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ABSTRACT

Beat induction, the means by which humans listen to mu-
sic and perceive a steady pulse, is achieved via a perceptual
and cognitive process. Computationally modelling this
phenomenon is an open problem, especially when process-
ing expressive shaping of the music such as tempo change.
To meet this challenge we propose Adaptive Frequency
Neural Networks (AFNNs), an extension of Gradient Fre-
quency Neural Networks (GFNNs).

GFNNs are based on neurodynamic models and have
been applied successfully to a range of difficult music
perception problems including those with syncopated and
polyrhythmic stimuli. AFNNs extend GFNNs by applying
a Hebbian learning rule to the oscillator frequencies. Thus
the frequencies in an AFNN adapt to the stimulus through
an attraction to local areas of resonance, and allow for a
great dimensionality reduction in the network.

Where previous work with GFNNs has focused on fre-
quency and amplitude responses, we also consider phase
information as critical for pulse perception. Evaluating
the time-based output, we find significantly improved re-
sponses of AFNNs compared to GFNNs to stimuli with
both steady and varying pulse frequencies. This leads us to
believe that AFNNs could replace the linear filtering meth-
ods commonly used in beat tracking and tempo estimation
systems, and lead to more accurate methods.

1. INTRODUCTION

Automatically processing an audio signal to determine
pulse event onset times (beat tracking) is a mature field,
but it is by no means a solved problem. Analysis of beat
tracking failures has shown that beat trackers have great
problems with varying tempo and expressive timing [5, 6].

The neuro-cognitive model of nonlinear resonance
models the way the nervous system resonates to audi-
tory rhythms by representing a population of neurons as a
canonical nonlinear oscillator [15]. A Gradient Frequency
Neural Network (GFNN) is an oscillating neural network
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model based on nonlinear resonance. The network con-
sists of a number of canonical oscillators distributed across
a frequency range. The term ‘gradient’ is used to refer
to this frequency distribution, and should not be confused
with derivative-based learning methods in Machine Learn-
ing. GFNNs have been shown to predict beat induction
behaviour from humans [16,17]. The resonant response of
the network adds rhythm-harmonic frequency information
to the signal, and the GFNN’s entrainment properties allow
each oscillator to phase shift, resulting in deviations from
their natural frequencies. This makes GFNNs good candi-
dates for modelling the perception of temporal dynamics
in music.

Previous work on utilising GFNNs in an MIR context
has shown promising results for computationally difficult
rhythms such as syncopated rhythms where the pulse fre-
quency may be completely absent from the signal’s spec-
trum [17, 23], and polyrhythms where there is more than
one pulse candidate [2]. However, these studies have
placed a focus on the frequencies contained in the GFNN’s
output, often reporting the results in the form of a magni-
tude spectrum, and thus omitting phase information. We
believe that when dealing with pulse and metre perception,
phase is an integral part as it constitutes the difference be-
tween entraining to on-beats, off-beats, or something in-
between. In the literature, the evaluation of GFNNs’ pulse
finding predictions in terms of phase has, to our knowl-
edge, never been attempted.

Our previous work has used GFNNs as part of a ma-
chine learning signal processing chain to perform rhythm
and melody prediction. An expressive rhythm prediction
experiment showed comparable accuracy to the state-of-
the-art beat trackers. However, we also found that GFNNs
can sometimes become noisy, especially when the pulse
frequency fluctuates [12, 13].

This paper presents a novel variation on the GFNN,
which we have named an Adaptive Frequency Neural Net-
work (AFNN). In an AFNN, an additional Hebbian learn-
ing rule is applied to the oscillator frequencies in the net-
work. Hebbian learning is a correlation-based learning ob-
served in neural networks [9]. The frequencies adapt to
the stimulus through an attraction to local areas of reso-
nance. A secondary elasticity rule attracts the oscillator
frequencies back to their original values. These two new
interacting adaptive rules allow for a great reduction in the
density of the network, minimising interference whilst also
maintaining a frequency spread across the gradient.
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The results of an experiment with a GFNNs and AFNNs
are also presented, partially reproducing the results from
Velasco and Large’s last major MIR application of a
GFNN [23], and Large et al.’s more recent neuroscientific
contribution [17]. However, we place greater evaluation
focus on phase accuracy. We have found that AFNNs can
produce a better response to stimuli with both steady and
varying pulses.

The structure of this paper is as follows: Section 2
provides a brief overview of the beat-tracking literature
and the GFNN model, Section 3 introduces a phase based
evaluation method, Section 4 introduces our new AFNN
model, Section 5 details the experiments we have con-
ducted and shares the results, and finally Section 6 pro-
vides some conclusions and points to future work.

2. BACKGROUND

2.1 Pulse and Metre

Lerdahl and Jackendoff’s Generative Theory of Tonal Mu-
sic [19] was one of the first formal theories to put forward
the notion of hierarchical structures in music which are not
present in the music itself, but perceived and constructed
by the listener. One such hierarchy is metrical structure,
which are layers of beats existing in a hierarchically lay-
ered relationship with the rhythm. Each metrical level is
associated with its own period, which divides the previous
level’s period into a certain number of parts.

Humans often choose a common, comfortable metrical
level to tap along to, which is known as a preference rule
in the theory. This common metrical level is commonly re-
ferred to as ‘the beat’, but this is a problematic term since
a beat can also refer to a singular rhythmic event or a met-
rically inferred event. To avoid that ambiguity, we use the
term ‘pulse’ [4].

2.2 Beat Tracking

Discovering the pulse within audio or symbolic data is
known as beat tracking and has a long history of research
dating back to 1990 [1]. There have been many varied ap-
proaches to beat tracking over the years, and here we focus
on systems relevant to the proposed model. Some early
work by Large used a single nonlinear oscillator to track
beats in performed piano music [14]. Scheirer used linear
comb filters [22], which operate on similar principles to
Large and Kolen’s early work on nonlinear resonance [18].
A comb filter’s state is able to represent the rhythmic con-
tent directly, and can track tempo changes by only consid-
ering one metrical level. Klapuri et al.’s system builds on
Scheirer’s design by also using comb filters, and extends
the model to three metrical levels [10]. More recently,
Böck et al. [3] used resonating feed backward comb filters
with a particular type of Recurrent Neural Network called
a Long Short-Term Memory Network (LSTM) to achieve a
state-of-the-art beat tracking result in the MIR Evaluation
eXchange (MIREX) 1 .

1 http://www.music-ir.org/mirex/

2.3 Nonlinear Resonance
Jones [7] proposed a psychological entrainment theory to
address how humans are able to attend temporal events.
Jones posited that rhythmic patterns such as music and
speech potentially entrain a hierarchy of oscillations, form-
ing an attentional rhythm. Thus, entrainment assumes an
organisational role for temporal patterns and offers a pre-
diction for future events, by extending the entrained period
into the future.

Large then extended this theory with the notion of non-
linear resonance [15]. Musical structures occur at simi-
lar time scales to fundamental modes of brain dynamics,
and cause the nervous system to resonate to the rhythmic
patterns. Certain aspects of this resonance process can
be described with the well-developed theories of neurody-
namics, such as oscillation patterns in neural populations.
Through the use of neurodynamics, Large moves between
physiological and psychological levels of modelling, and
directly links neural activity with music. Several musical
phenomena can all arise as patterns of nervous system acti-
vation, including perceptions of pitch and timbre, feelings
of stability and dissonance, and pulse and metre percep-
tion.

The model’s basis is the canonical model of Hopf nor-
mal form oscillators, which was derived as a model oscil-
lating neural populations [16]. Eqn (1) shows the differ-
ential equation that defines the canonical model, which is
a Hopf normal form oscillator with its higher order terms
fully expanded:

dz

dt
= z(α+ iω + (β1 + iδ1)|z|2 +

(β2 + iδ2)ε|z|4
1− ε|z|2 )

+ kP (ε, x(t))A(ε, z̄) +
∑

i 6=j

cij
zj

1−√εzj
.

1

1−√εz̄i
,

(1)

z is a complex valued output where the real and imaginary
parts represent excitation and inhibition, z̄ is its complex
conjugate, and ω is the driving frequency in radians per
second. α is a linear damping parameter, and β1, β2 are
amplitude compressing parameters, which increase stabil-
ity in the model. δ1, δ2 are frequency detuning parameters,
and ε controls the amount on nonlinearity in the system.
x(t) is a time-varying external stimulus, which is also cou-
pled nonlinearly and consists of passive part, P (ε, x(t)),
and an active part, A(ε, z̄), controlled by a coupling pa-
rameter k. cji is a complex number representing phase
and magnitude of a connection between the ith and jth

oscillator (zi, zj). These connections can be strengthened
through unsupervised Hebbian learning, or set to fixed val-
ues as in [23]. In our experiments presented here, we set
cij to 0.

By varying the oscillator parameters, a wide range of
behaviours not encountered in linear models can be in-
duced (see [15]). In general, while the cannonical model
maintains an oscillation according to its parameters, it en-
trains to and resonates with an external stimulus nonlin-
early. The α parameter acts as a bifurcation parameter:
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Figure 1. Amplitudes of oscillators over time. The dashed
line shows stimulus frequency. The stimulus itself is
shown in Figure 2. There is an accelerando after approxi-
mately 25s.

when α < 0 the model behaves as a damped oscillator, and
when α > 0 the model oscillates spontaneously, obeying a
limit-cycle. In this mode, the oscillator is able to maintain
a long temporal memory of previous stimulation.

Canonical oscillators will resonate to an external stim-
ulus that contains frequencies at integer ratio relationships
to its natural frequency. This is known as mode-locking,
an abstraction on phase-locking in which k cycles of os-
cillation are locked to m cycles of the stimulus. Phase-
locking occurs when k = m = 1, but in mode-locking
several harmonic ratios are common such as 2:1, 1:2, 3:1,
1:3, 3:2, and 2:3 and even higher order integer ratios are
possible [17], which all add harmonic frequency informa-
tion to a signal. This sets nonlinear resonance apart from
many linear filtering methods such as the resonating comb
filters used in [10] and Kalman filters [8].

2.4 Gradient Frequency Neural Networks
Connecting several canonical oscillators together with a
connection matrix forms a Gradient Frequency Neural
Network (GFNN) [16]. When the frequencies in a GFNN
are distributed within a rhythmic range and stimulated with
music, resonances can occur at integer ratios to the pulse.

Figure 1 shows the amplitude response of a GFNN to
a rhythmic stimulus over time. Darker areas represent
stronger resonances, indicating that that frequency is rel-
evant to the rhythm. A hierarchical structure can be seen
to emerge from around 8 seconds, in relation to the pulse
which is just below 2Hz in this example. At around 24
seconds, a tempo change occurs, which can be seen by the
changing resonances in the figure. These resonances can
be interpreted as a perception of the hierarchical metrical
structure.

Velasco and Large [23] connected two GFNNs together
in a pulse detection experiment for syncopated rhythms.
The two networks were modelling the sensory and motor
cortices of the brain respectively. In the first network, the
oscillators were set to a bifucation point between damped
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Figure 2. Weighted phase output, Φ, of the GFNN over
time. The stimulus is the same as Figure 1.

and spontaneous oscillation (α = 0, β1 = −1, β2 =
−0.25, δ1 = δ2 = 0 and ε = 1). The second net-
work was tuned to exhibit double limit cycle bifurcation
behaviour (α = 0.3, β1 = 1, β2 = −1, δ1 = δ2 = 0
and ε = 1), allowing for greater memory and threshold
properties. The first network was stimulated by a rhythmic
stimulus, and the second was driven by the first. Internal
connections were set to integer ratio relationships such as
1:3 and 1:2, these connections were fixed and assumed to
have been learned through a Hebbian process. The results
showed that the predictions of the model confirm observa-
tions in human performance, implying that the brain may
be adding frequency information to a signal to infer pulse
and metre [17].

3. PHASE BASED EVALUATION

Thus far in the literature, evaluation of GFNNs has not con-
sidered phase information. The phase of oscillations is an
important output of a GFNN; in relation to pulse it consti-
tutes the difference between predicting at the correct pulse
times, or in the worst-case predicting the off-beats. This
is concerning in Velasco and Large’s evaluation of pulse
detection in syncopated beats, which by definition contain
many off-beat events [23].

Phase and frequency are interlinked in that frequency
can be expressed as a rate of phase change and indeed the
canonical oscillators’ entrainment properties are brought
about by phase shifts. Since the state of a canonical oscil-
lator is represented by a complex number, both amplitude
and phase can be calculated instantaneously by taking the
magnitude (r = |z|), and angle (ϕ = arg(z)) respectively.
We propose calculating the weighted phase output, Φ, of
the GFNN as a whole, shown in (2).

Φ =

N∑

i=0

riϕi (2)

Figure 2 shows the weighted phase output, Φ, over time.
Even though the amplitude response to the same stimu-

62 Proceedings of the 17th ISMIR Conference, New York City, USA, August 7-11, 2016



0 5 10 15 20 25 30 35 40
Time (s)

0.50

1.00

2.00

4.00

8.00
O

sc
il

la
to

r 
n

a
tu

ra
l 

fr
e
q

u
e
n

cy
 (

H
z)

0.000

0.008

0.016

0.024

0.032

0.040

0.048

0.056

0.064

0.072

A
m

p
li

tu
d

e

Figure 3. A low density (4opo) GFNN output. The dashed
line shows stimulus frequency. Frequency information is
not being captured as successfully, as can be observed by
the low resonances.

lus shows a clear corresponding metrical hierarchy (see
Figure 1), the phase response remains noisy. This is due to
the high density of oscillators required in a GFNN. Velasco
and Large used 289 oscillators per layer in their experi-
ment, a density of 48 oscillators per octave (opo). These
high densities are often used in GFNNs to capture a wide
range of frequencies, but can cause interference in the net-
work. The term ‘interference’ is used here to mean in-
teracting signals amplifying or cancelling each other when
summed. Since each oscillator can only entrain to a narrow
range of frequencies, using a lower density not only in-
creases the likelihood missing a relevant frequency, it also
stops local frequency populations from reinforcing one an-
other. An example of this can be seen in Figure 3, where
frequency information is not being captured as success-
fully in a 4opo GFNN.

In our previous work, we have addressed this issue by
using only the real part of the oscillator as a single mean-
field output [11, 12]. This retained a meaningful represen-
tation of the oscillation, but ultimately removed important
information. A selective filter could also be applied, by
comparing each oscillator with the mean amplitude of the
GFNN, and only retaining resonating oscillators. However,
this is not an ideal solution to the interference problem as it
requires an additional, non real-time processing step which
cannot be easily incorporated into an online machine learn-
ing chain. Furthermore, new frequencies would not be
selected until they begin to resonate above the selection
threshold, meaning that new resonances in changing tem-
pos may be missed.

4. ADAPTIVE FREQUENCY NEURAL NETWORK

The Adaptive Frequency Neural Network (AFNN) at-
tempts to address both the interference within high density
GFNNs, and improve the GFNNs ability to track changing
frequencies, by introducing a Hebbian learning rule on the
frequencies in the network. This rule is an adapted form of
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Figure 4. AFNN frequencies adapting to a sinusoidal stim-
ulus. The dashed line shows stimulus frequency.

the general model introduced by Righetti et al. [21] shown
in (3):

dω

dt
= − ε

r
x(t)sin(ϕ) (3)

Their method depends on an external driving stimulus
(x(t)) and the state of the oscillator (r, ϕ), driving the fre-
quency (ω) toward the frequency of the stimulus. The fre-
quency adaptation happens on a slower time scale than the
rest of the system, and is influenced by the choice of ε,
which can be thought of as a force scaling parameter. ε
also scales with r, meaning that higher amplitudes are af-
fected less by the rule.

This method differs from other adaptive models such
as McAuley’s phase-resetting model [20] by maintaining a
biological plausibility ascribed to Hebbian learning [9]. It
is also a general method that has been proven to be valid for
limit cycles of any form and in any dimension, including
the Hopf oscillators which form the basis of GFNNs (see
[21]).

We have adapted this rule to also include a linear elas-
ticity, shown in (4).

dω

dt
= −εf

r
x(t)sin(ϕ)− εh

r
(
ω − ω0

ω0
) (4)

The elastic force is an implementation of Hooke’s Law,
which describes a force that strengthens with displace-
ment. We have introduced this rule to ensure the AFNN
retains a spread of frequencies (and thus metrical struc-
ture) across the gradient. The force is relative to natural
frequency, and can be scaled through the εh parameter. By
balancing the adaptive (εf ) and elastic (εh) parameters, the
oscillator frequency is able to entrain to a greater range of
frequencies, whilst also returning to its natural frequency
(ω0) when the stimulus is removed. Figure 4 shows the fre-
quencies adapting over time in the AFNN under sinusoidal
input.

The AFNN preserves the architecture of the GFNN;
the main difference is the frequency learning procedure.
Figure 5 shows the weighted phase output (Φ) of an AFNN
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Figure 5. Weighted phase output, Φ, of the AFNN over
time. Reduced interference can be seen compared with
Figure 2.

stimulated with the same stimulus as in Figure 2. One can
observe that a reduced level of interference is apparent.

5. EXPERIMENT

We have conducted a pulse detection experiment designed
to test two aspects of the AFNN.

Firstly, we wanted to discover how the output of the
AFNN compares with the GFNN presented in [23]. To
this end, we are using similar oscillator parameters (α =
0, β1 = β2 = −1, δ1 = δ2 = 0 and ε = 1). This is known
as the ‘critical’ parameter regime, poised between damped
and spontaneous oscillation. We are retaining their GFNN
density of 48opo, but reducing the number of octaves to
4 (0.5-8Hz, logarithmically distributed), rather than the 6
octaves (0.25-16Hz) used in [23]. This equates to 193 os-
cillators in total. This reduction did not affect our results
and is more in line with Large’s later GFNN ranges (see
[17]).

The AFNN uses the same oscillator parameters and dis-
tribution, but the density is reduced to 4opo, 16 oscillators
in total. εf and εh were hand-tuned to the values of 1.0 and
0.3 respectively. For comparison with the AFNN, a low
density GFNN is also included, with the same density as
the AFNN but no adaptive frequencies.

We have selected two of the same rhythms used by Ve-
lasco and Large for use in this experiment, the first is an
isochronous pulse and the second is the more difficult ‘son
clave’ rhythm. We supplemented these with rhythms from
the more recent Large et al. paper [17]. These rhythms are
in varying levels of complexity (1-4), varied by manipulat-
ing the number of events falling on on-beats and off-beats.
A level 1 rhythm contains one off-beat event, level 2 con-
tains two off-beat events and so forth. For further informa-
tion about these rhythms, see [17]. Two level 1 patterns,
two level 2 patterns, two level 3 patterns, and four level 4
patterns were used.

The second purpose of the experiment was to test
the AFNN and GFNN’s performance on dynamic pulses,

therefore we have included two additional stimulus
rhythms: an accelerando and a ritardando.

We are additionally testing these rhythms at 20 differ-
ent tempos selected randomly from a range 80-160bpm.
None of the networks tested had any internal connections
activated, fixed or otherwise (cij = 0). An experiment to
study of the effect of connections is left for future work.

In summary, the experiment consisted of 5 stimulus cat-
egories, 20 tempos per category and 3 networks. There
are two initial evaluations, one for comparison with previ-
ous work with GFNNs, and the second is testing dynamic
pulses with accelerando and ritardando. The experiment
used our own open-source PyGFNN python library, which
contains GFNN and AFNN implementations 2 .

5.1 Evaluation
As we have argued above (see Section 2.4), we believe that
when predicting pulse, phase is an important aspect to take
into account. Phase information in the time domain also
contains frequency information, as frequency equates the
rate of change in phase. Therefore our evaluation com-
pares the weighted phase output (Φ) with a ground truth
phase signal similar to an inverted beat-pointer model [24].
While a beat-pointer model linearly falls from 1 to 0 over
the duration of one beat, our inverted signal rises from 0 to
1 to represent phase growing from 0 to 2π in an oscillation.
The entrainment behaviour of the canonical oscillators will
cause phase shifts in the network, therefore the phase out-
put should align to the phase of the input.

To make a quantitative comparison we calculate the
Pearson product-moment correlation coefficient (PCC) of
the two signals. This gives a relative, linear, mean-free
measure of how close the target and output signals match.
A value of 1 represents a perfect correlation, whereas -1
indicates an anti-phase relationship. Since the AFNN and
GFNN operate on more than one metrical level, even a
small positive correlation would be indicative of a good
frequency and phase response, as some of the signal repre-
sents other metrical levels.

5.2 Results
Figure 6 shows the results for the pulse detection experi-
ment described above in the form of box plots.

We can observe from Figure 6a that the GFNN (A) is
effective for tracking isochronous rhythms. The resonance
has enough strength to dominate the interference from the
other oscillators. The low density GFNN (B) performs sig-
nificantly worse with little positive correlation and some
negative correlation, showing the importance of having a
dense GFNN. The outliers seen can be explained by the
randomised tempo; sometimes by chance the tempo falls
into an entrainment basin of one or more oscillators. De-
spite its low density, the AFNN (C) fairs as well as the
GFNN, showing a matching correlation to the target sig-
nal, especially in the upper quartile and maximum bounds.
Exploring more values for εf and εh may yield even better
results here.

2 https://github.com/andyr0id/PyGFNN
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Figure 6. Box and Whisker plots of the PCC results. A) GFNN, B) Low density GFNN, C) AFNN. Boxes represent the
first and third quartiles, the red band is the median, and whiskers represent maximum and minimum non-outliers. *Denotes
significance in a Wilcoxon signed rank test (p < 0.05).

In the son clave results (Figure 6b) all networks perform
poorly. A poorer result here was expected due to the diffi-
culty of this rhythm. However, we can see a significant im-
provement in the AFNN, which may be due to the reduced
interference in the network. In the Large et al. rhythms
(Figure 6c) we notice the same pattern.

We can see from the Accelerando and Ritardando
rhythms (Figure 6d and 6e) that Φ is poorly correlated, in-
dicating the affect of the interference from other oscilla-
tors in the system. The AFNNs response shows a signifi-
cant improvement, but still has low minimum values. This
may be due to the fact that the adaptive rule depends on
the amplitude of the oscillator, and therefore a frequency
change may not be picked up straight away. Changing the
oscillator model parameters to introduce more amplitude
damping may help here. Nevertheless the AFNN model
still performs significantly better than the GFNN, with a
much lower oscillator density.

6. CONCLUSIONS

In this paper we proposed a novel Adaptive Frequency
Neural Network model (AFNN) that extends GFNNs with
a Hebbian learning rule to the oscillator frequencies, at-
tracting them to local areas of resonance. Where previ-
ous work with GFNNs focused on frequency and ampli-
tude responses, we evaluated the outputs on their weighted
phase response, considering that phase information is crit-
ical for pulse detection tasks. We conducted an experi-
ment partially reproducing Velasco and Large’s [23] and
Large et al.’s [17] studies for comparison, adding two new

rhythm categories for dynamic pulses. When compared
with GFNNs, we showed an improved response by AFNNs
to rhythmic stimuli with both steady and varying pulse fre-
quencies.

AFNNs allow for a great reduction in the density of the
network, which can improve the way the model can be
used in tandem with other machine learning models, such
as neural networks or classifiers. Furthermore the system
functions fully online for use in real time. In future we
would like to explore this possibility by implementing a
complete beat-tracking system with an AFNN at its core.

We have a lot of exploration to do with regards to the
GFNN/AFNN parameters, including the testing values for
the adaptive frequency rule, oscillator models and inter-
nal connectivity. The outcome of this exploration may im-
prove the results presented here.

The mode-locking to high order integer ratios, nonlin-
ear response, and internal connectivity set GFNNs apart
from many linear filtering methods such as the resonating
comb filters and Kalman filters used in many signal pre-
diction tasks. Coupled with frequency adaptation we be-
lieve that that the AFNN model provides very interesting
prospects for applications in MIR and further afield. In
future we would like to explore this possibility by imple-
menting a complete beat-tracking system with an AFNN at
its core and perform an evaluation with more realistic MIR
datasets.
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