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Internet Auctions with a Temporary Buyout Option∗
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Abstract

We model an Internet auction with a temporary buyout option. Our main result shows that

under certain parameter values, there exist two types of equilibria where offering a temporary

buyout option with an appropriate reserve price enables the seller to increase expected revenue.
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1 Introduction

This paper is motivated by Internet auctions, in which buyout options are present. The buyout option in

the auctions allows a bidder to obtain the object immediately by exercising a pre-determined price. Mainly,

there are two types of buyout options: the first is a permanent buyout option, which remains available

throughout the whole auction and was offered on Yahoo. The second is a temporary buyout option and

active as long as no bid has been put in the auction. This option is offered on eBay, called “Buy-It-Now”.

In this paper, we only focus on temporary buyout option.

eBay’s quarterly reports for 2007-2008 show that fixed price trading, mainly consisting of “Buy-It-Now”

purchases, accounts for more than 40% of gross merchandise volume. Moreover, accross different product

categories, percentage of augmenting Internet auctions with a buyout option is between 20% and 60%. Our

main interest is to investigate in which case it is attractive for the seller to combine an auction with a

temporary buyout option.

Typically, Internet auction format is second price. However, Internet auctions also have some special

characteristics. First, normally, in order to attract as many bidders as possible, an Internet auction lasts

for a few days. During this period, each bidder sequentially arrives at the auction and endogenously decides

whether or not to enter and put a bid. Second, before entry, each bidder has to spend some money and
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time identifying the seller’s reliability and services, all of which can be seen as a participation cost for each

bidder1. Bajari and Hortacsu (2003) have shown the significant empirical evidence of participation cost on

eBay auctions, and also suggested that this cost is one of the main determinant factors of entry.

In this paper, we construct a simple two-valuation model with two risk neutral bidders to illustrate how

a temporary buyout price is profitable for a seller in a second price auction, when participation is costly and

bidders sequentially decide whether or not to enter. First, we characterize the maximum expected revenue

of the seller under reserve price alone. We show that under certain parameter conditions, the presence of

participation cost discourages future entry and thus decreases the expected revenue of the seller. With a

temporary buyout option, since the first bidder with high valuation is supposed to exercise this option,

when this option is not exercised, the future bidder knows that the initial bidder is of low valuation. This

encourages entry of the second bidder in the auction and enables the seller to increase his expected revenue.

Till date, the main explanation for the use of buyout options is based on risk aversion of agents. In

Budish and Takeyama (2001), it is assumed that bidders are risk averse while Mathews and Katzman (2006)

study a risk averse seller sells an object via a second price auction with a temporary buyout option and

show that “this (buyout) option may result in a Pareto improvement compared to a sealed bid second price

auction”; Hidvégi, Wang, and Whinston (2006) investigate an English auction with a permanent buyout

price, and show that “(a) buy price increases expected social welfare and the expected utility of each agent

when either buyers or seller are risk-averse”; Reynolds and Wooders (2009) consider both temporary and

permanent buyout options and claim that in an auction with a buyout option, the seller can extract more

profit from risk averse bidders.

In the literature, some theoretical analysis on participation cost in auctions has been discussed by Tan

and Yilankaya (2006); McAfee and McMillan (1987); Levin and Smith (1994); Samuelson (1985). Bulow and

Klemperer (2009) discuss jump bidding in the case of costly and sequential entry in auctions.

2 The model

Consider a seller S selling an indivisible object to two risk neutral bidders, 1 and 2 by employing a

second price auction with a reserve price R ∈ [0, VH ]. The valuation Vi for bidder i is private information

and we assume that it is either VL or VH , where VL < VH with α ∈ (0, 1) being the probability that Vi = VL.

We assume that the auction lasts for two periods and bidders arrive sequentially and make a decision to

either enter the auction or quit. We assume that the bidders are aware of their own private valuations and

thus entry decisions can be conditioned on this variable. Moreover, we assume that bidder 2 also gets to

observe whether entry has taken place in period 1 or not and thus bidder 2’s entry decision in period 2 can

also be conditioned on this information. We also assume that to enter the auction and submit a bid, each

bidder has to incur a participation cost C, i.e., money and time associated with bidding, where C ∈ (0,∆),

∆ = VH −VL and VL−C ≥ 0. This cost is the same across both bidders. At the end of the second period, a

bidder with highest bid wins and pays either the second highest bid or the reserve price R. If both bidders

put the same bid, the object is allocated to one of the bidders with probability 1/2. If there is no entry, the

1Even thought eBay has a feedback system to assess sellers’ reputation, eBay still suggests potential bidders
to contact with the seller and check his creditability before bidding, since this reputation system might be easily
manipulated by sellers.
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seller keeps the object whose valuation of the object is normalized to zero. Throughout, we will restrict our

attention to equilibrium outcomes in which each entering bidder bids his true valuation2.

2.1 Maximum expected revenue under reserve price alone

In this section, we first characterize the maximum expected revenue of the seller when he only sets a

reserve price R.

If R > VL−C, a bidder with valuation VL will never enter the auction and thus the seller can only sell if

one of the bidders has the valuation VH . It is clear that the optimal choice of R in such a case will be given

by R = VH − C. The seller’s expected payoff given R = VH − C is given by

Y1 = (1− α2)(VH − C) (1)

Now with R ≤ VL − C, if entry takes place in period 1, then bidder 2 of valuation VL will not enter the

auction. However, the decision of bidder 2 of high valuation will depend on whether α(VH − VL) is greater

or less than C and this will affect the optimal reserve price (as well as the expected payoff to the seller), we

consider each in turn.

Case 1. α(VH − VL) < C

In this case, if entry takes place in period 1, bidder 2 of either valuation makes a negative profit by

entering the auction. Anticipating this, bidder 1 of both valuation must enter in the first period. The seller’s

payoff then is R. Thus, when optimal value of R ≤ VL − C and α(VH − VL) < C, the maximum expected

revenue to the seller is given by

Y2 = VL − C (2)

Case 2. α(VH − VL) ≥ C

In this case, even if entry takes place in period 1, bidder 2 of high valuation must enter the auction. This

implies that bidder 1 with low valuation gets an expected payoff of α(VL−R)−C. Now if optimal choice of

R is such that R ≤ VL− C
α , there exists a pure strategy equilibrium in which bidder 1 of both valuations will

enter with probability one, in period 2, bidder 2 enters if and only if he is of high valuation. This gives the

seller an expected payoff of αR+ (1−α)[αVL + (1−α)VH ]. Clearly, this payoff is maximized at R = VL− C
α

which gives the seller an expected payoff of

Y3 = (1− α)2VH + α(2− α)VL − C (3)

Now when R is strictly greater than VL − C
α (but less than VL − C), a pure strategy equilibrium will

not exist. In this case, however, there exists a unique mixed strategy equilibrium in which bidder 1 of high

2Other types of outcomes may arise in equilibrium, for instance, if R ≤ VL − C, an outcome in which bidder 1
enters and bids VH (not truthful bidding), and bidder 2 staying out can be supported as an equilibrium outcome.
In the equilibrium, bidder 1 wins the object by paying R. A large literature has been discussed about selection of
“reasonable” equilibria in a sequential game. Riley (2001) gives a survey in this literature.
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valuation enters with probability one, bidder 2 of low valuation does not enter the auction. Bidder 1 of low

valuation enters the auction with probability qL while bidder 2 of high valuation enters the auction with

probability qH . Let Y (R) denote the expected payoff to the seller in this mixed strategy equilibrium. It

is however, possible to show that Y (R) is strictly decreasing in R in the interval (VL − C
α , VL − C). This

allows us to conclude that the seller’s expected payoff takes the maximum value when R = VL − C
α and

qL = qH = 1. Thus, when the optimal choice of R is no more than VL − C and α(VH − VL) ≥ C, the best

choice of R is given by R = VL − C
α and the maximum expected payoff to the seller is given by Y3 in Eq

(3.)3.

We can summarize the above discussions in the following Proposition

Proposition 1. If the seller uses only reserve price, his optimal choice of R is given by

(1.) Suppose α(VH − VL) < C:

if 1
α2 [VL − (1− α2)VH ] ≤ C, the seller chooses R = VH − C and the expected payoff is Y1;

if 1
α2 [VL − (1− α2)VH ] > C; the seller chooses R = VL − C and the expected payoff is Y2.

(2.) Suppose α(VH − VL) ≥ C:

if 1
α [(2− α)VL − 2(1− α)VH ] ≤ C, the seller chooses R = VH − C and the expected payoff is Y1;

if 1
α [(2− α)VL − 2(1− α)VH ] > C; the seller chooses R = VL − C

α and the expected payoff is Y3.

Proof. To prove this Proposition, we first observe that Y3 > Y2. Now when C > α(VH − VL), once one

bidder enters the auction, the second bidder (of either valuation) can not enter the auction. Therefore, the

seller can get at most R and his payoff is either Y1 or Y2. It is easy to check that Y1 ≥ Y2 if and only if

C ≥ 1
α2 [VL − (1 − α2)VH ]. Now when C ≤ α(VH − VL), bidder 2 (of valuation VH) will enter the auction

and thus the maximum payoff to the seller is given by max{Y1, Y3}. It is easy to check that Y1 ≥ Y3 if and

only if C ≥ 1
α [(2− α)VL − 2(1− α)VH ].

2.2 Temporary buyout option

In this section, we consider the same scenario but the seller can offer a temporary buyout option (price),

denoted as B. This option is temporary as it will disappear as soon as the first bid is placed in the auction.

The bidder who exercises this buyout price pays this price and obtains the object. The participation cost

C still needs to be paid whether the object is acquired through bidding his private value or exercising the

buyout price B. The seller chooses two variables to maximize his expected revenue: (B,R), where B is the

buyout price, R is the reserve price, and B > R4.

The use of a temporary buyout option in our model is profitable for the seller as it encourages entry of

the second bidder. The seller can choose an appropriate buyout price which will be exercised if and only if

the initial bidder is of high valuation. The first bidder of low valuation either does not enter the auction

3A proof is available upon request.
4When B = R, in fact, the auction becomes a fixed price selling mechanism.
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(as in the equilibrium play of Proposition 2) or else he enters but does not exercise the buyout option (as

in the equilibrium play in Proposition 3). In either case, however, when the buyout option is not exercised,

the second bidder correctly anticipates that the first bidder is of low valuation. This encourages future entry

and raises the seller’s expected revenue in the auction.

Proposition 2. Suppose that (1−2α)C > 2α(VH−VL)−α2(2VH−VL), then there exists a choice of (B,R)

and an associated equilibrium in which the seller’s expected revenue is strictly greater than his expected

revenue in an auction which uses only reserve price.

Proof. Let (B∗, R∗) be given by R∗ = VL − C and B∗ satisfying

VH −B∗ = α(VH −R∗) (4)

and consider the following strategy profile for the bidders: bidder 1 with valuation VH enters the auction and

exercises the buyout option while bidder 1 of low valuation does not enter the auction. The entry strategy of

bidder 2 of high valuation is to always enter the auction given that the buyout option is not exercised while

bidder 2 with valuation VL enters the auction if and only if there has been no entry in the first period.

Given the strategies of the second bidder, if the first bidder of high valuation exercises the buyout option,

his payoff is VH − B∗. On the other hand, if he enters and does not exercise the option, bidder 2 of high

valuation will enter, which gives bidder 1 an expected payoff of α(VH − R∗). Clearly, the strategy of high

valuation bidder 1 is optimal. It is also clear that if bidder 1 of low valuation were to enter, his expected

payoff will be negative given that the second bidder of high valuation would enter the auction.

Given bidder 1’s strategies, either the auction is over with the buyout option being exercised in the first

period, or there is no entry in the first period. Given no entry and the fact that R∗ = VL − C, it is optimal

for bidder 2 of both valuations to enter and get the object at R∗. Thus, bidder 2’ entry strategy is optimal

as well. It is important to note that bidder 2 (valuation VH) always enters the auction. Now if there is an

entry in the first period and the buyout option is not exercised (this happens ‘off the equilibrium path’),

bidder 2’s belief is that the first bidder is of low valuation and this justifies his entry decision.

The expected payoff to the seller from this equilibrium is given by YB = αR∗ + (1− α)B∗. It is easy to

check that at R∗ = VL −C and B∗ = VH(1− α) + αR∗ that YB = (1− α)2VH + α(2− α)(VL −C) which is

strictly greater than Y3. Moreover, given the assumption that (1− 2α)C > 2α(VH − VL)−α2(2VH − VL), it

is also possible to check that YB > Y1. Since from Proposition 1, the maximum expected payoff to the seller

is no more than max{Y1, Y3}, the Proposition follows.

While this Proposition tells us that a temporary buyout option can dominate an auction mechanism

that uses only reserve price, the strategies used by the bidders in this equilibrium is somewhat problematic.

Observe that in this equilibrium, the strategy of low valuation bidder 1 is not to enter the auction while

bidder 2 of the same valuation enters the auction with probability one (along the equilibrium path) if the

buyout option is not exercised. In the context of Internet auctions (which runs for a few days) where the

buyers have an option to wait, the entry sequence of the bidders is not predetermined and may not be

common knowledge. Consequently it might be difficult (if not impossible) to implement the above outcome

as the bidders may not be sure whether he is the first or the second bidder to arrive at the auction. Thus, it
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is of interest to know whether a temporary buyout option can still dominate a standard auction mechanism

using strategies in which the bidders’ strategies can depend only on (a.) bidders’ private valuations and

(b.) the entry history, i.e, whether some other bidder has already entered an auction but not on any other

information. Given this restriction, a bidder with a given valuation and who faces the same entry history

must use the same strategies independent of when he arrives at the auction. We refer to these strategies as

the time invariant strategies. In what follows, we only consider pure strategy equilibrium.

Proposition 3. Assume that the bidder uses time invariant strategies in which his choices could depend

only on his valuation and the entry history but not on the time he arrives at the auction, then, there

exists a choice of (B,R) and an associated equilibrium in which the seller’s expected payoff is exactly Y3 =

(1−α)2VH +α(2−α)VL−C. Moreover, Y3 is also the maximum payoff that the seller can get when bidders

are restricted to use time invariant strategies.

Proof. Let R∗∗ = VL − C
α and B∗∗ that satisfies VH − B∗∗ = α(VH − R∗∗). Consider the following time

invariant strategy profile for the bidders: bidder 1 (of both valuations enters) exercises B∗∗ when V1 = VH

and bids his valuation when V1 = VL. Bidder 2 of high valuation chooses to enter given that B∗∗ is not

exercised while bidder 2 of valuation VL always chooses not to enter. Note that given bidder 1’s entry

strategies, along the equilibrium path, in bidder 2’s turn, if B∗∗ is not exercised and a bid is already in the

auction, bidder 2 believes that V1 = VL and his entry decision is optimal.

Given bidder 2’s strategies, bidder 1 of high valuation obtains the same expected payoff between exercising

B∗∗ and putting his valuation. Clearly, the strategy of bidder 1 with valuation VH is optimal. It is also

straightforward to see that when V1 = VL, bidder 1 weakly prefers to enter (the expected payoff is zero)

given bidder 2 of high valuation would enter the auction. Given the strategies of the first bidder, either the

auction is over with the buyout option being exercised in the first period, or there is one bid in the first

period. Given a bid already in the auction, it is optimal for bidder 2 of high valuation to enter and obtain

the object by paying VL, but chooses not to enter if V2 = VL. Thus, bidder 2’s entry strategy is optimal.

The expected revenue of the seller in the equilibrium is given by (1 − α)B∗∗ + α[αR∗∗ + (1 − α)VL].

Substituting R∗∗ = VL− C
α and B∗∗ = (1−α)VH +αVL−C into the equation, we have the expected revenue

of the seller (1− α)2VH + α(2− α)VL − C, which is exactly equal to Y3.

Observe also that in any equilibrium where bidders use time invariant strategies, it must be the case that

a bidder who arrives at the auction firstly must enter immediately. The high valuation bidder must exercise

the buyout option while the low valuation bidder will put in a bid. Since the buyout price is higher than

the reserve price, it must be that if the buyout option is not exercised, the second bidder (of high valuation)

must enter the auction. This means that the expected payoff of the first bidder (low valuation) is at most

α(VL − R) − C. Since this payoff has to be non negative, we have R ≤ VL − C
α . Given any such R, the

maximum buyout price B equals VH −α(VH −R). Clearly, the seller’s payoff is increasing in R in the range

[0, VL− C
α ] and thus the best value for R equals R∗∗ = VL− C

α , which yields an expected payoff of Y3 to the

seller.

Corollary 1. Suppose that Y1 < Y3 and that α(VH−VL) < C, then there exists a temporary buyout option

and an associated equilibrium in which the seller’s expected payoff is strictly greater than the expected payoff

that he can get using an auction that uses only reserve price.
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Proof. In Proposition 1, under the condition of α(VH −VL) < C, the expected payoff of the seller is no more

than max{Y1, Y2} when he uses only reserve price. From Proposition 3, in the equilibrium a temporary

buyout option yields Y3 to the seller. Note that Y3 is strictly greater than Y2. Therefore, if Y1 < Y3, then

the seller is better off from offering a temporary buyout option.

Summarizing the parameter conditions of Y1 < Y3 and α(VH − VL) < C, we have that the temporary

buyout option raises the seller’s expected revenue when α(VH − VL) < C < 1
α [(2− α)VL − 2(1− α)VH ].

Remark 1. When the seller uses a temporary buyout option, there also exist other equilibria where the

buyout option may reduce the seller’s expected revenue 5. In particular, when α(VH − VL) < C < 1
α [(2 −

α)VL− 2(1−α)VH ] so that the seller is better off from a temporary buyout option in one equilibrium, there

always exists another equilibrium where bidder 1 with both valuations chooses to enter and never exercises

the buyout option and bidder 2 is weakly better off not to enter. Compared with using reserve price alone,

in the second type of equilibrium the buyout option decreases the seller’s expected payoff, as bidder 1 only

pays R = VL − C
α to obtain the object after entry.

3 Conclusion

Our main result shows that under certain parameter values, there exist two types of equilibria where

offering a temporary buyout option with an appropriate reserve price enables the seller to increase expected

revenue.

References

Bajari, P., and A. Hortacsu (2003): “The winner’s curse, reserve prices, and endogenous entry: empirical insights

from eBay auctions,” RAND Journal of Economics, 34, 329–355.

Budish, E. B., and L. N. Takeyama (2001): “Buy prices in online auctions: irrationality on the internet?,”

Economics Letters, 72, 325–333.

Bulow, J., and P. Klemperer (2009): “Why do sellers (usually) prefer auctions?,” American Economic Review,

99(4), 1544–75.
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