluation and Results 
 

6.1 Introduction 

The DS Model described in the previous chapter (Chapter 5) was evaluated using an experiment 
described below. The CDSS prototype developed using the architecture described in Case Study 3 of the 
previous chapter (Chapter 5 – section - 5.4.3) was used for model evaluation. Any of the case study 
prototypes can be used for the evaluation. The architecture in Case Study 3 was used because of the ease 
of generating RDF patient data based on the vignettes using APDG tool for evaluating the performance 
of clinicians. APDG uses the archetype model and Patient Data Definition Language (PDDL) to create 
patient data instances (Huang et al. 2013). The APDG tool allows us to model different clinical vignettes 
in RDF format. An experimental evaluation of the impact of DS Model on clinician’s performance is 
important; however, this is beyond the scope of this thesis.  

In this chapter, the DS Model was evaluated by comparing the diagnostic results generated by the CDSS 
with the results generated by clinicians. The aim of this chapter is to answer the research question: 

How does an ontology driven diagnostic CDSS perform across all stages (early and late) of a clinical 
encounter and can it support the clinician in making reliable diagnostic decisions?  

The study aims to evaluate performance of the DS Model and study its performance across all stages of 
the clinical encounter. Literature review had identified cognitive causes such as premature closure bias as 
the main reason for diagnostic error. In premature closure the clinician prematurely halts the diagnostic 
decision-making process before all the data has been collected and the diagnosis has been fully verified. 
Interventions suggested to address this includes providing alternative diagnoses. Providing alternate 
diagnosis has been suggested as a method to improve System 1 process of reasoning. Providing early 
diagnostic recommendations have been suggested as a technique that could potentially reduce diagnostic 
error. Similarly, Croskerry (Croskerry 2003b) has identified several strategies to reduce diagnostic errors 
due to cognitive causes. This includes considering alternatives, reducing reliance on memory, providing 
access to clear and well-organized information etc. Other causes for diagnostic error include problems 
faced by clinicians in coordinating information from multiple sources.  

Clinicians rely on a differential diagnosis to identify the presence or absence of a disease when there are 
multiple alternatives available (Heneghan et al., 2009). A clinician examining a patient goes through a 
multi-step procedure to attain a differential diagnosis. According to hypothetico-deductive model of 
clinical reasoning (Elstein, Schwartz and Schwarz, 2002) clinicians (especially novice clinicians) obtain a 
diagnosis following the steps described below (Harbison, 1991).  

 At first, they obtain information by taking clinical history, complete the physical examination and 
conduct diagnostic tests if needed.  

 A working diagnosis (hypothesis) is generated and the clinicians consider all possible diagnoses in the 
form of a mental list.  

 Further information is sought from the patient to confirm or refute the working diagnosis (if 
needed). 

 The diagnosis is verified by weighting and combining information from all sources and then arriving 
at a conclusion that confirms one of the working diagnoses.  
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The working hypotheses for the clinical case are generated early in the diagnostic encounter based on a 
few clinical patterns that are observed in the patient. These working hypotheses may not be accurate 
always and are tested by acquiring additional information from the patient. Using the illness script model, 
the working hypotheses is triggered early in the diagnostic encounter. Generating the working hypotheses 
early in the encounter helps the clinician to narrow the solution space. Using the working hypothesis, 
further information is gathered until one of the working hypotheses is confirmed.  

The literature identified argumentation as an appropriate choice for presenting diagnostic 
recommendations to clinicians, especially early diagnostic recommendations. Argumentation using non-
monotonic logic where existing conclusions can be discarded in the light of current information and new 
conclusion can be formed. Early diagnosis is characterised by incomplete information. The clinician has 
not collected all the information needed to make a diagnosis. The clinician uses this incomplete 
information to form initial diagnostic hypotheses. Using this information, the clinician then obtains 
additional information about the patient and then uses this information to confirm or reject a hypothesis. 
The alternative diagnoses provided at different stages of the clinical encounter helps trigger appropriate 
illness scripts that can then be used by the clinician to find more information about the patient. The 
alternative diagnoses help in the process of generating the working hypotheses and help in gathering 
additional information about the patient to help confirm or refute working hypotheses. The alternate 
diagnostic recommendations presented in various stages of the clinical encounter alongside detailed 
reasons for the recommendations could potentially help reduce premature closure bias by informing the 
clinician about alternate diagnoses. This may stop the clinician from halting the diagnostic information 
gathering process and consider other alternatives.  

Providing alternate diagnosis helps in System 1 process of reasoning and helps reduce diagnostic error. 
The clinician would look at the ranked list of diagnoses and this triggers pattern recognition or activation 
of illness scripts that the clinician can use to elicit further information from the patient. The arguments 
for each diagnosis help explain the reasons for the recommendation. This could potentially help in System 
2 process of reasoning and help slow down the process of thinking and help analyse all the information 
available.  

The CDSS must make an inference based on the incomplete information collected by the clinicians in the 
early stages of the clinical encounter and suggest a diagnostic recommendation. The web is excellent 
source of information that can be used to access additional information about a patient. However, the 
information is presented in various formats and due to problems in semantic interoperability the data 
cannot be integrated to support inference in diagnostic CDSSs.  

Though argumentation-based CDSSs have been developed for improving medical decision making in 
areas such as diagnosis, management, treatment planning, risk assessment etc., studies so far have not 
evaluated the impact of an argumentation-based diagnostic CDSS on the diagnostic performance of 
clinicians. Chapter 4 Optometry study evaluated impact of argumentation-based diagnostic CDSS on the 
diagnostic performance of optometrists. The Chapter 4 Study demonstrated the feasibility of developing 
an argumentation-based diagnostic CDSS using existing tools and highlighted the deficiencies of existing 
argumentation-based CDSS tools. The study showed that argumentation-based diagnostic CDSS could 
potentially help reduce diagnostic error. It demonstrated the feasibility of the argumentation approach for 
creating diagnostic CDSSs and the users found the system easy to use and recommendations helpful.  

Existing argumentation-based tools such as Tallis uses a proprietary format to represent the PROforma 
model. The model can only be modelled and executed using proprietary software such as Tallis. 
Integration with EHRs for collecting patient data to generate diagnostic recommendations will need 
expensive interface engines that can translate the patient data from different formats to a format that can 
be understood by the Tallis inference engine. The need for a CDSS ontology model was identified that 
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could use argumentation as the basis to generate diagnostic recommendations. Chapter 4 study evaluated 
the impact of guideline recommendations on the information gathering of optometrists.  

Chapter 5 detailed the development of this argumentation-based ontology driven diagnostic CDSS model 
called the DS Model and CDSS prototypes that can use this DS Model to generate diagnostic 
recommendations. The DS Model is aimed at generating diagnostic recommendations at all stages of the 
clinical encounter. The ontology could be modelled using any existing ontology editing tool. 

The simple weighting scheme used in DS Model allows the domain expert to capture his/her knowledge 
in a relatively easy manner. The simple weighting scheme was derived from the weighting scheme used in 
the Chapter 4 Optometry study. Chapter 4 study validated the model and studies the impact of diagnostic 
recommendation on decision making of optometrists. However, a comprehensive test evaluating the 
diagnostic accuracy of the PROforma argumentation-based CDSS was not performed.  

The DS Model used a simple summation method to calculate the overall weights for each diagnosis based 
on the presence or absence of an observation. PROforma argumentation-based decisions likewise uses a 
similar summation method calculate overall weights for the diagnosis. The DS Model can be used with 
any off-the-shelf triple store that can read RDF data and process SPARQL queries. No specialized 
software is needed to perform inference.  

The simple weighting scheme and the simple method for calculating weights has the potential for 
problems when the DS Model is used in real life situations. There can be tendency for diagnoses to share 
the ranking especially when there is not enough information to make a diagnosis. This study evaluates the 
performance of the DS Model and compares the ranking with that of dentists. The study will allow us to 
evaluate the effectiveness of the simple weighing scheme and the summation method used to generate 
diagnostic ranking. 

Clinical vignettes were created and ranked diagnostic recommendations were generated using the CDSS. 
The same vignettes were presented in a tabular format to the dentists and they were asked to provide 
diagnostic recommendations for each vignette presented. The performance of dentists was used as the 
benchmark against which the performance of the DS Model is compared.  

The argumentation-based CDSS can help organizing the expert’s knowledge into arguments and provide 
recommendations that are easy to understand. However, the accuracy of the ranking the DS Model will 
need to be further evaluated to understand if the DS Model can help clinicians in formulating the 
diagnostic hypothesis. The ranked list generated by the CDSS at the early stages of the clinical encounter 
may not be as accurate or precise when compared to the later stages or when compared to a clinician. 
How much does it differ and where can improvements be made in the diagnostic recommendations? 
Using linked data and semantic web technology it is possible to obtain data from several different 
sources. It is therefore important to identify areas where additional data needs to be obtained and areas 
where data obtained from the patient alone will suffice in diagnostic decision making. 

The purpose of the evaluation is to compare the ranked diagnostic recommendations generated by the 
CDSS at all stages of the clinical encounter with the ranked diagnostic recommendations provided by the 
dentists. The different stages of the clinical encounter as represented in an information model have been 
described in section - 6.2. The term stage is used to denote the different stages of the clinical encounter. 
The term section is used to denote the different sections of the information model that correspond to the 
stage and represent the stage. The dental adaptation of the DS Model which forms the core logical 
component of the CDSS, the diagnostic recommendations generated by the CDSS using the DS Model 
and SPARQL rules from a simulated dataset will form the focus of the system evaluation that will be 
described in section - 6.3.5.2.  
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6.2 Sections of the Information Model 

The information model used in a comprehensive and systematic examination of a patient presenting to 
the dental clinic is presented in this section. The information model forms the basis for developing data 
capturing forms and designing the architecture of EHR. Standardised representations of information 
models captured with the help of languages such as OpenEHR (openEHR Foundation, 2016) are 
available, or the information model can be captured in a structured format (for example, tabular) from 
domain experts and later represented using standardised information representation languages. The 
information model used here has been delineated into several sections for purposes of this study. The 
information model has been used to develop the dental adaptation of the DS Model and the clinical 
vignettes used for evaluating the DS Model. Each section contains units of information that are grouped 
together representing different stages of the clinical encounter. The information model used in this study 
is based on the DIM model (Acharya, Mital and Schleyer, 2009a) which has been adapted and extended 
where necessary to support dental diagnostic decision making.  

 Chief Complaint (CC):  In this section the patient’s chief complaint, clinical history of the 
complaint, family history and medical history is included. For the purposes of this study the 
demographic information of the patient was included in this section as well. The section was 
called Chief Complaint (CC) because that is the main information collected by the clinician that 
provides the initial working diagnosis for the clinician. For example, if the patient presents with 
pain, then a brief description of the pain followed by the history and characteristics of the pain 
will form the core of the CC that is relevant to the diagnosis (See Table 6-1). The CDSS must 
generate a diagnosis at this section based on the data collected. In current clinical environments, 
such as dental clinics, the information model is restricted to collecting data that has been 
obtained from the patient directly. Therefore, the CDSS is limited to using the data collected 
directly from the patient. However, it is possible that history of the pain and other medical 
history relevant to the diagnosis are stored in other data sources. Using linked data technology, 
the CDSS software or intelligent agents can obtain information relevant to the patient’s diagnosis 
within the context of CC and support decision making. Therefore, it is important to understand 
how well the CDSS performs using information models in the configurations currently used in 
dental environments to identify areas where additional information can be used to improve early 
diagnosis.  

 Extra Oral Examination (EO): Once the CC section is complete the clinician then progresses to 
Extra Oral Examination. In this section the dentist will examine the areas of the face and neck 
and examine tissues and glands such as lymph nodes to check if they exhibit signs relevant to the 
main complaint of the patient. For example, a patient with an infected tooth may complain of 
pain. The information about pain is collected in CC. However even before examining the tooth 
directly it is possible to detect if infection has spread from the local environment of the tooth to 
the patient’s system by examining the status of the patient’s lymph nodes (Murdock, 2016). The 
CDSS must combine information from both CC and EO to provide a diagnostic 
recommendation at this section as well. If the lymph nodes are indeed swollen or tender, then the 
CDSS should provide a diagnostic recommendation of “Apical Abscess” early on. This may 
trigger or encourage the clinician to enquire if the patient had an episode of fever or malaise 
recently if the information is not captured in the information model. The information may 
remind the clinician to further probe the nature of the fever. The CDSS will be able to query data 
sources such as a General Practitioner’s (GP) EHR about the most recent episode of fever. 
Sometimes patients can present to the GP’s clinic or Accident and Emergency with fever and 
pain instead of the dentist. The CDSS should be able to access the data residing in these systems 
as well. The architectures described in Chapter 5 (Case Study 3 & 4) explain how the data can be 
used from disparate sources to support decision making. 
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 Intra Oral Examination (IO): The dentist will then proceed to examine the inside of the patient’s 
mouth to examine the hard and soft tissues. The hard tissues include the teeth and surrounding 
tissues and soft tissue include structures such as tongue and cheek. If the dentist suspects the 
pain is caused by a decayed tooth then a detailed examination of the teeth, especially teeth on the 
side indicated by the patient in CC is done. If the teeth are found to be normal or not the cause 
of the pain, other tissues are examined. Sometimes if no relevant observations are found the 
dentist might go back to EO to check if any clinical signs have been missed during the EO 
examination. The ranked list provided by the CDSS should be able to highlight diagnosis that 
may be relevant, and the dentist has missed. For example, if the patient complains of pain during 
chewing and there are no relevant IO observations then the CDSS should highlight a non-
odontogenic (non-dental) diagnosis as a possible working diagnosis.  

 Clinical Tests (CT): The data collected from CC and the physical examination sections (EO and 
IO) will be used to identify clinical tests to be performed. Clinical Tests (sometimes called 
Diagnostic tests) can occur in several successive rounds. Sometimes tests must be repeated. The 
most recent value will be used by the dentist and the CDSS. In some cases, the patient is given a 
tentative diagnosis and the referred to a diagnostic testing centre for blood or imaging tests and 
the data used to formulate a final diagnosis. CT includes tests conducted to assess the condition 
of the pulp of the tooth. The condition of the pulp needs to be assessed first and any pathology 
ruled out before other potential diagnoses are considered or excluded. In the information model 
used in this study, diagnostic imaging in the form of radiographs has been modelled in a separate 
section. CT can indicate the presence/absence of pathology in a tooth. However, this should be 
confirmed with the help of radiographs and therefore the data items were separated into a 
different section. In a realistic clinical scenario at this section of the information model the CDSS 
should be able to provide a diagnosis recommendation as a ranked list that closely matches that 
of the final diagnosis of the clinician. The most likely recommendations would be located on the 
top of the list. The least likely recommendations would be positioned at the bottom of the list. 
Radiographs are only needed to confirm/refute this hypothesis.  

 Radiographic Examination (RE): In this section, radiographs of the area of interest are 
developed. The patient should not be exposed to any additional radiation that what is required 
for routine clinical use. The risk of harm to the patient from routine dental radiographs is low 
(Abbott, 2000). Nevertheless, the data from the CT should be used to identify areas of interest 
and diagnostic radiographs are generated. The radiographs are examined by the dentist or a 
specialist radiologist and then a report of clinically relevant observations are created. At this 
section the CDSS should be able to provide a diagnostic recommendation that is either as good 
as or better than the dentist’s own recommendation. Current CDSS systems use the information 
collected during the encounter to generate the diagnostic recommendation. Therefore, if the 
clinician has entered the right information into the system and the diagnostic inference model has 
been tested and evaluated it should provide a recommendation that is at least as good as the 
clinician’s recommendation.    

Once CT has been completed the diagnosis is confirmed therefore it is important that the diagnostic 
CDSS recommend the right diagnosis in the early stage, i.e. before the CT data is collected. The tests 
performed in CT are sometimes invasive and can be expensive for patients. Getting the right 
recommendations at an early stage helps the clinician choose the appropriate test(s). Once the clinician 
has made a mental model of the patient and framed a working diagnosis based on the data collected it is 
difficult for the CDSS or any suggestion to have an impact on helping the clinician change his/her earlier 
assertion. This premature conclusion or premature closure bias will prevent the clinician from gathering 
more information and integrating this information to formulate a new hypothesis (Dailey, 1952).  The 
evidence  indicates that early diagnostic recommendations can help clinicians, especially primary care 
clinicians (including dentists) in improving diagnostic accuracy (Kostopoulou et al., 2015b) especially in 
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cases where the cases have an atypical clinical presentation and there is a higher likelihood of producing a 
diagnostic error (Kostopoulou, Delaney and Munro, 2008b). The problem of diagnostic error gets 
compounded because of the increasing pressures on the primary care clinician to meet patient targets and 
can therefore lead to medical errors (Barraclough, 2013). Assessing the performance of the DS Model at 
different sections of the information model can help us identify the areas where the CDSS underperforms 
and will help us expand the information model to include data from other sources. The DS Model is only 
as good as the data entered/obtained. By comparing the performance of the CDSS using the DS Model 
with dentists we can identify deficient areas. It will help us identify potential types of external sources of 
data that can be linked to the DS Model to support diagnosis. 

6.3 Method 
6.3.1 Clinical Domain Selection 

Dental caries is a major public health problem affecting 60-90% of school children in most industrialised 
nations (Iheozor-Ejiofor et al., 2015). If left untreated the dental caries can progress to inflammation or 
irritation of the dental pulp, which can then result in a dental abscess requiring Root Canal Treatment 
(RCT) or extraction of the infected tooth. One of the most common symptoms of deep dental caries and 
dental inflammation/infections is pain in the orofacial region. Dental pulp is the neuro-vascular tissue 
that resides within the tooth and occupies the central cavity of the tooth. The pain that the patient 
experiences when there is trauma or dental caries is an indication of the nervous tissue in the pulp being 
irritated.  

There are several different diagnoses reflecting the state of the dental pulp. In some cases, the dental pulp 
will be vital and can be saved. In other cases, the dental infection has spread too deep into the tooth to 
prevent the rescue the dental pulp. In some cases, the patient does not experience any pain. There are 
other non-odontogenic (non-dental) causes of pain that can simulate a dental pain (Yatani et al., 2014). 
Diagnostic error can result in many patients receiving dental treatment when in fact the cause for the 
dental pain was non-odontogenic. Acute and chronic dental/orofacial pain can have different clinical 
manifestations. It is one of the most common complaints that patients visiting the dental clinic have. As 
many as 1 in 6 patients have reported orofacial pain in the past year due to odontogenic and non-
odontogenic causes (Horst et al., 2015). 

Dental pain is one of the most common diagnostic challenges that the average dental practitioner 
encounters in his/her clinic. One of the main problems with dental pain is the difficulty of diagnosing the 
cause of dental pain. The main reason for this is the subjective nature of the symptoms experienced by 
the patient and the diagnostic tools available to the clinician. The clinical signs and symptoms do not 
correlate with the pathological findings of the tooth. Once diagnosed, the management is relatively 
straightforward for the clinician. Therefore, there is a need for tools that can assist the clinician in 
identifying the most likely diagnoses the patient may be having.  

Endodontics and dental pain has been chosen as the test domain within dentistry due to various factors 
(Bender, 2000) .  

 Indirect signs and symptoms: Dental infections of the dental pulp and the surrounding tissues 
take place in a confined and concealed tissue that cannot be visually inspected in most cases. The 
clinician must rely on indirect information to assess the patient and arrive at a diagnosis. This 
increases the risk of the clinician making a false-positive or a false-negative diagnosis. Diagnosis 
is currently based on the presence and nature of pain; and the presence and type of exposure of 
the dental pulp. 

 Lack of the discriminatory ability of patient’s description or response to pain: There is no direct 
relationship between the amount of tissue damage and the reported pain. 
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 Multiple sources of diagnostic information: Nature of complaint, dental history, clinical 
examination and radiographic examination. 

 Diagnostic confusion due to the nature of dental pain and confounding factors: 

 Pulpal inflammation can cause intense pain; but at the same time teeth can develop total pulpal 
necrosis (death of pulp) without any symptoms. 

 The type of pain can vary from sharp or shooting pain that is well localized; to dull and diffuse 
pain.  

 Pain is not a reliable measure to evaluate the condition of the pulp. There is a wide variation in 
clinical presentation of pain in pulpal inflammation. 

 Well understood pathophysiology: The underlying cause of dental caries and subsequent effects 
on the human body are well understood and documented. 

Dental pain forms an ideal test domain for evaluation as the author has a background in dentistry. The 
main purpose of the dental version of the DS Model is to assist dentists in diagnosing dental pain.  

 

6.3.2 Knowledge Acquisition 
The main source of knowledge that was used to develop the dental pain DS Model was Cohen's Pathways 
of the Pulp (Hargreaves, Cohen and Berman, 2011). Other knowledge sources used for developing the 
diagnostic decision model and the clinical vignettes include: 

 Endodontics: Part 2 Diagnosis and treatment planning (Carrotte, 2004). 

 AAE Consensus Conference Recommended Diagnostic Terminology (AAE, 2009; Glickman, 
2009) 

 An Investigation Into Differential Diagnosis of Pulp and Periapical Pain: A Penn Endo 
Database Study (Iqbal, Kim and Yoon, 2007). 

 Identify and Define All Diagnostic Terms for Pulpal Health and Disease States (Levin et al., 
2009). 

 Electric pulp testing: a review (Lin and Chandler, 2008) 

 Assessment of pulp vitality: a review (Gopikrishna, Pradeep and Venkateshbabu, 2009) 

 Dental Diagnostic System (Kalenderian et al., 2011a) 

The knowledge sources described above was used to develop the dental version of the DS Model and the 
vignettes used in the study. The DS Model can be used as a basis for developing a diagnostic model in 
other domains such as Ophthalmology if needed.  

 

6.3.3 Clinical vignette 
Ideally in evaluation of CDSS models, researchers should use real-life patient data. However, because of 
strict regulations regarding the use of patient data it was decided against using actual patient data and rely 
on clinical vignettes for model evaluation.  Clinical vignettes are a valid tool for evaluating how clinicians 
would perform under simulated conditions (Peabody et al., 2004; Mettes et al., 2010; Shah, Edgar and 
Evans, 2010; Kostopoulou et al., 2015b). Since this study is comparing the performance of the DS Model 
against dentists it was decided to create clinical vignettes on a wide range of dental pain diagnoses and use 
them for evaluation.  

The information model and its sections presented in the section above (section - 6.2) was used as the 
basis for developing the clinical vignettes. A sample vignette used for the evaluation has been presented 
below (Table 6-1). The vignettes were presented to the dentists in a tabular format, with a summary of the 
data on the top. The main sections of the information model have several sub-sections. Each sub-section 
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has several slots. Each slot has a value to denote that vignette. In a different vignette the sections and the 
slots will remain the same, however the values will change depending on the vignette. The vignettes were 
developed with the help of an Endodontist. The vignettes were developed first by the author and then 
independently validated by the Endodontist. The Endodontist has nearly 8 years’ experience in primary 
care dentistry and has specialist training in the field of Endodontics. 

 

Patient summary Patient complains of pain in relation to tooth in lower right jaw. 
Patient had pain for the past week or so. 
Pain is a sharp and intense pain that lasts for few seconds. Pain is initiated by 
drinking cold water or when eating ice-cream. 
Pain subsides when stimulus is removed. 
Patient has history of diabetes. 
On examination, caries has been found in relation to #46 (Lower Right First 
Molar) 
Caries extends to inner dentine of the tooth. 
Pulp tests were conducted on the suspect tooth and neighbouring teeth.  
The tooth responds to cold stimulus with moderate pain. Pain subsides on 
removal of stimulus. 
Tooth responds to mild electric stimulus. 
Radiographic examination showed radiolucency in crown of #46 that extends to 
inner dentine. 
No radiographic changes observed periapically. 

Chief Complaint 
 SLOT VALUE 
Patient Information  
 Gender Male 
 Birth Year 1975 
 Occupation Journalist 
Medical History  
 General health status No relevant history 
 Current medical history Diabetes Mellitus Type II 
 Current medications Metformin: 500 mg orally twice a day 
 Allergies None 
Family History  
 Diabetes Yes, mother has Diabetes Mellitus Type II 
 Hypertension Yes, father has Hypertension 
 Cancer None 
 Infectious Disease None 
  
Patient Complaint "Pain in relation to right lower jaw when eating or drinking cold food / drink" 
 Pain Present Yes 
 Location of pain In relation to lower right area of jaw 
 Pain initiated by Cold food and drink 
 Pain relieved by Removal of stimulus 
 Quality of pain Sharp and intense pain 
 Location of radiation of pain N/A 
 Intensity of Pain (On a scale 

of 0-10) 
4 (Moderate Pain) 

 When did you first notice 
symptoms? 

When eating ice-cream 

 History of pain Pain has been present intermittently for the 
past week 

 Locate tooth Yes, patient can locate tooth 
 Onset of pain Stimulation required for onset 
 Progression of pain Pain present and pain character has not 

changed over time 
 Does the pain keep you awake 

at night? 
No 

 Duration of pain Pain lasts for seconds 
Dental history  
 History of clenching teeth? No 
 History of tooth trauma? No 
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 Do you wear Night guard? No 
 Previous RCT? No 
 Recent restoration? No 

Extra Oral Examination 
Lymph node exam  
 Lymph node firm No 
 Lymph node swelling No 
 Lymph node tenderness No 
Extra Oral swelling exam  
 Extra Oral swelling present No 
 Fluctuance of swelling N/A 
 Location of extra oral swelling N/A 
 Spread of extra oral swelling N/A 
 Type of extra oral swelling N/A 
 Extra Oral Sinus No 
Extra Oral tests  
 Pain present during functional 

evaluation of muscles? 
No 

 Pain present during palpation 
of muscles? 

No 

 Pain present during palpation 
over sinus? 

No 

 TMJ Exam Within Normal Limits 

Intra Oral Examination 
Soft Tissue Examination  
 Oral cancer exam Within Normal Limits 
 Hard palate exam Within Normal Limits 
 Soft palate exam Within Normal Limits 
 Floor of the mouth Within Normal Limits 
 Lips Aphthous ulcer present on lower lip 
 Pharynx and fauces Within Normal Limits 
 Tongue Within Normal Limits 
Hard tissue examination  
 Oral Hygiene Fair 
 Missing teeth None 
 Caries present? Present 
 Type of caries present Primary active extensive dentin caries inner 

pulpal one-third of dentin 
 Location of caries (in relation 

to) 
Tooth Number: #46 

Intra Oral swelling examination  
 Intra Oral swelling present No 
 Fluctuance of Intra Oral 

swelling 
N/A 

 Location of Intra Oral swelling N/A 
 Spread of Intra Oral swelling Spread of Intra Oral swelling 
 Intra Oral Sinus No 
Previous Restoration 
Examination 

 

 Existing restoration Yes, Tooth number: #27 
 Existing restoration type Amalgam restoration 
 Defective restoration No 
 Defective restoration type N/A 
Periodontal pockets 
examination 

 

 Periodontal pockets present No 
 Periodontal pockets depth No 
 Pseudo pockets present No 
 Pseudo pockets depth No 
 Furcation involvement? No 
 Tooth with furcation No 
 Degree of furcation 

involvement? 
No 

 Tooth Mobility? No 
 Mobile tooth No 
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 Mobility grade No 

Clinical Tests 

Palpation test  

Apical palpation Tooth tested Tooth Number: #46 
 Apical palpation response Within Normal Limits 
 Apical palpation response 

severity 
N/A 

Percussion test  
Axial percussion Tooth tested Tooth Number: #46 
 Axial percussion response Within Normal Limits 
 Axial percussion response 

severity 
N/A 

Cold pulp test- 
(Application of ice to tooth of 
interest) 

 

 Tooth tested Tooth Number: #46 
 Nature of cold pulp test 

response 
Positive response 

 Positive cold pulp test severity Moderate 
 Positive cold pulp test 

response type 
Pain subsides on removal of stimulus 

Hot pulp test- 
(Application of heated  
Gutta Percha to tooth of 
interest) 

 

 Tooth tested Tooth Number: #46 
 Nature of hot pulp test 

response 
Positive response 

 Positive hot pulp test severity Mild 
 Positive hot pulp test response 

type 
Within Normal Limits 

Electric pulp test  
 Tooth tested Tooth Number: #46 
 Nature of electric pulp test 

response 
Within Normal Limits 

Bite test (using bite block)  
 Tooth tested Tooth Number: #46 
 Bite test result Within Normal Limits 
 Positive bite test result 

response 
N/A 

 Positive bite test result severity N/A 
Trans-illumination test  
 Trans-illumination test result N/A 
Test Cavity  
 Test Cavity result N/A 
Local anaesthetic test/Selective 
anaesthesia 

 

 Local anaesthetic test result N/A 

Radiographic Examination 
Bone level  
radiographic examination 

 

 Bone loss Absent 
 Bone level condition Normal 
Tooth radiographic examination  
 Radiolucencies Present 
 Radiolucencies type Radiolucency reaching the inner one-third of 

dentin, clinically cavitated 
 Radiolucency location (in 

relation to) 
Tooth number: #46 

 Radiopacities Absent 
Tooth Restoration  
radiographic examination 

 

 Defective margins in 
radiographs 

N/A 
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Lamina dura  
Radiographic Examination 

 

 Condition of Lamina dura Normal 
Periodontal Tissue  
Radiographic Examination 

 

 Periapical radiopacities Absent 
 Periapical radiopacities tooth N/A 
 Periapical radiolucency Absent 
 Periapical radiolucency tooth N/A 
 Periradicular radiolucency Absent 
 Tooth resorption Absent 
 Widened periodontal ligament 

space 
Absent 

Table 6-1 - Sample patient vignette 

Each vignette has 2 diagnoses- Pulpal and Apical diagnoses. Table 6-2 shows a breakdown of the type of 
clinical vignettes that were created with the help of the Endodontist and the pulpal and apical diagnoses 
of each vignette. All the vignettes can be accessed in tabular format in Appendix 11. 

Vignette 
ID Pulpal diagnosis Apical diagnosis 

1 Normal Pulpal Tissues Normal Apical Tissues 
2 Reversible Pulpitis Normal Apical Tissues 
3 Symptomatic Irreversible Pulpitis Normal Apical Tissues 
4 Asymptomatic Irreversible Pulpitis Normal Apical Tissues 
5 Pulp Necrosis Asymptomatic Apical Periodontitis 
6 Pain of Nonodontogenic Origin Pain of Nonodontogenic Origin 
7 Symptomatic Irreversible Pulpitis Symptomatic Apical Periodontitis 
8 Pulp Necrosis Asymptomatic Apical Periodontitis 
9 Pulp Necrosis Acute Apical Abscess 
10 Pulp Necrosis Chronic Apical Abscess 
11 Pulp Necrosis Symptomatic Apical Periodontitis 
12 Pulp Necrosis Chronic Apical Abscess 
13 Dentinal Hypersensitivity Normal Apical Tissues 
14 Symptomatic Irreversible Pulpitis Normal Apical Tissues 
15 Asymptomatic Irreversible Pulpitis Normal Apical Tissues 
16 Pulp Necrosis Asymptomatic Apical Periodontitis 
17 Pain of Nonodontogenic Origin Pain of Nonodontogenic Origin 
18 Symptomatic Irreversible Pulpitis Symptomatic Apical Periodontitis 
19 Pulp Necrosis Asymptomatic Apical Periodontitis 
20 Pulp Necrosis Acute Apical Abscess 
21 Pulp Necrosis Chronic Apical Abscess 
22 Asymptomatic Irreversible Pulpitis Normal Apical Tissues 
23 Symptomatic Irreversible Pulpitis Normal Apical Tissues 
24 Reversible Pulpitis Normal Apical Tissues 
25 Normal Pulpal Tissues Normal Apical Tissues 

Table 6-2 - Clinical vignettes diagnoses 

The terminology used in Pulpal and Apical diagnosis has been derived from the AAE (American 
Academy of Endodontics) Consensus Conference Recommended Diagnostic Terminology (AAE, 2009). 
The diagnoses indicate the clinical state of the pulp. For example, Reversible Pulpitis indicate a reversible 
nature a pulpal inflammation (pulpitis). “itis” is a commonly used suffix in medicine to indicate an 
inflammation of a tissue (Wiktionary, 2016). The inflammation can be caused by several different causes 
including trauma, facture of the tooth and dental caries. However, in this study it was decided to create 
clinical vignettes that can be described without the use of images or photographs. The vignettes primarily 
included cases where the pathology has been caused by dental caries which can be described using 
existing terminology. The correct diagnoses for vignettes were determined by the Endodontist after 
creating the vignettes. The Pulpal and Apical diagnoses provided by the Endodontist comprised of the 
most likely diagnoses that the vignette would have. The Endodontist provided a next most likely 
diagnosis for each vignette. The most likely diagnosis was called the Rank 1 diagnosis, and the next most 
likely diagnosis was called Rank 2 diagnosis for this study. 
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6.3.4 Participants 
A group of dentists (n=20) were recruited for the study. This study was undertaken by practising dentists 
who are either independent, part of a regional or national chain, or practising in an educational institution 
within India. The dentists were recruited via email. An email containing information about the trial and 
link to the trial web application were sent directly to the dentists (See Appendix 10 – section 10.1). The 
dentists were offered the equivalent of £10/- as compensation for completing 5 clinical vignettes (a set). 
The total duration taken for completing 5 vignettes was approximately 30 minutes.   

6.3.4.1 Dentists background 
Most the dentists recruited for the study fell in the 25-34 age groups (Figure 6-1). This meant that most 
the dentists who participated in the study had similar years of experience (Figure 6-2). Most of the 
participants had 6-8 years of clinical experience at the time of the study. This group of primary care 
dentists would therefore have enough experience to deal with the Endodontic cases presented in the 
vignettes. Only specialist Endodontists would have more knowledge dealing with these vignettes. This is 
good group to compare the performance of the DS Model as the dentists would have some experience 
managing cases like these in routine practices. Novice clinicians may not have the opportunity to manage 
different types of cases and therefore may not accurately diagnose the patients. Using novice dentists 
could therefore bias the results of the evaluation as it could artificially improve the performance of the 
CDSS as the DS Model was compared to the dentists. Half of the participants were Male (Figure 6-3). 

 

Figure 6-1 - Age range 

 

 

Figure 6-2 - Year of qualification 
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Figure 6-3 - Gender 

More than half (60%) of the dentists recruited for the study had no post graduate qualifications (Figure 
6-4). Dentists who had post-graduate qualifications such as ‘Master of Dental Surgery’ in subjects other 
than Endodontics were recruited for the study.  

 

Figure 6-4 - Post-graduate qualifications 

The dentists in the study came from a wide range of clinical practice backgrounds including independent 
practice, group practice etc. (Figure 6-5). Almost all dentists will come across cases of dental pain at some 
stage of their careers as dental caries is highly prevalent in India, especially among school children, and a 
significant proportion of patients (35%) experiencing different degrees of dental pain (Slade, 2001; 
Kumar, Acharya and Pentapati, 2014).  

 

Figure 6-5 - Current dental practice 
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6.3.5 Procedure 

6.3.5.1 Data collection from dentists 
The study was approved by City University London Department of Computer Science Research Ethics 
Committee (See Appendix 10 – section 10.2). Participants were given the information about the study via 
email. The information contained details of the study purpose, duration, right to withdrawal from study, 
dentist data confidentiality, information about compensation, ethical committee clearances and study 
team contact details. If the participants had any questions they were encouraged to contact the study 
team.  

This study is a controlled experiment in which each dentist was presented with 5 vignettes. The total 
duration taken to complete all 5 vignettes (including instructions) did not exceed 30 minutes. The 
vignettes were randomly assigned to the clinicians. The order in which the vignettes were presented was 
randomised to eliminate order effects. Some dentists agreed to look at additional sets of vignettes. Care 
was taken to provide these dentists with a different set of vignettes that were not included in the first 
round. Therefore, data equivalent of 24 attempts at a set (each containing 5) of vignettes or 120 individual 
attempts at the vignettes in total was collected. 

Data collection in this study took place via the web. The dentists were sent an email with a link to an 
online survey form (Google Forms, 2016). Once the participants click on the link it will take them to the 
study information. Once they have read the information and agreed to its contents it will take them to the 
online consent form.  Only when the participants have agreed to the terms and conditions specified in the 
consent form will they be taken to the data collection form.  

In the data collection form, the dentists were provided with a link to the vignette that was presented in 
the tabular format shown in Table 6-1.  The vignette was presented in an online spreadsheet software 
(Google Sheets, 2016) that  contained a brief summary of the vignette. The data collected in the survey 
form is recorded in a different online spreadsheet of the same spreadsheet software (Google Sheets).  

The dentists were provided with a set of signs, symptoms, past clinical history, family history and other 
data needed to make a diagnosis, including diagnostic test results and radiographic reports of vignettes. In 
addition, a summary of relevant findings was provided (Table 6-1). Below the link to the vignette and the 
summary of the vignette, the dentists were asked to select the most likely diagnosis from a drop-down 
menu (Rank 1) and provide a second most likely diagnosis (Rank 2) for the vignette. There will be a Rank 
1 - Rank 2 Pulpal and Rank 1 - Rank 2 Apical diagnosis for each vignette (Figure 6-6).  
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Figure 6-6- Survey form - Pulpal and Apical diagnosis 

The concept of a Rank 1 and Rank 2 diagnosis was explained to the dentist. If the dentist felt that the 
Rank 1 diagnosis for the vignette was Normal, then he/she can select “None of the above” from the 
options given for the Rank 2 diagnosis.  

After Rank 1 and Rank 2 diagnoses were selected the dentists were asked to provide their opinion about 
the vignettes.  The opinion survey form was below the form provided to obtain the Rank 1 and Rank 2 
diagnoses. The dentists were asked to rank the difficulty of the vignette, their familiarity in diagnosing the 
vignette and how often the vignette appeared during their routine practice (Figure 6-7). The term “case” 
was used instead of vignette on the survey form because clinicians are more familiar with that term. The 
opinion about each vignette was obtained from the dentists (See section - 6.4). 
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Figure 6-7 - Vignette survey form for dentists 

Management recommendations for each vignette was collected from the dentists. However, since 
developing a CDSS based on the DS Model that could provide management recommendations was 
beyond the scope of this thesis the performance of the dentists could not be compared to the CDSS. The 
comparison was restricted to the diagnostic recommendations provided by the dentists.  

After the 5 vignettes are completed the dentists were asked to provide demographic information (Age & 
Gender), education qualifications and clinical experience. The participating dentists did not have access to 
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the CDSS prototype or any additional decision support recommendations including guidelines while 
recording their clinical decision (See Appendix 10 – section 10.1 for a sample form sent to dentists) 

After the web-based experiment was completed, the decisions made by each dentist for each vignette will 
be compared to the results of the evaluation of the CDSS using the dental DS Model and the ranking 
provided by the Endodontist. The Endodontist’s Rank 1 and Rank 2 diagnosis recommendations were set 
as the gold-standard against which the comparison was made.  

Only Rank 1 and Rank 2 were considered for the dentists as the dentists had difficulty in accurately 
providing a ranking beyond Rank 3. During pilot evaluation, the dentists could give a list of diagnoses 
that they thought was most probable for the vignettes, however when asked to rank the vignettes using 
their professional clinical judgement most of them found it difficult to identify diagnoses beyond Rank 3. 
The Endodontist mentioned the difficulty of obtaining a ranking beyond Rank. Therefore, it was decided 
to only record the Rank 1 and Rank 2 for the dentists. 

6.3.5.2 CDSS evaluation data collection 

The CDSS prototypes development was covered in the previous chapter (Chapter 5 – Case studies 
1,2,3,4). The prototype developed in Case study 3 was used for evaluation.  

Case Study 3 showed how the data in an EHR can be represented in a standardised manner using 
archetypes. The DIM was represented as archetypes and separated into different sections. The different 
sections represent the major steps in the diagnostic encounter. APGD was used to generate patient 
data based on the archetype model in RDF data format. The APDG tool allows us to model 
different clinical vignettes in RDF format. Any of the case study prototypes developed in Chapter 
5 can be used for evaluating the performance of the DS Model. However, the ease with which the 
different clinical vignettes can be created using DIM as the basis was the reason for selecting 
Case Study 3 as the basis for evaluating the dental pain DS Model. Case Study 3 similarly 
demonstrates how patient data can be represented in different formats and using SPARQL rules the 
patient data can be mapped to inform/update the DS Model. To generate early diagnostic 
recommendations based on linked data on the web the CDSS must be able to use patient data in different 
formats and stored in disparate locations.  

Once the data was collected and collated the CDSS (using the dental pain DS Model) was given the same 
25 clinical vignettes in RDF format and the ranked diagnostic recommendations were recorded.  

There are 2 different types of diagnostic recommendations generated by the CDSS in this study: Early 
and Late diagnosis. The diagnosis obtained after CC, EO and IO data was collected was considered as the 
early diagnosis. In a realistic clinical situation where the proposed CDSS using the DS Model provides 
early and late diagnostic recommendations the process of providing recommendations moves in stages 
following the sections of the information model. Once CC data is collected a diagnosis recommendation 
is provided by the CDSS (in the form of a list). Then the data from EO is combined (CC+EO) to 
provide another diagnosis recommendation.  Then the data from IO is combined to generate another 
recommendation. Once CT and RE data are collected the final diagnosis can be obtained. Therefore, the 
evaluation of the CDSS will proceed in the following manner going through each section:  

CC | CC+EO | CC+EO+IO | CC+EO+IO+CT | CC+EO+IO+CT+RE (Also called final diagnosis). 

To simulate a clinical environment where the clinician captures data from the patient in an EHR database 
the CDSS evaluation study was conducted in the following manner.  
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1. Generate patient data based on vignettes: The APDG data generator tool (Huang et al., 2013) 
was used to create patient RDF data based on the archetype model (see section - 5.4.3) used by 
the tool. The vignettes created with the help of the Endodontist were used as the basis to model 
the patient data. In total 25 RDF files was created using the APDG data generator with each file 
corresponding to a vignette. The table below (Table 6-3) shows an extract from a vignette 
expressed in tabular format. In this example, there is an archetype called Chief Complaint that 
corresponds to the CC section of the information model (Table 6-1) used to create the patient 
vignettes. Within the archetype there is a slot that can take 3 different values. If a vignette was 
created that had the value “Stimulation required for onset” for the slot “Onset of pain” then this 
information was mapped to an XML file (Figure 6-8) provided by the APDG tool. The 
probability for the slot to take a value can be set in the XML file. APDG can generate patient 
data based on a distribution range between 0 and 100. In this case, 100 was used since the data 
was based on an existing vignette and there was no need for variation. Using this process, XML 
files representing 25 vignettes was created. The APDG tool was run indicating the XML file to 
be used to generate the RDF data. For example, if the vignette ID was 10032, then a XML file 
corresponding to the vignette was created for that vignette and a RDF file called 10032.nt was 
created by APDG. NT is an abbreviation for N-Triples, a common serialization format for RDF 
alongside TURTLE and RDF/XML. (Also, see Appendix 9 for more information about APDG, 
XML files and RDF representation of vignettes). 

Archetype Slot Value 

Chief Complaint   

 Onset of pain Gradual onset 

  Stimulation required for onset 

  Sudden onset 

Intra Oral examination   

   

Table 6-3 - Extract from vignette 
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Figure 6-8 - XML extract based on vignette 

2. Data cleared from triple store: As mentioned previously the architecture described in Chapter 
5 – Case Study 3 (section - 5.4.3) was used for validating the CDSS using the dental version of 
the DS Model (Figure 6-9).  

 

Figure 6-9 - Chapter 5 Case Study 3 architecture of CDSS using patient data in RDF format 

For evaluation purposes, the Jena triple store accessed via the Jena Fuseki server was cleared of any 
existing patient data. This is done with the help of a SPARQL DELETE query. 

<Archetype concept="Chief Complaint"> 
<Slot value="Onset of pain" type="enumeration"> 

<DataRange> 
<enumeration value="Gradual onset"> 
</enumeration> 
<enumeration value="Stimulation required for onset"> 
</enumeration> 
<enumeration value="Sudden onset"> 
</enumeration> 
<Distributions type="enumeration"> 

  <Distribution item="Gradual onset" pfrom="0" pto="0"/> 
  <Distribution item="Stimulation required for onset" pfrom="0" pto="100"/> 
  <Distribution item="Sudden onset" pfrom="0" pto="0"/> 
 </Distributions> 
</DataRange> 

</Slot> 

</Archetype> 
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3. Data is added: A patient data file (based on a vignette) in the form of RDF is added to the triple 
store’s default empty graph model. All triple stores have an empty default graph into which the 
triples are inserted. If needed the triples can be inserted into a named graph. The DS Model 
OWL ontology file is added to the same graph. 

4. SPARQL present/absent insert query completed: The SPARQL present/absent insert query 
for the data that comprises the CC section (archetype) of the information is executed. For 
example, the SPARQL insert query for the slot “Onset of pain” queries the corresponding value 
(“Stimulation required for onset”) and inserts the following triple -> 
rp:Stimulation_required_for_onset rp:hasObservationStatus rp:9_ObservationPresent into the DS 
Model (Figure 6-10). This process is carried out in a loop until all the slots in the CC section has 
been queried. 

 

 

Figure 6-10 - SPARQL present/absent conditional insert query (Onset of pain) 

5. SPARQL insert query calculating weights: The SPARQL insert query to calculate weights for 
all the observations that have rp:hasObservationStatus rp:9_ObservationPresent is completed. Now 
the different diagnoses in the dental version of the DS Model will have a corresponding weight 
attached. 

6. SPARQL query to obtain ranked list: SPARQL SELECT query to obtain the ranked pulpal 
and apical diagnoses is completed. A ranked list of pulpal and apical diagnoses with the most 
likely diagnosis ranked on top is obtained.  

Once all the steps (steps 2-6) mentioned above is completed a ranked diagnosis list is obtained for the CC 
section of that RDF patient data (based on the vignette that was given to dentists). This process simulates 
a real-life encounter where the dentist records the data in an EHR and the CDSS looks up the data to give 
a diagnosis at the CC section. The next step involves the repeating the entire process (steps 2-6 above) 
but with the addition of slots (data) from the EO section as well. This process completes until all the 
sections have been completed and a ranked list for each section (with data from the previous sections) is 
obtained:  

CC  

CC+EO  

 INSERT  {?Observation1 rp:hasObservationStatus rp:9_ObservationPresent}  

 WHERE {  

SELECT ?value ?Observation1  

{?Observation1 a rp:Stimulation_required_for_onset.  

?s wasp:hasSlot ?o.  

?o rdfs:label ?slot.  

?o wasp:value ?value.  

FILTER (str(?slot) = "Onset_of_pain")  

FILTER (str(?value) = "Stimulation required for onset")}  

 } 
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CC+EO+IO 

CC+EO+IO+CT  

CC+EO+IO+CT+RE (Final) 

After completion of each section, the ranked diagnosis list is recorded in a spreadsheet for data analysis. 
The ranked diagnosis list obtained at the end of each section was compared to the dentists ranking (Rank 
1 and Rank 2). This process is repeated for the next RDF patient data file (based on a vignette) and the 
sections are traversed in a step wise manner while recording the diagnostic ranking after each section is 
completed.  

This section provides an overview of the methods used in this study. The next section provides more 
information about the vignette survey results.  

6.4 Vignette survey results 
All the dentists completed the survey form provided alongside the vignette to obtain their opinion about 
the vignette. The first question asked was “Please rank the difficulty of the case above”. The results have 
been summarised below in (Table 6-4) and (Figure 6-11). 

Question Total count (N=120) 
Very easy 1 
Easy 22 
Neutral 78 
Difficult 19 
Very Difficult 0 

Table 6-4 - Survey question 1 - total count 

 

Figure 6-11 - Survey question 1 - percentage 

The results show that most the dentists (N=78) felt the vignettes were Neutral as far as the difficulty was 
concerned. None of the dentists (N=0) felt the vignettes were “Very Difficult”. So overall, the vignettes 
presented in this study were of the type that the dentists did not find too difficult to diagnose.  

The second question asked was “How familiar are you diagnosing a case like the one above?”. The results 
have been summarised below in (Table 6-5) and (Figure 6-12). 

Question Total count (N=120) 
Extremely familiar 21 
Moderately familiar 41 
Somewhat familiar 34 
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Slightly familiar 23 
Not at all familiar 1 

Table 6-5 - Survey question 2 - total count 

 

Figure 6-12 - Survey question 2 - percentage 

The results show that overall the dentists were familiar with the vignettes and most the dentists were 
either Moderately (N=41) or Somewhat (N=34) familiar with the vignettes. So, the vignettes presented in 
this study mostly belonged to the type of cases that the dentists were familiar with and have seen before.  

The third question asked was “How often does a case similar to the one above appears in your routine 
practice?”. The results have been summarised below in (Table 6-6) and (Figure 6-13). 

Question Total count (N=120) 
Usually, in about 90% of the total cases 4 
Frequently, in about 70% of the total cases 26 
Sometimes, in about 50% of the total cases 28 
Occasionally, in about 30% of the total cases 43 
Rarely, in less than 10% of the total cases 18 
Never 1 

Table 6-6 - Survey question 3 - total count 

 

Figure 6-13 - Survey question 3 - percentage 

The results show that a clinical case like the vignette have appeared in the dentist’s routine clinical 
practice either Frequently (N=26), Sometimes (N=28) or Occasionally (N=43). Therefore, the vignettes 
are like the cases that the dentists diagnose and manage routinely and were not too rare in nature. Overall 
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the vignettes presented in this study to the dentists were of the type that the dentists did not find too 
difficult to diagnose, they are familiar with and routinely diagnose in their dental practice.  

This section provides an overview of the vignette survey results. The next section provides an overview 
of the evaluation measures used in the study.  

6.5 Evaluation Measures 
The data computed from the CDSS was compared to the results collected from the dentists. The quality 
of the diagnostic ranking produced by the CDSS in each section of the diagnostic encounter when 
compared to the final diagnosis provided by the dentists was analysed. The quality of the ranking was 
measured using Normalized Discounted Cumulative Gain (NDCG) measure (See section - 6.6). The 
ability of the CDSS to get the Rank 1 and Rank 2 diagnosis right will be measured using Precision-Recall 
metrics (See section - 6.8). The precision-recall at all sections of the dental encounter represented in the 
information model was measured. These precision-recall metrics of the CDSS was compared to the 
dentists. 

6.6 Normalized Discounted Cumulative Gain  
6.6.1 Introduction to Normalized Discounted Cumulative Gain 

The Normalized Discounted Cumulative Gain (Järvelin and Kekäläinen, 2002) metric was used to 
measure the ranking effectiveness of the DS Model when compared to the study participants and the 
Endodontist. It is a standard technique used in information retrieval algorithms in cases where the results 
are non-binary. It has been previously used to evaluate the performance of CDSS applications (Chen et al., 
2016).  The CDSS using the DS Model provides a ranked list of 7 pulpal diagnoses and 6 apical diagnoses.  

Each diagnosis is assigned a relevance score (utility). Diagnoses at the top of the ranking are more useful 
to the clinician than the diagnoses at the bottom of the ranking. Failure to consider a diagnosis is a major 
cause of diagnostic error (Schiff et al., 2009) and therefore providing a ranked list helps the clinician in 
considering and prioritizing a diagnosis and order further diagnostic tests if needed. The analysis was 
conducted using NDCG under the assumption that clinicians are more likely to ignore diagnoses that are 
ranked lower down the list. The data collected from the Endodontist shows which diagnosis should be 
ranked in the top 2 ranks of the diagnosis list and was used as the gold standard against which the 
performance of the dentists and the CDSS was compared.  

Using NDCG we can measure how well the CDSS performs in ranking the diagnoses. Precision is binary 
classification measure used in information retrieval science to identify the fraction of retrieved results that 
are relevant. Recall is the fraction of the relevant results that are retrieved. These metrics (Precision-
Recall) can be used to ascertain the performance of the CDSS in getting Rank 1 and Rank 2 diagnoses 
correct (See section - 6.8).  

However, at the early diagnostic recommendation section (CC, IO and EO) the correct diagnosis for that 
vignette may be ranked lower down the order by the CDSS due to incomplete information. The diagnosis 
may still be relevant and if ranked high enough the clinician may consider the diagnostic hypothesis. For 
example, ‘Pain of nonodontogenic origin’ is relatively rare when compared to pain caused by dental caries. 
When there is a deep dental caries the dentist may misdiagnose the cause of the pain as the tooth affected 
by the dental caries and may ignore or not consider the observations that indicate that the pain could be 
of non-odontogenic origin (i.e. non-dental origin). The CDSS should ideally rank the “Pain of 
Nonodontogenic Origin” diagnosis” high enough for the dentist to consider this diagnosis as a possibility, 
especially at early sections of the diagnosis.  

If the CDSS consistently underperforms at the early section, then we can arrive at the conclusion that the 
CDSS using only information obtained from the patient directly during a diagnostic encounter cannot be 
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trusted to provide reliable diagnostic recommendations at the early section. We can then try to adapt the 
information model accordingly or rely on additional data sources using linked data technology to improve 
the diagnostic recommendations at early and the final diagnosis sections (if needed).  

NDCG takes the utility of diagnosis at each rank and penalizes it by a logarithmic reduction factor. As the 
diagnosis goes lower the ranking, the utility of the diagnosis reduces. NDCG is used to measure the 
usefulness of a ranking on a scale from 0 to 1. A NDCG score of 1 represents a perfect match to the ideal 
ranking of the diagnoses. The ideal Rank 1 and Rank 2 were obtained from the Endodontist. 

For example, for each vignette presented to the Endodontist, the expert was asked to rank the relevance 
of the diagnosis for the case as shown below. Each diagnosis was given a given a relevance score ranging 
from 0-3, with 3 being most relevant, 0 being least relevant and 1 and 2 somewhere in between (Table 
6-7).  

 

i  Diagnosis reli  logi 2  reli
log2i

 

1 Diagnosis-A 3 0 N/A 

2 Diagnosis-B 1 1 1 

Table 6-7 - Ideal DCG 

Discounted Cumulative Gain (DCG) for this ranking is: 

 

DCG  = rel1 + ∑
i= 2

2 reli
log2 i   

Equation 1 - Discounted Cumulative Gain 

= 3 +1  

= 4 

Since this ranking and relevance score was provided by the expert it is called the Ideal DCG (IDCG). 
Similarly, the DCG for all dentists for each vignette was calculated (Equation 1). The dentists were given 
the same vignette and asked to select the Rank 1 and Rank 2 diagnoses that were most relevant for the 
case. The decision support provides a ranked list that consist of more diagnoses (n=6/7). To compare the 
DCG values of the decision support and the clinicians the DCG values need to be normalized.  

Let's assume Dentist 1 selected the right diagnosis as Rank 1 & 2 and got a DCG= 4. 

The normalized DCG (NDCG) of Dentist 1 for this case would be: 

NDCG = 
DCG
IDCG  

 = 
4
4  

 = 1 
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The ranked list for the CDSS would be like the table below (Table 6-8). 

 

i  
Diagnosis reli  logi 2  reli

log2i
 

1 Diagnosis-A 3 0 N/A 

2 Diagnosis-C 0 1 1 

3 Diagnosis-B 1 1.585 0.6309148265 

4 Diagnosis-E 0 2 0 

5 Diagnosis-D 0 2.322 0 

6 Diagnosis-G 0 2.584 0 

7 Diagnosis-F 0 2.807 0 

Table 6-8 - DCG for CDSS example 

 

The DCG for the decision support will be: 3.6309 

The NDCG for the decision support will be DCG / IDCG = 0.9077 

From the above example the NDCG for the decision support is close to 1. However, the decision 
support was penalized for getting the position of Diagnosis B wrong. Since Dentist 1 got the ranking 
right, he got a NDCG score of 1, which is signifies a perfect match to the expert’s ranking.  

This section introduces the NDCG evaluation measure. The next section provides the results of the 
NDCG analysis.  

6.7 Results of NDCG analysis 
 

The results of the NDCG analysis was done in sections: 

CC | CC+EO | CC+EO+IO | CC+EO+IO+CT | CC+EO+IO+CT+RE 

Within each section the Pulpal and Apical average of the CDSS using the dental DS Model is compared 
with the Pulpal and Apical average of the dentists. The NDCG score of dentists was calculated based on 
the data provided by the dentists.  

The NDCG scores for the dentists were the final diagnosis scores. The final diagnosis is made after 
taking into consideration all the data that is available (See Appendix 14 for raw data). 
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6.7.1 Significance tests 

6.7.1.1 Independent 2-sample t-test (assuming unequal variances) 
The independent 2-sample t-test (assuming unequal variances) was used to test the statistical difference 
between the means of both groups (CDSS and Dentists). The t-test is used to compare the means of the 
two independent groups and test if the population means are significantly different from each other. The 
independent 2-sample t-test was performed  using statistical package R (version 3.3.1) (R Core Team, 
2013).  The function t.test in R was used to perform the test. The t-test works best when the data is 
obtained from a distribution that is normal or close to normal.  

6.7.1.2 Wilcoxon rank-sum 
In addition, the Wilcoxon rank-sum (also called the Mann-Whitney U test) was performed. Wilcoxon 
rank-sum test is a nonparametric statistical test.  

When the Shapiro-Wilk test for normality (Shapiro and Wilk, 1965) (See Appendix 12 – section 12.1) was 
conducted on both the dentists data and the CDSS data it was found that the data did not come from a 
normal distributed population. Wilcoxon rank-sum test is the non-parametric equivalent of t-test and the 
results of the Wilcoxon rank sum test will be more valid when interpreting the results as the results of the 
Shapiro-Wilk test show the data does not have a normal distribution. (See Appendix 15 for raw data) 

The Wilcoxon rank-sum test does not assume that the data has a normal distribution whereas the t-test 
assumes that the data has to come from a normally or near normally distributed population (Haynes, 
2013). The Wilcoxon rank sum test was performed using statistical package R (version 3.3.1). The code 
used to perform the Wilcoxon rank sum is the function wilcox.test in R.  

6.7.2 Dentists 
 

(n=25) Pulpal NDCG Apical NDCG 
Mean 0.71 0.86 

Table 6-9 - NDCG average for dentists 

Each vignette was analysed individually. The NDCG score for the dentists and the CDSS at different 
sections of the same vignette was then recorded and the data for all the vignettes collated and analysed. 
The NDCG score for the dentists were recorded for the Rank 1 and Rank 2 final diagnosis using the 
NDCG formula described in previous sections (section - 6.6.1). Table 6-9 shows the overall average than 
was obtained for the dentists across all 25 vignettes. As mentioned previously in the section about 
NDCG, a score of 1 is a perfect score and the ranking matches perfectly with that of the Endodontist. 
Clinicians in general practice (example dentists) are generally not expected to match the diagnostic 
performance of experts. Autopsy studies have shown that clinicians have a diagnostic error rate of 10-
20% (Aalten, Samson and Jansen, 2006; Graber, 2013).  
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6.7.3 Chief Complaint (CC) 
This section outlines the data obtained from the CDSS with only observations from the CC section of the 
information model.  

(n=25) Pulpal NDCG Apical NDCG 
Mean 0.81 0.64 

Table 6-10 - NDCG average for CDSS – CC 

6.7.3.1 Pulpal (CC) 
In this section the Pulpal NDCG average of the CDSS (CC) (Table 6-10) is compared to the dentists’ 
final Pulpal diagnosis (Table 6-9). The data shows that the mean NDCG value for dentist’s final Pulpal 
diagnosis when compared to the CDSS Pulpal diagnosis using just the CC data is very close.  

 

Figure 6-14 - Pulpal (CC) 

 

NDCG Comparison 95 % Confidence 
Interval 

Independent Two-Sample t Test 
Assuming Unequal Variances 

Significant 
Differences 

(p≤ 0.05) 

CC-Pulpal vs Dentists-
Pulpal 

0.01275046 
0.18619496 

t = 2.2786, df = 90.593,  

p-value = 0.02504 
 

Table 6-11 - CC-Pulpal vs Dentists-Pulpal - T test 

 

NDCG Comparison 95 % Confidence 
Interval 

Wilcoxon rank sum test with 
continuity correction 

Significant 
Differences 

(p≤ 0.05) 

CC-Pulpal vs Dentists-
Pulpal 

-0.09221490  
0.09666238 

W = 1430, p-value = 0.7026  

Table 6-12 - CC-Pulpal vs Dentists-Pulpal -Wilcoxon 
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The Pulpal NDCG average comparison (Figure 6-14) shows that the difference between the dentists’ final 
diagnosis and the CDSS at the CC section is not statistically significant according to the Wilcoxon rank 
sum test (Table 6-12) but statistically significant according to the t-test (Table 6-13).  

6.7.3.2 Apical (CC) 
In this section the Apical NDCG average of the CDSS (CC) (Table 6-10) is compared to the dentists’ 
final Apical diagnosis (Table 6-9). The data shows that the mean NDCG value for dentists in final Apical 
diagnosis is much greater when compared to the Apical diagnosis of the CDSS using only CC data of the 
information model.  

 

Figure 6-15 - Apical (CC) 

 

NDCG Comparison 95 % Confidence 
Interval 

Independent Two-Sample t Test 
Assuming Unequal Variances 

Significant 
Differences 

(p≤ 0.05) 

CC-Apical vs Dentists-
Apical 

-0.3102159  

-0.1314513 

t = -4.9453, df = 58.15,  

p-value = 6.816e-06 
 

Table 6-13 - CC-Apical vs Dentists-Apical - T test 

 

NDCG Comparison 95 % Confidence 
Interval 

Wilcoxon rank sum test with 
continuity correction 

Significant 
Differences 

(p≤ 0.05) 

CC-Apical vs Dentists-
Apical 

-0.4596947  

-0.2096987 

W = 462, p-value = 4.566e-10  

Table 6-14 - CC-Apical vs Dentists-Apical - Wilcoxon 

 

The Apical NDCG average comparison (Figure 6-15) shows that the difference between the dentists’ 
final diagnosis and the CDSS at the CC section is statistically significant according to the Wilcoxon rank 
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sum test (Table 6-13) and the t-test (Table 6-14). The CDSS performs considerably poorer than the 
dentists in the CC section in Apical diagnosis. The dentist’s final diagnosis NDCG average score was used 
as the cut-off for determining if the CDSS using the DS Model can perform adequately. If the CDSS 
performs poorer than the final NDCG average of a non-expert clinician, then we can identify this section 
of the information model as an area where improvement should be made. The ideal performance would 
closely match that of the Endodontist. However, the DS Model will not be able to achieve that level of 
performance at an early section since all the information has not collected yet. If the CDSS performs 
significantly better at ranking the diagnosis when compared to the non-expert clinician (dentists) then the 
CDSS could potentially support him/her at arriving at an early conclusion. Testing this effect on 
clinician’s diagnostic performance is beyond the scope of this thesis. However we know from literature 
that providing early diagnostic recommendations can help the clinician in improving his/her final 
diagnosis as well (Kostopoulou et al., 2015b). The results of the NDCG scores of final diagnosis of the 
dentists show that there is a need to improve their final diagnosis as well. The results of this section show 
that the DS Model needs improvement in Apical diagnosis in the CC section.  
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6.7.4 Chief Complaint (CC) + Extra Oral examination (EO) 
This section outlines the data obtained from the CDSS using only observations from the CC + EO 
section of the information model.  

(n=25) Pulpal NDCG Apical NDCG 
Mean 0.77 0.80 

Table 6-15 - NDCG average for CDSS - CC+EO 

6.7.4.1 Pulpal (CC+EO) 
In this section the Pulpal NDCG average of the CDSS (CC+EO) (Table 6-15) is compared to the 
dentists’ final diagnosis (Pulpal) (Table 6-9).  

 

Figure 6-16 - Pulpal (CC+EO) 

 

NDCG Comparison 95 % Confidence 
Interval 

Independent Two-Sample t Test 
Assuming Unequal Variances 

Significant 
Differences 

(p≤ 0.05) 

CC+EO-Pulpal vs 
Dentists-Pulpal 

-0.04133266  
0.16212098 

t = 1.1869, df = 61.72,  

p-value = 0.2398 
 

Table 6-16 - CC+EO-Pulpal vs Dentists-Pulpal- T test 

 

NDCG Comparison 95 % Confidence 
Interval 

Wilcoxon rank sum test with 
continuity correction 

Significant 
Differences 

(p≤ 0.05) 

CC+EO-Pulpal vs 
Dentists-Pulpal 

-0.1423007  
0.1076113 

W = 1466, p-value = 0.854  

Table 6-17 - CC+EO-Pulpal vs Dentists-Pulpal - Wilcoxon 

The Pulpal NDCG average comparison (Figure 6-16) shows that the difference between the dentists’ final 
diagnosis and the CDSS at the CC+EO section is not statistically significant according to the Wilcoxon 
rank sum test (Table 6-17) and the t-test (Table 6-16)  
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6.7.4.2 Apical (CC+EO) 
In this section the Apical NDCG average of the CDSS (CC+EO) (Table 6-15) is compared to the 
dentists’ final diagnosis (Apical) (Table 6-9).  

 

Figure 6-17 - Apical (CC+EO) 

 

NDCG Comparison 95 % Confidence 
Interval 

Independent Two-Sample t Test 
Assuming Unequal Variances 

Significant 
Differences 

(p≤ 0.05) 

CC+EO-Apical vs 
Dentists-Apical 

-0.15525741  
0.03679235 

t = -1.2382, df = 51.205,  

p-value = 0.2213 
 

Table 6-18 - CC+EO-Apical vs Dentists-Apical - T test 

 

NDCG Comparison 95 % Confidence 
Interval 

Wilcoxon rank sum test with 
continuity correction 

Significant 
Differences 

(p≤ 0.05) 

CC+EO-Apical vs 
Dentists-Apical 

-1.423529e-01  

-3.786639e-05 

W = 966, p-value = 0.0007716  

Table 6-19 - CC+EO-Apical vs Dentists-Apical - Wilcoxon 

The Apical NDCG average comparison (Figure 6-17) shows that the difference between the dentists’ 
final diagnosis and the CDSS at the CC+EO section is statistically significant according to the Wilcoxon 
rank sum test (Table 6-19) but not according to t-test (Table 6-18).  
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6.7.5 Chief Complaint (CC) + Extra Oral examination (EO) + Intra 
Oral examination (IO)  

This section outlines the data obtained from the CDSS with only observations from the CC+EO+IO 
section of the information model.  

(n=25) Pulpal NDCG Apical NDCG 
Mean 0.81 0.80 

Table 6-20 - NDCG average for CDSS – CC+EO+IO 

6.7.5.1 Pulpal (CC+EO+IO) 
In this section the Pulpal NDCG average of the CDSS (CC+EO+IO) (Table 6-20) is compared to the 
dentists’ final diagnosis (Pulpal) (Table 6-9).  

 

Figure 6-18 - Pulpal (CC+EO+IO) 

 

NDCG Comparison 95 % Confidence 
Interval 

Independent Two-Sample t Test 
Assuming Unequal Variances 

Significant 
Differences 

(p≤ 0.05) 

CC+EO+IO-Pulpal vs 
Dentists-Pulpal 

-0.005935879  
0.200554714 

t = 1.8854, df = 59.902,  

p-value = 0.06423 
 

Table 6-21 - CC+EO+IO-Pulpal vs Dentists-Pulpal - T test 

 

NDCG Comparison 95 % Confidence 
Interval 

Wilcoxon rank sum test with 
continuity correction 

Significant 
Differences 

(p≤ 0.05) 

CC+EO+IO-Pulpal vs 
Dentists-Pulpal 

-0.09222195  
0.15776828 

W = 1548.5, p-value = 0.7908  

Table 6-22 - CC+EO+IO-Pulpal vs Dentists-Pulpal - Wilcoxon 
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The Pulpal NDCG average comparison (Figure 6-18) shows that the difference between the dentists’ final 
diagnosis and the CDSS at the CC+EO+IO section is not statistically significant according to the 
Wilcoxon rank sum test (Table 6-22) and the t-test (Table 6-21). 

6.7.5.2 Apical (CC+EO+IO) 
In this section the Apical NDCG average of the CDSS (CC+EO+IO) (Table 6-20) is compared to the 
dentists’ final diagnosis (Apical) (Table 6-9).  

 

Figure 6-19 - Apical (CC+EO+IO) 

 

NDCG Comparison 95 % Confidence 
Interval 

Independent Two-Sample t Test 
Assuming Unequal Variances 

Significant 
Differences 

(p≤ 0.05) 

CC+EO+IO-Apical vs 
Dentists-Apical 

-0.1514408  
0.0381477 

t = -1.1989, df = 52.312,  

p-value = 0.236 
 

Table 6-23 - CC+EO+IO-Apical vs Dentists-Apical - T test 

 

NDCG Comparison 95 % Confidence 
Interval 

Wilcoxon rank sum test with 
continuity correction 

Significant 
Differences 

(p≤ 0.05) 

CC+EO+IO-Apical vs 
Dentists-Apical 

-1.517864e-01  

-3.694163e-05 

W = 966, p-value = 0.0007716  

Table 6-24 - CC+EO+IO-Apical vs Dentists-Apical - Wilcoxon 

The Apical NDCG average comparison (Figure 6-19) shows that the difference between the dentists’ 
final diagnosis and the CDSS at the CC+EO+IO section is statistically significant according to the 
Wilcoxon rank sum test (Table 6-24) but not according to t-test(Table 6-23).  
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6.7.6 Chief Complaint (CC) + Extra Oral examination + Intra Oral 
examination (IO) (EO) + Clinical Tests (CT) 

This section outlines the data obtained from the CDSS with only observations from the CC+EO+IO 
+CT section of the information model.  

(n=25) Pulpal NDCG Apical NDCG 
Mean 0.94 0.86 

Table 6-25 - NDCG average for CDSS - CC+EO+IO+CT 

6.7.6.1 Pulpal (CC+EO+IO+CT) 
In this section the Pulpal NDCG average of the CDSS (CC+EO+IO+CT) (Table 6-25) is compared to 
the dentists’ final diagnosis (Pulpal) (Table 6-9).  

 

Figure 6-20 - Pulpal (CC+EO+IO+CT) 

 

NDCG Comparison 95 % Confidence 
Interval 

Independent Two-Sample t Test 
Assuming Unequal Variances 

Significant 
Differences 

(p≤ 0.05) 

CC+EO+IO+CT-
Pulpal vs Dentists-

Pulpal 

0.1568956 
0.2956173 

t = 6.4481, df = 142.739,  

p-value = 1.636e-09 
 

Table 6-26 - CC+EO+IO+CT-Pulpal vs Dentists-Pulpal - T test 

 

NDCG Comparison 95 % Confidence 
Interval 

Wilcoxon rank sum test with 
continuity correction 

Significant 
Differences 

(p≤ 0.05) 

CC+EO+IO+CT-
Pulpal vs Dentists-

Pulpal 

3.514817e-05 
2.499932e-01 

W = 2010, p-value = 0.004355  

Table 6-27 - CC+EO+IO+CT-Pulpal vs Dentists-Pulpal - Wilcoxon 
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The Pulpal NDCG average comparison (Figure 6-20) shows that the difference between the dentists’ final 
diagnosis and the CDSS at the CC+EO+IO+CT section is statistically significant according to the 
Wilcoxon rank sum test (Table 6-27) and the t-test (Table 6-26). 

6.7.6.2 Apical (CC+EO+IO+CT) 
In this section the Apical NDCG average of the CDSS (CC+EO+IO+CT) (Table 6-25) is compared to 
the dentists’ final diagnosis (Apical) (Table 6-9).  

 

Figure 6-21 - Apical (CC+EO+IO+CT) 

 

NDCG Comparison 95 % Confidence 
Interval 

Independent Two-Sample t Test 
Assuming Unequal Variances 

Significant 
Differences 

(p≤ 0.05) 

CC+EO+IO+CT-
Apical vs Dentists-

Apical 

-0.08795047  
0.08276901 

t = -0.0606, df = 63.819,  

p-value = 0.9518 
 

Table 6-28 - CC+EO+IO+CT-Apical vs Dentists-Apical - T test 

 

NDCG Comparison 95 % Confidence 
Interval 

Wilcoxon rank sum test with 
continuity correction 

Significant 
Differences 

(p≤ 0.05) 

CC+EO+IO+CT-
Apical vs Dentists-

Apical 

-0.09231064  

-0.00003468 

W = 1072, p-value = 0.006268  

Table 6-29 -CC+EO+IO+CT-Apical vs Dentists-Apical - Wilcoxon 

The Apical NDCG average comparison (Figure 6-21) shows that the difference between the dentists’ 
final diagnosis and the CDSS at the CC+EO+IO+CT section is statistically significant according to the 
Wilcoxon rank sum test (Table 6-29) but not according to t-test (Table 6-28).  
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6.7.7 Chief Complaint (CC) + Extra Oral examination + Intra Oral 
examination (IO) (EO) + Clinical Tests (CT) + Radiographic 
Examination (RE) (Final diagnosis) 

This section outlines the data obtained from the CDSS with only observations from the 
CC+IO+EO+CT+RT (Final Diagnosis) section of the information model.  

(n=25) Pulpal NDCG Apical NDCG 
Mean 0.94 0.98 

Table 6-30 - NDCG average for CDSS – Final diagnosis 

6.7.7.1 Pulpal (final) 
In this section the Pulpal NDCG average of the CDSS (final) (Table 6-30) is compared to the dentists’ 
final diagnosis (Pulpal) (Table 6-9).  

 

Figure 6-22 - Pulpal (final) 

NDCG Comparison 95 % Confidence 
Interval 

Independent Two-Sample t Test 
Assuming Unequal Variances 

Significant 
Differences 

(p≤ 0.05) 

DS Model (Final)-
Pulpal vs Dentists-

Pulpal 

0.1537359 
0.2922669 

t = 6.3641, df = 142.657,  

p-value = 2.512e-09 
 

Table 6-31 - DS Model (Final)-Pulpal vs Dentists-Pulpal - T test 

 

NDCG Comparison 95 % Confidence 
Interval 

Wilcoxon rank sum test with 
continuity correction 

Significant 
Differences 

(p≤ 0.05) 

DS Model(Final)-
Pulpal vs Dentists-

Pulpal 

5.708955e-05 
2.499524e-01 

W = 1982.5, p-value = 0.007143  

Table 6-32 - DS Model (Final)-Pulpal vs Dentists-Pulpal - Wilcoxon 
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The Pulpal NDCG average comparison (Figure 6-22) shows that the difference between the dentists’ final 
diagnosis and the CDSS at the final section is statistically significant according to the Wilcoxon rank sum 
test (Table 6-32) and the t-test (Table 6-31).   

6.7.7.2 Apical (final) 
In this section the Apical NDCG average of the CDSS (final) (Table 6-30) is compared to the dentists’ 
final diagnosis (Apical) (Table 6-9).  

 

Figure 6-23 - Apical (final) 

 

NDCG Comparison 95 % Confidence 
Interval 

Independent Two-Sample t Test 
Assuming Unequal Variances 

Significant 
Differences 

(p≤ 0.05) 

DS Model (Final)-
Apical vs Dentists-

Apical 

0.06275468 
0.17628843 

t = 4.1639, df = 135.276,  

p-value = 5.539e-05 
 

Table 6-33 - DS Model (Final)-Apical vs Dentists-Apical - T test 

NDCG Comparison 95 % Confidence 
Interval 

Wilcoxon rank sum test with 
continuity correction 

Significant 
Differences 

(p≤ 0.05) 

DS Model (Final)-
Apical vs Dentists-

Apical 

-8.687249e-05  
3.065340e-06 

W = 1605, p-value = 0.4701  

Table 6-34 - DS Model (Final)-Apical vs Dentists-Apical - Wilcoxon 

 

The Apical NDCG average comparison (Figure 6-23) shows that the difference between the dentists’ 
final diagnosis and the CDSS at the final section is not statistically significant according to the Wilcoxon 
rank sum test (Table 6-34) but significant according to t-test (Table 6-33).  
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6.7.8 T-Test: Two-Sample Assuming Unequal Variances-Summary of 
results 

The following sections provide a summary of the results of the different sections of the information 
model. 

6.7.8.1 Pulpal 
According to the t-test (Table 6-35) the CDSS performed significantly better than the dentist’s final 
diagnosis in the CC, CC+EO+IO+CT and the final sections in diagnosing Pulpal diagnosis (Figure 6-24). 
In the CC section the CDSS performs better than the dentists and there is drop in performance as more 
data is collected. The CDSS performs better than the dentists in the CC+EO+IO+CT and the final 
sections.  

NDCG Comparison 95 % Confidence 
Interval 

Independent Two-Sample t Test 
Assuming Unequal Variances 

Significant 
Differences 

(p≤ 0.05) 

CC-Pulpal vs Dentists-
Pulpal 

(CDSS better than dentists) 

0.01275046 
0.18619496 

t = 2.2786, df = 90.593,  

p-value = 0.02504 


CC+EO-Pulpal vs 
Dentists-Pulpal 

-0.04133266  
0.16212098 

t = 1.1869, df = 61.72,  

p-value = 0.2398 
 

CC+EO+IO-Pulpal vs 
Dentists-Pulpal 

-0.005935879  
0.200554714 

t = 1.8854, df = 59.902,  

p-value = 0.06423 
 

CC+EO+IO+CT-
Pulpal vs Dentists-

Pulpal 

(CDSS better than dentists) 

0.1568956 
0.2956173 

t = 6.4481, df = 142.739,  

p-value = 1.636e-09 


 

DS Model (Final)-
Pulpal vs Dentists-

Pulpal 

(CDSS better than dentists) 

0.1537359 
0.2922669 

t = 6.3641, df = 142.657,  

p-value = 2.512e-09 
 

Table 6-35 - Overall NDCG Comparison-Pulpal - T test 



242 
 

 

Figure 6-24 - Pulpal NDCG overall comparison 

6.7.8.2 Apical 
The t-test (Table 6-36)  shows that the CDSS performed significantly poorer than the dentist’s final 
diagnosis in the early section and performed better than the dentists in the Final section in diagnosing 
Apical diagnosis (Figure 6-25).  

NDCG Comparison 95 % Confidence 
Interval 

Independent Two-Sample t Test 
Assuming Unequal Variances 

Significant 
Differences 

(p≤ 0.05) 

CC-Apical vs Dentists-
Apical 

(CDSS better than dentists) 

-0.3102159  

-0.1314513 

t = -4.9453, df = 58.15,  

p-value = 6.816e-06 
 

CC+EO-Apical vs 
Dentists-Apical 

-0.15525741  
0.03679235 

t = -1.2382, df = 51.205,  

p-value = 0.2213 
 

CC+EO+IO-Apical vs 
Dentists-Apical 

-0.1514408  
0.0381477 

t = -1.1989, df = 52.312,  

p-value = 0.236 
 

CC+EO+IO+CT-
Apical vs Dentists-

Apical 

-0.08795047  
0.08276901 

t = -0.0606, df = 63.819,  

p-value = 0.9518 
 

DS Model (Final)-
Apical vs Dentists-

Apical 

(CDSS better than dentists) 

0.06275468 
0.17628843 

t = 4.1639, df = 135.276,  

p-value = 5.539e-05 
 

Table 6-36 - Overall NDCG Comparison-Apical - T test 
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Figure 6-25 - Apical NDCG overall comparison 

6.7.9 Wilcoxon rank sum test with continuity correction - Summary of 
results 

6.7.9.1 Pulpal 
The results of the Wilcoxon rank sum test (Table 6-37) show that the CDSS is better than the dentists 
only in the late sections (CC+EO+IO+CT and Final) in diagnosing Pulpal diagnosis (Figure 6-26). There 
is no significant difference when compared to the dentists in the other sections.  Even with limited 
information the CDSS performs at least as good as the dentists in the early section, though there is scope 
for improvement.  

NDCG Comparison 95 % Confidence 
Interval 

Wilcoxon rank sum test with 
continuity correction 

Significant 
Differences 

(p≤ 0.05) 

CC-Pulpal vs Dentists-
Pulpal 

-0.09221490  
0.09666238 

W = 1430, p-value = 0.7026  

CC+EO-Pulpal vs 
Dentists-Pulpal 

-0.1423007  
0.1076113 

W = 1466, p-value = 0.854  

CC+EO+IO-Pulpal vs 
Dentists-Pulpal 

-0.09222195  
0.15776828 

W = 1548.5, p-value = 0.7908  

CC+EO+IO+CT-
Pulpal vs Dentists-

Pulpal 

(CDSS better than dentists) 

3.514817e-05 
2.499932e-01 

W = 2010, p-value = 0.004355  

DS Model (Final)-
Pulpal vs Dentists-

Pulpal 

5.708955e-05 
2.499524e-01 

W = 1982.5, p-value = 0.007143  
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(CDSS better than dentists) 

Table 6-37 -Overall NDCG Comparison-Pulpal - Wilcoxon 

 

Figure 6-26 - Pulpal NDCG overall comparison 

6.7.9.2 Apical 
The results of the Wilcoxon rank sum test (Table 6-38) for Apical diagnosis show that the dentist’s final 
diagnostic performance is better than the CDSS in all sections of the encounter (Figure 6-27). The CDSS 
did not perform significantly better than the dentists in the Final section. This result is markedly different 
from the t-test result (section - 6.7.8.2) where the CDSS performed significantly poorer in the CC section 
but showed that the CDSS performed significantly better than the dentist in the final section.  

NDCG Comparison 95 % Confidence 
Interval 

Wilcoxon rank sum test with 
continuity correction 

Significant 
Differences 

(p≤ 0.05) 

CC-Apical vs Dentists-
Apical 

(CDSS better than dentists) 

-0.4596947  

-0.2096987 

W = 462, p-value = 4.566e-10  

CC+EO-Apical vs 
Dentists-Apical 

(CDSS better than dentists) 

-1.423529e-01  

-3.786639e-05 

W = 966, p-value = 0.0007716  

CC+EO+IO-Apical vs 
Dentists-Apical 

(CDSS better than dentists) 

-1.517864e-01  

-3.694163e-05 

W = 966, p-value = 0.0007716  

CC+EO+IO+CT-
Apical vs Dentists-

Apical 

(CDSS better than dentists) 

-0.09231064  

-0.00003468 

W = 1072, p-value = 0.006268  
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DS Model (Final)-
Apical vs Dentists-

Apical 

-8.687249e-05  
3.065340e-06 

W = 1605, p-value = 0.4701  

Table 6-38 - Overall NDCG Comparison-Apical - Wilcoxon 

 

Figure 6-27 - Apical NDCG overall comparison 

6.7.10 T-test vs Wilcoxon Rank Sum Test-Summary of results 

6.7.10.1  Pulpal 
A side-by-side comparison of the t-test and Wilcoxon rank sum test (Table 6-39) shows that there is 
general agreement in the t-test and Wilcoxon rank sum significance tests in the results as far as Pulpal 
diagnosis is concerned. The final diagnostic performance of the dentists in Pulpal diagnosis is better than 
the CDSS in the CC section of the diagnostic encounter and the CDSS performs better than the dentists 
in the CC+EO+IO+CT and final sections. In the CC+EO and CC+EO+IO the CDSS performed at 
least as good as the dentists. There is a need for improvement in diagnosis across all the early sections of 
the information model. In the CC, CC+EO and the CC+EO+IO sections the CDSS will require 
additional information to make a better diagnostic recommendation than the dentists.  

NDCG Comparison Independent Two-Sample t Test  

Significant Differences 

(p≤ 0.05) 

Wilcoxon rank sum test  

Significant Differences 

(p≤ 0.05) 

CC-Pulpal vs Dentists-
Pulpal   

CC+EO-Pulpal vs 
Dentists-Pulpal   

CC+EO+IO-Pulpal vs 
Dentists-Pulpal   
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CC+EO+IO+CT-
Pulpal vs Dentists-

Pulpal 
  

DS Model (Final)-
Pulpal vs Dentists-

Pulpal 
  

Table 6-39 - Pulpal T-test vs Wilcoxon Rank Sum Test 

6.7.10.2  Apical 
A comparison of the t-test and Wilcoxon rank sum test shows that there is little consensus in the Apical 
diagnosis (Table 6-40). The final diagnostic performances of the dentists were significantly better than the 
CDSS in the CC section according to the t-test. According to the t-test the CDSS performs poorly in the 
CC section and performs at least as good as the dentists in the intermediate sections. The Wilcoxon test 
shows that the CDSS performs significantly poorer than the dentists in all the sections except the final 
section. Therefore, in the Apical diagnosis the CDSS requires additional information in all the sections 
except the final section to provide a diagnostic recommendation better than dentists. It is not known if 
the CDSS requires additional information in the final section for Apical diagnosis as the t-test and the 
Wilcoxon shows different results.  

NDCG Comparison Independent Two-Sample t Test  

Significant Differences 

(p≤ 0.05) 

Wilcoxon rank sum test  

Significant Differences 

(p≤ 0.05) 

CC-Apical vs Dentists-
Apical   

CC+EO-Apical vs 
Dentists-Apical   

CC+EO+IO-Apical vs 
Dentists-Apical   

CC+EO+IO+CT-
Apical vs Dentists-

Apical 
  

DS Model (Final)-
Apical vs Dentists-

Apical 
  

Table 6-40 - Apical T-test vs Wilcoxon Rank Sum Test 

This section provides the results of the NDCG analysis. The next section provides an overview of the 
Precision-Recall analysis.  
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6.8 Precision-Recall Analysis 

6.8.1 Introduction to Precision-Recall Analysis 
The CDSS using the dental DS Model provides a Rank 1 and Rank 2 diagnosis for both the Pulpal and 
Apical diagnosis.  The Pulpal Rank 1 can be considered as binary classification i.e. Correct or Incorrect. 
Consider the example of vignette no. 10 in Table 6-2. The Rank 1 Pulpal diagnosis for the vignette is Pulp 
Necrosis. If the CDSS accurately provides a diagnosis of Pulp Necrosis, then it is the correct answer. 
There can be 4 possible classification outcomes: True Positive (TP), True Negative (TN), False Positive 
(FP) and False Negative (FN).  

If the CDSS accurately classifies vignette no. 10 as Pulp Necrosis then it is a TP outcome, i.e. the CDSS 
has accurately classified the vignette as Pulp Necrosis when the diagnosis was Pulp Necrosis. If the CDSS 
accurately classifies the vignette as not Pulp Necrosis when the diagnosis is in fact not Pulp Necrosis, 
then it a TN outcome. If the CDSS falsely classifies a vignette as Pulp Necrosis when in fact the diagnosis 
is something else, then it is considered as a FP outcome. If the CDSS falsely classifies the vignette as not 
Pulp Necrosis when it is indeed Pulp Necrosis, then the outcome can be considered a FN outcome. 

The results can be represented in a 2 x 2 contingency table. For example, the results of the Rank 1 Pulpal 
classification for the Pulp Necrosis diagnosis have been shown below (Table 6-41). All 25 vignettes were 
provided to the CDSS using the DS Model and the results were recorded in a contingency table for each 
diagnosis.  

Pulp Necrosis Correct (according to CDSS) Incorrect (according to CDSS) 
Correct (actual) A (TP) C (FN) 

10 0 
Incorrect (actual) B (FP) D (TN) 

0 15 
Table 6-41 - 2 x 2 contingency table – Pulp Necrosis Rank 1 

In example result shown in the table obtained from the CDSS the CDSS has a TP outcome 10 times and 
TN outcome 15 times out of the total of 25 vignettes.  

The same technique can be used to obtain a contingency table for all the Pulpal diagnoses (n=7) and 
Apical diagnoses (n=5).  A Rank 1 and Rank 2 contingency table for each diagnosis can be obtained.  The 
correct Rank 2 was provided by the Endodontist alongside the Rank 1 diagnosis. Therefore, for each 
individual diagnosis there will be 2 x 2 contingency table for Rank 1 and Rank 2 classifications.  The same 
process was repeated for the dentists and a Rank 1 and Rank 2 contingency table was generated for each 
diagnosis. The total numbers of TP, TN, FP, and FN outcomes were recorded in these tables.  

6.8.1.1 Precision 
Once the contingency tables were generated for each diagnosis for the CDSS and the dentists the 
precision and recall metric was calculated. Precision is the percentage of diagnosed classifications that are 
correct. Precision calculates the proportion of correct responses of both the CDSS and dentists across all 
diagnoses and in both Rank 1 and Rank 2 positions. It is calculated using the formula below.  

 

 

Therefore, the precision for the CDSS in Pulp Necrosis Rank 1 is 1 or 100% (Table 6-41). 

6.8.1.2 Recall 
Recall can be defined as the percentage of vignettes that were correctly diagnosed in relation to the 
vignettes that were correct. It is calculated using the formula below.  

 

Precision = TP/ (TP + FP) = A/ (A + B)  

Recall = TP/ (TP + FN) = A/ (A + C) 
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Therefore, the recall for the CDSS in Pulp Necrosis Rank 1 is 1 or 100% (Table 6-41). 

The tables below (Table 6-42, Table 6-43, Table 6-44, Table 6-45) show the results of Pulpal (Rank 1 and 
Rank 2) and Apical (Rank 1 and Rank 2) precision and recall for CC section of the information model. 
The average precision and recall of the CDSS using the DS Model in Pulpal (Rank 1 and Rank 2) and 
Apical (Rank 1 and Rank 2) diagnoses for all sections of the information model (i.e. CC, CC+EO, 
CC+EO+IO, CC+EO+IO+CT, Final) was obtained. This was then compared to the Pulpal (Rank 1 and 
Rank 2) and Apical (Rank 1 and Rank 2) precision and recall of the dentists. 

Pulpal Diagnosis (Rank 1) CC Precision Recall 
Normal Pulpal Tissues 0.2 1 

Reversible Pulpitis 0 0 
Symptomatic Irreversible Pulpitis 0.5555555556 1 

Asymptomatic Irreversible Pulpitis 0 0 
Pulp Necrosis 1 0.1111111111 

Pain of Nonodontogenic Origin 1 0.5 
Dentinal Hypersensitivity 0.3333333333 1 

Average 0.4412698413 0.5158730159 
Table 6-42 - Pulpal Diagnosis (Rank 1) CC 

Pulpal Diagnosis (Rank 2) CC Precision Recall 
Normal Pulpal Tissues 0 0 

Reversible Pulpitis 0.2 0.1 
Symptomatic Irreversible Pulpitis 0 0 

Asymptomatic Irreversible Pulpitis 0.5833333333 0.875 
Pulp Necrosis 0 0 

Pain of Nonodontogenic Origin 0.2 1 
Dentinal Hypersensitivity 0 0 

Average 0.1404761905 0.2821428571 
Table 6-43 -Pulpal Diagnosis (Rank 2) CC 

Apical Diagnosis (Rank 1) CC Precision Recall 
Normal Apical Tissues 0 0 

Asymptomatic Apical Periodontitis 0 0 
Pain of Nonodontogenic Origin 0 0 

Symptomatic Apical Periodontitis 0 0 
Acute Apical Abscess 0.1538461538 1 

Chronic Apical Abscess 0.25 1 
Average 0.06730769231 0.3333333333 

Table 6-44 - Apical Diagnosis (Rank 1) CC 

Apical Diagnosis (Rank 2) CC Precision Recall 
Normal Apical Tissues 0 0 

Asymptomatic Apical Periodontitis 0 0 
Pain of Nonodontogenic Origin 0 0 

Symptomatic Apical Periodontitis 0 0 
Acute Apical Abscess 0 0 

Chronic Apical Abscess 0 0 
Average 0 0 

Table 6-45 - Apical Diagnosis (Rank 2) CC 

The precision-recall data for all the sections of the information model (CC, CC+EO, CC+EO+IO, 
CC+EO+IO+CT and Final) and dentists is presented in Appendix 13. Also, see Appendix 15 for raw 
data. 

This section provides an overview of the Precision-Recall analysis. The next section provides the results 
of Precision-Recall analysis.  
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6.9 Results of Precision-Recall analysis 

6.9.1 Wilcoxon rank sum test with continuity correction - Summary of 
results 

The Wilcoxon rank sum test with continuity correction was performed for significance testing in the 
precision and recall analysis. Shapiro-Wilk test for normality was performed on the precision-recall data 
and the data was largely found to have a normal distribution (See Appendix 12 – section 12.2). Therefore, 
the Wilcoxon rank sum test was chosen was the test for significance. The test will be performed across 
several types of results. The Rank 1 and Rank 2 precision and recall of both Pulpal and Apical diagnosis 
(Figure 6-28) was compared to that of dentists.  

 

Figure 6-28 -  Precision-recall analysis outline 

6.9.1.1 Pulpal Rank 1 

6.9.1.1.1 Pulpal Rank 1 Precision 
In this section the Pulpal Rank 1 Precision of the CDSS across all sections CC, CC+EO, CC+EO+IO, 
CC+EO+IO+CT and final is compared to the dentist’s Pulpal Rank 1 Precision (Table 6-46)(Figure 
6-29). 

Pulpal Rank 1 Average Precision 
Rank 1-CC 0.44 

Rank 1-CC+EO 0.15 
Rank 1-CC+EO+IO 0.47 

Rank 1-CC+EO+IO+CT 0.74 
Rank 1- Final 1.00 

Rank 1-Dentists (Final) 0.57 
Table 6-46 - Pulpal Rank 1 Precision 
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Figure 6-29 - Pulpal Rank 1 Precision 

 

Precision Comparison 95 % Confidence 
Interval 

Wilcoxson rank sum test with 
continuity correction 

Significant 
Differences 

(p≤ 0.05) 

Pulpal Rank 1-CC-Precision 
vs Pulpal Rank 1-Dentists-

Precision 

-0.6250743 

0.3600415 

W = 18.5, p-value = 0.4808  

Pulpal Rank 1-CC+EO-
Precision vs Pulpal Rank 1-

Dentists-Precision 

(Dentists better than CDSS) 

-0.7181599  

-0.1400275 

W = 4, p-value = 0.009764  

Pulpal Rank 1-
CC+EO+IO-Precision vs 
Pulpal Rank 1-Dentists-

Precision 

-0.599953 

0.3600594 

W = 21, p-value = 0.7005  

Pulpal Rank 1-
CC+EO+IO+CT-Precision 
vs Pulpal 1 Rank 1-Dentists-

Precision 

-0.3066343 

 0.6333031 

W = 34, p-value = 0.2449  

Pulpal Rank 1-DS Model 
(Final)-Precision vs Pulpal 
Rank 1-Dentists-Precision 

(CDSS better than dentists) 

0.1249891 

0.6522447 

W = 49, p-value = 0.001058  

Table 6-47 - Pulpal Rank 1 Precision Comparison 

The average precision of the CDSS is different sections of the clinical encounter has been presented in 
Table 6-46. The same results have been presented in a bar chart above (Figure 6-29).  The precision of 
the CDSS in the CC+EO section shows a reduction in performance. The dentist’s final diagnosis is 
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significantly better than the CDSS at this section (Table 6-47) according to the Wilcoxon rank sum test. 
The Pulpal diagnostic performance improves as more information is collected about the patient and 
eventually surpasses that of the dentists in the final section.  

 

6.9.1.1.2 Pulpal Rank 1 Recall 
In this section the Pulpal Rank 1 Recall of the CDSS across all sections CC, CC+EO, CC+EO+IO, 
CC+EO+IO+CT and final is compared to the dentist’s Pulpal Rank 1 Recall (Table 6-48) (Figure 6-30). 

Pulpal Rank 1 Average Recall 
Rank 1-CC 0.52 

Rank 1-CC+EO 0.43 
Rank 1-CC+EO+IO 0.64 

Rank 1-CC+EO+IO+CT 0.77 
Rank 1- Final 1.00 

Rank 1-Dentists (Final) 0.66 
Table 6-48 - Pulpal Rank 1 Recall 

 

Figure 6-30 - Pulpal Rank 1 Recall 

 

Recall Comparison 95 % Confidence 
Interval 

Wilcoxson rank sum test with 
continuity correction 

Significant 
Differences 

(p≤ 0.05) 

Pulpal Rank 1-CC-Recall vs 
Pulpal Rank 1-Dentists-

Recall 

-0.6666848 

0.4999584 

W = 20.5, p-value = 0.6466  

Pulpal Rank 1-CC+EO-
Recall vs Pulpal Rank 1-

Dentists-Recall 

-0.727289 

0.4999101 

W = 18, p-value = 0.4276  

Pulpal Rank 1-
CC+EO+IO-Recall vs 

-0.5000814 W = 26.5, p-value = 0.8415  
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Pulpal Rank 1-Dentists-
Recall 

0.5000537 

Pulpal Rank 1-
CC+EO+IO+CT-Recall vs 
Pulpal 1 Rank 1-Dentists-

Recall 

-0.3333291 

0.5666035 

W = 31.5, p-value = 0.3868  

Pulpal Rank 1-DS Model 
(Final)-Recall vs Pulpal 
Rank 1-Dentists-Recall 

(CDSS better than dentists) 

0.0000000 

0.6250368 

W = 42, p-value = 0.01136  

Table 6-49 - Pulpal Rank 1 Recall Comparison 

The average Rank 1 recall of the CDSS across all sections showed similar reduction in recall performance 
of the CDSS however overall reduction in recall was not statistically significant (Table 6-49). The Rank 1 
recall performance of the DS Model (Final) was significantly better than the dentists. The results show 
that the CDSS requires additional information in all sections except the final section to provide a Rank 1 
diagnostic performance better than the dentists.  
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6.9.1.2 Pulpal Rank 2 

6.9.1.2.1 Pulpal Rank 2 Precision 
In this section the Pulpal Rank 2 Precision of the CDSS across all sections CC, CC+EO, CC+EO+IO, 
CC+EO+IO+CT and final is compared to the dentist’s Pulpal Rank 2 Precision (Table 6-50)(Figure 
6-31). 

Rank 2 Average Precision 
Rank 2-CC 0.14 

Rank 2-CC+EO 0.15 
Rank 2-CC+EO+IO 0.17 

Rank 2-CC+EO+IO+CT 0.51 
Rank 2-Final 0.41 

Rank 2-Dentists (Final) 0.35 
Table 6-50 - Pulpal Rank 2 Precision 

 

Figure 6-31 - Pulpal Rank 2 Precision 

 

Precision Comparison 95 % Confidence 
Interval 

Wilcoxson rank sum test with 
continuity correction 

Significant 
Differences 

(p≤ 0.05) 

Pulpal Rank 2-CC-Precision 
vs Pulpal Rank 2-Dentists-

Precision 

-0.6824264 

  0.1999634 

W = 18, p-value = 0.4124  

Pulpal Rank 2-CC+EO-
Precision vs Pulpal Rank 2-

Dentists-Precision 

-0.7394827 

  0.1429098 

W = 17, p-value = 0.3395  

Pulpal Rank 2-
CC+EO+IO-Precision vs 
Pulpal Rank 2-Dentists-

Precision 

-0.3823533 

 0.5000075 

W = 29, p-value = 0.6003  
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Pulpal Rank 2-
CC+EO+IO+CT-Precision 
vs Pulpal 1 Rank 2-Dentists-

Precision 

-0.6249563 

 0.9999360 

W = 29.5, p-value = 0.5476  

Pulpal Rank 2-DS Model 
(Final)-Precision vs Pulpal 
Rank 2-Dentists-Precision 

-0.6249411 

 0.6666719 

W = 27.5, p-value = 0.7392  

Table 6-51 - Pulpal Rank 2 Precision Comparison 

The Pulpal Rank 2 precision of the CDSS was poor across sections of the information model. The CDSS 
did not perform better or worse when compared to the dentists (Table 6-51). The results show that the 
CDSS requires additional information in all sections to improve its Pulpal Rank 2 precision.  

 

6.9.1.2.2 Pulpal Rank 2 Recall 
In this section the Pulpal Rank 2 Recall of the CDSS across all sections CC, CC+EO, CC+EO+IO, 
CC+EO+IO+CT and final is compared to the dentist’s Pulpal Rank 2 Recall (Table 6-52)(Figure 6-32). 

Rank 2 Average Recall 
Rank 2-CC 0.28 

Rank 2-CC+EO 0.28 
Rank 2-CC+EO+IO 0.22 

Rank 2-CC+EO+IO+CT 0.43 
Rank 2-Final 0.43 

Rank 2-Dentists (Final) 0.20 
Table 6-52 - Pulpal Rank 2 Recall 

 

Figure 6-32 - Pulpal Rank 2 Recall 

 

Recall Comparison 95 % Confidence 
Interval 

Wilcoxson rank sum test with 
continuity correction 

Significant 
Differences 

(p≤ 0.05) 



255 
 

Pulpal Rank 2-CC-Recall vs 
Pulpal Rank 2-Dentists-

Recall 

-0.3749276 
0.6554494 

W = 23, p-value = 0.8915  

Pulpal Rank 2-CC+EO-
Recall vs Pulpal Rank 2-

Dentists-Recall 

-0.3749276 

  0.6554494 

W = 23, p-value = 0.8915  

Pulpal Rank 2-
CC+EO+IO-Recall vs 
Pulpal Rank 2-Dentists-

Recall 

-0.05553853 

  0.99992293 

W = 37, p-value = 0.1126  

Pulpal Rank 2-
CC+EO+IO+CT-Recall vs 
Pulpal 1 Rank 2-Dentists-

Recall 

-0.2500661 

  0.8749952 

W = 28.5, p-value = 0.6412  

Pulpal Rank 2-DS Model 
(Final)-Recall vs Pulpal 
Rank 2-Dentists-Recall 

-0.2500661 

  0.8749952 

W = 28.5, p-value = 0.6412  

Table 6-53 - Pulpal Rank 2 Recall Comparison 

Like the Rank 2 precision results, the Pulpal Rank 2 Recall results were poor across all sections. The 
CDSS did not perform better or worse when compared to the dentists (Table 6-53). The results show that 
the CDSS requires additional information in all sections to improve its Pulpal Rank 2 recall. 
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6.9.1.3 Apical Rank 1 

6.9.1.3.1 Apical Rank 1 Precision 
In this section the Apical Rank 1 Precision of the CDSS across all sections CC, CC+EO, CC+EO+IO, 
CC+EO+IO+CT and final is compared to the dentist’s Apical Rank 1 Precision (Table 6-54)(Figure 
6-33). 

Apical Rank 1 Average Precision 
Rank 1-CC 0.07 

Rank 1-CC+EO 0.27 
Rank 1-CC+EO+IO 0.28 

Rank 1-CC+EO+IO+CT 0.56 
Rank 1- Final 1.00 

Rank 1-Dentists (Final) 0.67 
Table 6-54 - Apical Rank 1 Precision 

 

Figure 6-33 - Apical Rank 1 Precision 

 

Precision Comparison 95 % Confidence 
Interval 

Wilcoxson rank sum test with 
continuity correction 

Significant 
Differences 

(p≤ 0.05) 

Apical Rank 1-CC-Precision 
vs Apical Rank 1-Dentists-

Precision 

(Dentists better than CDSS) 

-0.7619696 
0.4614652 

W = 0, p-value = 0.004337  

Apical Rank 1-CC+EO-
Precision vs Apical Rank 1-

Dentists-Precision 

-0.7618905 

  0.2363782 

W = 6, p-value = 0.06367  

Apical Rank 1-
CC+EO+IO-Precision vs 

-0.7618905 

  0.2363782 

W = 6, p-value = 0.06367  
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Apical Rank 1-Dentists-
Precision 

Apical Rank 1-
CC+EO+IO+CT-Precision 

vs Apical 1 Rank 1-
Dentists-Precision 

-0.5000110 

  0.3845922 

W = 13.5, p-value = 0.5204  

Apical Rank 1-DS Model 
(Final)-Precision vs Apical 
Rank 1-Dentists-Precision 

(CDSS better than dentists) 

0.2380685 

 0.4000415 

W = 36, p-value = 0.002778  

Table 6-55 - Apical Rank 1 Precision Comparison 

The Apical Rank 1 precision of the CDSS was poor in the early sections of the information model. It 
performed significantly worse than the dentists in the CC section. However, the precision improves as 
more information is collected and eventually when the data from radiology tests (DS Model-Final) section 
is obtained the CDSS performs better than the dentists (Table 6-55).  

6.9.1.3.2 Apical Rank 1 Recall 
In this section the Apical Rank 1 Recall of the CDSS across all sections CC, CC+EO, CC+EO+IO, 
CC+EO+IO+CT and final is compared to the dentist’s Apical Rank 1 Recall (Table 6-56)(Figure 6-34). 

Apical Rank 1 Average Recall 
Rank 1-CC 0.33 

Rank 1-CC+EO 0.50 
Rank 1-CC+EO+IO 0.50 

Rank 1-CC+EO+IO+CT 0.83 
Rank 1- Final 1.00 

Rank 1-Dentists (Final) 0.64 
Table 6-56 - Apical Rank 1 Recall 

 

Figure 6-34 - Apical Rank 1 Recall 
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Recall Comparison 95 % Confidence 
Interval 

Wilcoxson rank sum test with 
continuity correction 

Significant 
Differences 

(p≤ 0.05) 

Apical Rank 1-CC-Recall vs 
Apical Rank 1-Dentists-

Recall 

-0.8421744  

 0.3749297 

W = 12, p-value = 0.3691  

Apical Rank 1-CC+EO-
Recall vs Apical Rank 1-

Dentists-Recall 

-0.8420758 

  0.3845539 

W = 18, p-value = 1  

Apical Rank 1-
CC+EO+IO-Recall vs 
Apical Rank 1-Dentists-

Recall 

-0.8420758 

  0.3845539 

W = 18, p-value = 1  

Apical Rank 1-
CC+EO+IO+CT-Recall vs 
Apical 1 Rank 1-Dentists-

Recall 

-0.2142694 

  0.3846181 

W = 30, p-value = 0.0562  

Apical Rank 1-DS Model 
(Final)-Recall vs Apical 
Rank 1-Dentists-Recall 

(CDSS better than dentists) 

0.1578436 

 0.3846157 

W = 36, p-value = 0.002778  

Table 6-57 - Apical Rank 1 Recall Comparison 

The Apical Rank 1 recall performance of the CDSS was poor in the early sections of the information 
model. The CDSS performed better as more information was collection and when the Clinical Tests 
section was complete the CDSS outperformed the dentists in Apical Rank 1 recall (Table 6-57).  
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6.9.1.4 Apical Rank 2 

6.9.1.4.1 Apical Rank 2 Precision 
In this section the Apical Rank 2 Precision of the CDSS across all sections CC, CC+EO, CC+EO+IO, 
CC+EO+IO+CT and final is compared to the dentist’s Apical Rank 2 Precision (Table 6-58)(Figure 
6-35). 

Apical Rank 1 Average Precision 
Rank 2-CC 0.00 

Rank 2-CC+EO 0.00 
Rank 2-CC+EO+IO 0.00 

Rank 2-CC+EO+IO+CT 0.21 
Rank 2-Final 0.38 

Rank 2-Dentists (Final) 0.34 
Table 6-58 - Apical Rank 2 Precision 

 

Figure 6-35 - Apical Rank 2 Precision 

 

Precision Comparison 95 % Confidence 
Interval 

Wilcoxson rank sum test with 
continuity correction 

Significant 
Differences 

(p≤ 0.05) 

Apical Rank 2-CC-Precision 
vs Apical Rank 2-Dentists-

Precision 

(Dentists better than CDSS) 

-0.4737274  

-0.2142115 

W = 3, p-value = 0.009465  

Apical Rank 2-CC+EO-
Precision vs Apical Rank 2-

Dentists-Precision 

(Dentists better than CDSS) 

-0.4737274  

-0.2142115 

W = 3, p-value = 0.009465  
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Apical Rank 2-
CC+EO+IO-Precision vs 
Apical Rank 2-Dentists-

Precision 

(Dentists better than CDSS) 

-0.4737274  

-0.2142115 

W = 3, p-value = 0.009465  

Apical Rank 2-
CC+EO+IO+CT-Precision 

vs Apical 1 Rank 2-
Dentists-Precision 

-0.4737096 

  0.2666313 

W = 14, p-value = 0.5604  

Apical Rank 2-DS Model 
(Final)-Precision vs Apical 
Rank 2-Dentists-Precision 

-0.4736478 

0.5999802 

W = 19.5, p-value = 0.8703  

Table 6-59 - Apical Rank 2 Precision Comparison 

The Apical Rank 2 precision of the CDSS was very poor in the early sections and the dentists performed 
better than the CDSS. These results are like the results obtained after analysis of Pulpal Rank 2 precision 
(Table 6-59). The results show that the CDSS requires additional information in all sections to improve its 
Apical Rank 2 precision.  

6.9.1.4.2 Apical Rank 2 Recall 
In this section the Apical Rank 2 Recall of the CDSS across all sections CC, CC+EO, CC+EO+IO, 
CC+EO+IO+CT and final is compared to the dentist’s Apical Rank 2 Recall (Table 6-60)(Figure 6-36). 

Apical Rank 1 Average Recall 
Rank 2-CC 0.00 

Rank 2-CC+EO 0.00 
Rank 2-CC+EO+IO 0.00 

Rank 2-CC+EO+IO+CT 0.33 
Rank 2-Final 0.46 

Rank 2-Dentists (Final) 0.34 
Table 6-60 - Apical Rank 2 Recall 

 

Figure 6-36 - Apical Rank 2 Recall 
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Recall Comparison 95 % Confidence 
Interval 

Wilcoxson rank sum test with 
continuity correction 

Significant 
Differences 

(p≤ 0.05) 

Apical Rank 2-CC-Recall vs 
Apical Rank 2-Dentists-

Recall 

(Dentists better than CDSS) 

-0.5000438  

-0.1999967 

W = 3, p-value = 0.009465  

Apical Rank 2-CC+EO-
Recall vs Apical Rank 2-

Dentists-Recall 

(Dentists better than CDSS) 

-0.5000438  

-0.1999967 

W = 3, p-value = 0.009465  

Apical Rank 2-
CC+EO+IO-Recall vs 
Apical Rank 2-Dentists-

Recall 

(Dentists better than CDSS) 

-0.5000438  

-0.1999967 

W = 3, p-value = 0.009465  

Apical Rank 2-
CC+EO+IO+CT-Recall vs 
Apical 1 Rank 2-Dentists-

Recall 

-0.5000407   

0.7691873 

W = 14, p-value = 0.5597  

Apical Rank 2-DS Model 
(Final)-Recall vs Apical 
Rank 2-Dentists-Recall 

-0.5000660  

0.7692014 

W = 19.5, p-value = 0.87  

Table 6-61 - Apical Rank 2 Recall Comparison 

The results of Apical Rank 2 recall show that the CDSS performed poorly in the early sections of the 
information model and improves after the Clinical Tests data is obtained. Even then the CDSS does not 
perform better than the dentists at recall of Apical Rank 2 diagnoses. The results show that the CDSS 
requires additional information in all sections to improve its Apical Rank 2 recall.  

This section provides the results of the Precision-Recall analysis. The next section discusses the results of 
the NDCG and Precision-Recall analysis.  
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6.10 Discussion 

This chapter details the evaluation of the DS Model and comparison of the results with primary care 
dentists. An implementation of the DS Model in dentistry was used in the evaluation. Two different 
evaluation metrics were used for evaluating the diagnostic performance of the model: NDCG and 
Precision-Recall. The dental encounter was split into different stages based on the different sections of 
the DIM dental information model. Each section of the information model represented various stages of 
the clinical encounter through which the dentist will traverse while collecting information from the 
patient. The DS Model was evaluated at each stage and compared to the final diagnostic performance of 
the dentists.  

6.10.1 CDSS performance in the late stages 

The results of Pulpal NCDG analysis show that for obtaining ranked recommendations the CDSS 
performs better than the dentists in the late stages of the clinical encounter (CC+EO+IO+CT and Final). 
The results of the Apical NDCG tests comparing the results with dentists were inconclusive. The t-test 
showed that the CDSS in the Final stage performed significantly better than the dentists (p-value = 
5.539e-05). However, the Wilcoxon rank sum test does not show that the CDSS is better than the 
dentists.  

As more information is obtained the CDSS performs better than the dentists. In the late stages of the 
clinical encounter the Clinical Tests and Radiographic Examinations are performed. These tests confirm 
the presence or absence of disease. In an ideal clinical setting where every clinical test and radiograph can 
be taken, and an accurate picture of the patient’s condition can be obtained the CDSS using the DS 
Model could potentially help the dentists improve their final diagnosis.  

Similarly, the DS Model is better than the dentists at the late stages and it is possible in certain clinical 
conditions it could help improve the final diagnosis of dentists and improve the diagnostic performance 
in the late stages especially in Pulpal diagnosis. However, further study is needed in this area to see if the 
ability of a CDSS to perform better than clinicians has an impact on their final diagnosis.  

The results of the evaluation of the DS Model shows that the DS Model does not need more information 
in the late stages (CC+EO+IO+CT and Final) to improve the diagnostic performance. All the 
information collected in the previous sections when combined with the clinical tests should provide 
enough information for the CDSS to make an accurate ranked list for the patient. The results of the 
Precision-Recall evaluation show that the CDSS in the final stage is significantly better than the dentists in 
providing a Rank 1 diagnostic recommendation for both Pulpal and Apical diagnosis. The Rank 2 Pulpal 
and Apical diagnosis was poor in the late stages. However, it did perform as well as the dentists in the late 
stages.  

The results of the Precision-Recall analysis support the findings of the NDCG analysis. The CDSS does 
not need more information in the late stages from external sources to provide a Rank 1 Pulpal and Apical 
diagnostic recommendation that is better than the dentists. Using semantic web and linked data 
technologies to link to other datasets to find more information to improve the diagnosis at this stage will 
not have a major impact in improving the diagnostic performance of the CDSS. Information around a 
concept can still be retrieved to support the clinician. For example, the dentist could be provided with the 
latest guideline specific information about a diagnostic test or the availability of new test. As the results in 
the Chapter 4 study with optometrists show, this could potentially help the dentist in choosing the 
appropriate test. There is potential savings in time and effort if clinicians perform the right test and 
patients are not subjected to unnecessary tests. The results of the evaluation of the DS Model shows that 
there is little scope additional improvement in diagnostic performance in the late stages by obtaining 
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external information about the patient. There is a need for integration and semantic interoperability. If 
some test results are missing from the patient’s EHR then linked data and other technologies such as 
FHIR API’s can be used to obtain a historical record about the patient. In this study all the information 
needed to decide was provided to both the dentists and the CDSS. In real-life situations in the presence 
of incomplete information a decision support tool that can integrate information can be valuable even in 
the late stages.  

6.10.2 CDSS performance in the early stages 
One of the key findings in the NDCG and Precision-Recall analysis in the early stages (CC, CC+EO, 
CC+EO+IO) is the presence of the dip in diagnostic performance especially in Pulpal diagnosis. This 
dip, which has been called the ‘Intermediate dip’ in this thesis, can be noticed in a side-by-side 
comparison of NDCG scores of each section (Figure 6-24). The t-test showed that the NDCG in the CC 
section of Pulpal diagnosis was statistically better than the dentists. However, the NDCG scores shows a 
dip in NDCG in the subsequent sections (CC+EO and CC+EO+IO). The scores rise when the Clinical 
Tests results are obtained and eventually becomes better than the dentists. The Wilcoxon significance test 
showed that the CC section NDCG score was not statistically better than the dentists (Table 6-37). 
Nevertheless, the intermediate dip can be seen in the chart (Figure 6-26). 

Similar intermediate dip in diagnostic performance can be seen in the Precision-Recall analysis of Pulpal 
Rank 1 (Figure 6-29). The intermediate dip is more pronounced in the Precision-Recall graph for Pulpal 
Rank 1 when compared to the NDCG graph. In fact, the precision of Pulpal Rank 1 for the CC+EO is 
so marked that it poorer than the final Pulpal Rank 1 for dentists. There is a similar dip in recall of Pulpal 
Rank 1 diagnosis as well. However, the recall in the CC+EO section is not significantly worse than the 
dentists.  

The intermediate dip is significant for several reasons. Conventionally the CDSS is expected to exhibit 
certain distinct behaviour. For example, it is expected that the diagnostic performance will be poor in the 
beginning stages and then gradually improve as more information is collected from the patient. If this 
pattern was constant across all CDSS inference models we can try various techniques to improve the 
performance. The CDSS can be linked to other data sources and the information model can be adapted 
accordingly to improve the performance until the results are satisfactory. However, the results of the 
study show that in the Pulpal diagnosis there is a greater need for improvement in the intermediate 
sections (CC+EO and CC+EO+IO). The intermediate dip can be partly explained by the weights 
adjusting accordingly as more information is obtained. The information collected in the CC section 
include signs and symptoms reported by the patient. Some signs and symptoms reported by the patient 
are indicative of certain diagnoses and therefore they will be ranked higher in the diagnostic list. However, 
as more information is collected in the subsequent sections the diagnoses that were ranked higher will go 
down the list, though not to the bottom of the list. This is corrected in the late stages (CC+EO+IO+CT 
and Final). This shallow dip can be observed in the NDCG graph for pulpal diagnosis (Figure 6-26). 
Since NDCG analysis looks at the ranking of the whole list and penalizes the score of the CDSS for 
incorrectly placing a correct diagnosis, the scores for Pulpal NDCG suggest that overall the relevant 
diagnosis is still ranked very high in the list. However, when we look at Rank 1 for Pulpal diagnosis in 
isolation we find that the fall in precision and recall scores are marked in the early stages and finally 
improves in the late stages.  

The NDCG and precision-recall for Apical diagnosis did not show an intermediate dip in the early stages 
(Figure 6-27). Diagnostic performance of the CDSS in Apical diagnosis shows a gradual improvement 
across the stages as more information is collected. Though it is difficult to say if the CDSS performs 
better than the dentists in Apical diagnosis as the NDCG results were inconclusive. The NDCG scores in 
the CC section is significantly poorer than the dentists (according to both t-test and Wilcoxon test). 
Therefore, there is a definite need for more information in this section to improve diagnosis. These 
results are supported by the precision-recall analysis of Rank 1 Apical diagnosis as well. The precision in 
the CC section is significantly poorer than dentists (Figure 6-33 and Table 6-55). The recall performance 
of the CDSS in the early stages for Rank 1 Apical diagnosis was not significantly worse than dentists, 
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nevertheless it was low in the early stages and improved as the CDSS traversed the following sections 
(Table 6-56 and Figure 6-34). There is a need to provide more information to improve the diagnostic 
performance in the early stages as well.  

6.10.3 Rank 2 CDSS performance 
The Rank 2 precision of the CDSS was not good for both Pulpal (Figure 6-31) and Apical (Figure 6-35) 
diagnosis. The Rank 2 precision results were particularly bad in the early stages (CC, CC+EO, 
CC+EO+IO). Similar results were observed for the Rank 2 recall results for both Pulpal (Figure 6-32) 
and Apical (Figure 6-36) diagnosis. The CDSS cannot be recommended to make safe and reliable 
diagnostic recommendations for Rank 2 diagnosis. The CDSS did not perform better or worse than 
dentists in Rank 2 Pulpal diagnosis. Further study needs to be done in this area of ranking diagnostic 
recommendations. Clinicians are generally trained to produce a differential diagnosis list that includes 
several diagnoses that they should consider (Wears, 2009). Though little research has been done to 
compare the ranking produced by the clinicians with the ranking produced by CDSS applications. Some 
diagnostic CDSS applications such as DXPlain® produce a ranked list for differential diagnosis based on 
how strongly a finding suggests the presence of a disease and the prevalence of the disease (Bond et al., 
2012a). In the literature, evaluation of most diagnostic CDSS applications centred around evaluating the 
final Rank 1 diagnosis and most CDSS applications perform really well in this aspect (Bouhaddou, 
Lambert and Morgan, 1995; Graber and Mathew, 2008b; Umscheid and Hanson, 2012). These results 
have been confirmed by the results in this thesis.  

6.10.4 Ranking of the diagnoses and its impact on cognitive biases 

The DS Model uses a simple weighting scheme that was derived from the weighting scheme used in the 
Chapter 4 Optometry study. In this weighting scheme if the presence of an observation supports a 
diagnosis then a weight of +1 was given to the argument. If the presence of an observation strongly 
supports a diagnosis, then a weight of +2 was given to the argument. Similarly, negative weights were 
given for arguments that negate a diagnosis. The weighting scheme is simple and can be modelled very 
easily by the domain expert. A simple summation method was used to sum the weights of the arguments 
to obtain an overall weight for the diagnosis. This simple method of summation allows the CDSS using 
the DS Model to generate diagnostic recommendations without the need for specialized software and 
algorithms for inferencing. 

However, the use of this simple weighting scheme and summation method means that there is increased 
risk of several diagnoses sharing the same rank when there is limited information. In the early stages of 
the clinical encounter there is limited information. For example, in CC section of the information model 
if the patient indicates the presence of pain then it supports several diagnoses. If the diagnoses are 
generated by the DS Model using 1 data point, then several diagnoses will share the same rank. However, 
in real-life situations the dentists must collect more information in the CC section. This includes nature of 
pain, location of pain, history of pain etc. Once all this information is collected in the CC section then 
number of diagnoses that share the same ranking will reduce.  

Failure to consider a diagnosis is a major cause of diagnostic error and therefore providing a ranked list 
helps the clinician in considering and prioritizing a diagnosis and order further diagnostic tests if needed. 
The analysis was conducted using NDCG under the assumption that clinicians are more likely to ignore 
diagnoses that are ranked lower down the list. Using NDCG we can measure how well the CDSS 
performs in ranking the diagnoses. If the correct diagnosis is ranked low, then the NDCG score will be 
low. NDCG takes the utility of diagnosis at each rank and penalizes it by a logarithmic reduction factor. 
As the diagnosis goes lower the ranking, the utility of the diagnosis reduces. NDCG is used to measure 
the usefulness of a ranking on a scale from 0 to 1. A NDCG score of 1 represents a perfect match to the 
ideal ranking of the diagnoses. The ideal Rank 1 and Rank 2 was obtained from the Endodontist. 
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The results of the study show that in the CC section the DS Model performs significantly better than the 
dentists according to the t-test in the Pulpal diagnosis. A NDCG score of 0.81 was obtained (Figure 
6-24). This shows that after collecting enough information in the CC section the DS Model can give a 
diagnostic recommendation that is very close to that of the expert’s (Endodontist) final diagnosis. If both 
the correct Rank 1 and Rank 2 diagnoses were ranked low in the ranking, NDCG score would be very 
low. Therefore, in real life situations the dentists will be given a ranked diagnostic recommendation by the 
DS Model with the correct Rank 1 and Rank 2 diagnoses ranked high in the ranking. A diagnostic ranking 
in the CC stage that accurately matches the Endodontist’s ranking is impossible in the early stages. 
However, a ranking that is very close to the Endodontist’s ranking will be very useful to the dentist. Even 
with the simple weighting scheme and summation method the DS Model can provide a ranked diagnostic 
recommendation that is very good in the early stages.  

The DS Model uses argumentation as the basis for generating the diagnostic recommendations. The 
ranked recommendations have explanations for making the recommendation. The arguments for and 
against a diagnosis can be presented alongside the diagnosis. For example, if Reversible Pulpitis is ranked 
high in the ranking then arguments such as ‘Patient complains of pain’ and ‘Pain is sharp and localized’ 
can be presented alongside the diagnosis. When the dentist collects information according to the 
hypothetico-deductive model he/she generates a diagnostic hypothesis. At the end of the CC section the 
DS Model generates the recommendation which the dentist can compare to his/her own mental model of 
the patient. The ranked diagnostic recommendations could potentially help the dentist consider 
alternative diagnoses. Argumentation helps organise the information and provide context for the 
observations that are present and help link the observations to the diagnosis. Researchers have suggested 
providing alternatives and organised presentation of information can help reduce diagnostic error 
(Graber, Franklin and Gordon, 2005b; Croskerry, Singhal and Mamede, 2013a). Premature closure bias is 
the most common cognitive cause for diagnostic error. When the DS Model provides a ranked diagnostic 
recommendation that closely matches the experts, the dentist can look at the top ranked 
recommendations and plan the next course of action. If the ranked recommendations were not very 
good, it could potentially lead the dentist to the wrong course of action. The dentist may spend more time 
collecting information via asking questions and performing tests that were not needed. Since the ranked 
diagnostic recommendations by the DS Model in the CC section are very good then the dentist can 
perform tests and asks questions that are more appropriate.  

The Chapter 4 Optometry study demonstrated how guideline recommendations can help influence 
information gathering of optometrists. However, these guideline recommendations were not diagnosis 
specific as the diagnosis was generated at the end of the clinical encounter. The DS Model did not 
demonstrate how guideline recommendations can be generated. However, the DS Model can be adapted 
to provide guideline recommendations that are diagnosis specific. For example, if Reversible Pulpitis is 
ranked high then a plan for confirming this diagnosis can be presented early in the clinical encounter 
based on the limited data collected in the CC section. Guideline recommendations that explain the 
condition, provide anatomical/physiological information, provide tests that confirm or reject the 
diagnosis can be presented. Guideline recommendations could therefore potentially have a greater impact 
on information gathering of clinicians when combined with accurate early diagnostic recommendations. 
The impact of guideline recommendations in conjunction with early diagnostic recommendations need to 
be studied further. 

Similarly, in the CC+EO section the overall Pulpal NDCG score is 0.77. The Pulpal NDCG score for 
CC+EO+IO is 0.81(Figure 6-24). The results show that the even though there is no significant different 
in the NDCG scores in these sections when compared to dentists in the study the NDCG scores are still 
very good. There is a small drop in the NDCG score in CC+EO section. This ‘intermediate dip’ is not 
significant as far as the NDCG scores are concerned. The Rank 1 and Rank 2 diagnoses are still high 
enough in the ranking to be clinical valuable. The drop in the score can be attributed to the CDSS 
obtaining more information in the CC+EO section. As more information is obtained the correct Rank 1 
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and Rank 2 diagnoses will move down the ranking generated by the CDSS.  Therefore, the overall 
NDCG score will drop.  

However, the results show that the overall NDCG score for Pulpal diagnosis in the CC+EO+IO section 
is 0.81 which means as more information is obtained the ranking adjust to provide a result that is close to 
the score in CC section (Figure 6-24). Confirmation bias can lead the clinician to look for evidence to 
support his/her diagnostic hypothesis rather than looking for evidence to reject. The changing ranking 
could potentially help in controlling confirmation bias. If the dentist has a mental model about the patient 
and if some other diagnosis is ranked higher then it forces the dentist to consider this alternate diagnosis. 
When there is no diagnostic CDSS recommendation especially in the early stages of the clinical 
encounter, there is no way of informing the dentist about the presence of another diagnosis that could 
potentially be of interest. The arguments inform the dentist why the alternate diagnosis must be explored.  

25 vignettes were presented to the CDSS. Vignette number 10032 and 10038 will be used here to 
illustrate how the Rank 1 and Rank 2 diagnoses change with new information. In vignette number 10032 
the Rank 1 Pulpal diagnosis provided by the Endodontist is Reversible Pulpitis and the Rank 2 Pulpal 
diagnosis is Dentinal Hypersensitivity. The Endodontist felt Reversible Pulpitis is the most likely 
diagnosis for this vignette and Dentinal Hypersensitivity is the next most likely diagnosis. The ranks for 
these 2 diagnoses change in the following manner as more data is collected. The corresponding NDCG 
scores obtained for this vignette are given in Table 6-62. 

DIM Section Reversible Pulpitis 
Rank 

Dentinal Hypersensitivity 
Rank 

NDCG score 

CC 2 1 1 

CC+EO 2 1 1 

CC+EO+IO 1 2 1 

CC+EO+IO+CT 1 2 1 

DS Model Final 1 3 0.9 

Table 6-62 - NDCG and ranking for 10032 

The data for 10032 shows that ranking closely matches that of the Endodontist across all sections. In the 
Final section the Dentinal Hypersensitivity rank falls to Rank 3. However, the Rank 1 diagnosis is still 
Reversible Pulpitis. As more information is obtained the ranks adjust to reflect the correct diagnosis.  

In vignette 10038 the Rank 1 Pulpal diagnosis is Pulp Necrosis and Rank 2 Pulpal diagnosis is 
Asymptomatic Irreversible Pulpitis. The NDCG score and ranking can be seen in Table 6-63.  

DIM Section Pulp Necrosis Rank Asymptomatic 
Irreversible Pulpitis Rank 

NDCG score 

CC 1 2 1 

CC+EO 7 2 0.7 

CC+EO+IO 6 1 0.5 

CC+EO+IO+CT 1 2 1 

DS Model Final 1 2 1 

Table 6-63 - NDCG and ranking for 10038 

The data for 10038 shows how the ranking change as more information is collected. The Pulp Necrosis 
rank is 1 in the CC section. It falls drastically in the next 2 sections and then finally regains the top spot 
after the clinical test results are obtained. The intermediate dip is more pronounced in this vignette. The 
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reason for the intermediate dip can be explained with the type of questions asked and examination done 
in the early stages of the clinical encounter. The chief complaint and the nature of the complaint is highly 
indicative of certain diagnoses in certain cases. However, the observations that support Pulp Necrosis in 
extra-oral examination and intra-oral examination can be indicative of other diagnoses. Therefore, the 
rank falls drastically for Pulp Necrosis. However, the Rank 2 diagnosis is ranked high through all sections 
of the encounter. The arguments for a diagnosis can guide the dentist and explain why the diagnosis was 
ranked high. So, the chances of the CDSS negatively influencing the diagnostic performance are small and 
restricted to certain types of cases. In real life settings, the dentists will have to be informed that the early 
diagnostic recommendation is tentative and not to considered final and the diagnoses rankings are to be 
used in conjunction with the arguments and guideline recommendation (if available) as a guide to help in 
clinical test selection and interpretation of results. Overall, the NDCG scores for Pulpal diagnosis by the 
DS Model remains very high. However, the effect of changing ranking on premature closure and other 
cognitive biases of dentists and other primary care clinicians need to be studied further.  

The Apical diagnosis overall NDCG scores show that it is 0.64 in the CC section. However, the NCDG 
scores adjust itself to 0.80 in CC+EO section as more information is obtained and remains high 
throughout (Figure 6-25). The reason for the low NDCG score in the CC section could be explained by 
the type of questions asked in that section. In the CC section the questions are oriented towards obtaining 
information about the nature of pain and location of pain. Apical diagnoses are characterised by the lack 
of pain in the early stages of pathology and in some cases, there is no pain at all. The Precision and Recall 
tests support the NDCG scores but show a more marked variation in the different stages (See section 
6.9). The DS Model may not able to get the ranking perfect in the early stages but the NDCG scores 
show that the correct diagnoses are ranked high enough in the overall ranking.  

The results show that even with the simple weighting scheme and simple summation method, the DS 
Model can provide effective diagnostic recommendations. When combined with arguments the DS 
Model can help inform the dentist about alternative diagnoses and the reasons for recommending the 
diagnoses. Compared to other CDSS reasoning methods argumentation provides an easy method for 
knowledge representation and presenting the results in a manner that is easy to understand by the 
clinician. The late diagnostic recommendations closely match the Endodontist’s rankings. The 
performance of the DS Model varies depending on the type of case and the clinical presentation of the 
case. DS Model has been shown to provide effective early diagnostic recommendation in the early 
sections with an intermediate dip in performance. The DS Model was able to adjust the ranking 
appropriately to provide a final diagnostic recommendation that closely matches the Endodontist and 
exceeds the performance of the dentists recruited in the study.  
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7 Chapter 7 - General conclusions and discussion 
 

7.1 Introduction 
In this chapter the main findings are summarised with regards to research aims, general conclusions 
alongside contributions of study with optometrists, DS Model development and evaluation of the model 
is presented. The chapter outlines the strengths and limitations of the thesis and suggestions for further 
research are presented.  

7.1.1 Aims 
The aim of this thesis is a) to investigate the role of clinical guideline and argumentation-based diagnostic 
recommendations on primary care diagnosis and information gathering; b) to investigate and develop an 
argumentation-based model that can use data from disparate sources to assist in providing diagnostic 
recommendations across all stages of the clinical encounter; c) to develop CDSS prototypes that can use 
the model to deliver the diagnostic recommendations; d) to evaluate the model at different stages of the 
clinical encounter to see how a CDSS implementing the model will perform and identify areas of deficient 
performance of the model. 

Objective 1: To review the literature on models of diagnostic reasoning and identify models used by 
diagnostic CDSS to represent knowledge and formulate diagnostic recommendations and their role in 
reducing diagnostic error. Review state of the art web technologies to identify how they address the 
problem of semantic interoperability and their application in CDSS.  

Objective 2: Develop a diagnostic CDSS based on current argumentation-based CDSS technology and 
evaluate its effect on primary care clinician decision making and information gathering. 

Objective 3: Develop a semantically interoperable diagnostic inference model that can integrate 
information from disparate sources and uses argumentation to generate diagnostic recommendations. 

Objective 4: Implement a working CDSS prototype that implements the semantically interoperable 
diagnostic inference model and provides diagnostic recommendations.   

Objective 5: Evaluate the CDSS prototype and the diagnostic inference model and its ability to support 
diagnostic decision making at all stages of the clinical encounter. 

Objective 1 was addressed in Chapter 2 – Literature review. The literature review outlined some of the 
cognitive causes of diagnostic errors (section - 2.1.1). Some of the key cognitive causes for diagnostic 
error include biases such as premature closure bias and confirmation bias (Graber, Franklin and Gordon, 
2005b). According to the hypothetico-deductive theory (Elstein, Schwartz and Schwarz, 2002) the 
clinician uses initial information obtained from the patient to form a list of working diagnostic hypotheses 
and then obtains additional information to confirm or reject diagnostic hypotheses. Once all the 
information is obtained the clinician combines and weighs information from all sources to confirm one 
diagnosis from the list of working hypotheses. Illness script theory provides a framework that describes 
how clinicians organize knowledge obtained from clinical literature and experience (Schmidt and Rikers, 
2007a). Based on observations seen in the patient certain illness scripts are triggered in the mind of the 
clinician. The clinician then compares the data from the patient to the default values in the script. If the 
default value does not match, then another illness script is triggered until the right script that closely 
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matches the patient’s condition is found. The clinician is constantly obtaining new information from the 
patient via questions, examination, tests and investigations. The illness script explains how the clinician 
moves from one diagnostic hypothesis to another until they arrive at the right diagnosis.  

The Dual Process Theory explains how individuals make decision and judgements under uncertainty with 
limited information. The dual process theory consists of 2 types of processes, System 1 and System 2 
(Evans and Stanovich, 2013). System 1 is the process that is associated with pattern recognition. It is 
intuitive, efficient and fast and is the system used to make the most common decisions. It is mostly 
activated in cases with routine clinical presentations and is dependent on the clinician’s experience. It is 
used by busy clinicians to deal with patients with familiar clinical presentations. However diagnostic errors 
are highly associated with atypical presentations (Kostopoulou, Delaney and Munro, 2008b). When the 
clinical presentation of the case is atypical, and the clinician is not familiar with the case the clinical 
reasoning automatically switches to System 2 process of reasoning. System 2 is the process that is 
associated with slow, methodical, analytical reasoning. This process is deliberate and is most commonly 
activated when the patient presents with an atypical clinical presentation. An atypical presentation forces 
the clinician to slow down and consider all probable causes for the patient’s current condition. Medical 
students and clinicians with less experience tend to use System 2 for reasoning and are therefore slower 
and more methodical when trying to diagnose a patient. System 1 and System 2 reasoning work in tandem 
and support each other (Saposnik, Redelmeier, Christian C. Ruff, et al., 2016). 

In premature closure bias the clinician prematurely halts the diagnostic decision-making process before all 
the data has been collected. The clinician confirms a working hypothesis early and do not collect all the 
information needed to make an accurate diagnosis. The clinician finds some key abnormal values or 
observation which triggers an illness script if the illness script closely matches other data obtained from 
the patient. The System 1 process of reasoning is activated, and the diagnostic decision is made fast 
without considering other alternatives. Researchers have identified other causes for diagnostic errors 
including problems coordinating information from multiple sources and the clinician having inadequate 
knowledge about the patient’s condition (Graber, Gordon and Franklin, 2002a; Graber, Franklin and 
Gordon, 2005b).  

Researchers have proposed several strategies to reduce diagnostic errors dues to cognitive factors 
(Croskerry, 2003a). This includes providing alternative diagnosis, providing access to clear and well-
organized information, providing information in a structured manner etc. Providing early diagnostic 
recommendations is another proposed recommendation to help reduce diagnostic errors (Kostopoulou et 
al., 2015b). Clinical guidelines are another solution that could impact diagnostic decision making by 
standardising the process of collecting, analysing and verifying clinical data. Clinical guidelines improve 
consistency of care and can potentially improve healthcare efficiency. They can alert clinicians to 
diagnostic tests and procedures that have greatest evidence and provide greatest benefit. Clinical 
guidelines can be used to streamline clinical decision making and provide a knowledge base for guideline-
based CDSSs and clinical alert systems (Garg et al., 2005a) 

The literature indicated the role played by CDSSs in reducing diagnostic error and the review outlines the 
history of diagnostic CDSSs and the different historical methods used for capturing diagnostic criteria to 
support CDSS applications (section - 2.2). Diagnostic CDSSs identified in literature such as differential 
diagnosis generators provide alternative diagnosis to help the clinician consider alternative diagnosis. 
However, these systems provide the diagnostic recommendations at the end of the clinical encounter 
after all the information has been collected. Premature closure bias occurs when the clinician stops the 
information gathering process prematurely and arrives at a conclusion. Confirmation bias can lead the 
clinician to look for evidence to support his/her diagnostic hypothesis, rather than looking for evidence 
to reject. Therefore, alternative diagnoses provided to the clinician early in the diagnostic encounter is 
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potentially more useful to the clinician. When the alternative diagnoses are provided early in the 
diagnostic encounter (early diagnostic recommendations), this could help the clinician by encouraging the 
clinician to consider other alternate diagnoses and could prevent the clinician from halting the 
information gathering process. The reasons for making the recommendation must be given in a clear and 
organised manner as recommended by researchers. The recommendations must be easy to understand as 
well. When this information is provided in a structured manner to the clinician it helps the clinician 
understand the patient’s condition better and help choose tests and investigations that are more 
appropriate for the patient (Croskerry, 2003a). The reasons for the diagnostic recommendations can 
potentially help in reducing confirmation bias by forcing the System 2 process of reasoning. System 2 is 
slow, analytical and methodical process of reasoning. The reasons(arguments) for a diagnosis can help 
force the clinician to slow down and think about alternatives and not restrict the enquiry to information 
that fits his/her mental model.  

Guideline-based CDSSs and the role played by these systems have been identified in the literature review. 
Guideline-based CDSSs have been shown to improve adherence to guidelines and help provide patient 
specific guideline recommendations. Guideline-based CDSSs have been used in a wide variety of medical 
applications mainly in areas such as treatment planning. PROforma is a language that uses Argumentation 
Theory as the basis for generating decision recommendations and PROforma-based CDSSs have been 
successfully evaluated and deployed in several areas of medicine to support decision making.  

Argumentation uses non-monotonic logic for inference. In non-monotonic logic existing conclusions can 
be withdrawn and new conclusions can be formulated based on current information. Argumentation-
based CDSSs can therefore support defeasible reasoning where humans similarly retract existing 
conclusions and form new conclusions in the light of current information (Fox, Krause and Elvang-
Gøransson, 1993). In argumentation the knowledge needed to support decision making is expressed in 
the form of arguments. For each decision a set of positive and negative arguments are generated. These 
arguments are used to generate decision recommendations by CDSSs. Argumentation-based CDSSs have 
another advantage when it comes to explaining the reasons for generating the recommendation. In an 
argumentation-based diagnostic CDSS the reasons for making the diagnostic recommendation can be 
provided in the form of arguments (Fox, Johns and Rahmanzadeh, 1998). These arguments can be 
presented in natural language and in a format that is easy to understand by the clinician (Fox and Parsons, 
1998). Capturing the domain expert’s knowledge is easier using argumentation as it uses a qualitative 
approach using subjective probabilities to model arguments (Fox et al., 2007). It is not reliant on accurate 
numerical probabilities and complex statistical data to generate diagnostic recommendations (Longo, 
Kane and Hederman, 2012). This could potentially result in loss of accuracy when generating diagnostic 
recommendations, however in situations like early diagnosis the information is incomplete and therefore 
not every CDSS reasoning method can generate a useful diagnostic recommendation. Bayesian networks 
can generate diagnostic recommendation under uncertainty. However, translating the domain expert’s 
knowledge base into a causal model and a Bayesian network is not easy, especially in domains that are not 
well understood. Argumentation uses a similar reasoning process used by clinicians and the clinicians 
have found the decision recommendations easy to understand when compared to other tools (Ouerdane, 
Maudet and Tsoukiàs, 2010). The ability to operate under uncertainty and incomplete information, ability 
to capture domain expertise in a simple and organised manner, ability to explain the decision 
recommendations in a manner that can be understood easily by clinicians and non-monotonicity are some 
of the reasons why argumentation was considered as a suitable candidate for generating early diagnostic 
recommendations (Fox, Patkar and Thomson, 2006a). Argumentation-based CDSSs have been developed 
in several areas such as diagnosis, treatment planning, risk assessment etc. However, the impact and 
feasibility of an argumentation-based diagnostic CDSSs on diagnostic decision making of primary care 
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clinicians has not been studied. The impact of guideline recommendations on the information gathering 
behaviour of clinicians during diagnostic decision making needs to be studied further.   

Current generation of diagnostic CDSSs such as differential diagnostic generators and argumentation-
based CDSSs do not generate early diagnostic recommendations due to limitation of data available during 
the clinical encounter. The clinician and CDSS is restricted to data available during a clinical encounter. 
Therefore, the CDSS must wait till end of an encounter to provide an accurate diagnostic 
recommendation. However, to influence cognitive biases such as premature closure and confirmation bias 
the recommendations must be ideally provided early in the encounter in a ranked manner. The web is an 
excellent source of data that includes data sources such as PHRs and EHRs that can provide information 
about the patient that can be used for decision making. The literature outlined some of the problems with 
current CDSS applications and how web technologies such as semantic web and linked data can help 
improve CDSS applications (section - 2.4). The main problem with data on the web is the diverse formats 
that the data is presented in and therefore semantic interoperability is a main issue that prevents CDSSs 
from using data from the web. RDF, OWL and other semantic web technologies help improve semantic 
interoperability. RDF has been identified as a candidate for a universal healthcare language (Booth, 
2014b, 2015c). RDF enables smarter data use and automated data translations. Multiple data models and 
vocabularies can be easily combined and interrelated using RDF. RDF captures the information present 
in data and not syntax. RDF is easy to map from one data representation to another and RDF is self-
describing. All these properties make RDF a suitable candidate for building a diagnostic inference model 
that can integrate information from disparate sources. Integrating information will allow the CDSS and 
the clinician to use the information to generate diagnostic recommendations. Using OWL/RDF enables 
us to reuse existing ontologies and terminologies to develop the ontology model.  

The chapter outlined the different standards and technologies used in semantic web and how these 
standards and technologies can be used in diagnostic CDSSs. The limitations of using ontologies in 
diagnostic CDSSs were outlined (section - 2.5). OWL ontologies have been used to represent diagnostic 
criteria and used in ontology-driven diagnostic CDSSs. Existing ontology-based models for diagnostic 
CDSSs have used several techniques to deal with the uncertainty in diagnosis. Some methods have used 
an external probabilistic system to generate probabilities and generate the ranked diagnostic 
recommendations (García-Crespo et al., 2010a). Other methods include representing the diagnostic 
criteria using OWL axioms (Ongenae et al., 2010; Donfack Guefack et al., 2012; Bau, Chen and Huang, 
2014; Sherimon and Krishnan, 2016). However due to limits in expressiveness of DL-based axioms these 
methods are not well suited for representing uncertainty and cannot work with incomplete data. Most 
ontology-based CDSSs identified in literature do not provide a ranked diagnostic recommendation. A 
ranked diagnostic recommendation is important in early diagnostic CDSSs as the clinician can use the 
ranking to guide next steps for gaining more information. The ontology-based CDSSs that provide a 
ranked recommendation rely on complex ranking algorithms and specialized software to generate the 
ranking (Oberkampf et al., 2012). The diagnostic CDSSs do not explain the reasons for making the 
recommendation. Using linked data repositories as a source of clinical information for CDSSs has not 
been explored in other diagnostic CDSSs.  

The thesis is made of 3 parts. In the first study an existing off-the-shelf argumentation-based CDSS was 
used to develop a diagnostic CDSS for optometry. The feasibility and impact of this diagnostic CDSS on 
primary care diagnostic decision making was studied. In addition, the impact of guideline 
recommendations on information gathering behaviour of optometrists during a diagnostic encounter and 
management decision making was studied. 

The next study involved developing an ontology-based CDSS model called DS Model that uses 
argumentation as the basis for generating early diagnostic recommendation. The DS Model demonstrated 
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how arguments for and against a diagnosis can be represented in OWL language. The CDSS prototypes 
using the DS Model can integrate information from disparate sources in a wide variety of data 
representations using semantic web and linked data technologies.  

The DS Model was then subsequently evaluated and its performance across all stages of a clinical 
encounter was tested.  

7.2 Feasibility and impact of a guideline-driven argumentation-
based diagnostic CDSS on diagnostic performance and 
information gathering behaviour of optometrists 

This section details how Objective 2 was achieved.  Diagnostic CDSSs have been developed using a wide 
variety of methods including case-based reasoning, machine learning, Bayesian probabilities, fuzzy logic 
etc. These methods require the availability of well-structured clinical data to generate diagnostic 
recommendations. These methods need accurate data to create the inference models. Moreover, the 
diagnostic recommendations are presented in a manner that is not always intuitive to the clinicians. 
Argumentation allows domain experts to capture their domain expertise in an easy manner using 
qualitative methods. The recommendations generated by an argumentation-based CDSS can be presented 
in a manner that is easy to understand by the clinician. Argumentation-based CDSSs can support 
defeasible inference and reasoning and can retract existing conclusions and form new conclusions in the 
light of current information using non-monotonic logic. These properties make argumentation as suitable 
method for generating early diagnostic recommendations. However, the impact of argumentation-based 
CDSSs on the diagnostic performance of clinicians, especially primary care clinicians have not been 
studied before. Guideline recommendations from guideline-based CDSSs have shown to improve 
guideline adherence and improve standards of care. Additionally, the study evaluates the impact of 
guideline recommendations in influencing information gathering behaviour of optometrists. Chapter 4 
presented the findings of the study involving community optometrists and a guideline driven 
argumentation-based diagnostic CDSS. 

The study presented guideline recommendations at different stage of the clinical encounter simulated with 
the help of clinical vignettes. The guideline recommendations were presented with the help of a guideline-
based CDSS and recommendations derived from current clinical evidence. Argumentation-based 
diagnostic recommendations for the vignettes were presented and the optometrist’s diagnosis and 
management recommendations were recorded. The results of the study with intervention group 
(optometrists with support of CDSS) were compared to the results of an earlier study involving 
community optometrists who were asked to complete the same vignettes but did not have the support of 
any CDSS recommendations.  

The results of the study showed that the guideline recommendations had some impact on influencing the 
information gathering of optometrists. The guideline recommendations were particularly useful in cases 
where there were abnormal values and the guideline recommendations were able to give condition 
specific guidance to the optometrist. The guidance is only effective in non-routine questions. If guidance 
asks the optometrists to ask certain questions that were part of routine clinical history, then the impact of 
the guidance was limited. However, when guidance alerted the optometrist about abnormal values not 
routinely seen and showed guideline recommendations about tests or investigations needed then the 
optometrists responded accordingly. The guideline recommendations were effective in improving 
management decision making especially when prescribing repeat tests. Guideline recommendations alone 
did not show any improvement in diagnostic decision making of optometrists. 
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The results showed the diagnostic recommendations of the CDSS was helpful in improving the diagnostic 
performance in certain conditions. The conditions that the CDSS helped improve the diagnosis was sight-
threatening in nature and therefore there is a potential for an argumentation-based CDSS to help reduce 
diagnostic error. The management guideline recommendations helped improve prescribing supplementary 
tests especially in sight threatening cases. The guideline recommendations can flag up abnormal values 
and help those optometrists who may not have adequate knowledge/experience of the case. Guideline 
recommendations help clinicians by providing guidance on how to interpret images and clinical test 
results. Guideline recommendations can provide guidance from the latest clinical guidelines and guide the 
clinician towards appropriate tests. It helps reduce reliance on memory as the clinician does not have to 
remember bulky guidelines and protocols. The argumentation-based diagnostic CDSS was able to provide 
a ranked diagnostic recommendation and explain why the recommendation was made.  

One of the key findings of the study was the CDSS itself was dependent on the data that the clinicians 
entered as part of the data collection process. In conditions where the observations are similar, erroneous 
interpretation of clinical data (especially eye images) resulted in the CDSS recommending diagnoses that 
were incorrect and the clinician accepting the results of the CDSS recommendations. This resulted in the 
CDSS accidently confirming the hypothesis of the clinician and thereby the CDSS was unable to correct 
the clinician. Providing diagnostic recommendations based on faulty data could potentially lead to more 
confirmation bias related diagnostic errors. This can be partially remedied by having additional checks on 
data quality and providing additional decision support explanations to avoid misinterpretation of data. 
When the weights of diagnoses and arguments are similar then additional alerts can be given to inform 
the optometrist that there is scope for confirmation bias related diagnostic error and therefore the 
optometrist needs to recheck data. The consequences of diagnostic error can be provided alongside the 
diagnosis to educate the optometrists. This study was a pilot study that evaluated the feasibility of an 
argumentation-based diagnostic CDSS on primary care. Therefore, the CDSS was a prototype application 
that used limited number of arguments, mainly clinical test results and investigations to generate the 
diagnostic recommendations. Faulty recommendations can be further reduced by improving the quality 
and quantity of arguments providing more detailed reasons for recommending a diagnosis. Increased 
number of arguments as modelled in the DS Model can help the CDSS make better recommendations as 
there is more information to differentiate between diagnoses.  

The results of this study confirm some of the findings from previous studies on diagnostic CDSS 
applications and EHR systems (Grace et al., 2013) where the quality of data entered affects the outcome. 
One of the recommended best practices for CDSS applications is to maintain high quality and complete 
data (Wright, Phansalkar, Bloomrosen, Robert A. Jenders, et al., 2010). The data quality and correctness 
problems in EHR systems are well known (Wagner and Hogan, 1996; Hogan and Wagner, 1997; Curtis, 
Bollard and Dickson, 2002; Majeed, Car and Sheikh, 2008).  

This study showed that the opinion of the optometrists towards CDSS was generally positive and even 
with minimal training and instructions the optometrists did not find the CDSS difficult or cumbersome to 
use (See section - 4.3.7). Almost half of the respondents are very likely to use the CDSS in their clinical 
practice. A majority felt the system was easy to use and felt that most people would find system easy to 
use. Most respondents felt that the CDSS was easy to learn and they didn’t need the help of another 
individual for using the system. More than half the respondents felt that the system helped improve their 
decision making and they are likely to use the CDSS in practice. These results confirm the findings from 
other argumentation-based CDSSs that showed that clinicians generally found the recommendations 
useful and easy to understand (Fox, Patkar and Thomson, 2006a). The optometrists found potential for 
its application in supporting novice optometrists. 
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The CDSS prototype used in this study was developed using PROforma language and Tallis modelling 
tools and inference engine. The CDSS used a simple weighting scheme for the arguments that either 
support or negate a diagnosis. The weighting scheme used +1 for arguments that supported a diagnosis 
and +2 for arguments that are highly indicative of a diagnosis. Likewise, negative weights were given for 
arguments that negated a diagnosis. The presence of observations/absence of observations were used as 
arguments. There were no published guidelines that recommended the weights to be used as there are 
limited studies of argumentation-based diagnostic CDSSs. Therefore, this weighting scheme was 
developed and used for the study. Developing argumentation-based CDSSs using PROforma is a 
knowledge-based approach and requires contribution from domain experts. Developing arguments and 
adding weights for arguments requires tools such as Tallis. Executing PROforma models require the 
Tallis engine. The weights and arguments can be developed using a consensus approach. Several clinicians 
can come together to create diagnoses candidates, models the arguments and weights for the arguments. 
Web-based platforms such as OpenClinical.net (OpenClinical.net, 2015) have been developed to clinician 
and domain experts to collaborate on developing these models (Fox et al., 2015).  

The main problem with PROforma and other argumentation-based models is the use of proprietary 
format for modelling. The models require specialized proprietary software for modelling and execution. 
Integrating data from disparate data sources and EHRs require a lot of development effort and interface 
engines that can translate the data into formats that PROforma and similar argumentation-based CDSSs 
can understand. Integrating data from remote sources and data in a wide variety of formats is important 
for getting the data needed to generate effective early diagnostic recommendations. Otherwise the CDSS 
is restricted to data from the diagnostic encounter. When sharing PROforma models for collaboration the 
models can only be processed by tools like Tallis. This restricts the wide spread collaboration and 
development of argumentation-based diagnostic CDSS models and applications.  

Diagnostic CDSS models that are machine-readable and machine-understandable are therefore needed. 
Diagnostic models that can be modelled using current generation semantic-web ontology modelling tools 
and executed using off-the-shelf tools are needed. Models that are represented using formats such as 
OWL/RDF which are inherently machine-readable and machine-understandable are needed. Literature 
review had identified several attempts at using OWL ontologies for modelling diagnostic criteria. 
However, these models have limits in expressing uncertainty or use external tools to generate the 
diagnostic rankings. The remaining parts of the thesis detailed the development of an argumentation-
based OWL ontology-driven model that can capture diagnostic criteria and CDSS prototypes that can 
execute the model using off-the-shelf semantic web technology to generate diagnostic rankings.  

This study demonstrated the feasibility of using the argumentation-based approach for creating diagnostic 
CDSSs and showed that argumentation-based diagnostic CDSSs could potentially help reduce diagnostic 
error. It showed that guideline recommendations can help optometrists in improving their information 
gathering.  

7.3 DS Model and CDSS for early diagnostic recommendations 
This section details how Objectives 3 and 4 were achieved. The results of Chapter 4 Optometry study 
showed that argumentation is an effective method for developing diagnostic CDSSs and could potentially 
reduce diagnostic error. Semantic interoperability is a key requirement for integrating data from remote 
sources on the web and EHRs.  

Argumentation provides several advantages over other CDSS reasoning methods. Argumentation is 
inherently easier to model as it uses qualitative methods to capture domain expertise (Fox et al., 2007). 
The DS Model developed in Chapter 5 uses argumentation as the basis for generating diagnostic 
recommendations. The domain experts can use natural language to describe the arguments for and 
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against a diagnosis. These statements can be translated easily into arguments for the CDSS. For example, 
if an observation ‘Observation 1’ supports a diagnosis ‘Diagnosis 1’ then this argument can be modelled 
in DS Model using OWL classes, properties and individuals. Weights for each argument can be modelled 
within the same model. DS Model provides a novel approach of using argumentation-based methods to 
model diagnostic criteria in OWL/RDF format. Existing argumentation-based CDSS models such as 
PROforma require specialized software for generating diagnostic recommendations. The CDSS 
prototypes demonstrated in Chapter 5 show how ranked diagnostic recommendations can be generated 
using off-the-shelf technologies. Any triple store capable of accepting RDF data and processing SPARQL 
queries could be used to generate diagnostic recommendations.  

Chapter 5 outlined the development of the DS Model (See section - 5.2) and CDSS prototypes that can 
use the DS Model to generate diagnostic recommendations. Dentistry was used as the case study for 
demonstrating the model. The DS Model demonstrates the ability to represent arguments for and against 
a diagnosis and represent the degree to which each observation supported or negated a diagnosis using N-
ary relations. SPARQL insert queries were used to map patient data in RDF format to the DS Model and 
update the DS Model about the status of the patient (See section - 5.3.4). SPARQL queries were used to 
generate a ranked list of diagnoses that had a total weighting based on the observations that are 
present/absent in the patient data.  

The literature review outlined the development and evaluation of existing OWL ontology-based 
diagnostic inference models that can be used for generating diagnostic recommendations (See section - 
2.5.1). Existing ontology-based diagnostic CDSS tools are limited by their ability to express uncertainty of 
diagnosis by using DL axioms. DL cannot represent negation as failure as DL uses Open World 
Assumption. The DS Model uses SPARQL rules as a method to close the world and infer which 
observations are present or absent in the data (See section - 5.6). Based on this information the SPARQL 
rules update the model about the present/absent observations following which the diagnostic 
recommendations are generated. Other ontology-based diagnostic CDSSs have used external probabilistic 
tools to generate the rankings. Rodriguez et al. (Rodriguez et al., 2009) demonstrated a system where 
diagnosis and symptoms were modelled using OWL ontologies. Their model did not allow for weighting 
of symptoms to produce a ranked list of diagnosis. The model was subsequently improved upon by 
García-Crespo et al. (García-Crespo et al., 2010a) and used probabilistic reasoning. However, the 
probabilities were not modelled within the OWL ontology and modelled separately. It was not capable of 
providing multi-level diagnosis, where the observation can support a finding, and the finding in turn 
support the diagnosis. This deficiency was later addressed by (Alejandro Rodríguez-González, Labra-
Gayo, et al., 2012), however it was still not possible to model the degree of support the presence of an 
observation provides a diagnosis within the model. The DS Model allows the modeller to capture the 
degree of support within the same model and then use SPARQL rules to generate a diagnostic 
recommendation. This simplifies the modelling process and makes the process of collaboration easier as 
all the information needed to model a diagnostic CDSS is captured in a single model. Others have used 
complex ranking algorithms to generate diagnostic rankings of diagnostic OWL ontology models 
(Oberkampf, Zillner and Bauer, 2012a). There is no need for another rule language or custom ranking 
algorithm when using SPARQL rules to map the patient data to the DS Model and provide the diagnostic 
ranking. SPARQL is a W3C standard (W3C®, 2013b) and is widely implemented in several commercial 
and open-source triple stores. Any triple store capable of accepting RDF data and processing SPARQL 
queries could be used to generate diagnostic recommendations. 

The DS Model uses the same weighting scheme used in the Chapter 4 Optometry study for capturing the 
degree of support of each argument. The simple method for capturing weights makes it easier for domain 
experts to capture their knowledge in DS Model. SPARQL language has the additional advantage of being 
able to perform summation. DS Model used SPARQL rules to sum the weights for each argument to 
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provide an overall weight for each diagnosis. This overall weight is used as the basis for generating ranked 
diagnostic recommendations. SPARQL query is used for generating the ranked diagnosis in DS Model. 
Using SPARQL rules to update the DS Model based on patient data, summing the weights and 
generating the ranked diagnostic recommendations is a novel method that has not yet been 
demonstrated in other ontology driven diagnostic CDSSs.  

The simple weighting scheme employed and using SPARQL inference to sum the weights means the 
diagnostic recommendations and associated weights can be generated easily when compared to other 
methods. SPARQL language has the additional advantage of being able to query remote endpoints for 
data. The data in remote places can be queried and DS Model can use this information to generate a 
diagnostic recommendation. The simple weighting scheme and summation method used ensures that any 
amount of data residing in any repository in any format can be used for generating diagnostic 
recommendations. Let us consider the example of a PHR that contains information about a patient’s 
dental hygiene habits. Using information recorded daily by the patient the PHR can make an assessment 
about the patient’s overall caries risk. For example, if a patient does not brush their teeth regularly the risk 
of caries is high. This high-risk assessment can be stored in the patient’s PHR. If the patient visits the 
dentist for a check-up, the DS Model CDSS in the dentist’s clinic can query the PHR’s SPARQL 
endpoint and retrieve the caries risk assessment and use that information in diagnosis. If High Risk 
assessment is present, then it supports a diagnosis. Using Bayesian probabilities can result in a more 
accurate diagnosis, however the causal knowledge needed to create Bayesian networks does not exist in 
domains like dentistry that are not well understood. However, clinicians use their domain knowledge in 
decision making routinely. The domain expert can capture this knowledge in DS Model using arguments. 
The DS Model can be modelled using existing ontology modelling tools such as Protégé and Web-
Protégé. The simplicity of the modelling process using argumentation-based methods, the simple 
weighing scheme used to assign weights, the simple technique used to sum the weights and 
ability to use existing off-the-shelf semantic web tools to generate the diagnostic 
recommendations gives the DS Model several advantages over conventional methods for 
generating diagnostic recommendations. 

Chapter 5 outlined the development and the architecture of several prototype CDSS applications that can 
use the DS Model to generate diagnostic recommendations (See section - 5.4). The patient data in each of 
the prototype (presented as case study) was made available in different formats. In real-life clinical 
applications, the patient data will be represented in different formats. The case studies demonstrate how 
the same DS Model can be used with different representations of the patient data. In one case study (Case 
Study 1) the patient data was inserted directly into a triple store alongside the DS Model (See section - 
5.4.1). This case study demonstrates how the existing triple-stores and semantic web technology can be 
used to generate the diagnostic recommendations without the use of any other specialized tools. Case 
Study 2 and 4 details how data in relational database can be transformed into RDF data and can be used 
for obtaining diagnostic recommendations. Case Study 2 demonstrates how patient data can be exposed 
via a SPARQL endpoint and the CDSS prototype can access the patient data (See section - 5.4.2). Linked 
data can be stored in triple stores or relational database and exposed via a SPARQL endpoint. The Case 
Study 2 prototype application can then access this data to provide diagnostic recommendations using the 
SERVICE keyword within the SPARQL query. The patient data can be stored in multiple SPARQL 
endpoints, and the CDSS application can access this data. Case Study 4 shows the DS Model can work 
with data from an existing open-source EHR (See section - 5.4.4). Case Study 3 shows how patient data 
represented in an archetype format can be used for diagnostic CDSS recommendations (See section - 
5.4.3). This Case Study demonstrates how patient data can be represented in different formats and using 
SPARQL rules the patient data can be mapped to inform/update the DS Model. 



 

277 
 

All the case studies in this chapter demonstrate how the DS Model can work with iso-semantic 
representations of patient data (See section - 5.4.3.1). The data available on the web via linked data 
can be represented in a variety of formats and annotated using several different terminologies and 
vocabularies. The Yosemite Project describes how RDF can be used as a universal information 
representation format and the semantics of data can be captured in RDF format (Booth, 2015a). Once 
the meaning of data has been captured in RDF the data can be translated from one format to another 
without loss of meaning. Rules languages such as SPARQL rules can be used for the transformation. The 
SPARQL rules used for mapping the patient data to update the DS Model works in a comparable manner 
as the SPARQL rules of the Yosemite Project and the DS Model can therefore work in conjunction with 
the Yosemite Project (Yosemiteproject.org, 2016) (See section - 5.6).  

This chapter outlined the development of an extension to the DS Model called the Multi-level DS Model 
(See section - 5.5). The Multi-level DS Model expands upon the DS Model and gives its more granularity 
when modelling intermediate states/sub-diagnostic states like Findings. It is a demonstration of how the 
sub-diagnostic states can be modelled by reusing an existing DS Model if the requirements dictate its 
development. The same DS Model can be expanded to include intermediate states via the Multi-level DS 
Model. The ability to model multiple levels has been a challenge faced by other researchers as well 
(Rodríguez et al., 2009b). They had attempted to solve the problem of multi-level diagnosis by using an 
approach similar to the Multi-level DS Model where the diagnosis is supported by a finding, which in turn 
can be supported by another set of findings (Alejandro Rodríguez-González, Torres-Niño, Mayer, et al., 
2012). They have used the term ‘finding’ to denote all clinical observations. The Multi-level DS Model 
uses argumentation to generate recommendations for sub-diagnostic states and diagnosis. 

The Multi-level DS Model is an extension to the DS Model that can capture additional detail in the form 
of intermediate sub-diagnostic states. Argumentation-based methods used in the DS Model was used to 
develop arguments that supported each Finding. The presence or absence of the Finding was used as 
arguments to support a diagnosis.  The Finding is a sub-diagnostic state and there are areas where 
additional explanation needs to be provided to the clinician. Certain diagnostic tests are indicated when 
the dentist needs to confirm the current status of the pulp. The finding ‘Inflammation of the pulp’ can be 
triggered by the observations (“Pain present” and “Pain initiated by cold”) during the clinical encounter 
and a ranked list of findings can be displayed to the clinician to help choose the appropriate test based on 
these findings or let the CDSS application choose the right test for the clinician. The findings can 
therefore be used as a trigger for generating guideline recommendations as well. However, Chapter 4 
Optometry study showed how the guideline recommendations can be generated without the presence of 
findings, instead the Tallis CDSS uses abnormal values as triggers. 

However, this additional level of explanation comes at the cost of increased complexity. The domain 
experts will need to model the relationships between the observations and the findings. In the DS Model 
the Diagnoses and the Observations can be reused from existing ontologies such as SNOMED-CT. 
Findings as a sub-diagnostic state are not captured in existing ontologies at present. Existing DS Models 
can be expanded to develop the Multi-level DS Model. The literature review did not provide examples of 
models like the Multi-level DS Model in other argumentation-based languages such as PROforma. 
Examples from literature that demonstrated modelling multiple levels of observations using ontologies 
did not model sub-diagnostic states as demonstrated in the Multi-level DS Model (Alejandro Rodríguez-
González, Torres-Niño, Mayer, et al., 2012). These can be adapted to create Multi-level DS Models in 
future, however, they have not found wide applicability to date. The key advantage of the DS Model is 
the simplicity of the modelling process including weights, and this is lost during development of the 
Multi-level DS Model. The Multi-level DS Model can be used in specific areas where the additional 
granularity is required. For routine diagnostic CDSS applications the DS Model is more than capable of 
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generating effective diagnostic recommendations as demonstrated in Chapter 5 and evaluated in Chapter 
6.  

The DS Model provides the clinician with a ranked diagnostic recommendation. Once data is available in 
the linked data format, intelligent agents and other software applications can search for the data and use 
them for generating the diagnostic recommendations. The intelligent agents can then search for all the 
data of the patient from data sources (including PHR, EHR) and any resource where the patient may 
store data on the web in a structured manner. If the data is stored in an unstructured format, then the 
data should be converted to a structured format and/or semantically annotated using established 
ontologies and terminologies. This data can be used in conjunction with the data reported by the patient 
to provide early diagnostic recommendations for the clinician. The use of argumentation-based methods 
will result in a simple explanation of the patient’s condition. The clinician is presented with alternative 
diagnoses for the patient. The literature suggested that providing alternative diagnoses can help in System 
1 reasoning process and help reduce diagnostic error. Similarly, Croskerry (Croskerry, 2003a) has 
identified several strategies to reduce diagnostic errors due to cognitive causes. This includes considering 
alternatives, reducing reliance on memory, providing access to clear and well-organized information etc. 
The working hypotheses for the clinical case are generated early in the diagnostic encounter based on a 
few clinical patterns that are observed in the patient. These working hypotheses may not be accurate 
always and are tested by acquiring additional information from the patient. Using the illness script model, 
the working hypotheses is triggered early in the diagnostic encounter. Generating the working hypotheses 
early in the encounter helps the clinician narrow the solution space. Using the working hypothesis, further 
information is gathered until one working hypothesis is confirmed. The argumentation-based diagnostic 
recommendations generated by the DS Model can help in this process by providing a list of diagnoses at 
various stages of the clinical encounter. It provides reasons for making these recommendations in the 
form of arguments. This helps in the process of generating working hypotheses and help in gathering 
additional information about the patient to help confirm or refute working hypotheses. The 
argumentation-based CDSS can help organizing the expert’s knowledge into arguments and provide 
recommendations that are easy to understand. Graber et al. (Graber, Gordon and Franklin, 2002a; 
Graber, Franklin and Gordon, 2005b) has identified several reasons for diagnostic errors due to cognitive 
factors. The guideline recommendations in tandem with diagnostic recommendations in the form of 
arguments could potentially help address most of these reasons. 

o Faulty knowledge or skills:  
o The clinician has inadequate knowledge about the patient’s condition and this 

predisposes to cognitive errors: The guideline recommendations can help in flagging 
abnormal values and the argumentation-based early diagnostic recommendations can 
help the clinician relate the observations with a diagnosis.  

o The clinician does not have the required skill in a clinical condition: The guideline 
recommendations cannot directly help in improving skills but can indirectly help by 
interpreting clinical test results.  

o Faulty data gathering:  
o Clinician has problems coordinating data from multiple sources: The argumentation-

based recommendations can help in the process of explaining the patient’s condition in 
an easy to understand manner. However current generation of CDSS tools including 
argumentation-based CDSS tools are restricted to data collected during the clinical 
encounter and cannot access information from other sources. The semantic web and 
linked data technologies can help in process of coordinating and integrating the 
information from multiple sources. The arguments in the diagnostic recommendations 
can help the clinician make sense of the data derived from these sources. Without the 
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help of such a CDSS the clinician will have to manually access the disparate sources for 
information and this is time-consuming or rely on the patient’s memory for information 
which may not always be reliable.   

o Clinician fails to collect appropriate information during history and examination: The 
guideline recommendation can guide the clinicians towards gathering appropriate 
information. The early diagnostic recommendations can provide context for collecting 
this information and help link the information to a diagnosis.  

o Incorrect diagnostic test ordered: The guideline recommendations can help identify the 
appropriate tests to be taken to rule out certain diagnoses. 

o Faulty information processing 
o Clinician fails to generate appropriate context: The early diagnostic recommendations 

can help the clinician link the observations to a clinical diagnosis. 
o Clinician overestimates/underestimates the relevance of a finding: The weights of the 

diagnostic recommendation represent the relative support for the present/absent 
observations based on expert opinion. Detailed explanations for each argument can be 
given.  

o Faulty information synthesis- Most common cause of cognitive based errors 
o Premature closure bias: It is the tendency of the clinician to prematurely halt the 

diagnostic decision-making process before all the data has been collected and the 
diagnosis has been fully verified. The clinician does not consider all alternative diagnoses. 
Most diagnostic errors are due to premature closure biases (Ely et al. 2012b). The early 
diagnostic recommendations can help in informing the clinician about the presence of 
alternative diagnoses that he/she should consider and provides arguments for each 
diagnosis. The clinician could potentially be stopped from stopping the information 
collection process and the guideline recommendations can aid in the process of 
collecting additional information.  

o Clinician fails to follow up on an appropriate test: The CDSS can alert the clinician to 
follow up on previous tests. 

 
The DS Model uses argumentation-based methods and expands upon research in the 
argumentation CDSSs community by providing a method to represent arguments in OWL/RDF. 
This combines the strengths of argumentation with the strengths of semantic web technology. 
DS Model demonstrated how the arguments can be modelled using existing ontology modelling tools and 
the diagnostic recommendations can be generated using existing off-the-shelf technology. The DS Model 
likewise expands upon existing ontology-based diagnostic CDSSs methods by using argumentation, a 
simple weighting scheme, summation method, SPARQL rules etc. to generate diagnostic 
recommendations without the need for specialized software. The DS Model combines argumentation and 
semantic web technologies to demonstrate a diagnostic CDSS that can integrate information to provide 
early diagnostic recommendations.  

7.4 Evaluation of the DS Model across all stages of the clinical 
encounter 

This section details how Objective 5 was achieved. The DS Model demonstrated how patient data can be 
used to generate early diagnostic recommendations. However, before linked data can be used in 
conjunction with the data reported by the patient and obtained via questioning and clinical tests, there is a 
need to know how the DS Model will perform without the support of any additional data. There is a need 
to know where the DS Model needs additional data (if needed) to improve the diagnostic performance. 
The DS Model uses a simple weighting scheme and summation method to generate the ranked diagnostic 
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recommendations. The study allowed us to evaluate the effectiveness of the simple weighting scheme and 
the summation method used to generate diagnostic ranking. 

Chapter 6 evaluated the DS Model in both early and late diagnosis and compared the results of the 
evaluation with that of dentists in final diagnosis. Final diagnosis is the diagnostic ranking obtained with 
the support of all the data. In the early diagnosis scenario (Chief Complaint, Extra-Oral Examination, 
Intra-Oral Examination), all the information needed to make a diagnosis is not available to the CDSS 
application (See section - 6.2). Therefore, in theory the CDSS should not be able to provide a diagnostic 
recommendation that is at least as good as clinicians. The evaluation study described in Chapter 6 
evaluates the DS Model and compares it to clinicians to see if this is indeed true and find out where the 
DS Model needs additional patient data via linked data or enhancement of the information model by 
collecting more information about the patient.  

The evaluation was done with the help of clinical vignettes (n=25). The experiment was done with 
community dentists (n=20) (See section - 6.3.4). The clinical vignettes (n=5) were randomly assigned to 
each dentist who then provided Rank 1 and Rank 2 diagnostic recommendations for the vignettes via a 
web-based survey application. The dental version of the DS Model could provide diagnostic 
recommendations in the field of Endodontics in dentistry. The vignettes and the DS Model were 
developed with the support of an Endodontist and the author’s own previous experience in dentistry (See 
section - 6.3.3). The Endodontist was given the same set of vignettes (n=25) and asked to provide the 
Rank 1 and Rank 2 diagnosis for each vignette. The Endodontist’s opinion was considered the gold 
standard and used to compare the diagnostic performance of the community dentists and the CDSS 
prototype using the dental version of the DS Model.  

A Pulpal and Apical Rank 1 and Rank 2 recommendation was obtained. The same vignettes were 
represented using an archetype format and one-by-one the ranked diagnostic recommendations for each 
vignette was obtained by a prototype CDSS application. The prototype was the same described in Case 
Study 3 of Chapter 5. A dental version of the DS Model for providing diagnostic recommendations was 
created as part of the model development in Chapter 5 and for evaluation of the DS Model with dentists 
in Chapter 6.  

Normalized Discounted Cumulative Gain (NDCG) and Precision-Recall were used as the metrics for 
comparing the diagnostic performance of the dentists and the CDSS. NDCG measures the overall 
ranking of the dentists and the CDSS and compares it to the expert’s ranking, while precision-recall 
measures the precision and recall of Rank 1 and Rank 2 of the dentists and the CDSS and compares it to 
the experts ranking (See sections - 6.5, 6.6 and 6.8).    

The CDSS performed better than the dentists at overall ranking of diagnostic recommendation in the late 
stages. As more data is obtained in the late stages from clinical tests and radiographic examinations the 
CDSS could rank the diagnosis better than the dentists. The CDSS was better at overall ranking of Pulpal 
diagnosis than Apical in the late stages. This could partly be explained by signs, symptoms and 
interpretation of clinical test results. The nature of pain experienced by a patient with an Apical pathology 
and the radiographic results are more dependent on the subjective interpretation of the data by the 
dentist. The performance of the DS Model in diagnostic ranking of Apical diagnosis in the later stages can 
be improved by changing the weights of the DS Model and adapting the information to collect more 
information about the Apical pathology.  

The results showed that the Rank 2 diagnostic performance of the CDSS in the late stages were 
comparable to that of dentists. The reason why the CDSS performed better at giving good Rank 2 
recommendations could be partly explained by the script theory for medical diagnostic knowledge. The 



 

281 
 

signs and symptoms provided in the vignettes trigger certain illness scripts, which can then be used as the 
basis for generating a diagnostic hypothesis (Charlin, Tardif and Boshuizen, 2000; Schmidt and Rikers, 
2007a). Depending on the vignette a Rank 1 diagnostic hypothesis may be triggered from the data in the 
vignette. However, a Rank 2 may not be clearly apparent as the data may strongly suggest only one 
diagnosis.  

A Rank 2 diagnosis for CDSS may still be important for clinical decision making, especially in early 
diagnosis. If the CDSS can provide an accurate Rank 2 diagnosis early in the diagnostic encounter, this 
may trigger an illness script in the mental model of the clinician and may help him/her seek more 
information based on the triggered script. The results showed that the Rank 2 diagnosis was very poor for 
the CDSS, especially in early diagnosis.  However, when the ranking was considered in its entirety (Rank 
1-Rank 7 for Pulpal and Rank 1- Rank 5 for Apical) the NDCG scores showed that the overall ranking 
was comparable to the dentists in the early stages and became better than the dentists in the late stages 
(See sections 6.7.10.1 and 6.7.10.2). So, providing an accurate overall ranking could still be helpful to the 
dentists, as the presence of certain diagnoses in the ranking in the early stages of the clinical encounter 
could trigger the right illness scripts and help the clinician avoid ignoring relevant diagnoses. However, 
more research is needed to understand the impact of providing a ranked diagnostic recommendation to 
clinicians in early diagnostic scenario and the impact of the ranking and weights on diagnostic hypotheses 
generation. 

The performance of the CDSS in the early stages (CC, CC+EO, CC+EO+IO) (CC=Chief Complaint, 
EO=Extra Oral Examination, IO=Intra Oral Examination) for Pulpal diagnosis was characterised by the 
presence of an intermediate dip in diagnostic performance. The diagnostic performance in NDCG results 
and precision-recall showed a comparable performance to the dentists in the CC stage. However, as more 
information is collected the CDSS shows a dip in performance in the next stage (CC+EO). The 
performance subsequently improves and eventually becomes better than the dentists. The CDSS is 
expected to perform the worst in the earliest stage of the clinical encounter and gradually improve as 
more data is collected during the encounter. However, the results show that this may not be the case in all 
situations. Depending on the domain and the information model used, the intermediate dip can cause the 
CDSS to be less reliable as the clinical encounter proceeds through the different stages.  

The Apical diagnostic performance (NDCG and precision-recall) is poor in the early stages and gradually 
improves as more data is collected. Therefore, the clinician should be informed about the possibility of 
the Pulpal diagnosis performance of the CDSS reducing and subsequently improving as more data is 
collected. The intermediate dip is more pronounced in the precision-recall of Rank 1 Pulpal diagnosis 
(See section - 6.9.1.1) than the NDCG scores of the Pulpal diagnosis (See sections - 6.7.8.1 and 6.7.9.1).  

The DS Model uses a simple weighting scheme and summation method to generate the ranked diagnostic 
recommendations. This simple method of summation allows the CDSS using the DS Model to generate 
diagnostic recommendations without the need for specialized software and algorithms for inferencing. 
However, the use of this simple weighting scheme and summation method means that there is increased 
risk of several diagnoses sharing the same rank when there is limited information. The results show that 
even with simple weighting scheme the overall ranking is close to the Endodontist in the early stages. In 
some vignettes, the overall ranking falls in the CC+EO and CC+EO+IO sections. However, the ranking 
quickly adjust as more information is obtained and becomes very good in the later stages. Even if the 
correct diagnosis falls in the ranking the arguments for each diagnosis is presented alongside the diagnosis 
and this can explain the reasons for making the recommendation. The dentist can then look at the 
ranking and use that information to guide the next steps of information collection.  
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Overall the results show that in the early stages of a diagnostic encounter there is a need for more 
information for the CDSS to perform better than the average dentist. This information can come from 
linked data sources and the DS Model is equipped to incorporate this additional information to provide 
diagnostic recommendations. The simple weighting scheme and summation method provides an overall 
ranking of diagnosis that is comparable to dentists. The clinicians using the DS Model for diagnostic 
recommendations in the early stages of the clinical encounter will have to be informed about the potential 
for rankings to change as more information is collected. The ranking in the early diagnosis must be 
considered tentative and the clinician must use the arguments and other recommendations alongside the 
clinical data to form diagnostic hypotheses. The ranking in the early stages of the clinical encounter can 
be improved by integrating information from diverse sources and improving the quality and quantity of 
data available to the CDSS.  

The results of this study can be used to focus the efforts of finding more information via linked data in 
the early stage of the clinical encounter and combine this information with other information collected 
during the encounter and the results of clinical tests and radiographic examination. The results of this 
study can be used by other researchers to develop information models that are better at providing early 
diagnosis and not just good late diagnosis.  

7.5 Limitations of the research 
7.5.1 Chapter 4 Optometry study 
In the Chapter 4 study with optometrists the sample size for the intervention group that had the CDSS 
support was relatively small (n=36) when compared to the control group study. The Chapter 4 
Optometry study was a pilot study with optometrists that evaluated a prototype argumentation-based 
diagnostic CDSS for the feasibility and impact of the system on diagnostic performance. The aim of the 
study was to find out if argumentation is a suitable approach for developing diagnostic CDSSs. 
Argumentation-based diagnostic CDSSs in literature have not evaluated the impact of argumentation on 
diagnostic error. Since this was a pilot study it was decided to use a smaller number of optometrists.  

The study was conducted in a simulated environment and was limited by the small number of vignettes 
used in the study and smaller number of optometrists who were recruited for the study (intervention 
group). Since this was a pilot study that preceded the development of the ontology-based diagnostic 
CDSS, we decided to use a smaller group of optometrists for evaluation. A more detailed study using 
randomised controlled study design is needed to fully understand the impact of guidelines and 
argumentation-based diagnostic recommendations on the diagnostic performance on clinicians such as 
optometrists. The small numbers involved in the intervention group was a key limitation of the study and 
prevented deeper analysis of the results. More studies are needed to see to what extent the argumentation-
based diagnostic recommendations can help impact specific cognitive causes of diagnostic error. 
However, it was able to sufficiently demonstrate how the argumentation-based diagnostic 
recommendations could potentially improve diagnostic decision making in primary care optometrists.  

Another limitation of the Chapter 4 Optometry study was the historical comparison with the control 
group study and the way the vignettes were presented. Little demographic data was available for 
comparison with the intervention group. The control group study presented the same vignette data in a 
web-page that had buttons simulating a clinical encounter. This was a web-based application that 
represented paper-based vignettes/paper patient records but captured the data in an electronic manner. 
The intervention group study used a CDSS that simulated an EHR and the real-life way the guideline and 
diagnostic recommendations are presented to the optometrists. CDSS recommendations cannot be given 
in an interface that is simulates a paper-based patient record system. The CDSS should be able to guide 
the optometrist towards the right clinical tests or investigations which cannot be done in an interface that 
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displays all the data in a single page. Therefore, a decision was made to alter the way the guideline and 
diagnostic recommendations are provided to the optometrists in the intervention group study. This may 
have impacted the way the data is collected by the optometrists.  

In the control group study all the data collected was presented in the same page. The optometrists are not 
penalised for asking inappropriate questions or performing unnecessary tests. This would not be ideal as 
in real-life situation optometrists can repeat tests and ask any questions according to their clinical 
judgement. However, they are encouraged to complete clinical examinations in 60 minutes. Therefore, a 
counter that displayed the total time (in real clinical time) elapsed was provided to the optometrists. This 
counter was not provided in the intervention group study as analysis of the control group study data 
showed that the optometrists asked most of the questions anyway. The optometrists in the intervention 
group were not penalised for not asking certain questions or performing investigations. Analysis of the 
intervention group study data showed that there was a difference in the total number of questions asked 
or investigations performed between the two groups in only 18-29% of the questions.  

This pilot study is a proof-of-concept and is therefore insufficiently powered for a formal comparative 
study. A historical comparison study is much weaker than a fully-powered randomised controlled trial and 
this is another weakness of this study. More randomised controlled studies using vignettes or simulated 
patients are therefore needed to fully understand how guideline and diagnostic recommendations impact 
optometrist performance before implementation in clinical practices.  

The intervention group optometrists were only provided CET points as compensation for completing a 
vignette. The control group optometrists were provided with monetary compensation to complete each 
vignette. Each vignette takes around 20-30 minutes to complete. Therefore, the decision was taken to ask 
each intervention group optometrist to only complete one vignette. Asking the busy intervention group 
optometrists to do more would have been unfair and unethical without enough monetary compensation. 
The study did not have the funds to adequately compensate the intervention group optometrists beyond 
providing them with CET points.  

The decision support recommendations were simulated to reflect real life settings. The cost and effort of 
developing a full decision support for the Chapter 4 Optometry study hindered the efforts in testing and 
evaluating the decision support in real life setting with real patients. However, the study does indicate 
where CDSS may have an impact and areas where the CDSS recommendations can be improved. The 
data provided enough results to justify the development of a full decision support and details clinical trials 
with real patients.  

Though the CDSS application was found to be effective in improving the diagnosis in certain vignettes, 
the application was limited in many ways. The data used for making the diagnosis came directly from the 
patient from clinical history, examination and clinical tests and investigations. The CDSS developed for 
this study did not demonstrate defeasible reasoning and integrating information from multiple sources. 
However, it was able to successfully demonstrate how an argumentation-based diagnostic CDSS can 
provide guideline and diagnostic recommendations and the usability survey found that the optometrists 
found the recommendations useful.  

Another limitation faced in this thesis was development of arguments for each candidate diagnosis. 
Ideally there should be several diagnosis candidates for each diagnosis, and the CDSS should recommend 
some from the list. We were forced to restrict the total number of candidates as developing arguments for 
each candidate for an extensive list of candidates would be a time-consuming task and would involve a lot 
of resources, especially clinician time. 
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7.5.2 DS Model development and evaluation 

7.5.2.1 DS Model 
The DS Model was developed in the dentistry domain. Dentistry is mainly a primary care domain. 
Diagnosis of a patient’s condition can happen in hospital and the patient’s bedside. The DS Model will 
need to be developed and adapted where necessary to be able to function equally well at the patient’s 
bedside in a hospital. Clinicians in primary care are increasing facing reduced time to examine the patient. 
A comparable situation is being faced by clinician in secondary and tertiary care as well. The DS Model 
though the use of semantic web and linked data technologies can potentially reduce the time taken to find 
all information about the patient. The extent to which the DS Model can help make this process easier 
needs to be studied further as this was not covered in this thesis. 

A domain expert can use any currently available ontology modelling tools to develop a DS Model for 
their domain. The diagnostic recommendations can be generated without the use of specialized ranking 
algorithms or software for inference. This greatly reduces barriers to developing and executing the DS 
Model when compared to existing argumentation-based tools such as PROforma or currently available 
ontology-based diagnostic CDSS tools. However, the domain experts will still need to be trained in the 
basics of OWL language if they are to use currently available ontology modelling tools. Tools such as 
Protégé are being widely used for developing ontologies and terminologies such as SNOMED-CT and 
ICD-11. Therefore, there is a pool of trained clinicians already available that can potentially create DS 
Models in their domains. However, this pool of clinicians is limited in number when compared to overall 
number of domain experts in medicine. Developing graphical user interfaces like the one provided by 
Tallis can potentially help ordinary clinicians in ontology modelling. Nevertheless, there is still a learning 
curve associated with the modelling tools that the domain experts must overcome. 

The other problem encountered during this research was the unavailability of linked patient data. Due to 
concerns regarding privacy and patient confidentiality patient data is not available in linked data format. 
However, there are web-based PHRs and other sources for patient data currently available and the data 
can be transformed to RDF format and exposed via SPARQL endpoints to make them available for 
CDSS applications to access.   

The DS Model is limited in the type of relations it can represent. The DS Model can capture the link 
between clinical observations and diagnoses. However, to represent sub-diagnostic states and other 
intermediate state such as Findings the DS Model will need to be expanded. Expanding the DS Model 
results in a more complex Multi-level DS Model and this sacrifices the simple and effective modelling 
approach used in the DS Model.  

7.5.2.2 Use of clinical vignettes 
The Chapter 6 study investigated the diagnostic performance of a CDSS prototype using the DS Model as 
its inference model and compared the performance at different stages (early and late) with the final 
diagnostic performance of dentists. Vignettes simulating commonly seen clinical scenarios in dentistry 
were used to evaluate the dental version of the DS Model and the performance of the dentists. Even 
though an attempt was made to accommodate a wide range of clinical scenarios, the vignettes represent 
only a small proportion of the clinical cases a dentist may encounter.  

Vignettes have some advantages when compared to using actual patients or real case records. Using actual 
patients is not feasible when comparing the diagnostic performance of a large group of dentists. Using 
real case records has its challenges when it comes to patient data confidentiality, obtaining a variety of 
clinical scenarios and overcoming the problem of missing data. However, vignettes used in this study did 
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not factor in situations that can impact the diagnostic decision making of the dentist. The participants in 
the study were not given time limits to complete the study. In real life situations, the dentists will be under 
time constraints to diagnose and manage the patient. The participating dentists were given all the 
information needed to manage the patient including the test results. In real-life clinical settings, clinicians 
may pick and choose the clinical tests and may only perform additional tests if the previous tests were 
inconclusive. The dentists were not given the option of choosing clinical tests in this study, however, the 
optometrists in the optometry study was given the option of choosing the appropriate clinical tests. 
Dentists must factor in the patient’s ability to pay for clinical tests or radiographs when prescribing them. 
This study did not include the financial implications of diagnosis and treatment when developing the 
vignettes.   

Both the studies involving optometrists and dentists used clinical vignettes for data collection. Clinical 
vignettes have advantages however they cannot completely simulate factors such as time pressures, 
personalities of patients, team-work, financial constraints etc. which can impact their decision making in 
real-life settings. Therefore, future evaluation of performance of clinicians will need more realistic 
vignettes. Use of actors, simulations etc. are other alternatives, however these tools have limitations such 
as increased cost and complexity of modelling.   

7.5.2.3 Clinicians and ranking of diagnoses 
One the main challenges faced in this study was the ranking of diagnosis. Ideally, the Endodontist and the 
participant dentists should be asked to provide a complete ranked list for both NDCG analysis. The 
CDSS provides a ranked diagnostic list for both Pulpal and Apical diagnosis. However, during pilot tests 
of vignettes it was found that the Endodontist and pilot study dentists (n=2) found it difficult to provide 
an appropriate ranked list of diagnoses beyond 2nd rank. Therefore, ranking of vignettes was restricted to 
Rank 1 and Rank 2 diagnoses.  

The hypothetico-deductive model for clinical diagnosis suggests that clinicians generate multiple 
competing hypotheses from patient data and collect more data to confirm or refute the hypothesis 
(Elstein, Shulman and Sprafka, 1978). However, studies have shown that clinicians structure knowledge 
that they have gained from textbooks and experience in different forms. The ‘Illness script’ is a widely 
accepted concept that tries to provide a framework for understanding how clinicians organize the 
knowledge that they gain from literature and clinical experience and use it to diagnose and treat patients 
(Charlin, Tardif and Boshuizen, 2000). A script can be described as a set of attributes each with a set of 
values. The script has a structure like the archetype model used in this study (Table 6-3), however it is 
cognitive model and each attribute has a default value for each situation. For example, the dentist will 
have an illness script for Reversible Pulpitis along with scripts for other diagnoses. Scripts are formed for 
non-diagnostic tasks as well.  Each attribute within the script will have different probabilities of occurring. 
The value with the greatest chance of occurring is the default value. The extract of an illness script for 
Reversible pulpitis is shown below in Table 7-1 with the default values in red. Similar illness scripts are 
present for other diagnoses with different default values. 

Attributes Value 

Onset of pain Gradual onset 

 Stimulation required for onset 

 Sudden onset 
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Attributes Value 

Pain location No pain 

 On tooth 

 Dull sensation of pressure over the 
maxilla 

 Infraorbital pain 

Table 7-1 - Illness script example (default value in red) 

Based on observations present in the patient, the illness script(s) for that condition is triggered and the 
clinicians looks for the default value in the patient (Schmidt and Rikers, 2007a). If the default value is not 
present or unacceptable values are found for the attributes, another illness script is triggered, and 
clinicians looks for the attributes and values in that script. The clinician will traverse the network of 
knowledge in their memory, gained from experience and biomedical knowledge, to find the script that 
best suits/explains the clinical situation in front of him/her. In this manner, the clinician will generate 
several different hypotheses and reject the hypothesis that does not fit his/her mental model and arrive at 
a working diagnosis.   

Illness scripts are an efficient way of organizing knowledge and allows the clinician to rapidly seek 
information, search for the appropriate illness script, find the right script and verify the values (Charlin et 
al., 2007). However, because the illness script model does not use a system of weights similar to the 
mechanism used by DS Model, it is difficult for the clinician to provide a ranked set of hypotheses 
beyond the first few diagnoses. It is possible for the dentists to identify the most likely diagnosis (Rank 1) 
and depending on the vignette the dentists can identify the Rank 2 diagnosis as well. In fact, the more 
well defined the vignette/scenario the more difficult it is to identify the Rank 2 diagnosis as there will be 
one script that best explains the condition of the patient and there is usually no script that can be 
considered that next most likely hypothesis. 

7.6 Future directions 
The arguments supporting and negating a diagnosis can be obtained from domain experts in the form of 
natural language statements. For example, dentists can be asked what arguments they use when 
diagnosing a case of Reversible Pulpitis. The dentist can write down the arguments in natural language. 
Currently translating these statements into the DS Model requires the help of an ontologist or knowledge 
engineer. However, using natural language processing the text can be broken down into components and 
meaning of the statement can be captured in RDF format. Once captured in RDF format, using 
SPARQL rules the statements can be automatically translated into DS Model arguments. Natural language 
processing can be used to translate existing PROforma diagnostic CDSS models into DS Models. Both 
PROforma-based diagnostic CDSS models and DS Model used argumentation as the basis. If semantics 
of a PROforma model is captured in RDF format, then using SPARQL rules the RDF PROforma model 
can be translated to DS Model so that a DS Model CDSS can reuse existing PROforma models. Similarly, 
existing DS Models can be translated into a RDF PROforma format. This RDF format can be translated 
back into proprietary PROforma model currently used so that existing Tallis engine can execute the 
model. Future research will investigate this round tripping methodology.  
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DS Models in each domain can be produced and published on the semantic web. DS Models that have 
been annotated with other ontologies and terminologies like SNOMED-CT, LOINC, ICD etc. are more 
easily discoverable by intelligent agents as the model is both machine-readable and understandable. Web-
based platforms that can enable modelling and sharing of DS Models need to be developed that can help 
domain experts collaborate with others in creating DS Models. Platforms like OpenClinical.net are already 
doing similar work with PROforma-based models. They can be expanded to support DS Models as well.  

The DS Model produces ranked diagnostic recommendations with arguments for and against each 
diagnosis. The CDSS prototypes have demonstrated how remote sources can be queried for information 
and data in a wide variety of formats can be integrated to generate diagnostic recommendations. There 
are linked data repositories such as DBpedia and Wikidata that hold information about different types of 
concepts. For example, the DBpedia page for Toothache contains structured information about the 
concept (http://dbpedia.org/page/Toothache). This information can be accessed via the DBpedia 
SPARQL endpoint. The structured data within the concept are in turn linked to other concept via HTTP 
links. When the patient complains of toothache and that information is recorded in the EHR, then 
additional information about the concept can be queried using SPARQL and then displayed to the 
clinician if needed. If guideline recommendations are similarly published in the form of structured RDF 
data and exposed via a SPARQL endpoint, then guideline recommendations can be displayed in the same 
manner as the DBpedia information. 

DS Model has demonstrated how an ontology-based diagnostic CDSS using argumentation can use linked 
data resources to generate diagnostic recommendations. If patient data is available as linked data 
resources CDSSs or intelligent agents can query the data to generate early diagnostic recommendations or 
trigger guideline recommendations. However, the architecture that allows linked data to be open and 
easily accessible makes it less suitable for exposing patient data without compromising patient 
confidentiality (Corsar, Edwards and Nelson, 2013). There is a need for developing linked data 
architectures for securely hosting linked data without compromising the privacy of the patient. 
Technologies such as blockchain can potentially be used to solve some of these problems (Mettler, 2016). 
Blockchain is a distributed system which records and stores transaction records. All the data is available 
publicly but only to those with the right credentials and permissions. In a blockchain there is no central 
authority such as governments or healthcare organizations that hold the data. The data is stored and 
distributed amongst all participants in the distributed network. Blockchain uses established cryptographic 
techniques to allow each participant in the distributed system to freely participate in the exchange of 
information without predefined contracts in a secure manner. Patients can freely share their data using 
blockchain in an encrypted format and only CDSSs and clinicians with the right credentials will be able to 
access this information. Future research will investigate exposing patient data using linked data and 
securing the information using blockchain technology. 

The Learning Healthcare System is a proposed system where data is collected routinely in clinical practice 
using EHRs and is used to ask specific questions about the environment (Friedman, Wong and 
Blumenthal, 2010). The results of this analysis are fed back into the system where the outcomes are 
routinely monitored and the data in analysed further. This results in a continuously learning healthcare 
system that can in theory lead to better quality, patient outcomes, effectiveness and efficiency in the 
healthcare system and more patient-centred care. CDSSs are a central part of this learning healthcare 
ecosystem (Foley and Vale, 2017). CDSSs help deliver up-to-date patient-centred content and 
recommendations directly to the clinician. The results of analysis of patient data in a learning healthcare 
system can be used to update the logic and content of the CDSSs and the system can monitor patient data 
to see how the change has affected the clinical outcomes and understand where the CDSSs models can be 
improved. Platforms like OpenClinical.net (Fox et al., 2015) are collaborating with organisations like the 
Learning Healthcare Project (The Learning Healthcare Project, 2017) to design and develop machine 
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readable content for deploying in a learning healthcare system (Fox, 2015). This content can then be 
implemented in clinical environments and the outcomes analysed using machine learning and other data 
analytics methods and the changes needed are studied and pushed to the clinical environment. Future 
research will investigate how impact of the DS Model in a real-life clinical environment can be analysed 
using machine learning techniques and the results used to produce better arguments and weights for the 
DS Model. The updated DS Model can then be pushed to the deployed environments and the learning 
healthcare cycle can be repeated until an appropriate and mature DS Model is developed. 

Using techniques currently being developed as part of the Yosemite Project, rules can be developed for 
transforming data from one format to another to support semantic interoperability. The same techniques 
can be used to develop mapping rules from patient data to the DS Model. At present the mapping from 
patient data to DS Model to update the DS Model (present/absent SPARQL insert queries) must be 
created for each data format. Future research involves working with the Yosemite Project to standardise 
the present/absent insert queries (mapping rules), crowd-source the mapping rules and host them on a 
shared web-based platform. Further research is needed to align the two techniques and develop methods 
to better crowd-source the rules needed for mapping.  

Developing and evaluating DS Model in other domains (optometry) are needed to test if the intermediate 
dip in performance of the CDSS is a phenomenon observable in other domains as well, or if it’s 
something unique to dentistry. Further research is needed to further understand the cause of this 
intermediate dip and how linked data can potentially help alleviate this problem. Likewise, further 
research is needed to see if the intermediate dip can be seen with inference models that do not use 
weights to rank the diagnosis. For example, with CDSS applications that uses Bayesian inference models.  

Evaluating the impact of the DS Model and the Multi-level DS Model on clinician diagnosis and 
management decision making is needed before adoption of the DS Model in clinical practice. Diagnostic 
error is a problem in primary care and both studies involving clinicians (optometrists and dentists) 
confirms the presence of this problem. Even with CDSS help the optometrists were still getting 
diagnostic errors in some non-sight threatening cases. The role played by CDSS in reducing diagnostic 
error needs to be studied in further depth with greater emphasis in the type of diagnostic 
recommendations that can best help reduce diagnostic error, for example, ranking with weights or 
probability measures.  

Incorporating diagnostic recommendations with guideline recommendations is another area that needs 
further study. At present the guideline recommendations are generated separately from the diagnostic 
recommendations. The diagnostic recommendations can itself trigger guideline recommendations. The 
interplay between guideline and diagnostic recommendations and its exact role in improving diagnostic 
performance needs further evaluation. The role of early diagnostic recommendations and the impact of 
early recommendations on cognitive biases will need to be studied further to better tailor the 
recommendations for each case.  

7.7 Summary of contributions 
In addition to opening avenues for future research into ontology driven CDSS and modelling of 
diagnostic criteria in OWL/RDF this research has made three major contributions to the literature on the 
use of argumentation-based CDSS in primary care diagnosis and argumentation-based ontology driven 
CDSS for diagnostic recommendations. 

Firstly, the thesis evaluated the feasibility and impact of argumentation-based CDSS on the diagnostic 
performance of optometrists. An off-the-shelf argumentation-based modelling tool and execution engine 
was used to develop a diagnostic CDSS that can generate diagnostic recommendations. The thesis found 
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that argumentation is a viable method for generating diagnostic recommendations that can potentially 
help reduce diagnostic error especially in sight-threatening cases in optometry. The thesis found that 
guideline recommendations do have a positive impact on information gathering of optometrists and can 
potentially help optometrists in asking questions and performing tests as per current standards of care. 
The CDSS is dependent on the quality of data that is entered into the system. The faulty interpretation of 
medical images can lead the clinician to enter the wrong data and causing the CDSS to provide wrong 
clinical recommendations and supporting the wrong diagnostic hypothesis of the clinician. This problem 
can be remedied by improving the quality and quantity of arguments used for the diagnosis. The guideline 
recommendations were similarly found to have a positive impact on management decision making of 
optometrists. The optometrists found the CDSS easy to use and found its recommendations useful. This 
is one of the first studies evaluating guideline based CDSSs amongst community optometrists. The results 
of this study can be used to better design and develop guideline-based and diagnostic CDSSs for 
optometry. 

Secondly, this thesis continued from the study with optometrists and developed an argumentation-based 
ontology driven diagnostic ontology model and CDSS that can generate early diagnostic 
recommendations. The ontology model called DS Model can capture domain expertise using arguments 
in favour and against each diagnosis. This novel approach to developing ontology driven diagnostic 
CDSSs combines argumentation and semantic web technologies. The DS Model can be modelled using 
any off-the-shelf the ontology modelling tools. The thesis expands upon research in areas of 
argumentation-based CDSSs and ontology based CDSSs. DS Model developed for this thesis used the 
strength of argumentation methods where the modelling process is a lot easier and the diagnostic 
recommendations can be explained to the clinician and combined it with the strength of semantic web 
technologies. The current generation argumentation-based CDSSs tools use proprietary software and 
formats and have problems with semantic interoperability. Using semantic web technologies, the thesis 
was able to demonstrate the ability of CDSSs using the ontology model to integrate data in a wide variety 
of formats to generate diagnostic recommendations. The ontology model used a simple weighting 
method developed for the optometry study CDSS prototype to model the degree of support of each 
argument favouring and negating a diagnosis. The ontology model demonstrated a novel summation 
method using SPARQL that can generate diagnostic recommendations without the use of specialized 
software and algorithms and overcomes some of the problems facing current generation ontology driven 
diagnostic CDSSs. The thesis explored the development of an extension to this ontology-driven 
diagnostic model that can provide recommendations for sub-diagnostic states where necessary. The 
dental diagnostic ontology model is the first ontology-driven diagnostic inference model that has been 
developed in the field of Endodontics.  

Lastly, an evaluation of the DS Model in all stages of the clinical encounter was performed. The 
evaluation showed that the DS Model can provide a ranked diagnostic recommendation that is 
comparable to dentists in the early stages of the clinical encounter. The diagnostic performance can be 
improved using linked data technology to incorporate more information into the decision making. As 
more information is collected depending on the type of case the performance of the DS Model decreases 
slightly, and then improves as more information is collected to provide a ranked recommendation that is 
better than dentists. The evaluation showed that even with a simple weighting method and summation 
method used in the DS Model the diagnostic recommendation was comparable to dentists. With limited 
information in the early stages of the clinical encounter the DS Model was able to provide a good ranked 
diagnostic recommendation validating the approach used in this thesis.  
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