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P.le A. Moro 2, I-00185 Roma, Italy

(Dated: June 30, 2011)

Abstract

We study the dynamics of the voter and Moran processes running on top of complex network

substrates where each edge has a weight depending on the degree of the nodes it connects. For

each elementary dynamical step the first node is chosen at random and the second is selected with

probability proportional to the weight of the connecting edge. We present a heterogeneous mean-

field approach allowing to identify conservation laws and to calculate exit probabilities along with

consensus times. In the specific case when the weight is given by the product of nodes’ degree raised

to a power θ, we derive a rich phase-diagram, with the consensus time exhibiting various scaling

laws depending on θ and on the exponent of the degree distribution γ. Numerical simulations give

very good agreement for small values of |θ|. An additional analytical treatment (heterogeneous

pair approximation) improves the agreement with numerics, but the theoretical understanding of

the behavior in the limit of large |θ| remains an open challenge.

PACS numbers: 89.75.-k, 89.75.Hc, 05.65.+b
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I. INTRODUCTION

Many technological, biological and social networks are intrinsically weighted. Each link

has associated an additional variable, called weight, which gauges the intensity or traffic of

that connection, and that can exhibit widely varying fluctuations [1–3]. The presence of

weights is extremely relevant in some scenarios (e.g. in the case of transport in a network in

which weights measure bandwidth or capacity), and it must therefore be taken into account

explicitly. Some results have already been produced in this direction, dealing, among other

problems, with diffusive processes [4, 5], epidemic spreading [6, 7], general equilibrium and

non-equilibrium phase transitions [8, 9], or glassy dynamics [10]. Here we present a detailed

investigation of the ordering dynamics of voter-like models on weighted networks [11].

The voter model [12, 13] and the Moran process [14] are simple examples of ordering

dynamics, which allow to understand how natural systems with an initial disordered config-

uration are able to achieve order via local pairwise interactions. Both models are described

in terms of a collection of individuals, each endowed with a binary variable si, taking the

values ±1. The elementary step consists in randomly choosing a first individual and then

(again randomly) one of her nearest neighbors. In the voter model the first individual will

copy the state of her neighbor. In the Moran process, on the other hand, she will transmit

her own state to the neighboring node, which will adopt it. In both cases, starting from a

disordered initial state, the iteration of the elementary step leads to the growth of correlated

domains and, in finite systems, to an absorbing uniform state in which all individuals share

the same state (the so-called consensus). In a social science context, the voter model repre-

sents thus the simplest model of opinion formation in a population, in which individuals can

change their opinion as a function of the state of their nearest neighbors [11]. In the same

way, in a biological context, the Moran process represents the elementary example of two

species competing (through reproduction and neutral selection) for the same environment

[15].

The voter and Moran processes are equivalent on regular lattices and on the complete

graph, but if the pattern of connections is given by a complex (unweighted) topology they

behave differently, since the order in which interacting individuals are selected becomes rel-

evant [16, 17]. Moreover, the time to reach consensus scales with the system size in different

ways depending on the degree distribution of the network [18–20]. Considering a weighted
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topological substrate adds, as we will see, a richer and more complex phenomenology. Addi-

tionally, the case of weighted networks allows to model very natural settings. In the context

of social sciences, for example, weights can reflect the obvious fact that the opinion of a

given individual can be more easily influenced by a close friend rather than by a casual

acquaintance. On the other hand, in an evolutionary scenario, weights allow to gauge the

effects of heterogeneous replacement rates in different species.

On weighted networks, at each time step a vertex i is selected randomly with uniform

probability; then one nearest neighbor of i, namely j, is chosen with a probability propor-

tional to the weight wij ≥ 0 of the edge joining i and j. That is, the probability of choosing

the neighbor j is

Pij =
wij

∑

r wir

. (1)

Vertices i and j are then updated according to the rules of the respective models. With this

definition, the models considered represent the natural extension for ordering dynamics on

weighted networks (and in particular of the voter model) of the generalized Moran process

proposed in Refs. [21, 22], in which dynamics was defined as a function of a set of arbitrary

interaction probabilities Pij . In our case, however, the fact that these interaction proba-

bilities arise from the normalized weights arriving at a vertex imposes some restrictions to

the possible values of Pij and yields therefore different outcomes and interpretations. Also,

it is worth noting three recent publications [23–25], dealing with related, but not identical,

models.

Adopting the heterogeneous mean-field (HMF) approximation [26, 27] we will assume

that the weight between vertices i and j depends only on the degrees at the edges end-

points, namely ki and kj, and therefore we can write wij ≡ g(ki, kj)aij , where aij is the

adjacency matrix and g(k, k′) is a positive definite, symmetric function. The application of

HMF theory and the backwards Fokker-Planck formalism [18–20], allows us to derive ana-

lytical expressions in degree uncorrelated networks for the main relevant quantities (namely,

exit probability and consensus time [11]) in a more transparent way than in Refs. [21, 22].

In order to allow for closed mathematical solutions of the models, we will further specify the

function g to be given by the product of two independent functions g(k, k′) = gs(k)gs(k
′), an

assumption motivated by empirical observations in real weighted networks [1]. Specializing

both models to the case of networks with power-law distributed degrees and edge weights

given by multiplicative powers the endpoint degrees, gs(k) = kθ, a very rich phase-diagram
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is obtained, with several different scaling regions of the consensus time with the network size

N . A numerical check of the analytical predictions reveals a good agreement in some re-

gions of the parameters space and noticeable discrepancies in others. In order to gain insights

into the observed numerical disagreement, we apply an improved mean-field approach, the

heterogeneous pair approximation [28], which turns out to provide better agreement with

numerics for small θ but is still not able to solve the problems for large θ. The qualita-

tively different nature of the dynamics for large θ is briefly discussed and its understanding

identified as an intriguing challenge for future work.

II. HETEROGENEOUS MEAN-FIELD THEORY

In this Section, we perform a theoretical analysis of the voter and Moran processes on

weighted networks within a HMF approximation [26], extending the Fokker-Planck formal-

ism developed for the unweighted case in Refs. [18–20]. Let us consider the models defined

by the interaction probability Eq. (1), where the network weights take the form

wij = g(ki, kj)aij . (2)

The simplest way to extend the Fokker-Planck approach to weighted networks is to follow

the annealed weighted network approximation introduced in Ref. [5]. The key point consists

in considering the degree coarse-grained interaction probability Pw(k → k′), defined as the

probability that a vertex of degree k interacts with a nearest neighbor vertex of degree k′. In

unweighted networks, this probability simply takes the form of the conditional probability

P (k′|k) that a vertex of degree k is connected to a vertex of degree k′ [29]. In networks with

weights given by Eq. (2), the interaction probability of the voter/Moran dynamics, Eq. (1),

can be coarse-grained by performing an appropriate degree average, to yield [5]

Pw(k → k′) =
g(k, k′)P (k′|k)
∑

q g(k, q)P (q|k) . (3)

The relevant function defining voter and Moran processes is the probability Π(k; s) that

a spin s at a vertex of degree k flips its value to −s in a microscopic time step [18–20]. This

function can be expressed, within the annealed weighted network approximation, in terms

of the density xk of +1 spins in vertices of degree k, taking the form

ΠV (k; +1) = P (k)xk

∑

k′
Pw(k → k′)(1− xk′), (4)
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ΠV (k;−1) = P (k)(1− xk)
∑

k′
Pw(k → k′)xk′ , (5)

for the voter model. The origin of these probabilities is easy to understand [18–20]. For

example, Eq. (4) gives the probability of flipping a vertex of degree k in the state +1 as the

product of the probability P (k) of choosing a vertex of degree k, times the probability xk

that the vertex is in the state +1, times the probability k chooses to interact with a neighbor

vertex k′, which is in state −1 with probability 1− xk′, averaged over all possible neighbor

degrees k′. Analogously, the flipping probabilities for the Moran process can be expressed

as

ΠM(k; +1) =
∑

k′
P (k′)(1− xk′)Pw(k

′ → k)xk, (6)

ΠM(k;−1) =
∑

k′
P (k′)xk′Pw(k

′ → k)(1− xk). (7)

Let us now present separately the mean-field analysis for the two models under consid-

eration.

A. Voter model

1. Rate equation, conservation laws and exit probability

Let us consider the time evolution of the density xk, which is determined in terms of a

rate equation. Following [5, 17–20], this rate equation is shown to take the form

ẋk(t) =
∑

k′
Pw(k → k′)xk′(t)− xk(t)

=
∑

k′

g(k, k′)P (k′|k)
∑

q g(k, q)P (q|k)xk′(t)− xk(t), (8)

where in the last expression we have used Eq. (3). The complete expression Eq. (8), valid

for any correlation and weight patterns, is quite difficult to deal with. In order to obtain

closed analytical expressions, we assume that the underlying network is degree uncorrelated,

namely, P (k′|k) = k′P (k′)/〈k〉 [30], and moreover, that the weights are simple multiplicative

functions of the edges’ end points, that is, g(k, k′) = gs(k)gs(k
′). In this way, Eq. (8) becomes

ẋk(t) = ωV (t)− xk(t), (9)
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where we have defined

ωV (t) =
∑

k′

k′gs(k
′)P (k′)

〈kgs(k)〉
xk′(t), (10)

and 〈f(k)〉 ≡ ∑

k P (k)f(k).

It is easy to see that the total density of +1 spins, x =
∑

k P (k)xk is not a conserved

quantity, ẋ = −x + ωV . The quantity ωV , however, is conserved, ω̇V (t) = 0, as we can see

by inserting Eq. (9) into the time derivative of ωV (t). Finally, the steady state condition of

Eq. (9), ẋk = 0, implies xk = ωV

As for the usual voter model [18, 20] the conservation law allows the immediate deter-

mination of the exit (or “fixation”) probability E, i.e. the probability that the final state

corresponds to all spins in the state +1. In the final state with all +1 spins we have ωV = 1,

while ωV = 0 is the other possible final state (all −1 spins). Conservation of ωV implies

then ωV = E · 1 + [1− E] · 0, hence
E = ωV . (11)

Starting from an homogeneous initial condition, with a density x of randomly chosen vertices

in the state +1, we obtain, since ωV = x, Eh(x) = x as in the standard voter model [11]. On

the other hand, with initial conditions consistent of a single +1 spin in a vertex of degree k,

we have E1(k) = kgs(k)/[N〈kgs(k)〉].

2. Consensus time

The backward Fokker-Planck formalism [31] can be applied to obtain expressions for the

consensus time TN(x), as a function of the initial density x of +1 spins and the system size

N . However, following Refs. [17–20], it is simpler to apply a one-step calculation and use

the recursion relation [18–20]

TN({xk}) =
∑

s

∑

k

ΠV (k; s)[TN(xk − s∆k) + ∆t] +Q({xk})[TN({xk}) + ∆t], (12)

where Q = 1−∑s

∑

k ΠV (k; s) is the probability than no spin flip takes place, ∆t = 1/N and

∆k = 1/[NP (k)] is the change in xk when a spin flips in a vertex of degree k. Rearranging

the terms in Eq. (12), and expanding to second order in ∆k, we obtain

1

2N

∑

k

xk + ωV − 2xkωV

P (k)

∂2TN

∂x2
k

+
∑

k

(xk − ωV )
∂TN

∂xk
= −1. (13)
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Eq. (13) is simplified by observing that the ordering dynamics of the voter model is separated

in two well distinct temporal regimes [18, 32]. Over a short time the different densities xk

all converge from their initial value to the common value at the steady state xk = ωV . For

infinite-size systems, this state survives forever. For finite size N , the system enters instead

a different regime where the dynamics of densities xk is enslaved by the fluctuations of ωV ,

which performs a slow diffusion until it hits the absorbing values 0 or 1. The consensus

time is dominated by this second regime. This allows to apply the steady state condition

which cancels the drift term in Eq. (13). Taking as relevant quantity the conserved weighted

magnetization ωV , we obtain [18, 20]

1

N
ωV (1− ωV )

〈k2gs(k)
2〉

〈kgs(k)〉2
∂2TN

∂ω2
V

= −1. (14)

The integration of this equation leads to

TN(ωV ) = −N
〈kgs(k)〉2
〈k2gs(k)2〉

[ωV lnωV + (1− ωV ) ln(1− ωV )] .

Thus, the ordering time starting from homogeneous initial conditions, xk = ωV = 1/2 is

TN (x = 1/2) = N(ln 2)
〈kgs(k)〉2
〈k2gs(k)2〉

. (15)

B. Moran process

1. Rate equation, conservation laws and exit probability

The derivation of the rate equation for the density xk in the Moran process follows the

same steps as in the voter model, taking the form

ẋk(t) =
1

P (k)

∑

k′
P (k′)Pw(k

′ → k)[xk(t)− xk′(t)]

= k
∑

k′

P (k′|k)
k′

g(k′k)
∑

q g(k′, q)P (q|k′)
[xk(t)− xk′(t)],

where in the last step we used the degree detailed balance condition kP (k)P (k′|k) =

k′P (k′)P (k|k′) [33]. Assuming again a degree uncorrelated network, and multiplicative

weights, we are led to

ẋk(t) =
kgs(k)

〈kgs(k)〉
[xk(t)− x(t)]. (16)
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Again, the total density of +1 spins, x =
∑

k P (k)xk is not conserved, while instead the

quantity

ωM =
1

〈[kgs(k)]−1〉
∑

k

P (k)

kgs(k)
xk (17)

is conserved, ω̇M = 0. Finally, from the steady state condition, ẋk = 0, we obtain xk = x.

From the conservation of ωM the exit probability is immediately derived as

E = ωM . (18)

Homogeneous initial conditions lead again to Eh(x) = x, while a single +1 spin in a vertex

of degree k leads to

E1(k) =
1

kgs(k)

1

N〈[kgs(k)]−1〉 . (19)

It is interesting to note that in the conserved quantity of the voter model, ωV , each

density xk is weighted with the product kgs(k) (Eq. (10)), while in the correspondent ωM

for the Moran process the weight is precisely the inverse, namely (kgs(k))
−1 (Eq. (17)). As

noted in the case of unweighted networks [20], intuitively this can be ascribed to the fact

that in the voter model it is the first selected node that may change its state, while in the

Moran process it is the second one. Thus in the voter model small-degree nodes change their

state more often than high-degree nodes, and weighting them with the probability of being

chosen (kgs(k)) compensates this disparity leading to the conserved quantity ωV . Vice versa

in the Moran process low-degree nodes change their state less often than high degree nodes,

and the inverse weighting balances this difference [20].

2. Consensus time

Following the same steps presented for the voter model, and performing the appropriate

expansion to second order in ∆k, we obtain the equation

∑

k

kgs(k)

〈kgs(k)〉
(xk − x)

∂TN

∂xk

+
1

2N

∑

k

kgs(k)

〈kgs(k)〉
xk + x− 2xkx

P (k)

∂2TN

∂x2
k

= −1.

The steady state condition, xk = x, leads to the cancellation of the drift term. The diffusion

term is simplified by changing variables with the conserved quantity ωM , leading to the
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equation
1

N

1

〈[kgs(k)]−1〉
ωM(1− ωM)

〈kgs(k)〉
∂2TN

∂ω2
M

= −1, (20)

where we have used the fact that, in the steady state, x = ωM . The solution of equation for

the consensus time leads now to

TN(ωM) = −N〈kgs(k)〉〈[kgs(k)]−1〉 [ωM ln(ωM) + (1− ωM) ln(1− ωM)] . (21)

Thus, starting from homogeneous initial conditions, xk = x = ωM = 1/2, we have

TN (x = 1/2) = N(ln 2)〈kgs(k)〉〈[kgs(k)]−1〉. (22)

III. NETWORKS WITH POWER-LAW DEGREE DISTRIBUTION AND

WEIGHT STRENGTHS

The actual behavior of the exit probability and the consensus time depends, in view of

the previous calculations, on the topological properties of the network under consideration,

as well as on the strength of the weights, as given by the function gs(k). In this Section we

consider explicitly these dependencies for the particular case of networks with a power-law

degree distribution form, P (k) ∼ k−γ, and a weight strength scaling also as a power of the

degree, gs(k) = kθ. This last selection is reasonable in view of the weight patterns empirically

observed in real networks [1]. Let us focus on the consensus time with homogeneous (x = 0.5)

initial conditions for the two models considered.

In the case of the voter model, the ordering time with homogeneous initial conditions

and weights scaling as a power of k takes the form

TN(1/2) = N ln(2)
〈k1+θ〉2
〈k2+2θ〉 . (23)

From this expression, we can obtain different scalings with the network size N , depending

on the characteristic exponents γ and θ; we consider only γ > 2. Using the fact that

〈ka〉 ∼ const. for a < γ − 1 and 〈ka〉 ∼ ka+1−γ
c for a > γ − 1, where kc is the upper

network cutoff, and, in view of the comparison with numerical results for the Uncorrelated

Configuration Model [34], considering the scaling kc ∼ N1/2 for γ < 3 and kc ∼ N1/(γ−1) for

9
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FIG. 1: (Color online) Phase diagram of the voter model (left) and Moran process (right) on

weighted scale-free networks.

γ > 3 [35], we obtain the following scaling for consensus the time:

TN(1/2) ∼



















































N (3−γ)/2, θ > γ − 2, γ < 3

const. θ > γ − 2, γ > 3

N (γ−2θ−1)/2 γ − 2 > θ > (γ − 3)/2, γ < 3

N2(γ−θ−2)/(γ−1) γ − 2 > θ > (γ − 3)/2, γ > 3

N θ < (γ − 3)/2

. (24)

In Fig. 1 (left) we represent graphically the different scalings of the consensus time TN in

the (θ, γ) space.

For the Moran process, the ordering time scales with the network size through the ex-

pression

TN(1/2) = N ln(2)〈k1+θ〉〈k−1−θ〉 (25)

For γ > 2, the different possible scalings are as follows:

TN(1/2) ∼



















































N (4+θ−γ)/2, θ > γ − 2, γ < 3

N (1+θ)/(γ−1), θ > γ − 2, γ > 3

N, −γ < θ < γ − 2

N−(1+θ)/(γ−1), θ < −γ, γ > 3

N (2−θ−γ)/2, θ < −γ, γ < 3

. (26)

Fig. 1 (right) depicts the different regimes associated to the behavior of TN in the (θ, γ)

space.
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Some comments are now in order. First we notice that all relevant quantities are in fact

function of the combination kθ+1. This implies that for θ = −1 both voter and Moran

dynamics are predicted to give the same results at the mean-field level, independently of

the degree distribution. In fact, θ = −1 implies that both interacting vertices are extracted

completely at random (independently of their degree) so that the asymmetry distinguishing

the voter model from the Moran process vanishes. For other values of θ, on the other

hand, the effect of weights appears to be completely different for the two dynamics. For the

voter model, positive values of θ tend to reduce the consensus time, while θ < 0 leads to

increased TN , i.e. the dynamics becomes slower. In any case the consensus time is at most

proportional to the system size N : The dynamics is always relatively fast. Interestingly, the

HMF analysis predicts the presence of a region (θ > γ−2 and γ > 3) for which the consensus

time is constant, i.e. the dynamics undergoes an instantaneous ordering process, in contrast

with what happens in other regions, in which ordered regions of opposite states can coexist

for very long times, reaching consensus only in finite systems and through a large stochastic

fluctuation [36]. As it will be shown below, this is true only on annealed networks in which

the quenched disorder imposed by the actual connections in the network is not considered.

Numerical simulations performed on quenched graphs give different results.

For the Moran process, on the other hand, T ∼ N represents a lower bound for the

scaling of the consensus time: The dynamics is always rather slow, with an exponent larger

than 1 for all (γ, θ). Remarkably, the scaling of TN turns out to depend symmetrically on

|θ + 1|: A large positive or a large negative value of θ + 1 are equally effective in slowing

down the ordering process.

IV. COMPARISON WITH NUMERICAL SIMULATIONS

A. Algorithms

In order to check the analytical predictions for the voter model and Moran process, we

have performed numerical simulations of both models on uncorrelated networks generated

using the Uncorrelated Configuration Model (UCM) [34]. The networks have a degree ex-

ponent γ, a minimum degree km = 4 and a maximum degree smaller than or equal to
√
N ,

preventing the generation of correlations for γ < 3 [35]. A weight strength gs(k) = kθ is

11



imposed by selecting a nearest neighbor j of a vertex i with probability

Pij =
kθ
j

∑

v∈V(i) k
θ
v

, (27)

where V(i) is the set of nearest neighbors of i.

Moreover, since HMF equations describe in an exact way dynamics taking place on an-

nealed networks [5], we have simulated the voter model and the Moran process also on such

structures, in order to provide a benchmark of our analytical results. In annealed networks,

in fact, all links are rewired at each microscopic time step, so that no dynamical correlation

can build up, and the absence of correlations assumed by mean-field approaches is actually

implemented. In weighted networks, the probability that a vertex of degree k interacts with

a vertex of degree k′ is given by

Pw(k → k′) =
k′gs(k

′)P (k′)

〈kgs(k)〉
=

k′1+θP (k′)

〈k1+θ〉 , (28)

where in the last equality we have assumed again that gs(k) = kθ. An annealed weighted

network is thus implemented by choosing as neighbor of any given vertex another vertex of

degree k, randomly chosen in the network with probability proportional to k1+θ [5]. In a

quenched network, on the other hand, the neighbors of the first node are of course fixed and

the choice is restricted to them.

B. Exit probability

While for homogeneous initial conditions both the voter model and Moran process lead

to an exit probability equal to the standard voter model, i.e. E(x) = x, invasion initial

conditions starting from a single +1 spin in a vertex of degree k lead to exit probabilities

that depend explicitly on the initial degree considered. In particular, we find

Evoter
1 (k) ∼ k1+θ, EMoran

1 (k) ∼ k−(1+θ). (29)

While for the voter model a single +1 vertex has better chances to invade the system if

it starts from a high degree vertex, for the Moran process the situation is precisely the

opposite, a single +1 spin being favored when initially located in the vertices of smallest

degree. This kind of behavior is actually to be expected from the very definition of the

models, and has been already reported in unweighted networks [20]. In fact, a high degree
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FIG. 2: (Color online) Exit probability E1(k) starting from a single +1 spin in a vertex of degree k,

for the voter model (full symbols) and the Moran process (empty symbols). Dashed lines represent

the expected theoretical scaling with k, circles refer to the case θ = 0 and squares to θ = 1. Data

from quenched networks of size N = 103 with γ = 2.5 (voter model) and γ = 2.2 (Moran process).

is beneficial in the voter model since it corresponds to a larger probability of being chosen

as a partner by a neighbor in search for an opinion to copy, while in the Moran process

having many neighbors implies a larger probability to be invaded by the opinion at one of

them. In Fig. 2 we plot the values of the exit probability E1(k) computed from numerical

simulations. The results fit quite nicely the mean-field predictions in Eq. (29): The larger

the weight intensity, the stronger the impact of high and low degree vertices in the voter

and Moran processes, respectively.

C. Consensus time

In Fig. 3 we check the validity of the scaling behaviors predicted by the HMF treatment

and sketched in Fig. 1. In this figure, we plot the scaling of the consensus time TN as a

function of N , for different points in the six regions in which the respective phase diagrams

are divided, compared with the corresponding theoretical mean-field predictions.

Fig. 3 shows that, overall, the agreement between the scaling predicted by theory and

numerical data in annealed networks is, as expected, very good. With respect to the results

for quenched networks, the agreement between HMF theory and simulations is in general

restricted to small absolute values of θ, as reported for other dynamical processes [5]. In
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FIG. 3: (Color online) Scaling with N for the voter model (left) and Moran process (right) on scale-

free weighted networks in different regions of the corresponding phase diagrams, Fig. 1. Squares

represent data from simulations run on annealed networks, while circles concern quenched graphs.

Dashed lines represent the theoretical scaling predicted by HMF theory.
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FIG. 4: (Color online) Consensus time for the voter model (left) and Moran process (right) in slices

of the phase diagrams at two fixed values of γ and varying θ, compared with the corresponding

HMF predictions, Eqs. (23) and (25), respectively (full lines). Results from simulations performed

on quenched networks of size N = 3× 103.

order to set better limits to the validity of the HMF approximation, in Fig. 4 we report the

numerical values of the consensus time obtained from simulations in quenched networks of

fixed size N = 3 × 103 in slices of the phase diagrams in Fig. 1 performed at two constant

14



10
1

10
2

k

0

0.2

0.4

0.6

0.8

ρS k

HPA
Numerical
HMF

FIG. 5: (Color online) Probability ρSk that an edge connected to a node of degree k and selected for

the dynamics is active as a function of k, in the quasi steady state for x = 1/2. The solid line is the

result of the heterogeneous pair approximation, while symbols are results of numerical simulations.

Binning has deliberately been avoided to show the large variability of numerical results for larger

degrees. Data from voter dynamics on quenched networks of size N = 105, with γ = 3.25 and

θ = 1.5.

values of γ, one larger and one smaller than 3, and varying θ. These numerical values are

compared with numerical evaluations of the theoretical predictions in Eqs. (23) and (25).

From Fig. 4 we observe that the HMF approximation yields reasonably correct results except

for large values of θ (for γ > 3) or large values of −θ (for γ < 3). When these errors occur,

consensus time is underestimated by HMF for the voter model, while it is overestimated

for the Moran process. At the present stage we are not able to predict a priori when the

theoretical results fail to describe the behavior of the dynamics taking place on quenched

networks, but the numerical evidence suggests that the theory works well for values of |θ| of
the order of those observed in real networks [1].

V. HETEROGENEOUS PAIR APPROXIMATION

There are several possible assumptions in the HMF treatment which could fail when the

approach breaks down. One is the assumption that the time to reach consensus is dominated

by the diffusive wandering of the quasi steady state, which is much larger than the time to

reach such state. More important is however the possibility that the very first hypothesis at
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the core of mean-field theory, namely that the dynamics of the system can be fully described

in terms of the densities xk, breaks down [28, 32]. This assumption can be violated at several

different levels. A mild violation occurs when the probability of a node to be in a +1 state

is correlated with the state of its nearest neighbors. In order to ascertain this possibility, it

is useful to consider the quantity ρk, defined as the probability that an edge connected to a

node of degree k and selected for the dynamics is active, i.e. it connects nodes in a different

state. Focusing on the case of the voter model, HMF theory, which explicitly assumes the

lack of dynamical correlations between the vertices at the ends of any edge, predicts that

this quantity should be equal to

ρk =
∑

k′
Pw(k → k′) [xk(1− xk′) + (1− xk)xk′]

= xk(1− ωV ) + (1− xk)ωV (30)

and hence, for initial homogeneous conditions xk = x = ωV = 1/2, we should have in the

stationary state ρSk = 2x(1− x) = 1/2.

Fig. 5 shows that, for a case where mean-field is not accurate, this assumption is not

correct in two respects: Firstly, the value of ρk is lower than 1/2 (dashed line), indicating

that, in fact, correlations build up in the system. Secondly, ρk depends on k, implying that

those correlations depend moreover on the degree of the nodes.

In order to take into account these degree-dependent dynamical correlations, one needs

to consider, as relevant dynamical variable, the probability ρk,k′ that an edge connecting

a node of degree k with another node of degree k′ is active, i.e. the two nodes are in a

different state. This approach, termed heterogeneous pair approximation (HPA), has been

introduced and applied to voter models on unweighted networks in Ref. [28]. To determine

the equation of motion of the quantity ρk,k′ in the voter model, we observe that this quantity

is modified if the flipping node has degree k and one of its neighbors has degree k′ (or vice

versa). Let us assume that the flipping (first selected) node has degree k and call k′′ the

degree of the copied (second selected) node. It is useful to consider separately the two cases

where k′′ 6= k′ or k′′ = k′.

In the first case the variation ∆ρk,k′ for a single dynamical step (occurring over a time

∆t = 1/N) is determined as follows: The probability that a node in state s and degree k

flips is given by the probability P (k) that the first node selected has degree k times the

probability σ(s) that it is in state s, times the probability Pw(k → k′′) that the second
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has degree k′′ multiplied by the probability ρk,k′′/[2σ(s)] that the link connecting the two is

active. One has then to multiply this quantity by the associated variation of the fraction of

active links between k and k′. Among the k− 1 other links of the flipping node, the number

of those connecting to a node of degree k′ will be j distributed according to a binomial

R(j, k − 1) with probability of the single event equal to P (k′|k). In their turn, only n out

of these j links will be active, with n binomially distributed (B(n, j)) with single event

probability ρk,k′/[2σ(s)]. Finally one has to multiply by the variation of ρk,k′ when n out of

j links go from active to inactive as a consequence of the flipping of the node in k. This is

given by the variation of the number of active links [(j−n)−n] divided the total number of

links between nodes of degree k and k′, namely NkP (k)P (k′|k). One has then to sum over

k′′ 6= k′, s, j and n, obtaining

∆ρk,k′ = P (k)
∑

s

σ(s)
∑

k′′ 6=k′
Pw(k → k′′)

ρk,k′′

2σ(s)
·
k−1
∑

j=0

R(j, k − 1)
j
∑

n=0

B(n, j)
j − 2n

NkP (k)P (k′|k) .

(31)

By performing explicitly the summations (and using
∑

s 1/σ(s) = 4/(1 −m2), where m =

2x− 1 is the magnetization) the formula becomes

∆ρk,k′

∆t
=

∑

k′′ 6=k′
Pw(k → k′′)ρk,k′′

(k − 1)

k

(

1− 2

1−m2
ρk,k′

)

. (32)

When k′′ = k′, the value of ∆ρk,k′ is similar to Eq. (31) with (obviously) Pw(k → k′) instead

of Pw(k → k′′), no sum over k′′, and in the numerator of the last factor j+1−(n+1)−(n+1) =

j − 2n− 1, because there are j + 1 links to nodes of degree k, n + 1 of which are active in

the initial state and inactive in the final. Summing up the two contributions and adding the

symmetric terms with k and k′ swapped, we get

dρk,k′

dt
= ρk

k − 1

k
+ρk′

k′ − 1

k′
+−ρk,k′

[

Pw(k → k′)

P (k′|k)
1

k
+

Pw(k
′ → k)

P (k|k′)

1

k′
+

2ρk
1−m2

k − 1

k
+

2ρk′

1−m2

k′ − 1

k′

]

.

(33)

When uncorrelated networks are considered, so that

Pw(k → k′)

P (k′|k) =
〈k〉

〈k1+θ〉k
′θ, (34)

we are led to the final equation

dρk,k′

dt
= ρk

k − 1

k
+ ρk′

k′ − 1

k′
− ρk,k′

[

〈k〉
〈k1+θ〉

(

k′θ

k
+

kθ

k′

)

+
2ρk

1−m2

k − 1

k
+

2ρk′

1−m2

k′ − 1

k′

]

.

(35)
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FIG. 6: (Color online) Comparison of the consensus time TN as a function of N obtained in

numerical simulations for voter dynamics on quenched networks (empty circles) and the results of

the numerical evaluation of the HMF, Eq. (23) (filled circles), and HPA, Eq. (37) (empty squares)

predictions. Data correspond to networks with γ = 2.75, θ = 0.5 (top), γ = 3.25, θ = 1.5 (center),

and γ = 4, θ = 4 (bottom).

where, m is the magnetization and, at odds with the case of unweighted networks, the

definition of ρk is now

ρk =
∑

k′
Pw(k → k′)ρk,k′ (36)

Solving numerically this equation in the stationary state, it is possible to determine ρSk ,

which turns out to be in good agreement with numerical simulations, see Fig. 5. Moreover

it is possible to compute the consensus time TN , which for the voter model turns out to be

TN =
N〈k1+θ〉2

2
∑

k P (k)k2(1+θ)ρSk (x = 1/2)
. (37)

A remarkable agreement between this expression (evaluated numerically) and simulations

is found even for some cases where HMF theory fails. Notice that no parameter is fitted.
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Thus, as we can see in Fig. 6, for small values of θ (θ = 0.5) and small γ, both HMF theory

and the HPA provide accurate results for the consensus time. Larger values of the weight

exponent (θ = 1.5) are well represented by HPA, while HMF fails.

For larger values of θ, however, even the HPA approximation is not sufficient to capture

the correct behavior of the model. In this regime, a much harsher breakdown of the HMF

assumptions occurs [5, 23]: The state of a node of degree k (or of an edge joining vertices

of degree k and k′) depends not only on the degrees but on the detailed quenched structure

of the network, much beyond single-node or single-pair features. For example, as θ → ∞
[5] each node interacts deterministically with its most connected neighbor. According to

HMF equations, which describe an annealed scenario, this means that every node will select

the most connected node(s) in the network. However, in a quenched structure each node

can choose its partner only among its neighbors, with the result that different portions of

the network will effectively become independent from the point of view of the dynamics.

Different regions of the network may therefore order in different states, and in this case the

final global consensus will never be reached (see also [5]).

VI. CONCLUSIONS

We have presented a detailed investigation of the behavior of voter model and Moran

processes on weighted complex networks. From the analytical point of view we have put

forward a theoretical framework that allows to deal with generic edge weights. For a spe-

cific form of the weights we have derived in detail all relevant properties of the dynamical

processes, such as the exit probability and the scaling of the consensus time as a function

of the network size. It turns out that the presence of weights has the effect of slowing down

the Moran process with respect to the unweighted case, while it generally speeds up order-

ing with voter dynamics. Numerical simulations are in good agreement with the theory for

small absolute values of θ, while for large |θ| substantial discrepancies show up. An im-

proved mean-field-like theoretical approach (heterogeneous pair approximation) taking into

account two-body correlations gives better agreement with numerics. Still in the limit of

large positive (negative) θ, when the state of a node tends to be deterministically enslaved

to the state of its neighbor with largest (smallest) degree, the theoretical approaches fail to

describe in a satisfactory manner the behavior of the system.
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The positive news is that the mean-field equations describe quite well the dynamics

observed in real (quenched) networks for weight intensities of the order of the ones observed

in real-world networks [1]. However, the generality of this finding, as well as the intrinsic

limits of the theory, are in need of a better understanding (see also [5]). A theoretical

approach able to take into account the detailed quenched structure of weighted networks is

in order to successfully tackle this problem.
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