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Short abstract (100 words):  

One of the dominant traditions in cognitive modeling is classic (Bayesian) probability (CP) theory. Yet 

considerable evidence has accumulated that human judgment often goes against classical principles. 

We discuss quantum probability (QP) theory as an alternative formal probabilistic framework for 

understanding cognition. In QP theory, probabilistic assessment is often strongly context and order 

dependent, individual states can be superposition states (which are indefinite with respect to some 

specific judgment), and composite systems can be entangled (they cannot be decomposed into 

simpler subsystems). We present several fundamental empirical findings which indicate that 

cognitive processes often obey quantum rather than classical probability principles.  

 

Long abstract (250 words):  

Classical (Bayesian) probability (CP) theory has led to an influential research tradition for modeling 

cognitive processes. Cognitive scientists have been trained to work with CP principles for so long 

that it is hard to even imagine alternative ways to formalize probabilities. Yet, in physics, quantum 

probability (QP) theory has been the dominant probabilistic approach for nearly 100 years. Could QP 

theory provide us with any advantages in cognitive modeling as well? Note first that both CP and QP 

theory share the fundamental assumption that it is possible to model cognition on the basis of 

formal, probabilistic principles. But why consider a QP approach?  The answers are that (a) there are 

many well established empirical findings (e.g., from the influential Tversky, Kahneman research 

tradition) which are hard to reconcile with CP principles; and (b) these same findings have natural 

and straightforward accounts with quantum principles. In QP theory, probabilistic assessment is 

often strongly context and order dependent, individual states can be superposition states (which are 

impossible to associate with specific values), and composite systems can be entangled (they cannot 

be decomposed into their subsystems). All these characteristics appear perplexing from a classical 

perspective. Yet our thesis is that they provide a more accurate and powerful account of certain 

cognitive processes. We first introduce QP theory and illustrate its application with psychological 

examples. We then review empirical findings which motivate the use of quantum theory in cognitive 

theory, but also discuss ways in which QP and CP theories converge. Finally, we consider the 

implications of a QP theory approach to cognition for human rationality.   
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1. Preliminary issues 

 

1.1 Why move towards Quantum Probability theory?  

 

In this paper we evaluate the potential of quantum probability (QP) theory for modeling cognitive 

processes. What is the motivation for employing QP theory in cognitive modeling? Does the use of 

QP theory offer the promise of any unique insights or predictions regarding cognition? Also, what do 

quantum models imply regarding the nature of human rationality? In other words, is there anything 

to be gained, by seeking to develop cognitive models based on QP theory? Especially over the last 

decade, there has been growing interest in such models, encompassing publications in major 

journals, special issues, dedicated workshops, and a comprehensive book (Busemeyer & Bruza, 

2011). Our strategy in this paper is to briefly introduce QP theory, summarize progress with selected, 

QP models, and motivate answers to the above questions. We note that this paper is not about the 

application of quantum physics to brain physiology. This is a controversial issue (Litt et al., 2006; 

Hammeroff, 2007), about which we are agnostic. Rather, we are interested in QP theory as a 

mathematical framework for cognitive modeling. QP theory is potentially relevant in any behavioral 

situation which involves uncertainty. For example, Moore (2002) reported that the likelihood of a 

‘yes’ response to the questions ‘Is Gore honest?’ and ‘Is Clinton honest?’ depends on the relative 

order of the questions. We will later discuss how QP principles can provide a simple and intuitive 

account for this and a range of other findings.  

QP theory is a formal framework for assigning probabilities to events (Hughes, 1989, Isham, 

1989). QP theory can be distinguished from quantum mechanics, the latter being a theory of physical 

phenomena . For the present purposes it is sufficient to consider QP theory as the abstract 

foundation of quantum mechanics not specifically tied to physics (for more refined characterizations 

see e.g. Aerts & Gabora, 2005; Atmanspacher, Romer, & Wallach, 2002, Khrennikov, 2010; Redei & 

Summers, 2007). The development of quantum theory has been the result of intense effort from 

some of the greatest scientists of all time, over a period of more than 30 years. The idea of 

‘quantum’ was first proposed by Planck in the early 1900s and advanced by Einstein. Contributions 

from Bohr, Born, Heisenberg, and Schrödinger all led to the eventual formalization of QP theory by 

von Neumann and Dirac in the 1930s. Part of the appeal of using QP theory in cognition relates to 

confidence in the robustness of its mathematics. Few other theoretical frameworks in any science 

have been scrutinized so intensely, led to such surprising predictions, and also changed human 
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existence as much as QP theory (when applied to the physical world; quantum mechanics has 

enabled the development of, e.g., the transistor, and so the microchip, and the laser).  

QP theory is, in principle, applicable not just in physics, but in any science where there is a 

need to formalize uncertainty. For example, researchers have been pursuing applications in areas as 

diverse as economics (Baaquie, 2004) and information theory (e.g., Grover, 1997; Nielsen & Chuang, 

2000). The idea of using quantum theory in psychology has been around for nearly 100 years: Bohr, 

one of the founding fathers of quantum theory, was known to believe that aspects of quantum 

theory could provide insight about cognitive process (Busemeyer, Wang, Pothos, & Atmanspacher, in 

preparation). However, Bohr never made any attempt to provide a formal cognitive model based on 

QP theory and such models have started appearing only fairly recently (Aerts & Aerts, 1995; Aerts & 

Gabora, 2005; Atmanspacher, Filk, & Romer, 2004; Blutner, 2009; Bordley, 1998; Bruza, Kitto, 

Nelson, & McEvoy, 2009; Busemeyer, Wang, & Townsend, 2006; Busemeyer et al., 2011; Conte, et 

al., 2009; Khrennikov, 2010; Lambert-Mogiliansky, Zamir, & Zwirn, 2009; Pothos & Busemeyer, 2009; 

Yukalov & Sornette, 2010). But what are the features of quantum theory which make it a promising 

framework for understanding cognition? It seems essential to address this question, before 

expecting readers to invest the time for understanding the (relatively) new mathematics of QP 

theory.  

 Superposition, entanglement, incompatibility, and interference are all related aspects of QP 

theory, which endow it with a unique character. Consider a cognitive system, which concerns the 

cognitive representation of some information about the world (e.g., the story about the hypothetical 

Linda, used in Tversky & Kahneman’s, 1983, famous experiment; Section 3.1). Questions posed to 

such systems (‘Is Linda feminist?’) can have different outcomes (‘Yes, Linda is feminist’). 

Superposition has to do with the nature of uncertainty about question outcomes. The classical 

notion of uncertainty concerns our lack of knowledge about the state of the system that determines 

question outcomes. In QP theory, there is a deeper notion of uncertainty that arises when a 

cognitive system is in a superposition among different possible outcomes. Such a state is not 

consistent with any single possible outcome (that this is the case is not obvious; this remarkable 

property follows from the Kochen-Specker theorem). Rather, there is a potentiality (Isham, 1989, 

p.153) for different possible outcomes, and if the cognitive system evolves in time, so does the 

potentiality for each possibility. In quantum physics, superposition appears puzzling: what does it 

mean for a particle to have a potentiality for different positions, without it actually existing at any 

particular position? By contrast, in psychology superposition appears an intuitive way to characterize 

the fuzziness (the conflict, ambiguity, and ambivalence) of everyday thought.  
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 Entanglement concerns the compositionality of complex cognitive systems. QP theory allows 

the specification of entangled systems for which it is not possible to specify a joint probability 

distribution from the probability distributions of the constituent parts. In other words, in entangled 

composite systems, a change in one constituent part of the system necessitates changes in another 

part. This can lead to inter-dependencies between the constituent parts not possible in classical 

theory and surprising predictions, especially when the parts are spatially or temporally separated.  

 In quantum theory there is a fundamental distinction between compatible and incompatible 

questions for a cognitive system. Note that the terms compatible and incompatible have a specific, 

technical meaning in QP theory, which should not be confused with their lay use in language. If two 

questions A, B about a system are compatible, it is always possible to define the conjunction 

between A and B. In classical systems, it is assumed by default that all questions are compatible. 

Therefore, for example, the conjunctive question ‘is A and B true’ always has a yes or no answer and 

the order between questions A, B in the conjunction does not matter. By contrast, in QP theory, if 

two questions A, B are incompatible, it is impossible to define a single question regarding their 

conjunction. This is because an answer to question A implies a superposition state regarding 

question B (e.g., if A is true at a time point, then B can be neither true nor false at the same time 

point). Instead, QP defines conjunction between incompatible questions in a sequential way, such as 

‘A and then B’. Crucially, the outcome of question A can affect the consideration of question B, so 

that interference and order effects can arise. This is a novel way to think of probability, and one 

which is key to some of the most puzzling predictions of quantum physics. For example, knowledge 

of the position of a particle imposes uncertainty on its momentum. However, incompatibility may 

make more sense when considering cognitive systems and, in fact, it was first introduced in 

psychology. The physicist Niels Bohr borrowed the notion of incompatibility from the work of 

William James. For example, answering one attitude question can interfere with answers to 

subsequent questions (if they are incompatible), so that their relative order becomes important. 

Human judgment and preference often display order and context effects and we shall argue that in 

such cases quantum theory provides a natural explanation of cognitive process.  

 

1.2 Why move away from existing formalisms? 

 

By now, we have hopefully convinced readers that QP theory has certain unique properties, whose 

potential for cognitive modeling appears, at the very least, intriguing. For many researchers, the 

inspiration for applying quantum theory in cognitive modeling has been the widespread interest in 

cognitive models based on classical probability (CP) theory (Anderson, 1991; Griffiths et al., 2010; 
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Oaksford & Chater, 2007; Tenenbaum et al., 2011). Both CP and QP theories are formal probabilistic 

frameworks. They are founded on different axioms (the Kolmogorov and Dirac/ von Neumann 

axioms respectively) and so often produce divergent predictions regarding the assignment of 

probabilities to events. However, they share profound commonalities as well, such as the central 

objective of quantifying uncertainty and similar mechanisms for manipulating probabilities. 

Regarding cognitive modeling, quantum and classical theorists share the fundamental assumption 

that human cognition is best understood within a formal probabilistic framework.  

As Griffiths et al. (2010, p.357) note “probabilistic models of cognition pursue a top-down or 

‘function-first’ strategy, beginning with abstract principles that allow agents to solve problems posed 

by the world … and then attempting to reduce these principles to psychological and neural 

processes.” That is, the application of CP theory to cognition requires a scientist to create 

hypotheses regarding cognitive representations and inductive biases and so elucidate the 

fundamental questions of how and why a cognitive problem is successfully addressed. In terms of 

Marr’s (1982) analysis, CP models are typically aimed at the computational and algorithmic levels, 

though perhaps it is more accurate to characterize them as top-down or function-first (as Griffiths et 

al., 2010, did).  

We can recognize the advantage of CP cognitive models in at least two ways. First, in a CP 

cognitive model, the principles which are invoked (the axioms of CP theory) work as a logical “team” 

and always deductively constrain each other. By contrast, alternative cognitive modeling approaches 

(e.g., based on heuristics) work “alone” and therefore are more likely to fall foul of arbitrariness 

problems, whereby it is possible to manipulate each principle in the model independently of other 

principles. Second, neuroscience methods and computational bottom-up approaches are typically 

unable to provide much insight into the fundamental why and how questions of cognitive process 

(Griffiths et al., 2010). Overall, there are compelling reasons for seeking to understand the mind with 

CP theory. The intention of QP cognitive models is aligned with that of CP models. Thus, it makes 

sense to present QP theory side-by-side with CP theory, so readers can appreciate their 

commonalities and differences.  

A related key issue is this: if CP theory is so successful and elegant (at least, in cognitive 

applications), why seek an alternative? Moreover, part of the motivation for using CP theory in 

cognitive modeling is the strong intuition supporting many CP principles. For example, the 

probability of A and B is the same as the probability of B and A (
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conceptual difficulties (in the 1960s, Feynman famously said "I think I can safely say that nobody 

understands quantum mechanics."). A classical theorist might argue that, when it comes to modeling 

psychological intuition, we should seek to apply a computational framework which is as intuitive as 

possible (CP theory) and avoid the one which can lead to puzzling and, superficially at least, 

counterintuitive predictions (QP theory).  

But human judgment often goes directly against CP principles. A large body of evidence has 

accumulated to this effect, mostly associated with the influential research program of Tversky and 

Kahneman (Tversky & Kahneman, 1973, 1974; Kahneman et al., 1982; Tversky & Shafir, 1992). Many 

of these findings relate to order/ context effects, violations of the law of total probability (which is 

fundamental to Bayesian modeling), and failures of compositionality. Thus, if we are to understand 

the intuition behind human judgment in such situations, we have to look for an alternative 

probabilistic framework. Quantum theory was originally developed so as to model analogous effects 

in the physical world and so, perhaps, it can offer insight into these aspects of human judgment 

which seem paradoxical from a classical perspective. This situation is entirely analogous to that faced 

by physicists early in the last century. On the one hand, there was the strong intuition from classical 

models (e.g., Newtonian physics, classic electromagnetism). On the other hand, there were 

compelling empirical findings which were resisting explanation on the basis of classical formalisms. 

Thus, physicists had to turn to quantum theory, and so paved the way for some of the most 

impressive scientific achievements.  

 It is important to note that other cognitive theories embody order/ context effects or 

interference effects or other quantum-like components. For example, a central aspect of the Gestalt 

theory of perception concerns how the dynamic relationships between the parts of a distal layout 

together determine the conscious experience corresponding to the image. Query theory (Johnson et 

al., 2007) is a proposal for how value is constructed through a series of (internal) queries and has 

been used to explain the endowment effect in economic choice. In query theory, value is 

constructed, rather than read off, and also different queries can interfere with each other, so that 

query order matters. In configural weight models (e.g., Birnbaum, 2008) we also encounter the idea 

that, in evaluating gambles, the context of a particular probability-consequence branch (e.g., its rank 

order) will affect its weight. The theory also allows weight changes depending on the observer 

perspective (e.g., buyer vs. seller). Anderson’s (1978) integration theory is a family of models for 

how a person integrates information from several sources, and also incorporates a dependence on 

order. Fuzzy Trace Theory (Reyna, 2008; Reyna & Brainerd, 1995) is based on a distinction between 

verbatim and gist information, the latter corresponding to the general semantic qualities of an 
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event. Gist information can be strongly context and observer dependent and this has led Fuzzy Trace 

Theory to some surprising predictions (e.g., Brainerd, Reyna, & Ceci, 2008).  

 This brief overview shows that there is a diverse range of cognitive models that include a 

role for context or order and a comprehensive comparison is not practical here. However, when 

comparisons have been made, the results favored quantum theory (e.g., averaging theory was 

shown to be inferior to a matched quantum model, Trueblood & Busemeyer, 2011). In some other 

cases, we can view QP theory as a way to formalize previously informal conceptualizations (e.g., for 

query theory and the Fuzzy Trace Theory).  

Overall, there is a fair degree of flexibility in the particular specification of computational 

frameworks in cognitive modeling. When it comes to CP and QP models, this flexibility is tempered 

by the requirement of adherence to the axioms in each theory: all specific models have to be 

consistent with these axioms. This is exactly what makes CP (and QP) models appealing to many 

theorists and why, as noted, in seeking to understand the unique features of QP theory, it is most 

natural to compare it with CP theory.  

In sum, a central aspect of this paper is the debate of whether psychologists should explore 

the utility of quantum theory in cognitive theory; or whether the existing formalisms are (mostly) 

adequate and that a different paradigm is not necessary. Note, we do not develop an argument that 

CP theory is unsuitable for cognitive modeling; it clearly is, in many cases. And, moreover, as we shall 

see, CP and QP processes sometimes converge in their predictions. Rather, what is at stake is 

whether there are situations where the distinctive features of QP theory provide a more accurate 

and elegant explanation for empirical data. In the next section we provide a brief consideration of 

the basic mechanisms in QP theory. Perhaps contrary to common expectation, the relevant 

mathematics is simple and mostly based on geometry and linear algebra. We next consider empirical 

results which appear puzzling from the perspective of CP theory, but can naturally be 

accommodated within QP models. Finally, we discuss the implications of QP theory for 

understanding rationality. 

 

2. Basic assumptions in QP theory and psychological motivation 

 

2.1 The outcome space  

 

CP theory is a set-theoretic way to assign probabilities to the possible outcomes of a question. First, 

a sample space is defined, in which specific outcomes about a question are subsets of this sample 

space. Then, a probability measure is postulated, which assigns probabilities to disjoint outcomes in 
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an additive manner (Kolmogorov, 1932). The formulation is different in QP theory, which is a 

geometric theory of assigning probabilities to outcomes (Isham, 1989). A vector space (called a 

Hilbert space) is defined, in which possible outcomes are represented as subspaces of this vector 

space. Note that our use of the terms questions and outcomes are meant to imply the technical QP 

terms observables and propositions.  

A vector space represents all possible outcomes for questions we could ask about a system 

of interest. For example, consider a hypothetical person and the general question of her emotional 

state. Then, one-dimensional subspaces (called rays) in the vector space would correspond to the 

most elementary emotions possible. The number of unique elementary emotions and their relation 

to each other determines the overall dimensionality of the vector space. Also, more general 

emotions, such as happiness, would be represented by subspaces of higher dimensionality. In Figure 

1a, we consider the question of whether a hypothetical person is happy or not. But, because it is 

hard to picture high multidimensional subspaces, for practical reasons we assume that the outcomes 

of the happiness question are one-dimensional subspaces. Therefore, one ray corresponds to the 

person definitely being happy and another one to her definitely being unhappy.  

 Our initial knowledge of the hypothetical person is indicated by the state vector, a unit 

length vector, denoted as 

 

 

 (the bracket notation for a vector is called the Dirac notation). In 

psychological applications, it often refers to the state of mind, perhaps after reading some 

instructions for a psychological task. More formally, the state vector embodies all our current 

knowledge of the cognitive system under consideration. Using the simple vector space in Figure 1a, 

we can write 
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employed in psychology to model the match between representations has been explored before 

(Sloman, 1993) and the QP cognitive program can be seen as a way to generalize these early ideas. 

Also, note that a remarkable mathematical result, Gleason’s theorem, shows that the QP way for 

assigning probabilities to subspaces is unique (e.g., Isham, 1989, p.210). It is not possible to devise 

another scheme for assigning numbers to subspaces that satisfy the basic requirements for an 

additive probability measure (i.e., that the probabilities assigned to a set of mutually exclusive and 

exhaustive outcomes are individually between zero and one, and sum to one). 

An important feature of QP theory is the distinction between superposition and basis states. 

In the above example, after the person has decided that she is happy, then the state vector is 
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Suppose that we are interested in two questions, whether the person is happy or not, and also 

whether she is employed or not. In this example, there are two outcomes with respect to the 

question about happiness, and two outcomes regarding employment. In CP theory, it is always 

possible to specify a single joint probability distribution over all four possible conjunctions of 

outcomes for happiness and employment, in a particular situation. (Griffiths, 2003, calls this the 

unicity principle, and it is fundamental in CP theory). By contrast, in QP theory, there is a key 

distinction between compatible and incompatible questions. For compatible questions, one can 

specify a joint probability function for all outcome combinations and in such cases the predictions of 

CP and QP theories converge (ignoring dynamics). For incompatible questions, it is impossible to 

determine the outcomes of all questions concurrently. Being certain about the outcome of one 

question, induces an indefinite state regarding the outcomes of other, incompatible questions.  

This absolutely crucial property of incompatibility is one of the characteristics of QP theory 

which differentiates it from CP theory. Psychologically, incompatibility between questions means 

that a cognitive agent cannot formulate a single thought for combinations of the corresponding 

outcomes. This is perhaps because he is not used to thinking about these outcomes together, for 

example, as in the case of asking whether Linda (Tversky & Kahneman, 1983) can be both a bank 

teller and a feminist. Incompatible questions need to be assessed one after the other. A heuristic 

guide of whether some questions should be considered compatible or not is whether clarifying one 

is expected to interfere with the evaluation of the other. Psychologically, the intuition is that 

considering one question alters our state of mind (the context), which in turn affects consideration 

of the second question. Thus, probability assessment in QP theory can be (when we have 

incompatible questions) order and context dependent, which contrasts sharply with CP theory.  

Whether some questions are considered compatible or incompatible is part of the analysis 

which specifies the corresponding cognitive model. Regarding the questions for happiness and 

employment for the hypothetical person, the modeler would need to commit a priori as to whether 

these are compatible or incompatible. We consider in turn the implications of each approach.  

 

2.2.1 Incompatible questions  

For outcomes corresponding to one-dimensional subspaces, incompatibility means that 

subspaces exist at non-orthogonal angles to each other, as in, for example, for the happy and 

employed subspaces in Figure 1b. Because of the simple relation we assume between happiness and 

employment, all subspaces can be coplanar, so that the overall vector space is only two-dimensional. 

Also, recall that certainty about a possible outcome in QP theory means that the state vector is 
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contained within the subspace for the outcome. For example, if we are certain that the person is 

happy, then the state vector is aligned with the happy subspace. However, if this is the case, we can 

immediately see that we have to be somewhat uncertain about the person’s employment (perhaps 

thinking about being happy makes the person a bit anxious about her job). Conversely, certainty 

about employment aligns the state vector with the subspace for employed, which makes the person 

somewhat uncertain about her happiness (perhaps her job is sometimes stressful). This is a 

manifestation of the famous Heisenberg uncertainty principle – being clear on one question forces 

one to be unclear on another incompatible question. 

Since it is impossible to evaluate incompatible questions concurrently, quantum conjunction 

has to be defined in a sequential way, and so order effects may arise in the overall judgment. For 

example, suppose that the person is asked first whether she is employed, and then whether she is 

happy, that is, we have 
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Figure 1. An illustration of basic processes in QP theory. In Figure 1b, all vectors are co-planar, and the figure is a two-dimensional one. In Figure 1c, the 

three vectors ‘Happy, employed’, ‘Happy, unemployed’, and ‘Unhappy, employed’ are all orthogonal to each other, so that the figure is a three-dimensional 

one.  (The fourth dimension, unhappy, unemployed is not shown). 



14  Quantum probability 
 

The magnitude of a projection depends on the angle between the corresponding subspaces. 

For example, when the angle is large, a lot of amplitude is lost between successive projections. As 

can be seen in Figure 1b, 
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defined in exactly the same way. But could order dependence in quantum theory arise as probability 

dependence in classical theory? The answer is no because  
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inexorably affects the other (clarifying employment). In other words, in such an entangled state, the 

possibilities of being happy and employed are strongly dependent on each other. The significance of 

entanglement is that it can lead to an extreme form of dependency between the outcomes for a pair 

of questions, which goes beyond what is possible in CP theory. In classical theory, one can always 

construct a joint probability Prob(A,B,C) out of pairwise ones, and Prob(A,B), Prob(A,C), and 

Prob(B,C) are all constrained by this joint. However, in QP theory, for entangled systems, it is not 

possible to construct a complete joint, because the pairwise probabilities can be stronger than what 

is allowed classically (Fine, 1982).   

 

2.3 Time evolution 

 

So far we have seen static QP models, whereby we assess the probability for various outcomes for a 

state at a single point in time. We next examine how the state can change in time. Time evolution in 

QP theory involves a rotation (technically, a unitary) operator (the solution to Schrödinger’s 

equation). This dynamic operator evolves the initial state vector, without changing its magnitude. 

Recall, the state vector is a superposition of components along different basis vectors. So, what 

evolves  is the amplitudes along the different basis vectors. For example, a rotation operator might 

move the state 

 

 

 away from the 
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As an example, suppose the hypothetical person is due a major professional review and she 

is a bit anxious about continued employment (so that she is unsure about her being employed or 

not). Prior to the review, she contemplates whether she is happy to be employed or not. In this 

example, we assume that the employment and happiness questions are compatible (Figure 1c). In CP 

theory, the initial probabilities satisfy 
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happiness after a professional review). The resolution regarding employment eliminates any possible 

interference effects from her judgment, and the quantum prediction converges to the classical one 

(Appendix). Thus, in QP theory there is a crucial difference between (just) uncertainty and 

superposition and it is only the latter which can lead to violations of the law of total probability. In 

quantum theory, just the knowledge that an uncertain situation has been resolved (without 

necessarily knowing the outcome of the resolution) can have a profound influence on predictions. 

 

 

3. The empirical case for QP theory in psychology  

 

In this section we explore whether the main characteristics of QP theory (order/context effects, 

interference, superposition, entanglement) provide us with any advantage in understanding 

psychological processes. Many of these situations concern Kahneman and Tversky’s hugely 

influential research program on heuristics and biases (Kahneman, Slovic, & Tversky, 1982; Tversky & 

Kahneman, 1973, 1974, 1983), one of the few psychology research programs to have been 

associated with a Nobel prize (in economics, for Kahneman in 2002). This research program was built 

around compelling demonstrations that key aspects of CP theory are often violated in decision 

making and judgment. Thus, this is a natural place to start looking for whether QP theory may have 

an advantage over CP theory.  

Our strategy is to first discuss how the empirical finding in question is inconsistent with CP 

theory axioms. This is not to say that some model broadly based on classical principles cannot be 

formulated. Rather, that the basic empirical finding is clearly inconsistent with classical principles 

and that a classical formalism, when it exists, may be contrived. We then present an illustration for 

how a QP approach can offer the required empirical coverage. Such illustrations will be 

simplifications of the corresponding quantum models.  

 

3.1 Conjunction fallacy 

 

In a famous demonstration, Tversky and Kahneman (1983) presented  participants with a story 

about a hypothetical person, Linda, who sounded very much like a feminist. Participants were then 

asked to evaluate the probability of statements about Linda. The important comparison concerned 

the statements ‘Linda is a bank teller’ (extremely unlikely given Linda’s description) and ‘Linda is a 

bank teller and a feminist’. Most participants chose the second statement as more likely than the 

first, thus effectively judging that 
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empirical finding is obtained with different kinds of stories or dependent measures (including betting 

procedures that do not rely on the concept of probability; Gavanski & Roskos-Ewoldsen, 1991; Sides, 

Osherson, Bonini, & Viale, 2002; Stolarz-Fantino, et al., 2003; Tentori & Crupi, 2012; Wedell & Moro, 

2008). But, according to CP theory this is impossible, since the conjunction of two statements can 

never be more probable than either statement individually (this finding is referred to as the 

conjunction fallacy). The CP intuition can be readily appreciated in frequentist terms: in a sample 

space of all possible Linda’s, of the ones who are bank tellers, only a subset will be both bank tellers 

and feminists. Tversky and Kahneman’s explanation was that (classical) probability theory is not 

appropriate for understanding such judgments. Rather, such processes are driven by a similarity 

mechanism, specifically a representativeness heuristic, according to which participants prefer the 

statement ‘Linda is a bank teller and a feminist’ because Linda is more representative of a 

stereotypical feminist. A related explanation, based on the availability heuristic, is that the 

conjunctive statement activates memory instances similar to Linda (Tversky & Koehler, 1994).  

 QP theory provides an alternative way to understand the conjunction fallacy. In Figure 2, we 

specify 
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 Psychologically, the QP model explains the conjunction fallacy in terms of the context 

dependence of probability assessment. Given the information participants receive about Linda, it is 

extremely unlikely that she is a bank teller. However, once participants think of Linda in more 

general terms as a feminist, they are more able to appreciate that feminists can have all sorts of 

professions, including being bank tellers. The projection acts as a kind of abstraction process, so that 

the projection on to the feminist subspace loses some of the details about Linda, which previously 

made it impossible to think of her as a bank teller. From the more abstract feminist point of view, it 

becomes a bit more likely that Linda could be a bank teller, so that while the probability of the 

conjunction remains low, it is still more likely than the probability for just the bank teller property. 

Of course, from a QP theory perspective, the conjunctive fallacy is no longer a fallacy, it arises 

naturally from basic QP axioms.  

Busemeyer et al. (2011) presented a quantum model based on this idea and examined in 

detail the requirements for the model to predict an overestimation of conjunction. In general, QP 

theory does not always predict an overestimation of conjunction. However, given the details of the 

Linda problem, an overestimation of conjunction necessarily follows. Moreover, the same model 

was able to account for several related empirical findings, such as the disjunction fallacy, event 

dependencies, order effects, and unpacking effects (e.g., Bar-Hillel & Neter, 1993; Carlson & Yates, 

1989; Gavanski & Roskos-Ewoldsen, 1991; Stolarz-Fantino, et al., 2003). Also, the QP model is 

compatible with the representativeness and availability heuristics. The projection operations  used 

to compute probabilities measure the degree of overlap between two vectors (or subspaces), and 

overlap is a measure of similarity (Sloman, 1993). Thus, perceiving Linda as a feminist allows the 

cognitive system to establish  similarities between the initial representation (the initial information 

about Linda) and the representation for bank tellers. If we consider representativeness to be a 

similarity process, as we can do with the QP model, it is not surprising that it is subject to chaining 

and context effects. Moreover, regarding the availability heuristic (Tversky & Koehler, 1994), the 

perspective from the QP model is that considering Linda to be a feminist increases availability for 

other related information about feminism, such as possible professions.  
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Figure 2. An illustration of the QP explanation for the conjunction fallacy.  

 

3.2 Failures of commutativity in decision making  

 

We next consider failures of commutativity in decision making, whereby asking the same two 

questions in different orders can lead to changes in response (Feldman & Lynch, 1988; Schuman & 

Presser, 1981; Tourangeau, Rasinski, & Bradburn, 1991). Consider the questions ‘Is Clinton honest?’ 

and ‘Is Gore honest?’ and the same questions in a reverse order. When the first two questions were 

asked in a Gallup poll, the probabilities of answering yes for Clinton and Gore were 50% and 68% 

respectively. The corresponding probabilities for asking the questions in the reverse order were, by 

contrast, 57% and 60% (Moore, 2002). Such order effects are puzzling according to CP theory, since, 

as noted, the probability of saying yes to question A and then yes to question B equals 
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In Figure 3, there are two sets of basis vectors, one for evaluating whether Clinton is honest or not 

and another for Gore. The two sets of basis vectors are not entirely orthogonal; we assume that if a 

person considers Clinton honest, then she is a little bit more likely to consider Gore as honest as 

well, and vice versa (since they ran together). The initial state vector is fairly close to the 
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participants (all medical practitioners) had to make a decision about a disease based on two types of 

clinical information. The order of presenting this information influenced the decision, with results 

suggesting that the information presented last was weighted more heavily (a recency effect). 

Trueblood and Busemeyer’s (2011) model involved considering a tensor product space for the state 

vector, with one space corresponding to the presence or not of the disease (this is the event we are 

ultimately interested in) and the other space to positive or negative evidence, evaluated with 

respect to the two different sources of information (one source of information implies positive 

evidence for the disease and the other negative evidence). Considering each source of clinical 

information involved a rotation of the state vector, in a way reflecting the impact of the information 

on the disease hypothesis. The exact degree of rotation was determined by free parameters. Using 

the same number of parameters, the QP theory model produced  better fits to empirical results than 

the anchoring and adjustment model of Hogarth and Einhorn (1992), for the medical diagnosis 

problem and for the related jury decision one.  

 

3.3 Violations of the sure thing principle 

 

The model Trueblood and Busemeyer (2011) developed is an example of a dynamic QP model, 

whereby the inference process requires evolution of the state vector. This same kind of model has 

been employed by Pothos and Busemeyer (2009) and Busemeyer, Wang, and Lambert-Mogiliansky 

(2009) to account for violations of the sure thing principle. The sure thing principle is the expectation 

that human behavior ought to conform to the law of total probability. For example, in a famous 

demonstration, Shafir and Tversky (1992) reported that participants violated the sure thing principle 

in a one-shot prisoner’s dilemma task. This is a task whereby the participant receives different 

payoffs depending on whether he decides to cooperate or defect, relative to another (often 

hypothetical) opponent. Usually the player does not know the opponents’ move, but  in some 

conditions Shafir and Tversky told participants what the opponent had decided to do. When 

participants were told that the opponent was going to cooperate, they decided to defect; and when 

they were told that the opponent was defecting, they decided to defect as well. The payoffs were 

specified in such a way so that defection was the optimal strategy. The expectation from the sure 

thing principle is that, when no information was provided about the action of the opponent, 

participants should also decide to defect (it is a ‘sure thing’ that defection is the best strategy, since 

it is the best strategy in all particular cases of opponent’s actions). However, surprisingly, in the no 

knowledge case, many participants reversed their judgment and decided to cooperate (Busemeyer, 

Matthew, & Wang, 2005; Croson, 1999; Li & Taplan, 2002). Similar results have been reported for 
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the two-stage gambling task (Tversky & Shafir, 1992) and a novel categorization – decision making 

paradigm (Busemeyer, Wang, Lambert-Mogiliansky, 2009; Townsend et al., 2000). Therefore, 

violations of the sure thing principle in decision making, though relatively infrequent, are not exactly 

rare either. Note this research has established violations of the sure thing principle using within 

participants designs.  

 Shafir and Tversky (1992) suggested that participants perhaps adjust their beliefs for the 

other player’s action, depending on what they are intending to do (this principle was called wishful 

thinking and follows from cognitive dissonance theory and related hypotheses, e.g., Festinger, 1957, 

Krueger, DiDonato, & Freestone, 2011). Thus, if there is a slight bias for cooperative behavior, in the 

unknown condition participants might be deciding to cooperate because they imagine that the 

opponent would cooperate as well. Tversky and Shafir (1992) described such violations of the sure 

thing principle as failures of consequential reasoning. When participants are told that the opponent 

is going to defect, they have a good reason to defect as well, and likewise when they are told that 

the opponent is going to cooperate. However, in the unknown condition, it is as if these (separate) 

good reasons for defecting under each known condition cancel out (Busemeyer & Bruza, 2011, 

Chapter 9).  

This situation is similar to the generic example for violations of the law of total probability 

we considered in Section 2. Pothos and Busemeyer (2009) developed a quantum model for the two 

stage gambling task and prisoner’s dilemma embodying these simple ideas. A state vector was 

defined in a tensor product space of two spaces, one corresponding to the participant’s intention to 

cooperate or defect and one for the belief of whether the opponent is cooperating or defecting. A 

unitary operator was then specified to rotate the state vector depending on the payoffs, increasing 

the amplitudes for those combinations of action and belief maximizing payoff. The same unitary 

operator also embodied the idea of wishful thinking, rotating the state vector so that the amplitudes 

for the ‘cooperate – cooperate’ and ‘defect – defect’ combinations for participant and opponent 

actions increased. Thus, the state vector developed as a result of two influences. The final 

probabilities for whether the participant is expected to cooperate or defect were computed from 

the evolved state vector, by squaring the magnitudes of the relevant amplitudes.  

Specifically, the probability of defecting when the opponent is known to defect is based on 

the projection 
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it is neutral with respect to the A and B subspaces (i.e., prior to the similarity comparison, a 

participant would not be thinking more about A than B, or vice versa).  

Let us consider one of Tversky’s (1977) main findings, that the similarity of Korea to China 

was judged greater than the similarity of China to Korea (actually, North Korea and Red China; 

similar asymmetries were reported for other countries). Tversky’s proposal was that symmetry is 

violated, because we have more extensive knowledge for China than for Korea, and so China has 

more distinctive features relative to Korea. He was able to describe empirical results with a similarity 

model based on a differential weighting of the common and distinctive features of Korea and China. 

But, the only way to specify these weights was with free parameters and alternative values for the 

weights could lead to either no violation of symmetry or a violation in a way opposite to the 

empirically observed one.  

By contrast, using QP theory, if one simply assumes that the dimensionality of the China 

subspace is greater than the dimensionality of the Korea one, then a violation of symmetry in the 

required direction readily emerges, without the need for parameter manipulation. As shown in 

Figure 4, in the Korea to China comparison (4a), the last projection is to a higher dimensionality 

subspace, than the last projection in the China to Korea comparison (4b). Therefore, in the Korea to 

China case (4a), more of the amplitude of the original state vector is retained, which leads to a 

prediction for a higher similarity judgment. This intuition was validated with computational 

simulations by Pothos and Busemeyer (2011), whose results indicate that, as long as one subspace 

has a greater dimensionality than another, on average the transition from the lower dimensionality 

subspace to the higher dimensionality one, would retain more amplitude than the converse 

transition (it has not been proved that this is always the case, but note that participant results with 

such tasks are not uniform).  

 

(a) Korea to China 

China

Ko
rea

 
 



28  Quantum probability 
 

(b) China to Korea 

Ko
rea

China

 

 

Figures 4a and 4b. Figure 4a corresponds to the similarity of Korea to China and 4b of China to 

Korea. Projecting to a higher dimensionality subspace last (as in 4a) retains more of the original 

amplitude than projecting onto a lower dimensionality subspace last (as in 4b).   
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3.5 Other related empirical evidence  

 

Tversky and Kahneman are perhaps the researchers who most vocally pointed out a disconnect 

between CP models and cognitive process and, accordingly, we have emphasized QP theory models 

for some of their most influential findings (and related findings). A skeptical reader may ask, is the 

applicability of QP theory to cognition mostly restricted to decision making and judgment? Empirical 

findings which indicate an inconsistency with CP principles are widespread across most areas of 

cognition. Such findings are perhaps not as well established as the ones reviewed above, but they do 

provide encouragement regarding the potential of QP theory in psychology. We have just considered 

a QP theory model for asymmetries in similarity judgment. Relatedly, Hampton (1988a, see also 

Hampton, 1988b) reported an overextension effect for category membership. Participants rated the 

strength of category membership of a particular instance to different categories. For example, the 

rated membership of ‘cuckoo’ to the pet and bird categories were 0.575 and 1 respectively. 

However, the corresponding rating for the conjunctive category pet bird was 0.842, a finding 

analogous to the conjunction fallacy. This paradigm also produces violations of disjunction. Aerts and 

Gabora (2005) and Aerts (2009) provided a QP theory account of such findings. Relatedly, Aerts and 

Sozzo (2011) examined membership judgments for pairs of concept combinations, and they 

empirically found extreme forms of dependencies between concept combination pairs, which 

indicated that it would be impossible to specify a complete joint distribution over all combinations. 

These results could be predicted by a QP model using entangled states to represent concept pairs.    

In memory research, Brainerd and Reyna (2008) discovered an episodic over-distribution 

effect. In a training part, participants were asked to study a set of items T. In test, the training items 

T were presented together with related new ones, R (and some additional foil items). Two sets of 

instructions were employed. With the verbatim instructions (V), participants were asked to identify 

only items from the set T. With the gist instructions (G), participants were required to select only R 

items. In some cases, the instructions (denoted as V or G) prompted participants to select test items 

from the T or R sets. From a classical perspective, since a test item comes from either the T set or 

the R one, but not both, it has to be the case that 
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results, in this case, perhaps depended too much on an arbitrary bias parameter. Another example 

from memory research is Bruza et. al.’s (2009) application of quantum entanglement (which implies 

a kind of holism inconsistent with classical notions of causality) to explain associative memory 

findings, which cannot be accommodated within the popular theory of spreading activation. 

 Finally, in perception, Conte et al. (2009) employed a paradigm involving the sequential 

presentation of two ambiguous figures (each figure could be perceived in two different ways) or the 

presentation of just one of the figures. It is possible that seeing one figure first may result in some 

bias in perceiving the second figure. Nonetheless, from a classical perspective, one still expects the 

law of total probability to be obeyed, so that 

 

 

 



31  Quantum probability 
 

2008). But such approaches are often unsatisfactory. Arbitrary interpretations of the relevant 

probabilistic mechanism are unlikely to generalize to related empirical situations (e.g., disjunction 

fallacies). Also, the introduction of post hoc parameters will lead to models which are descriptive 

and limited in insight. Thus, employing a formal framework in arbitrarily flexible ways to cover 

problematic findings is possible, but of arguable explanatory value, and also inevitably leads to 

criticism (Jones & Love, 2011). But are the findings we considered particularly problematic for CP 

theory?  

 CP theory is a formal framework, that is, a set of inter-dependent axioms which can be 

productively employed to lead to new relations. Thus, when obtaining psychological evidence for a 

formal framework, we do not just support the particular principles under scrutiny. Rather, such 

evidence corroborates the psychological relevance of all possible relations which can be derived 

from the formal framework. For example, one cannot claim that one postulate from a formal 

framework is psychologically relevant, but another is not, and still maintain the integrity of the 

theory.  

The ingenuity of Tversky, Kahneman, and their collaborators (Kahneman et al., 1982; Shafir 

& Tversky, 1992; Tversky & Kahneman, 1973) was exactly that they provided empirical tests of 

principles which are at the heart of CP theory, such as the law of total probability and the relation 

between conjunction and individual probabilities. Thus, it is extremely difficult to specify any 

reasonable CP model consistent with their results, as such models simply lack the necessary 

flexibility. There is a clear sense in which if one wishes to pursue a formal, probabilistic approach for 

the Tversky, Kahneman type of findings, then CP theory is not the right choice, even if it is not 

actually possible to disprove the applicability of CP theory for such findings.   

 

4.2 Heuristics vs. formal probabilistic modeling  

 

The critique of CP theory by Tversky, Kahneman and collaborators  can be interpreted in a more 

general way, as a statement that the attempt to model cognition with any axiomatic set of principles 

is misguided. These researchers thus motivated their influential program involving heuristics and 

biases. Many of these proposals sought to relate generic memory or similarity processes to 

performance in decision making (e.g., the availability and representativeness heuristics; Tversky & 

Kahneman, 1983). Other researchers have developed heuristics as individual computational rules. 

For example, Gigerenzer and Todd’s (1999) ‘take the best’ heuristic offers a powerful explanation of 

behavior in a particular class of problem-solving situations.  
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 Heuristics, however well motivated, are typically isolated:  confidence in one heuristic does 

not extend to other heuristics. Thus, cognitive explanations based on heuristics are markedly 

different from ones based on a formal axiomatic framework. Theoretical advantages of heuristic 

models are that individual principles can be examined independently from each other and that no 

commitment has to be made regarding the overall alignment of cognitive process with the principles 

of a formal framework. Some theorists would argue that we can only understand cognition through 

heuristics. However, it is also often the case that heuristics can be re-expressed in a formal way or 

re-interpreted within CP or QP theory. For example, the heuristics from the Tversky and Kahneman 

research program, which were developed specifically as an alternative to CP models, often invoke 

similarity or memory processes, which can be related to order/context effects in QP theory. 

Likewise, failures of consequential reasoning in Prisoner’s Dilemma (Tversky & Shafir, 1992) can be 

formalized with quantum interference effects.  

The contrast between heuristic and formal probabilistic approaches to cognition is a crucial 

one for psychology. The challenge for advocates of the former is to specify heuristics which cannot 

be reconciled with formal probability theory (CP or QP). The challenge for advocates of the latter is 

to show that human cognition is overall aligned with the principles of (classical or quantum) formal 

theory.  

 

4.3 Is QP theory more complex than CP theory?  

 

We have discussed the features of QP theory, which distinguish it from CP theory. These distinctive 

features typically emerge when considering incompatible questions. We have also stated that QP 

theory can behave like CP theory for compatible questions (Section 2.2.2). Accordingly, there might 

be a concern that QP theory is basically all of CP theory (for compatible questions) and a bit more 

too (for incompatible ones), so that it provides a more successful coverage of human behavior 

simply because it is more flexible.  

 This view is incorrect. First, it is true that QP theory for compatible questions  behaves a lot 

like CP theory. For example, for compatible questions, conjunction is commutative, Lüder’s law 

becomes effectively identical to Bayes’s law, and no overestimation of conjunction can be predicted. 

However, CP and QP theories can diverge, even for compatible questions. For example, quantum 

time-dependent models involving compatible questions can still lead to interference effects, not 

possible in classical theory (Section 2.3). Though CP and QP theories share the key commonality of 

being formal frameworks for probabilistic inference, they are founded on different axioms and their 
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structure (set theoretic vs. geometric) is fundamentally different. QP theory is subject to several, 

restrictive constraints, but these are different from the ones in CP theory.  

 For example, CP Markov models must obey the law of total probability, while dynamic QP 

models can violate this law. However, dynamic QP models must obey the law of double stochasticity, 

while CP Markov models can violate this law. Double stochasticity is a property of  transition 

matrices that describes the probabilistic changes from an input to an output over time. Markov 

models require each column of a transition matrix to sum to unity (so that they are stochastic), but 

QP models require both each row and each column to sum to unity (so they are doubly stochastic). 

Double stochasticity sometimes fails and this rules out QP models (Busemeyer, Wang, & Lambert-

Mogiliansky, 2009; Khrennikov, 2010).  

Moreover, QP models have to obey the restrictive law of reciprocity, for outcomes defined 

by one dimensional subspaces. According to the law of reciprocity, the probability of transiting from 

one vector to another is the same as the probability of transiting from the second vector to the first, 

so that the corresponding conditional probabilities have to be the same. Wang and Busemeyer 

(under review) directly tested this axiom, using data on question order, and found that it was upheld 

with surprisingly high accuracy.  

More generally, a fundamental constraint of QP theory concerns Gleason’s theorem, namely 

that probabilities have to be associated with subspaces via the equation 
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to their complexity. Accordingly, Shiffrin and Busemeyer (2011) adopted a Bayesian procedure for 

model comparison, which  evaluates models both on the basis of their accuracy and complexity . As 

Bayesian comparisons depend on priors over model parameters, different priors were examined, 

including uniform and normal priors. For both priors, the Bayes’s factor favored the QP model over 

the traditional model (on average, by a factor of 2.07 for normal priors, and by a factor of 2.47 for 

uniform priors). 

Overall, yes, QP theory does generalize CP theory in certain ways. For example, it allows 

both for situations which are consistent with commutativity in conjunction (compatible questions) 

and situations which are not (incompatible questions). However, QP theory is also subject to 

constraints which do not have an equivalent in CP theory, such as double stochasticity and 

reciprocity, and there is currently no evidence that specific QP models are more flexible than CP 

ones. The empirical question then becomes which set of general constraints is more psychologically 

relevant. We have argued that QP theory is ideally suited for modeling empirical results which 

depend on order/context or appear to involve some kind of extreme dependence that rules out 

classical composition. QP theory was designed by physicists to capture analogous phenomena in the 

physical world. Having said that, QP theory does not always succeed, and there have been situations 

when the assumptions of CP models are more in tune with empirical results (Busemeyer, Wang, & 

Townsend, 2006). Moreover, in some situations the predictions from QP and CP models converge, 

and in such cases it is perhaps easier to employ CP models.  

 

5. The rational mind  

 

Beginning with Aristotle and up until recently, scholars have believed that humans are rational 

because they are capable of reasoning on the basis of logic. First, logic is associated with an abstract 

elegance and a strong sense of mathematical correctness. Second, logic was the only system for 

formal reasoning and so scholars could not conceive of the possibility that reasoning could be guided 

by an alternative system. Logic is exactly this, logical, so how could there be an alternative system 

for rational reasoning? But this view turned out to be problematic. Considerable evidence 

accumulated that naïve observers do not typically reason with classical logic (Wason, 1960), so 

classical logic could not be maintained as a theory of thinking.  

Oaksford and Chater (2007, 2009) made a compelling case against the psychological 

relevance of classical logic. The main problem is that classical logic is deductive, so that once a 

particular conclusion is reached from a set of premises, this conclusion is certain and cannot be 

altered by the addition of further premises. Of course, this is rarely true for everyday reasoning. The 
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key aspect of everyday reasoning is its nonmonotonicity, since it is always possible to alter an 

existing conclusion, with new evidence. Oaksford and Chater (2007, 2009) advocated a perspective 

of Bayesian rationality, which was partly justified using Anderson’s (1990) rational analysis approach. 

According to rational analysis, psychologists should look for the behavior function which is optimal, 

given the goals of the cognitive agent and its environment. Oaksford and Chater’s Bayesian 

rationality view has been a major contribution to the recent prominence of cognitive theories based 

on CP theory. For example, CP theories are often partly justified as rational theories of the 

corresponding cognitive problems, which makes them easier to promote, than alternatives. For 

example, in categorization, the rational model of categorization (e.g., Sanborn et al., 2011) has been 

called, well, rational. By contrast, the more successful Generalized Context Model (Nosofsky, 1984) 

has received less corresponding justification (Wills & Pothos, 2012).  

 There has been considerable theoretical effort to justify the rational status of CP theory. We 

can summarize the relevant arguments under three headings, Dutch book, long term convergence, 

and optimality. The Dutch book argument concerns the long term consistency of accepting bets. If 

probabilities are assigned to bets in a way which goes against the principles of CP theory, then this 

guarantees a net loss (or gain) across time. In other words, probabilistic assignment inconsistent 

with CP theory leads to unfair bets (de Finetti, Machi, & Smith, 1993). Long term convergence refers 

to the fact that if the true hypothesis has any degree of non-zero prior probability, then, in the long 

run, Bayesian inference will allow its identification. Finally, optimality is a key aspect of Anderson’s 

(1990) rational analysis and concerns the accuracy of probabilistic inference. According to advocates 

of CP theory, this is the optimal way to harness the uncertainty in our environment and make 

accurate predictions regarding future events and relevant hypotheses.  

 These justifications are not without problems. Avoiding a Dutch book requires expected 

value maximization, rather than expected utility maximization, i.e., the decision maker is constrained 

to use objective values rather than personal utilities, when choosing between bets. However, 

decision theorists  generally reject the assumption of objective value maximization and instead allow 

for subjective utility functions (Savage, 1954). This is essential, for example, in order to take into 

account the observed risk aversion in human decisions (Kahneman & Tversky, 1979). When 

maximizing subjective expected utility, CP reasoning can fall prey to Dutch book problems (Wakker, 

2010). Long term convergence is also problematic, because if the true hypothesis has a prior 

probability of zero, then it can never be identified. This is invariably the case in Bayesian models, 

since it is not possible to assign a non-zero probability to all candidate hypotheses. Overall, a priori 

arguments, such as the Dutch book or long term convergence, are perhaps appealing under simple, 
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idealized conditions. However, as soon as one starts taking into account the complexity of human 

cognition, such arguments break down.  

Perhaps the most significant a priori justification for the rationality of CP theory concerns 

optimality of predictions. If reasoning on the basis of CP theory is optimal, in the sense of predictive 

accuracy, then this seems to settle the case in favor of CP theory. For example, is it more accurate to 

consider Linda as just a bank teller, compared to a bank teller and a feminist? By contrast, QP theory 

embodies a format for probabilistic inference which is strongly perspective and context dependent. 

For example, Linda may not look like a bank teller initially, but from the perspective of feminism 

such a property becomes more plausible. But, equally, optimality must be evaluated under the 

constraints and limited resources of the cognitive system (Simon 1955).  

The main problem with classical optimality is that it assumes a measurable, objective reality 

and an omniscient observer. Our cognitive systems face the problem of making predictions for a vast 

number of variables that can take on a wide variety of values. For the cognitive agent to take 

advantage of classical optimality, it would have to construct an extremely large joint probability 

distribution to represent all these variables (this is the principle of unicity). But for complex 

possibilities, it is unclear as to where such information would come from. For example, in Tversky 

and Kahneman’s (1983) experiment we are told about Linda, a person we have never heard of 

before. Classical theory would assume that this story generates a sample space for all possible 

characteristic combinations for Linda, including unfamiliar ones such as feminist bank teller. This just 

seems implausible, let alone practical, considering that for the bulk of available knowledge, we have 

no relevant experience. It is worth noting that Kolmogorov understood this limitation of CP theory 

(Busemeyer & Bruza, 2011, chapter 12). He pointed out that his axioms apply to a sample space from 

a single experiment and different experiments require new sample spaces. But his admonitions were 

not formalized and CP modelers do not take them into account.  

Quantum theory assumes no measurable objective reality, rather judgment depends on 

context and perspective. The same predicate (e.g., that Linda is a bank teller) may appear plausible 

or not, depending on the point of view (e.g., depending on whether we accept Linda as a feminist or 

not). Note that QP theory does assume systematic relations between different aspects of our 

knowledge, in terms of the angle (and relative dimensionality) between different subspaces. But, 

each inference changes the state vector and so the perspective from which all other outcomes can 

be evaluated. Note also that context effects in QP theory are very different from conditional 

probabilities in CP theory. The latter are still assessed against a common sample space. With the 

former, the sample space for a set of incompatible outcomes changes every time an incompatible 

question is evaluated (since this changes the basis for evaluating the state).  
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If we cannot assume an objective reality and an omniscient cognitive agent, then perhaps 

the perspective-driven probabilistic evaluation in quantum theory is the best practical rational 

scheme. In other words, quantum inference is optimal, for when it is impossible to assign 

probabilities to all relevant possibilities and combinations concurrently. This conclusion resonates 

with Simon’s (1955) influential idea of bounded rationality, according to which cognitive theory 

needs to incorporate assumptions about the computational burden which can be supported by the 

human brain. For example, classically, the problem of assessing whether Linda is a feminist and a 

bank teller requires the construction of a bivariate joint probability space, which assigns a probability 

density for each outcome regarding these questions. By contrast, a QP representation is simpler: it 

requires a univariate amplitude distribution for each question, and the two distributions can be 

related through a rotation. As additional questions are considered (e.g., whether Linda might be tall 

or short) the efficiency of the QP representation becomes more pronounced. Note that classical 

schemes could be simplified, by assuming independence between particular outcomes. However, 

independence assumptions are not appropriate for many practical situations and will introduce 

errors in inference. 

Note that the perspective dependence of probabilistic assessment in QP theory may seem to 

go against an intuition that ‘objective’ (classical) probabilities are somehow more valid or correct. 

However, this same probabilistic scheme does lead to more accurate predictions in the physical 

world, in the context of quantum physics. If the physical world is not ‘objective’ enough for CP 

theory to be used, there is a strong expectation that the mental world, with its qualities of flux and 

interdependence of thoughts, would not be as well. 

 The application of QP theory to cognition implies a strong interdependence between 

thoughts, such that it is typically not possible to have one thought, without repercussions for other 

thoughts. These intuitions were extensively elaborated in the work of Fodor (1983), with his 

proposals that thought is isotropic and Quinean, so that revising or introducing one piece of 

information can in principle impact on most other information in our knowledge base. Oaksford and 

Chater (2007, 2009) argued that it is exactly such characteristics of thought which make CP theory 

preferable to classical logic for cognitive modeling. However, Fodor’s (1983) arguments also seem to 

go against the neat reductionism in CP theory, required by the principle of unicity and the law of 

total probability, according to which individual thoughts can be isolated from other, independent 

ones, and the degree of interdependence is moderated by the requirement to always have a joint 

probability between all possibilities. QP theory is not subject to these constraints.  

Overall, accepting a view of rationality inconsistent with classical logic was a major 

achievement accomplished by CP researchers (e.g., Oaksford & Chater, 2007, 2009). For example, 
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how can it be that in the Wason selection task the ‘falsificationist’ card choices are not the best 

ones? Likewise, accepting a view of rationality at odds with CP theory is the corresponding challenge 

for QP researchers. For example, how could it not be that 
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cognitively feasible to apply the unicity principle?), the greater the psychological relevance of CP 

theory.  

 Another challenge concerns further understanding the rational properties of quantum 

inference. The discussion in Section 5 focused on the issue of accuracy, assuming that the 

requirements from the principle of unicity have to be relaxed. However, there is a further, 

potentially relevant literature on quantum information theory (Nielsen & Chuang, 2010), which 

concerns the processing advantages of probabilistic inference based on QP theory. For example, a 

famous result by Grover (1997) shows how a quantum search algorithm will outperform any classical 

algorithm. The potential psychological relevance of such results (e.g., in categorization theory) is an 

issue for much further work (e.g., is it possible to  approximate quantum information algorithms in  

the brain?). These are exciting possibilities regarding both the rational basis of quantum cognitive 

models and the general applicability of quantum theory to cognitive theory.  

 

6.2 Empirical challenges 

 

So far, the quantum program has involved employing quantum computational principles to explain  

certain, prominent empirical findings. Such quantum models do not simply provide re-descriptions 

of results which have already had (some) compelling explanation. Rather, we discussed results which 

have presented on-going challenges and have resisted explanation based on classical principles. One 

objective for future work is to continue identifying empirical situations which are problematic from a 

classical perspective.  

 Another objective is to look for new, surprising predictions, which take advantage of the 

unique properties of quantum theory, such as superposition, incompatibility, and entanglement. For 

example, Trueblood and Busemeyer (2011) developed a model to accommodate order effects in the 

assessment of evidence in McKenzie et al.’s (2002) task. The model successfully described data from 

both the original conditions and a series of relevant extensions. Moreover, Wang and Busemeyer 

(under review) identified several types of order effects which can occur in questionnaires, such as 

consistency and contrast (Moore, 2002). Their quantum model was able to make quantitative, 

parameter free predictions for these order effects. In perception, Atmanspacher and Filk (2010) 

proposed an experimental paradigm for bistable perception, so as to test the predictions from their 

quantum model regarding violations of the temporal Bell inequality (such violations are tests of the 

existence of superposition states).  
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 Overall, understanding the quantum formalism to the extent that surprising, novel 

predictions for cognition can be generated is no simple task (in physics, this was a process which 

took several decades). The current encouraging results are a source of optimism.  

 

6.3 Implications for brain neurophysiology  

 

An unresolved issue is how QP computations are implemented in the brain. We have avoided a 

detailed discussion of this research area because, though exciting, is still in its infancy. One 

perspective is that the brain does not instantiate any quantum computation at all. Rather, 

interference effects in the brain can occur if neuronal membrane potentials have wave-like 

properties, a view which has been supported in terms of the characteristics of EEG signals (Barros & 

Suppes, 2009). Relatedly, Ricciardi and Umezawa (1967; Jibu & Yasue, 1995; Vitiello, 1995) 

developed a quantum field theory model of human memory, which still allows a classical description 

of brain activity. The most controversial (Atmanspacher, 2004; Litt et al., 2006) perspective is that 

the brain directly supports quantum computations. For quantum computation to occur, a system 

must be isolated from the environment, since environmental interactions cause quantum 

superposition states to rapidly decohere into classical states. Penrose (1989) and Hammeroff (1998) 

suggested that microtubules prevent decoherence for periods of time long enough to enable 

meaningful quantum computation; in this view, the collapse of superposition states is associated 

with experiences of consciousness. 

Overall, in cognitive science it has been standard to initially focus on identifying the 

mathematical principles underlying cognition, and later address the issue of how the brain can 

support the postulated computations. However, researchers have been increasingly seeking bridges 

between computational and neuroscience models. Regarding the QP cognitive program, this is 

clearly an important direction for future research.  

 

6.4 The future of QP theory in psychology  

 

There is little doubt that extensive further work is essential before all aspects of QP theory can 

acquire psychological meaning. But this does not imply that current QP models are not satisfactory. 

In fact, we argue that the quantum approach to cognition embodies all the characteristics of good 

cognitive theory: it is based on a coherent set of formal principles, the formal principles are related 

to specific assumptions about psychological process (e.g., the existence of order/context effects in 

judgment), and it leads to quantitative computational models which can parsimoniously account for 
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both old and new empirical data. The form of quantum cognitive theories is very much like that of 

CP ones, and the latter have been hugely influential in recent cognitive science. The purpose of this 

article is to argue that researchers attracted to probabilistic cognitive models need not be restricted 

to classical theory. Rather, quantum theory provides many theoretical and practical advantages and 

its applicability to psychological explanation should be further considered.  
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Appendix. An elaboration of some of the basic definitions in QP theory.  

 

(See Busemeyer and Bruza, 2011, for an extensive introduction) 

 

Projectors (or projection operators).  

Projectors are idempotent linear operators. For a one dimensional subspace, corresponding, for 

example, to the 

 

 

 

 ray, the projector is a simple outer product, 



50  Quantum probability 
 

 Then the direct sum space is formed by all possible pairs of vectors, one from E and another from 

~E.  

 

 

Time dependence.   

The quantum state vector changes over time according to Schrödinger’s equation,  
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Now, suppose that the person is determined to find out whether she will be employed or 

not, before having this inner reflection about happiness (perhaps she intends to delay thinking about 

her happiness, until after her professional review). Then, the state after learning about her 

employment will be either 

 

 

 

 or 


