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Abstract. In this paper, a method for multi-pitch detection which ex-
ploits the temporal evolution of musical sounds is presented. The pro-
posed method extends the shift-invariant probabilistic latent component
analysis algorithm by introducing temporal constraints using multiple
Hidden Markov Models, while supporting multiple-instrument spectral
templates. Thus, this model can support the representation of sound
states such as attack, sustain, and decay, while the shift-invariance across
log-frequency can be utilized for multi-pitch detection in music signals
that contain frequency modulations or tuning changes. For note track-
ing, pitch-specific Hidden Markov Models are also employed in a post-
processing step. The proposed system was tested on recordings from the
RWC database, the MIREX multi-F0 dataset, and on recordings from
a Disklavier piano. Experimental results using a variety of error met-
rics, show that the proposed system outperforms a non-temporally con-
strained model. The proposed system also outperforms state-of-the art
transcription algorithms for the RWC and Disklavier datasets.

Keywords: Music signal analysis, probabilistic latent component anal-
ysis, hidden Markov models

1 Introduction

Multi-pitch detection is one of the core problems of music signal analysis, having
numerous applications in music information retrieval, computational musicology,
and interactive music systems [4]. The creation of a robust multi-pitch detection
system for multiple instrument sources is considered to be an open problem in
the literature. The performance of multi-pitch estimation systems has not yet
matched that of a human expert, which can be partly attributed to the non-
stationary nature of musical sounds. A produced musical note can be expressed
by a sound state sequence (e.g. attack, transient, decay, and sustain states) [1],
and can also exhibit frequency modulations such as vibrato.

⋆ E. Benetos is funded by a Westfield Trust research studentship (Queen Mary Uni-
versity of London).
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A method for modeling sound states in music signals was proposed by Nakano
et al. in [8], combining the non-negative matrix factorization (NMF) algorithm
with Markov-chained constraints. Smaragdis in [11] employed the shift-invariant
probabilistic latent component analysis (PLCA) algorithm for pitch tracking,
which can model frequency modulations. Mysore proposed a method for sound
modeling which combined the PLCA method with temporal constraints using
hidden Markov models (HMMs) [7]. In [3], the authors extended the shift-
invariant PLCA model for multi-pitch detection, supporting multiple instrument
and pitch templates, with time-dependent source contributions. Finally, the au-
thors combined shift-invariant PLCA with HMMs using sound state templates
for modeling the temporal evolution of monophonic recordings [2].

Here, we extend the single-instrument single-pitch model of [2] for multi-pitch
detection of multiple-instrument recordings. This is accomplished by extracting
sound state templates for the complete pitch range of multiple instruments, and
utilizing multiple independent HMMs, one for each pitch, for modeling the tem-
poral evolution of produced notes. Experiments performed on excerpts from the
RWC database [6], Disklavier recordings [9], and the MIREX multi-F0 dataset
showed that the proposed model outperforms the non-temporally constrained
model of [3] and also provides accuracy rates that outperform state-of-the-art
methods for automatic transcription.

2 Proposed Method

The motivation behind this model is to propose a multi-pitch detection algo-
rithm which supports multiple instrument sources, can express the temporal
evolution of a produced note (by modeling sound states), and can support fre-
quency modulations (e.g. vibrati). Frequency modulations can be supported us-
ing a shift-invariant model and a log-frequency representation, while modeling
the temporal evolution of a sound can be done by utilizing templates for differ-
ent sound states and constraining the order of appearance of these states using
HMMs. This would allow for a rich and informative representation of the music
signal, addressing some drawbacks of current polyphonic transcription systems.

2.1 Model

The proposed model extends the single-pitch single-source algorithm proposed
in [2], which incorporated temporal constraints into the single-component shift-
invariant PLCA algorithm. Here, this method supports multiple concurrent
pitches produced by multiple instrument sources, using as an input the log-
frequency spectrogram Vω,t, where ω is the log-frequency index and t is the time
index. The model approximates the input spectrogram as a probability distri-
bution P (ω, t):

P (ω, t) = P (t)
∑

s,p

Pt(p)Pt(s|p)
∑

q
(p)
t

Pt(q
(p)
t |p, ω̄)P (ω|s, p, q

(p)
t ) ∗ω Pt(f |p) (1)
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where p = 1, . . . , 88 is the pitch index, s denotes the instrument source, q(p) the
sound state for each pitch, and f the pitch shifting. Thus, Pt(p) expresses the

piano-roll transcription, Pt(q
(p)
t |p, ω̄) is the sound state activation for the p-th

pitch, Pt(s|p) the s-th instrument source contribution, Pt(f |p) the pitch impulse

distribution, and P (ω|s, p, q
(p)
t ) the spectral template for the s-th source, p-th

pitch, and q(p)-th sound state. The convolution of P (ω|s, p, q
(p)
t )∗ω Pt(f |p) takes

place between ω and f using an area spanning one semitone around the ideal
position of p, in order to constrain each template for the detection of the pitch
it corresponds to. In addition, such formulation allows a greater control over the
polyphony level of the signal, as explained in Section 2.2. It should also be noted
that Pt(f |p) is not dependent on the instrument source s for computational
speed purposes. This design choice might have an effect in the rare case of two
instruments producing the same note concurrently. Since 60 bins per octave are
used in the input log-frequency spectrogram, f has a length of 5.

Since the sequence of each pitch-specific sound state is temporally con-
strained, the corresponding HMM for the p-th pitch is:

P (ω̄) =
∑

q̄(p)

∑

s̄

∑

p̄

∑

f̄

P (q
(p)
1 )

∏

t

P (q
(p)
t+1|q

(p)
t )

∏

t

Pt(ωt|q
(p)
t ) (2)

where ω̄ refers to all observations, P (q
(p)
1 ) is the state prior distribution, P (q

(p)
t+1|q

(p)
t )

is the transition probability, and Pt(ωt|q
(p)
t ) is the observation probability for the

pitch sound state. The observation probability is defined as:

Pt(ωt|q
(p)
t ) = 1−

||P (ω, t|q
(p)
t )− Vω,t||2

∑
q
(p)
t

||P (ω, t|q
(p)
t )− Vω,t||2

(3)

where || · ||2 is the l2 norm and

P (ω, t|q
(p)
t ) = P (t)

∑

s

Pt(p)Pt(s|p)Pt(q
(p)
t |p, ω̄)

∑

f

P (ω − f |s, p, q
(p)
t )Pt(f |p)

(4)
is the spectrogram reconstruction for the p-th pitch and q(p)-th sound state.
Thus, for a specific pitch, a greater observation probability is given to the
state spectrogram that better approximates the input spectrogram using the
Euclidean distance. Again, for computational speed purposes, the HMMs are
not dependent on s, which was done in order to avoid using S × 88 HMMs.

2.2 Parameter Estimation

As in the single-pitch model from [2], the aforementioned parameters can be
estimated using the Expectation-Maximization algorithm. For the Expectation

step, the update equations are:

Pt(ft, s, p, q
(1)
t , . . . , q

(88)
t |ω̄) = Pt(q

(1)
t , . . . , q

(88)
t |ω̄)Pt(ft, s, p|q

(1)
t , . . . , q

(88)
t , ωt)

(5)
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Pt(q
(1)
t , . . . , q

(88)
t |ω̄) =

88∏

p=1

Pt(q
(p)
t |ω̄) (6)

Pt(q
(p)
t |ω̄) =

αt(q
(p)
t )βt(q

(p)
t )

∑
q
(p)
t

αt(q
(p)
t )βt(q

(p)
t )

(7)

Pt(ft, s, p|ωt, q
(1)
t , . . . , q

(88)
t ) =

Pt(p)P (ωt − ft|s, p, q
(p)
t )Pt(ft|p)Pt(s|p)

∑
p Pt(p)

∑
s,ft

P (ωt − ft|s, p, q
(p)
t )Pt(ft|p)Pt(s|p)

(8)
Equation (5) is the model posterior, for the source components, sound state

activity, pitch impulse, and pitch activity. In (7), αt(qt) and βt(qt) are the HMM
forward and backward variables, respectively, which can be computed using the
forward/backward procedure described in [10] and the observation probability
from (3). Also, the posterior for the pitch-wise transition matrices is:

P (q
(p)
t+1, q

(p)
t |ω̄) =

αt(q
(p)
t )P (q

(p)
t+1|q

(p)
t )βt+1(q

(p)
t+1)Pt(ωt+1|q

(p)
t+1)∑

q
(p)
t

∑
q
(p)
t+1

αt(q
(p)
t )P (q

(p)
t+1|q

(p)
t )βt+1(q

(p)
t+1)Pt(ωt+1|q

(p)
t+1)

(9)

For theMaximization step, the update equations for the unknown parameters
are:

P (ω|s, p, q(p)) =

∑
f,s,t

∑
q
(p)
t

Vω+f,tPt(f, s, p, q
(1), . . . , q(88)|ω + f)

∑
ω,f,s,t

∑
q
(p)
t

Vω+f,tPt(f, s, p, q(1), . . . , q(88)|ω + f)
(10)

where
∑

q
(p)
t

=
∑

q
(1)
t

· · ·
∑

q
(p−1)
t

∑
q
(p+1)
t

· · ·
∑

q
(88)
t

,

Pt(ft|p) =

∑
ω,s

∑
q
(1)
t

· · ·
∑

q
(88)
t

Vω,tPt(ft, s, p, q
(1)
t , . . . , q

(88)
t |ωt)

∑
ft,ω,s

∑
q
(1)
t

· · ·
∑

q
(88)
t

Vω,tPt(ft, s, p, q
(1)
t , . . . , q

(88)
t |ωt)

(11)

P (q
(p)
t+1|q

(p)
t ) =

∑
t P (q

(p)
t , q

(p)
t+1|ω̄)∑

q
(p)

t+1

∑
t P (q

(p)
t , q

(p)
t+1|ω̄)

(12)

Pt(s|p) =

∑
ω,ft

∑
q
(1)
t

· · ·
∑

q
(88)
t

Vω,tPt(ft, s, p, q
(1)
t , . . . , q

(88)
t |ωt)

∑
s,ω,ft

∑
q
(1)
t

· · ·
∑

q
(88)
t

Vω,tPt(ft, s, p, q
(1)
t , . . . , q

(88)
t |ωt)

(13)

Pt(p) =

∑
ω,ft,s

∑
q
(1)
t

· · ·
∑

q
(88)
t

Vω,tPt(ft, s, p, q
(1)
t , . . . , q

(88)
t |ωt)

∑
p,ω,ft,s

∑
q
(1)
t

· · ·
∑

q
(88)
t

Vω,tPt(ft, s, p, q
(1)
t , . . . , q

(88)
t |ωt)

(14)

Finally, the pitch-wise initial state probabilities are: P (q
(p)
1 ) = P1(q

(p)
1 |ω̄). It

should be noted that the spectral template update rule in (10) is not used in
this system since we are utilizing pre-extracted templates, but is included for
completeness.
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Sparsity constraints were also incorporated, in order for the algorithm to
provide as meaningful solutions as possible. Using the technique shown in [3],
sparsity was enforced on the update rules for the pitch activity matrix Pt(p)
and the source contribution matrix Pt(s|p). This means that we would like few
notes active in a time frame, and that each note is produced by few instru-
ment sources. The same sparsity parameters that were used in [3] were used.
A pitch spectrogram can also be created using P (f, p, t) = P (t)Pt(p)Pt(f |p)
and stacking together slices of tensor P (f, p, t) for all pitch values: P (f, t) =
[P (f, 1, t) · · ·P (f, 88, t)].

2.3 Postprocessing

For performing note smoothing and tracking, the resulting pitch activity matrix
P (p, t) = P (t)Pt(p) is postprocessed using pitch-wise HMMs, as in [9, 3]. Each
pitch p is modeled by a 2-state on/off HMM, while the hidden state sequence
is q′p[t] and the observed sequence op[t]. MIDI files from the RWC database [6]
were employed in order to estimate the pitch-wise state priors and the state
transition matrices. For estimating the observation probability for each active
pitch P (op[t]|q

′

p[t] = 1), we use a sigmoid curve which has P (p, t) as input:

P (op[t]|q
′

p[t] = 1) =
1

1 + e−P (p,t)
(15)

and use the Viterbi algorithm [10] for extracting the note tracking output for
each pitch. The result of the HMM postprocessing step is a binary piano-roll
transcription which can be used for evaluation.

3 Evaluation

3.1 Datasets

For training, the spectral templates P (ω|s, p, q(p)) were extracted for various
instruments, over their complete pitch range, using q = 3 sound states. The
extraction process was performed using the unsupervised single-source single-
pitch model of [2] and the constant-Q transform with 60 bins/octave as input.
Isolated note samples from 3 piano models were used from the MAPS database
[5] and templates from cello, clarinet, flute, guitar, harpsichord, oboe, and violin
were extracted from the RWCmusical instrument sounds dataset [6]. An example
of the sound state template extraction process is given in Fig. 1.

For evaluation, we employed 12 excerpts from the RWC classical and jazz
datasets which are widely used for transcription (see [3] for comparative results).
We also used the woodwind quintet recording from the MIREX multi-F0 devel-
opment set1. Finally, 10 one-minute recordings taken from a Yamaha Disklavier
piano which were presented in [9] were also utilized.

1 http://www.music-ir.org/mirex
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Fig. 1. (a) Spectrogram Vω,t of a D3 piano note (b) Extracted spectral templates using
the method in [2] corresponding to different sound states.

3.2 Results

For evaluation, the transcription metrics also used in [3] were utilized, namely the
two accuracy measures (Acc1, Acc2), the total error (Etot ), the substitution error
(Esubs), missed detection error (Efn), and false alarm error (Efp). Compared to
Acc1, accuracy Acc2 also takes into account note substitutions. All evaluations
take place by comparing the transcribed pitch output and the ground-truthMIDI
files at a 10 ms scale.

For comparison, we employed the shift-invariant PLCA-based transcription
model of [3] with the same CQT resolution as in the proposed model. The sys-
tem used for comparison does not support any temporal constraints but uses the
same formulation for source contribution, pitch impulse, pitch activity, as well as
the same postprocessing step. Experiments were performed using ergodic HMMs
(initialized with uniform transition probabilities), as they demonstrated superior
performance compared to left-to-right HMMs for the single-pitch detection ex-
periments in [2]. As explained in [2], although left-to-right HMMs might be more
suitable for instruments exhibiting a clear temporal structure in note evolution
(such as piano), in most instruments a fully connected HMM is more appropri-
ate for expressing the temporal evolution of sound states. An example of the
multi-pitch detection process can be seen in Fig. 2 where the pitch spectrogram
of a guitar recording can be seen, along with the MIDI ground truth.

Results for the multi-pitch estimation experiments are presented in table
1, comparing the performance of the proposed method with the non-temporally
constrained system of [3], over the three datasets. It can be seen that in all cases,
the proposed method outperforms the shift-invariant PLCA-based model, with
the smallest difference in terms of accuracy occurring for the MIREX recording.
It should be noted that for the Disklavier dataset from [9], only piano templates
were used in both systems. A common observation for all experiments is that the
number of missed pitch detections is higher than the number of false positives.
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Fig. 2. (a) Pitch spectrogram P (f, t) of an excerpt of “RWC-MDB-J-2001 No. 7”
(guitar). (b) The pitch ground truth of the same recording. The abscissa corresponds
to 10ms.

Dataset Method Acc1 Acc2 Etot Esubs Efn Efp

RWC
Proposed 61.6% 62.8% 37.2% 9.1% 18.3% 9.8%

[3] 59.5% 60.3% 39.7% 9.2% 20.3% 10.2%

Disklavier [9]
Proposed 58.6% 57.3% 42.7% 9.9% 16.3% 16.5%

[3] 57.4% 55.5% 44.5% 10.8% 16.3% 17.4%

MIREX
Proposed 41.0% 47.0% 53.0% 25.4% 20.1% 7.5%

[3] 40.5% 46.3% 53.8% 18.5% 32.3% 3.0%

Table 1. Multi-pitch detection results using the proposed method compared to the
one in [3] using three datasets.

Also, for the RWC and Disklavier datasets, results outperform state-of-the-art
transcription algorithms (see [3] for transcription results using other methods in
the literature). It should also be noted that most of the missed detections are lo-
cated in the decay part of the produced notes. When no sparsity is used, the pro-
posed method reports accuracy metrics {Acc1,Acc2} of {56.3%, 55.6%} for the
RWC database, {56.8%, 53.1%} for the Disklavier dataset, and {40.8%, 46.9%}
for the MIREX recording. Selected transcription examples are available online2,
along with the original recordings for comparison.

To the authors’ knowledge, no statistical significance tests have been made
for multi-pitch detection, apart from the piecewise Friedman tests in the MIREX
task. However, given the fact that evaluations actually take place using 10 ms
frames, even a small accuracy change can be shown to be statistically significant.
Also, it should be noted that although using factorial HMMs (as in the source
separation experiments of [7]) for the temporal constraints might in theory pro-
duce improved detection results, the model would be intractable, since it would
need to compute 388 sound state combinations.

2 http://www.eecs.qmul.ac.uk/~emmanouilb/transcription.html
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4 Conclusions

In this work we proposed a model for multi-pitch detection that extends the shift-
invariant PLCA algorithm by introducing temporal constraints using HMMs.
The goal was to model the temporal evolution for each produced note using
spectral templates for each sound state. Results indicate that the temporal con-
straints produce improved multi-pitch detection accuracy rates compared to the
standard shift-invariant PLCA model. It is also seen that the proposed system
outperforms the state-of-the-art methods for the RWC transcription dataset and
the Disklavier [9] dataset.

In the future, the proposed model will be tested using different HMM topolo-
gies and by incorporating update scheduling procedures for the various parame-
ters to be estimated. Finally, the proposed transcription system will be extended
by including an instrument identification step and by jointly performing multi-
pitch estimation with note tracking.
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