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Abstract 

This paper combines the Heterogeneous Autoregressive Realised Volatility (HAR-RV) model 
and the Markov Regime Switching (MRS) approach to estimate and forecast volatility of 
energy futures contracts traded at the Tokyo Commodity Exchange (TOCOM). The proposed 
MRS-HAR-RV model allows the dynamics of the realised volatility to change as market 
conditions change. The dataset consists of intraday prices for gasoline, kerosene and crude oil 
futures. Estimation results suggest MRS-HAR-RV model can capture dynamics of price 
volatility of energy futures better than alternative models. However, out-of-sample forecast 
evaluation results show that MRS-HAR-RV can only produce better forecasts for more liquid 
contracts. Moreover, MRS-HAR-RV model seems to less over-predict and more under-predict 
the volatility compared to HAR-RV, HAR-RV-CJ, GARCH, and MRS-GARCH models. 
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1 Introduction 

Modelling volatility of asset prices has always been a key issue in financial 

econometrics because accurate volatility estimates and forecasts are essential for risk 

management, derivatives pricing, trading strategies, as well as portfolio optimisation 

and asset allocation. Therefore, a large body of the literature in financial econometric 

is devoted to modelling price volatility and finding the most appropriate techniques to 

capture its dynamics to produce accurate estimated and forecast of price volatility.    

Volatility of commodity prices in general, and energy prices in particular, have been 

commonly characterised as autoregressive processes, thus the General Autoregressive 

Conditional Heteroscedasticity (GARCH) type models have been widely used to 

estimate and forecast price volatility of energy commodities (see for example, Sadorski, 

2006, Fan et al. 2008, Agnolucci, 2009, Wei et al., 2010, Klein and Walther, 2016, 

Herrera et al., 2018, amongst others). Although GARCH type models can capture the 

long memory of volatility of commodity and energy prices, the poor forecasting 

performance of GARCH models has been pointed out in several studies, including by 

Figlewski (1997), Poon and Granger (2003), Cabedo and Moya (2003) and Sadeghi and 

Shavvalpour (2006), amongst others. Consequently, researchers proposed and 

developed alternative models to capture the time-varying dynamics of volatility of 

energy and commodity prices, including Fractionally Integrated GARCH (FIGARCH), 

Heterogeneous Autoregressive Model of Realised Volatility (HAR-RV), and even the 

Heston model of stochastic volatility (e.g. Vo 2009). For instance, Wei et al. (2010), 

Liu and Wan (2012) and Wei (2012) provide evidence that autoregressive realised 

volatility models outperform GARCH models in forecasting volatility of energy prices.  

Increase in the availability of intraday and high frequency financial data has led to the 

development of a new concept for estimation of volatility, namely realised volatility 

(!"#). Realised volatility is defined and estimated as the sum of squared intraday price 

changes but does not directly take into account the long memory of volatility. To 

overcome this issue, Andersen, Bollerslev, Diebold, and Labys (2003) model the 

realized volatility using a fractionally integrated autoregressive process, while Corsi 

(2009) propose the Heterogeneous Autoregressive - Realised Volatility (HAR-RV) 

model to capture the long-memory property of realised volatility. The HAR-RV model 

can be considered as a three-factor stochastic volatility model where the factors are 

lagged one day, one week and one month realised volatilities. However, as noted in 
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many studies the dynamics and persistence of volatility may change over time as market 

and trading conditions change (e.g. Alizadeh et. al. 2008, and Lee and Yoder, 2007, and 

Nomikos and Pouliasis, 2011). Thus, simple HAR-RV models may not be able to 

capture the dynamics of volatility when there are changes in the state of the market or 

regime shifts. 

In the present study, we extend the simple HAR-RV approach to a Markov Regime 

Switching HAR-RV (MRS-HAR-RV) model to allow for a more flexible specification 

for dynamics of volatility under different market conditions. Using the MRS-HAR-RV 

model, we estimate the volatility of the energy futures contracts traded on Tokyo 

Commodity Exchange (TOCOM). Following the estimation of MRS-HAR-RV, we 

examine the accuracy of volatility forecasts produced by MRS-HAR-RV in comparison 

with alternative approaches, including simple and regime switching GARCH models, 

Corsi (2009) HAR-RV and HAR-RV-CJ models used by Sévi (2014).  

This paper contributes to the literature in several aspects. First, we model and forecast 

the realised volatility of TOCOM energy futures prices, where contracts with different 

maturities and high frequency data are considered. Second, we introduce and employ a 

Markov Regime Switching Heterogeneous Autoregressive Realised Volatility (MRS-

HAR-RV) model to investigate the dynamics of realised volatility under different 

regimes. Third, we assess and compare the dynamics of realised volatility across 

contract with different maturities and liquidity levels. Fourth, we document and 

compare the high- and low-volatility regimes of realised volatility of TOCOM energy 

futures based on the average level of realised volatility in each regime, as well as the 

persistence of volatility. Finally, we investigate the performance of the MRS-HAR-RV 

model in predicting volatility and Value at Risk measures against different RV models, 

GARCH models and Historical Simulation, using variety of metrics. The results 

suggest that the regime switching realised volatility approach can explain the dynamics 

of time-varying volatility of TOCOM energy futures prices better compared to 

alternative models in-sample. However, the out-of-sample prediction of price volatility 

is not significantly improved and while the MRS-HAR-RV model seem to reduce the 

over-prediction of volatility, under-prediction of volatility increases. 

The rest of this paper is structured as follows. Section 2 presents the earlier studies and 

recent literature on modelling and forecasting volatility of energy commodities. Section 

3 introduces the HAR-RV and MRS-HAR-RV models. Section 4 describes the 
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characteristics of the high frequency data and sampling scheme. The empirical results 

and forecast evaluations are presented in section 5 and the final section summarises the 

findings and concludes.  

 

2 Literature Review 

A number of studies in the literature suggest that high-frequency data are useful for 

estimating and predicting asset price volatility as intraday movements in prices are less 

subject to measurement error than price observations at a lower frequency (Andersen 

and Bollerslev, 1998). In this approach, an unbiased estimator of volatility, known as 

realised volatility (RV), can be arrived at using the squared values of intraday returns. 

For instance, daily realised volatility (RV#
(')) is defined as the sum of intraday squared 

returns (Andersen et al., 2001 and 2003), which has been argued to be a more efficient 

estimate of volatility than daily squared returns (McAleer and Medeiros, 2008). Under 

the assumption that returns are independent with a zero mean, RV is also an unbiased 

estimator of true variance. Barndorff-Nielsen and Shephard (2004), Andersen et al. 

(2007), and Barndorff-Nielsen and Shephard (2007) further argue the importance of 

accounting for jumps in the estimation of realised volatility. Andersen et al. (2006) and 

McAleer and Medeiros (2008) provide a thorough survey of studies on the estimation 

and application of realised volatility.  

The first study to employ a realised volatility approach to estimate the volatility of 

energy commodity prices (sweet crude oil) was by Martens and Zein (2004). This was 

followed by Wang et al. (2008), investigating volatility of NYMEX crude oil and 

natural gas futures prices using RV type models. They suggest that RV is an appropriate 

measure of volatility in both the crude oil and natural gas markets, as well as the realised 

correlation (RC) between the futures prices of the two commodities. They also point 

out that crude oil and natural gas price volatility measures can be characterized by 

slowly mean-reverting fractionally integrated processes with an estimated degree of 

integration between 0.25 and 0.45. Wei (2012) compares the accuracy of different 

volatility models, including six GARCH type models, ARFIMA-RV (Autoregressive 

Fractionally Integrated Moving Average Realised Volatility model) and Stochastic 

Volatility, in forecasting the volatility of fuel oil futures on the Shanghai Futures 

Exchange. 
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In a recent study, Sévi (2014) employs intraday data to forecast the volatility of WTI 

crude oil futures using different models based on the decomposition of realized variance 

into its positive or negative part (semivariances) and its continuous or discontinuous 

part (jumps). Considering eleven heterogenous autoregressive (HAR) models proposed 

in the literature (Andersen et al. 2007, Corsi, 2009, Chen and Ghysels, 2010, and Patton 

and Sheppard, 2015), Sévi (2014) reports that the model with independent squared jump 

has best in-sample forecast but does not significantly improve the out-of-sample 

forecast. Haugom et al. (2014) also analyse the realised volatility of WTI crude oil 

futures, using Corsi (2009) augmented HAR-RV model, which incorporates implied 

volatility (the CBOE Crude Oil Volatility Index) as well as other market variables, 

including trading volume, open interest, daily returns, bid-ask spread, and the slope of 

the forward curve. They report that incorporating implied volatility can significantly 

improve short term (daily and weekly) volatility forecasts, while including other market 

variables improves long term (monthly) volatility forecasts. Two other studies by Tseng 

et al. (2009) and Ma et al. (2017) employ the HAR Realised Range-Based Volatility 

(HAR-RRV) and its variations to model and forecast crude oil futures prices. Both 

studies report that HAR-RRV with inclusion of jump and sign components perform 

better than simple HAR-RV in predicting volatility of crude futures. Most recently, 

Lyócsa and Molnár (2018) compare the forecasting performance of various HAR-RV 

models and find combining the forecasts from different HAR-RV specifications can 

improve performance of forecasts.  

Another branch of literature focuses on changes in the dynamics of price volatility 

under different market conditions. The main approach proposed for taking into account 

market conditions when estimating the time-varying volatility of asset prices is the 

Markov Regime Switching (MRS) model proposed by Hamilton (1989). The MRS 

approach has been extended to GARCH models, namely MRS-GARCH, to incorporate 

the effect of regime changes on the dynamics of volatility in GARCH models under 

different regimes (market conditions). For example, Lee and Yoder (2007) apply the 

MRS-GARCH model to the corn and nickel futures markets and report higher, yet 

insignificant, variance reduction when compared to OLS and single regime GARCH 

hedging strategies; while Alizadeh, et al. (2008) analyse three sets of energy 

commodities data, crude oil, gasoline and heating oil, and also find that the use of a 

MRS-MGARCH model improves hedging performance. Nomikos and Pouliasis (2010) 

also use two-state regime switching GARCH specification to model and forecast 
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volatility of energy futures traded in NYMEX and ICE. They report that Mix-GARCH 

and MRS-GARCH models better capture the persistence of volatility in sample and 

produce better out-of-sample forecast compared to simple GARCH models. More 

recently, Herrera et al. (2018) report that regime switching GARCH models tend to 

produce better forecast for volatility of spot oil prices over long horizons compared to 

simple GARCH and Exponential GARCH models.   

More recently Lux et al. (2016) investigate the performance of Markov Switching 

Multifractal (MSM) model and different GARCH type models in forecasting oil price 

volatility. They also report that MSM as a regime switching model performs better than 

alternatives in predicting volatility and Value-at-Risk of oil price. Klein and Walters 

(2016) propose a Mixture Memory GARCH (MMGARCH) approach to model and 

forecast volatility of oil prices where two GARCH and FIGARCH specifications are 

combined probabilistically with a mixture proportion variable defined as a logistic 

function. The MMGARCH model allows the memory of the volatility process to change 

according to the value of the mixture proportion variable. Klein and Walters (2016) 

report evidence on superiority of MMGARCH model compared to other GARCH type 

models in forecasting oil price volatility.  

Given the importance of market conditions and the behaviour of price volatility, as well 

as the benefits of using high frequency intraday data in estimations of volatility, we 

propose a regime switching model which allows for changes in the dynamics of RV 

according to market conditions. In particular, we utilise the MRS-HAR-RV model to 

examine if the realised volatility of TOCOM energy futures is regime-dependent and 

to determine whether the MRS-HAR-RV model produces better forecasts and VaR 

estimates compared to single regime HAR-RV and HAR-RV models with jumps. 

 

3 Methodology 

In this section, we discuss set up of different model for estimation and forecasting of 

realised volatility of energy futures prices using high frequency intraday data, including 

Corsi (2009) HAR-RV, Anderson et al. (2007) RV with Jumps, and regime switching 

extension of HAR-RV. 



6 
 

3.1 Estimating Volatility with High-frequency Data 

We begin the discussion with a continuous-time Geometric Brownian Motion process 

dpt=μtdt+σtdwt ,    (1)       

where )# is the logarithm of the instantaneous price, *# is the time-varying drift term, 

+# is the diffusion parameter, also known as the instantaneous volatility of )#, and ,# 

is the standard Brownian Motion process. The integrated variance of the price can then 

be defined as the integral of instantaneous variance (+#-). For instance, the one-day 

integrated variance, our primary variable of interest, can be expressed as 

."#
(') = ∫ +1

-2,1
#

#34'
. (2)          

However, the integrated variance, defined by equation (2), is by nature a latent variable, 

so we need to find an observable variable in order to estimate volatility.  

With the availability of intraday data, the sum of intraday squared returns, known as 

realised variance, has been utilised as the most common approximation of integrated 

variance. Many studies, including Andersen et al. (2001a, 2001b, 2003) and Barndorff-

Nielsen and Shephard (2002a, 2002b), have shown that the realised variance converges 

to the integrated variance in probability. Hence, in this paper we follow the same 

approach in estimating realised variance. For instance, the realised variance for a one-

day window[6 − 12, 6], divided by M Δ-frequency intervals, is estimated by 

!"#
(') = ; <#3=×?

-

@34

=AB

 
                                      

 (3) 

Where !"#
(') is one-day realised variance,	∆= 12/F is the frequency of intervals, M 

is the number of intervals in one day, and <#3=×? is the intraday return at ∆-frequency 

interval. As mentioned earlier, the RV itself is extremely erratic and does not capture 

the long memory of the variance of financial assets. Therefore, different approaches 

have been proposed in the literature to modify the RV and capture the long memory of 

the process.  

3.2 The Heterogeneous Autoregressive Realised Volatility Model  
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Corsi (2009) proposes a HAR-RV approach to estimate the realised volatility, which 

can capture the long memory in volatility and can be simply estimated using OLS. The 

HAR-RV model is specified as an autoregressive process with lagged RV at different 

time horizons, namely one-day, one-week and one-month RV, as determinant of future 

RV, in the following form 

RVt+1d
(d) =JB+β

(d)RVt
(d)+β(w)RVt

(w)+β(m)RVt
(m)+εt+1d

(d) , 

O#P4'
(') ~R(0, Σ ), 

(4) 

where RVt+1d
(d)  is one-day ahead predicted realised volatility, and εt+1d

(d)  is the stochastic 

error term following a normal distribution with zero mean and constant variance, Σ.  

Daily realised volatility (!"#
(')) is calculated according to equation (3), whilst weekly 

and monthly realised volatility (RVt
(w) and RVt

(m)) are calculated as the average of the 

past daily realised volatility over a one week (5 days) and one month (22 days), 

respectively. However, our benchmark HAR-RV is slightly different from the Corsi 

(2009) in two aspects. First, following Sévi (2014), we do not let the realised volatilities 

over the three horizons to overlap. That is, weekly realised volatility is measured as the 

average of daily realised volatility between 6 − 1  and t−5 , and monthly realised 

volatility is measured as the average of daily realised volatility between 6 − 6 and 6 −

22, shown as in the equation (5).  

RVt
(w) =

1

5
;RVt-i

(d)
Z

[A4

									\]2											RVt
(m) =

1

17
;RVt-i

(d)
--

[A_

 
 

(5) 

Second, because our dataset is constructed as a continuous time series of energy futures 

prices by rolling the contract on the day before maturity and volatility of commodity 

futures price tends to increase as contract maturity approaches (Samuelson Effect), we 

include a dummy variable in the model which counts the days-to-rollover. Therefore, 

our final benchmark HAR-RV is specified as 

!"#P4'
(') = JB + J

(')!"#
(') + J(`)!"#

(`) + J(a)!"#
(a) + J(bcd)ef!# + O#P4'

(') , 

O#P4'
(') ~R(0, Σ ), 

(6) 
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where DTRt is the number of days to the rollover date at time t. Based on the Samuelson 

Hypothesis the volatility of futures contract tends to increase as rollover date 

approaches, thus  J(bcd) is expected to be negative and significant. 

3.3 The HAR-RV with Jumps 

Anderson et al. (2007) propose a version of HAR-RV model that conditions the RV on 

“continues RV” and “jump components”, known as HAR-RV-CJ, to model volatility 

of S&P 500, currencies and T-Bonds. Tseng et al. (2009) and Sévi (2014) also apply 

the HAR-RV-CJ to model oil price volatility. To estimate a HAR-RV-CJ, first the 

realised volatility must be decomposed into continuous and jump components. The 

continuous component can be estimated by means of the jump-robust realised volatility 

estimation using two main approaches; that is, bi-power variation (BPV) and median 

realised variance (MedRV). The BPV method, proposed by Barndorff-Nielsen and 

Shephard (2004), is computed as the sum of the product of two consecutive absolute 

returns in equation (7) 

ij"# =
k

2
;l<#3=×?ll<#3(=P4)×?l

@3-

=AB

 
(7) 

where M is the intraday sampling frequency. BPV can capture the continuous realised 

volatility when a jump and a non-jump return occur in two consecutive time intervals 

since the product of the two is reduced by the non-jump return. However, BPV has a 

major drawback because when consecutive jumps occur, BPV will be biased upward 

due to multiplication of two large returns. In the same way, a zero return causes the 

product of two adjacent intervals to be zero, which leads to a downward biased in BPV. 

To overcome this issue, Anderson et al. (2012) propose MedRV, which is a more 

appropriate method of estimating jump-robust realised volatility. MedRV is calculated 

by the sum of the square median absolute returns for three adjacent returns as follows  

Fm2!"# =
k

6 − 4√3 + k
(
F

F − 2
) ; qm2rl<#3(=34)×?l, l<#3=×?l, l<#3(=P4)×?ls

-
@3-

=A4

 
(8) 

According to equation (8), even if there are two large jump returns, MedRV returns the 

square of the lower jump return, which reduces the upward bias. In addition, MedRV 

is zero only when at least two of three adjacent returns are zero, so the downward bias 
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due to the occurrence of zero returns can be reduced. In this paper, we employ both 

techniques to measure the continuous components for the comparison reason.  

Once the realised volatility is decomposed into continuous and jump components, 

t#
(')and u#

(') , the full Heterogeneous Autoregressive Realized Volatility with Jumps 

(HAR-RV-CJ) model can be defined as 

!"#P4'
(') = JB + Jv

(')t#
(') + Jv

(`)t#
(`) + Jw

(a)t#
(a) + Jx

(')u#
(') 

+Jx
(`)u#

(`) + Jx
(a)u#

(a) + βst
(DTR)DTRt + O#P4'

(') . 

(9) 

where   t#
('), t#

(`), t#
(a), u#

('), u#
(`) and u#

(a) are daily, weekly and monthly continuous 

jump components of realised volatility respectively, and weekly and monthly 

components are estimated by similar technique used in equation (6). See appendix A 

for details of jump detection process and calculation of where   t#
(') and  u#

('). 

3.4 The Markov Regime Switching HAR-RV 

To allow the dynamics of realised volatility of TOCOM energy futures to change 

depending the state of the market, we extend the simple HAR-RV to a two-state Markov 

Regime Switching HAR-RV. The Markov Regime Switching models developed by 

Hamilton (1989) and extensively used in the literature to model financial and 

commodity prices and volatilities. The advantage of regime-switching volatility 

models, is that they allow for the persistence and dynamics of volatility to change 

according to the market conditions.1 Therefore, we define a MRS-HAR-RV model, in 

which the coefficient stating the persistence of realised volatility can be regime 

dependent as follows 

 

!"#P4'
(') = JB,1# + J1#

(')!"#
(') + J1#

(`)!"#
(`) + J1#

(a)!"#
(a) + βst

(DTR)DTRt + O#P4',1#
(') , 

O#P4',1#
(') ~R(0, z1#), 

(10) 

                                                

1 This is more important in the case of commodity and energy markets because it is argued that GARCH 
models induce a high degree of persistence in shocks that falsely implies high predictability but, in fact 
reflects regime shifts or structural breaks in the volatility process (Lamoureux and Lastrapes, 1990, and 
Nomikos and Pouliasis, 2011). This means that a regime-switching volatility model may be more suitable 
for modelling of energy commodities where there are structural breaks. 
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where st = {1,2} as we introduce a two-state MRS model, and all parameters (}1# , 

J1#
(') , J1#

(`) , J1#
(a)  and Σ1# ) are now state-dependent. The switching process between 

regimes depends on the conditional transition probability matrix 

~ = �
Pr	(Ç6# = 1|Ç6#34 = 1) = )44 Pr	(Ç6# = 1|Ç6#34 = 2) = )-4
Pr	(Ç6# = 2|Ç6#34 = 1) = )4- Pr	(Ç6# = 2|Ç6#34 = 2) = )--

Ñ =

�
1 − )4- )-4
)4- 1 − )-4

Ñ. 

(11) 

where )4- measures the probability of being in state one and switching to state 2 in the 

next period, while )-4 is the probability of being in state 2 and switching to state 1 in 

the next period. Based on the conditional transition probability we can calculate the 

unconditional regime probability as 

Pr(Ç6# = 1) = )4,# =
ÖÜá

ÖáÜPÖÜá
 ; 	Pr(Ç6# = 2) = )-,# =

ÖáÜ

ÖáÜPÖÜá
. (12) 

Moreover, we can specifically rewrite the MRS-HAR-RV from the equation (10) to the 

following 

!"#P4'
(') = )4,#rJB,4 + J4

(')!"#
(') + J4

(`)!"#
(`) + J4

(a)!"#
(a) + β1

(DTR)DTRt + O#P4',4
(') s + 

(1 − )4,#)(JB,- + J-
(')!"#

(') + J-
(`)!"#

(`) + J-
(a)!"#

(a) + β2
(bcd)DTRt + O#P4',-

(') ), 

O#P4',4
(') ~R(0, Σ4 ), O#P4',-

(') ~R(0, Σ- ).  

(13) 

Finally, assuming the state-dependent residuals follow a normal distribution, with mean 

zero and constant volatility,  Σ4  and Σ-  for the two states respectively, the likelihood 

function for the entire sample is formed as a mixture of the probability distribution of 

the state variable, where:  

à â!"#
('), äã =

)4,#

√2kΣ4
exp	(−

O#,4
(')-

2Σ4
- ) +

)-,#

√2kΣ-
exp	(−

O#,-
(')-

2Σ-
- ) 

(14) 

with the log-likelihood function as 

è(ä) = ∑ ëíìà â!"#
('), äãc

#A4 , (15) 

where ä is the vector of parameters to be estimated. The log-likelihood function è(ä) 

is maximised using the BFGS estimation method subject to the constraint that           
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)4,# + )-,# = 1 and 0 ≤ )4,#, )-,# ≤ 1. 

 

4 Description of Data 

There are six energy futures contracts listed in the Tokyo Commodity Exchange2, 

namely gasoline, kerosene, crude oil, gasoil, Chukyo-gasoline and Chukyo-kerosene. 

However, considering that the lack of liquidity for gasoil, Chukyo-gasoline and 

Chukyo-kerosene futures, we only use gasoline, kerosene and crude oil futures, which 

have been actively traded for relatively long period. Our dataset comprises of high-

frequency intraday futures price series from 22 September 2010 to 30 October 2015, 

obtained from Thomson Reuter Tick History. The beginning of sample is chosen to 

coincide with the extension of night session trading on 21 September 2010, which 

increased trading by five hours and was intended to attract more foreign trades. To 

evaluate the forecasting performance of different models, the sample is divided into 

model estimation and out-of-sample forecasting periods. The estimation period is from 

22 September 2010 to 22 October 2014 (about four years), while the last one year of 

the data (250 days) is reserved for out-of-sample forecasting from 23 October 2014 to 

30 October 2015. 

We consider contracts across maturity spectrum, namely 1- to 6-month ahead contracts 

for gasoline and kerosene futures and current-month to 5-month ahead contracts for 

crude oil futures 3 , to compare models and forecasting performances across all 

maturities. This is important because the pattern of trading activity with respect to 

contract maturity in TOCOM is surprisingly different from other energy and 

commodity futures exchanges (e.g. NYMEX and ICE) 4 . In fact, the most liquid 

contracts in TOCOM are the ones with the longest maturity (5 and 6-month) and trading 

                                                

2 TOCOM was established in 1984 when three exchanges, namely, Tokyo Textile Exchange, Tokyo 
Rubber Exchange and Tokyo Gold Exchange, merged and it is now the second Asian exchange trading 
energy futures after Singapore Exchange (SGX). 
 
3 The current-month crude oil futures contract is in fact the contract for settlement at the end of the current 
month. For example, on 10 March 2015, the current-month crude oil contract settles at end of March 
2015, so the maturity spans from 1 to 22 trading days. 
4 For instance, Alquist and Kilian (2010) study NYMEX crude oil futures contracts and show that trading 
volume declines as maturity increases and long-maturity contracts are less liquid than short-maturity 
contracts. 
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activity declines as maturity declines.   

The descriptive statistics of daily trading volume of futures contracts with different 

maturities presented in Panel A of Table 1.5 Clearly there is a positive relation between 

maturity and trading activity in TOCOM energy futures. This could be due to the 

unavailability of contracts with maturities beyond 6 months, which means that 

participants with longer-term trading and hedging objectives are restricted to use 

contracts with the longest maturity (6-months) and roll over their positions over time. 

This in turn, increases the trading activity in contracts with longer maturities compared 

to shorter ones.  

The descriptive statistics of returns on futures contracts are also reported in Table 1 

(Panel B). The standard deviation of returns on Gasoline and Kerosene contracts seem 

to increase with maturity but decline slightly in crude oil futures. The increase in 

unconditional volatility of Gasoline and Kerosene futures with maturity is also in 

contrast to what is observed in other energy futures markets. Estimated coefficients 

skewness of returns are mostly negative while coefficients of kurtosis are greater than 

3, indicating that returns are generally negatively skewed with extreme movements are 

ever present in the return series.  

4.1 Sampling scheme and preliminary analysis 

Before estimating the realised volatility models, we need to decide on sampling scheme 

and the optimal sampling frequency. For this purpose, we use calendar time sampling 

scheme as opposed to transaction (business) sampling because it is widely use in the 

literature dealing with high frequency data. Thus, we divide each trading day into M 

equally sized intervals by calendar time. Although a high frequency sampling is 

required for the estimate of RV to converge asymptotically to its true value, the choice 

of sampling is also dependent on the liquidity of the underlying asset and the trading 

activity within the interval chosen. In addition, Andersen and Bollerslev (1997 and 

1998) and Taylor and Xu (1997) also show that market microstructure may affect the 

RV at higher frequencies. Hence, in this paper we choose the 15-minute interval as the 

sampling frequency for two reasons. First, the signature plots (Figures 1 to 3) show that 

                                                

5 Trading volume in TOCOM energy futures is reported as number of contracts traded. For all the three 
commodities considered in this paper, each futures contract is for delivery/settlement of 50kl 
(approximately 13,210 US gallons or 314.5 barrels) of the underlying commodity. 
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the realised volatility of sampling frequency is quite unstable when the sampling 

frequency is lower than 15-minutes interval but stabilises afterward. Second, 

considering the relatively low liquidity of TOCOM energy futures, it is appropriate to 

lower the sampling frequency to include more transactions in the time interval. Liu et 

al. (2015) suggest that 15-minute to one-hour interval is more suitable for less liquid 

assets. Although the realised volatility using quote may be a solution to the low liquidity 

issue, Hansen and Lunde (2006) find that the realised volatility using mid-quote is very 

likely to underestimate the realised volatility due to the microstructure disturbance. 

Therefore, our high-frequency data is still sampled with the 15-minute interval.  

Figure 4 and 5 present the daily returns and annualised realised volatilities of gasoline, 

kerosene and crude oil futures for contracts longest maturity in our dataset; namely 6-

month for gasoline and kerosene, and 5-month for crude oil. It can be seen that 

fluctuations in returns changes over time in a form of clustering effect which point to 

the existence of severe heteroscedasticity as shown in Figure 5, where several 

noticeable spikes are also observed in realised volatility. The most distinct spike occurs 

on 6 May 2011 (from the night session on 5 May 2011), due to the intraday flash crash 

in the oil market, when the oil price dropped sharply by 10%. The other spike takes 

place on 7 May 2012, when the anti-austerity party won the legislative election in 

Greece. To take into account and control the effect of these two extreme events, we 

introduce two binary dummy variables in all models.  

Descriptive statistics of RV of futures contracts for different commodities and across 

maturities are presented in Table 2.  The level of autocorrelation of realised volatility 

and the significance of Ljung and Box (1978)’s Q statistics for the first 22 lags of the 

autocorrelation function indicate that realised volatility of all energy futures are highly 

auto-correlated, confirming the long-memory property of realised volatility. The 

estimated coefficients of skewness and kurtosis also indicate that realised volatility 

series are highly skewed and leptokurtic, while the ADF test results confirm that the 

realised volatilities are stationary.  

 

5 Empirical Results 

The estimation results of the proposed realised volatility models as well as the out-of-
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sample forecasts and evaluation metrics, are reported and discussed in the following 

subsections. The in-sample analysis is performed over the period of 22 September 2010 

to 22 October 2014 and the out-of-sample period is from 23 October 2014 to 30 October 

2015.6  

5.1 In-sample Analysis 

We start the in-sample analysis by estimating the benchmark HAR-RV model using the 

Ordinary Least Square (OLS) method for three TOCOM energy futures across six 

different maturities. Estimation results are reported in Table 3, 4 and 5 for Gasoline, 

Kerosene and Crude oil futures, respectively. Estimated coefficients of lagged one-day, 

one-week and one-month volatility (J4
('), J4

(`)	\]2	J4
(a))  in HAR-RV models are all 

significant suggesting high degree of persistence in realised volatility of all futures 

contracts and maturities. For most futures contracts, the impact of one-day and one-

month lagged realised volatility are greater than that of one-week when looking at the 

magnitude of the estimated coefficients. For example, for 5-month crude oil futures, the 

coefficients of one-day and one-month lagged realised volatility are 0.2608 and 0.1547, 

which are noticeably larger than that of the one-week one, 0.1114. In addition, 

estimated coefficients of days-to-rollover (J4
(bcd)) are not significant for gasoline and 

kerosene futures contracts, with the exceptions of 1-month futures. The coefficients of 

days-to-rollover for contracts with 1-month maturity are negative and significant, 

which is in line with the Samuelson Hypothesis. In the case of crude oil futures, the 

estimated coefficients of days-to-rollover are positive and significant, indicating that as 

the rollover date (or maturity) approaches realised volatility declines. Although this 

observation is not in line with the Samuelson effect, it is also observed by Chen et al. 

(1999) in Nikkei-225 index futures.  

Moving onto the result of MRS-HAR-RV reported in the right column of Table 3 to 5, 

it can be seen that significance of estimated coefficients in different confirm changes in 

the dynamics of the realised volatility of TOCOM energy futures under different 

regimes. In general, the coefficients of one-day lagged realised volatility are significant 

                                                

6 Due to space limitation, we only present and discuss the estimation results of HAR-RV and MRS-HAR-
RV models for the three commodities. The estimation results of HAR-RV-CJ models (MedRV and BPV) 
as well as GARCH and MRS-GARCH models are not presented here and available from authors on 
request.  
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in both regime 1 and 2, while the coefficients of one-week and one-month realised 

volatility are not always significant in regime 1. This implies that realised volatility is 

less persistent in regime 1 than in regime 2. Moreover, we can look at the conditional 

transition probability and unconditional regime probability to further identify the two 

regimes and their existence. First, based on the estimated conditional transition 

probabilities ()4- and )-4) reported in Table 3 to 5, it can be seen that the probability 

of switching from regime 1 to regime 2 ()4-) is generally higher than the probability of 

switching from regime 2 to regime 1 ( )-4). In other words, the probability of switching 

from a high volatility regime to a low volatility regime is higher than switching from 

low volatility regime to a high volatility regime. This indicates higher stability and 

persistence in the low volatility regime compared to the high volatility regime. In 

addition, Table 6 presents the number of days the probability of being a high volatility 

regime (when )4,# > 0.5), is significantly lower than number of days of being in a low 

volatility regime (when )-,# > 0.5), which is in line with the results of the condition 

transition probabilities ()4- and )-4).  

To further confirm the identity of regimes, we compare the average level of realised 

volatility when unconditional probability of being in regime 1 is greater than 0.5 ()4,# >

0.5 ) with that when unconditional probability of being in regime 2 ()4,# ≤ 0.5 ).  

According to results reported in Table 6, the average realised volatility in regime 1 

()4,# > 0.5) is twice that of realised volatility of regime 2 ()4,# ≤ 0.5), which is 

consistent with the previous conjecture. Therefore, based on the estimated transition 

probabilities and realised volatilities, we can characterise the TOCOM energy futures 

market into two distinct regimes of high- and low-volatility levels. 

Interestingly, the coefficients of days-to-rollover are also different under the two 

regimes, although their signs are mostly consistent with the results of a single regime. 

The magnitude of coefficients in high-volatility regimes is much higher than that in 

low-volatility regimes, which may be due to sharp price changes and steeper forward 

curve when the market is under the high-volatility regime. Finally, it can be observed 

that that in general MRS-HAR-RV models have a higher adjusted R-squared and SBIC 

than HAR-RV models, which suggests that MRS-HAR-RV can capture and explain the 

dynamic of realised volatility better than HAR-RV for all three energy futures.  

To assess the relation between market micro-structure and regime-switching volatility, 
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we explore the role of transactions initiated by buy and sell orders. Using the intraday 

data over the sample period, we sorted the transactions on each day into buy and sell 

initiated transactions7. We then defined the absolute difference between the number of 

transactions initiated by buy orders and number of transactions initiated by sell orders 

as “order-trade imbalance” (OTI). For instance, if in one day there are 50 transactions 

in total, where 30 of them have been initiated by buy orders and 20 have been initiated 

by a sell order, then OTI will be 10. The difference in sell or buy initiated transactions 

can be viewed as measure of buy or sell pressure in the market. Therefore, a relatively 

high OTI in a particular day leads to greater price movements and consequently higher 

volatility compared to a day when the OTI is relatively low8. Table 6 reports the average 

OTI in regime 1 and 2 for each commodity and maturity. It can be seen that higher 

average OTI is associated with high volatility regime and low average OTI is associated 

with low volatility regime. 

5.2 Out-of-sample Forecast Evaluation 

Although it is shown that MRS-HAR-RV captures changes in price volatility of the 

energy futures better than simple HAR-RV and HAR-RV-CJ in the in-sample, it is 

necessary to evaluate the performance of the models out-of-sample using different 

forecast evaluation metrics. Out-of-sample forecasts for all models are produced using 

recursive estimation approach where estimation period is extended after every forecast. 

Following the literature on comparison of volatility forecast, we use different loss 

functions that measure the difference between realised volatility and the forecast values 

of volatility. These include QLike, Mean Absolute Error (MAE), Mixed Mean Error 

for over-prediction (MMEO) and Mixed Mean Error for under-prediction (MMEU). 

The loss function used widely in most studies is the QLike statistic which is defined as 

è(ℎ#, !"#) = ëíì(ℎ#) +
dòô
öô

, (16) 

where ℎ# is the forecasting value, and !"#  is the realised variance at time	6. Patton 

(2011) proves that QLike loss function is robust even if realised volatility is an 

                                                

7 A sell-initiated transaction is identified as a transaction where the sell quote is closer to the transaction 
price, while a buy-initiated transaction is identified as a transaction where the buy quote is closer to the 
transaction price. 
8 This is in line with theoretical microstructure models and studies such as Kyle (1985), Admati and 
Pfleiderer (1988) and Huang and Stoll (1997) who suggest that net order flow causes the price movement.   
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imperfect proxy for true volatility. Similarly, MAE, MMO and MMEU are defined as  
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where U is an indicator for under-prediction (!"# − ℎ# < 0) of realised variance, O 

is an indicator for overprediction (!"# − ℎ# > 0) of realised volatility variance, and 

M is the number of forecast points. According to the specification of the loss functions, 

it is obvious that MAE is a symmetric loss function, while MMEO more penalises over-

prediction and MMEU more penalises under-prediction. Furthermore, the Diebold and 

Mariano (1995) test is used to statistically compare the forecast accuracy of different 

models. To implement the DM test, we calculate the difference in the loss function 

between two models as 

2# = è@d•3¶ßd3dò(ℎ#, !"#) − è®©#™´¨®#[≠™(ℎ#, !"#), (20) 

where è@d•3¶ßd3dò(ℎ#, !"#) is the loss function for the MRS-HAR-RV model, and 

è®©#™´¨®#[≠™(ℎ#, !"#) is loss function for the alternative model, including HAR-RV, 

HAR-RV-CJ, GARCH and MRS-GARCH. A negative 2# value indicates that MRS-

HAR-RV has better forecasting ability than the alternative model, and vice versa. 

Therefore, the DM statistic is then defined as: 

eF	Ç6\6ÆÇ6ÆØ =
2̅

±ú(2̅)
 

(21) 

where 2̅ is the average of the difference in Qlike loss function, and ±ú(2̅) is standard 

error of 2# . Under the null HB:	2̅ ≥ 0   against the alternative H4:	2̅ < 0 , the DM 

statistic follows a standard normal distribution. Thus, a rejection of the null hypothesis 

means that MRS-HAR-RV has a superior predictive ability than the alternative. 

The results of DM tests on the difference in QLike loss functions of MRS-HAR-RV 



18 
 

against the alternative models including HAR-RV, HAR-RV-CJ (MedRV and BPV), 

GARCH and MRS-GARCH, are reported in Table 7. Comparison of QLike statistics 

and DM tests reveals that, in general the MRS-HAR-RV significantly outperform 

GARCH and MRS-GARCH models across all commodities and maturities, with the 

exception of MRS-GARCH model for Kerosene. However, comparison of QLike 

statistics of MRS-HAR-RV against HAR and HAR-RV-CJ indicates that MRS-HAR-

RV forecasts do not significantly outperform HAR and HAR-RV-CJ models.  

The results of comparison of MAE and DM tests are also reported in Panel B of Table 

7. It appears that the results of MAE comparisons are similar to those of QLike between 

MRS-HAR-RV and simple HAR-RV but different between MRS-HAR-RV and jump 

models. MRS-HAR-RV outperforms HAR-RV for 1-, 4- and 5-month gasoline futures 

but not for current month crude oil futures. Regarding the comparison MAE of MRS-

HAR-RV with those of HAR-RV-CJ, it seems that MRS-HAR-RV is still outperformed 

by both jump models for kerosene futures but produces better forecasts for gasoline and 

crude oil futures. Interestingly, although MedRV is considered as better measure for 

the continuous component than BPV, the forecasting performance of MedRV is worse 

than BPV in comparison to MRS-HAR-RV. 

With respect to the results of MMEO and MMEU statistics, comparison of MAS-HAR-

RV and other HAR-RV models seems to be quite different and not consistent with the 

result of QLike and MAE. For instance, looking at MMEO, we see that volatility 

forecasts by MRS-HAR-RV outperform HAR-RV for most gasoline futures, except 6-

month ones. However, comparisons of MMEU statistics across different models reveal 

that MRS-HAR-RV does not outperform alternatives. In the case of kerosene futures, 

the results of comparisons of MMEU and MMEO of MRS-HAR-RV against 

alternatives reveal similar conclusions to the gasoline futures; that is, in general MRS-

HAR-RV performs significantly better that other models when we look at MMEO 

statistics, but not so when MMEU statistics are compared. Finally, comparison of 

MMEO and MMEU across different volatility models for crude oil futures also suggests 

that MRS-HAR-RV significantly outperform HAR-RV, HAR-RV-CJ and GARCH 

type models when MMEO is considered. However, MRS-HAR-RV volatility forecasts 

do not outperform alternative models according to MMEU loss function. This leads to 

the conclusion that overall HAR-RV and HAR-RV-CJ tend to over-predict realised 

variance, whereas MRS-HAR-RV tends to under-predict the realised variance of 
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TOCOM energy futures. 

Furthermore, it is also interesting to compare whether Markov regime-switching 

approach can also outperform the GARCH model. Based on the results of QLike and 

MAE reported in Table 7, it is clear that MRS-HAR-RV always outperforms simple 

GARCH model for all contracts while is outperformed by MRS-GARCH for three 

kerosene and one crude oil futures. Moreover, although GARCH type models are 

criticised for its overprediction, the result of MMEO shows that the overprediction level 

of MRS-GARCH is much lower than that of GARCH. Therefore, according to the 

forecast evaluation results presented, it seems that incorporating MRS technique also 

improves the forecasting performance of GARCH and reduce the over-predicted bias. 

5.3 Value at Risk (VaR) Estimation 

Forecasts of realised volatility can provide insights for market participants seeking to 

understand future market conditions, as well as being used to quantify market risk for 

risk management and trading decisions. One of the most popular approaches to 

quantifying market risk is VaR, which is the potential loss for a position (or a portfolio) 

given certain confidence level (1 − 	µ) over a fixed time horizon (k). Therefore, VaR 

can be defined as 

Prr<#P4 < "\!∂,#P4lΩ#s = µ, (22) 

where  Ω# is the information given at time t. The VaR is estimated as the product of the 

u-percentile of assumed distribution of returns and the forecast of volatility (standard 

deviation), "\!∂,#P4 = ∏34(µ)ℎ#P4, where  ∏34(µ) is the corresponding µ-percentile 

(e.g. 0.5%, 1%, 5%) of assumed distribution, and  ℎ#P4 is the predicted volatility. To 

assess the practical implication of the results in terms of risk assessment and 

measurement, we compare the VaR estimates of the proposed models through an out-

of-sample backtesting procedure proposed by Christoffersen (1998). These tests 

include unconditional coverage (UC) and conditional coverage (CC) log-likelihood 

ratio (LR) tests, which are presented in Appendix B. We also compare the model 

estimated VaRs with those from a non-parametric technique known as Historical 

Simulation (HS), where the VaR is given as the u percentile of historical returns. 

We compare the 1% VaR (99% confidence level) of all models, namely HAR-RV, 
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MRS-HAR-RV, HAR-RV-CJ as well as GARCH, MRS-GARCH. HS is estimated 

based on a sample 250 days (1 year). Using 250 observations for HS is believed to be 

appropriate because using longer samples tends smooth the percentile and 

underestimate the VaR. GARCH approaches are based on the forecasts from GARCH 

(1,1) and MRS-GARCH (1,1), and the standard normal distribution is used for the 

estimation of ∏34(µ). Instead of using standard normal percentile, we use Filtered 

Historical Simulation (FHS) to estimate the corresponding percentile for HAR-RV, 

MRS-HAR-RV and HAR-RV-CJ because realised volatility does not satisfy the 

normality assumption (see Table 2). The first step of FHS is to create a series of 

standardising returns by dividing the series of returns with historical standard deviation. 

Then, the µ-percentile of this standardised returns series is employed as ∏34(µ) to 

calculate VaR for the RV approaches. 

The VaR estimates and backtesting results for both long and short position9 are reported 

in Figure 6 to 8 and Table 8 and 9. According to the figures, it seems that the VaR from 

the HS approach is smoother and underestimated compared with the other six 

approaches. Regarding the GARCH and MRS-GARCH approaches, the VaR estimates 

sometimes appear to be overestimated when comparing their distance from actual 

return, especially for gasoline and kerosene futures. Similarly, two HAR-RV-CJ 

models overestimate the VaR, since the VaR estimates are largely distant from actual 

returns. Moreover, it appears that the bias of BPV measure is higher than that of MedRV 

measure. Finally, the VaR estimates from HAR-RV and MRS-HAR-RV seems to be 

lower than HAR-RV-CJ models but around GARCH type models. 

In order to more carefully examine the accuracy of VaR estimates, we need to further 

check the backtesting results in Table 8 and 9. For gasoline futures, all GARCH, MRS-

GARCH and HS approaches fail to pass at least one of the backtesting tests, while the 

testing results of HAR-RV type models are similar. Specifically, all HAR-RV type 

models produce efficient VaR for all maturity contracts except for that HAR-RV-

MedRV fails to pass the conditional coverage test for the 1-month futures. Interestingly, 

for 5-month gasoline futures, it seems that HAR-RV type models may overestimate the 

value of VaR since the PFs are all 0.00%. Moving to kerosene futures, HS and GARCH 

                                                

9 When investors take a long position, their payoff is positive when the price increases, so they only focus 
on the downside risk (negative VaR). Differently, the short position takers bear loss when the price 
decreases, so their concern is the upside risk (positive VaR). 
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approaches again fail to pass backtesting tests, while, surprisingly, HAR-RV and MRS-

HAR-RV approaches do not pass the tests for five and four futures, respectively. 

Similar to MRS-HAR-RV, both HAR-RV-CJ models fail to pass the tests for four 

contracts despite for different maturities. For example, both MedRV and BPV 

approaches pass the backtesting tests for 6-month kerosene while MRS-HAR-RV does 

not. Finally, for crude oil futures, all HS, GARCH and HAR-RV-CJ approaches fail to 

pass backtesting tests for all contracts, while HAR-RV and MRS-HAR-RV performs 

almost evenly. The VaR estimated by HAR-RV and MRS-HAR-RV passes the 

backtesting tests for four and three futures respectively. The results of short-position 

VaR are consistent with those of long-position VaR but the performance is generally 

better. HS produce the least efficient results as for the long-position for all three 

TOCOM energy futures. GARCH type models pass the backtesting tests for gasoline 

futures but cannot for kerosene and crude oil. HAR-RV-CJ models performs evenly 

with HAR-RV and MRS-HAR-RV for gasoline and kerosene futures with all HAR-RV 

models producing efficient VaR, while are outperformed by both HAR-RV and MRS-

HAR-RV for crude oil futures.  

To sum up, comparing the accuracy of VaR estimates reveals that HAR-RV type 

models can produce more accurate estimates than HS and GARCH type approaches 

across commodities and maturities. Nonetheless, even though HAR-RV and MRS-

HAR-RV approaches can both produce efficient VaR estimates for crude oil futures, 

their performance for gasoline and kerosene is consistent with both HAR-RV CJ 

models. 

6 Conclusion 

This paper investigates the dynamics of realised volatility for TOCOM gasoline, 

kerosene and crude oil futures. The results of HAR-RV indicate a high level of 

persistence in realised volatility with a slow decay. Nonetheless, when we extend the 

HAR-RV to a 2-state Markov regime-switching HAR-RV, the empirical evidence 

shows that both the average volatility level and the persistence of realised volatility are 

different under each regime. More precisely, under one regime, RV is dependent on all 

one-day, one-week and one-month lagged RVs, whereas under the second regime, the 

impact of one-week and one-month lagged RVs disappears. Moreover, the MRS-HAR-

RV model captures the dynamics of the realised volatility of TOCOM energy futures 

better than HAR-RV.  
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In out-of-sample tests, MRS-HAR-RV outperforms HAR-RV-CJ (MedRV and BPV) 

for most TOCOM energy futures, while it provides better forecast than HAR-RV for 

longer maturity futures, but not for shorter maturity futures (using the MAE loss 

function). We conjecture that the lack of liquidity for shorter maturity contracts 

increases the impact of OTI on volatility and then also the probability of regime-

switching. Hence, any unexpected increase in OTI may lower the precision of forecasts 

of the unconditional regime probability, leading to less accurate forecasts of realised 

volatility. We further compare the difference in MAE, MMEO and MMEU, and find 

MRS-HAR-RV tends to under-predict realised variance, while HAR-RV, HAR-RV-

CJ, GARCH and MRS-GARCH tend to over-predict. Moreover, incorporating MRS 

approach helps reduce the overprediction of GARCH-style models. 

In the application of VaR estimation and valuation, both HAR-RV and MRS-HAR-RV 

outperform HS and GARCH approaches for all three commodities and across six 

maturities. HAR-RV and MRS-HAR-RV perform evenly with HAR-RV-CJ models for 

gasoline and kerosene futures while outperforms HAR-RV-CJ for crude oil futures. 
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Appendix A: Jump Detection 

In this paper, we employ the adjusted jump ratio statistic proposed by Huang and 
Tauchen (2005) for jump detection with BPV, which can be calculated as follows: 
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where øø#¿  is the quad-power quarticity that is used in Barndorff-Nielsen and Shephard 
(2004) for the estimator of the integrated quarticity. The π∫ªò,# statistic converges to a 
standard normal distribution when the frequency approaches to the 0. A Similar test 
statistic is developed by Andersen et al. (2012) for the jump detection with MedRV. 
The statistic is calculated by: 
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(A.24) 

where Fm2!ø#  estimates the integrated quarticity by using similar technique for 
Fm2!"#. π@™'dò,# also follows a standard normal distribution when the frequency is 
high enough.  

After testing for detecting jumps, both continuous and jump components can now be 
estimated as follows: 

t# = ij"# × .rπ∫ªò,# > π≈s + !"# × ∆1 − .rπ∫ªò,# > π≈s« 

u# = (!"# − ij"#) × .rπ∫ªò,# > π≈s 

(A.25) 

t# and u# are continuous and jump components, and π≈ is the critical value under the 
confidence level α. ij"# and π∫ªò,# can be replaced with Fm2!"# and π@™'dò,# when 
one uses MedRV as the measure of jump-robust realised volatility. .(π∫ªò,# > π≈) is 
the indicator for jump detection, which is 1 when jump is detected and 0 otherwise. In 
equation (A.5), if jump is detected, the difference between RV and the jump-robust RV 
is treated as the jump components, and the jump robust RV is viewed as the continuous 
component. However, if the test shows no occurrence of jumps, the jump component is 
calculated as zero and RV is treated as the continuous component.   
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Appendix B: Backtesting VaR 

Christoffersen (1998) outlines three tests for evaluation of VaR estimates in backtesting 
framework. These are unconditional coverage (UC), conditional coverage (CC) and the 
log-likelihood ratio (LR) tests. The first step to perform the backtesting is to calculate 
the percentage proportion of failure (PF), which is the proportion of actual returns that 
exceed the estimated VaR or the so-called “hit ratio”, which is defined as follows 

I#P4 = …
1, Æà	<#P4 < "\!∂,#P4|Ω#	
0, Æà	<#P4 ≥ "\!∂,#P4|Ω#

, (26) 

where I#P4  is the indicator function for violation of VaR. The sum of the indicator 
function over the out-of-sample is the total hit numbers, and the proportion of hit 
numbers to total number of out-of-sample observations represents PF. The VaR 
estimate is considered to be efficient if the following condition is satisfied 

ú[I#P4|Ω#] = µ (27) 

which implies that on average (1-PF) should be equal to the nominal confidence level 
u. The unconditional coverage (UC) test developed by Kupiec (1995), and the 
independence (IND), and conditional coverage tests (CC) proposed by Christoffersen 
(1998) are designed to examine whether PF is indifferent to the tolerance level ). We 
first denote k as PF calculated as 

k =
 á

 ÀP á
, (28) 

where RB is the total number of indicator being 0 (no violation of VaR), and R4 is the 
total number of indicator being 1 (violation of VaR). Then, the null hypothesis for the 
unconditional coverage test can be expressed as 

ÃB: k = µ, (29) 

and the LR statistic for the UC test (è!(°w)) can be defined as  

è!(°w) = 2{ln[(1 − k)
 Àk á] − ln	[(1 − µ) Àµ á]}~χ43≈,4, (30) 

where è!(°w) follows a chi-square distribution with degree of freedom 1 under given 
significant level }. If è!(°w) > χ≈,4, ÃB is rejected, this implies that the VaR estimate 
is not efficient. However, an unconditional coverage test only examines whether the 
total PF exceeds nominal tolerance level on average but does not consider the cluster 
of violation (consecutive violation). An independent test is designed to examine the 
dependence of consecutive violation, and the LR statistic for independent test è!(– b) 
can be expressed as 

è!(– b) = 2{ln[(1 − kB4)
 ÀÀkB4

 Àá(1 − k44)
 áÀk44

 áá] − ln	[(1 − µ) Àµ á]}~χ43≈,4, 

kB4 =
RB4

RBB + RB4
=
RB4
RB
, k44 =

R44
R4B + R44

=
R44
R4

 

(31) 
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where R[= for i,j = 0,1 is the number of indicator being i followed by indictor being j, 
andk[=	  is the corresponding probability. If i = j = 1, it indicates the occurrence of 
consecutive violation. è!(– b)  also follows a chi-square distribution with degree of 
freedom 1 under given significant level } . Finally, the LR statistic for conditional 
coverage test è!(ww) is defined as the sum of  è!(°w) and è!(– b), shown as 

è!(ww) = è!(°w) + è!(– b)~χ43≈,-. (32) 

Similarly, è!(ww) follows a chi-square distribution but with degree of freedom 2 under 
given significant level }.
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Table 1: Descriptive statistics of daily trading volume and returns of three TOCOM 
energy futures across maturities 

Gasoline 
 Mean Std. Skewness Kurtosis Q(22) ADF 

Panel A: Trading volume 
1-month 265.86 260.39 4.58 36.96 299.65 a -4.18 a 
2-month 205.05 173.00 6.79 100.79 1048.85a -4.50 a 
3-month 258.76 192.30 3.49 26.51 1337.94 a -4.70 a 
4-month 405.63 299.63 4.39 44.50 1210.22 a -4.86 a 
5-month 1524.75 1328.78 2.67 12.70 1167.05 a -4.48 a 
6-month 6211.32 2697.35 1.17 5.59 2236.68 a -4.33 a 

Panel B: Returns (Annualised) 
1-month -1.13% 22.66% -0.55 6.90 42.41 a -6.49 a 
2-month -0.78% 22.84% -0.45 6.28 45.56 a -6.51 a 
3-month -0.58% 22.91% -0.51 6.62 40.54 a -6.86 a 
4-month -0.20% 22.88% -0.49 6.52 33.31 a -6.90 a 
5-month 0.15% 22.98% -0.45 6.50 27.10 a -7.00 a 
6-month 0.18% 23.07% -0.41 6.43 26.50 a -7.10 a 

Kerosene 
 Mean Std. Skewness Kurtosis Q(22) ADF 

Panel A: Trading volume 
1-month 292.28 336.35 3.27 16.90 1252.78 a -2.72 
2-month 192.48 165.81 3.06 22.28 3059.87 a -3.10 
3-month 207.96 173.55 3.68 31.73 1881.69 a -4.97 a 
4-month 279.47 222.19 4.62 51.33 1384.75 a -5.37 a 
5-month 685.61 576.50 2.55 13.42 2106.88 a -3.64 b 
6-month 1510.01 857.98 2.64 22.07 4771.25 a -3.70 b 

Panel B: Returns (Annualised) 
1-month -1.81% 22.56% -0.47 8.14 39.77 a -6.80 a 
2-month -1.85% 22.71% -0.56 8.03 42.81 a -6.96 a 
3-month -2.03% 23.02% -0.54 8.01 43.63 a -7.11 a 
4-month -2.55% 23.22% -0.51 8.00 45.01 a -7.08 a 
5-month -2.92% 23.66% -0.50 7.88 46.86 a -7.06 a 
6-month -2.64% 24.06% -0.47 8.15 46.58 a -7.04 a 

Crude oil 
 Mean Std. Skewness Kurtosis Q(22) ADF 

Panel A: Trading volume 
current-m. 61.09 83.38 5.59 54.02 161.95 a -5.05 a 
1-month 113.27 105.97 3.39 25.08 354.20 a -5.24 a 
2-month 164.19 149.64 2.83 16.31 590.87 a -4.51 a 
3-month 290.95 288.33 2.93 13.97 2040.02 a -3.25 
4-month 1340.78 1991.70 3.70 19.15 4818.85 a -1.43 
5-month 4059.61 2945.36 2.41 10.31 9499.13 a -1.74 

Panel B: Returns (Annualised) 
current -m. -3.02% 24.69% -1.37 19.81 61.58 a -6.50 a 
1-month -3.38% 29.99% -0.42 8.81 56.13 a -7.16 a 
2-month -3.07% 29.65% -0.41 8.63 65.90 a -7.13 a 
3-month -2.95% 29.29% -0.45 8.63 58.68 a -7.15 a 
4-month -2.77% 28.87% -0.46 8.53 62.00 a -7.10 a 
5-month -2.60% 28.55% -0.43 8.33 60.75 a -7.14 a 
• The sample period is from 22 September 2010 to 30 October 2015. 
• Trading volume is defined as the number of futures contracts traded per day. For all the three commodities 

considered in this paper, each futures contract is for delivery/settlement of 50kl (approximately 13,210 US 
gallons or 314.5 barrels). 

• Q(22) is Q-statistic with 22 lags, and ADF is the augmented Dickey-Fuller test statistic.  
• a indicates rejection of null hypothesis at the 1% significance level.  

  



 
 

Table 2: Descriptive statistics for annualised realised variance of three TOCOM 
energy futures across maturities 

Gasoline 
 Mean Std. Skewness Kurtosis Q(22) ADF 
1-month 0.059 0.089 4.92 37.89 413.72 a -4.97 a 
2-month 0.051 0.086 10.52 198.27 484.21 a -5.22 a 
3-month 0.050 0.084 11.24 217.39 521.17 a -5.45 a 
4-month 0.050 0.080 12.53 268.36 528.05 a -5.12 a 
5-month 0.051 0.079 13.64 307.25 699.83 a -5.04 a 
6-month 0.048 0.099 21.94 639.46 231.96 a -5.41 a 

Kerosene 
 Mean Std. Skewness Kurtosis Q(22) ADF 
1-month 0.059 0.126 14.34 284.12 256.11 a -5.45 a 
2-month 0.049 0.095 12.46 254.88 321.32 a -5.25 a 
3-month 0.049 0.095 14.95 346.01 389.82 a -5.34 a 
4-month 0.049 0.089 15.94 393.06 450.42 a -5.06 a 
5-month 0.051 0.093 18.15 483.10 416.67 a -4.88 a 
6-month 0.053 0.092 16.02 394.41 596.05 a -4.87 a 

Crude oil 
 Mean Std. Skewness Kurtosis Q(22) ADF 
Current-m. 0.064 0.199 11.27 186.25 137.53 a -5.17 a 
1-month 0.076 0.154 13.56 298.26 417.82 a -4.78 a 
2-month 0.077 0.163 12.75 250.04 487.82 a -5.01 a 
3-month 0.075 0.156 17.47 450.75 437.11 a -4.89 a 
4-month 0.077 0.142 16.61 416.14 623.27 a -4.76 a 
5-month 0.075 0.140 16.97 429.12 540.49 a -4.91 a 
• a and b indicate rejection at the 5% and 1% significance levels. Std. is the standard deviation. 

Q(22) is Q-statistic with 22 lags. ADF is the augmented Dickey-Fuller test statistic. The sample 
period is from 22 September 2010 to 30 October 2015. 



 
 

Table 3: Estimation results of simple HAR-RV and MRS-HAR-RV for gasoline futures 
HAR-RV  !"#$%&(&) = *+,% + *%(&)!"#(&) + *%(.)!"#(.) + *%(/)!"#(/) + *%(012)34!# + *%(0%)31# + *%(06)32# + 8#$%&,%(&) ,     	8#$%&,%(&) ~;(0, =% ) 

MRS-HAR-RV  !"#$%&(&) = *+,># + *>#(&)!"#(&) + *>#(.)!"#(.) + *>#(/)!"#(/) + *>#(012)34!# + *>#(0%)31# + *>#(06)32# + 8#$%&,>#(&) ,      ?@ = {1,2}, 8#$%&,>#(&) ~;(0, =>#) 
 1-month 2-month 3-month 4-month   5-month 6-month 
 HAR-RV MRS-HAR HAR-RV MRS-HAR HAR-RV MRS-HAR HAR-RV MRS-HAR HAR-RV MRS-HAR HAR-RV MRS-HAR 

*+,% 0.0001*** 0.0004*** 4.28E-5** 0.0003*** 5.21E-5*** 0.0003*** 5.04E-5*** 0.0003*** 5.74E-5*** 0.0003*** 7.84E-5*** 0.0003*** 
(2.56E-5) (4.35E-5) (1.67E-5) (3.13E-5) (1.51E-5) (7.20E-5) (1.33E-5) (1.78E-5) (1.09E-5) (1.68E-5) (1.03E-5) (1.33E-5) 

*%(&) 
0.1687*** 0.0753 0.2783*** 0.1485*** 0.3125*** 0.3246** 0.2726*** 0.2075*** 0.2938*** 0.2115*** 0.1286*** 0.0864*** 
(0.0295) (0.0893) (0.0199) (0.0272) (0.0188) (0.1590) (0.0169) (0.0223) (0.0142) (0.0196) (0.0104) (0.0135) 

*%(.) 
0.2157*** 0.3692*** 0.1196*** 0.0439 0.1184*** -0.0374 0.1192*** -0.0460 0.1338*** 0.0262 0.1515*** 0.0623* 
(0.0509) (0.1123) (0.0315) (0.0646) (0.0292) (0.0679) (0.0275) (0.0824) (0.0227) (0.0363) (0.0183) (0.0347) 

*%(/) 
0.2465*** -0.0142 0.1765*** 0.0602 0.1428*** -0.0601 0.1851*** -0.0549 0.1743*** -0.0755 0.1643*** -0.1307*** 
(0.0764) (0.1371) (0.0502) (0.1197) (0.0459) (0.1271) (0.0433) (0.0407) (0.0346) (0.0734) (0.0303) (0.0355) 

*%(012) 
-2.2612** 6.1384*** 1.5037** 3.0754** 0.7392 0.8735 0.8328 1.5072 0.1136 -0.5228 -0.0914 -2.1827 
(1.1052) (1.9918) (0.7488) (1.4693) (0.6845) (3.9618) (0.5877) (1.2814) (0.4882) (0.9360) (0.4815) (1.4709) 

*+,6  6.48E-5***  4.03E-5***  3.51E-5***  3.42E-5***  3.00E-5***  2.24E-5*** 
 (2.65E-6)  (2.30E-6)  (1.46E-6)  (2.20E-6)  (1.67E-6)  (1.43E-7) 

*6(&) 
 0.0494***  0.2480***  0.2269***  0.1725***  0.2732***  0.3108*** 
 (0.0063)  (0.0065)  (0.0038)  (0.0115)  (0.0100)  (0.0084) 

*6(.) 
 0.1825***  0.0801***  0.1451***  0.1434***  0.1896***  0.1145*** 
 (0.0070)  (0.0080)  (0.0276)  (0.0112)  (0.0084)  (0.0234) 

*6(/) 
 0.1554***  0.1074***  0.1156***  0.1476***  0.1137***  0.2163*** 
 (0.0095)  (0.0084)  (0.0225)  (0.0059)  (0.0075)  (0.0171) 

*6(012) 
 -1.5114***  0.1832  0.2296  0.4337***  0.0502  0.0743 
 (0.1437)  (0.1225)  (0.2412)  (0.1666)  (0.0921)  (0.1212) 

Σ%   0.0005***  0.0004***  0.0004***  0.0003***  0.0002***  0.0002*** 
 (9.51E-6)  (1.06E-5)  (2.42E-5)  (1.55E-5)  (5.87E-6)  (2.85E-5) 

Σ6   7.12E-5***  5.92E-5***  5.61E-5***  5.24E-5***  4.28E-5***  4.29E-5*** 
 (1.98E-6)  (1.77E-6)  (2.24E-6)  (1.86E-6)  (1.30E-6)  (3.38E-6) 

D%6  0.5723  0.4564  0.4464  0.4329  0.3778  0.3564 
D6%  0.1289  0.1049  0.0928  0.1005  0.1086  0.0889 
!E6 19.07% 45.84% 63.80% 76.46% 68.04% 78.93% 73.61% 81.56% 81.22% 84.38% 89.21% 91.43% 

SBIC 6544.279 7221.092 6911.427 7506.899 6997.52 7587.82 7145.681 7648.697 7322.469 7772.782 7321.122 7833.976 
• Sample period used for estimation is from 21 September 2010 to 22 October 2014. *, ** and *** denote the significance at 10%, 5% and 1% levels, respectively. The figure 

in parentheses is the standard error of coefficient. D%6 and D6% are estimated switching probability from regime 1 to 2 and vice versa, respectively.  SBIC is calculated as 
the log-likelihood value minus the penalty parameters. 

 
 



 
 

Table 4: Estimation results of simple HAR-RV and MRS-HAR-RV for kerosene futures 
HAR-RV  !"#$%&(&) = *+,% + *%(&)!"#(&) + *%(.)!"#(.) + *%(/)!"#(/) + *%(012)34!# + *%(0%)31# + *%(06)32# + 8#$%&,%(&) ,     	8#$%&,%(&) ~;(0, =% ) 

MRS-HAR-RV  !"#$%&(&) = *+,># + *>#(&)!"#(&) + *>#(.)!"#(.) + *>#(/)!"#(/) + *>#(012)34!# + *>#(0%)31# + *>#(06)32# + 8#$%&,>#(&) ,      ?@ = {1,2}, 8#$%&,>#(&) ~;(0, =>#) 
 1-month 2-month 3-month 4-month 5-month 6-month 
 HAR-RV MRS-HAR HAR-RV MRS-HAR HAR-RV MRS-HAR HAR-RV MRS-HAR HAR-RV MRS-HAR HAR-RV MRS-HAR- 

*+,% 0.0001*** 0.0005*** 6.68E-5*** 0.0004*** 6.04E-5*** 0.0003*** 5.97E-5*** 0.0003*** 6.65E-5*** 0.0003*** 6.15E-5*** 0.0003*** 
(1.69E-5) (2.18E-5) (1.77E-5) (3.33E-5) (1.36E-5) (4.37E-5) (1.18E-5) (1.73E-5) (1.15E-5) (2.28E-5) (1.21E-5) (9.38E-5) 

*%(&) 
0.1606*** 0.1156** 0.2374*** 0.0626 0.3028*** 0.3158*** 0.2411*** 0.0118 0.1980*** -0.0491 0.2384*** 0.1963*** 
(0.0172) (0.0455) (0.0191) (0.0964) (0.0148) (0.0241) (0.0135) (0.0323) (0.0123) (0.0496) (0.0135) (0.0267) 

*%(.) 
0.1188*** 0.0812 0.0921*** 0.0770 0.0666*** -0.1401** 0.0800*** 0.0642 0.0982*** 0.0019 0.1336*** 0.0561* 
(0.0302) (0.0769) (0.0315) (0.0582) (0.0240) (0.0702) (0.0225) (0.0584) (0.0211) (0.0744) (0.0224) (0.0286) 

*%(/) 
0.2199*** -0.1545* 0.1275** -0.0486 0.1122*** -0.2330*** 0.1558*** 0.0428 0.1837*** 0.4151*** 0.1763*** -0.0880* 
(0.0503) (0.0830) (0.0540) (0.2401) (0.0405) (0.0214) (0.0377) (0.0805) (0.0353) (0.0994) (0.0352) (0.0518) 

*%(012) 
-3.2435*** -6.1435*** 0.5564 0.7506 0.7478 3.3479*** 0.7814 -0.3068 0.5476 1.7790 0.3686 0.9196 
(0.7467) (1.3820) (0.8152) (4.6440) (0.6300) (0.3063) (0.5361) (0.9237) (0.5201) (1.1954) (0.5527) (5.0647) 

*+,6  5.83E-5***  4.54E-5***  2.84E-5***  3.62E-5***  3.93E-5***  3.21E-5*** 
 (2.20E-6)  (3.31E-6)  (5.13E-6)  (1.51E-6)  (1.87E-6)  (2.67E-6) 

*6(&) 
 0.0289***  0.2368***  0.0428***  0.2572***  0.2017***  0.1947*** 
 (0.0077)  (0.0052)  (0.0095)  (0.0080)  (0.0078)  (0.0383) 

*6(.) 
 0.0904***  0.0143  0.1460***  0.0789***  0.1219***  0.1213*** 
 (0.0069)  (0.0140)  (0.0062)  (0.0091)  (0.0082)  (0.0090) 

*6(/) 
 0.1580***  0.1079***  0.2600***  0.0782***  0.1184***  0.2536*** 
 (0.0094)  (0.0051)  (0.0262)  (0.0075)  (0.0064)  (0.0190) 

*6(012) 
 -0.7074***  0.2713***  0.2644  0.2626***  0.6054***  -0.1407 
 (0.1242)  (0.0340)  (0.1739)  (0.0977)  (0.0975)  (0.1217) 

Σ%   0.0003***  0.0005***  0.0003***  0.0002***  0.0003***  0.0003*** 
 (6.84E-6)  (8.74E-5)  (1.64E-5)  (4.27E-6)  (6.37E-6)  (3.21E-5) 

Σ6   5.43E-5***  5.65E-5***  4.90E-5***  4.38E-5***  5.12E-5***  4.16E-5*** 
 (1.86E-6)  (4.97E-6)  (1.15E-6)  (1.23E-6)  (1.41E-6)  (3.26E-6) 

D%6  0.4206  0.5254  0.4546  0.4826  0.3781  0.3201 
D6%  0.1435  0.0856  0.1155  0.1460  0.0749  0.0943 
!E6 70.09% 80.34% 65.41% 74.01% 79.06% 86.89% 82.45% 89.52% 85.21% 88.27% 82.68% 85.33% 

SBIC 6891.60 7385.36 6825.26 7573.75 7074.29 7645.14 7230.00 7684.98 7255.82 7747.40 7199.88 7762.27 
• Sample period used for estimation is from 21 September 2010 to 22 October 2014. *, ** and *** denote the significance at 10%, 5% and 1% levels, respectively. The figure 

in parentheses is the standard error of coefficient.  D%6 and D6% are estimated switching probability from regime 1 to 2 and vice versa, respectively. SBIC is calculated as 
the log-likelihood value minus the penalty parameters. 

 



 
 

Table 5: Estimation results of simple HAR-RV and MRS-HAR-RV for crude oil futures 
HAR-RV  !"#$%&(&) = *+,% + *%(&)!"#(&) + *%(.)!"#(.) + *%(/)!"#(/) + *%(012)34!# + *%(0%)31# + *%(06)32# + 8#$%&,%(&) ,     	8#$%&,%(&) ~;(0, =% ) 

MRS-HAR-RV  !"#$%&(&) = *+,># + *>#(&)!"#(&) + *>#(.)!"#(.) + *>#(/)!"#(/) + *>#(012)34!# + *>#(0%)31# + *>#(06)32# + 8#$%&,>#(&) ,      ?@ = {1,2}, 8#$%&,>#(&) ~;(0, =>#) 
 Current-month 1-month 2-month 3-month 4-month 5-month 
 HAR-RV MRS-HAR HAR-RV MRS-HAR HAR-RV MRS-HAR HAR-RV MRS-HAR HAR-RV MRS-HAR HAR-RV MRS-HAR 

*+,% -0.0001*** 5.41E-5*** 7.21E-5*** 0.0004*** 7.21E-5*** 0.0005*** 7.21E-5*** 0.0004*** 6.26E-5*** 0.0004*** 6.94E-5*** 0.0003*** 
(3.39E-5) (1.59E-5) (2.25E-5) (7.69E-5) (2.18E-5) (0.0002) (1.71E-5) (2.44E-5) (1.51E-5) (7.76E-5) (1.59E-5) (2.39E-5) 

*%(&) 
0.0724*** 0.0826** 0.1433*** 0.1282*** 0.2032*** 0.0708 0.2210*** 0.2076*** 0.2606*** 0.1113** 0.2608*** 0.2255*** 

(0.0207) (0.0334) (0.0156) (0.0112) (0.0156) (0.0959) (0.0116) (0.0365) (0.0113) (0.0455) (0.0118) (0.0125) 

*%(.) 
0.0885** 0.0852 0.1172*** 0.1105** 0.0854*** -0.0168 0.0756*** 0.0049 0.1129*** 0.0641* 0.1114*** 0.0528* 

(0.0373) (0.0597) (0.0273) (0.0529) (0.0264) (0.0561) (0.0197) (0.0468) (0.0184) (0.0334) (0.0194) (0.0272) 

*%(/) 
0.1950*** 0.2298* 0.1850*** 0.0475 0.1776*** -0.0565 0.1465*** -0.1467** 0.1541*** -0.0790 0.1547*** -0.1007 

(0.0666) (0.1193) (0.0472) (0.2689) (0.0455) (0.1066) (0.0341) (0.0697) (0.0302) (0.1539) (0.0319) (0.0707) 

*%(012) 
14.0343*** 21.0914*** 2.3447** -0.4638 1.9100* 1.0779 2.1797*** 3.9491*** 1.9675*** 1.8648 1.5408** 1.9333* 
(1.6612) (1.5830) (1.0208) (4.6667) (1.0082) (3.6245) (0.8014) (1.2789) (0.6978) (1.2547) (0.7347) (0.9925) 

*+,6  -4.07E-6***  4.78E-5***  3.52E-5***  1.90E-5***  1.41E-5***  3.54E-5*** 
 (3.69E-7)  (7.96E-6)  (1.30E-5)  (2.61E-6)  (5.47E-6)  (2.08E-6) 

*6(&) 
 0.0005  0.0246  0.2035***  0.0127  0.2656***  0.2240*** 
 (0.0024)  (0.0156)  (0.0066)  (0.0081)  (0.0009)  (0.0095) 

*6(.) 
 0.0176***  0.0502***  0.0945***  0.0980***  0.2680***  0.0894*** 
 (0.0034)  (0.0106)  (0.0205)  (0.0046)  (0.0096)  (0.0073) 

*6(/) 
 0.0265***  0.0804*  0.1020***  0.2992***  0.0947***  0.2733*** 
 (0.0062)  (0.0481)  (0.0392)  (0.0089)  (0.0264)  (0.0079) 

*6(012) 
 2.7709***  1.3677***  1.4789***  1.7384***  1.4438***  0.1631 
 (0.2395)  (0.3796)  (0.4014)  (0.1394)  (0.2889)  (0.1092) 

Σ%   0.0008***  0.0004***  0.0005***  0.0003***  0.0003***  0.0004*** 
 (9.54E-5)  (3.90E-5)  (0.0002)  (5.09E-6)  (1.66E-5)  (6.03E-6) 

Σ6   3.88E-5***  6.26E-5***  8.23E-5***  6.55E-5***  6.20E-5***  5.26E-5*** 
 (4.02E-6)  (6.17E-6)  (1.37E-5)  (2.04E-6)  (3.79E-6)  (1.55E-6) 

D%6  0.5964  0.4300  0.4294  0.3334  0.2897  0.2868 
D6%  0.1911  0.1832  0.1003  0.1111  0.0849  0.0923 
!E6 59.55% 71.17% 76.72% 83.81% 76.89% 81.29% 86.96% 91.39% 88.01% 90.04% 86.75% 89.21% 

SBIC 6157.396 7386.73 6605.319 7119.792 6615.692 7178.596 6838.313 7324.865 6975.095 7446.656 6923.484 7503.817 
• Sample period used for estimation is from 21 September 2010 to 22 October 2014. *, ** and *** denote the significance at 10%, 5% and 1% levels, respectively. The figure in 

parentheses is the standard error of coefficient. D%6 and D6% are estimated switching probability from regime 1 to 2 and vice versa, respectively. SBIC is calculated as the 
log-likelihood value minus the penalty parameters.



 
 

Table 6: The average level of volatility in high- and low-volatility regimes in in-sample 
Gasoline 

 1-month 2-month 3-month 4-month 5-month 6-month 
RV#$$$$$ 40.84% 33.70% 35.60% 33.06% 30.56% 30.29% 
RV%$$$$$ 17.72% 16.95% 17.15% 17.41% 18.07% 18.05% 
N# 157 193 142 168 182 145 
N% 824 788 839 813 799 836 

OTI.1 279.91 131.50 154.01 215.28 576.93 1825.01 
OTI.2 162.60 109.74 120.00 161.19 458.60 1410.39 

Kerosene 
 1-month 2-month 3-month 4-month 5-month 6-month 

RV#$$$$$ 35.25% 37.42% 32.16% 31.19% 31.53% 31.26% 
RV%$$$$$ 16.93% 16.78% 16.69% 17.21% 18.21% 18.25% 
N# 192 108 173 159 141 168 
N% 789 873 808 822 840 813 

OTI.1 298.86 138.33 134.28 169.77 267.86 535.99 
OTI.2 188.43 108.55 98.74 119.01 250.49 448.85 

Crude oil 
 Current-m. 1-month 2-month 3-month 4-month 5-month 

RV#$$$$$ 40.89% 37.51% 39.07% 36.82% 38.55% 35.05% 
RV%$$$$$ 13.34% 18.68% 20.09% 19.86% 20.35% 21.46% 
N# 222 226 148 189 176 183 
N% 759 755 833 792 805 798 

OTI.1 50.35 68.15 80.41 128.31 380.91 1004.69 
OTI.2 40.70 55.81 73.17 102.49 300.77 774.34 

• Regime 1 and 2 are defined as unconditional regime probability greater than 0.5 and less than or equal to 0.5 
respectively. RV#$$$$$ and RV%$$$$$ are the average realised volatility in regime 1 and 2 respectively. N# and N% are 
the number of days of being in regime 1 and 2 respectively. OTI.1 and OTI.2 are the average order-trade 
imbalance in regime 1 and regime 2 respectively. 

 
 
 
 
 
 
 
 
 
 
 
 



 
 

Table 7: Comparison of forecasting performance of different volatility models against MRS-HAR-RV with Diebold-Mariano test 
 Gasoline  Kerosene  Crude oil 
 HAR-RV HAR-RV-CJ 

MedJ 
HAR-RV-CJ 

BPVJ GARCH MRS-GARCH  HAR-RV HAR-RV-CJ 
MedJ 

HAR-RV-CJ 
BPVJ GARCH MRS-GARCH  HAR-RV HAR-RV-CJ 

MedJ 
HAR-RV-CJ 

BPVJ GARCH MRS-GARCH 

Panel A: Improvement in QLike 
1-m. -0.005 0.001 -0.004 -0.060* -0.105***  -0.002 0.007 -0.002 -0.099** -0.066  -0.611*** -12.79*** -16.59*** -0.450*** -0.627*** 
2-m. 0.008 0.013 -0.006 -0.088*** -0.019  0.013 0.013 0.012 -0.047* 0.034  0.033 0.023 0.068 -0.069** -0.012 
3-m. 0.003 -0.012 -0.052** -0.073*** -0.091*  0.004 0.020 -0.004 -0.088*** -0.029  0.040 0.041 0.058 -0.023 0.062 
4-m. 0.002 0.006 0.000 -0.086*** -0.044***  0.005 0.018 0.000 -0.059** 0.003  -0.002 0.022 0.038 -0.070** -0.001 
5-m. -0.015** 0.003 -0.006 -0.085*** -0.060***  0.001 0.028 0.027 -0.063*** 0.011  -0.011 0.021 0.014 -0.085*** -0.024* 
6-m. -0.046*** -0.051*** -0.001 -0.091*** -0.032**  -0.005 0.021 0.013 -0.079*** -0.013  -0.012 0.021 0.015 -0.103*** -0.046*** 

Panel B: % Improvement in MAE 
1-m. -3.84** -3.52** -3.57** -24.56*** -12.08***  2.72 2.27 3.64 -16.87*** -1.79  3.73 -8.35** -7.14** -16.34*** -2.19 
2-m. 1.46 0.15 4.57 -32.64*** -17.29***  1.40 -0.32 3.05 -30.84*** 0.02  1.54 -0.49 -1.21 -40.09*** -25.2*** 
3-m. 1.98 -0.12 0.30 -30.45*** -13.63***  1.69 3.88 2.09 -34.67*** -9.13***  3.65 -2.58 -1.60 -31.59*** -11.26** 
4-m. -0.24 -1.38 2.22 -34.77*** -18.30***  0.56 2.92 7.92 -35.11*** -22.12  -0.99 -7.06** -10.48*** -37.74*** -21.87*** 
5-m. -4.51*** -3.45 -5.58 -36.53*** -24.09***  3.99 3.93 6.79 -36.37*** -4.23  -1.06 -3.24 -5.24 -42.69*** -27.98*** 
6-m. -6.54*** -6.84*** -2.28 -40.39*** -21.69***  0.64 2.20 0.46 -40.85*** -10.18***  -2.70* -4.01 -5.77 -46.82*** -28.86*** 

Panel C: % Improvement in MMEU 
1-m. 0.01 -0.01 0.01 0.08 -0.02  0.04 0.04 0.04 0.24 -0.01  -0.25*** -0.36*** -0.38*** 0.04 0.05 
2-m. 0.05 0.05 0.03 0.17 0.11  0.01 0.03 -0.01 0.26 0.06  0.05 0.04 0.17 0.38 0.28 
3-m. 0.02 0.02 -0.04*** 0.20 0.08  0.01 0.05 0.01 0.25 0.07  0.07 0.12 0.17 0.35 0.23 
4-m. 0.01 0.06 0.03 0.15 0.07  0.03 0.05 0.05 0.29 0.09  0.00 0.22 0.27 0.34 0.29 
5-m. 0.00 0.12 0.12 0.14 0.03  -0.03** 0.09 0.01 0.27 0.05  -0.05*** 0.21 0.23 0.23 0.12 
6-m. -0.04*** -0.05*** 0.16 0.19 0.08  0.03 0.18 0.17 0.27 0.07  -0.01 0.23 0.22 0.25 0.15 

Panel C: % Improvement in MMEO 
1-m. -0.04*** -0.04** -0.04** -0.31*** -0.07**  -0.03* -0.04* -0.02 -0.42*** 0.01  0.40 0.40 0.42 -0.26*** -0.07* 
2-m. -0.03*** -0.06*** 0.00 -0.48*** -0.27***  0.00 -0.03* 0.03 -0.59*** -0.07***  -0.05*** -0.06*** -0.23*** -0.97*** -0.61*** 
3-m. -0.01 -0.01 0.05 -0.48*** -0.18***  0.01 -0.02 0.02 -0.61*** -0.14***  -0.05** -0.18*** -0.22*** -0.84*** -0.38*** 
4-m. -0.03** -0.10** -0.02* -0.48*** -0.24***  -0.02** -0.03** 0.01 -0.66*** -0.18***  -0.02 -0.32*** -0.40*** -0.85*** -0.53*** 
5-m. -0.05*** -0.16*** -0.18*** -0.46*** -0.22***  0.06 -0.09*** 0.02 -0.62*** -0.09***  0.03 -0.27*** -0.28*** -0.75*** -0.41*** 
6-m. 0.00 0.02 -0.20*** -0.55*** -0.26***  -0.02 -0.19*** -0.17*** -0.69*** -0.17***  -0.02 -0.30*** -0.31*** -0.82*** -0.44*** 
• The out-of-sample is from 23 October 2014 to 30 October 2015, a total of 250 forecasts. For QLike loss function comparisons, figures represent the decrease in QLike of MRS-HAR-RV compared to 

alternative models. For MAE, MMEO amd MMEU, figures represent the percentage change in loss functions. Negative value means MRS-HAR-RV outperforms the alternative model. The DM test is for 
significance of the difference between the loss function of the MRS-HAR-RV and the competing model. Finally, *, ** and *** denote the significance at 10%, 5% and 1% levels, respectively. 



 
 

 

Table 8: Results of back-testing the VaR estimates of long positions for different energy 
futures and across maturity spectrum  

  HAR MRS-HAR MedRV BPV GARCH MRS-
GARCH HS 

Panel A: Gasoline 
1-month PF 1.60% 1.20% 1.60% 1.60% 4.80% 5.20% 4.80% 

 LUC 0.77 0.09 0.77 0.77 19.02*** 22.32*** 19.02*** 
 LCC 0.93 0.19 4.91* 0.93 25.28*** 24.41*** 25.28*** 
2-month PF 1.20% 1.60% 1.60% 1.60% 4.00% 3.60% 4.40% 

 LUC 0.09 0.77 0.77 0.77 12.96*** 10.23*** 15.89*** 
 LCC 0.19 0.93 0.93 0.93 21.49*** 14.92*** 23.21*** 

3-month PF 1.20% 1.20% 0.80% 0.80% 4.40% 5.20% 4.40% 
 LUC 0.09 0.09 0.11 0.11 15.89*** 22.32*** 15.89*** 
 LCC 0.19 0.19 0.16 0.16 23.21*** 22.57*** 23.21*** 

4-month PF 0.80% 0.80% 0.80% 0.80% 3.60% 5.20% 3.60% 
 LUC 0.11 0.11 0.11 0.11 10.23*** 22.32*** 10.23*** 
 LCC 0.16 0.16 0.16 0.16 20.16*** 27.66*** 11.31*** 
5-month PF 0.00% 0.00% 0.00% 0.00% 3.60% 4.40% 3.20% 

 LUC N/A N/A N/A N/A 10.23*** 15.89*** 7.73*** 
 LCC N/A N/A N/A N/A 20.16*** 16.45*** 8.33** 

6-month PF 1.60% 0.80% 1.60% 0.80% 3.60% 3.20% 3.20% 
 LUC 0.77 0.11 0.77 0.11 10.23*** 7.73*** 7.73*** 
 LCC 0.93 0.16 0.93 0.16 20.16*** 9.18** 8.33** 

Panel B: Kerosene 
1-month PF 1.60% 1.60% 2.00% 1.60% 3.20% 4.40% 3.60% 

 LUC 0.77 0.77 1.96 0.77 7.73*** 15.89*** 10.23*** 
 LCC 0.93 0.93 2.20 4.91* 26.74*** 16.45*** 20.16*** 
2-month PF 3.20% 2.80% 3.20% 2.80% 3.20% 4.40% 2.80% 

 LUC 7.73*** 5.50** 7.73*** 5.50** 7.73*** 15.89*** 5.50** 
 LCC 9.18** 5.96* 9.18** 5.96* 19.31*** 16.45*** 12.29*** 

3-month PF 2.80% 1.60% 2.80% 2.80% 4.40% 4.80% 4.00% 
 LUC 5.50** 0.77 5.50** 5.50** 15.89*** 19.02*** 12.96*** 
 LCC 12.29*** 0.93 5.96* 5.96* 23.21*** 21.61*** 21.49*** 

4-month PF 3.20% 2.40% 2.80% 3.20% 4.00% 4.40% 4.40% 
 LUC 7.73*** 3.56* 5.50** 7.73*** 12.96*** 15.89*** 15.89*** 
 LCC 13.38*** 3.90 12.29*** 9.18** 21.49*** 16.45*** 23.21*** 
5-month PF 2.40% 2.40% 2.00% 2.00% 3.60% 4.80% 4.40% 

 LUC 3.56* 3.56* 1.96 1.96 10.23*** 19.02*** 15.89*** 
 LCC 6.03** 3.90 5.15* 2.20 14.92*** 20.33*** 19.08*** 

6-month PF 2.40% 2.80% 1.20% 2.00% 3.60% 5.20% 4.00% 
 LUC 3.56* 5.50** 0.09 1.96 10.23*** 22.32*** 12.96*** 
 LCC 3.90 5.96* 0.19 2.20 14.92*** 24.41*** 16.84*** 

Panel C: Crude oil 
C-month PF 5.20% 3.60% 4.40% 4.40% 4.80% 4.80% 3.20% 
 LUC 22.32*** 10.23*** 15.89*** 15.89*** 19.02*** 19.02*** 7.73*** 
 LCC 24.41*** 11.31*** 23.21*** 23.21*** 30.09*** 25.28*** 9.18** 
1-month PF 2.80% 4.40% 4.80% 4.80% 7.60% 8.00% 3.60% 

 LUC 5.50** 15.89*** 19.02*** 19.02*** 45.19*** 49.45*** 10.23*** 
 LCC 5.96* 17.00*** 19.40*** 19.40*** 52.24*** 59.02*** 10.98*** 
2-month PF 2.00% 3.20% 5.60% 6.40% 7.20% 8.40% 4.00% 

 LUC 1.96 7.73*** 25.78*** 33.15*** 41.06*** 53.80*** 12.96*** 
 LCC 2.20 8.33** 25.96*** 34.14*** 45.75*** 56.60*** 13.74*** 

3-month PF 2.00% 2.00% 4.80% 5.20% 7.20% 7.20% 4.00% 
 LUC 1.96 1.96 19.02*** 22.32*** 41.06*** 41.06*** 12.96*** 
 LCC 2.20 2.20 19.40*** 24.41*** 45.75*** 45.75*** 13.74*** 

4-month PF 2.00% 0.40% 4.00% 3.60% 6.80% 7.60% 3.60% 
 LUC 1.96 1.18 12.96*** 10.23*** 37.04*** 45.19*** 10.23*** 
 LCC 2.20 1.19 13.74*** 10.98*** 42.52*** 49.18*** 10.98*** 
5-month PF 1.60% 1.60% 5.60% 4.40% 6.80% 8.00% 4.00% 

 LUC 0.77 0.77 25.78*** 15.89*** 37.04*** 49.45*** 12.96*** 
 LCC 0.93 0.93 27.44*** 16.45*** 42.52*** 50.80*** 13.74*** 

• VaR is calculated based on 250 observations in out-of-sample from 23 October 2014 to 30 October 2015.  
• PF is the probability of failures (violations). The LR statistic in bold denotes rejection of each test. The critical 

value for the unconditional coverage and independent test (!"($%)	and	!"($%) ) is 2.7055, and that for the 
conditional coverage likelihood ratio test !"(%%) is 4.6052. *, ** and *** denote the significance at 10%, 5% and 
1% levels, respectively.  



 
 

Table 9:  Results of back-testing the VaR estimates of short position for different energy 
futures and across maturity spectrum 

  HAR MRS-
HAR MedRV BPV GARCH MRS-

GARC HS 

Panel A: Gasoline 
1-month PF 0.80% 0.40% 0.80% 0.80% 1.60% 2.00% 2.00% 

 LUC 0.11 1.18 0.11 0.11 0.77 1.96 1.96 
 LCC 0.16 1.19 0.16 0.16 0.93 2.20 2.20 
2-month PF 0.40% 0.80% 0.40% 0.80% 0.40% 1.60% 2.40% 

 LUC 1.18 0.11 1.18 0.11 1.18 0.77 3.56* 
 LCC 1.19 0.16 1.19 0.16 1.19 0.93 6.03** 

3-month PF 0.40% 0.40% 0.40% 0.80% 0.40% 1.60% 2.00% 
 LUC 1.18 1.18 1.18 0.11 1.18 0.77 1.96 
 LCC 1.19 1.19 1.19 0.16 1.19 0.93 5.15* 

4-month PF 0.40% 0.80% 0.40% 0.40% 0.80% 0.80% 1.60% 
 LUC 1.18 0.11 1.18 1.18 0.11 0.11 0.77 
 LCC 1.19 0.16 1.19 1.19 0.16 0.16 4.91* 
5-month PF 0.40% 0.40% 0.40% 0.40% 0.80% 1.60% 1.60% 

 LUC 1.18 1.18 1.18 1.18 0.11 0.77 0.77 
 LCC 1.19 1.19 1.19 1.19 0.16 0.93 4.91* 

6-month PF 0.80% 0.80% 0.80% 0.80% 0.80% 0.40% 2.40% 
 LUC 0.11 0.11 0.11 0.11 0.11 1.18 3.56* 
 LCC 0.16 0.16 0.16 0.16 0.16 1.19 6.03** 

Panel B: Kerosene 
1-month PF 0.80% 0.80% 0.80% 0.80% 0.80% 2.00% 1.60% 

 LUC 0.11 0.11 0.11 0.11 0.11 1.96 0.77 
 LCC 0.16 0.16 0.16 0.16 0.16 2.20 0.93 
2-month PF 0.80% 0.80% 0.80% 0.80% 0.80% 2.80% 2.40% 

 LUC 0.11 0.11 0.11 0.11 0.11 5.50** 3.56* 
 LCC 0.16 0.16 0.16 0.16 0.16 5.96* 6.03** 

3-month PF 0.80% 0.80% 0.80% 1.20% 0.80% 2.80% 2.40% 
 LUC 0.11 0.11 0.11 0.09 0.11 5.50** 3.56* 
 LCC 0.16 0.16 0.16 0.19 0.16 7.40** 6.03** 

4-month PF 0.80% 1.20% 0.80% 1.20% 0.40% 2.40% 2.80% 
 LUC 0.11 0.09 0.11 0.09 1.18 3.56* 5.50** 
 LCC 0.16 0.19 0.16 0.19 1.19 6.03** 7.40** 
5-month PF 0.80% 0.80% 0.80% 0.80% 0.40% 2.40% 3.60% 

 LUC 0.11 0.11 0.11 0.11 1.18 3.56* 10.23*** 
 LCC 0.16 0.16 0.16 0.16 1.19 6.03** 11.31*** 

6-month PF 1.20% 1.20% 0.80% 0.80% 0.80% 1.60% 3.60% 
 LUC 0.09 0.09 0.11 0.11 0.11 0.77 10.23*** 
 LCC 0.19 0.19 0.16 0.16 0.16 0.93 11.31*** 

Panel C: Crude oil 
C-month PF 3.60% 2.00% 2.40% 2.80% 2.80% 2.80% 0.80% 
 LUC 10.23*** 1.96 3.56* 5.50** 5.50** 5.50** 0.11 
 LCC 11.31*** 2.20 6.03** 7.40** 12.29*** 7.40** 0.16 
1-month PF 0.80% 2.40% 5.20% 6.40% 5.60% 8.00% 4.00% 

 LUC 0.11 3.56* 22.32*** 33.15*** 25.78*** 49.45*** 12.96*** 
 LCC 0.16 3.90 22.57*** 33.28*** 27.44*** 49.72*** 16.84*** 
2-month PF 0.40% 1.20% 4.80% 6.00% 5.60% 6.80% 3.60% 

 LUC 1.18 0.09 19.02*** 29.40*** 25.78*** 37.04*** 10.23*** 
 LCC 1.19 0.19 19.40*** 29.53*** 27.44*** 37.77*** 14.92*** 

3-month PF 0.40% 0.80% 3.20% 3.60% 5.20% 7.20% 3.60% 
 LUC 1.18 0.11 7.73*** 10.23*** 22.32*** 41.06*** 10.23*** 
 LCC 1.19 0.16 9.18** 11.31*** 24.41*** 41.59*** 14.92*** 

4-month PF 0.40% 0.40% 2.80% 2.40% 4.00% 7.20% 3.20% 
 LUC 1.18 1.18 5.50** 3.56* 12.96*** 41.06*** 7.73*** 
 LCC 1.19 1.19 7.40** 6.03** 13.74*** 41.59*** 9.18** 
5-month PF 0.40% 0.40% 3.20% 2.40% 4.00% 5.60% 3.60% 

 LUC 1.18 1.18 7.73*** 3.56* 12.96*** 25.78*** 10.23*** 
 LCC 1.19 1.19 9.18** 6.03** 16.84*** 25.96*** 14.92*** 

• VaR is calculated based on 250 observations in out-of-sample from 23 October 2014 to 30 October 2015.  
• PF is the probability of failures (violations). The LR statistic in bold denotes rejection of each test. The critical 

value for the unconditional coverage and independent test (!"($%)	and	!"($%) ) is 2.7055, and that for the 
conditional coverage likelihood ratio test !"(%%) is 4.6052. *, ** and *** denote the significance at 10%, 5% and 
1% levels, respectively. 

 
 

  



 
 

Figure 1: Realised volatility under different sampling frequency for gasoline futures 

 

Figure 2: Realised volatility under different sampling frequency for kerosene futures 

 

Figure 3: Realised volatility under different sampling frequency for crude oil futures 
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Figure 4: Daily log-return of futures contracts with longest maturity 
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Figure 5: Daily realised volatility of futures contracts with longest maturity 
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Figure 6: Value at Risk (1%) of 6-month gasoline futures 

 

Figure 7: Value at Risk (1%) of 6-month kerosene futures 

 

Figure 8: Value at Risk (1%) of 6-month crude oil futures 
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