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Abstract

We develop an approach to providing epistemic conditions for admissible behavior

in games. Instead of using lexicographic beliefs to capture infinitely less likely conjec-

tures, we postulate that players use tie-breaking sets to help decide among strategies

that are outcome-equivalent given their conjectures. A player is event-rational if she

best responds to a conjecture and uses a list of subsets of the other players’ strategies

to break ties among outcome-equivalent strategies. Using type spaces to capture inter-

active beliefs, we show that event-rationality and common belief of event-rationality

(RCBER) imply S∞W , the set of admissible strategies that survive iterated elimination

of dominated strategies. By strengthening standard belief to validated belief, we show

that event-rationality and common validated belief of event-rationality (RCvBER) im-

ply IA, the iterated admissible strategies. We show that in complete, continuous and

compact type structures, RCBER and RCvBER are nonempty, hence providing epis-

temic criteria for S∞W and IA.
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1 Introduction

As noted by Samuelson (1992) and many others, there is a potential problem in dealing with

common knowledge of admissibility in games, which is known as the inclusion-exclusion

problem. The reason is that, under the assumptions of probabilistic beliefs and expected

utility, a strategy is admissible if and only if it is a best response to a belief with full support.

So a natural way of obtaining the prediction of admissible choices is to require that players

consider all strategies of their opponents to be possible. But then the prediction of an

admissible choice for a player is accompanied by a belief that does not exclude any strategy

of the player’s opponents from consideration, in particular it does not exclude strategies that

are not admissible. So a player cannot be certain that the opponents do not play inadmissible

strategies.

Recently, Brandenburger et al. (2008), henceforth BFK, provided a way of dealing with

the inclusion-exclusion issue, by using lexicographic expected utility (LEU) and the notion of

assumption in the place of certainty. Roughly speaking, a player with a list of probabilistic

beliefs can have a fully supported overall belief while “assuming” certain events that are

not equal to the whole state space. BFK show that strategies that survive m+ 1 rounds of

iterated elimination of inadmissible strategies are the strategies compatible with Rationality

and mth-order Assumption of Rationality (RmAR), for every natural number m. However,

the limiting construction as m → ∞, RCAR, is empty in complete and continuous type

structures. Therefore, BFK do not provide an epistemic characterization of IA. Keisler and

Lee (2011) and Yang (2009) have recently extended BFK’s analysis and obtained nonempti-

ness of RCAR. The former allows for discontinuous type mappings, and the latter uses a

weaker notion of assumption. Perea (2012) shows that common assumption of rationality is

always possible in finite structures.

We propose an alternative route. Instead of an LEU-based analysis, we use event-

rationality to allow for players to break ties with lists of subsets of opponents’ strategies.

That is, we use a different notion of rationality: the LEU-based approaches assume that play-

ers are lexicographic expected utility maximizers. We assume that players are event-rational.

The two notions of rationality are equally capable of reconciling “belief of rationality” with

“admissible choice”. The difference comes into play in the analysis of interactive beliefs. In-

teractive beliefs are described by type spaces. In our framework, a type of a player determines

her beliefs over the strategies and types of the other players (as in the standard framework)

and in addition it determines the tie-breaking list of events that the (event-rational) type
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uses. As a result, common belief of event-rationality bypasses the inclusion-exclusion issue.

In contrast, in an LEU-based analysis a type of a player determines her lexicographic beliefs

over the strategies and types of the other players, and the inclusion-exclusion tension is by-

passed by the use of “assumption” in the place of certainty. Under our approach, we provide

epistemic foundations for both the solution concept proposed by Dekel and Fudenberg (1990)

(S∞W ) and iterated admissibility (IA).

We consider finite two-player games in strategic form. The two players are Ann and

Bob, denoted by superscripts “a” and “b”. In order to provide some intuition about event-

rationality, note that if a strategy sa of Ann’s is (expected utility) rational then it is a best

response to some probabilistic belief, v ∈ ∆(Sb), where Sb is the set of Bob’s strategies.

If sa is inadmissible and therefore weakly dominated by some (mixed) strategy σa, then sa

and σa give the same payoff for all strategies of Bob in the support of v while σa is strictly

better than sa for all probability measures with support equal to the complement of the

support of v. Hence, when Ann chooses an admissible strategy, it is as if Ann optimizes

given the belief v, as usual, but when she is completely indifferent between two strategies,

she compares their expected utilities with respect to a probability measure with support

equal to the complement of the support of v. We say that Ann “breaks ties” using the event

that is the complement of the support of v.

Event-rationality does not require that Ann breaks ties only with respect to the com-

plement of the support of her belief. Ann can conceivably break ties using any other set,

as long as it is outside her current frame of mind, that is, disjoint from the support of v.1

Furthermore, Ann need not use a single such tie-breaking set. She may well have many

such sets, each providing extra validation for the chosen strategy. We refer to a collection of

tie-breaking sets as a tie-breaking list.

The principle behind event-rationality is, therefore, the following: if two strategies are

outcome-equivalent given Ann’s belief, then Ann has no way of deciding among them within

her frame of mind: the two strategies yield the same outcome for whichever strategy of Bob

she considers possible. Ann must, therefore, resort to information beyond her frame of mind

to make a decision. For instance, she could resort to fully external means, like coin flips.

However, Ann would be neglecting information about the two strategies under consideration,

1But note that, for the purpose of breaking ties, it suffices to consider only subsets of Bob’s strategies.

In particular, when we introduce the formal model of interactive beliefs, it is without loss of generality to

assume that Ann uses only lists of Bob’s strategies to break ties, because lists that include the types of Bob

only matter for breaking ties through the strategies of Bob that they are related to.
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namely how they fare against strategies of Bob that are considered impossible by her belief.

Event-rationality postulates that Ann does not neglect this information and, at the same

time, she does not change what she thinks about Bob’s choices.

Turn now to interactive beliefs, captured by type structures. Let T a and T b be the sets

of types of Ann and Bob. A type ta ∈ T a determines Ann’s conjectures over Bob’s choices,

Ann’s beliefs over Bob’s types and so on, together with the tie-breaking list. A state for Ann

is a strategy-type pair (sa, ta) and the beliefs over Bob are given by probability measures over

Sb × T b. A strategy-type pair (sa, ta) of Ann’s is called event-rational if sa is optimal given

ta’s belief over Sb and breaks ties for all sets in ta’s tie-breaking list. States where event-

rationality and common belief of event-rationality obtain are captured as the intersection

of infinitely many events: Ann is event-rational, and so is Bob; Ann is certain that Bob is

event-rational and Bob is certain that Ann is event-rational. And so on. This yields our

RCBER ((Event) Rationality and Common Belief of Event-Rationality) set of states.

Event-rationality captures the idea of choosing a strategy with extra validation, in the

sense that a strategy has to be optimal under one’s belief and in addition it has to pass a

series of validating tie-breaking tests. We also introduce the idea of extra validation of a

belief. Consider a type ta that believes that an event E ∈ Sb × T b is true, and is associated

with a list ` of subsets of Sb. The belief on the event E will be validated by the list ` if there

is an element of the list, say Eb ∈ `, that is equal to the projection of E on Sb.

States where event-rationality and common validated belief of event-rationality obtain

are again captured as the intersection of infinitely many events: Ann and Bob are event-

rational. Ann has a validated belief that Bob is event-rational and Bob has a validated belief

that Ann is event-rational. And so on. This yields our RCvBER ((Event) Rationality and

Common validated Belief of Event-Rationality) set of states.

Our results are as follows. We show that in a complete structure, RCBER produces the

set of strategies that survive one round of elimination of inadmissible strategies followed by

iterated elimination of strongly dominated strategies (S∞W ), whereas RCvBER produces the

set of iterated admissible strategies (IA). We then show that strategies played under RCvBER

constitute a self-admissible set (SAS), but the converse is not necessarily true. Because BFK

have shown that every SAS is the implication of RCAR in some type structure, the RCvBER

construction is more restrictive than the RCAR construction of BFK. Nevertheless, we show

that the RCBER and the RCvBER are nonempty whenever the type structure is complete,

continuous and compact, therefore providing epistemic criteria for S∞W and IA.

Our approach provides an alternative and effective perspective to deal with common
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“knowledge” of admissibility in games. A solution to the inclusion-exclusion problem is

obtained by using event-rationality together with having Sb (from Ann’s perspective) as

one of the tie-breaking sets. LEU-based approaches also obtain a solution to the inclusion-

exclusion problem. But some conclusions coming from the LEU-based approach are functions

of the notions of rationality and beliefs adopted by the approach. For instance, from BFK

and Keisler and Lee (2011) we get that either continuity or completeness have to be dropped

for an epistemic characterization of IA to be obtained. Our results show that, using a

different notion of rationality, neither continuity nor completeness have to be dropped for

such a characterization to be obtained. We should also note that completeness captures the

idea that players have no prior knowledge about each other, so it is a desirable property in

an epistemic analysis. Robustness with respect to continuity of the type structure is another

desirable property, which is satisfied by our construction.

1.1 Related Literature

Bernheim (1984) and Pearce (1984) argue that common knowledge of rationality implies (in

terms of behavior) the iteratively undominated (IU) set, that is, the set of strategy pro-

files surviving iterated deletion of strongly dominated strategies. Tan and Werlang (1988)

provide epistemic conditions for IU by characterizing RCBR (rationality and common be-

lief of rationality). Admissibility, or the avoidance of weakly dominated strategies, has a

long history in decision and game theory (see Wald (1939), Luce and Raiffa (1957) and

Kohlberg and Mertens (1986)). However, Samuelson (1992) shows that common knowledge

of admissibility is not equivalent to iterated admissibility and does not always exist. Founda-

tions for the S∞W strategies (Dekel and Fudenberg (1990)) are provided by Börgers (1994)

(using approximate common knowledge), Brandenburger (1992) (using LEU (Blume et al.

(1991)) and 0-level belief) and Ben-Porath (1997) (in extensive form games). Stahl (1995)

defines the notion of lexicographic rationalizability and shows that it is equivalent to iterated

admissibility.

BFK use LEU and characterize rationality and common assumption of rationality (RCAR)

by the solution concept of self-admissible sets. They show that rationality and mth order

assumption of rationality is characterized by the strategies that survive m + 1 rounds of

elimination of inadmissible strategies, in complete type structures.2 Finally, RCAR is empty

in a complete and continuous lexicographic type structure when the agent is not completely

2See Section 5.1 for the formal definition of “assumption”.
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indifferent. Hence, although the IA set can be captured by RmAR (rationality and mth

order assumption of rationality) for big enough m (note that games are finite), BFK do not

provide an epistemic criterion for IA. Keisler and Lee (2011) show that RCAR is nonempty if

one drops continuity. Yang (2009) provides an epistemic criterion for IA, with an analogous

version of BFK’s RCAR, that makes use of a weaker notion of “assumption”. The message

from Keisler and Lee (2011) and Yang (2009) is that continuity strengthens the notion of

caution implied by fully supported LPS.3 The notion of caution implied by event-rationality

is independent of continuity.

The paper is organized as follows. In the following section we illustrate the differences

between the various notions of rationality and belief through examples. In Sections 3 and

4 we set up the framework and provide the relevant definitions, including event-rationality,

RCBER and RCvBER. In Section 5 we show that RmBER (m rounds of mutual belief)

generates S∞W and that RmvBER (m rounds of mutual validated belief) generates the IA

set, for big enough m. Moreover, we show that RmvBER is more restrictive than RCAR of

BFK. In Section 6 we show that RCBER and RCvBER are always nonempty in compact,

complete and continuous type structures, therefore providing epistemic criteria for S∞W and

IA. Finally, the Appendices A-C provide decision theoretic foundations for event-rationality

and validated beliefs, and characterize RCBER and RCvBER in type structures that are not

necessarily complete but satisfy a richness condition.

2 Examples

In order to illustrate the differences between the BFK approach and that of the present

paper, consider the following game from Samuelson (1992) and BFK. There are two players,

Ann and Bob.

1 [1]

L R

1 U 1, 1 0, 1

[1] D 0, 2 1, 0

From the literature we know that, under expected utility, rationality and common belief

of rationality (RCBR) is characterized by the best response sets (BRS) and, in a complete

3Perea (2012) shows that common assumption of rationality is always possible in finite structures.
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structure, the strategies that survive iterated deletion of strongly dominated strategies.4 Can

we get a similar result for the admissible strategies and the iteratively admissible strategies

if we modify the notions of belief and of rationality? Recall that a strategy is admissible

if and only if it is a best response to a probability measure with full support (no strategy

of the other player is excluded). Then, the obvious solution is to specify that rationality

incorporates full support beliefs.

But such a specification does not always work. In the game above, if Ann is rational, she

assigns positive probability to Bob playing L and R. If Bob is rational, he assigns positive

probability to Ann playing U and D. Hence, Bob plays L. If Ann knows that Bob is rational,

she assigns positive probability only on Bob playing L. But then, Ann is not rational! In

other words, the RCBR set is empty for this game.

One solution is obtained using LEU. Suppose Ann’s primary belief assigns probability 1

to Bob playing L, and her secondary belief assigns probability 1 to Bob playing R. Bob’s

primary belief assigns 1 to Ann playing U and his secondary belief assigns 1 to Ann playing

D. Then, Bob playing L is (lexicographic expected utility) rational because he is indifferent

between L and R given his primary belief, but strictly prefers L given his secondary belief.5

Ann playing U is rational because U is the best response given her primary belief. She

assumes that Bob is rational, because she considers Bob playing L infinitely more likely than

Bob playing R.6 Similarly, Bob assumes that Ann is rational. As a result, rationality and

common assumption of rationality (RCAR) is nonempty.

A similar result can be obtained if we use the definition of event-rationality in the context

of type structures augmented with tie-breaking lists. Suppose Ann’s belief assigns probability

1 to Bob playing L and Bob’s belief µ assigns probability 1 to Ann playing U. Moreover,

Bob has the set Sa \ supp µ in his tie-breaking list. Bob playing L is event-rational because

he plays best response given his beliefs and, although L and R are outcome-equivalent at

supp µ, L is better under at least one probability measure with support equal to Sa \supp µ.

Similarly, Ann is event-rational since, under her belief, she does not need to break ties.

Finally, Ann believes that Bob is event-rational and Bob believes that Ann is event-rational.

Hence, rationality and common belief of event-rationality (RCBER) is nonempty.

In the game above RCAR and RCBER produce the same strategies because the IA and

the S∞W sets are equal. However, this is not always true. Consider the following game

4Qa ×Qb is a BRS if each sa ∈ Qa is strongly undominated with respect to Sa ×Qb and likewise for b.
5That is, the associated sequence of payoffs under L is lexicographically greater than the sequence under

R.
6For more information on the notions of “assumption” and “infinitely more likely”, see BFK.
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which illustrates the difference between RCBER (which yields the S∞W set) and RCvBER

(which yields the IA set):

L R

U 1, 0 1, 3

M 0, 2 2, 2

D 0, 4 1, 1

Because D is strongly dominated and Ann is event-rational, she will not play D. In a

complete structure though, event-rational Ann will play U or M, while event-rational Bob

will play L or R. For example, Ann’s type playing U is event-rational if she assigns probability

1 to Bob playing L. Ann’s type playing M is also event-rational if she assigns probability 1 to

Bob playing R. Note that Ann never needs to break ties. Moreover, for both U and M there

are event-rational types of Ann’s who assign positive probability to event-rational types of

Bob playing L or R. And similarly for Bob. In other words, these types of Ann believe the

event “Bob is event-rational”, Bob’s types believe the event “Ann is event-rational”, and

so on for every finite order of beliefs about beliefs. Hence, RCBER yields the S∞W set,

{U,M} × {L,R}.
Now repeat the same procedure but impose a stronger form of belief. Take an event

E ⊆ Sb×T b, where Sb and T b are the set of Bob’s strategies and types, respectively. A type

ta of Ann is associated with a belief over Sb × T b and a list ` of subsets of Sb. We say that

ta has a validated belief in an event E if it assigns probability 1 to E and there exists an

element Eb of the list ` that is equal to the projection of E on Sb. Imposing event-rationality

and common validated belief of event-rationality gives us RCvBER.

Which strategies are generated by RCvBER? The first round of RCvBER yields the set

of event-rational types for Ann and event-rational types for Bob, just like RCBER. But the

second round of RCvBER requires that each of Ann’s types has a validated belief in the event

“Bob is rational”, and similarly for Bob. Then, all types playing L are excluded. To see

this, note that if Bob is event-rational and has a validated belief in the event “Ann is event-

rational”, then the strategies played by event-rational types of Ann’s, namely {U,M}, must

belong to his list. The only event-rational types of Bob playing L (and having a validated

belief that Ann is event-rational) are the ones that assign probability 1 on Ann playing M. In

order to have a validated belief in {U,M}×T a0 , where T a0 is Ann’s event-rational types, Bob

must have U as a tie-breaking set in his list. Moreover, he assigns probability 1 to M and
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therefore has to break ties, because L and R are outcome equivalent given M. But L is never

a best response for any conjecture with support on U. Hence, Bob, assigning probability one

to M, cannot have a validated belief that Ann is event-rational.

In the third round of RCvBER, Ann has a validated belief that Bob has a validated belief

that Ann is event-rational. This means that Ann’s types playing U are excluded, because

those types assign positive probability to Bob’s types playing L, and none of them has a

validated belief that Ann is event-rational. The only event-rational types of Ann playing M

and of Bob playing R survive all rounds of RCvBER and generate the IA set, {M} × {R}.

3 Setup

Let (Sa, Sb, πa, πb) be a two-player finite strategic form game, with πa : Sa × Sb → R,

and similarly for b (as usual, a stands for Ann, and b stands for Bob). In what follows

we sometimes present definitions and results focusing only on player a. In these cases,

the definitions and results for player b are analogous. For any given topological space

X, let ∆(X) denote the space of probability measures defined on the Borel subsets of X,

endowed with the weak* topology. We extend πa to ∆(Sa) × ∆(Sb) in the usual way:

πa(σa, σb) =
∑

(sa,sb)∈Sa×Sb σ
a(sa)σb(sb)πa(sa, sb). A (possibly mixed) strategy σa ∈ ∆(Sa)

is a best response to a conjecture v ∈ ∆(Sb) if πa(σa, v) ≥ πa(ŝa, v) for every ŝa ∈ Sa.7 It is

denoted by σa ∈ BRa(v).

3.1 Admissibility and Event-Rationality

The following definition and Lemma are taken from BFK.

Definition 1. Fix X×Y ⊆ Sa×Sb. A strategy sa ∈ X is weakly dominated with respect

to X × Y if there exists σa ∈ ∆(Sa), with σa(X) = 1, such that πa(σa, sb) ≥ πa(sa, sb) for

every sb ∈ Y and πa(σa, sb) > πa(sa, sb) for some sb ∈ Y . Otherwise, say sa is admissible

with respect to X × Y . If sa is admissible with respect to Sa × Sb, simply say that sa is

admissible.

Lemma 1. A strategy sa ∈ X is admissible with respect to X × Y if and only if there exists

σb ∈ ∆(Sb), with supp σb = Y , such that πa(sa, σb) ≥ πa(ra, σb) for every ra ∈ X.

7In what follows, we will use the term “conjecture” to refer to a probabilistic belief over the opponent’s

strategy choices.
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Lexicographic beliefs have been used in dealing with the inclusion-exclusion issue iden-

tified by Samuelson (1992) (see BFK, Brandenburger (1992), Stahl (1995), Keisler and Lee

(2011) and Yang (2009)). We follow an alternative approach, based on “tie-breaking lists.”

We stress that our approach is a way of capturing admissible behavior (Lemma 3 below)

and at the same time dealing with belief of rationality. Admissible behavior can be viewed

as the requirement that ties are broken by events outside the conjecture of a player. This

leads us to consider tie-breaking events, as follows.

Let ` = {F1, ..., Fk} be a list of subsets of Sb, with F1 ( F2 ( · · · ( Fk = Sb, for some

k ≥ 1. The collection of all such lists, Lb, is a set of finite cardinality, because Sb is a finite

set.

For a given conjecture v ∈ ∆(Sb), let σa ∼supp v sa denote that the mixed strategy

σa ∈ ∆(Sa) satisfies πa(σa, sb) = πa(sa, sb) for every sb ∈ supp v. Therefore, σa ∼supp v s
a

denotes that σa is outcome equivalent to sa in supp v.

Definition 2. Given a pair (v, `) ∈ ∆(Sb) × Lb, we say that a strategy sa ∈ Sa is event-

preferred to a strategy ra ∈ Sa with respect to (v, `) if either

• πa(sa, v) ≥ πa(ra, v), and it is not the case that ra ∼supp v s
a, or

• ra ∼supp v s
a and for each F ∈ ` with F \ supp v 6= ∅, there exists v′ ∈ ∆(Sb) with

supp v′ = F \ supp v and πa(sa, v′) ≥ πa(ra, v′).

A pure strategy sa ∈ Sa being preferred to a mixed strategy σa ∈ ∆(Sa) is similarly

defined. A strategy is event-rational if it is maximal with respect to the event-preferred

preference relation.

Definition 3. Given a pair (v, `) ∈ ∆(Sb) × Lb, we say that a strategy sa ∈ Sa is event-

rational with respect to (v, `) if it is event-preferred with respect to (v, `) to every mixed

strategy σa ∈ ∆(Sa).

Since we introduce a new notion of being preferred to, it is important to verify the

following.

Lemma 2. For each pair (v, `) ∈ ∆(Sb) × Lb, there exists sa ∈ Sa which is event-rational

with respect to (v, `).

Proof. As Sa is finite, BRa(v) 6= ∅. We show that there exists sa ∈ BRa(v) that is not

weakly dominated given F \ supp v 6= ∅ by any σa ∈ BRa(v), for all F ∈ `. Using Lemma 3

below, sa is then event-rational with respect to (v, `).
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Let Fl ∈ ` be the smallest set such that Fl \ supp v 6= ∅. If there does not exist such

a set then supp v = Sb and event-rationality is trivially satisfied. Suppose without loss

of generality that l = 1. Let Ha
0 (v) = BRa(v) and recall that BRa(v) includes all pure

and mixed strategies that are best responses to v. Let Ha
1 (v) ⊆ Ha

0 (v) be the set of pure

and mixed strategies that are weakly undominated by any σa ∈ Ha
0 (v), given F1 \ supp v.

Because Sa is a finite set, Ha
1 (v) 6= ∅. Moreover, it cannot be that Ha

1 (v) contains only mixed

strategies, because if all strategies in the support of a mixed strategy are weakly dominated

given some set E, then the same is true for the mixed strategy. Let Ha
2 (v) ⊆ Ha

0 (v) be

the set of pure and mixed strategies that are weakly undominated by any σa ∈ Ha
0 (v),

given F2 \ supp v. We claim that ∈ Ha
1 (v) ∩ Ha

2 (v) 6= ∅, and by the same argument as

above, Ha
1 (v) ∩Ha

2 (v) contains at least one pure strategy. In fact, pick σa1 ∈ Ha
1 (v) \Ha

2 (v),

so σa1 is weakly dominated by some σa2 ∈ Ha
2 (v) given F2 \ supp v. Because σa1 is weakly

undominated by σa2 given F1 \ supp v, and F1 \ supp v ⊆ F2 \ supp v, it must be that

σa1 ∼F1\supp v σ
a
2 and therefore σa2 ∈ Ha

1 (v). Therefore, σa2 ∈ Ha
1 (v) ∩ Ha

2 (v), as claimed.

Continuing, let Ha
l (v) ⊆ Ha

0 (v) be the set of pure and mixed strategies that are weakly

undominated by any σa ∈ Ha
0 (v), given Fl \ supp v, for l = 3, ..., k. By induction, say that⋂m

l=1H
a
l (v) 6= ∅ for m < k. Pick σam ∈

⋂m
l=1H

a
l (v) \ Ha

m+1(v), so σam is weakly dominated

by some σam+1 ∈ Ha
m+1(v) given Fm+1 \ supp v. Because σam is weakly undominated by

σam+1 given Fl \ supp v, l = 1, ...,m, and F1 \ supp v ⊆ · · ·Fm \ supp v ⊆ Fm+1 \ supp v, it

must be that σam ∼Fl\supp v σ
a
m+1 for l = 1, ...,m and therefore σam+1 ∈

⋂m
l=1 H

a
l (v). Hence⋂k

l=1H
a
l (v) 6= ∅, and the same argument above shows existence of a pure strategy in that

set. That is, there exists sa that is weakly undominated by any σa ∈ Ha
0 (v) = BRa(v), given

Fl \ supp v, for l = 1, . . . , k.

The following Lemma shows the connection between admissibility and event-rationality.

Lemma 3. For each pair (v, `) ∈ ∆(Sb) × Lb and each F ∈ `, if sa is event-rational with

respect to (v, `) and supp v ⊆ F , then sa is admissible with respect to Sa×F . Conversely, if

sa is admissible with respect to Sa × F , for each F ∈ `, then, for each F ∈ ` there exists v

with supp v = F , such that sa is event-rational with respect to (v, `).

Proof. Suppose that sa is event-rational for v such that supp v ⊆ F . If supp v = F then

the result is immediate so suppose supp v ⊂ F and F \ supp v 6= ∅. Suppose there exists

σa ∈ ∆(Sa) with π(σa, sb) ≥ πa(sa, sb) for every sb ∈ F , with strict inequality for some

sb ∈ F . Because sa ∈ BRa(v), we have sa ∼supp v σ
a, which implies that there exists v′ with

supp v′ = F \ supp v and π(sa, v′) ≥ π(σa, v′), a contradiction. Conversely, suppose sa is

11



admissible with respect to Sa × F , for each F ∈ `. Pick a set F ∈ `. Since, sa is admissible

with respect to Sa × F , there exists v with supp v = F such that sa ∈ BR(v). For F ′ ∈ `
such that F ′ ( F we have F ′ \F = ∅ and the definition for event-rationality of sa is trivially

satisfied. For F ′ ∈ ` such that F ( F ′, take σa such that sa ∼F σa and suppose that there

does not exist v′ with supp v′ = F ′ \ F such that π(sa, v′) ≥ π(σa, v′). Then, σa weakly

dominates sa on F ′ \ F , and therefore also on F ′, a contradiction.

3.2 Interpretation of Event-Rationality

The idea of event-rationality is that Ann uses each of the sets in the list ` to break ties.

Whenever Ann has a conjecture v ∈ ∆(Sb) over Bob’s choices under which sa is optimal

and sa is outcome-equivalent to a (mixed) strategy σa given any sb in supp v, Ann uses

each F ∈ ` as a “tie-breaking experiment”, by checking whether there exists at least one

probability measure v′ with support on F \ supp v that validates the choice of sa. Ann is

fully confident in the conjecture v and in the best response sa to v, as long as there is no

σa that is outcome equivalent to sa in supp v. In that case, the probabilistic assessments

captured by v are irrelevant, because whichever other conjecture v̂ with supp v̂ = supp v

would not help Ann breaking ties between sa and σa. Ann then uses the tie-breaking list `

as we just described.

It is important to note that, although the “tie-breaking experiments” are additional

thought experiments that Ann uses to guide her choices, they do not play the role of ad-

ditional hypotheses, as one would have if we were in a LEU framework. If sa is indifferent

to σa according to v, but not outcome equivalent in supp v, then event-rationality does not

require that the tie-breaking list be invoked to decide between sa and σa.

3.2.1 Thought Experiments

As suggested above, the “tie-breaking experiments” are thought experiments used by the

decision maker to help making decisions. As with standard expected utility preferences,

when Ann is event-rational with respect to (v, `), she considers possible only the events that

are given positive probability by v. Intuitively speaking, the support of v is the largest

possible event that does not contain an impossible event. The events in the list ` are not

considered possible, but may nevertheless be relevant for Ann’s decisions.

12



One way to understand the ideas involved here is as follows.8 Let a pair (v, `) be given,

and consider the events

L(v, `) = {F \ supp v : F ∈ `} \ {∅}.

By construction, (v, `) and (v, L(v, `)) represent the same event-rational preferences.9 One

can interpret event-rationality by viewing the elements of L(v, `) as the objects of the thought

experiments, and the probability measures µF on F ∈ L(v, `) that break ties in favor of some

candidate strategy sa as the outputs of the thought experiments. Thus, an event-rational

strategy with respect to (v, `) is one that is optimal under v and has successful outputs

against all thought experiments in the list L(v, `).

In particular, a probability measure µF on F ∈ L(v, `) is not actually a conjecture held

by Ann (it is just the output of some experiment), and the thought experiment is the act of

finding such probability measures on each F ∈ L(v, `) that break ties.

Using a thought experiment to break ties and yet considering the events in the experi-

ments impossible is simple to grasp when dealing with past events/actions: for instance, one

may wonder what would have happened if Germany had won World War II, and use it to

help deciding whether to move to Germany or not. But one knows that Germany did not

win. So the thought experiment “what if Germany had won” is simply a mental construct,

and the decision maker is sure that it is impossible. Still, this experiment may tip the scale

in favor of moving or not moving to Germany. When we deal with future rather than past

actions the same line of reasoning goes through, as illustrated in the following example.

Consider an upcoming football (soccer) match between the teams of coach Ann and coach

Bob. Their relevant strategies are the possible line-ups for their teams. Coach Bob has a

star defender who is disqualified from playing because of a red card in a previous match.

Coach Ann knows this and believes with probability one that the star defender will not play.

Moreover, coach Ann has two star strikers who, absent the star defender of coach Bob’s team,

are outcome equivalent given all the possible strategies (line-ups) that coach Ann believes

coach Bob can choose from. However, coach Ann chooses to put in the striker who would be

better if the star defender actually played. An impossible event in coach Ann’s mind helps

her break ties in favor of one of her strategies. Moreover, coach Ann can potentially think

of many other sets of “impossible” line-ups of coach Bob’s and evaluate how her outcome

8We thank the editor in charge for providing this interpretation.
9Observe that we necessarily have redundant preference representations. These redundancies lead to the

existence of redundant hierarchies of preferences if the standard universal construction, as in Appendix B,

is followed.
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equivalent strikers will perform. We require that these sets are nested, so that they always

contain a “core” object of a thought experiment, which in this example is the existence of

the star defender. Moreover, there is no presumption (as in the lexicographic approach) that

Ann is ranking these impossible scenarios in terms of how unlikely they are.

The following example, suggested by an anonymous referee, illustrates this point further:

L C R

U 4, 6 0, 0 4, 3

M 0, 0 4, 6 0, 3

D 2, 3 2, 3 0, 0

Suppose that Ann is event-rational with respect to (v, `), with v(L) = v(C) = 1/2 and

L(v, `) = {R}.10 The unique experiment considered is {R}, so the only possible outcome of

the experiment is the probability measure assigning probability 1 to R. Strategy D is outcome

equivalent to a coin-flip between U and M under supp v, so Ann cannot decide between D

and this coin-flip, and resorts to the experiment {R} for help. Under the unique outcome of

the experiment, D is strongly dominated by the coin-flip, so the coin-flip is event-preferred

to D with respect to (v, `). Note that R is weakly dominated by a coin-flip between L and

C. So Ann resorts to a thought experiment composed of an inadmissible strategy for Bob.

But, as we indicated above, her theory only considers possible that Bob plays either L or C,

which are admissible. So Ann believes that Bob plays admissibly.

3.2.2 Nested Thought Experiments

The lists used by an event-rational Ann are composed of strictly nested subsets of Sb, F1 (
F2 ( · · · ( Fk = Sb, for k ≥ 1. The requirement that Fk = Sb is needed to capture admissible

behavior (that is, admissibility with respect to Sa × Sb), as is clear from Lemma 3. The

nestedness requirement ensures existence of an event-rational choice for any pair (v, `), as

verified in Lemma 2. But beyond this agnostic justification for the requirement, it reveals

a particularity of event-rationality that is quite different from lexicographic models. In

these models, the hypotheses are disjoint events and lexicographic expected utility proceeds

sequentially, checking one hypothesis at a time, in lexicographic order. Here, the thought

experiments are not alternative hypotheses to be checked sequentially. There is no ranking

10To connect it with the previous example, one can think of R as Bob’s strategy of including his star

defender in the line-up.
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in terms of how unlikely each experiment is, and the experiments are to be performed all at

once.

The thought experiments can be viewed as having F1 as the anchor or target, that is,

the part of Sb that Ann targets for her experiment, and successive enlargements F2, ..., Fk,

with F1 ( F2 ( · · · ( Fk, as robustness checks all the way to the most imprecise superset

of G1, Fk = Sb. Dually, one can view the thought experiments as starting from the most

imprecise experiment Fk = Sb and moving down with successively more precise experiments

in a definite direction Fk ) Fk−1 ) · · · ) F1 towards the most precise experiment, the

target F1. Going back to the football example in Section 3.2.1, the target experiment for

coach Ann could be the presence of the star defender in coach Bob’s line up. We stress that

what we just described are two ways of interpreting the tie-breaking list, or how the decision

maker would design the experiments F1, ..., Fk. As all checks must be passed, they can be

performed in any order.

3.2.3 Decision Theoretic Considerations

Turn now to decision theoretic considerations. We postulate that a decision maker (Ann)

has a theory captured by her preference relation % and the resulting probability measure

µ. Let F0 = supp µ and write % as %0. Moreover, when faced with a comparison between

two acts that are completely indifferent according to her theory, Ann resorts to thought

experiments to break ties. This is captured by a list of conditional preferences, where the

conditioning events are outside F0. Formally, Ann’s choices are determined by a list of

preferences (%0,%1, . . . ,%k) and the resulting supports (F0, ..., Fk). F0 represents Ann’s

theory, while (F1, ..., Fk) with F1 ( F2 ( · · · ( Fk = Sb are thought experiments, used

only for the purposes of breaking complete indifference. Thus F0 describes Ann’s frame of

mind, as it contains the states that Ann considers possible, and (F1, ..., Fk) describe zero

probability “counter-factuals” as F0 ∩ Fi = ∅ for each i = 1, . . . , k. Ann prefers an act x to

an act y if x %0 y and if x is outcome-equivalent to y in F0, then x %i y for all i = 1, ..., k.

Appendix A provides a more detailed exposition and shows that the notion just defined is

equivalent to event-rationality.

3.3 Type Structures and Beliefs

Type structures are used to describe interactive beliefs. Because event-rationality has players

using tie-breaking sets, a type of a player must determine a conjecture and a list of tie-
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breaking sets. Observe that we assign a list of tie-breaking sets for each type, thereby fixing

that type’s thought experiments. An (event)-irrational type may not use the assigned tie-

breaking list, in the same way that an irrational type in the standard type space construction

may not choose based on expected utility maximization given his/her beliefs. Fix a two-

player finite strategic-form game 〈Sa, Sb, πa, πb〉.

Definition 4. An (Sa, Sb)-based type structure with tie-breaking lists is a structure

〈Sa, Sb, La, Lb, T a, T b, λa, λb〉,

where λa : T a → ∆(Sb × T b)× Lb, and similarly for b. Members of T a, T b are called types,

members of La, Lb are called lists and members of Sa × T a × Sb × T b are called states.

We refer to an (Sa, Sb)-based type structure with tie-breaking lists as simply a type

structure. The types spaces T a and T b are assumed topological. The sets Sa, Sb, La, Lb are

finite, and we endow each with the discrete topology so that they are compact spaces. The

belief mappings λa and λb are assumed Borel measurable. A type structure is: complete

when λa and λb are surjective (c.f. Brandenburger (2003)); continuous when λa and λb are

continuous; and compact when T a and T b are compact spaces.

The standard construction of all coherent hierarchies of “beliefs about beliefs” yields a

complete, continuous and compact type structure. So existence of such structures (which we

assume in some of our results below) is guaranteed. Some details are provided in Appendix

B.

We use the notation λa(ta) = (µa(ta), `a(ta)), with µa(ta) ∈ ∆(Sb × T b) and `a(ta) ∈ Lb.
Similarly for b. Fix an event E ⊆ Sb × T b and write

Ba(E) = {ta ∈ T a : µa(ta)(E) = 1}

as the set of types that are certain of the event E. This is the standard definition of

certainty (as 1-belief): the states of Bob are the strategy type pairs in Sb × T b, and Ann’s

beliefs are over Bob’s states. Note that Ba satisfies monotonicity: if Ann is certain of E and

E ⊂ F then Ann is also certain of F . Note also that, coupled with event-rationality, the

behavioral implications of 1-belief are different than under expected utility: the complement

of a probability 1 event may not be irrelevant for choices.

Fix E ⊆ Sb × T b and define the following operator

Ba
∗(E) = {ta ∈ T a : projSbE ∈ `a(ta)},
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mapping an event E to the set of Ann’s types specifying a list that contains the projection

of E to the set of Bob’s strategies. We say that a type of Ann’s has a validated belief in

an event E ⊆ Sb × T b if the type belongs to the set

Ba
v (E) = Ba(E) ∩Ba

∗(E).

In other words, Ann has a validated belief in E if she believes it and projSbE is one of the

objects of her thought experiments. Appendix A provides a preference based characterization

of validated beliefs.

3.3.1 Lists Made of Subsets of Strategies Suffice for Breaking Ties

Before proceeding further, let us stress the following important property. The principle

behind event-rationality is that a player goes beyond her “frame of mind” to break ties.

With a formal type structure, the frame of mind is given by a type ta and the associated

assessment µa(ta) over Sb × T b (note that the list `a(ta) captures what is beyond the frame

of mind). Hence, one could argue that we should consider lists over subsets of Sb × T b,

thereby treating strategies and types symmetrically. In fact, the inclusion/exclusion tension

identified by Samuelson (1992) could be interpreted as requiring that the player includes

“everything else” in her thought experiments.11

However, it is redundant to include lists of subsets of Sb × T b for tie-breaking purposes:

a list ` made of subsets Eb of Sb breaks ties between sa and σa if and only if a list ˆ̀ made of

subsets E of Sb × T b whose projections on Sb are given by the subsets Eb of the list ` also

breaks ties between sa and σa. This is obvious, as types are payoff irrelevant.

Moreover, if one insists in using lists ˆ̀ of subsets of Sb × T b, the analysis below would

follow on exactly the same lines, defining validated beliefs using the operator

B̂a
∗(E) = {ta ∈ T a : E ∈ ˆ̀a(ta)}

in the place of the operator Ba
∗ , where ˆ̀a(ta) would denote the list of subsets of Sb × T b

associated with type ta. In fact, as we just argued, tie-breaking purposes would not restrict

the “type” component of the lists ˆ̀. In Appendix B.1, we show that nothing relevant would

be changed in the analysis below. Thus, the seemingly asymmetric treatment of strategies

and types is irrelevant, as a symmetric analysis can be provided with the appropriate changes

in notation.

11This logic is employed in BFK.
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3.4 RCBER - Rationality and Common Belief of Event-Rationality

With type structures, a state for Ann is a pair (sa, ta) determining what she plays (sa) and

her state of mind (ta). A strategy-type pair (sa, ta) ∈ Sa×T a is event-rational if sa is event-

rational with respect to λa(ta) = (margSbµ
a(ta), `a(ta)). We therefore have the following

definition.

Definition 5. Strategy-type pair (sa, ta) ∈ Sa × T a is event-rational if

• sa ∈ BRa(v), for v = margSbµ
a(ta),

• for each F ∈ `a(ta) with F \ supp v 6= ∅ and mixed strategy σa ∈ ∆(Sa) with σa ∼supp v

sa, there exists a v′ ∈ ∆(Sb) with supp v′ = F \supp v such that πa(sa, v′) ≥ πa(σa, v′).

Let Ra
1 be the set of event-rational strategy-type pairs (sa, ta). For finite m, define Ra

m

inductively by

Ra
m+1 = Ra

m ∩ [Sa ×Ba(Rb
m)].

Similarly for b.

Definition 6. If (sa, ta, sb, tb) ∈ Ra
m+1 ×Rb

m+1, say there is event-rationality and mth-order

belief of event-rationality (RmBER) at this state. If (sa, ta, sb, tb) ∈
⋂∞
m=1 R

a
m ×

⋂∞
m=1R

b
m

say there is event-rationality and common belief of event-rationality (RCBER) at this state.

In words, there is RCBER at a state if Ann is event-rational, Ann believes that Bob

is event-rational, Ann believes that Bob believes that Ann is event-rational, and so on.

Similarly for Bob. Believing that Bob is event-rational means that Ann is certain that

Bob only chooses strategies that are best responses to Bob’s conjectures that Ann considers

possible, and that Bob breaks ties using the sets of strategies in his list.

Note that for a strategy-type pair (sa, ta) to belong to Ra
m the following conditions are

satisfied. Strategy sa is a best response to v = margSbµ
a(ta), µa(ta)(Rb

m−1) = 1 and whenever

σa ∼supp v s
a, for each Eb ∈ `a(ta), there exists a probability measure v′ in Eb \ supp v for

which πa(sa, v′) ≥ πa(σa, v′). Notice that Ann is certain that the conjectures of Bob are of the

form v = margSaµ
b(tb), for tb ∈ projT bR

b
m−1, and knows that, for each such conjecture, Bob

breaks each tie using some v′ with support in Eb\supp v. We show below that this flexibility

implies that the set of strategies compatible with RCBER are the ones that survive one

round of elimination of inadmissible strategies, followed by iterated elimination of strongly

dominated strategies.
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3.5 RCvBER - Rationality and Common validated Belief of Event-

Rationality

Let R
a

1 be the set of event-rational strategy-type pairs (sa, ta). For finite m, define R
a

m

inductively by

R
a

m+1 = R
a

m ∩ [Sa ×Ba
v (R

b

m)].

Similarly for b.

The only difference with RCBER is that we use the validated belief operator instead of

the standard one.

Definition 7. If (sa, ta, sb, tb) ∈ Ra

m+1 ×R
b

m+1, say there is event-rationality and mth-order

validated belief of event-rationality (RmvBER) at this state. If (sa, ta, sb, tb) ∈
⋂∞
m=1 R

a

m ×⋂∞
m=1 R

b

m say there is event-rationality and common validated belief of event-rationality

(RCvBER) at this state.

Because validated beliefs are stronger than standard beliefs, RCvBER ⊆ RCBER. Note

again that RCBER and RCvBER avoid the inclusion-exclusion tension. What a type ta of

Ann believes about Bob’s choices is given by the marginal of µa(ta) over Sb. Moreover, a

type that knows that Bob’s strategy-type pairs are in R
b

m is a type that assigns positive

probability only to the strategies that are consistent with R
b

m. Therefore, many of Bob’s

strategies can be excluded from ta’s consideration, without causing any contradiction in the

construction. The event-rational strategy-type pair (sa, ta) resorts to the tie-breaking list

`a(ta) to handle counter-factuals, without having to believe that the counter-factuals are a

real possibility.

4 Solution Concepts

Consider the following generalization of the definition in BFK of the support of a strategy

sa, which they denote su(sa).

Definition 8. Say that ra supports sa given Qb if there exists some σa ∈ ∆(Sa) with ra ∈
supp σa and πa(σa, sb) = πa(sa, sb) for all sb ∈ Qb. Write suQb(s

a) for the set of ra ∈ Sa

that supports sa given Qb. Likewise for b.

Therefore, suSb(s
a) = su(sa). BFK characterize rationality and common assumption of

rationality (RCAR) by the solution concept of a self-admissible set (SAS).
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Definition 9. The set Qa ×Qb ⊆ Sa × Sb is an SAS if:

• each sa ∈ Qa is admissible with respect to Sa × Sb,

• each sa ∈ Qa is admissible with respect to Sa ×Qb,

• for any sa ∈ Qa, if ra ∈ suSb(s
a), then ra ∈ Qa.

Likewise for b.

In particular, BFK show that the projection of the RCAR into Sa × Sb is an SAS.

Conversely, given an SAS Qa × Qb, there is a type structure such that the projection of

RCAR into Sa × Sb is equal to Qa ×Qb. BFK discuss the need for the third requirement in

the definition of an SAS. In particular, consider the weak best response sets (WBRS), which

does not include a restriction on convex combinations.

Definition 10. The set Qa ×Qb ⊆ Sa × Sb is a WBRS if:

• each sa ∈ Qa is admissible with respect to Sa × Sb,

• each sa ∈ Qa is not strongly dominated with respect to Sa ×Qb.

Likewise for b.

As Brandenburger (1992) and Börgers (1994) show, if common assumption of rationality

is relaxed to common belief at level 0 of rationality (RCB0R) (that is, believing E means

µ0(E) = 1, where µ0 is the first measure of the agent’s LPS), then the projection of RCB0R

into Sa× Sb is a WBRS. Conversely, given a WBRS Qa×Qb, there is a type structure such

that Qa × Qb is contained in (but not necessarily equal to) the projection of RCB0R into

Sa × Sb.12

Our main result is the characterization of RCBER and RCvBER in complete, compact

and continuous type structures, with two solution concepts, S∞W and IA, respectively.13

The first, S∞W , is the set of strategies that survive one round of deletion of inadmissible

strategies followed by iterated deletion of strongly dominated strategies (Dekel and Fuden-

berg (1990)).

12See Section 11 in BFK.
13In Appendix C we also characterize RCBER and RCvBER in the case where the type spaces are not

complete but satisfy a richness condition.
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Definition 11. Let SW i
1 = Si1, for i = a, b be the set admissible strategies and define

inductively, for m ≥ 1,

SW i
m+1 = {si ∈ SW i

m : si is not strongly dominated with respect to SW a
m × SW b

m}.

Let S∞W =
⋂∞
m=1 SW

a
m ×

⋂∞
m=1 SW

a
m.

The second, IA, is the set of strategies that survive iterated deletion of weakly dominated

strategies.

Definition 12. Set Si0 = Si for i = a, b and define inductively, for m ≥ 0,

Sim+1 = {si ∈ Sim : si is admissible with respect to Sam × Sbm}.

A strategy si ∈ Sim is called m-admissible. A strategy si ∈
⋂∞
m=0 S

i
m is called iteratively

admissible (IA).

With a view to compare RCvBER with RCAR of BFK, we introduce the following gen-

eralization of the SAS.

Definition 13. The set Qa ×Qb ⊆ Sa × Sb is an SASPa×P b if:

• each sa ∈ Qa is admissible with respect to Sa × Sb,

• each sa ∈ Qa is admissible with respect to Sa ×Qb,

• for any sa ∈ Qa, if ra ∈ suP b(s
a) and ra is admissible with respect to Sa × Sb, then

ra ∈ Qa.

Likewise for b.

Note that the only difference with an SAS is that the support suP b(s
a) is with respect

to an abstract set P b, not Sb. This means that the SAS is equivalent to the SASSa×Sb .
14

Moreover, if Qa×Qb ⊆ P a×P b then an SASQa×Qb is also an SASPa×P b , but the reverse may

not hold. This means that for any P a × P b, an SASPa×P b is also an SAS.

14Note that if ra ∈ suSb(sa) and sa is admissible, then ra is also admissible. Hence, the third condition

for an SASSa×Sb is identical to the third condition for a SAS.
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5 Characterization of RCBER and RCvBER

Propositions 1 and 2 below show that, in a complete type structure and for big enough m,

RCmBER generates the S∞W set and RmvBER generates the IA set.

Proposition 1. Fix a complete structure 〈Sa, Sb, La, Lb, T a, T b, λa, λb〉. Then, for each m,

projSaR
a
m × projSbR

b
m = SW a

m × SW b
m.

Proof. Let T a0 be the set of types ta such that `a(ta) = {Sb}. From Lemma 3 we have that

(sa, ta) ∈ Ra
1 implies sa is admissible. Conversely, since we have a complete structure, if sa is

admissible then there exists ta ∈ T a0 such that (sa, ta) ∈ Ra
1. Hence, projSaR

a
1 = Sa1 = SW a

1

and projSbR
b
1 = Sb1 = SW b

1 . Suppose that for up to m we have that projSaR
a
m = SW a

m and

projSbR
b
m = SW b

m. Suppose sa ∈ SW a
m+1. Then, sa ∈ SW a

m = projSaR
a
m. Because sa is

not strongly dominated with respect to SW a
m×SW b

m, it is also not strongly dominated with

respect to Sa × SW b
m. Hence, there is a v with supp v ⊆ SW b

m under which sa is optimal.

We take (sa, ta), ta ∈ T a0 , with supp µa(ta) ⊆ Rb
m and margSbµ

a(ta) = v. Because sa is

admissible with respect to Sb, (sa, ta) is event-rational. Because ta ∈ Ba(Rb
m) and Rb

m ⊆ Rb
k,

1 ≤ k ≤ m, we have that (sa, ta) ∈ Ra
m+1 and sa ∈ projSaR

a
m+1.

Suppose sa ∈ projSaR
a
m+1. Then, sa ∈ SW a

m = projSaR
a
m and supp margSbµ

a(ta) ⊆
SW b

m = projSbR
b
m. Because sa is optimal under v, where supp v ⊆ SW b

m, sa is not strongly

dominated with respect to SW b
m and therefore sa ∈ SW a

m+1.

Proposition 2. Fix a complete type structure 〈Sa, Sb, La, Lb, T a, T b, λa, λb〉. Then, for each

m,

projSaR
a

m × projSbR
b

m = Sam × Sbm.

Proof. For m = 1, Lemma 3 and a complete structure imply projSaR
a

1 = Sa1 . Suppose that

for up to m we have that projSaR
a

m = Sam and projSbR
b

m = Sbm. Suppose sa ∈ Sam+1. Then,

sa ∈ Sam = projSaR
a

m. Because sa is admissible with respect to Sam×Sbm, it is also admissible

with respect to Sa×Sbm. Note that Sbm ⊆ . . . Sb1 ⊆ Sb and take ta such that margSbµ
a(ta) = v,

`a(ta) = {Sb, Sb1, . . . , Sbm}. Because sa is admissible with respect to Sa×Sbm, we can choose v

such that suppv = Sbm and sa is best response to v. Therefore, suppµa(ta) = R
b

m. Take any

set Sbi ∈ `(ta) with Sbi \ Sbm 6= ∅ and mixed strategy σa such that σa ∼Sbm sa. Suppose there

exists no measure v′, with suppv′ = Sbi \ suppv, such that πa(sa, v′) ≥ πa(σa, v′). Then, σa

weakly dominates sa on Sbi , which implies that sa is not admissible with respect to Sa × Sbi ,
a contradiction. Therefore, (sa, ta) is event-rational and ta ∈ Ba

v (R
b

k) for all k ≤ m, which

implies that (sa, ta) ∈ Ra

m+1 and sa ∈ projSaR
a

m+1.
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Suppose sa ∈ projSaR
a

m+1. Then, sa ∈ Sam = projSaR
a

m and there exists ta such that

(sa, ta) ∈ R
a

m+1 and supp margSbµ
a(ta) ⊆ Sbm = projSbR

b

m. Because ta ∈ Ba
v (R

b

m), Sbm ∈
`a(ta). Hence, we have that sa is admissible with respect to Sam × Sbm and sa ∈ Sam+1.

5.1 Comparison with BFK

BFK’s LEU-based approach uses the following construction. Let L+(X) be the space of fully

supported lexicographic probability systems over X, that is, the space of finite sequences σ =

(µ0, . . . , µn−1), for some integer n, where µi ∈ ∆(X) and
⋃n−1
i=0 supp µi = X. In addition, the

probability measures µi in σ are required to be non-overlapping, that is, mutually singular. A

lexicographic type structure is a type structure where λa : T a → L+(Sb × T b), and similarly

for b. An event E is assumed by type ta of Ann if and only if there is a level j such that

λa(ta) assigns probability one to the event E for all levels k ≤ j, and assigns probability zero

to the event for all levels k > j. Yang (2009) uses a weaker notion that allows the levels

higher than j to assign positive (and strictly smaller than 1) weights to the event. The use

of lexicographic beliefs is to be contrasted with our use of standard beliefs.

RCAR in BFK is characterized by the SAS and RmAR (m levels of mutual assumption)

produces the IA set in a complete structure, for big enough m. Since RmvBER generates

the IA set as well, it is important to study the relationship between RCAR and RCvBER

in terms of the solution concepts they generate. The following Proposition and examples

show that RCvBER generates a strict subclass of SAS, hence it is a more restrictive notion

than RCAR. However, as we show in the following section, RCvBER and RCBER are always

nonempty in a complete, continuous and compact structure, unlike RCAR. Let Aa and Ab

be the set of Ann’s and Bob’s admissible strategies, respectively.

Proposition 3.

(i) Fix a type structure 〈Sa, Sb, La, Lb, T a, T b, λa, λb〉. Then projSa
⋂∞
m=1 R

a

m×projSb
⋂∞
m=1 R

b

m

is an SASAa×Ab.

(ii) Fix an SASQa×Qb Q
a×Qb. Then there is a type structure 〈Sa, Sb, La, Lb, T a, T b, λa, λb〉

with Qa ×Qb = projSa
⋂∞
m=1R

a

m × projSb
⋂∞
m=1 R

b

m.

Proof. For part (i), if Qa × Qb = projSa
⋂∞
m=1 R

a

m × projSb
⋂∞
m=1R

b

m is empty, then the

conditions for SASAa×Ab are satisfied, so suppose that it is nonempty. By definition of event-
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rationality and Lemma 3, each sa ∈ Qa = projSa
⋂∞
m=1R

a

m is admissible with respect to

Sa × Sb and Sa ×Qb.

Suppose sa ∈ Qa, ra ∈ suAb(s
a) and ra is admissible. This implies that for any ta,

(sa, ta) ∈
⋂∞
m=1 R

a

m implies that supp margSbµ
a(ta) ⊆ Ab and ra is optimal under v =

margSbµ
a(ta) (Lemma D.2 in BFK). Because ra is admissible we have that (ra, ta) ∈ R

a

1.

For each m ≥ 2, (sa, ta) ∈ R
a

m implies that ta has a validated belief in Rb
m−1. Because

projSbR
b
m−1 ⊆ Ab and ra ∈ suAb(s

a), we have that (ra, ta) ∈ Ra

m and ra ∈ Qa.

For part (ii) fix an SASQa×Qb Q
a×Qb and note that for each sa ∈ Qa which is admissible

with respect to Qb, there is a v with supp v = Qb under which sa is optimal. We can choose v

such that ra is optimal under v if and only if ra ∈ suQb(s
a) (Lemma D.4 in BFK). Define type

spaces T a = Qa, T b = Qb, with λa and λb chosen so that supp µa(sa) = {(sb, sb) : sb ∈ Qb}
and supp µb(sb) = {(sa, sa) : sa ∈ Qa}; and `a(sa) = {Sb} and `b(sb) = {Sa} for all sa and

sb.

We first show that Qa = projSaR
a

1 and Qb = projSbR
b

1. By construction, for each sa ∈ Qa,

sa is optimal under v = margSbµ
a(sa) and admissible. Hence, (sa, sa) is event-rational and

Qa ⊆ projSaR
a

1. Suppose (ra, ta) ∈ R
a

1, where ta = sa. Then, ra ∈ suQb(s
a) and ra is

admissible with respect to both Sa × Qb and Sa × Sb. From the definition of an SASQa×Qb

this implies that ra ∈ Qa and Qa = projSaR
a

1. Applying similar arguments we have that

Qb = projSbR
b

1.

Moreover, each type ta ∈ Qa puts positive probability only to elements in the diagonal

(sb, sb), which consists of event-rational strategy-type pairs, hence ta has a validated belief

in R
b

1. Since all types only consider the list {Sb} as possible, we have that R
a

m = R
a

1 and

R
b

m = R
b

1 for all m, by induction. Since projSaR
a

1 × projSbR
b

1 = Qa × Qb we also have

Qa ×Qb = projSa
⋂∞
m=1R

a

m × projSb
⋂∞
m=1R

b

m.

In words, for a given type structure, the strategies compatible with RCvBER form a sub-

class of all of the SAS, and there is a class of SAS (the Qa×Qb sets that are SASQa×Qb) whose

strategies are compatible with RCvBER for some type structure. Because an SASQa×Qb

Qa × Qb is an SASAa×Ab but the converse is not true, Proposition 3 does not provide a

characterization of RCvBER. It does show, however, that RCAR, which is characterized by

SAS (BFK, Proposition 8.1), is less restrictive than RCvBER.

In fact, the following game provides an example of an SAS that is not an SASAa×Ab and

cannot be generated by RCvBER for any type structure. Hence, RCvBER generates a strict

subclass of SAS.
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L C R

U 1, 1 2, 1 1, 1

M 2, 2 0, 1 1, 0

D 0, 1 4, 2 0, 0

Note that all strategies except for R are admissible and that {U} × {L,C} is an SAS

but not an SASAa×Ab . The reason is that D and M are in the support of a mixed strategy

(assigning weight 1/2 to each) that is equivalent to U given that Bob plays his admissible

strategies L and C, but not given the set of all strategies Sb. Since D and M are not included

in {U} × {L,C}, this is not an SASAa×Ab .

We now argue that {U} × {L,C} cannot be the outcome of RCvBER. First, note that if

this were the case, the types of Ann included in RCvBER should assign zero probability to

Bob playing R. Note also that U is a best response only when Pr(L) = 2
3

and Pr(C) = 1
3

and, for these conjectures, also M and D are best responses. Is it possible that M and D

are excluded because types playing these strategies are not {L,C}-rational or Sb-rational?

No, because M and D are admissible with respect to both {L,C} and Sb. Hence, under

RCvBER, for any type structure, whenever U is included, M and D are included as well.

In the following game all strategies are admissible, hence an SAS is equivalent to an

SASAa×Ab .

L C R

U 1, 1 2, 1 1, 1

M 2, 2 0, 1 1, 5

D 0, 1 4, 2 0, 0

The same arguments show that RCvBER cannot produce {U}×{L,C} which is both an

SAS and an SASAa×Ab but not an SASQa×Qb . Hence, we cannot have a tighter characteriza-

tion in terms of Proposition 3.

As a last comparison note that, from the proof of Proposition 2, a type of Ann that is

event-rational and has (m + 1)th order validated belief of event-rationality in a complete

type structure, necessarily has the sets Sb0, Sb1, ..., Sbm in the type’s tie-breaking list. This

gives the intuition behind how RCvBER generates the IA set. In comparison, in BFK a

type ta of Ann that is rational and satisfies (m + 1)th order assumption of rationality in a
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complete type structure, necessarily satisfies

∀k ≤ m,∃j,
⋃
i≤j

supp µi = Sbk

where (µ0, ..., µn−1) is the list of marginals over Sb associated with type ta.

6 Possibility Results for RCBER and RCvBER

Since the games are assumed to be finite, Propositions 1 and 2 suggest that RmBER and

RmvBER generate the S∞W and IA sets, respectively, for m large enough. However, an

epistemic criterion for S∞W and IA has to be the same across all games and therefore

independent of m. Below, we show that RCBER and RCvBER are nonempty whenever the

type structure is complete, continuous and compact. Recall that the universal type structure

(Mertens and Zamir (1985) and Appendix B) satisfies these properties. Hence, we provide

an epistemic criterion for S∞W and IA.

Proposition 4. Fix a complete, continuous and compact type structure 〈Sa, Sb, La, Lb, T a, T b, λa, λb〉.
Then, RCBER and RCvBER are nonempty.

Proof. First, note that from Propositions 1 and 2, the sets Ra
m × Rb

m and R
a

m × R
b

m are

nonempty for each m ≥ 1.

We first show that Ra
1 is closed. Note that T a is compact. For any sequence (san, t

a
n)

in Ra
1, we have san ∈ BR(van), where van = margSbµ

a(tan). If (san, t
a
n) → (sa, ta), then van →

va = margSbµ
a(ta), implying that sa ∈ BR(va). Also, because Sa is finite, we have sa = san

for large n, so sa ∈ BRa(van). Further, because Sb is finite, we can choose a subsequence

with supp van = supp vak for all indices n, k and a fortiori supp va ⊂ supp van. Let σa satisfy

σa ∼supp va s
a. If supp va = supp van we have σa ∼supp van s

a. Hence, for each Fi ∈ `a(ta),

there exists vi with support equal to Fi \ supp va, such that πa(sa, vi) ≥ πa(σa, vi). If

supp va 6= supp van, then because sa ∈ BRa(van) and σa ∼supp va s
a , it must be that there

exists η ∈ ∆(Sb) with πa(sa, µ) ≥ πa(σa, η) and supp η = supp van \ supp va (η can be taken

as the conditional of van on supp van\supp va). Now put η′ = αη+(1−α)vi for some α ∈ (0, 1),

note that supp η′ = Fi \ supp va and that πa(sa, η′) ≥ πa(σa, η′). That is, (sa, ta) ∈ Ra
1, so it

is a closed subset of the compact space Sa × T a.
Consider Ra

2 = Ra
1 ∩ [Sa×Ba(Rb

1)], and pick a convergent sequence (san, t
a
n) therein, with

limit (sa, ta). Because Rb
1 is closed and λa is continuous, we have lim suptan→ta µ

a(tan)(Rb
1) ≤

µa(ta)(Rb
1). Hence µa(ta)(Rb

1) = 1 because µa(tan)(Rb
1) = 1 for every n. Also, event-rationality
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follows from an argument similar to the argument above, and we conclude that Ra
2 is compact.

Inductively, Ra
m is compact for all m. It follows that

⋂
m≥1R

a
m 6= ∅ because the family

{Ra
m}m≥1 has the finite intersection property: for any finite list {m1, . . . ,mK} of positive

numbers, let mk be the largest. Then we know that Ra
mk
6= ∅ and it is included in

⋂K
k=1R

a
mk

.

We also have compactness of the sets R
a

m. Pick a sequence (san, t
a
n) in R

a

m converging to

(sa, ta), and without loss of generality focus on a subsequence with `a(tan) = `a(tak) for all

n, k. It must then be that `a(tan) = `a(ta). Repeat the argument in the first paragraph of the

proof to conclude that (sa, ta) is event-rational because (san, t
a
n) is event-rational for each n,

and projSbR
b

m−1 ∈ `a(ta), so (sa, ta) ∈ Ra

m. Hence we have a nested sequence of nonempty

compact spaces, so by the finite intersection property, we have
⋂
m≥1R

a
m 6= ∅.

The same arguments apply to b.

7 Conclusion

Let us summarize the contributions of the paper. (1) We define a new notion of rationality,

named event-rationality, and provide preference basis for it. The preferences of event-rational

players are represented by a pair (v, `), where v is a probability measure and ` is a set of

events, used for breaking ties. We require that the set of all strategies of the opponent is a

member of `, obtaining as a result that event-rational agents play admissible strategies. (2)

We define and provide decision theoretic foundations for a new notion of “believing”, named

validated belief, which relates to the preference representation of event-rationality. (3) We

provide epistemic conditions for two well-known solution concepts in game theory, S∞W

and IA. We do so by constructing the set of states where “rationality and common belief

of rationality” obtain, using event-rationality as the notion of rationality and (for the IA

case) validated belief as the notion of belief. The epistemic characterization of IA solves a

well-known and much-studied problem in a novel way without requiring the use of incomplete

or discontinuous type structures. (4) We show that RCvBER can be used to justify a strictly

smaller class of solutions than BFK’s RCAR, thus showing that RCvBER and RCAR are not

merely isomorphic conditions written in two different languages. (5) Finally, let us note that

Appendix C provides two new solution concepts, HAS and HIA, that characterize RCBER

and RCvBER respectively, when type spaces are not necessarily complete but satisfy an

alternative richness condition.
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A Preference Basis

We develop preference foundations for event-rationality and validated beliefs, using the idea

that a decision maker is represented by a list of preferences. Let Ω be a state space and

A the set of all measurable functions from Ω to [0, 1]. For simplicity, assume that Ω is

finite (abstracting from technical details, the considerations below carry through in a more

general state space). A decision maker has preferences over elements of A. We assume that

the outcome space [0, 1] is in utils. That is, all preferences considered below agree on constant

acts over an outcome space, so the Bernoulli indices are uniquely defined and omitted from

the analysis that follows. For x, y ∈ A, 0 ≤ α ≤ 1, αx + (1− α)y is the act that at ω gives

payoff αx(ω) + (1−α)y(ω). Unless otherwise noted, we assume that a preference relation %

satisfies completeness, transitivity, independence and has an expected utility representation.

Definition 14. x %E y if for some z ∈ A, (xE, zΩ\E) % (yE, zΩ\E).

Note that for preferences satisfying the aforementioned axioms, (xE, zΩ\E) % (yE, zΩ\E)

holds for all z if it holds for some z. An event E is Savage null if x ∼E y for all x, y ∈ A.

For a given %, the set N(%) ⊂ Ω denotes the union of all non Savage null events according

to %.

Fix a game and the resulting set of available acts B. An act x ∈ B is event-rational

if there exist a preference % and a list ` = {F1, ..., Fk}, with F1 ( F2 ( · · · ( Fk = Ω such

that

• x % y for every y ∈ B,

• for each Fi ∈ ` with Fi \N(%) 6= ∅ and act y ∈ B with x(ω) = y(ω) for all ω ∈ N(%),

there exists a preference %′ with N(%′) = Fi \N(%) such that x %′ y.

Therefore, the definition of event-rationality is identical to that of the main text.

Consider a decision maker represented by a list of preferences {%i}ki=0 with N(%i) ∩
N (%0) = ∅ for i = 1, ..., k and N(%1) ( N(%2) ( · · · ( N(%k) = Ω \ N(%0).15 The

interpretation is that N(%0) is the theory of the decision maker, and the list {N(%i)}ki=1

represents the thought experiments used to break ties. Formally, given a list of preferences

{%i}ki=0 satisfying the aforementioned two properties we define an induced preference relation

over acts, %c, as follows:

15One can think of conditional preferences, as in Luce and Krantz (1971), Fishburn (1973) and Ghirardato

(2002).
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Definition 15. x %c y if and only if either

• x %0 y and x 6= y on N(%0) or

• x = y on N(%0) and x %i y for i = 1, ..., k.

An act x is %c-rational if x %c y for every y ∈ B.

Proposition 5. An act x is %c-rational if and only if it is event-rational.

Proof. By definition, if x is %c-rational, then it is event-rational under %=%0 and ` =

{F1, ..., Fk}, with Fi = N(%i) ∪N(%0) for i = 1, ..., k.

Conversely, let x be event-rational under %̂ and ` = {F1, ..., Fk}. If x 6= y on N(%̂),

then x %c y using %0= %̂. So let us focus on acts in C = {y ∈ B : y = x on N(%̂)}. Let

m = #Ω\N(%̂), and note that the set C can be identified as a convex in [0, 1]m, with x ∈ C.

For each i = 1, ..., k where Ei = Fi \N(%̂) 6= ∅, let Bi = {r ∈ Rm
+ : r|Ei � x|Ei}, where x|Ei

denotes the vector x restricted to states in Ei. Note that Bi ∩ C = ∅, because otherwise

there would exist an act y that is outcome-equivalent to x and strictly preferred to x for

any preference %′ with N(%′) = Ei, contradicting event-rationality of x. Because Bi is also

convex, by the separating hyperplane theorem there exists αi ∈ Rm with αi · r > αi · y for

all r ∈ Bi and y ∈ C. Take rε ∈ Rm
+ with rε(ω) = x(ω) for ω /∈ Ei and rε(ω) = x(ω) + ε for

ω ∈ Ei and ε > 0. Then rε ∈ Bi. Letting ε→ 0, we have rε → x and we obtain αi ·x ≥ αi ·y
for every y ∈ C.

Also, αi can be chosen to satisfy αi(ω) > 0 only if ω ∈ Ei. Otherwise, say that αi(ω
′) > 0

and ω′ /∈ Ei. If y(ω′) = 0 for every act in B, then αi(ω
′) can be set equal to zero without

loss. If x(ω′) = 0 and there exists y ∈ C with y(ω′) > 0, then it cannot be the case that

Fi = {ω′} for any i = 1, ..., k. So set y(ω) = x(ω) for every ω 6= ω′ and y(ω′) > x(ω′), with

y ∈ C. Such a y exists because Ei 6= Ω \ N(%̂) (if it was equal, then ω′ would not exist)

and there is no Fi equal to {ω′}. Then αi · rε > αi · y, for the rε constructed above. But as

ε→ 0, rε → x and αi ·x < αi · y by construction. This contradicts αi · rε > αi · y for all ε. In

the case that x(ω′) > 0, change the rε above by having rε(ω′) = 0, while keeping the other

values. Then as ε → 0, we must get αi · rε < αi · x, another contradiction. So the support

of αi is contained in Ei.

Moreover, because for each y ∈ C there exists %′ with N(%′) = Ei and x %′ y, it must be

that α(ω) > 0 if ω ∈ Ei. If not, then there is ω′ ∈ Ei with αi(ω
′) = 0, and there is no other

α′i with α′i(ω
′) > 0 that would separate Bi and C. Now take the original rε and y ∈ C with

y(ω′) > x(ω′). Such a y must exist, for otherwise there would exist the required α′i. But
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there is no %′ with N(%′) = Ei and x %′ y, a contradiction. So it must be that αi(ω) > 0 if

and only if ω ∈ Ei.
Normalizing αi yields a probability distribution νi with supp νi = Ei for which x is

a better response than any y ∈ C. Let %i be the preference relation represented by the

underlying Bernoulli index and νi. The construction above is true for every i = 1, ..., k.

Setting %0= %̂ and collecting the list {%0,%1, ...,%k} it follows that x is %c-rational.

In what follows, for ease of notation, we use Ni = N(%i) for i = 0, ..., k, x �iE y to

denote that x is preferred to y according to %i conditional on E (according to Definition

14), and x =0E y to denote that x(ω) = y(ω) for all ω ∈ N0 ∩ E 6= ∅. The notions of beliefs

we use in the main text are as follows.

Definition 16. Event E is believed under %c if N0 ⊂ E.

Definition 17. Event E has a validated belief under %c and i if E = N0 ∪Ni.

In words, the decision maker believes an event E if she believes it according to her theory.

She has a validated belief in it if it is equal to the union of N0 and some Ni. Note that it may

well be that i = 0, so the decision maker may have a validated belief in the event E = N0.

Note that in the text we “validated” a belief with events that describe strategies only. Here

we do not make this distinction for ease of exposition. It is straightforward to consider a

product state space Ω = Ω1 × Ω2 and define belief for events on Ω and validated beliefs as

those that are validated by the projection of an Ni to Ω1.

We now define a notion of conditional %c-preference that is consistent with tie-breaking

ideas.

Definition 18. Say that x �cE y under i if

• x �0E y or

• x =0E y, x �iE y and x %j y for every j 6= i.

Say that x �cE y if x �cE y for some i. Note that x �cE y under i and x =0E y necessarily

mean that i > 0.

Definition 19. An event E is nontrivial under %c and i if

• there is a pair x, y with x �cE y under i, and
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• if ω ∈ E is such that there is no pair x, y with x �cω y, then there is a pair x, y with

x = y on N0 such that x �cE(ω) y under i, where E(ω) = E ∩ (N0 ∪ {ω}).

Definition 20. An event E satisfies strict determination under %c and i if for all x, y,

x �cE y under i implies x �c y.

The following Lemma characterizes validated belief with respect to nontriviality and

strict determination.

Lemma 4. There exists i such that E has a validated belief under %c and i if and only if it

is nontrivial and satisfies strict determination under %c and i.

Proof. By nontriviality, E∩N0 6= ∅, for otherwise there would exist no pair x, y with x �cE y.

Assume by way of contradiction that there exists ω̂ ∈ N0 \ E. Also, let ω′ ∈ E ∩ N0. Set

x(ω′) = 1 and zero otherwise, and set

y(ω) =


a if ω = ω̂

b if ω = ω′

0 otherwise

where a > v0(ω′)(1−b)
v0(ω̂)

, 0 < b < 1, and v0 is the conjecture associated with %0. Then,

conditional on E, the payoff of x is equal to 1 whereas the payoff of y is b < 1, so x �cE y;

but the unconditional payoff of x is equal to v0(ω′) whereas the payoff of y is av0(ω̂)+bv0(ω′),

so y �c x, contradicting strict determination. Hence N0 ⊂ E. Therefore, if for all ω ∈ E
there exists a pair x, y with x �cω y, then E ⊂ N0, and we conclude that E = N0 ∪Ni, with

i = 0.

If there is ω ∈ E for which there is no pair x, y with x �cω y, then ω /∈ N0. By nontriviality,

there is a pair x, y with x = y on N0 with x �cE(ω) y under i, meaning that x �iE(ω) y, which

in turn means that ω ∈ Ni and i 6= 0. Hence we must have E ⊂ N0∪Ni. Similarly to above,

assume by way of contradiction that there exists ω̂ ∈ Ni\E. Also, let ω′ ∈ E∩Ni. Construct

x and y as follows: x = y on N0, and on Ω \ N0 x and y are as above, with a > vi(ω
′)(1−b)
vi(ω̂)

.

Strict determination is again violated, so we must have N0 ∪Ni ⊂ E, and we conclude that

E = N0 ∪Ni with i > 0.

Conversely, assume that E = N0 ∪ Ni for some i. Let x = 1 on N0, 0 otherwise and

y(ω) = 0 for every ω. Then x �c0 y and x �cE y under i. For the second condition, if i = 0,

then E = N0 and there does not exist ω ∈ E such that there is no pair x, y with x �cω y.

If i 6= 0, pick ω ∈ Ni (so ω /∈ N0). Set x = y on N0, x(ω) = 1, y(ω) = 0 and x = y = 0

elsewhere. Then x �cE(ω) y, so nontriviality is satisfied.

31



Finally, let x �cE y under i. If x �0E y then x �0 y, implying that x �c y. If x =0E y,

x �iE y and x %j y for every j 6= i, then x = y on N0, x �i y and x %j y for every j 6= i,

which again means that x �c y. So strict determination is satisfied.

Corollary 1. An event E is believed under %c if and only if it satisfies strict determination

under %c and i = 0 and there exists a pair x, y with x �cE y under i = 0.

B Type Spaces

We show that the standard construction of all hierarchies of beliefs about beliefs generates a

complete and continuous type structure. Because the types consistent with event-rationality

are mapped to both probability measures and lists, we need to adapt the standard construc-

tion. One route is to follow Epstein and Wang (1995) and work with more general beliefs

about beliefs. Another route, followed bellow, is to construct an complete, continuous and

compact auxiliary type structure, using the standard construction, and then use it to derive

the desired type structure.

Let ∆∗(X × Li) be the space of all probability measures over X × Li (endowed with the

weak* topology) for which the marginal on Li is a mass point, for i = a, b.

Let Ωa
1 = Sb × Lb and T a1 = ∆∗(Sb × Lb). Inductively, set Ωa

k+1 = Sb × Lb × T bk where

T ak+1 = {(µa1, ..., µak, µak+1) ∈ T ak ×∆∗(Ωa
k+1) : margΩak

µak+1 = µak}.

Likewise for b. Then, the standard arguments in the literature show the existence of compact

spaces T a∗ and T b∗ , with T a∗ homeomorphic to ∆∗(Sb × T b∗ × Lb) and T b∗ homeomorphic to

∆∗(Sa × T a∗ × La).16 In fact, let T a∗ be the projective limit of the spaces (T ak )∞k=1. T a∗ is

compact as it is a product of compact spaces. Construct T b∗ similarly. Then, Theorem 8 in

Heifetz (1993) shows that, for each tower (µak)
∞
k=1, there exists µa ∈ ∆(Sb × Lb × T b∗ ) with

margΩak
µa = µak, for all k ≥ 1. In particular, the marginal of µa on Lb is a mass point, so

µa ∈ ∆∗(Sb×Lb×T b∗ ). Conversely, each µa ∈ ∆∗(Sb×Lb×T b∗ ) gives rise to a tower (µak)
∞
k=1,

given by the list of marginals. Hence, there is a bijection λa∗ : T a∗ → ∆∗(Sb × Lb × T b∗ ).

Theorem 9 in Heifetz (1993) ensures that λa∗ is a homeomorphism, likewise for b. Therefore,

we have constructed a complete, continuous and compact auxiliary type structure

〈Si, Li, T i∗, λi∗〉i∈{a,b}
16See for instance Mertens and Zamir (1985), Brandenburger and Dekel (1993) and Heifetz (1993).
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with λi∗ : T i∗ → ∆∗(Sj × T j∗ × Lj) for j 6= i = a, b. Note that λi∗(t
i
∗) = µ(ti∗)⊗ δ`(ti∗) where δx

is the point mass at x.

Now set T i = T i∗ (carrying the same topology, so T i is compact Hausdorff) and λi(ti∗) =

(µ(ti∗), `(t
i
∗)), for i = a, b. The assignment λi∗ 7→ λi is a bijection and preserves continuity: λi

is continuous if and only if λi∗ is continuous. Indeed, let tiα → ti in T i. This is a converging

net in T i∗, so λi∗(t
i
α)→ λi∗(t

i), or µ(tiα)⊗ δ`(tiα) → µ(ti)⊗ δ`(ti). But δ`(tiα) → δ`(ti) in the weak*

topology if and only if `(tiα)→ `(ti). So (µ(tiα), `(tiα))→ (µ(ti), `(ti)), or λi(tiα)→ λi(ti), for

i = a, b. A similar argument establishes that λi∗ is continuous if λi is continuous. Moreover, λi

is injective and surjective. Hence, it is a homeomorphism, as a continuous bijection between

compact Hausdorff spaces. Therefore, the type structure

〈Si, Li, T i, λi〉i∈{a,b},

with λi : T i → ∆(Sj × T j) × Lj for j 6= i = a, b just constructed, is complete, continuous

and compact.

It is important to emphasize a conceptual point here. The two players form beliefs about

beliefs about what is relevant for rational choices. That is, Ann has beliefs over Sb×Lb, and

these beliefs are given by a conjecture over Sb and a list ` ∈ Lb (or, equivalently, a point

mass over Lb.) What is relevant for event-rational choices is precisely the conjecture and

the list. But Ann does not know what Bob’s beliefs are, and the hierarchies of beliefs about

beliefs constructed above yield a type structure as the one we use in the paper.

B.1 Lists over Types

We argued in the text that lists over strategies suffice for the analysis. Indeed, it is redundant

to include subsets of types in the tie-breaking lists, as types do not play any role in breaking

ties. Also, provided that we consider a rich list of subsets of types, such lists would not

interfere in the constructions in the text that used validated beliefs. Let us now show how to

obtain a type structure with rich lists over strategies and types from a given type structure.

Let the type structure 〈Si, Li, T i, λi〉i∈{a,b} be given. For i 6= j = a, b, let F(T i) denote the

space of all closed subsets of T i, endowed with the Fell topology.17 Say `i(ti) = {E1, ..., Ek},
with Er ⊂ Sj for r = 1, ..., k. Let Er = {sj1, ..., sjm} and construct Er = {({sj1}×K, ..., {sjm}×
K ′) : (K, ...,K ′) ∈ (F(T j))m}, for r = 1, ..., k, where (F(T j))m denotes the product of m

17See, for instance, Molchanov (2005) for definitions of topologies on spaces of subsets. The nice feature

of the Fell topology is that F(T i) is compact whenever T i is Hausdorff. When T i is compact metric, the

Fell topology coincides with the standard Hausdorff metric topology.
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copies of F(T j). Note that Er is compact whenever T j is Hausdorff. Finally, put ˆ̀i(ti) =

{E1, ..., Ek} as the extended list. Repeat the procedure for all ti and i = a, b, to construct

the type structure

〈Si, L̂i, T i, λ̂i〉i∈{a,b}

where λ̂i = (µi, ˆ̀i) and L̂i is the space of extended lists (as the one constructed above) of

subsets of Si × T i.
Now, for any closed subset F ⊂ Sj × T j, we have

F ∈ ˆ̀i(ti)⇔ projSjF ∈ `i(ti).

That is, extended lists do not interfere with statements about validated beliefs. Extended

lists do not interfere with breaking ties either. So the arguments in the text apply to the

corresponding type structure with extended lists with no change (other than notation).

C Other Solution Concepts

In this section we define two new solution concepts that characterize RCBER and RCvBER

in all type structures that satisfy a richness condition. The first is Hypo-Admissible Sets

(HAS) and we compare it with the solution concepts defined in the main body of the paper.

Definition 21. The set Qa ×Qb ⊆ Sa × Sb is an HAS if:

• each sa ∈ Qa is admissible with respect to Sa × Sb.

For each sa ∈ Qa there is nonempty Q0 ⊆ Qb such that

• sa is admissible with respect to Sa ×Q0,

• for any sa ∈ Qa, if ra ∈ suQ0(s
a) and ra is admissible with respect to Sa × Sb then

ra ∈ Qa.

Likewise for b.

Note that the first two properties for a WBRS are equivalent to the first two properties

for an HAS and they are implied by the first two properties for an SAS. Hence, the SAS

and the HAS are always WBRS but the opposite does not hold. Moreover, an SAS is not

necessarily an HAS and an HAS is not necessarily an SAS.
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Note that the S∞W set is both an HAS and a WBRS (but not an SAS) and the IA set

is an SAS and a WBRS (but not an HAS). The following game from Section 2 illustrates

the various definitions:

L R

U 1, 0 1, 3

M 0, 2 2, 2

D 0, 4 1, 1

The IA set is {M}×{R}. It is an SAS but not an HAS, because although L ∈ su{M}(R)

and L is admissible, it does not belong to the IA set. Moreover, S∞W = {U,M} × {L,R}
is an HAS but not an SAS, because L is not admissible with respect to {U,M}. That is, in

a sense the SAS captures IA whereas the HAS captures S∞W .

The second solution concept is the Hypo-Iteratively Admissible (HIA) set.

Definition 22. A set Qa × Qb is a hypo-iteratively admissible (HIA) set if there exist se-

quences of sets {W a
i }∞i=0, {W b

i }∞i=0, with W a
0 = Sa, W b

0 = Sb, such that for each m ≥ 0,

• each sa ∈ W a
m+1 is admissible with respect to Sa ×W b

m and belongs to W a
m,

• for any k, m, where k ≥ m, if sa ∈ W a
k+1, ra ∈ suW b

k
(sa) ∩W a

m and ra is admissible

with respect to Sa ×W b
m, then ra ∈ W a

m+1,

• there is k such that for all m ≥ k, W a
m = Qa.

Likewise for b.

The HIA sets resemble the IA set, with the only difference that one starts with a subset

of admissible strategies and always includes the strategies that are equivalent (in the sense

of suQ) to strategies that survive subsequent rounds. Moreover, the HIA can be thought

of as an analogue of the best response set (BRS).18 If we replace admissible with strongly

undominated in the definition of HIA then we get a BRS. Conversely, each BRS Qa × Qb

can be written as a modified HIA (just set W a
i = Qa and W b

i = Qb for all i ≥ 1).

18Recall that Qa × Qb is a BRS if each sa ∈ Qa is strongly undominated with respect to Sa × Qb and

likewise for b.
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C.1 Characterizations

Proposition 6 below shows that RCBER is characterized by the HAS set in a rich type

structure. We say that a type structure is rich if, for each type ta with `a(ta) = (Eb
1, ..., E

b
n)

and any list `′ such that Sb ∈ `′ ⊆ `a(ta), there exists a type ta0 with `a(ta0) = `′, and µa(ta) =

µa(ta0). Similarly for b. Recall our notation: RCBER is given by
⋂∞
m=1R

a
m ×

⋂∞
m=1R

b
m.

Proposition 6. (i) Fix a rich type structure 〈Sa, Sb, La, Lb, T a, T b, λa, λb〉. Then projSa
⋂∞
m=1R

a
m×

projSb
⋂∞
m=1 R

b
m is an HAS.

(ii) Fix an HAS Qa×Qb. Then there is a rich type structure 〈Sa, Sb, La, Lb, T a, T b, λa, λb〉
with Qa ×Qb = projSa

⋂∞
m=1R

a
m × projSb

⋂∞
m=1R

b
m.

Proof. Throughout we keep the convention that for any two sets, E and F , E × F = ∅
implies E = ∅ and F = ∅. For part (i), if Qa × Qb = projSa

⋂∞
m=1R

a
m × projSb

⋂∞
m=1R

b
m

is empty, then the conditions for HAS are satisfied, so suppose that it is nonempty and fix

sa ∈ Qa = projSa
⋂∞
m=1R

a
m. Then, for some ta, (sa, ta) is consistent with RCBER and sa

is admissible, by Lemma 3. Since ta believes each Rb
m, for all m, it also believes

⋂∞
m=1 R

b
m.

From the conjunction and marginalization properties of belief there is v = margSbµ
a(ta),

with support contained in projSb
⋂∞
m=1 R

b
m, such that sa is optimal under v.

Let Q0 = supp v. We have that sa is admissible with respect to Q0 = supp v, which is

a subset of Qb = projSb
⋂∞
m=1 R

b
m. Suppose sa ∈ Qa, ra ∈ susupp v(s

a) and ra is admissible.

From Lemma D.2 in BFK, ra is optimal under v whenever (sa, ta) ∈ Ra
1.19 Because the

type structure is rich, there exists type ta0 with µa(ta0) = µa(ta) and `a(ta0) = Sb. Since ra is

admissible, we have that (ra, ta0) ∈ Ra
1. The same is true for all Ra

m, hence the third property

for an HAS is satisfied.

For part (ii) fix an HAS Qa × Qb and note that for each sa ∈ Qa which is admissible

with respect to Qsa ⊆ Qb, there is a v with supp v = Qsa under which sa is optimal.

We can choose v such that ra is optimal under v if and only if ra ∈ suQsa (sa) (Lemma

D.4 in BFK).20 Define type spaces T a = Qa, T b = Qb, with λa and λb chosen so that

supp µa(sa) = {(sb, sb) : sb ∈ Qsa}, `a(sa) = {Sb} and v = margSbµ
a(sa) for the v found

above. Similarly for b. Note that the type structure is rich.

19Lemma D.2 specifies that if F is a face of a polytope P and x ∈ F , then su(x) ⊆ F , where su(x) is the

set of points that support x. The geometry of polytopes is presented in Appendix D in BFK.
20Lemma D.4 specifies that if x belongs to a strictly positive face of a polytope P , then su(x) is a strictly

positive face of P .
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First, we show that for each sa ∈ Qa, (sa, sa) is event-rational. By construction, sa

is optimal under v = margSbµ
a(sa) and admissible. Hence, (sa, sa) is event-rational and

Qa ⊆ projSaR
a
1. Suppose (ra, ta) ∈ Ra

1, where ta = sa. Then, ra ∈ suQsa (sa) and ra is

admissible with respect to Qsa . From Lemma 3, ra is admissible. From the definition of an

HAS this implies that ra ∈ Qa and Qa = projSaR
a
1. Applying similar arguments we have

that Qb = projSbR
b
1.

By construction, each ta ∈ Qa puts positive probability only to elements in the diagonal

(sb, sb) which consists of event-rational strategy-type pairs, hence ta believes Rb
1 and (sa, sa) ∈

Ra
2. This implies that Ra

2 = Ra
1 and likewise for b. Thus, Ra

m = Ra
1 and Rb

m = Rb
1 for all m, by

induction. Since projSaR
a
1 × projSbR

b
1 = Qa×Qb we also have Qa×Qb = projSa

⋂∞
m=1 R

a
m×

projSb
⋂∞
m=1 R

b
m.

Proposition 7 shows that RCvBER is characterized by the HIA set in a rich type structure.

Recall our notation: RCvBER is given by
⋂∞
m=1R

a

m ×
⋂∞
m=1R

b

m.

Proposition 7.

(i) Fix a rich type structure 〈Sa, Sb, La, Lb, T a, T b, λa, λb〉. Then projSa
⋂∞
m=1R

a

m×projSb
⋂∞
m=1R

b

m

is an HIA set.

(ii) Fix an HIA set Qa×Qb. Then there is a rich type structure 〈Sa, Sb, La, Lb, T a, T b, λa, λb〉
with Qa ×Qb = projSa

⋂∞
m=1R

a

m × projSb
⋂∞
m=1 R

b

m.

Proof. For part (i), if Qa × Qb = projSa
⋂∞
m=1 R

a

m × projSb
⋂∞
m=1R

b

m is empty, then the

conditions for an HIA set are satisfied, so suppose that it is nonempty.

Set W a
m = projSaR

a

m for m ≥ 1 and likewise for b. From Lemma 3, all strategies

in projSbR
a

m+1 are admissible with respect to Sa × W b
m and, by construction, belong to

projSbR
a

m.

Suppose that for some k, m, where k ≥ m, we have that sa ∈ W a
k+1 = projSbR

a

k+1,

ra ∈ suW b
k
(sa) ∩W a

m and ra is admissible with respect to Sa ×W b
m. This implies that for

some ta, (sa, ta) ∈ Ra

k+1, where supp margSbµ
a(ta) ⊆ W b

k and list `a(ta) contains at least all

sets W b
p , for p ≤ m. Because the type structure is rich, there exists type ta0, with `a(ta0) that

contains all sets W b
p , for p ≤ m, and nothing else. Moreover, ta0 is identical to ta in all other

respects. Since ra ∈ suW b
k
(sa), ra is optimal given margSbµ

a(ta0). Moreover, ra is admissible

with respect to Sa ×W b
p , for p ≤ m.

All these imply that (ra, ta0) ∈ Ra

m+1. The third condition is satisfied because projSa
⋂∞
m=1 R

a

m×
projSb

⋂∞
m=1 R

b

m is nonempty and the strategies are finite.
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For part (ii), fix an HIA set Qa×Qb, with sequences of sets {W a
m}m=n′

m=0 , {W b
m}m=n

m=0 , where

W a
n′ = Qa and W b

n = Qb. Construct the following type structure. For each m ≥ 1, for each

sa ∈ W a
m, find the measure v(sa,m) with support on W b

m−1 such that ra is a best response

to v(sa,m) if and only if ra ∈ suW b
m−1

(sa). This is possible because of Lemma D.4 in BFK.

Type ta(sa,m) has a marginal v(sa,m) on Sb, the list `a(ta(sa,m)) = {W b
0 , . . . ,W

b
m−1} on Lb

(omitting W b
m−j if it is equal to W b

m−j−1) and assigns positive probability only to strategy-

types (sb, tb(sb,m− 1)), for sb ∈ W b
m−1. Finally, assign to each sa ∈ Sa type ta(ra, 0) which

is equal to ta(ra, k), for some ra ∈ W a
k , k > 0. Similarly for b.

We now show that RCvBER generates the HIA set. For m = 1, we show that projSaR
a

1 =

W a
1 . Suppose that sa ∈ W a

1 . Because sa is admissible and a best response to v(sa, 1), we have

(sa, ta(sa, 1)) ∈ Ra

1 and sa ∈ projSaR
a

1. Suppose ra ∈ projSaR
a

1. Then, ra is a best response

to some measure v(sa, k + 1), k ≥ 0, for sa ∈ W a
k+1 and ra ∈ suW b

k
(sa) ∩ W a

0 . Because

(ra, ta(sa, k + 1)) is event-rational, ra is admissible. Therefore, by the second property for

an HIA set, ra ∈ W a
1 . Moreover, by construction, for each sa ∈ W a

1 , (sa, ta(sa, 1)) ∈ Ra

1, and

similarly for b.

Assume that for up to m, projSaR
a

m = W a
m and for each sa ∈ W a

m, (sa, ta(sa,m)) ∈
R
a

m. Similarly for b. Suppose that sa ∈ W a
m+1. By construction, sa is a best response to

v(sa,m + 1), which has a support of W b
m = projSbR

b

m, and it is admissible with respect

to Sa ×W b
m. Moreover, `a(ta(sa,m + 1)) = {W b

0 , . . . ,W
b
m} and type ta(sa,m + 1) assigns

positive probability only to types (sb, tb(sb,m)) ∈ R
b

m, for sb ∈ W b
m. This implies that

(sa, ta(sa,m+1)) ∈ Ra

m+1 and sa ∈ projSaR
a

m+1. Suppose ra ∈ projSaR
a

m+1. By construction,

the only measures that have support which is a subset of W b
m are measures that are associated

with strategies sa that belong to W a
k+1, where k + 1 > m. Hence, (ra, ta(sa, k + 1)) ∈ Ra

m+1

and ra is a best response to some measure v(sa, k + 1). By construction, ra ∈ suW b
k
(sa).

Moreover, ra is admissible with respect to Sa ×W b
m. Hence, by the second property for an

HIA set we have that ra ∈ W a
m+1.
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