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Abstract. We present a simple mathematical framework for the description of the

dynamics of glassy systems in terms of a random walk in a complex energy landscape

pictured as a network of minima. We show how to use the tools developed for the

study of dynamical processes on complex networks, in order to go beyond mean-field

models that consider that all minima are connected to each other. We consider several

possibilities for the transition rates between minima, and show that in all cases the

existence of a glassy phase depends on a delicate interplay between the network’s

topology and the relationship between energy and degree of a minimum. Interestingly,

the network’s degree correlations and the details of the transition rates do not play

any role in the existence (nor in the value) of the transition temperature, but have an

impact only on more involved properties. For Glauber or Metropolis rates in particular,

we find that the low-temperature phase can be further divided into two regions with

different scaling properties of the average trapping time. Overall, our results rationalize

and link the empirical findings about correlations between the energy of the minima

and their degree, and should stimulate further investigations on this issue.
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1. Introduction

In the last decade, studies about the structure and dynamics of complex networks have

blossomed, thanks in particular to the versatility of the network representation, which

has turned out to be adequate for systems as diverse as the Internet or social networks.

A large body of knowledge about the empirical description of networked systems has

thus been accumulated, together with a wealth of modeling techniques; a good level of

understanding of how dynamical processes taking place on networks depend on their

structure has been as well reached [1, 2, 3, 4, 5, 6]. Many network studies have been

concerned with systems of interest in several scientific areas a priori remote from physics

(social sciences, biology, computer science, epidemiology, ...), and they have also reached

more traditional fields of statistical physics, such as the study of glassy systems, as we

now describe.

The many puzzles raised by the glass transition, and in particular the slow dynamics

displayed by glassy systems at low temperatures, have been the subject of a large interest

in the past decades [7, 8]. One of the approaches which has led to promising insights

consists in the description of the dynamics of a glassy system inside its configuration

space. The energy landscape of a glassy system is typically rugged, made of many local

minima (metastable states), whose huge number makes it difficult to reach equilibrium.

In this framework, the energy landscape is seen as a set of basins of attractions of local

minima (“traps”), and the system evolves through a succession of harmonic vibrations

inside traps and jumps between minima [9, 10]. This picture has stimulated the

definition and study of various simplified models of dynamical evolution between traps,

in order to reproduce the phenomenology of glassy dynamics [11, 12, 13, 14, 15, 16, 17].

On the other hand, several studies have focused on obtaining a better understanding of

the structure of these local minima. A way to attain this goal is to perform numerical

simulations of small systems, at a fixed temperature, and quenching them at regular

time intervals in order to make them reach the nearest local minimum. Information is

then gathered on the various local minima, and on the sizes of their basins of attraction.

Various studies have investigated, among other issues, the detailed structure of the

potential energy landscape, the substructure of minima, and the properties of energy

barriers between minima [18, 19, 20]. Several works have also used the information on

the energy landscape to study a master equation for the time evolution of the probability

to be in each minimum. The considered systems range from clusters of Lennard-Jones

atoms to proteins or heteropolymers [9, 10, 21, 22, 23].

An interesting property of the modeling of the energy landscape in terms of a set

of traps linked by energy barriers, lies in the possibility to define and study its network

representation within the context of network theory. In this representation, each local

minimum is associated to a node, and a link is drawn between two nodes whenever it is

possible for the system to jump between the basins of attraction of the corresponding

minima. The links can then be defined as weighted and directed, as jumps between

minima are not equiprobable, and may be easier in one direction than in the other.
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Networks of local minima of the energy landscape have thus been built and studied.

These networks have been found to exhibit a small-world character [24]. The number

of links of each node (its degree) turns out to be strongly heterogeneous, possibly with

scale-free degree distributions, which have been linked to scale-free distributions of the

areas of the basins of attraction [25, 26, 27]. Complex network analysis tools have

also been used to investigate the structure of energy landscapes of various systems

of interest, such as Lennard-Jones atoms, proteins, or spin glasses, among others

[21, 22, 23, 27, 28, 29, 30, 31, 32, 33]. The energy of a minimum and its degree (i.e., the

number of other minima which can be reached from this minimum) have been shown

to be correlated, as well as the barriers to overcome to escape from a minimum. In

particular, a logarithmic dependence of the energy of a minimum on its degree has been

exhibited, as well as energy barriers increasing as a (small) power of the degree of a node

[23, 25, 27]. No systematic study of these issues has however been performed, and most

investigations have been limited to relatively small systems because of computational

limitations.

Most importantly, the investigations cited above have focused on the topology of

the network of minima, conceived as a tool to characterize the energy landscape. The

structure of a network has however a deep impact on the properties of the dynamical

processes which take place on it [6]. It seems thus adequate to put to use the tools and

techniques developed for the analysis of dynamical processes on networks to achieve a

better understanding of how the energy landscape structure, represented as a network,

affects the system performing a random walk in it, and how the onset of glassy dynamics

can be described in this way in a general framework. In a previous paper [34], we have

made a first step to fill this gap by focusing on the trap model put forward in Ref. [11].

In this paper, we generalize our approach to more involved transition rates between

energy minima. We show how the heterogeneous mean-field (HMF) theory [6, 35] can

be used in this context to highlight the connection between the topological properties

of the network of minima and the dynamical exploration of these minima. We show in

particular that the relationship between energy and degree of the minima is a crucial

ingredient for the existence of a transition and the subsequent glassy phenomenology.

Our results shed light on the empirically found relationship between the energy of a

local minimum and its degree, and we hope that they will stimulate more systematic

investigations on this issue.

We have organized our paper as follows: In Section 2 we define our model of

energy landscape dynamics as a random walk on a complex network. Different physical

transition rates are proposed, and the corresponding numerical implementation is

discussed. In Section 3 we present a theoretical analysis based on the heterogeneous

mean-field approximation for dynamical processes on complex networks. This formalism

is applied in Section 4, where general analytical approximate expression are presented for

the main quantities characterizing the glassy transition and dynamics. These expressions

are applied to the different physical transition rates considered in Section 5, where

checks against numerical simulations are also presented. In Section 6 we discuss the
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Figure 1. Potential energy landscape description. Energies Ei are measured positive

downwards. Energy gaps Σij are defined positive upwards.

relation between energy basins and energy barriers. Finally, in Section 7 we present our

conclusions.

2. Random walk models on complex energy landscapes

2.1. Definition

We consider a network of N nodes, in which each vertex i corresponds to a minimum

in the energy landscape, and a link is drawn between two minima i and j if the system

can jump directly from i to j. To each node i is associated the energy −Ei of the

corresponding minimum (energies are defined from a reference level, in such a way that

Ei > 0 for all i). Moreover, an energy gap Σij is associated to the edge between

vertices i and j, as depicted in Fig. 1: Σij is a symmetric function, such that the energy

barrier that must be overcome to jump from vertex i to vertex j can be written as

∆Eij = Ei + Σij and, analogously, ∆Eji = Ej + Σij . Obviously, we will have in general

∆Eij 6= ∆Eji.

The system under investigation is pictured as a walker exploring the network

through a biased random walk. The rate (probability per unit time) ri→j to go from

vertex i to vertex j depends a priori on the energy at vertices i and j and/or the energy

barrier between i and j that must be overcome. The random walk model is defined in

discrete time t as follows:

• At time t, the walker is in vertex i.

• It chooses at random a neighbor of i, namely j.

• With a probability ri→j, that depends on the energy Ei and/or on the energy barrier

∆Eij , the walker hops to vertex j.

• Time is updated t → t + 1.
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The relationship between the probabilities ri→j and the energy and energy barriers

can be of different forms. In usual unbiased random walks, ri→j is a constant independent

of both i and j [36]. As a first step to introduce a dependence on the nodes, a

possible approach is that in which the energy barriers depend only on the local minima

themselves, i.e. we consider Σij = 0. For example, in the Bouchaud trap model

considered in Ref. [11], the probability to exit from a trap is just an Arrhenius law

depending only on the departing trap’s depth, namely

rtraps
i→j = r0e

−βEi, (1)

where β = 1/T is the inverse temperature and r0 is a constant that determines a global

timescale. Other possible definitions include the Metropolis one

rMetropolis
i→j = r0 min

(

1, eβ(Ej−Ei)
)

, (2)

and the Glauber rate

rGlauber
i→j =

r0

1 + e−β(Ej−Ei)
. (3)

We note that the rates considered in the Bouchaud trap model are quite different from

the Metropolis or Glauber rates. Indeed, while the former depends only on the depth

of the originating trap, the latter depend also on the energy of the arriving vertex.

This translates in the fact that, in the limit of zero temperature, the dynamics of the

Bouchaud trap model is frozen for any Ei, while Metropolis and Glauber dynamics still

allow jumps to lower energy minima [13]. Within an even more realistic representation

of glassy dynamics, one can also contemplate the case Σij 6= 0, allowing for the transition

rates to depend explicitly on the energy barriers between adjacent minima. As a

paradigm of this choice, we propose a rate of the Arrhenius form

rbarriers
i→j = r0e−β∆Eij , (4)

which acts a straightforward generalization of the local transition rate (1).

The case of rate (1) (local trapping) was studied in a previous publication [34]. In

the following, we will consider in turn non-local rates (2), (3) and (4) and discuss the

fundamental differences due to the introduction of energy barriers in the model.

We emphasize that our model differs both from usual unbiased random walks, as

the local energy determines the transition rates, and from mean-field trap models in

which jumps between any pair of energy minima are a priori possible: Here, the system

can jump only between neighboring nodes. The dynamical evolution depends therefore

both on the network topology and on the energies associated to the nodes.

2.2. Numerical implementation

To implement numerically the random walk, it is convenient to resort to the techniques

developed for general diffusion processes on complex weighted networks [37]. The main

advantage of this method is to avoid rejection steps, thus improving dramatically the

computational efficiency [38, 39]. Therefore, at each simulation step the random walker
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sitting at node i selects a neighbor j with probability ri→j/
∑

j ri→j, where the sum

in the normalizing factor is extended to all of i’s neighbors. As the walker hops on

node j, the physical time is incremented by an interval ∆t drawn from the exponential

distribution P (∆t) = 1/∆t exp(−∆t/∆t), where ∆t = ki/
∑

j ri→j is the inverse of the

average escape rate out of node i. In this way the simulation time is disentangled from

the physical time and the latter has no impact on the simulation efficiency. No matter

how much physical time a walker spends in a node, from the simulation time point of

view it is always just a time step.

The network substrates on which we will focus are scale-free networks with a

degree distribution of the form P (k) ∼ k−γ and 2 < γ ≤ 3. We will generate them

with the Uncorrelated Configuration Model (UCM) [40], that allows us to tune the

degree distribution to the desired form and prevents the formation of degree-degree

correlations. Networks are therefore generated as follows: A number of stubs (or semi-

links) extracted from the desired final degree distribution is assigned to each node.

Stubs are then randomly paired to form links between nodes, with the prescription that

multiple links as well as self-loops must be avoided. A minimal degree m is fixed a

priori. To avoid spurious effects due to the possible presence of tree-like structures [41]

it is convenient to adopt m > 2. We will choose m = 4 in all of our simulations. So

far the algorithm coincides with the one of the Configuration Model [42], but the UCM

introduces moreover a cutoff to the degree distribution, kc = N1/2, which avoids the

formation of degree correlations by limiting the size of the hubs [40].

3. Heterogeneous mean-field theory

In order to gain analytical understanding of the role of the different transition rates

in the corresponding glassy dynamics, we apply a standard heterogeneous mean-field

(HMF) formalism [6, 35] . The basic tenet of HMF is the assumption that all the

dynamical properties of a vertex depend only on its degree. Vertices are thus grouped

into classes according to their degree, and vertices with the same degree are treated

as equivalent. This approximation is consistent with previous findings that have

uncovered the correlations between the energy of a local minimum and the degree of the

corresponding node in the network [25]. We therefore make the assumption that there

exists a relationship Ei = h(ki) where the function h(k) is a characteristic of the model.

This also means that the distributions of energies ρ(E) of the system’s landscape, and

the degree distribution P (k) of the corresponding network are linked through h. In the

same spirit, we make the further assumption that the energy gap between minima i and

j depends only on the degrees of i and j, i.e., that it can be written as Σi,j = σ(ki, kj),

where σ(k, k′) is a symmetric function of k and k′.

Under the HMF approximation the dynamics will thus focus on the transitions

between different degree classes. The rate to go from a vertex k to a vertex k′ can be

written as

Wkk′ = P (k′|k)r(k → k′). (5)
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The function P (k′|k), defined as the conditional probability that a vertex of degree k

is connected with another vertex of degree k′ [43], takes into account the topological

features of the network, by gauging the probability of selecting a vertex k′ as neighbor

of k. The function r(k → k′) measures the rate of jumping from a vertex of degree k to

a vertex of degree k′ (given that they are connected by an edge), and depends on k and

k′ through the rates ri→j and the functions h and σ. Obviously, the rate r(k → k′) is

not in general a symmetric function of k and k′. It is worth noting that, apart from a

normalization, Equation (5) is simply the so-called weighted propagator describing the

probability that a node in class k interacts with a node in class k′ [37]. We also note

that the rates r(k → k′) depend on the inverse temperature β through the microscopic

rates ri→j.

4. General HMF formalism

In this section, we apply the HMF theory to compute different quantities relevant for

the characterization of the dynamics of a random walk in a complex energy landscape

represented in terms of a network of minima.

4.1. Occupation probability

The description of a random walk dynamics starts from the occupation probability

P (k, tw), defined as the probability for the walker to be in any node of degree k at a

time tw. Its time evolution can be easily represented in terms of a master equation of

the form

∂P (k, tw)

∂tw

≡ Ṗ (k, tw) = −
∑

k′

Wkk′P (k, tw) +
∑

k′

Wk′kP (k′, tw). (6)

Upon describing the state at time tw with the row vector P(tw) =

{P (1, tw), P (2, tw),..., P (kc, tw)}, where kc is the cutoff or largest degree in the network,

Equation (6) can be rewritten in vector form as

Ṗ(tw) = −P(tw)L , (7)

where the matrix L, with elements

Lk′k =

(

δk′k

∑

l

Wkl − Wk′k

)

, (8)

is a generalization of a Laplacian matrix to the case of directed weighted graphs. The

matrix elements satisfy

Lk′k′ =
∑

k,k 6=k′

Lk′k , (9)

which ensures conservation of probability and states that the columns of L are not

linearly independent. The real part of every eigenvalue of L is non-negative [44]. As a

consequence, all solutions of Eq. (7), which can be formally written as

P(tw) = P(t0)e
−L(tw−t0) , (10)
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are stable according to Lyapunov criteria. In particular, since det L = 0, L always has

the eigenvalue 0, which corresponds to a constant solution of the problem. At this point

one can proceed in close analogy with discrete-time regular Markov chains [45]. By

making the assumption that the matrix Wk′k is non-negative and irreducible (indeed it

is for every choice of r(k′ → k) in the following), we can prove that the 0 eigenvalue of

L has algebraic multiplicity 1. Hence, the stationary solution of Eq. (7) is unique.

4.1.1. Steady state In order to calculate the steady solution P∞ in the limit tw → ∞,

one can impose Ṗ(tw) = 0. This leads to the condition

P∞L = 0, (11)

so that we are left with the task of finding the left nullspace of L. Eq. (11) is a

homogeneous system of algebraic linear equations. It admits non-trivial solutions since

det(L) = 0. In our case, the solution to (11) can be easily found by imposing the

detailed balance condition. Namely, writing Eq. (11) as
∑

k′

[−Wkk′P ∞(k) + Wk′kP ∞(k′)] = 0, (12)

we can obtain a solution by imposing that the terms inside the summation in Eq. (12)

cancel individually, that is

Wkk′P ∞(k) = Wk′kP ∞(k′), ∀k, k′. (13)

Substituting the form of Wkk′, we obtain

P ∞(k)

P ∞(k′)
=

Wk′k

Wkk′

=
P (k|k′)r(k′ → k)

P (k′|k)r(k → k′)
=

kP (k)

k′P (k′)

r(k′ → k)

r(k → k′)
, (14)

where in the last step we have used the degree detailed balance condition kP (k)P (k′|k) =

k′P (k′)P (k|k′) which simply expresses that the number of edges from a node of degree

k to a node of degree k′ is equal to the number of edges from a node of degree k′ to a

node of degree k [46]. From Eq. (14), we see that its right-hand-side must be expressible

as a simple ratio of a function of k over a function of k′. A general way to obtain this

is to impose a coarse-grained rate r(k′ → k) taking the general form

r(k′ → k) = f(k′)g(k)s(k′, k). (15)

In other words, we assume that the rate r(k′ → k) can be written as the product of a

function of k′, a function of k, and a symmetric function s(k′, k) = s(k, k′) (where k and

k′ need not be separable). We will see later that all the rates ri→j defined in Sec. 2.1

(traps, Glauber, Metropolis, and energy barriers) can be written in such a form. The

stationary solution is then given by

P ∞(k) =
1

Z
kP (k)g(k)/f(k) (16)

where Z is a normalizing constant determined by the condition
∑

k P ∞(k) = 1. Such

a solution is unique, as proven above. Interestingly, the symmetric function s(k′, k)

does not enter the steady solution, although it will play a role in affecting the transient

behavior, as we will see in the next sections.
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4.1.2. Glassy phase The steady state solution found above for the occupation

probability is defined if and only if the normalization constant

Z =
∑

k

kP (k)g(k)/f(k). (17)

is finite. When this condition is met, the random walker reaches an equilibrium state

with a distribution Peq = P∞. On the other hand, whenever such condition is not met,

the random walker is unable to reach a steady state, i.e. the steady solution to the

rate equation does not correspond to any physical steady state in equilibrium Peq. We

identify this region of the phase space with the glass phase for our random walker [11].

The functions f and g depend on the temperature, on the precise dynamics chosen

(traps, Glauber, Metropolis), and encode the relationship h between energy and degree

of the minima. The degree distribution moreover enters explicitly the expression Z.

As the various parameters of the model are changed, it is thus a priori possible to go

from one phase in which Z is finite to one in which Z diverges. In a physical system

in particular, the control parameter is usually the temperature, while the topology of

the network of minima and the function h are given. It is then clear from Eq. (17)

that the presence or absence of a finite glass transition temperature βc, such that Z

becomes infinite for β ≥ βc, depends on the interplay between the topology of the

landscape network (as determined by P (k)) and the functions f and g. Interestingly,

at this mean-field level, the existence of a transition does not depend on the network

degree correlations, since the conditional probability P (k′|k) do not enter Eq. (17).

Let us consider for instance a network of minima with a heavy-tailed degree

distribution such as P (k) ∼ k−γ. A transition between a finite and an infinite Z

can be observed if and only if g(k)/f(k) behaves at large k in the form ∼ ka where the

exponent a depends on the temperature, and can take values smaller or larger than γ −2

depending on the temperature. Another example is given by a stretched exponential

form for P (k), P (k) ∼ e−bka

, in which case a transition is observed if and only if

g(k)/f(k) is of the form eb′ka

, with b′ a function of the temperature (the transition is

then given by b′(βc) = b).

4.1.3. Glassy dynamics In any finite system, unless the product function g(k)/f(k)

exhibits some sort of singularity, the normalization constant Eq. (17) is finite and the

steady state distribution P ∞(k) exists, the occupation probability P (k, tw) converging

to it after an equilibration time, i.e.

lim
tw→∞

P (k, tw) = P ∞(k). (18)

The corresponding thermalization of the occupation probability occurs in a way

depending on the function h. Shallow energy minima are indeed explored first, while

deep traps (large E) are visited at larger times [11, 13]. If h is a growing function of

k, as indeed found empirically [25], small degree nodes correspond to shallow minima,

and deeper minima are associated to larger nodes. The evolution of P (k, tw) takes

then place in a hierarchical fashion: The small degree region equilibrates first, and
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progressive equilibration of larger degree regions takes place at larger times. In this

respect, we obtain a strong difference between the biased random walk that the glassy

system experiences and usual diffusion processes corresponding to unbiased random

walks, which visit first large degree vertices and then cascade down towards small degree

nodes [36, 47, 6], in the present case we observe an “inverse cascade process” from small

vertices to hubs.

We have found in [34] that, in the case of a random walk among traps, this

hierarchical thermalization is summarized in a scaling form for P (k, tw), which can

be written as

P (k, tw) = kw(tw)−1F

(

k

kw(tw)

)

, (19)

where kw(tw) represents the maximum degree of the vertices equilibrated up to time tw,

and F(x) interpolates between P ∞(x) at small x and the short time form of P (k, tw)

which is proportional to kP (k). We will see in the next section that a similar scaling

is obeyed for other transition rates. In general, for the glassy dynamics, the functional

form of kw(tw) can moreover be obtained through the following argument: The total

time tw can be written as the sum of the trapping times spent in the vertices that have

been visited since the beginning of the dynamics. Trapping times increase with the

depth of the minimum, hence with the degree (we are still considering the case of an

increasing function h(k)), and, in the glassy phase, the consequence is that the sum of

trapping times is dominated by the vertex with the largest degree visited up to that

point, namely kw. Moreover, the average trapping time τk at a given vertex k can be

estimated as the inverse of the average escape rate rk from that vertex:

1

τk

= rk =
∑

k′

Wkk′ =
∑

k′

P (k′|k)r(k → k′) =
∑

k′

P (k′|k)f(k)g(k′)s(k, k′).(20)

We can therefore estimate kw(tw), the typical degree up to which nodes are

“equilibrated” at time tw, by approximating τkw
∼ tw, and solving the equation

tw =
1

f(kw)

1
∑

k′ P (k′|kw)g(k′)s(k′, kw)
(21)

to obtain kw as a function of tw. Note that the result depends here on the function

s(k, k′) and not only on f , g, h and P (k).

4.2. Average escape time

The properties of the system can be further quantified by measuring the average time

tesc(tw) required by the random walker to escape from the vertex it occupies at time tw

[34]. For small waiting times tw, tesc increases as a result of the transient equilibration

of P (k, t). For large tw, such that P (k, tw) is close enough to the equilibrium P ∞, tesc

can be calculated instead as the average

tesc(tw → ∞) =
∑

k

P ∞(k)τk =
1

Z

∑

k

kP (k)[g(k)/f(k)]τk (22)



Complex networks and glassy dynamics: walks in the energy landscape 11

where τk = 1/rk is the inverse of the equilibrium escape rate, cf Eq. (20), yielding

tesc(tw → ∞) =
1

Z

∑

k

kP (k)g(k)

f(k)2
∑

k′ P (k′|k)g(k′)s(k′, k)
. (23)

Most interestingly, the explicit form of the average escape time tesc depends explicitely

on the symmetric function s(k, k′) as well as on the network degree correlations, as

expressed by the conditional probability P (k′|k).

4.3. Average rest time

Let us go back to the issue of the existence of a glass transition in the model. We

first recall the phenomenology of the fully connected trap model, with transition rates

ri→j = r0e−βEi/N for any i and j, where the energies Ei are random numbers extracted

from a distribution ρ(E) [11, 14]. As all traps are connected with each other, all traps

are equiprobable after a jump, so that the probability for the system to be in a trap of

depth E is simply ρ(E), and the average rest time spent in a trap is 〈τ〉 =
∫

ρ(E)eβEdE.

A transition between a high temperature phase and a glassy one is thus obtained if and

only if, when β increases, 〈τ〉 is finite at small β and diverges at a finite βc. Such a

phenomenology is obtained if and only if ρ(E) is of the form exp(−βcE) at large E (else

the transition temperature is either 0 or ∞), and the transition temperature is then

Tc = 1/βc [11].

In the present case of a nework of minima, the average rest time that the walker

spends in a minimum is

〈τ〉 =
〈

1

rk

〉

h

, (24)

where the symbol 〈...〉h refers to the average performed over the measure Ph(k), which

represents the probability that the walker is in any vertex of degree k after a hop. Note

that we disregard here the physical time, which is the sum of times spent in the various

minima, but consider only the number of hops between minima. In the case of the traps

model, Ph is simply given by the probability to be in a node of degree k after a hop in

a random walk, i.e. by kP (k)/〈k〉 [34], since the transition rates do not depend on the

arrival node. In a non-local trapping model instead, we need to write a master equation

of the form

Ṗh(k) = −Ph(k) +
∑

k′

Wk′kPh(k′), (25)

where the matrix Wk′k = Wk′k/
∑

l Wk′l = Wk′k/rk′ is now stochastic and the derivative

is intended with respect to the number of hops. In the long time limit, we impose

Ṗh(k) = 0 and calculate Ph(k) as we did for P ∞(k), imposing the detailed balance

condition, and obtaining

Ph(k) =
1

I
kP (k)[g(k)/f(k)]rk , (26)

where I is a normalization factor, given by

I =
∑

k

∑

l

kP (k)P (l|k)g(k)g(l)s(k, l). (27)
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We finally obtain for the average 〈τ〉:

〈τ〉 =
∑

k

Ph(k)/rk =
Z

I
, (28)

where Z is the normalization factor of P ∞(k) defined in Eq. (17). As for the average

escape time, the average rest time 〈τ〉 thus depends on all the parameters of the system,

including the network’s degree correlations and the symmetric function s.

5. Application to physical transition rates

In this section, we apply the general HMF results obtained in the previous section to

physical transition probabilities between local minima given by the trap model, Glauber,

Metropolis and barrier-mediated rates. We will focus for definiteness on scale-free

networks characterized by a power-law degree distribution P (k) ∼ k−γ with 2 < γ ≤ 3,

which turns out to be the interval reported in the literature [23, 25].

Let us first consider the explicit form of the transition rates in each case, to show

that they can be cast in the form given by Eq. (15). In the case of the trap model, the

rate to jump from a vertex k to a vertex k′ is simply r(k → k′) = r0e
−βEk = r0e−βh(k),

where we recall that h(k) gives the depth of a node of degree k: it depends only on

the degree of the starting node, and not on the node reached after the jump. We can

therefore use

(Trap model) f(k) = e−βh(k), g(k) = 1, s(k, k′) = r0. (29)

The Glauber rate can be written as

r(k → k′) = r0
eβh(k′)

eβh(k) + eβh(k′)
, (30)

leading to

(Glauber) f(k) = 1, g(k) = eβh(k), s(k, k′) = r0
1

eβh(k) + eβh(k′)
. (31)

The Metropolis transition, on its turn, reads

r(k → k′) = r0 min
[

1, eβ(h(k′)−h(k))
]

. (32)

Since, for positive a, min(1, b/a) = min(a, b)/a, we can choose

(Metropolis) f(k) = e−βh(k), g(k) = 1, s(k, k′) = r0 min(eβh(k), eβh(k′)).(33)

Finally, in the presence of energy barriers, the transition rate reads

r(k → k′) = r0e
−β(h(k)+σ(k,k′)), (34)

where σ(k, k′) is a symmetric function of its arguments, so that we can use

(Barriers) f(k) = e−βh(k), g(k) = 1, s(k, k′) = r0e−βσ(k,k′). (35)
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5.1. Steady state and the glass transition temperature

Interestingly, for all the transition rates considered above, the product of the functions

1/f and g, which controls the existence of the steady state solution of the occupation

probability, takes the form

g(k)/f(k) ≡ eβh(k). (36)

The normalization constant Z defined in Eq. (17) can thus be written as

Z =
∑

k

kP (k)eβh(k). (37)

For a power-law degree distribution P (k) ∼ k−γ, a finite glass transition temperature is

then obtained if and only if h is of the form

h(k) = E0 log(k) , (38)

which is precisely what has been found, in conjunction with a scale-free degree

distribution, in Ref. [25]. Z is then indeed given by a sum of terms of the form

k1−γ+βE0 , which converges if and only if

βE0 − γ < −2 . (39)

In other words, a transition between a high temperature phase in which P ∞(k) exists

and a low temperature glassy phase is obtained at the critical temperature [34]

Tc =
1

βc
=

E0

γ − 2
. (40)

Quite noticeably, the existence of a transition at a finite temperature, as well as

the value of this temperature, does not depend on the form of the transition rates

between the local minima, but only on the existence of a particular interplay between

the topology of the network of minima and the relationship between energy and degree

in this network, as determined by the function h. We emphasize that this result is also

independent of the network degree correlations P (k′|k), as already noted in the previous

section.

5.2. The steady state and finite size effects

Let us focus on the case of a scale-free network of minima, with P (k) ∝ k−γ and

Ei = E0 log(ki). For any of the rates discussed above, the steady state measure, when

it exists, is given by

P ∞(k) =
k1−γ+βE0

ζ(−1 + γ − βE0)
for γ − βE0 > 2, (41)

where ζ is the Riemann ζ function. A plot of P ∞(k) as a function of k and γ − βE0

is given in Fig. 2, while data from simulations are reported in Fig. 3 for the evolution

of P (k, tw) under Glauber dynamics. Above the transition (γ − βE0 > 2), low-k states

(i.e., shallow minima) are more probable. As the temperature decreases, P ∞(k) becomes
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Figure 2. Equilibrium probability distribution P ∞(k) for the random walker to be in

any node of degree k. For γ − βE0 = 2 the system undergoes a transition to a glassy

state.

less and less peaked at low values of k, and large-k states, which correspond to lower

energies, become more and more probable.

In any finite system, the sum defining Z, is finite at any temperature as the degree

distribution has a cut-off at a finite kc:

Z =
kc
∑

k

kP (k)g(k)/f(k). (42)

For instance, for P (k) ∝ k−γ, and with h(k) = E0 log(k), the sum

kc
∑

k=1

k1−γ+βE0 = H
(−1+γ−βE0)
kc

(43)

is analytic in γ − βE0 = 2 for any finite kc. Here H
(α)
kc

is the Harmonic Number of order

α, which tends to ζ(α) for kc → ∞.

The probability P ∞(k) is thus well defined for every γ − βE0 and for any finite

system. In particular, performing a continuous degree approximation in Eq. (43), we

can obtain an estimate of the network size dependence of Z as

Z ∼
∫ kc

k1−γ+βE0 dk ∼ const + k2−γ+βE0

c . (44)

For β < (γ − 2)/E0, Z tends to a constant as the network size (and thus kc) increases.

On the other hand, for β > (γ − 2)/E0, Z diverges as k2−γ+βE0

c , i.e., as N (2−γ+βE0)/2 in

uncorrelated scale-free networks, which obey kc ∼ N1/2.

5.3. Glassy dynamics

At low temperatures, even for a finite system, the evolution of P (k; tw) towards P ∞(k)

is slow, as displayed in Fig. 3, and an ageing regime takes place, in which the function
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Figure 3. Evolution towards equilibrium of the probability distribution P (k; tw)

for Glauber dynamics. The distribution measured after a small waiting time tw is

determined by a usual unbiased random walk behavior, i.e P (k; tw) ∼ kP (k), while at

larger times it relaxes to the equilibrium P ∞(k). The relaxation towards equilibrium

starts from small degree nodes. Data refer to UCM networks with N = 106 and γ = 3.0

for β = 2 (E0 = 1): with these parameter values, for small times P (k; tw) ∼ k−2, while

at large enough times P (k; tw) ∼ P ∞(k) = const.

P (k, tw) obeys the scaling form

P (k, tw) = kw(tw)−1F

(

k

kw(tw)

)

, (45)

where the characteristic degree kw can be estimated from Eq. (21). In order to

simplify its computation, we will consider an uncorrelated network of minima, such

that P (k′|k) = k′P (k′)/〈k〉, and we will work in the continuous degree approximation,

using the normalized form P (k) = (γ − 1)mγ−1k−γ , where m is the minimum degree

present in the network.

In the case of the Glauber dynamics, the escape rate can be expressed, within the

above approximations, as

rk =
1

〈k〉

∫ ∞

m
k′P (k′)r0

eβh(k′)

eβh(k) + eβh(k′)
dk′ ≡

mγ−1(γ − 1)

〈k〉

∫ ∞

m

z1+E0β−γ

zE0β + kE0β
dz

= Γ



1,
γ − 2

β
, 1 +

γ − 2

β
, −

(

k

m

)β


 , (46)

where we have used the relation h(k) = E0 ln k and where Γ[a, b, c, z] is the Gauss

Hypergeometric function. Using the asymptotic expansion for z → 0 [48], we obtain

that the leading behavior for large k yields

rk ∼

{

k−βcE0 β > βc

k−βE0 β < βc
, (47)
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Figure 4. Data collapse for the time evolution of the occupation probability P (k; tw)

at different temperatures (Glauber dynamics). Data refer to UCM networks with

N = 106 and γ = 2.5, so that βc = γ −2 = 0.5 (where we have taken E0 = 1). The top

panel presents data for β < βc while both middle and bottom panels concern the low

temperature case β > βc. Accordingly, for the top panel we use kw ∼ t
1/β
w ∼ t4w for

the rescaling, while for the central and the bottom ones it holds kw ∼ t
1/βc
w = t2w (see

Eq. (49)). The curves corresponding to different tw collapse well under this rescaling.

Note that we use rather small values of tw, because the equilibration time, defined by

kw ∼ kc ∼ N1/2, is teq ∼ N
βc
2 ≃ 32 for β > βc and teq ∼ N

β

2 ≃ 6 for β < βc. Each

curve is obtained by averaging over 3 × 106 simulation runs.

which leads to

τk =
1

rk
∼

{

kβcE0 β > βc

kβE0 β < βc.
. (48)

From here, using the relation τkw
∼ tw, we obtain

kw ∼

{

t1/(βcE0)
w β > βc

t1/(βE0)
w β < βc.

. (49)

In Fig. 4 we check the validity of Eqs. (45) and (49) by performing a data collapse

analysis for different values of tw. The curves obtained for different tw collapse indeed

as predicted.

In the case of the Metropolis transition rates, a similar analysis yields

rMetropolis
k ∝

1

(βc − β)E0

(

k−βE0 −
β

βc
k−βcE0

)

, (50)

leading to the same asymptotic behavior as in Eq. (47), and therefore to the same scaling

picture as for the Glauber rate.

As pointed out for the case of the traps model [34], however, in finite systems the

scaling relations in Eq. (49) hold only as far as kw(tw) < kc, i.e. it exists an equilibration

time teq, obtained by inverting Eq. (49), above which the system has completely relaxed

and Eq. (45) is no more valid. Finally, it is worth stressing that, while for large
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temperatures the scaling exponent relating kw and tw depends on the temperature, in the

low temperature phase it becomes independent, being just proportional to the transition

temperature. We note that this saturation of the exponent at 1/(βcE0) is very different

from the phenomenology obtained in the trap model [34], for which kw ∼ t1/(βE0)
w .

An immediate consequence is that the equilibration time strongly depends on β, as

teq ∼ k(βE0)
c , for a system described by traps, but is given by teq ∼ k(βcE0)

c ≪ k(βE0)
c for

any β > βc for Glauber and Metropolis rates.

Contrarily to results for the glass transition temperature Tc and the steady state,

the glassy dynamics for barrier-mediated rates does not yield the same results as for

Glauber and Metropolis rates, since rk does depend on the symmetric function σ(k, k′).

In particular, we need here to choose a functional form for σ. We propose to use

σ(k, k′) = σ0(kµ + k′µ), (51)

which will be justified in Section 6. In this case we obtain

rbarriers
k ∝ r0k

−βE0e−βσ0kµ

. (52)

In order to keep an interesting phenomenology, the constant σ0 cannot be chosen

arbitrarily. If σ0 were independent of the system size, the escape rate would be

dominated by the exponential at all temperatures. This behavior would reflect the

fact that in this case the rate is suppressed in transitions involving nodes of large k,

eventually generating unphysically large barriers at large kc. To prevent the system

from building up infinite barriers, one can impose

E0 ln kc ∝ σ0kµ
c , (53)

such that the maximum barrier is always comparable to the lowest energy minimum

and neither term dominates the other. As a consequence, we take

σ0 = ǫE0
ln kc

kµ
c

, (54)

where ǫ is now constant and size independent. Contrarily to the previous cases, kw(tw)

is hard to determine, as no explicit inversion of Eqs. (21) and (52) can be provided for

the range of parameters of interest in our study. A numerical evaluation of kw(tw), is

reported in Figure 5. The maximum degree of equilibrated vertices kw has an initial

power law increase in time, which is reminiscent of the local trapping model. However,

as larger degree nodes are equilibrated, exponential barriers come into play and the

hierarchical thermalization becomes logarithmic in time.

5.4. Average escape time

The average escape time, defined as the average time required by the system to escape

from the vertex it occupies, can be computed in the long time limit from Eq. (22), as a

function of the average trapping time τk in vertices of degree k. From the asymptotic

expansions of τk in Eq. (48), valid for Glauber and Metropolis dynamics, evaluation of

Eq. (22) allows us to observe that, whenever a finite Tc exists, tesc(tw → ∞) diverges
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Figure 6. Rescaled average escape times (Metropolis dynamics). Data for UCM

network with γ = 3.0, so that βc = 1.0 (E0 = 1). The scaling forms of Eq. (55) produce

a collapse of the curves concerning different systems sizes in the three regimes of high,

intermediate and low temperature (top, center and bottom panels, respectively). The

slightly worse collapse obtained for β = 0.75 may be due to logarithmic corrections as

β is close to both βc and 2βc. Each point is averaged over 400 simulation runs (20

runs on each of 20 network realizations).

at 2Tc in an infinite system, as was already observed in the case of local trapping [34].

It is noticeable that the same divergence temperature is obtained, as Eq. (22) a priori

involves the network’s degree correlations and the function s. Within the continuous

degree approximation, the divergence of the escape time with the system size follows
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the scaling laws

teq
esc ≡ tesc(tw → ∞) ∼

∫ kc

P ∞(k)τk ∼















kβcE0

c β > βc

k(2β−βc)E0

c βc/2 < β < βc

const. β < βc/2

.(55)

As noted in the previous paragraph for the equilibration time, we note that the scaling

for β > βc differs from the form kβE0

c encountered for local trapping [34]. Figure 6 reports

simulation data that confirm the validity of Eq. (55). As the temperature is lowered, the

initial transient becomes longer, but for large enough times tw the asymptotic behavior

predicted in Eq. (55) is reached, as made clear from the collapse of curves concerning

different system sizes.

In the case of barrier-mediated dynamics, τk depends on the symmetric function

σ(k, k′), as expressed in Eq. (52), namely

τk ∼ kβE0eβσ0kµ

. (56)

Proceeding as above we obtain

tesc ∼















k(1+ǫ)βE0

c β > βc

k[(2+ǫ)β−βc]E0

c βc/(2 + ǫ) < β < βc

const. β < βc/(2 + ǫ)

, (57)

where we recall that ǫ does not depend on the system size.

5.5. Average rest time

The HMF expression for the asymptotic average rest time, defined as the average time

spent by the system in a minimum, is given by Eq. (28), namely 〈τ〉 = Z/I, where the
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network with γ = 2.5, as a function of the degree distribution cut-off and for different

temperatures. Data are obtained by numerical computation of Eq. (28). 〈τ〉 grows as

a power-law of kc, with an exponent that grows as β increases (going from bottom to

top in the figure). The thick-gray line corresponds to β = βc, while the thick-black line

corresponds to β = 2βc. For larger values of β, the power-law behavior corresponds

to the predicted 〈τk〉 ∼ kβcE0

c ∼ kγ−2

c , which no more depends on β. The kγ−2

c curve

is reported as a dashed line for reference. Values of β represented here are comprised

between 0.25 and 3.

quantities Z and I, for uncorrelated scale-free networks and a degree-energy relation

h(k) = E0 ln(k), take the form, in the continuous degree approximation,

Z ∼
∫ kc

k1−γ+βE0 dk ∼ const + k(β−βc)E0

c , (58)

I ∼
∫ kc

dk
∫ kc

dk′ k1−γg(k)k′1−γg(k′)s(k, k′). (59)

Let us first recall the case of the local trap model. Both g(k) and s(k, k′) are then

constants, so that I ∼ 〈k〉2 = const. Thus, the average rest time behaves as Z: it is

finite for β < βc, and diverges with the system size as k(β−βc)E0

c for β > βc, signaling the

emergence of the glassy regime at low temperatures.

In the case of Glauber and Metropolis dynamics (both leading to the same results),

the situation is more involved, since the product g(k)g(k′)s(k, k′) entering I is not

constant. In fact, I diverges with kc for βE0 > 2(γ − 2), that is, at a lower temperature

given by β ′
c = 2βc. The interplay of these two temperatures determines the behavior

of the system for finite sizes within the low temperature phase. In particular, for the

Glauber dynamics with g(k) = eβh(k) and s(k, k′) = r0/[eβh(k) + eβh(k′)], we have

I ∼ const + k(β−2βc)E0

c . (60)

Upon considering lower values of β, 〈τ〉 first encounters the divergence of Z at βc, which

is then partially regularized by the divergence of I at 2βc. From these results, we obtain
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the emergence of three scaling regimes for the behavior of 〈τ〉 as a function of the system

size:

〈τ〉∞ ≡ 〈τ〉(tw → ∞) ∼















kβcE0

c β > 2βc

k(β−βc)E0

c βc < β < 2βc

const. β < βc

. (61)
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Figure 9. Average rest time as a function of β for different transition rates, for a

random walker on UCM networks with γ = 2.75 (E0 = 1) and N = 106. Discrete

points: simulation results; continuous lines: theoretical predictions from 〈τ〉 = Z/I,

based on simulation parameters. The Glauber and Metropolis transition rates induce

two changes of behavior at βc and at 2βc, the first being a steep increase of the average

rest time 〈τ〉 and the second a smoothing/saturation of this increase. No saturation

of 〈τ〉 is instead observed when barriers are present. The agreement with theoretical

predictions is remarkable, thus corroborating the validity of the HMF assumptions.

Moderate deviations are found only in the case of barriers, where exponential growth

is expected to add greater fluctuations. In the inset, the difference between the two

behaviors is more evident thanks to a different scale of the plot. Note that, since in

the simulations E0 = 1, the high temperature limit of the rest time is different for the

Glauber and Metropolis dynamics, being τ(β = 0) = 2 and τ(β = 0) = 1 respectively.

For the case of barriers we have chosen σ0 = 10−1. Each point is obtained by averaging

the rest times corresponding to the first 106 hops of the random walker in each of 10

network realizations.

The direct numerical computation of Eq. (28) is shown in Figs. 7 and 8, showing

the validity of this analysis. In particular, the exponential increase of 〈τ〉 with β in

the intermediate temperature range βc < β < 2βc is clearly apparent in Fig. 7, and

Fig. 8 confirms that, for β > 2βc, the exponent in the scaling law for the system size

kc does not depend on the temperature. While the temperature βc signals the onset of

the low temperature phase with glassy dynamics for all considered transition rates, for

Glauber/Metropolis dynamics the low temperature phase can be further divided into

two regions that correspond to different behaviors of the timescales with the system

size.
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Figure 10. Average rest time for Metropolis dynamics on uncorrelated scale-free

networks with γ = 3.0 (E0 = 1, βc = 1.0). Data for different system sizes

collapse well when rescaled according to the theoretical values of Eq. (61). While

the agreement is excellent both for high and low temperature (top and bottom

panels, respectively), logarithmic corrections are probably present for the regime of

intermediate temperatures βc < β < 2βc (central panel). In each simulation run the

rest interval starting before tw and ending after tw is considered, and each point in the

Figure is averaged over 400 simulation runs (20 runs on each of 20 network instances).

Figures 9 and 10 moreover show the result of numerical simulations of random

walkers on scale-free networks for Glauber and Metropolis dynamics as well as in the

case of barriers, globally confirming the above discussed picture.

Dynamics in the presence of barriers do not yield the same phenomenology as

Glauber and Metropolis rate. In this case, we have g(k) = 1 and s(k, k′) = r0e
−βσ(k,k′).

Selecting σ(k, k′) = σ0(kµ + k′µ), as in Section 5.3, we are led to

I ∼

[

∫ kc

dkk1−γe−βσ0kµ

]2

. (62)

As for the escape time tesc, upon choosing σ size independent, the rest time 〈τ〉 will

be diverging exponentially with kc at every temperature. By introducing the size

dependence as in Eq. (54), instead, one can see that the I integral converges to a

constant for large kc so that one is left with

〈τ〉 ∼

{

k(β−βc)E0

c β > βc

const. β < βc
. (63)

We therefore obtain the same picture as in the case of traps, with an exponential increase

of 〈τ〉 as β increases, as confirmed by numerical simulations in Fig. 9.
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6. Energy basins and energy barriers

Inspired by analogies with systems governed by the Arrhenius law, we have introduced

a transition rate that takes into account the energy barriers between states. Within

the heterogeneous mean-field approximation, in which all variables depend only on the

degree of the vertices, and choosing Ei = E0 ln(ki), the transition rate we have considered

becomes

r(k → k′) = k−βE0e−βσ(k,k′), (64)

where σ(k, k′) is a symmetric function of the degrees of the two nodes. This model

represents in essence an extension of the local trap model, where non-locality enters

only in the form of symmetric energy gaps Σij (see Fig. 1). The steady state has exactly

the same form as the ones discussed so far, which incidentally is the same as for the local

trap model. As shown in the previous Sections, the presence of barriers affect transient

relaxation phenomena, but not the steady state.

A different question is whether one can be more specific about the realistic

functional form of the coarse-grained function σ(k, k′). In the previous section we have

already introduced a definition of σ(k, k′). Here we provide the rationale behind that

choice.

Numerical simulations of the energy-landscape network of Lennard-Jones clusters

show that the average barrier to escape from state k follow the power law ∆Ek ∼ kµ,

with µ > 0 [23]. In our model, such average can be computed as

∆Ek =
∑

h

P (h|k) [E0 ln k + σ(h, k)] . (65)

For simplicity we focus on uncorrelated networks, as simulations indeed show weak

degree correlations. Under this assumption, the first term of the sum on the right-hand

side of Eq. (65) will contribute as a logarithm of k and the power-law behavior of ∆Ek

is possible whenever σ(h, k) ∼ kµ, which leads to consider the form proposed in previous

sections,

σ(k, k′) = σ0 (kµ + k′µ) , (66)

where σ0 has the dimensions of an energy (a discussion about the possible values of

σ0 is given in Section 5.3). More complicated functional forms can also be proposed,

for example accounting for barriers of different signs, as long as they retain the same

power-law behavior of Eq. (66) in the large k limit. It is interesting to notice that

∆Ek ∼ kµ implies that the average escape rate e−β∆Ek has the form of a stretched

exponential ∼ exp(−βkµ), if we neglect the logarithmic correction.

7. Conclusions

In this paper, we have presented a simple mathematical framework for the description of

the dynamics of glassy systems in terms of a random walk in a complex energy landscape.

We have shown how to incorporate into this picture the network representation of this
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landscape, put forward and studied by several authors [25, 26, 27, 29, 30, 31, 32, 33],

in order to go beyond simple mean-field models of random walks between traps that

are all connected to each other. While our previous work had focused on the case of

a landscape consisting of traps connected by a network [34], we have here generalized

our study to more involved and realistic transition rates between minima, including

Glauber or Metropolis rates, and the possibility of energy barriers between minima.

We have shown how the interplay between the topology of the network of minima

and the relationship between the energy and the degree of a minimum may determine

a rich phenomenology, with the existence of two phases and of glassy dynamics at

low temperature. Interestingly, the existence of these phases, and the transition

temperature, do not depend on the network’s degree correlations nor on the precise form

of the transition rates, but other more detailed properties do. In the case of Glauber

and Metropols dynamics, the low temperature phase can be further divided into two

regions with different scaling properties of the average trapping time as a function of

the temperature. Overall, our results rationalize and link the empirical findings about

correlations between the energy of the minima and their degree, and should stimulate

further investigations on this issue.

Our work has also interesting applications in terms of diffusion phenomena on

complex networks, and shows that non trivial transition rates can lead to a very

interesting phenomenology. Usual random walks lead to a higher probability for the

random walker to be in a large degree node (∝ kP (k)), with respect to the random choice

of a node (∝ P (k)); here, the models we have studied can lead to various stationary

probabilities, such as for instance a uniform coverage which does not depend anymore

on the degree. Interestingly, the biased random walks among traps that we have studied

can even display a phase transition phenomenon, as either a temperature parameter or

the network’s properties are changed, with the possible presence of a glassy phase with

slow dynamics.
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[47] Barthélemy M, Barrat A, Pastor-Satorras R and Vespignani A 2005 J. Theor. Biol.

235 275–288

[48] Abramowitz M and Stegun I 1964 Handbook of Mathematical Functions 5th ed

(New York: Dover)


	1 Introduction
	2 Random walk models on complex energy landscapes
	2.1 Definition
	2.2 Numerical implementation

	3 Heterogeneous mean-field theory
	4 General HMF formalism
	4.1 Occupation probability

	5 Application to physical transition rates
	5.1 Steady state and the glass transition temperature
	5.2 The steady state and finite size effects

	6 Energy basins and energy barriers
	7 Conclusions

