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Abstract. The performance of rotary positive displacement machines highly depends on the 

operational clearances. It is widely believed that computational fluid dynamics (CFD) can help 

understanding internal leakage flows. Developments of grid generating tools for analysis of 

leakage flows by CFD in rotary positive displacement machines have not yet been fully 

validated. Roots blower is a good representative of positive displacement machines and as such 

is convenient for optical access in order to analyse internal flows. The experimental 

investigation of flow in optical roots blower by phase-locked PIV (Particle Image Velocimetry) 

performed in the Centre for Compressor Technology at City, University of London provided 

the velocity field suitable for validation of the simulation model. This paper shows the results 

of the three-dimensional CFD transient simulation model of a Roots blower with the dynamic 

numerical grids generated by SCORG and flow solution solved in ANSYS CFX flow solver to 

obtain internal flow patterns. The velocity fields obtained by simulation agree qualitatively 

with the experimental results and show the correct main flow features in the working chamber. 

There are some differences in the velocity magnitude and vortex distribution. The flow field in 

roots blower is highly turbulent and three-dimensional. The axial clearances should be included, 

and the axial grids should be refined in the simulation method. The paper outlines some 

directions for future simulation and experimental work. The work described in this paper is a 

part of the large project set to evaluate characteristics of the internal flow in rotary positive 

displacement machines and to characterize leakage flows.  

1.  Introduction 

Rotary positive displacement machines are widely used in many industrial fields. Depending on the 

application they may contain one or more rotating elements and a stator. Typical representatives of a 

single rotor machine are progressive cavity pumps and single screw compressors. Twin rotor machines 

are more common. These can be designed either with straight lobes as in roots blowers and gear 

pumps, or with helical lobes used in screw compressors, expanders and pumps. Screw machines can 

handle single phase fluids in the form of a gas, vapour or liquid or multi-phase fluids mixed from any 

combination of single phase fluids and solids and may operate above or under atmospheric pressures. 

Liquid and multiphase pumps are often configured with multiple rotors. In all these machines, gaps 

between rotating and stationary parts have to be maintained in order to allow a safe and reliable 

operation but are desired to be minimal in order to reduce leakage flows, which play critical role in the 

http://creativecommons.org/licenses/by/3.0
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performance. The challenge is to maintain the size of the gaps due to deformations of the machine 

elements which could be caused by thermal of physical loads.  

Many researchers have studied leakage flows through clearance gaps in rotary positive displacement 

machines both experimentally and numerically. Numerical methods are mostly based either on 

chamber modelling [1], or computational fluid dynamics (CFD) model [2, 3]. In chamber models, it is 

usually assumed that the momentum change in the main domain is negligible due to the internal 

energy being dominant while the velocity of the leaking fluid is obtained based on the assumption of 

the isentropic flow through the nozzle. A CFD model allows more accurate calculation of velocities 

both in the main domain and in the leakage paths by numerically solving governing conservation 

equations such as mass, energy and momentum. This is of course subject to availability of an accurate 

numerical mesh which can capture both, the main flow domain and clearances. The latest 

developments in grid generation for screw machines described in detail in Rane et al. [4, 5] have led to 

the mesh which can be used in all flow calculations and for most rotary positive displacement 

machines. This grid generation methods allows use of any commercially available CFD solvers. The 

size of the mesh, the speed of its generation as well as the speed of calculation by commercial solvers 

is suitable for industrial application. However, it is yet not fully validated if it sufficiently accurately 

captures flow in clearances.  

Numerical procedures for calculation of performance using either chamber models or 3D CFD are 

usually validated by measurements of the integral parameters such as the total mass flow rate and 

power as shown in recent studies by Kovacevic and Rane [6]. These indicate that the clearance flow is 

mostly well captured. However, unless the local velocities are measured, the leakage models cannot be 

fully validated. In addition, even the velocity distribution in the main flow of a rotary positive 

displacement machine has not been studied in detail experimentally. Therefore, for the full validation 

of numerical calculations it is required to obtain accurate measurements of the flow field both in the 

main working domain and in the clearance gaps of a rotary positive displacement machine.  

Attempts were made in the past to evaluate local flows in screw compressors using optical methods. 

Firstly, Sachs [7] studied the gas flows in the tip gap of a static flat rotor screw compressor 

experimentally. The Toppler schlieren method was applied to obtain the swirls image in the leakage 

gap. The influence of pressure ratio, gap shape, gap height and moving boundary on the schlieren 

image were investigated. And the mass flow rate and velocity near the gap were compared. The 

boundary layer separation, swirls and Mach wave were also shown. The LDV method was 

recommended to obtain quantitative results in the gap without interference with the leakage flow. The 

Laser Doppler Velocimetry (LDV) measurements in the working chamber close to the discharge and 

in the discharge chamber of an oil free compressor were reported by Gueratto et al. [8] while the 

measurement of the flow in the suction chamber of an oil free compressor with water injection were 

reported by Kovacevic et al. [9]. However, neither of these managed to give quantitative velocity 

values within the working domain of the compressor and in the clearances. Screw machines with 

helical rotors are difficult to modify in order to provide optical access for the assessment of flow. The 

alternative is a roots blower which has straight lobes and similar characteristics of the flow as screw 

machines. 

Roots blowers usually have two straight rotors with an involute profile and two or more lobes in 

each. The rotors rotate in the opposite directions within the casing and form a working chamber 

between the rotors and casing. Roots blowers do not have internal compression as the volume of the 

chamber remains constant while rotating. The increase of the pressure is external to the rotors due to 

the backflow from the high-pressure side. Recently, Liu et al. [10, 11] and Sun et al. [12, 13] 

established the CFD simulation model of the roots blower and validated it by measurements of mass 

flow rate and pressure distribution. In addition, the leakage flow in a two-lobe roots blower was 

predicted using a stationary mesh in CFD and the results were compared with the experimental 

leakage mass flow rate [14]. The development of experimental techniques to determine velocities 

using optical methods have been reported recently by Sun et al. [15]. 

In this paper, the three-dimensional CFD transient simulation model of a Roots blower was 

established using the dynamic grids prepared by SCORG and was solved in ANSYS CFX flow solver 

to obtain the flow patterns. The experimental investigation of flow in optical roots blower by phase-
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locked PIV (Particle Image Velocimetry) performed in the Centre for Compressor Technology at City, 

University of London [15] was used to validate the simulation model. The simulation and 

experimental velocity fields are analysed and compared. The work described in this paper is a part of 

the large project set to evaluate characteristics of the internal flow in rotary positive displacement 

machines and to characterize leakage flows with the objective to lead to further improvements in 3D 

CFD analysis of leakage flows in rotary positive displacement machines and ultimately lead to the 

improvement in the performance of rotary positive displacement machines. 

2.  Simulation model 

2.1. Physical Model 

This paper studies a roots blower with two-lobed rotors mounted on parallel shafts that rotate in 

opposite directions to transfer air as working fluid. The physical model is shown in Figure 1. The 

suction and discharge pipes connect to the inlet and outlet domains respectively. The air passes into 

the roots blower through the inlet and fills into the suction chamber formed by the casing and rotor. 

The female rotor rotates clockwise, and the reference crank angle when the female rotor is vertical is 

defined as 0°. Three types of gaps are recognised in the roots blower, namely the tip gap, the interlobe 

gap and the axial gap between the side of the lobes and the casing. The main dimensions are shown in 

Table 1. 

 

Figure 1. Physical model of roots blower at crank angle 10 ° and 100 °. 

Table 1. The main parameters of the roots blower. 

Items Specification  Items Specification 

Diameter of the rotor/mm 101.3 Tip gap/mm 0.1 

Axis distance/mm 63.12 Interlobe gap/mm 0.17 

Rotor length/mm 50.5 Axial gap/mm 0.15 

Displacement volume/ l/rev 0.4618 Width of tip step/mm 6.4 

2.2. Grid generation  

Stationary fluid domains of the inlet and outlet chambers can be extracted from a CAD model of the 

roots blower. For the transient simulation, rotor domains move and deform with the rotation of rotors. 

Figure 2 shows the fluid domain and the generated grids of rotors and ports. The moving rotor grids 

(left in Figure 2) were generated by in-house grid generation software SCORG. The rotor to casing 

non-conformal mesh was generated using algebraic transfinite interpolation and numerical smoothing. 

This preserves the shape of the tip and side steps on the lobes (see Figure 1). To check the grid 

independence, four levels of rotor grids were generated. Different grid levels used for calculations are 

shown in Table 2. The angular divisions for one chamber are 180, which means that there are 180 

angular positions for single interlobe rotation. For the two-lobe Roots blower, the gird files were 

generated with the angle interval of 1°. And the time step was calculated out using the following 

equation. 
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                                                                           (1) 

where Z is the number of lobes, and n is the rotation speed (rpm). Inversely, the angular divisions 

can be calculated out when the simulation time step is given. As shown in the right of Figure 2, the 

stationary grids consist of inlet grids, outlet girds and axial-gap grids which have six layers of grids in 

each axial gap. The lengths of suction pipe and discharge pipe are three and nine times of the pipe 

diameter. Hexahedral grids with 889405 nodes for the stationary grids were generated in ANSYS-

Mesh and used in all cases. The rotor grids and the stationary grids are combined and connected with 

interfaces. 

Table 2. Grid levels and number divisions. 

Level Circumference Radial Angular Axial Number of grid 

nodes 

in Rotors 

Y+ at the centre 

line of tip step 

Grid-1 200 14 180 30 37200 1.8 

Grid-2 302 22 180 30 861304 1.3 

Grid-3 400 30 180 35 1785600 1.1 

Grid-4 480 36 180 38 2772560 1.0 

 

Figure 2. The rotor grids and the whole grids. 

2.3.  Simulation model boundary condition setting 

The Ansys -CFX solver was used for the calculation of the roots blower. The working fluid was air as 

ideal gas. The high-resolution scheme was used for the advection term while the second order 

backward Euler scheme was used for the transient term. The SST (Shear Stress Turbulence) 

turbulence model was adopted in the calculation. The Y+ at the centre line of the lobe tip step was 

checked and was lower than 2 in all cases, as shown in Table 2. The time step was 3.592E-4 as 

determined by equation (1) for the rotor speed of 464rpm. The number of iterations was 10 for every 

time step. The static pressure was used respectively for the inlet and outlet opening boundaries. The 

pressure at the inlet and outlet was given as measured ones during the experiment. 

3.  Experimental setup 

The optical roots blower was mounted in the test rig which allows measurements of pressures, mass 

flow rates, power etc. at variable operating conditions. The rig also allows use of PIV laser technique 

for acquiring velocities inside the Roots blower. The layout of the test rig is shown in Figure 3a. The 

equipment used for measurements was introduced in detail in the paper published earlier by the 

authors [15]. The test was performed at the operating condition shown in the Table 3. The operation 

speed and pressure ratio are far lower than the design parameters of the prototype (5275rpm, pressure 

ratio 2.6). The work presented in this paper is the first step of the research to understand the 

mechanisms of leakage flows. The optical window, shown in Figure 3b, is made of perspex which can 
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sustain only limited temperatures which was achieved by low speeds and pressures. The test at the 

practical operating conditions will follow in future. 

Table 3. Operating conditions for the roots blower tests. 

Inlet 

pressure/bar 

Inlet 

temperature/K 

Outlet 

pressure/bar 

Outlet 

temperature/K 

Pressure 

ratio 

Speed/

rpm 

Mass flow 

rate/ kg/s 

0.975 300.6 1.045 306.2 1.072 464 0.00103 

 

Figure 3. Roots blower test rig and diagram of visualizing test. 

A - inverter, B – electromotor, C- pulleys, D – shaft encoder, E- torque meter, F – roots blower, G – smoke tank, 

H – smoke machine, I – orifice plate, J – valve, K – double pulse laser, L – surface mirror, M – double shutter 

camera, N – Position of Laser plane, T1 – suction temperature transducer, P1 – suction pressure transducer, T2 – 

discharge temperature transducer, P2 – discharge pressure transducer, T3 – upstream temperature transducer, ΔP 

– differential pressure across an orifice plate 

The optical window was designed to allow the optical access through two locations. One window is 

positioned radially while the other is on the side of the machine. The side window is used for 

collecting measurements through the reflection image in the mirror (L) in the Figure 3b. The Figure 3c 

is the 3D CAD model of standard PIV system for the test. The standard PIV system mainly consisted 

of double pulse laser (K, Dantec Dual power 200-15) and double shutter camera (M, Flow sensor E0) 

which has a full resolution of 2048*2048 pixels. The smoke particles made of liquid containing the 

glycol by a smoke machine (H) are used to seed the air. The smoke tank (G) was used to distribute the 

smoke homogeneously. The mixture of air and smoke then enters the roots blower and passes through 

the working chamber. A Nd:YAG laser with maximum 200mJ at the wave length of 532nm was used 

to illuminate the smoke particles. The laser was mounted on the laser arm and the beam was 

transformed to the laser sheet by using appropriate lenses at the end of the laser arm. The laser sheet 

plane (N) was 0.5cm inside the chamber from the window, as shown in Figure 3b. The test system 

uses a synchronizer to take the recording at a fixed crank angle, which is called a “phase lock”. The 

shaft encoder shown in Figure 3a, was used to synchronise laser and camera to the required position of 

the lobe which was recorded by a Timer box. Once the lobe reached the required crank angle, the first 

laser pulse was emitted to light up the flow field. Then the camera takes the first picture. After a short 

interval of time of 2-50us which was dependent on the maximum velocity in the flow field, the second 

laser pulses, and the camera takes the second picture. This pair of pictures can be processed to 

calculate velocity of particles. Because the rotor has two symmetrical lobes, one completed circle 

including suction and discharge process takes up 180 °. The full cycle was divided into six steps with 
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intervals of 30 °. The crank angles of shooting position are 10, 40, 70, 100, 130 and 160° respectively. 

Figure 1 shows the rotor positions at the crank angle of 10 and 100 °.  The PIV results were processed 

using Dantec Dynamic studio by the adaptive PIV approach.  

4.  Results and discussion 

4.1  Grid independence 

Four cases with different grid density have been solved using Ansys CFX solver at the operation 

condition in Table 3. The cycle average mass balance between the rotor suction and discharge was 

achieved within 3% in all cases. Figure 4 shows the variation of the mass flowrate of the roots blower 

at various rotor grid refinements. The mass flow rate difference between the third level of the 

refinement and the fourth one is 4.0 %, which is far lower than the difference between the first level 

and second level. Therefore, the third level grids are regards as the enough fine grids. Because the 

interface between the two rotors in rotor to casing grids will influence the mass flow rate of the rotary 

machine [6], the casing to rotor grids which have the same divisions and nodes number with those of 

rotor to casing grids of Grid-3 were generated to be used in the simulation model whose results are 

selected for further analysis and compared with the experimental results. 

4.2  Pressure variation and Mass flow rate 

Figure 5 shows the static relative pressure variation in the working chamber formed by the female 

rotor and the casing. The reference pressure to compute this variation is 1bar. It is suction process 

when the crank angle moves from 0 to 180 °, and the discharge process corresponds to the 180 to 

360 °. The pressure begins to increase at 170 ° and reach to maximum value at 200 °. It is mainly 

because of the tip step on the lobe which makes the suction chamber to close earlier and opens later, 

and finally extends the compression process and reduces the leakage flow during the process. There 

are two similar periodic pressure fluctuations during this process, and the second one begins at 270°. 

During every pressure fluctuation process, the pressure fluctuates sharply at the beginning and damps 

at the end, which has the inverse relation with the outlet mass flow rate shown in Figure 6. When the 

mass flow rate increases, the pressure decreases. If the crank angle reaches 270 °, the working 

chamber formed by the male rotor and the casing connects with the discharge chamber, so the outlet 

mass flow rate falls as shown in Figure 6, and the pressure in the female chamber increases, which 

leads to the second periodic pressure fluctuation. 

  
Figure 4. Grid independence analysis of a Roots 

blower rotor computational domain. 

Figure 5. Pressure variation in working chamber. 

The mass flow rate through the inlet and outlet surface were calculated and shown in Figure 6. The 

pink dash dot line represents the zero-mass flow rate line, and the lines below this line indicate that the 

fluid flows back. The blue dot line represents the mean value of the suction flow. The mean value of 

the inlet mass flow rate is 0.982g/s, which is 4.6% lower than the corresponding experimental value in 

Table 3. The reason for the deviation is caused by the measure error of orifice plate when it works 
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under low pressure difference. In Figure 6, the total cycle has four repeated suction and discharge 

process. Because this roots blower has two same rotors which have two symmetric lobes respectively, 

the suction or discharge chamber formed by male rotor is symmetrical with that formed by the female 

rotor and has a period of 180 °. Hence, four periodic suction and discharge process appear, which also 

results in the two cycles of discharge pressure as shown in Figure 5. When the female lobe is at its 

vertical position, the crank angle is 0 °, as shown in Figure 1. Both inlet and outlet mass flow rate 

fluctuate with the crank angle. The outlet mass flow rate has higher pulsations than the corresponding 

inlet value. The reverse flow often happens at the outlet surface if the mass flow rate is negative. The 

maximum backflow rate of 5.9 g/s occurs at 15° and195° when the closed working chamber formed 

with female rotor connects with the discharge chamber. At that moment, the high pressure working 

fluid flows back into the working chamber, and the pressure in the working chamber increases quickly 

to the discharge pressure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Inlet and outlet mass 

flow rate. 

4.3  Comparison between the experimental and simulation results 

Figure 7 shows the original figures from the standard PIV test at the shooting position of 10 ° and 

100 °. The tracked particles can be distinguished easily in both pictures. At the crank angle of 10 °, the 

windows show the front of the lobe which has just closed the suction. At the crank angle of 100°, the 

window shows the area behind the lobe connected to the suction chamber. Two shadows caused by the 

bolts installed in the window (marked as 1 and 2) are visible in the frames, one at the top left of the 

window and another on the right side of the window which reduce the visible flow field. 

 

Figure 7. Original pictures of tracer particles at crank angle positions 10o and 100o. 
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The simulation and experimental results are compared in Figure 8. The velocity fields at three 

positions are displayed and compared. The colour bars of experimental and CFD results show the 

velocity magnitude in the plane of the laser sheet. The experimental results include the transient 

velocity flow field and average values obtained by averaging the transient velocity vectors from all 

120 measured cycles. The simulation results are obtained from the results of next rotation cycle after 

the simulation was converged. The velocity vectors were calculated in the laser sheet plane. The black 

frame superimposed on the CFD results represents the border of visible area of the PIV pictures, so 

that the flow field in the frame can be compared with the measured velocity field. Comparing the 

simulation velocity field with the averaged PIV results, the fluid mainly flows downward at 10°; at 

100°, the fluid in the two images flows from the bottom to the top and then is divided into two regions 

of flow movement. At 130°, most of fluid in the black frame moves towards the casing side. Hence, 

the simulation velocity fields have the similar flow features with the averaged PIV results. However, 

there are still obvious difference between the simulation and experimental average results. Firstly, the 

velocity magnitude of the simulation is larger than the experimental values. Also, the simulation 

velocity flow fields are more turbulent than the averaged PIV values which do not have the flow 

pattern in the same area A and C of the corresponding simulation images. In the simulation results of 

100 °, the back flow in area B is caused by the tip leakage flow whose velocity decreases along the 

casing wall. The back flow and the main flow mixes and forms a low-velocity stripe, as shown in area 

A. The low-velocity area C results from the same reason. The experimental results do not show the 

same flow pattern, which implies that the simulation tip leakage flow may be overestimated. 

 

Figure 8. Comparison between the PIV results and CFD results at various crank angle positions. 

The experimental transient velocity fields are also shown in Figure 8. The maximum velocity 

magnitude of the transient flow is close to that of the simulation velocity. And the main flow patterns 
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in transient flow field are more similar to simulation flow field. But the transient flow field has more 

turbulence characteristics such as the vortex in areas D and E. Hence, the simulation results show the 

correct main flow features in the working chamber, but they have differences in the velocity 

magnitude and vortex distribution. 

Usually, it is difficult to compare the transient PIV results with the URANS (Unsteady Reynolds-

averaged Navier–Stokes) simulation results because the simulation model calculates the time-average 

velocity and adopts the Reynolds stress transport equations to impose the influence of turbulence on 

the time-average velocity. Some researchers use the simulation results of LES (Large Eddy Simulation) 

to compare with the transient PIV results [16, 17]. There is an indication that the simulation results 

agreed well with simulation results.  

Many researchers compared the RANS or URANS simulation results with the time-average PIV 

results. Mortensen et al. [18] compared the simulation results of a rotor stator mixer from k-e, SST k-

w and RSM (Reynolds stress model) with the time-average PIV results and found that simulation 

results over-predicted the dissipation rate of the TKE (turbulent kinetic energy) and indicated that the 

realizable k-e model was better than the other two turbulence models. Zou et al. (2016) used the 

standard k-e model to simulate the two-phase flow in a pump mixer and compared the simulation 

results with the PIV results, the deviation velocity error changes from 16.5% to 33%. Ryan et al. [19] 

adopted the SST-SAS (Scale adaptive simulation) turbulence model in the simulation of a sonolator 

liquid whistle and compared the simulation results with PIV time-averaged results. The simulation 

velocity agreed well with the experimental one, but the turbulence parameters matched with the 

experimental one poorly. Kurec et al. [20] had done simulation with standard k-w, SST k-w and SST-

SAS turbulence model in a pressure exchange passage and validated the simulated results with PIV 

results. The comparison showed that the SST-SAS model can provide best prediction of the three 

turbulence models, but the simulation results are more turbulent than the PIV time-average results. 

Both Ryan et al. [19] and Kurec et al. [20] hinted that the CFD results needed to be averaged with 

different cycles because the PIV time-average results almost removed most of the turbulence features 

of the transient flow. Therefore, for our simulation, the CFD time-average results of several cycles will 

be firstly done to check if the simulation results can be improved, and then the SST-SAS model will 

be used in our simulation. LES simulation will be the last one because it requires a large amount of 

computational resources. 

4.4  Analysis of the main velocity field 

The experimental results can only capture a part of the domain while the simulation model can provide 

the whole 3D flow fields which can help to investigate the physical nature of the internal flow in a 

Roots blower. Figure 9 shows the whole simulation flow fields at two different axial planes. The flow 

fields in the left column are on the laser plane as shown in Figure 3. The crank angles are 10 ° and 

100 ° which are same with the first two angles in Figure 8, so the downstream and upstream of the 

partial velocity fields in Figure 8 can be obtained. The velocity field in the right column are on the 

central plane which locates at the centre between the two side walls. Figure 10 displays the velocity 

flow fields in the cross sections along the axial direction. The cross section (a), is located in the mid-

point between the centres of two rotors when the crank angle is 10 °; and the cross-section (B) which 

is also marked in Figure 9 is located at the one third of radius of the female lobe when the crank angle 

is 100 °. In addition, the axial positions of the central plane and the laser plane are shown in both cross 

sections of Figure 10. From Figure 9, the velocity direction in area A and C on the laser plane are 

opposite to that on the central plane. The reason is that the velocity field is three dimensional.  

In Figure 10, two vortices with opposite sense of rotation exist on both cross sections. The vortices 

lead to the downward flow at the centre and upward flow near the sidewall, so the fluid at area A and 

C in the laser plane flows upward. The formation of the two vortices shown in Figure 10 is due to the 

side leakage through the axial clearance where the leakage velocity is very high, such as the area J. In 

the Figure 10a, the vortex L is bigger than the vortex K. The asymmetrical vortex distribution is 

mainly caused by the interlobe leakage flow. Most of the interlobe leakage flows right and makes the 

vortex L bigger than vortex K. But the reason why the interlobe leakage flows right under the 
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symmetrical axial boundary condition is not clear. The unsteady simulation may contribute to this 

phenomenon.  

Hence, the velocity field in roots blower is highly turbulent three-dimensional flow. The axial 

leakage clearance should not be neglected, or else the velocity field on the laser plane in Figure 8 will 

certainly  

have big deviations with the PIV test results. Furthermore, the axial grids should be refined to improve 

the accuracy of simulation results. and the laser plane can move along the axis and measure the flow 

field at several planes including the central plane to validate the three-dimensional flow field. The 

situation is the same at the area B in Figure 9 where the fluid flows downward, but the fluid in central 

plane at the same area flows toward to the lobe. Apparently, there is one source D which results in the 

upward flow which influence the velocity direction at the area B of central plane. It is also caused by 

the three-dimensional flow. 

 

Figure 9. Simulation velocity fields at two different axial planes. 

 

Figure 10. Simulation velocity field on the cross sections a and b as indicated in Figure 9. 
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The tip and interlobe leakages have different influence on the flow field as shown in Figure 9. The 

tip leakage has important influence on the downstream flow field of laser plane where it causes the 

low-velocity stripe while it has slight influence on the flow filed of central plane. It is because the 

main flow velocity on the central plane is bigger than that on the laser plane.  

The maximum velocity in tip gap E is about 50m/s while the maximum velocity in the lobe gap F is 

80m/s, which means the leakage flow rate through the lobe gap is far higher than that through the tip 

leakage. The interlobe leakage obviously influences the main flow pattern, as shown in Figure10a. In 

the laser plane, the interlobe leakage velocities have the same direction as the main flow, so it 

reinforces and accelerates the main flow such as the flow field G. However, in the central plane, the 

interlobe leakage flow velocities have the opposite direction with the main flow, so their influences are 

supressed. The leakage flow velocities reverses and the vortices H and I generate on the central plane.  

5.  Conclusions 

The three-dimensional CFD transient simulation model of a Roots blower was established to obtain 

the internal flow field. The standard PIV test was conducted on the optical roots blower with 

transparent windows to validate the simulation model. The outlet mass flow has higher pulsations than 

the inlet mass flow. The maximum back flow happens when the working chamber connects to the 

outlet. The simulation velocity fields have similar features to the experimental results and show the 

correct main flow direction in the working chamber, but they show differences in the velocity 

magnitude and vortex distribution. Two asymmetric vortices exist on the cross section which leads the 

downward flow on the central plane and upward flow on the laser plane. The side leakage flow 

through the axial clearance has an important effect on the formation of the two vortices while the 

interlobe leakage makes the two vortexes asymmetrical. Therefore, the flow field in roots blower is 

highly turbulent and three dimensional. The axial clearance should not be neglected, and the axial 

grids should be refined, in order to ensure the correctness of the simulation model. The interlobe 

leakage is larger than the tip leakage and affects the flow field significantly. It reinforces the main 

velocity field of the side flow (laser plane) and suppresses the flow in the central plane. 

The future work will be conducted both on the improvement of the simulation model and the PIV test. 

The SST-SAS model will be used in simulation to improve the accuracy further. And the LES 

simulation will be considered at last. For the PIV test, the laser plane will be moved within the 

available domain to validate the prediction of the simulation model. And the microscope lens will be 

used to investigate the leakage flow. The operation speed and the pressure ratio will increase gradually, 

according to the quality of test results. The final objective of this research is to improve the 3D CFD 

analysis of leakage flows and ultimately lead to the improvement in the performance of rotary positive 

displacement machines. 

References 

[1] Stošić N, Smith I K and Kovačević A 2005 Screw Compressors: Mathematical Modelling and 

Performance Calculation (Berlin: Springer-Verlag) 

[2] Kovacevic A 2005 Boundary adaptation in grid generation for CFD analysis of screw 

compressors International Journal for Numerical Methods in Engineering 64 401-26 

[3] Kovačević A, Stošić N and Smith I K 2007 Screw compressors - Three-dimensional 

computational fluid dynamics and solid fluid interaction (Berlin: Springer-Verlag) 

[4] Rane S 2015 Grid Generation and CFD analysis of variable Geometry Screw Machines. 

(London: City, University of London) 

[5] Rane S and Kovacevic A 2017 Algebraic generation of single domain computational grid for 

twin screw machines. Part I. Implementation Advances in Engineering Software 107 38-50 

[6] Kovacevic A and Rane S 2017 Algebraic generation of single domain computational grid for 

twin screw machines Part II – Validation Advances in Engineering Software 109 31-43 

[7] Sachs R 2002 Experimental investigation of Gas flows in screw machines In: Faculty of 

Mechanical Engineering (Dortmund: University of Dortmund) 



12

1234567890‘’“”

International Conference on Screw Machines 2018 IOP Publishing

IOP Conf. Series: Materials Science and Engineering 425 (2018) 012024 doi:10.1088/1757-899X/425/1/012024

 
 
 
 
 
 

[8] Guerrato D, Nouri J M, Stosic N, Constantine A and Smith I K 2007 Flow measurements in the 

discharge port of a screw compressor Proceedings of the Institution of Mechanical Engineers, 

Part E: Journal of Process Mechanical Engineering 222 201-10 

[9] Kovacevic A, Arjeneh M, Rane S, Stosic N and Gavaises M 2014 Flow Visualization at Suction 

of a Twin Screw Compressor. In: International Screw Compressor Conference 2014, 

(Dortmund: VDI Verlag Gmbh) 

[10] Liu X M, Lu J, Gao R H and Xi G 2013 Numerical Investigation of the Aerodynamic 

Performance Affected by Spiral Inlet and Outlet in a Positive Displacement Blower Chinese 

Journal of Mechanical Engineering 26 957-66 

[11] Liu X M and Lu J 2014 Unsteady Flow Simulations in a Three-lobe Positive Displacement 

Blower Chinese Journal of Mechanical Engineering 27 575-83 

[12] Sun S K, Zhao B, Jia X H and Peng X Y 2017 Three-dimensional numerical simulation and 

experimental validation of flows in working chambers and inlet/outlet pockets of Roots pump 

Vacuum 137 195-204 

[13] Sun S K, Jia X H, Xing L F and Peng X Y 2018 Numerical study and experimental validation of 

a Roots blower with backflow design Engineering Applications of Computational Fluid 

Mechanics 12 282-92 

[14] Ashish M. Joshi, David I. Blekhman, James D. Felske, John A. Lordi and C.Mollendorf J 2006 

Clearance Analysis and Leakage Flow CFD Model of a Two-LobeMulti-Recompression Heater 

International Journal of Rotating Machinery 2006 1-10 

[15] Sun S H, Kovacevic A, Bruecker C, Leto A, Ghavami G, Rane S and Singh G 2018 

Experimental Investigation of the Transient Flow in Roots Blower. In: 24th International 

Compressor Engineering Conference, (Chicago: Purdue university) 

[16] Ji B, Luo X W, Arndt R E A, Peng X and Wu Y 2015 Large Eddy Simulation and theoretical 

investigations of the transient cavitating vortical flow structure around a NACA66 hydrofoil 

International Journal of Multiphase Flow 68 121-34 

[17] Liu M, Gao Z, Yu Y, Li Z, Han J, Cai Z and Huang X 2018 PIV experiment and large eddy 

simulation of turbulence characteristics in a confined impinging jet reactor Chinese Journal of 

Chemical Engineering  

[18] Mortensen H H, Arlov D, Innings F and Håkansson A 2018 A validation of commonly used 

CFD methods applied to rotor stator mixers using PIV measurements of fluid velocity and 

turbulence Chemical Engineering Science 177 340-53 

[19] Ryan D J, Simmons M J H and Baker M R 2017 Determination of the flow field inside a 

Sonolator liquid whistle using PIV and CFD Chemical Engineering Science 163 123-36 

[20] Kurec K, Piechna J and Gumowski K 2017 Investigations on unsteady flow within a stationary 

passage of a pressure wave exchanger, by means of PIV measurements and CFD calculations 

Appl. Therm. Eng. 112 610-20 

Acknowledgement 

The author would like to thank Howden Compressors for allowing authors to use and modify one of 

the Howden Roots Blowers in this experiment. 

The authors gratefully acknowledge financial support from China Scholarship Council (CSC) to allow 

the researcher from China to perform this work at City, University of London. 

Authors are thankful to Mr Robert Jaryczewski and Dr Ivan Zadrazil from Dantec for help in setting 

and demonstrating their equipment used for the part of this work. 


