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Cass Business School
City University, London

September 8, 2005

Abstract

The asymptotic behaviour of the optimal investment strategy for an insurer is

analysed for a number of cash flow processes. The insurer’s portfolio consists of

a risky stock and a bond and the cash flow is assumed to be either a normal or a

compound Poisson process. For a normally distributed cash flow, the asymptotic

limits are found in the cases that the stock is very risky or very safe. For a

compound Poisson risk process, a composite asymptotic expansion is found for

the optimal investment strategy in the case that stock is very risky and the claim

size distribution is of an exponential type.

In general for a compound Poisson cash flow, the outer asymptotic limit re-

duces the integro-differential equation describing the optimal stock allocation to

an integral equation, which determines the classical survival probability in ruin

theory. The leading order optimal asset allocation is derived from this survival

probability through a feedback law. Calculation of the optimal asset allocation

leads to a difficult numerical problem because of the boundary layer structure of

the solution and the tail properties of the claim size distribution. A second order

numerical method is successfully developed to calculate the optimal allocation for

light and heavy-tailed claim size distributions.

1 Introduction

The net cash flow for an insurance portfolio from collected premiums and claims paid
on insurance is called the risk process. Ruin theory has traditionally been the study of
the probability of ruin of an insurer determined directly from the risk process without
allowing for explicit investment of the insurer’s surplus. Generally, an analytical ex-
pression for the ruin probability as a function of the current surplus (the ruin function)
is only available for claim size distributions of exponential form. Rolski et al. (1999)
develop the theory in considerable detail. As analytical results are not available research

1



has concentrated on the behaviour of the ruin function as the current surplus tends to
infinity. Lundberg bounds limit the size of the ruin function as long as the claim size
distribution is light-tailed. For sub-exponential claim size distributions the asymptotic
behaviour of the ruin function as the surplus tends to infinity is proportional to the
integrated tail distribution of the claims.

We consider the optimal investment strategy for an insurer, which has a portfolio of
a stock and a bond, where there is a stochastic cash flow arising from the risk process Rt.
This problem was first analysed by Browne (1995) who adopted a normally distributed
risk process. He found the optimal investment strategy for two different objectives: to
minimise the probability of ruin and to maximise the utility of wealth for an exponential
utility function. If there is no bond in the portfolio then for both these objectives it is
optimal to invest a constant amount of money, independent of the current surplus, in
the risky stock.

Hipp & Plum (2000) consider a portfolio consisting of just a risky stock, but used a
compound Poisson process to model the risk process Rt. They found that the optimal
strategy depends critically on the distribution of the claim sizes. In contrast to the
normally distributed cash flow, the optimal strategy is to invest a fraction of the current
surplus in the risky stock. Analytical results are available if the claim size distribution
is exponential, and even here, an explicit optimal investment strategy can be found only
for particular parameter choices. Liu & Yang (2004) extend the Hipp & Plum model
to include a bond as well as a stock in the portfolio, and calculated the optimal asset
allocation numerically for a number of different claim size distributions. A review of
the optimal investment problem, as well as other optimal control problems in insurance,
can be found in Hipp (2004).

There are many refinements to the basic model of ruin in the literature. Of rele-
vance here is the work by Frolova, Kabanov & Pergamenshchikov (2002) who consider
the effect a fixed investment in a risky asset has on the ruin probability. They use
an exponential claim size distribution and a Brownian motion for the risky asset and
found the behaviour of the ruin probability for small and large volatility of the asset.
Recent research for the optimal investment problem for an insurer has mirrored the
development of ruin theory. Hipp & Schmidli (2003) determine the asymptotic behav-
iour of the ruin probability as the current surplus tends to infinity in the small claims
case. Gaier, Grandits & Schachermayer (2002) consider a claim size distribution with
exponential moments, while Schmidli (2005) has determined the corresponding result
for sub-exponentially distributed claim sizes.

Here, we study the asymptotic behaviour of optimal investment decision for an in-
surer using a small dimensionless parameter of the model rather than as the surplus
tends to infinity. We use as this small parameter, the amount of risk in the asset defined
by

η =
µ− r0
σ2

, (1)

where µ, σ are the drift and coefficient of volatility in the stock and r0 is the risk free
rate of interest. All these quantities are taken as constants. The drift µ and the risk free
rate r0 are usually quoted in units of percentage per annum. Thus they have dimension
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per unit time. If the stock is lognormally distributed, the coefficient of volatility σ is also
quoted per annum. This represents the observed standard deviation of the log return
of the asset after one year, rather than signifying that this quantity has dimension per
unit time. The coefficient of volatility has dimension per square root of unit time in
order to be consistent with the dimension of the Brownian motion. Consequently, η is
a dimensionless quantity. Notice that with this notation the market price of risk is ησ.

Asymptotic methods have already been successfully applied to the optimal insurance
pricing problem. Emms, Haberman & Savoulli (2004) use a perturbation expansion to
determine the optimal premium in order to maximise the insurer’s expected total wealth.
This work represents an extension of those techniques to ordinary differential equations
(ODEs) and integro-differential equations arising from the optimal investment problem.
Hinch (1991) and Bender & Orszag (1978) develop the general theory of perturbation
expansions in a small parameter to give approximate analytical solutions.

In Section 2 we identify the limiting behaviour of the optimal strategy as η → 0 for a
normally distributed risk process. Using this feature of the model allows us to construct
approximate optimal strategies when the parameter is not zero, and so describe the
qualitative features of the optimal strategy when analytical results are not available. The
cash flow is taken as compound Poisson process in Section 3. We obtain approximate
optimal strategies for two light-tailed claim size distributions in Section 4. For these
distributions the problem reduces to the solution of an ODE and a system of ODEs.
It is easy to integrate these equations numerically so the exact solution can be readily
compared with the asymptotic results. For some of the analysis, asymptotic results are
only available analytically if there is no bond in the portfolio. We examine this case by
setting r0 = 0. Section 5 develops the theory for general claim size distributions and
describes three numerical schemes to solve the optimal asset allocation problem when
there is no reduction to ODEs. Conclusions are given in Section 6.

2 Normal risk process

First, we illustrate the asymptotic limit by considering the simple insurance model
presented by Browne (1995). Consider a financial market consisting of a risk-free bond
of price Bt and a stock of price Pt. We suppose the price of the bond evolves according
to

dBt = r0Bt dt.

Further, we assume the price of the stock is lognormally distributed:

dPt = µPt dt+ σPt dWt,

where Wt is a standard Brownian motion. We denote the surplus process by Xt and
suppose the insurer invests an amount At in the stock and Xt − At in the bond. The
surplus of the insurer is generated by the risk process Rt representing the increase in
wealth due to premium income and the loss of wealth due to claims. Thus the surplus
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process of the insurer is governed by

dXt = At
dPt
Pt

+ (Xt − At)
dBt

Bt

+ dRt,

where the current surplus is
X0 = s.

Browne (1995) adopts a normal random process for the risk process Rt:

dRt = α dt+ β dZt, (2)

where α and β are constants and Zt is a standard Brownian motion correlated with Wt

so that
E[WtZt] = ρt,

and 0 ≤ |ρ| < 1 is a dimensionless constant. The case that both processes are perfectly
positively/negatively correlated is ignored.

The constants α and β in (2) have units of [s][t]−1 and [s][t]−1/2 respectively where
[s] is the monetary scale and [t] is the time scale. The monetary scale is determined by
the actual values of α and β since these model the cash flow of the insurer. Without loss
of generality we suppose that the monetary unit is chosen so that α = β = O(1) if the
unit of time is a year: the current surplus s and the stock investment At are measured
in terms of this monetary unit. The values of the other rate parameters are also chosen
to be consistent with a time unit of a year. Henceforth we shall omit units from the
discussion.

We aim to find the optimal stock allocation A∗ which maximises the insurer’s survival
probability. Consequently we define the ruin time as

τ(s) = inf{t > 0 : Xt < 0, X0 = s}

and the insurer’s survival probability as

δ(s) = P[τ(s) = ∞|X0 = s].

The surplus process is a diffusion given by

dXt = (µAt + r0(Xt − At) + α) dt+ σAt dWt + β dZt.

Consequently, if we interpret δ(s) as a value function the HJB equation is

sup
A

{(α+ (µ− r0)A+ r0s)δ
′(s) + (σ2A2 + β2 + 2ρσβA)δ′′(s)} = 0, (3)

following Fleming & Rischel (1975), and where ′ denotes d/ds.
We suppose the supremum in (3) is given by the first order condition for a maximum

so that

A∗(s) = − δ′(s)η

2δ′′(s)
− ρβ

σ
, (4)
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where η is defined by (1). If the surplus s = 0 then ruin is certain whereas if s = ∞
then survival is assured. Consequently the boundary conditions for (3) are

δ(0) = 0, δ(∞) = 1. (5)

It is useful to introduce the following additional functions of the survival probability
δ(s):

u(s) = δ′(s), (6)
√

w(s) = − u(s)

u′(s)
, (7)

This notation will also prove useful in the forthcoming sections. Substituting (4) into
the argument of the supremum in (3) yields a quadratic in

√
w:

−1
4
η2σ2w + (ρσβη − r0s− α)

√
w + β2(1 − ρ2) = 0.

The discriminant of this equation is positive so the positive root gives the optimal stock
allocation as

A∗(s) = 1
2
η
√
w − ρβ

σ
=

1

ησ2
[((r0s+ α− ρσβη)2 + η2σ2β2(1 − ρ2))1/2 − (r0s+ α)]. (8)

Browne (1995) derives this result by appealing to a theorem proved by Pestien & Sud-
derth (1985).

To calculate the corresponding survival probability requires we integrate (6) and
(7), which given the complexity of (8) appears difficult. Consequently in order to make
progress we find an approximate optimal strategy by assuming a parameter of the model
is small . Consider an expansion of the optimal stock allocation for

η ≪ 1,

corresponding to a very risky stock: if (µ − r0) ≪ σ2 then the return from the stock
may be significantly below the return from the bond. We find after some manipulation

√

wrisky(s) =
β2(1 − ρ2)

r0s+ α
+O(η), (9)

A∗

risky(s) = −ρβ
σ

+
(1 − ρ2)β2η

2(r0s+ α)
+O(η2). (10)

To leading order the optimal strategy is to buy/sell an amount ρβ/σ of stock if the
risk process is negatively/positively correlated with the very risky stock. If we ignore
the bond by setting r0 = 0 in (8) then the optimal strategy is to buy/sell a constant
amount of the stock. We mean by constant amount that the optimal stock allocation is
independent of the current surplus level s.

If we substitute (9) into (7) and integrate we find at leading order

urisky(s) = K exp

[

− r0s
2 + 2αs

2β2(1 − ρ2)

]

,
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where K is a constant. Integrating again, completing the square and applying the
boundary conditions (5) yields

δrisky(s) =
Φ
(

ν
(r0s

α
+ 1
))

− Φ(ν)

1 − Φ(ν)
,

where Φ(x) is the standard normal distribution function and

ν = α

√

1

r0β2(1 − ρ2)
.

Next, consider the case of a relatively safe stock η ≫ 1. It is simple to expand (8)
in powers of η−1 to obtain

√
wsafe =

2(1 + ρ)

η

(

β

σ
− r0s+ α

σ2η
+O(η−2)

)

,

A∗

safe =
1

σ2

(

σβ − (1 + ρ)

(

r0s+ α

η

)

+O(η−2)

)

.

Thus at leading order it is optimal to buy a constant amount β/σ of stock as the stock
becomes safer (η → ∞). At leading order, we integrate (6) and (7) and apply the
boundary conditions to obtain

δsafe(s) = 1 − exp

[

− ησ

2β(1 + ρ)
s

]

.

Thus the leading order survival probability can be obtained analytically for both η ≪ 1
and η ≫ 1.

We have calculated perturbation expansions for the optimal asset allocation A∗(s),
which is given by a quadratic for

√
w, and then used the leading order term to derive

the leading order survival probabilities. To illustrate how good an approximation the
asymptotic results are relative to a numerical solution we set:

α = 0.6, β =
√

6, r0 = 0.04, σ = 0.3, ρ = 0.05, η = 2/3.

These figures are comparable to the parameter set given in Liu & Yang (2004) and
Promislow & Young (2005) for a compound Poisson risk process and exponential claims
using a normal approximation (see (31)). We vary µ which in effect varies the dimension-
less risk parameter η and plot the results in Figure 1. The solid lines show the solution
calculated numerically by evaluating (8) and integrating (6) and (7) with a Runge-Kutta
method. Figure 1(a) shows the optimal asset allocation superimposed with the asymp-
totic results, while Figure 1(b) shows the corresponding survival probabilities. As the
stock becomes risker (η → 0) it is optimal for the insurer to invest less in the stock and
the survival probability decreases. Notice that the asymptotic result A∗

risky gives a good
approximation up to about η ∼ 1 for this parameter set.
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3 Compound Poisson risk process

Hipp & Plum (2000) find that the optimal strategy has a different qualitative form if
one adopts a compound Poisson process for the risk process. We shall consider that case
next. The continuous Cramér-Lundberg model (Rolski et al. 1999) for the risk process
Rt of an insurer is

dRt = c dt− dSt,

where c is the constant premium rate charged by the insurer, and the aggregate claim
amount St is defined by

St =
Nt
∑

i=1

Yi.

Here, Nt denotes the number of claims modelled as a Poisson process with intensity λ
and Yi is an i.i.d. sequence representing the size of individual claims. We shall consider
a number of different distributions for the claim size Yi.

The actuarial price of insurance according to the expected value principle is

c = (1 + θ)E[St] = λ(1 + θ)E[Y1], (11)

where θ is the relative security loading. We assume that the income generated by
selling insurance can be continuously invested in the financial markets without regard
to dividend payments or transactions costs.

Following Hipp & Plum (2000) and Liu & Yang (2004) the corresponding HJB equa-
tion for the survival probability δ(s) is

sup
A

{λE[δ(s− Y ) − δ(s)] + δ′(s)[c+ (µ− r0)A(s) + r0s] +
1

2
δ′′(s)σ2A(s)2} = 0, (12)

where Y is the claim size and now there is assumed to be no correlation between the
risk and investment processes. We assume that the survival probability is a smooth,
strictly increasing, concave function so that the supremum is attained when

A∗(s) = −η δ
′(s)

δ′′(s)
= −η u(s)

u′(s)
= η

√
w, (13)

using the notation in (6) and (7). We also suppose µ > r0 so that η and A∗ are
non-negative. This is a feedback law: it gives the optimal allocation in the asset as a
function of the current surplus. The optimal control in Section 2 is in feedback form
only if r0 6= 0, whereas here A∗ is a function of s irrespective of the interest rate.

Substituting (13) into (12) yields the integro-differential equation

1
2
R̃
u(s)2

u′(s)
= (r̃0s+ c̃)u(s) + E[δ(s− Y ) − δ(s)], (14)

where we introduce the parameters

R̃ =

(

µ− r0
λ

)

η, r̃0 =
r0
λ
, c̃ =

c

λ
,
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The dimensionless parameter R̃ can be interpreted as the excess return of the stock
compared to the frequency of the claims scaled by the market price of risk. The pa-
rameter r̃0 is also dimensionless while c̃ has monetary units and is proportional to the
mean claim size. We set the monetary scale by the mean claim size so that units do not
appear in the model. The rate parameters use a time scale of years and so their values
are chosen appropriately.

If the surplus s = 0 then any investment in the risky stock leads to immediate ruin
with probability one and so the optimal allocation of stock is A∗(0) = 0. If s = ∞ then
survival is certain with probability one. Using (12), boundary conditions for (14) are
then

c̃δ′(0) = δ(0), δ(∞) = 1.

It is simpler to pose an initial value problem by putting δ̂(s) = δ(s)/δ′(0) so that
δ̂′(0) = 1. Henceforth we shall use the survival probability δ̂ and drop the hat so that
the boundary conditions are

δ(0) = c̃, δ′(0) = 1.

The actual survival probability can then be found by dividing through by δ(∞).
We can write the HJB equation explicitly by introducing the claim size tail distrib-

ution function H(y) and integrating by parts to obtain

1
2
R̃
√

w(s)u(s) + (r̃0s+ c̃)u(s) − c̃H(s) −
∫ s

0

u(y)H(s− y) dy = 0. (15)

The derivation of this equation can be found in more detail in Hipp & Plum (2000) and
Liu & Yang (2004). Notice that if the delayed kernel of the integral is separable so that
H(s− y) = H1(s)H2(y) (as it is for an exponential claim size distribution) then one can
divide through by H1(s) and reduce the equation to an ODE.

3.1 Small and large surplus

It is convenient to write the integro-differential equation (15) as a system of two dif-
ferential equations and one integral equation by differentiating. We obtain after some
manipulation

1
4
R̃w′(s) =

√
w

(

1
2
R̃− r̃0 + 1 +

c̃H ′(s)

u(s)
+m(s)

)

+ r̃0s+ c̃, (16)

u′(s) = − u√
w
, (17)

m(s) =

∫ s

0

u(s− y)

u(s)
dH(y), (18)

with initial conditions

w(0) = 0, u(0) = 1, m(0) = 0.
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Liu & Yang (2004) use a system of equations of this form to calculate the optimal
asset allocation numerically for the Pareto claim size distribution. We shall use these
equations to derive informally the behaviour of A∗ as s→ 0. This analysis extends that
of Hipp & Plum (2000) who found the leading order term when r0 = 0. The asymptotic
expressions are used subsequently in Section 5.2 to initiate the numerical schemes.

Balancing the first term on the LHS of (16) with the last term on the RHS yields

w(s) ∼ f0s as s→ 0, (19)

where

f0 =
4c̃

R̃
.

If we pose any other balance in the equation then that leads to a contradiction in either
the boundary condition or the size of the neglected terms. The leading order behaviour
of the optimal strategy is therefore independent of the claim size distribution. In order
to determine the nature of this dependence we must go to the next order. Put

w1(s) = w(s) − f0s ∼ o(s)

and substitute into (16). Integrating and neglecting small terms yields

w1(s) = f1s
3/2 =

16c̃1/2

3R̃3/2
(1

2
R̃− r̃0 + 1 + c̃H ′(0))s3/2.

Substituting into (17), integrating and expanding the resulting exponential leads to

u(s) ∼ 1 − 2s1/2

f
1/2
0

+
s

f0

(

f1

2f
1/2
0

+ 4

)

+ o(s). (20)

Consequently, the asymptotic behaviour of the ruin probability and optimal asset
allocation strategy is from (6) and (13)

δ(s) = c̃+ s− 4

3f
1/2
0

s3/2 +
s2

2f0

(

f1

2f
1/2
0

+ 4

)

+ o(s2).

A∗(s) = η(f0s)
1/2

(

1 +
f1s

1/2

2f0

)

+ o(s),

for s≪ 1.
For completeness we describe the existing results in the literature for the case that

the surplus s→ ∞ when there is no bond in the portfolio. If one assumes the exponential
moments of the claims distribution exist then Gaier, Grandits & Schachermayer (2003)
find an exponential bound on the ruin probability in terms of an adjustment coefficient.
Hipp & Schmidli (2003) show that for these light-tailed distributions A∗ →const. as
s→ ∞ where the constant depends on this adjustment coefficient.
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Schmidli (2005) finds that A∗ → ∞ as s → ∞ for subexponential claims, which are
a class of heavy-tailed distributions (Rolski et al. 1999). In our notation, he finds that
if the hazard rate −H ′(s)/H(s) tends to zero then

A∗ → µ

σ2

∫ s

0

H(s)

H(y)
dy as s→ ∞. (21)

As yet there are no corresponding results when there is a bond in the portfolio. One
can see from Schmidli (2005) that there is no distinguished limit in (15) as s→ ∞, that
is all the terms balance in the equation in the limit. In ruin theory, the limit of the ruin
probability as the surplus tends to infinity is used to approximate the ruin probability
for all s often with limited success (Rolski et al. 1999). In the next section we find that
a good approximation to a numerically computed solution can be found by considering
a small parameter in the model.

4 Light-tailed claim size distributions

We aim to study the qualitative form of the optimal strategy for the case

R̃ =

(

µ− r0
λ

)

η ≪ 1,

for a variety of different claim size distributions. Notice that this covers that part of the
parameter space for which η = O(1) as long as (µ− r0) ≪ λ.

Greater progress on the asymptotic expansion can be made for light-tailed claims
distributions. These asymptotic expressions can be used for a sensitivity analysis of the
optimal asset allocation to the parameters in the model without recourse to a numerical
study (Liu & Yang 2004). Furthermore, they substantiate the idea that the asymptotic
limit is well-defined for a risky stock and so motivates the general theory in the sub-
sequent section. The tail distribution function H(y) for each claim size distribution is
given in Table 1.

4.1 Exponential claim size distribution

For an exponential claim size distribution with parameter k, H(y) = e−ky and the
expected value principle gives the premium

c̃ = (1 + θ)k−1.

The integro-differential equation (15) reduces to a single ODE with this distribution. If
we multiply (15) by eks and then differentiate we obtain after some manipulation

R̃w′(s) = −2R̃kw(s) − 4[r̃0 − 1 + k(r̃0s+ c̃) − 1
2
R̃]
√

w(s) + 4(r̃0s+ c̃), (22)

with boundary condition
w(0) = 0.

10



For R̃ ≪ 1 the form of (22) suggests that the optimal strategy has a region of
rapid change or boundary layer close to s = 0 (Hinch 1991). In the outer region where
s ∼ O(1) we expect the derivative on the LHS of (22) to be negligible, whereas in a
thin inner region s ∼ O(R̃) the derivative is significant assuming w ∼ O(1). Thus we
introduce the outer perturbation expansion

w(s) ∼ w0(s) + R̃w1(s) + . . . (23)

By substituting (23) into (22) we obtain the leading order outer solution

w0(s) =

(

r̃0s+ c̃

r̃0 − 1 + k(r̃0s+ c̃)

)2

=

(

r0s+ (1 + θ)λk−1

r0 + θλ+ kr0s

)2

. (24)

The next order problem is

w′

0 = −2kw0 − 2
√
w0 + 2(r̃0 + kr̃0s+ θ)w

−1/2
0 w1.

Solving for w1 yields

w1(s) =
(r̃0s+ (1 + θ)k−1)2

(r̃0 + kr̃0s+ θ)5
[r̃0(r̃0 − 1) + (r̃0 + kr̃0s+ θ)(r̃0 + 2kr̃0s+ 2θ + 1)] .

We can continue to calculate higher order terms in the expansion but the expressions
become increasingly more cumbersome. Therefore the outer optimal stock allocation is
given explicitly by

A∗(s) = η

(√
w0 +

w1

2
√
w0

R̃

)

+ o(ηR̃).

It is clear that this expression does not satisfy the boundary condition at s = 0 so that
we must consider a thin inner region.

We denote the inner variable S by the scaling

s = R̃S,

and the inner dependent variable by W (S). The inner problem is therefore

Ẇ (S) = −2R̃kW (S) − 4[r̃0 + kr̃0R̃S + θ − 1
2
R̃]
√

W (S) + 4(r̃0R̃S + c̃),

where . ≡ d/dS. If we write the perturbation expansion

W (S) ∼ W0(S) + R̃W1(S) + . . .

we obtain at leading order
Ẇ0 = −4ζ

√

W0 + 4c̃.

where we have written ζ = r̃0 + θ. Integrating and applying the boundary condition
leads to the implicit relation

c̃ log

(

1 − ζ
√
W0

c̃

)

+ ζ
√

W0 + 2ζ2S = 0. (25)
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Since the leading order expansion is only given implicitly it is not possible to make
further analytical progress with the inner expansion.

Van Dyke’s matching principle (1975) requires that

W0(∞) = w0(0) =

(

c̃

ζ

)2

.

In the matching region the optimal stock allocation is therefore c̃η/ζ. The leading order
composite asymptotic expansion is

w(s) ∼ w0(s) +W0(S) −
(

c̃

ζ

)2

+O(R̃), (26)

where w0 is given explicitly by (24) and W0 is given implicitly by (25).
We use the parameter set given in Liu & Yang (2004):

µ = 0.1, r0 = 0.04, σ = 0.3, θ = 0.2, λ = 3, k = 1, (27)

which gives
η = 2/3, R̃ = 0.013.

Notice, that with this parameter set we focus on relatively small surpluses comparable
to the mean claim size E[Y1] = 1/k = 1. We shall find that it is critical to understand
how the optimal allocation behaves in this region in order to compute its value for much
larger surpluses.

We determine how the asymptotic result (26) compares with the numerical solution
of (22) for this parameter set. The numerical solution is calculated using an adaptive
Runge-Kutta scheme as given in Press, Teukolsky & Flannery (2002). Figure 2(a) shows
the composite asymptotic optimal asset allocation from (13) (thick line) superimposed
on the numerical solution (thin line). If A∗(s) > s then it is optimal for the insurer
to borrow at the risk free rate and invest that money in the risky stock in order to
avoid ruin. We can see in Figure 2(a) that if the current surplus s . 3 (comparable
to the mean claim size) then borrowing and investing is optimal. Both qualitative and
quantitative agreement are good between the asymptotic and numerical solution: if the
outer correction w1 is also added then the quantitative agreement is even better, but for
simplicity this is not shown. Figure 2(b) demonstrates the uniform convergence of the
composite asymptotic solution to the numerical solution as R̃ → 0 by decreasing µ. As
the return on the stock is decreased with the volatility held fixed then the stock becomes
increasingly risky, less money is invested in the stock and so borrowing requirements
are reduced. Figure 4(a) summarises the structure of the optimal stock allocation for
exponentially distributed claim sizes.

Given w(s) the survival probability can be calculated by integrating (6) and (7). If
r0 = 0 then at leading order we find

δ′0(s) = u0(s) = exp

((

1 − kc̃

c̃

)

s

)

,
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after applying the boundary condition u(0) = 1. It is straightforward to integrate again
and obtain

δ0(s) =
c̃

1 − kc̃

(

exp

((

1 − kc̃

c̃

)

s

)

− kc̃

)

. (28)

If r0 6= 0 then a similar calculation leads to

δ0(s) =
ekc̃/r̃0

k

(

r̃0
kc̃

)a−1

(γ(a, ks+ kc̃/r̃0) − γ(a, kc̃/r̃0)) + c̃. (29)

where the incomplete gamma function is

γ(a, x) =
∫ x

0
e−tta−1 dt and a =

1

r̃0
.

These expressions are the survival probabilities for the non-investment problem as we
shall see in Section 5. For (28), note that kc̃ > 1 is the net profit condition, and
δ0(∞) = kc̃2/(kc̃− 1). Consequently the ruin probability is

λ

kc
exp

(

λ

c
− k

)

s,

which corresponds to (5.3.8) in Rolski et al. (1999) in our notation.
Again, using the parameter set in Liu & Yang (2004), we plot the asymptotic and

numerical survival probabilities in Figure 2(c). The solid line is calculated by integrating
(22), (6) and (7) with a Runge-Kutta method, while the dashed lines are calculated from
the asymptotic results (28) and (29). The sensitivity of the optimal stock allocation and
the survival probability to the parameters in the model can be deduced directly from
the outer expansions rather than an exhaustive numerical study.

If we ignore the bond by setting r0 = 0 then at leading order the outer stock allocation
is

A∗

e =
η

k

(

1 + θ

θ

)

≈ η

kθ
, (30)

because we expect the safety loading θ ≪ 1. Here the subscript e denotes the exponen-
tial distributed claims in a compound Poisson risk process. Notice that the allocation
of stock is independent of the current surplus, s, as it was for the normal risk process.
The normal risk process (2) can be used to approximate a compound Poisson claims
process with intensity λ and exponentially-distributed claim sizes Yi by matching mo-
ments (Grandell 1991):

α = c− λE[Y1] = c− λ

k
=
λθ

k
, β2 = λE[Y 2

1 ] =
2λ

k2
. (31)

For a normal risk process, if there is no correlation between asset and claims and no
bond then from (10), the approximate optimal stock allocation is

A∗

n =
β2η

2α
≈ η

kθ
. (32)
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using (31) and where the subscript n refers to the normally distributed risk process.
Consequently, the outer optimal stock allocation for exponentially distributed claim

sizes (30) and the optimal allocation for a normal risk process (32) are similar for
appropriate parameter choices: compare Figure 1(a) for η = 2/3 (thin solid line) and
Figure 2(a) (thin solid line). In the case of a very risky stock R̃ ≪ 1 the optimal
strategies are quantitatively similar for all s. The strategies differ only when the current
surplus is close to zero or the loading is very large. The plots in Liu & Yang (2004),
Hipp & Plum (2000), and Castillo & Parrocha (2003) further confirm the boundary layer
structure of the optimal asset allocation when the claim size is exponentially distributed.

4.2 Erlang claim size distribution

For an Erlang distribution, Erl(n, k), we have H(y) =
∑n

i=1 [(ky)i−1/(i− 1)!]e−ky and

c̃ = (1 + θ)nk−1.

This distribution function leads to a system of n ordinary differential equations which
must be solved in order to determine the optimal asset allocation.

Substituting H(y) into (15) yields

(1
2
R̃
√
wu+ (r̃0s+ c̃)u)eks =

n−1
∑

i=0

ai(s), (33)

where the function

ai(s) :=
c̃(ks)i

i!
+

∫ s

0

u(y)eky
(k(s− y))i

i!
dy for i ≥ 0. (34)

Differentiating (34) yields a recurrence relation for ai(s):

ȧi = kai−1, for i > 0

and ȧ0 = u(s)eks. Next we define

Mj(s) :=

j−1
∑

i=0

ai
ȧ0

for 0 < j < n

and set M0 = 0 for convenience. The integro-differential equation (33) can then be
differentiated to obtain

R̃w′ = −2kR̃w − 4
√
w(k(r̃0s+ c̃) − 1

2
R̃ + r̃0 − 1 − kMn−1) + 4(r̃0s+ c̃), (35)

while the recurrence relations for Mj are

M ′

j = 1 + kMj−1 −Mj

(

k − 1√
w

)

for 0 < j < n. (36)
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The equations (35) and (36) form a system of n ODEs which have boundary conditions

w(0) = 0, Mj(0) = c̃ for 0 < j < n,

since ȧ0(0) = u(0) = 1.
Following the previous section we introduce an inner variable s = R̃S, write . ≡ d/dS,

and obtain the system

Ẇ = −2kR̃W − 4
√
W (k(r̃0R̃S + c̃) − 1

2
R̃ + r̃0 − 1 − kMn−1) + 4(r̃0R̃S + c̃), (37)

Ṁj = R̃

(

1 + kMj−1 −Mj

(

k − 1√
W

))

, (38)

Notice that in the inner regionW ∼ 1 from (19) andMj(s) ∼ 1 from (34). Consequently,
at leading order Mn−1 = c̃ from the boundary condition and

c̃ log

(

1 − ζ
√
W0

c̃

)

+ ζ
√

W0 + 2ζ2S = 0,

where ζ = r̃0 − 1. The inner solution is of the same form as (25) differing only in the
definition of the constant ζ.

For the parameter range we consider here ζ < 0 which means W0 → ∞ as S → ∞
and it is not possible to match to the outer region. This suggests that there is an
intermediate region with scales

s ∼ 1, Mj ∼ 1, w =
Ω

R̃2
,

where Ω ∼ 1. In this intermediate region the governing equations have no analytical
solution for arbitrary n, so we focus on the case n = 2, which was the case solved
numerically by Liu & Yang (2004). The aim here is to ascertain how the optimal strategy
differs from that obtained with exponentially distributed claims: the case n = 2 is a
first step in that direction. In this case the intermediate equations reduce to

Ω′ = −2kΩ − 4
√

Ω(k(r̃0s+ c̃) − 1
2
R̃ + r̃0 − 1 − kM1) + 4R̃(r̃0s+ c̃), (39)

M ′

1 = 1 −M1

(

k − R̃√
Ω

)

. (40)

At leading order the second equation integrates immediately to give

M1 =

(

c̃− 1

k

)

e−ks +
1

k
,

where the constant of integration has been chosen to match to the inner region. Using
this expression, (39) is the Bernoulli equation

Ω′ = −2kΩ − 4
√

Ω(kc̃− 2 + (1 − kc̃)e−ks),
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where to match to the inner solution we require Ω(0) = 0, and where for the moment
we have taken r0 = 0 to make analytical progress. Using the substitution z =

√
Ω this

equation can be integrated to obtain

√
Ω = 2

((

2

k
− c̃

)

(1 − e−ks) + (kc̃− 1)se−ks
)

.

The expression for Ω becomes invalid if Ω ≈ 0. If this occurs at si then we have
approximately that

1 − e−ksi =

(

1 − kc̃

2 − kc̃

)

ksie
−ksi . (41)

If the root of this equation exists, and it does for the parameter set considered here,
then there is an interior boundary later at s = si in the optimal asset allocation strat-
egy. In this region the dominant balance in the governing equations changes from the
intermediate to the outer equations.

From (35) and (36) the outer equations are at leading order

√
w0(k(r̃0s+ c̃) + r̃0 − 1 − kMn−1) = r̃0s+ c̃,

Ṁn−1 = 1 + kMn−2 −
(

1 − r̃0
r̃0s+ c̃

)

Mn−1 −
kM2

n−1

r̃0s+ c̃
.

In general, the outer equations have no analytical solution. Therefore, we consider the
case n = 2 again. Combining these two expressions leads to a Ricatti equation for M1

which has an analytical solution if r0 = 0 since then the coefficients of the equation are
constant:

c̃Ṁ1 = c̃−M1 − kM2
1 . (42)

The equation is separable and can be integrated to yield

M1 =
e(s)(1 − ∆(s)) − (1 + ∆(s))

2k(1 − e(s))
,

where we have written the functions

∆(s) =
√

1 + 4kc̃,

e(s) =

(

2kC + 1 + ∆(s)

2kC + 1 − ∆(s)

)

exp

(

s∆(s)

c̃

)

.

and C is a constant of integration. Here, ∆(s) > 1 is the discriminant of the RHS of
(42).

The composite expansion is now

w(s) ∼







W0(s/R̃) + Ω(s) − 2s(1 − r̃0)

R̃
for 0 ≤ s ≤ si

w0(s) for s > si,
(43)
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where we have just patched rather than matched the asymptotic expansion in the inner
boundary layer for simplicity (Hinch 1991).

Again, we compare the asymptotic expressions with a numerical solution of (35) and
(36) using the parameter set (27) unless stated otherwise. The numerical solution uses
an adaptive Runge Kutta scheme to integrate the system of n ODES. For the case n = 2
and r0 = 0 the results are comparable to Figure 2 of Liu & Yang (2004) (where r0 6= 0)
because the optimal strategy is relatively insensitive to the interest rate on the bond.

Figure 3 shows the optimal asset allocation for claim sizes with an Erlang distri-
bution. Graph (a) is a comparison of the composite asymptotic expansion and the
numerical solution. Agreement is good especially over the intermediate region, which
extends up until s = si = 2.1 computed from (41). The second graph (b) shows the uni-
form convergence of the composite asymptotic expansion (43) as R̃ → 0. The position
of the inner boundary layer si does not change in the graph because at leading order si
is independent of R̃. The final graph (c) shows the optimal allocation as the number of
terms n increases in the tail distribution H(y). The optimal allocation increases in the
intermediate region with n because the mean claim size is n/k: more money is placed
in the stock to cover the increased mean claim size. Considerable borrowing is required
if the surplus is small because even a moderate claim leads to immediate ruin. The sen-
sitivity of the allocation to the model parameters can be deduced from the composite
expansion (43). A summary of the qualitative optimal allocation strategy is given in
Figure 4(b).

5 General claim size distributions

The structure of the light-tailed distributions in the previous section suggests that the
boundary layer structure of the optimal asset allocation for R̃ ≪ 1 carries over to more
general claim size distributions. We shall verify this assertion by numerical integration
using a number of different finite difference schemes and claim size distributions.

5.1 General theory

For an arbitrary claim size distribution the inner equations can be obtained from (16)–
(18) by rescaling

s = R̃S, y = R̃Y,

which yields

1
4
Ẇ (S) =

√
W

(

1
2
R̃− r̃0 + 1 +

c̃Ḣ(S)

u(S)
+m(S)

)

+ r̃0R̃S + c̃, (44)

u̇(S) = −R̃ u√
W
, (45)

m(S) = R̃

∫ S

0

u(Y )

u(S)
Ḣ(R̃(S − Y )) dY, (46)
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where . ≡ d/dS. Consequently, to leading order u0 = 1, m0 = 0 and

Ẇ0 = −4ζ
√

W0 + 4c̃,

where
ζ = r̃0 − 1 − c̃H ′(0). (47)

Integrating and applying the boundary condition gives

c̃ log

(

1 − ζ
√
W0

c̃

)

+ ζ
√

W0 + 2ζ2S = 0

If ζ < 0 then we expect an intermediate region for the optimal asset allocation strategy
because W0 → ∞ as S → ∞. This was the case for the Erlang distribution. Consider
the claim size distributions shown in Table 1. The Erlang and Lognormal distributions
have H ′(0) = 0 and so for a reasonable parameter set they lead to an optimal allocation
strategy with an intermediate region since r̃0 is small. In general terms, if the probability
density function of the claims distribution is zero at y = 0 (corresponding to few small
claims) then there is an intermediate region in the optimal asset allocation strategy. If
claims are likely to be close to the mean then the insurer must invest more in the risky
asset to prevent ruin.

If there is an intermediate region then we introduce the intermediate variable

w =
Ω

R̃2

and the intermediate equations are from (16)–(18)

1
4
Ω′(s) =

√
Ω

(

1
2
R̃− r̃0 + 1 +

c̃H ′(s)

u(s)
+m(s)

)

+ R̃(r̃0s+ c̃), (48)

u′(s) = −R̃ u√
Ω
, (49)

m(s) =

∫ s

0

u(s− y)

u(s)
dH(y). (50)

So at leading order u0 ≡ 1 to match to the inner solution and

m0(s) = H(s) − 1.

Substituting into (48) yields a Bernoulli equation which can be integrated to give

√
Ω = 2(c̃(H(s) − 1) + I(s) − r̃0)s), (51)

where I(s) =
∫ s

0
H(y) dy is the integrated tail distribution of the claim sizes. Using the

general equations we appear to be able to determine the intermediate region analytically
with r0 6= 0. There is an interior boundary layer at si given by the root of

r̃0si = c̃(H(si) − 1) + I(si).
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From (15), the outer optimal strategy to leading order is given by

(r̃0s+ c̃)u0(s) = c̃H(s) +

∫ s

0

u0(y)H(s− y) dy, (52)

if R̃ ≪ 1. This is a linear Volterra integral equation of the second kind with kernel H
and only has an analytical solution for particular claim size distributions. However, this
does represent a simplification of the problem: we have replaced a nonlinear integro-
differential equation with a linear integral equation. If there is no bond in the portfolio
so r̃0 = 0 then this integral equation is the classical ruin equation in insurance (see Rolski
et al. 1999 and differentiate equation (5.3.9)). At leading order the survival probability
is just that which minimises the probability of ruin for an insurer whose claims have a
compound Poisson distribution. It is simple to see why this is the case: when the stock
is very risky it is optimal to allocate very little reserve to the stock. The probability
of ruin is then just determined by the risk process Rt. At leading order the survival
probability determines the leading order optimal asset allocation through the feedback
law (13):

A∗

0(s) = −ηu0(s)

u′0(s)
,

since u0(s) = δ′0(s).

5.2 General numerics

If the claims distribution does not reduce to a system of ODEs then one is forced to
solve the integro-differential equation (15) numerically. We shall use Pareto, Lognormal
and Weibull distributions to illustrate the optimal allocation strategy for heavy-tailed
claim size distributions. The tail distribution functions are given in Table 1. Three
numerical schemes are considered.

The first scheme is a modification of that presented by Liu & Yang (2004). They
differentiated (15) to obtain a system of equations similar to (16)–(18). In order to solve
this system numerically they used an Euler finite difference step for the derivative in
(16) and a simple step function approximation to the integral in (18). If one adopts a
similar technique for the original integro-differential equation one finds that the numeri-
cal scheme is unstable. However, the integral in equation (31) of Liu & Yang contains a
singular kernel, and it is not clear how they have coped with that singularity. We have
used the asymptotic expressions for small surplus to initiate the numerical method at
s = s0 so that the singularity is avoided. We call this scheme the modified Liu & Yang
scheme.

Two computational difficulties are encountered. First, as s → 0 the gradient of u
tends to infinity from (20). If we start the numerical scheme at s0 ≪ 1 then the error
in a finite difference approximation is very large. However, we need to choose a small
value of s0 in order to resolve the boundary layer of the optimal strategy: for s ∼ R̃ ≪ 1
the optimal asset allocation strategy rapidly varies with the current surplus. Second, as
s→ ∞, u→ 0 because it is the derivative of the survival probability. If the distribution
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is light-tailed then this decay is exponential and will rapidly become of the order of the
truncation error of the finite difference approximation. Therefore we must adopt a grid
spacing which leads to a truncation error much smaller than u for large values of s.

We combat the first problem by using the coordinate transformation:

s = ψ2, (53)

so that the first derivative of u wrt. ψ is finite at ψ = 0. However, the singularity in
u is now removable rather than avoided altogether: we must still start the numerical
integration at ψ0 =

√
s0. We also use the extra terms in the asymptotic expansions at s0,

which were derived in Section 3.1. First order finite differences are used for derivatives
and a step function for the integral in (18). We call this the first order scheme.

In order to tackle numerical problems as s→ ∞ we introduce a second order scheme.
This has a smaller truncation error for given step size and so allows the computation to
proceed for larger values of s. Let us rewrite the integro-differential equation (15) as a
system of two Volterra integral equations using the transformation (53):

u(ψ) ≈
∫ ψ

ψ0

R̃Y u2(Y )

(r̃0ψ2 + c̃)u(Y ) − c̃H(Y 2) − v(Y )
dY + u0(ψ), (54)

v(ψ) ≈
∫ ψ

ψ0

2Y u(Y )H(ψ2 − Y 2) dY + v0(ψ), (55)

where y = Y 2 and we have used the asymptotic expressions u0, v0 as s → 0 to start
the integration at ψ0. Notice that we are working with the original integro-differential
equation rather than its differentiated form.

It is convenient to write the equations in vector form

f(ψ) =

∫ ψ

ψ0

K(ψ, Y, f) dY + g(ψ0), (56)

where

f =

(

u
v

)

, K(ψ, Y, f) =





R̃Y u(Y )2

(r̃0ψ2 + c̃)u(Y ) − c̃H(Y 2) − v(Y )
2Y u(Y )H(ψ2 − Y 2)



 , g =

(

u0(ψ)
v0(ψ)

)

.

We approximate the integral on the uniform grid given by

ψi = ψ0 + ih, for i = 1, . . . , N ,

and use the trapezium rule to approximate the integrals. This leads to an implicit
scheme at step i so we define the functions

Fi(f0, . . . , fi) := fi − 1
2
hKi(fi) − h

(

1
2
K0(f0) +

i−1
∑

j=1

Kj(fj)

)

− g = 0, (57)
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for 0 ≤ i ≤ N .
In order to calculate the root of this equation we use Newton’s method: if fi approx-

imates the root then the correction δfi satisfies

Jδfi = −Fi(f0, . . . , fi).

Here, the Jacobian J is a matrix given by

(Jmn) =
∂F

(m)
i

∂f
(n)
i

and superscripts denote vector components. It can be inverted easily for this two equa-
tion system to calculate δfi. The correction to the root is fi + δfi and this procedure
is continued until ||δfi|| is less than a prescribed tolerance. The numerical method then
proceeds to fi+1 up until fN . We call this the second order scheme.

Define the residual of (15) by

E(s) := 1
2
R̃
√

w(s)u(s) + (r̃0s+ c̃)u(s) − c̃H(s) −
∫ s

0

u(y)H(s− y) dy,

as evaluated on the finite difference grid. For the modified Liu & Yang and the first
order scheme a trapezium rule can be used to calculate the integral. We shall find if
one does not resolve the boundary layer of the optimal strategy then this residual may
not be small even though the numerical solution appears reasonable. The convergence
properties of the numerical solution can be assessed by varying the initial surplus s0 and
the step size h.

We start by validating the new numerical schemes for the Exponential and Erlang
(n = 2) distributions in Figure 5(a),(b) respectively. For these distributions the exact
solution is easy to calculate by integrating the ODEs numerically. In Figure 5(a) the
second order scheme is indistinguishable from the integrating the ODE, but the first
order scheme shows considerable error as s becomes large. The same behaviour occurs
in the second order scheme for s ≫ 10 and is caused by the rapid decay in the values
of u and v to values of the order of the truncation error. For Erlang distributed claims
in Figure 5(b) all schemes give good agreement over the integration range because the
tail distribution decays less rapidly than the exponential case.

Figure 6 is an attempt to reproduce the optimal asset allocation strategy for the
Pareto distribution given in Figure 3 of Liu & Yang (2004) . We have chosen s0 = 10−2

in order to approximately reproduce their results in graph (a) using our modification
of their method. However, it is clear by the considerable disagreement between the
numerical schemes that convergence has not been achieved in one or more of these
schemes. We require that as the step size h → 0 and as the initial surplus s0 → 0 then
the maximum error in the optimal numerical strategy tends to zero. Further we require
that the residual E(s) → 0 for all s because it represents the truncation error in the
numerical method.

Figure 6(b) shows the residual E from these schemes: only the second order scheme
yields small residuals. Graphs (c) and (d) use the same parameter set but reduce the
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initial start point to s0 = 10−4. Again, in graph (c) there is considerable disagreement
in results and the modified Liu & Yang and the first order scheme demonstrate poor
convergence at large s. For both the modified Liu & Yang and the first order schemes
integration terminates before the end of the integration range because u and w become
negative. If one reduces the step size h drastically then both these methods converge
towards the second order scheme, but then computational time becomes prohibitive. A
non-uniform grid may yield better performance. It is clear that the second order scheme
is the best behaved numerical method as it yields consistent results in graphs 6(a) and
6(c), but it is still not clear what is the optimal strategy.

We confirm in Figure 7 that the second order scheme does give a good approximation
to the optimal strategy by examining the limits s0 → 0 and h→ 0. The original graph
in Liu & Yang is inaccurate because it fails to adequately resolve the boundary layer
near s = 0 and fails to converge at large s. For this parameter set the second order
scheme displays adequate convergence at N = 1000 steps and s0 = 10−4. Figures 8, 9
show the optimal strategy for Lognormal and Weibull distributions with parameters
given in the captions. Both distributions are sub-exponential so A∗ → ∞ as s →
∞ although this is not demonstrated on the graphs. For the lognormal distribution
ζ < 0 so there is an intermediate region in Figure 8, while for Weibull distributions
ζ = ∞ so there is no intermediate region in Figure 9. On Figure 8 we have added the
composite asymptotic expansion for the inner and intermediate regions to demonstrate
the applicability of the asymptotic method. The integrated tail distribution in (51) was
calculated using an adaptive Simpson method. Figure 10 is a cautionary example, which
further demonstrates that one must check for convergence of the numerical scheme.
Here, we have reduced the resolution of the finite difference grid if claims are Weibull
distributed, but left the other parameters as in Figure 9. The optimal strategy in
Figure 10(a) looks plausible, but in (b) it is clear that the truncation error is large and
a much finer grid is required.

The qualitative structure of the optimal allocation strategy is shown in Figure 4(c)
for the Pareto claim and Lognormal claim size distributions and in Figure 4(d) for the
Weibull distributions.

Define the terms in the integro-differential equation (15) by

t0 = 1
2
R̃
√
wu, t1 = (r̃0s+ c̃)u(s), t2 = c̃H(s), t3 =

∫ s

0
u(y)H(s− y) dy.

In Figures 8,9(b) we plot t1, t2, t3 for the Lognormal and Weibull distributions distri-
butions and the parameters given in the captions. Term t2 decays rapidly as s → ∞
since it is the tail distribution function. Terms t1 and t3 balance for both distributions,
which confirms that the outer approximation (52) is valid for s ∼ 1. Furthermore, the
residuals for both Lognormal and Weibull distributions are very small so the boundary
layer is adequately resolved for the chosen step size h. These results suggest that the
boundary layer structure, which we developed in Section 5.1, does hold for heavy-tailed
distributions.

Figure 11 shows how the asymptotic structure of the optimal strategy changes as
the stock becomes safer i.e. as R̃ → ∞. We examine this behaviour by decreasing the
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volatility of the stock and comparing the optimal strategy with the asymptotic result
of Schmidli (21). As the volatility decreases the stock offers a greater return than
the bond without a concomitant increase in risk. The optimal strategy is to increase
substantially the amount allocated to the stock. For large values of s the second order
method accurately computes the optimal strategy since it compares favourably with
(21). The intermediate region is still discernable for small surplus values even as the
volatility is decreased outside the range of validity of the asymptotic expansions. The
terms of (15) are plotted in Figures 11(b),(c) for σ = 0.05, 0.1. As s increases all
the terms in (15) become comparable and very small so that the outer balance (52)
breaks down and one should use (21) to approximate the optimal strategy. This also
highlights the difficulty in computing the optimal strategy for large s because the error
in any finite difference scheme must be smaller than the size of these terms in order to
maintain accuracy. This is easier to achieve with a higher order numerical method.

6 Conclusions

There are few analytical solutions for the optimal investment problem for an insurer.
Hipp & Plum (2000) found a solution when the risk process is compound Poisson,
the interest rate is zero, and the claim size distribution is exponential. Hipp & Plum
(2003) found another solution if the income from interest and claims is constant. We
have identified the limiting behaviour of the optimal strategy as the asset becomes
increasingly risky when the cash flow is normally distributed and when the risk process is
a compound Poisson process. If the claim size distribution is exponential we have found
a uniformly valid asymptotic expansion for the optimal stock allocation. The optimal
strategies for a normal risk process and a risk process with exponentially distributed
claims are comparable.

For the classical ruin problem there is an analytical expression for the ruin probability
if the claims are distributed exponentially. For more general claims distributions the De
Vylder approximation uses moment matching in order to derive an explicit expression
for the ruin probability (Rolski et al. 1999). It is tempting to use the asymptotic solution
for exponential claims and match moments for more general distributions in order to
approximate the optimal asset allocation strategy. Given the qualitative differences in
the optimal strategy for light and heavy-tailed distributions we can see that this will
be a poor approximation over a large range of current surplus values. It is better to
calculate the optimal strategy numerically.

An understanding of the asymptotic structure of the allocation strategy allows us to
interpret the optimal stock allocation and also formulate a good numerical method for its
computation. If the stock is risky then there is a thin boundary layer which differentiates
the optimal stock allocation for a normal risk process from a compound Poisson risk
process. If the current surplus is very small then the latter model says it is optimal to
invest very little in the stock. This boundary layer must be resolved, that is, sufficient
grid points must be placed across the region of rapid change. Furthermore, as the current
surplus becomes large, the tail distribution function decays rapidly, which leads to an
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unstable numerical problem. If there are few small claims then an intermediate region
is present, which means it is optimal to invest in the stock an amount comparable to
the mean claim size.

The parameters of the model and the claim size distribution change the optimal
amount invested in the stock, but the overall strategy can be characterised according
to the form of the claim size distribution. A qualitative summary of the optimal stock
allocation is given in Figure 4. For the parameters we have chosen in the paper, the
exponential claim size distribution corresponds to 4(a), Erlang distributed claim sizes
lead to 4(b), Pareto & Weibull distributions yield 4(c), while a Lognormal claim size
distribution gives the optimal strategy in 4(d).

We have described three numerical methods: the second order method gives greater
accuracy for given surplus step but requires more computational time because it is an
implicit method. The numerical results reveal the sensitivity of the numerical approx-
imation to the initial surplus value and the resolution of the finite difference grid. We
confirmed the convergence of the schemes using step size reduction and examination of
the residual of the integro-differential equation. The application of these techniques to
other optimal control problems in insurance (Hipp 2004) may yield further insight where
analytical solutions are not present.
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Tables and Figures

Distribution H(y) H ′(0) ζ Parameters

Exponential e−ky −k r̃0 + θ k > 0

Erlang
∑n

i=1 [(ky)i−1/(i− 1)!]e−ky 0 r̃0 − 1 n > 1, k > 0

Pareto (β/(y + β))α −α
β

r̃0 − 1 +
α

α− 1
α > 2, β > 0

Lognormal 1 − φ

(

log y −M

S

)

0 r̃0 − 1 M > 0, S > 0

Weibull e−cy
r −∞ ∞ c > 0, 0 < r < 1

Table 1: Claim size tail distribution functions, H(y), for the Compound Poisson model
of the risk process Rt. Here, M and S are the mean and standard deviation of log Y1 and
the standard normal distribution function is φ. If r ≥ 1 then the Weibull distribution
is light-tailed. The parameter ζ determines the existence of an intermediate region and
is given by (47).
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Figure 1: Optimal investment strategy with a normally distributed cash flow as a func-
tion of the current surplus s. Graph (a) shows the optimal stock allocation A∗(s) while
(b) shows the corresponding survival probability δ(s). The thin solid lines in the figure
correspond to varying the risk in the asset: the survival probability is calculated using
numerical integration. The broken lines in (a),(b) show the asymptotic asset allocation
and survival probability respectively to first order in η given in Section 2.
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Figure 2: Comparison of the asymptotic and numerical solution for a compound Poission
risk process with exponentially distributed claim sizes. Graph (a) shows the asymptotic
optimal allocation strategy superimposed on the numerical solution of equation (22).
The parameter set chosen is that used in Figure 1 of Liu & Yang (2004) which gives
R̃ = 0.013. Graph (b) demonstrates the uniform convergence of the asymptotic asset
allocation to the numerical solution as R̃ → 0 corresponding to an increasingly risky
stock. Graph (c) shows the corresponding results for the survival probability δ(s).
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Figure 3: Comparison of the asymptotic and numerical solution for a compound Poission
risk process for Erlang distributed claim sizes. The parameter set chosen for graph (a)
corresponds to that used in Figure 2 of Liu & Yang (2004). In graph (b) we show
the uniform convergence of the asymptotic optimal allocation strategy to the numerical
solution as R̃ → 0, while in (c) we have increased the number of terms n in the Erlang
tail distribution function H(y).
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Figure 4: Summary of the qualitative structure of the optimal stock allocation A∗ to
minimise the ruin probability if R̃ ≪ 1. The strategy can be categorised according to
properties of the claim size distribution: (a) Light-tailed, (b) Light-tailed with few small
claims, (c) Heavy-tailed and (d) Heavy-tailed with few small claims .
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Figure 5: Validation of the first and second order numerical schemes to solve the integro-
differential equations (16)–(18) using the numerical solution of the ODE (22) and an
exponential claim-size distribution. Graphs (a),(b) are a reproduction of Figures 1,2
respectively contained in Liu & Yang (2004) and use the parameter set given in that
paper: λ = 3, r0 = 0.04, σ = 0.3, θ = 0.2, µ = 0.1, k = 1, n = 2. Numerical parameters
are s0 = 10−4 and N = 2000.
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Figure 6: Comparison of numerical methods for calculating the optimal asset allocation
A∗ for claim sizes with Pareto distribution. Graphs (a) and (b) show the results for
s0 = 10−2, while (c) and (d) show results for s0 = 10−4. In all graphs N = 2000 and
α = 3, β = 2 corresponding to the choice of parameters chosen in Figure 3 of Liu &
Yang (2004). In (b) and (d) the second order method generates residuals of the order
of 10−16.
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Figure 8: Optimal asset allocation if the claims are lognormally distributed. The model
parameters are M = 0 and S = 0.8 and the remaining parameter are identical for those
used to compute the Exponential distribution. The numerical parameters are N = 2000,
s0 = 10−4. The residual E given by the right-hand scale of the graph in (b).
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Figure 9: Optimal asset allocation if the claims are Weibull distributed with r = 0.85,
c = 1. The second order scheme has been used with s0 = 10−6 and N = 4000. The
residual E given by the right-hand scale of the graph in (b).
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Figure 10: Optimal asset allocation if the claims are Weibull distributed with r = 0.85,
c = 1. The second order scheme has been used with s0 = 10−2 and N = 1000. The
residual E given by the right-hand scale of the graph in (b).
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Figure 11: Optimal asset allocation if the claims are lognormally distributed with pa-
rameters as given in Figure 8 except that a safe stock is chosen with r0 = 0. Graph
(a) shows the optimal allocation given to the stock with comparison to the asymptotic
expression A∗

∞
, while (b) and (c) show the magnitude of the terms in (15) for σ = 0.05

and σ = 0.1 respectively.
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