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Abstract

Testability is defined as the probability that a program will fail a test, conditional on
the program containing some fault. In this paper, we show that statements about the
testability of a program can be more simply described in terms of assumptions on
the probability distribution of the failure intensity of the program. We can thus state
general acceptance conditions in clear mathematical terms using Bayesian
inference. We develop two scenarios, one for software for which the reliability
requirements are that the software must be completely fault-free, and another for
requirements stated as an upper bound on the acceptable failure probability.

1. Introduction
The only direct method for predicting the operational reliability of a program is
inference from "statistical" testing under an operational input profile [1, 2] . For
safety-critical software, acceptance requires a long testing campaign with no
failures. However, an amount of operational testing sufficient to warrant a high
confidence that the software is as reliable as required in some current applications is
infeasible [3, 4, 5] .

A way forward is to combine the evidence from testing with any other evidence
available. This combination can be made rigorous through Bayesian  methods, in
which the assessor can update the prior probability of an event, on the basis of new
observed data, to produce a posterior probability, representing how the strength of
belief allowable in the event taking place varies with new evidence. In particular,
the use of prior probabilities in Bayesian reasoning explicitly describes the fact that
predictions on the basis of statistical inference must also depend on pre-existing
information about the events in question.

When judging on the basis of the results of testing, a kind of clearly helpful
information is how effective the testing is at discovering faults. One would think
that a series of successes in highly effective tests would give the same confidence as
a longer series with less effective tests. A measure of test effectiveness that has
gained some popularity is testability , the probability of a test detecting a failure
conditional on the program being faulty, introduced by Voas and co-authors [6, 7, 8,
9, 10] and proposed as a basis for assessing software. The underlying intuition is
that a statement about the internal structure of a program (to the effect that any bugs
are likely to produce a high failure rate) allows one to draw stronger conclusions
from testing than allowed by black-box considerations alone.  In [11] , we gave a
rigorous, Bayesian inference procedure for obtaining  the probability that a program
is correct, knowing its testability, the test results, and the prior probability of it
being correct. However, in that paper we used a point estimate of program
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testability. This amounts to assuming that, if a program does contain faults, it is
bound to have a certain, known probability of failure per execution (failure
intensity), which is clearly a simplifying, but unrealistic assumption. In reality, we
will instead have at most an understanding of which values of the failure intensity
are more or less likely.  In this paper, we offer two improvements:

1) we describe testability in terms of the prior distribution of the failure intensity of
a program. This yields a prediction method which is more applicable in realistic
situations, and eliminates the need to reason with a rather abstruse concept like
the probability that a program would fail, if it were possible for it to fail;

2) we show how to use this prediction method when the criterion for accepting a
program is either the probability that the program is correct (completely fault-
free), or the probability that the program has an acceptable failure intensity in
operation.

We consider a scenario in which software undergoes a long series of independent
test cases, without failure. This is the typical case of interest for safety-critical
software, but the mathematics can easily be extended to the case of any number of
observed failures. For reasons of space, we only consider a few examples of simple
prior distributions, to illustrate some essential facts about reasoning with testability.
The other assumptions are that testing takes place with the operational input
distribution, and all and only the actual failures of the program under test are
detected (perfect oracle  assumption).

In Section 2, we introduce the notion of failure intensity as a random variable and
its probability distribution. Section 3 deals with the representation of assumptions
about testability in terms of this distribution.  Sections 4 and 5 describe the use of
Bayesian inference in judgement about accepting software, according to the
acceptance criteria 1) and 2), respectively, and illustrate the method with numerical
examples. Section 6 summarises our results and their possible developments and
discusses their practical uses.

2. Distributions of the Failure Intensity
In the assessment of software reliability, uncertainty derives from two sources: we
do not know which inputs, if any, will cause the software to fail; and we do not
know when and whether such inputs will be presented to the software in operation.
It is reasonable to describe this uncertainty by stating that, under a given input
profile, a program has a certain probability of failure when executed once, called a
failure intensity  (often called a "failure rate"). The failure intensity of a program is
uncertain because of our limited knowledge about the program: we thus consider it
as a random variable, Θ, with a certain probability distribution. A way of picturing
this is to think about the program to be assessed as having been "extracted at
random" from the population of all the programs that could  have been produced for
the same purpose and under the same known conditions: they have different values
of Θ, and the distribution describes the frequencies with which different values of Θ
appear in this population. Or, the distribution of Θ can be thought of as representing
the degrees of one's beliefs ("subjective probabilities", based on whatever evidence
is available) that different possible values are the actual  value of Θ for this  program.
The latter is the Bayesian interpretation. With Bayesian inference, we represent
what we expect about the program before testing it via a prior distribution: we can
for instance take into account the reliability levels achieved in past products of the
same development process. By applying Bayes' rule, we then obtain a (posterior)
distribution for Θ which also takes account of test results.



3

Choosing a prior distribution for Θ is a difficult task. It may be appealing to look for
a prior distribution that represents "ignorance" about the failure intensity. However,
absolute ignorance cannot be uniquely defined. Any representation of "ignorance"
embodies a statement about which events are deemed to be equally likely. Many
authors (e.g. [3, 4]), represent "ignorance" via the (mathematically convenient)
uniform  prior:

P(Θ = ϑ) ≡ 1 ,   for all ϑ∈ [0,1]

This means that the true value of Θ is as likely to lie within the interval [0.1, 0.2] as
is within [0.2, 0.3], [0.3, 0.4], etc. But one can imagine different forms of ignorance,
e.g., one might believe that the failure intensity is as likely to fall in [0.1, 1] as in
[0.01, 0.1], as in [0.001, 0.01], etc., and this belief would result in a totally different
distribution than the uniform prior. This latter way of dividing the event space
seems closer to the usual ways of reasoning about software. Our examples will use a
variant of this second form of "ignorance", fitting the assumptions of [6, 8, 9] : Θ
may only take values in an interval [ϑ1, ϑN], 0<ϑ1 < ϑN = 1, plus  the isolated value
ϑ0=0 (correct software), and the logarithm of Θ has a uniform distribution over the
interval [log(ϑ 1), log(ϑ N)].

To avoid mathematical complexity and simplify our explanations, we use discrete
approximations to our distributions and numerical computations. We thus represent
Θ as a discrete random variable, and describe its distribution via a succession

ai = P(Θ = ϑi),  i=0, 1, ..., N;

in particular we define ϑ0 = 0 and a0  = P(Θ = ϑ0 = 0).

After observing T  successful tests, we obtain, by applying Bayes' theorem, a
discrete posterior  distribution b0 , b1, ..., bN with:

(1) bi (T )= 
ai (1 − ϑi )T

aii=0

N
∑ (1 − ϑi )T

where (1-ϑ i)T, the probability that no failures happen in T  tests if Θ=ϑi , is usually
called a likelihood function .

3. Representing Testability in terms of the Prior
Distribution of the Failure Intensity
We refer to the concept of testability introduced by Voas and co-authors, but use
our, more precise definition [11]: the testability of a program is the conditional
probability that the program fails a test, on an input randomly drawn from a given
input profile, given a specified oracle and given that  the program is faulty.

Testability is a rather un-intuitive concept: if the program contained no faults, then
it could not fail. Testability describes how likely it would be to fail, if it did contain
faults, and is then used to decide how likely the program is not  to contain faults.

If we consider Θ as a random variable, to represent our uncertainty about its actual
value, it becomes natural to see testability as a random variable as well. If we
consider a point estimate, τ , for this random variable, we can study the relationship
between τ and the distribution of Θ. By definition:

(2) τ = P(failure of a test | the program is faulty),

that is
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(3) τ =  
P(failure of a test AND the program is faulty)

P(the program is faulty)
 =  

P(failure of a test)
P(the program is faulty)

where the last equality is justified since only faulty programs can fail a test, so that
the event  "failure of a test" is contained in the event "the program is faulty". In our
representation of the prior probability distribution of Θ,

(4) P(the program is faulty) = 1 − a0  = ai
i=1

N
∑

and:

(5) P(failure of a test)= E(Θ) = ai ϑ i
i=0

N
∑ = ai ϑ i

i=1

N
∑

where E(Θ) represents the expected value, or mean, of the random variable Θ. So,

(6) τ =  
ai

i=1

N
∑ ϑ i

ai
i=1

N
∑

  =  
ai

i=1

N
∑ ϑ i

1 − a0

Voas and co-authors assumed that a lower bound h can be estimated for the
testability of a program, i.e., if the program is faulty, then its probability of failing a
test is at least h. Our chosen prior distribution satisfies this assumption. By
increasing ϑ1, the lower bound on the values of Θ  that have non-zero probability,
we can thus study the effect of assuming increasing values for testability (i.e., of the
failure intensity of faulty programs).

Notice, however, that events with a zero prior probability also have a zero posterior
probability. So, stating that a lower bound exists is a very strong statement about the
program, as it cannot be changed by any amount of new evidence. By comparison,
we observe that the point estimate of testability,  τ, will in general change as the
probability distribution for Θ changes with the number of successful tests.

The adopted test method affects testability. For instance, test inputs could be taken
from an input distribution different from the operational profile. The coverage of the
test oracle could be smaller, (or, conceivably, greater) than 1 (in practical terms,
failures during  testing could go undetected, or vice versa the oracle could, by
monitoring internal program variables, detect erroneous behaviour even when this is
not propagated to program outputs). In these cases, the probability of a test failure
for those programs which are faulty, i.e., testability, will differ from their
operational failure intensity. These scenarios can be modelled by a probability
distribution for testability, conditional on Θ.  For reasons of space, we will not do so
in this paper.  Simple examples are shown in [12] .

4. Acceptance Based on the Probability of Correctness
The reasoning in [8, 9]  and similar papers uses the evidence of successful tests to
increase confidence that the software under test is defect-free. In Bayesian terms,
this means having a prior probability a0=P(Θ=0)≠0 (if it were a0 =0, no amount of
successful test could produce a posterior b0 ≠0), and observing how the
corresponding posterior probability increases with the number T of successful tests.
From equation (1):
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(7) b0(T)  = 
a0

ai
i=0

N
∑ (1 − ϑ i )

T

A non-negligible prior probability (i.e., belief held before observing any testing)
that a program is defect-free is implausible in many fields of application of
software. However, it may be plausible for simple software developed under very
stringent quality criteria, which includes some safety-critical software.

Estimating the probability of the software being correct, rather than its probability
of failure or similar reliability measures, has some important advantages. Firstly, it
does not depend on testing under the operational profile, which is difficult to derive,
but can use any test profile chosen for its effectiveness in revealing faults. This is
important because testing in many organisations is organised on the assumption that
other test selection criteria are more efficient than operational profiles for revealing
faults (the controversy cannot be settled for lack of conclusive evidence; it is also
clear that different answers might be true for different organisations and specific
situations). Secondly (as we discuss in detail in [13]), a probability of correctness is
a lower bound on the probability of correct behaviour over any arbitrary length of
time, while an estimated failure intensity or rate implies progressively less
favourable predictions with longer times of operation.
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Figure 1  Probability that the program under test is correct, b0(T), as a function of
the number of successful tests, T.

We show in Fig. 1 how the probability of correctness, i.e., the chance that this
program is actually one of the perfect ones in our notional population, grows rapidly
as we observe successful tests. We show two groups of curves, respectively with a
prior probability of correctness equal to 0.1 and 0.5, and within each group we
assume different values for ϑ1, the lower bound on the failure intensity. As
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expected, the higher the lower bound ϑ 1, the higher the estimated probability of
correctness. We can also note that for small numbers of tests the prior probability of
correctness greatly affects the posterior; however, as successful tests accumulate, its
influence becomes less important: for instance, after 10 6 successful tests, a prior
distribution with a0=0.1 and ϑ 1=10-6  would give a more favourable prediction than
a prior starting with a0=0.5 and ϑ1=10-14.

In the following figure we also show the posterior probability that the program is
correct as a function of ϑ 1, under the assumption that, when we vary ϑ1, a0 does not
change, and the distribution of Θ when Θ≠0 (i.e., for faulty programs) remains
uniform between ϑ 1 and 1. We remind the reader that we are assuming that a test
input causes the tester to adjudge a test failure if and only if the same input would
cause the program to fail in operation. We are thus modelling the effects of the
different failure intensities in different programs, not the effects of different degrees
of instrumentation of programs to facilitate error detection in testing.
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Figure 2   Probability that the program under test is correct, b0(T), as a function of
the lower bound on the failure intensity, ϑ1, after T successful  tests.

5. Acceptance Based on the Probability of Not
Exceeding a Given Failure Intensity
Fig. 2 confirms that b0 (T) (for a fixed T ) increases with ϑ1 , implying  that, out of
two programs that pass the same number of tests, the program having a higher
testability is more likely to be correct. But this is only one side of the coin. The
probability of correctness alone gives us no indication of how likely a program
would be to fail, if  it were faulty. In other words, we may have estimated that our
program is very likely to be correct, but if the program happens to be faulty, what
risk are we accepting that it is too  unreliable? In this section, we discuss another
acceptance criterion, which seems to apply to most practical situations: a reliability
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requirement is stated in terms of an allowed upper bound, ϑ R , on the failure
intensity in operation, i.e., it is required that Θ≤ϑR. So, an appropriate measure on
which an acceptance criterion can be based is the probability that the program
satisfies this reliability requirement. This cannot be 1, since perfect prediction is
impossible, but one would reasonably require it to be close to 1 (more or less close
depending on the cost of operating unsatisfactory software). Once we have inferred
the posterior probability distribution for Θ, the probability of "success", i.e., of the
program satisfying its reliability requirement is:

(8) Psucc(T)= bi
i=0

R
∑ (T )  =  

ai
i=0

R
∑ (1 − ϑ i )

T

ai
i=0

N
∑ (1 − ϑ i )

T
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Figure 3. Probability that the failure intensity Θ of the program under test is lower
than ϑR=10-4, Psucc(T), as a function of the number of successful tests, T.

Fig. 3 shows the function Psucc(T ). Notice that Psucc increases with  a0  but decreases
with increasing values of the lower bound on Θ, ϑ 1. This is caused by the
assumption that the logarithm of Θ is uniformly distributed over [log(ϑ 1), log(ϑN)].
Increasing ϑ1, i.e., assigning a zero probability to a wider range of values of Θ
starting from 0, while keeping a0 constant, means that the remaining possible values
have increased probabilities (i.e., the values of the probabilities ai  for i≥1 are
increased). So, increasing ϑ1, decreases the reliability of the programs and changes
the scenario so that the evidence before testing (in particular, the prior probability of
"success", Psucc(0)) is less favourable to the program under test.
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Figure 4  Probability Psucc(T) that the failure intensity Θ of the program under test is
lower than ϑR ,  as a function of the lower bound on the failure intensity, ϑ1. The
probability of correctness, a0, is kept constant, and the logarithm of Θ  is uniformly
distributed between log(ϑ 1) and 0. Notice that the curves to the right of the point
ϑ1=ϑR are just the curves of b0=P(Θ=0), since ϑ 1>ϑR means  that all acceptable,
non-zero failure intensities have zero probability.

The next two figures offer more insight into the effects of varying ϑ1. They show
Psucc(T) as a function of ϑ 1 (as fig. 2 did for b0 (T)). However, in Fig 4 the prior
distribution of Θ varies with ϑ1 as we just explained. Fig. 5 studies a completely
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different scenario: as we increase ϑ1, we do not change the probability density
function for Θ>ϑ1, but we increase a0 , the probability that the software is correct,

so as to preserve the property  ai
i=0

N
∑  = 1. So, Fig. 4 and Fig. 5 represent the

reasoning of two assessors with different information. Both know with certainty that
there is a lower bound ϑ1 on the failure intensity of the program, if faulty. However,
in Fig. 4  the assessor is considering software for which (s)he has a clear idea of the
probability of it being correct, which does not change with different assessments of
ϑ1. The assessor in Fig. 5, on the contrary, knows the distribution of Θ for Θ>ϑ 1,
which does not vary with different assessed values of ϑ 1 , and therefore has to
change his assessment of a0 as (s)he varies ϑ 1. In Fig. 4, increasing ϑ 1 causes Psucc

to plummet, until ϑ 1  exceeds ϑ R, that is, until one believes that any bug in the
software will cause it to be too unreliable. In Fig. 5, increasing ϑ 1 causes Psucc to
increase slightly (Psucc(0) remains constant as ϑ 1 varies), until ϑ 1  reaches the
threshold ϑR. These are extreme scenarios, of course. In general, we can expect that
different situations change all aspects of the distribution of Θ, rather than leaving
just some aspects unchanged. However, these figures show how the whole
distribution of Θ is relevant, rather than just ϑ1  or h.
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Figure 5  Probability P succ(T) that the program's failure intensity Θ is lower than ϑR,
as a function of the lower bound on the failure intensity, ϑ1. The curves are
identified by the same symbols as in Fig. 4. However, for each curve, the
probability that the software is correct, a0, starts, for ϑ 1=10-14, at the value shown
in the legend of Fig. 4, and then increases as ϑ1 increases, leaving unchanged the
probabilities of the values of Θ greater than ϑ1.
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6. Conclusions
In [11]  we reached these conclusions:

- the only ways of increasing testability that are unconditionally beneficial are
those that improve one's ability to detect  undesired behaviour of a program,
without increasing the likely failure intensity if the program happens to be
faulty;

- if program A has higher testability than program B, obtained via a structure that
makes faults, if present, more likely to cause failures, and programs A and B
pass the same number of tests, this does not  indicate   that program A is a better
program than B.

We have now also given precise quantitative expressions of what can be inferred
from evidence on testability.  In comparison with previous work, we have shown
that testability is indeed an interesting measure for an assessor, but is only one
aspect of our possible knowledge on a program, and using it without considering
other aspects of the prior distribution of Θ may be misleading.

We have instead shown that knowledge about program testability can be integrated
in reasoning based on the prior distribution of Θ . In particular, we have shown
(equations (7) and (8)) how to compute two specific measures corresponding to
reasonable acceptance criteria - the probability that the software is correct, and the
probability that it has an acceptable failure intensity. We have shown numerical
examples for  both cases, with particular prior distributions, and discussed some of
the effects of assumptions about testability, i.e., of a lower bound on the non-zero
values of failure intensity.

We think that testability-based arguments cannot now be used to evaluate critical
software, because there is no trustworthy way of measuring the testability of the
programs concerned. Our reasoning in this paper does not explicitly depend on an
estimate of testability. Still, in many cases one would be hard pressed to assign a
prior distribution of Θ which is perceived as representing a soundly based belief.
So, the main advantage of our new representation of testability-based arguments is
that it is natural: it uses primitive concepts (the probability that a program has a
certain failure intensity) which are easier to grasp than the concept of testability, and
subsumes testability-based arguments in a general, standard form of arguments
using test results [3, 4, 12] .

If estimating the important parameters is so difficult, what is the use of the way of
reasoning we described? In the fact that it is a sound decision method, and can thus
be used as a check on the informal, haphazard way in which judgement is often
passed in software acceptance, especially   for highly reliable and safety-critical
software.  When the required failure intensity is orders of magnitude lower than can
be proven directly by statistical testing only, much effort is spent in documenting
other forms of evidence, like the formal satisfaction of requirements on the form of
documentation, the thoroughness of debug testing, and such. All this evidence is
then used to reach a decision in an informal, un-auditable, intuitive way, subject to
all the common fallacies of intuitive judgement [14, 15] . The method we have
described allows checks of the form "After T tests, I wish to be 99 % sure that the
software is satisfactory. What kind of prior distribution of Θ would warrant that
conclusion? Is this distribution at all plausible, in view of the existing evidence?".
Likewise, one can describe a distribution that appears plausible, and then check
whether the desired conclusions are sensitive to minor changes in that distribution:
acceptance based on such grounds would appear unsound.



11

In addition, this kind of reasoning may help with design and project management
decisions (e.g., regarding program structure or testing regimes, respectively),
because it may show how alternative options, by affecting the knowledge available
about the program, would help or hinder the final assessment and acceptance of the
program.

Further development of this work are under way in several directions:

- acceptance criteria based on the probability of failure per execution ("failure
intensity") can easily be substituted by criteria based on the probability of failure
over the operational life of the software, or other periods of operation, as in [16];

- different scenarios can be studied as to the relationship between the probability
of failure in operation and the probability of test failure, to take into account
factors like imperfect oracle coverage, stress testing, etc. For initial examples of
these extensions, the reader is referred to [12].
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