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ABSTRACT

In order to support individual user perspectives and differ-
ent retrieval tasks, music similarity can no longer be con-
sidered as a static element of Music Information Retrieval
(MIR) systems. Various approaches have been proposed
recently that allow dynamic adaptation of music similarity
measures. This paper provides a systematic comparison of
algorithms for metric learning and higher-level facet dis-
tance weighting on the MagnaTagATune dataset. A cross-
validation variant taking into account clip availability is
presented. Applied on user generated similarity data, its
effect on adaptation performance is analyzed. Special at-
tention is paid to the amount of training data necessary for
making similarity predictions on unknown data, the num-
ber of model parameters and the amount of information
available about the music itself.

1. INTRODUCTION

Musical similarity is a central issue in MIR and the key
to many applications. In the classical retrieval scenario,
similarity is used as an estimate for relevance to rank a
list of songs or melodies. Further applications comprise
the sorting and organization of music collections by group-
ing similar music clips or generating maps for a collection
overview. Finally, music recommender systems that fol-
low the popular “find me more like. . . ”-idea often employ
a similarity-based strategy as well. However, music sim-
ilarity is not a simple concept. In fact there exist various
frameworks within musicology, psychology, and cognitive
science. For a comparison of music clips, many interre-
lated features and facets can be considered. Their individ-
ual importance and how they should be combined depend
very much on the user and her or his specific retrieval task.
Users of MIR systems may have various (musical) back-
grounds and experience music in different ways. Conse-
quently, when comparing musical clips with each other,
opinions may diverge. Apart from considering individual
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users or user groups, similarity measures also should be
tailored to their specific retrieval task to improve the per-
formance of the retrieval system. For instance, when look-
ing for cover versions of a song, the timbre may be less
interesting than the lyrics. Various machine learning ap-
proaches have recently been proposed for adapting a music
similarity measure for a specific purpose. They are briefly
reviewed in Section 2. For a systematic comparison of
these approaches, a benchmark experiment based on the
MagnaTagATune dataset has been designed, which is de-
scribed in Section 3. Section 4 discusses the results of the
comparison and Section 5 finally draws conclusions.

2. ADAPTATION APPROACHES

The approaches covered in this paper focus on learning
a distance measure, which (from a mathematical perspec-
tive) can be considered as a dual concept to similarity. The
learning process is guided by so-called relative distance
constraints. A relative distance constraint (s, a, b) demands
that the object a is closer to the seed object s than object b,
i.e.,

d(s, a) < d(s, b) (1)

Such constraints can be seen as atomic bits of information
fed to the adaptation algorithm. They can be derived from
a variety of higher-level application-dependent constraints.
For instance, in the context of interactive clustering, as-
signing a song s to a target cluster with the prototype ct
can be interpreted by the following set of relative distance
constraints as proposed by Stober et al. [11]:

d(s, ct) < d(s, c) ∀c ∈ C \ {ct} (2)
where C is the set of cluster prototypes. Bade et al. de-
scribe how relative distance constraints can be derived from
expert classifications of folk songs [1] or from an existing
personal hierarchy of folders with music files [2]. Alter-
natively, it is also possible to directly ask the users to state
the opinion for a triplet of songs as in the bonus round of
the TagATune game [7]. (Section 3.2 covers this in de-
tail.) McFee et al. [8] use artist similarity triples collected
in the web survey described in [5]. They also describe a
graph-based technique to detect and remove inconsisten-
cies within sets of constraints such as direct contradictions.

Using relative distance constraints, the task of learning
a suitable adaptation of a distance measure can be formu-
lated mathematically as constraint optimization problem.



In the following, the two general approaches covered in
this comparison are briefly reviewed.

2.1 Linear Combinations of Facet Distances

Stober et al. model the distance d(a, b) between two songs
as weighted sum of facet distances δf1(a, b), . . . , δfl(a, b):

d(a, b) =

l∑
i=1

wiδfi(a, b) (3)

Each facet distance refers to an objective comparison of
two music clips with respect to a single facet of music in-
formation such as melody, timbre, or rhythm. Here, the
facet weights w1, . . . , wl ∈ R+ serve as parameters of
the distance measure that allow to adapt the importance of
each facet to a specific user or retrieval task. These weights
obviously have to be non-negative so that the aggregated
distance cannot decrease where a single facet distance in-
creases. Furthermore, the sum of the weights should be
constant such as l∑

i=1

wi = l (4)

to avoid arbitrarily large distance values.
The small number of parameters somewhat limits the

expressivity of the distance model. However, at the same
time, the weights can easily be understood and directly ma-
nipulated by the user. Stober et al. argue that this design
choice specifically addresses the users’ desire to remain
in control and not to be patronized by an intelligent sys-
tem that “knows better”. In [11], they describe various ap-
plications and respective adaptation algorithms which they
evaluate and compare in [12] using the MagnaTagATune
dataset. Three of these approaches are covered by the com-
parison in this paper.

2.1.1 Gradient Descent

Here, if a constraint is violated by the current distance mea-
sure, the weighting is updated by trying to maximize

obj (s, a, b) =

l∑
i=1

wi(δfi(s, b)− δfi(s, a)) (5)

which can be directly derived from Equation 1. This leads
to the following update rule for the individual weights:

wi = wi + η∆wi, with (6)

∆wi =
∂obj (s, a, b)

∂wi
= δfi(s, b)− δfi(s, a) (7)

where the learning rate η defines the step width of each it-
eration. As in [12], the optimization process is restarted 50
times with random initialization and the best result is cho-
sen to reduce the risk of getting stuck in a local optimum.

2.1.2 Quadratic Programming

Of the various quadratic programming approaches covered
in [12], only the one minimizing the quadratic slack is con-
sidered here because it was the best performing one in the
original comparison. In this approach, an individual slack
variable is used for each constraint, which allows viola-
tions. As optimization objective, the sum of the squared
slack values has to be minimized.

relative distance constraints linear classification problem 

Figure 1. Transformation of a relative distance constraint
for linear combination models into two training instances
of the corresponding binary classification problem as de-
scribed by Cheng et al. [3].

2.1.3 Linear Support Vector Machine (LibLinear)

The third approach takes a very different perspective. As
described by Cheng et al. [3], the learning task can be re-
formulated as a binary classification problem, which opens
the possibility to apply a wide range of sophisticated clas-
sification techniques such as (linear) Support Vector Ma-
chines (SVMs). Figure 1 illustrates this idea to rewrite
each relative distance constraint d(s, a) < d(s, b) as
m∑
i=1

wi(δfi(s, b)− δfi(s, a)) =

m∑
i=1

wixi = wTx > 0 (8)

where xi is the distance difference with respect to facet fi.
The positive training example (x,+1) then represents the
satisfied constraint whereas the negative example (−x,−1)
represents its violation (i.e., inverting the relation sign).
For these training examples, the normal vector of the hy-
perplane that separates the positive and negative instances
contains the adapted facet weights. As in [12], the Lib-
Linear library is used here, which finds a stable separating
hyperplane but still suffers from the so far unresolved prob-
lem that the non-negativity of the facet weights cannot be
enforced.

2.2 Metric Learning

Alternative approaches to weighting predefined facet dis-
tance measures include direct manipulation of parametrized
vector distance measures. All features are concatenated
to a single combined feature vector per clip. We model
a clip’s feature vector by g(a) : N 7→ RN . This corre-
sponds to assigning a single facet to each feature dimen-
sion. Frequently, the mathematical form of Mahalanobis
metrics is used to specify a parametrized vector distance
measure. In contrast to the approaches described in the pre-
vious section, adaptation is performed in the (combined)
feature space itself: Given two feature vectors a = g(a),
b = g(b) ∈ RN , the family of Mahalanobis distance mea-
sures can be expressed by

dW(a,b) =
√

(a− b)TW(a− b), (9)

where W ∈ RN×N is a positive semidefinite matrix, para-
metrizing the distance function. Generic variants of the



Euclidean metric, Mahalanobis metrics allow for linear trans-
formation of the feature space when accessing distance.
An important property of this approach is that the number
of adjustable parameters directly depends on the dimen-
sionality N of the feature space. As this number grows
quadratically with N , many approaches restrict training to
the N parameters of a diagonal matrix W, only permitting
a weighting of the individual feature dimensions.

2.2.1 Linear Support Vector Machine (SVMLight)

The SVM approach explained in Section 2.1.3 has been
shown as well suited to learning a Mahalanobis distance
measure: Schultz et al. [10] adapted a weighted kernelized
metric towards relative distance constraints. We follow the
approach of Wolff et al. [13], where a linear kernel is used.
This simplifies the approach of Schultz et al. to learning a
diagonally restricted Mahalanobis distance (Equation 9).

Like the SVM for the facet distances, a large margin
classifier is optimized to the distance constraints. Here,
for each constraint (s, a, b), we replace the facet distance
difference vector x in Equation 8 with the difference of the
pointwise squared 1 feature difference vectors x = (s −
b)2 − (s− a)2.

Given the vector w = diag(W),wi ≥ 0 and slack vari-
ables ξ(s,a,b) ≥ 0, optimization is performed as follows:

min
w,ξ

1

2
wTw + c ·

∑
(s,a,b)

ξ(s,a,b) (10)

s.t.∀ (s, a, b) wTx(s,a,b) ≥ 1− ξ(s,a,b)
Here, c determines a trade-off between regularization and
the enforcement of constraints. For the experiments below,
the SVMlight framework 2 is used to optimize the weights
wi . As for LibLinear, wi ≥ 0 cannot be guaranteed.

2.2.2 Metric Learning to Rank

McFee et al. [9] developed an algorithm for learning a Ma-
halanobis distance from rankings. 3 Using the constrained
regularization of Structural SVM, the matrix W is opti-
mized to an input of clip rankings and their feature vectors.
Given a relative distance constraint (s, a, b) (see Equation 1),
the corresponding ranking assigns a higher ranking score
to a than to b, when querying clip s. For a setX of training
query feature vectors q ∈ X ⊂ RN and associated training
rankings y∗q , Metric Learning to Rank (MLR) minimizes

min
W,ξ

tr(WTW) + c
1

n

∑
q∈X

ξq, (11)

s.t. ∀q ∈ X, ∀y ∈ Y \ {y∗q} :

HW

(
q, y∗q

)
≥ HW (q, y) + ∆(y∗q , y)− ξq,

with Wi,j ≥ 0 and ξq ≥ 0. Here, the matrix W is reg-
ularized using the trace. Optimization is subject to the
constraints creating a minimal slack penalty of ξq . c de-
termines the trade-off between regularization and the slack
penalty for the constraints below. HW(q, y) 4 assigns a

1 (a2)i := (ai)
2

2 http://svmlight.joachims.org/
3 http://cseweb.ucsd.edu/˜bmcfee/code/mlr/
4 For simplification, HW(q, y) substitutes the Frobenius product

〈W,ψ(q, y)〉F in [9].

score to the validity of ranking y given the query q with
regard to the Mahalanobis matrix W. This enforces W
to fulfill the training rankings y∗q . The additional ranking-
loss term ∆(y∗q , y) assures a margin between the scores of
given training rankings y∗q and incorrect rankings y. The
method is kept efficient by selecting only a few possible
alternative rankings y ∈ Y for comparison with the train-
ing rankings: A separation oracle is used for predicting the
worst violated constraints (see [6]). In our experiments, an
MLR variant DMLR restricts W to a diagonal shape.

3. EXPERIMENT DESIGN

3.1 The MagnaTagATune Dataset

MagnaTagATune is a dataset combining mp3 audio, acous-
tic feature data, user votings for music similarity, and tag
data for a set of 25863 clips of about 30 seconds taken from
5405 songs provided by the Magnatune 5 label. The bun-
dled acoustic features have been extracted using version
1.0 of the EchoNest API 6 . The tag and similarity data has
been collected using the TagATune game [7]. TagATune
is a typical instance of an online “Game With A Purpose”.
While users are playing the game mainly for recreational
purposes, they annotate the presented music clips. The tag
data is collected during the main mode of the game, where
two players have to agree on whether they listen to identi-
cal clips. Their communication is saved as tag data. The
bonus mode of the game involves a typical odd one out
survey asking two players to independently select the same
outlier out of three clips presented to them. The triplets of
clips presented to them vary widely in genre, containing
material from ambient and electronica, classical, alterna-
tive, and rock.

3.2 Similarity Data

The comparative similarity data in MagnaTagATune can be
represented in a constraint multigraph with pairs of clips as
nodes [8, 12]. The vote for an outlier k in the clip triplet
(i, j, k) is transformed into two relative distance constraints:
(i, j, k) and (j, i, k). Each constraint (s, a, b) is represented
by an edge from the clip pair (s, a) to (s, b). This results
in 15300 edges of which 1598 are unique. In order to
adapt similarity measures to this data, the multigraph has
to be acyclic, as cycles correspond to inconsistencies in the
similarity data. The MagnaTagATune similarity data only
contains cycles of length 2, corresponding to contradictive
user statements regarding the same triplet. In order to re-
move these cycles, the contradicting multigraph edge num-
bers are consolidated by subtracting the number of edges
connecting the same vertices in opposite directions. The
remaining 6898 edges corresponding to 860 unique rela-
tive distance constraints constitute the similarity data we
work with. 7

5 http://magnatune.com/
6 http://developer.echonest.com/
7 In [12], the authors report that the number of consistent constraints is

674. This differing number was caused by a software bug in the filtering
algorithm, which led to the removal of more constraints than necessary.

http://svmlight.joachims.org/
http://cseweb.ucsd.edu/~bmcfee/code/mlr/
http://magnatune.com/
http://developer.echonest.com/


3.3 Data Partitioning

In order to assess the training performance of the approaches
described in Section 2, we compare two cross-validation
variants to specify independent test and training sets.

A straightforward method, randomly sampling the con-
straints into cross-validation bins and therefore into combi-
nations of test and training sets has been used on the dataset
before by Wolff et al. [13]. We use this standard method
(sampling A) to perform 10-fold cross validation, sampling
the data into non-overlapping test and training sets of 86
and 774 constraints respectively

For the second sampling, it is considered that two con-
straints were derived from each user voting, as such are
related to the same clips. Assigning one of such two con-
straints to training and the remaining one to a test set might
introduce bias by referring to common information. In
our second validation approach, (sampling B) it is assured
that the test and training sets also perfectly separate on the
clip set. The 860 edges of the MagnaTagATune similar-
ity multigraph connect 337 components of three vertices
each. These correspond to the initial setup of clip triplets
presented to the players during the TagATune game.

As the removal of one clip causes the loss of all similar-
ity information (maximally 3 constraints) within its triplet,
the sampling of the test data is based on the triplets rather
than the constraints. On the 337 triplets, we use 10-fold
cross validation for dividing these into bins of 33 or 34
triplets. Due to the varying number of 2-3 constraints per
triplet, the training set sizes vary from 770-779 constraints,
leaving the test sets at 81-90 constraints.

For evaluation of generalization and general performance
trends, the training sets are analyzed in an expanding sub-
set manner. We start with individual training sets of ei-
ther 13 constraints (sampling A) or 5 triplets (sampling B),
corresponding to 11-15 constraints. The size of the train-
ing sets is then increased exponentially, including all the
smaller training sets’ constraints in the larger ones. Con-
straints remaining unused for each of the smaller training
set sizes are used for further validation, and referred to as
unused training constraints. For both sampling methods,
all test and training sets are fixed, and referred to as sam-
pling A and sampling B.

3.4 Features and Facets

As features, we use those defined in [12] plus the genre
features used by Wolff et al. [13]. This results in the set of
features shown in Table 1.

Of the 7 global features, “danceability” and “energy”
were not contained in the original clip analysis information
of the dataset but have become available with a newer ver-
sion of the EchoNest API. Furthermore, the segment-based
features describing pitch (“chroma”) and timbre have been
aggregated (per dimension) resulting in 12-dimensional vec-
tors with the mean and standard deviation values. This has
been done according to the approach described in [4] for
the same dataset. The 99 tags were derived from annota-
tions collected through the TagATune game [7] by applying

feature dim. value description

key 1 0 to 11 (one of the 12 keys) or −1 (none)
mode 1 0 (minor), 1 (major) or −1 (none)
loudness 1 overall value in decibel (dB)
tempo 1 in beats per minute (bpm)
time signature 1 3 to 7 ( 3

4
to 7

4
), 1 (complex), or −1 (none)

danceability 1 between 0 (low) and 1 (high)
energy 1 between 0 (low) and 1 (high)

pitch mean 12 dimensions correspond to pitch classes
pitch std. dev. 12 dimensions correspond to pitch classes
timbre mean 12 normalized timbre PCA coefficients
timbre std. dev. 12 normalized timbre PCA coefficients

tags 99 binary vector (very sparse)
genres 44 binary vector (very sparse)

Table 1. Features for the MagnaTagATune dataset. Top
rows: Globally extracted EchoNest features. Middle rows:
Aggregation of EchoNest features extracted per segment.
Bottom row: Manual annotations from TagATune game
and the Magnatune label respectively.

the preprocessing steps described in [12]. The resulting bi-
nary tag vectors are more dense than for the original 188
tags but still very sparse. The genre labels were obtained
from the Magnatune label as described by Wolff et al. [13].
A total of 42 genres was assigned to the clips in the test set
with 1-3 genre labels per clip. This also results in very
sparse binary vectors.

For the facet-based approaches described in Section 2.1,
two different sets of facets are considered consisting of 26
and 155 facets respectively. In both sets, the 7 global fea-
tures are represented as individual facets (using the dis-
tance measures described in [12]). As the genre labels
are very sparse, they are combined in a single facet us-
ing the Jaccard distance measure. The set of 155 facets
is obtained by adding 99 tag facets (as in [12]) and a sin-
gle facet for each dimension of the 12-dimensional pitch
and timbre features. For the set of 26 facets, the pitch
and timbre feature are represented as a single facet each
(combining all 12 dimensions). Furthermore, 14 tag-based
facets are added of which 9 refer to aggregated tags that
are less sparse (solo, instrumental, voice present, male, fe-
male, noise, silence, repetitive, beat) and 5 compare binary
vectors for groups of related tags (tempo, genre, location,
instruments, perception / mood). This results in a realis-
tic similarity model of reasonable complexity that could
still be adapted manually by a user. The more complex
model with almost six times as many facet weight param-
eters serves as the upper bound of the adaptability using a
linear approach for the given set of features.

4. RESULTS

For the similarity data sampling A, Figure 2 shows all of
the algorithms to improve the baseline of 63% satisfied un-
known constraints by 7% to 10%. Plotted are the perfor-
mance averages over 10-fold cross-validation as described
in Section 3.3. Except for SVMlight, most of the final gen-
eralization success is achieved within the first 250 train-
ing constraints. Only diagonal MLR shows notable non-
monotonic behaviour for larger training sets >200 con-



straints. Further tests on the unused training data repro-
duce the results on the static test sets shown here. As
shown in Figure 3, all algorithms are able to satisfy the
initial training constraints. With the exception of MLR,
(see Section 4.2), the training performance decreases for
growing training sets, asymptotically approaching the test
set performance. Such effects have been shown in [13] not
to contradict good generalization results.

4.1 Impact of Model Complexity

For the facet-based linear approaches (Figure 3, left), a
strong impact of the number of facet weight parameters can
be observed. Whilst the performance for the model with
155 facets is significantly superior on the training data, it
is generally worse on the test data. Only for a high number
of training constraints, the simpler model with 26 facets
can be matched or slightly outperformed. This is a strong
indicator for model overfitting. With its many parameters,
the complex model adapts too much to the training data at
the cost of a reduced ability to generalize. In contrast, the
simple model is able to generalize much quicker. This is
especially remarkable for the quadratic programming ap-
proach with the quickest generalization of all approaches.
Its adaptation performance on the test data also comes clos-
est to the training performance, which can be seen as an
upper bound. It appears as if this limit is increased by
about 5%, if 155 facets are used instead, but more train-
ing examples would be needed to get closer to this value.
Here lies great potential for future research: By adapting
the model complexity (i.e., the number of parameters) de-
pending on the number of training examples and the per-
formance on some unseen constraints, the ability of simple
models to quickly generalize could be combined with the
superior adaptability of more complex ones.

4.2 Effects of Similarity Sampling

For most of the algorithms tested, the effect of choosing
sampling A or sampling B is small. Best performing are
MLR (samling A) and quadratic programming(m = 155)
for sampling B. Except for MLR, decrease in test set per-
formance is limited to 1% when trained with the clip-sepa-
rating sampling B. In the right column of Figure 3, the met-
ric learning algorithms are compared. The bottom black
curves represent the test set results for sampling A (dashed,
· – ·) and sampling B (solid, —). The training perfor-
mances for these samplings are plotted on the top of the
graphs. While SVMlight (d) and DMLR (f) only loose 2-3%
in performance, MLR (e) drops by more than 6%. Exclu-
sively among the algorithms tested, the fully parametrized
MLR(e) variant shows a 100% training performance for all
training sizes. In line with results from Wolff et al. [13,14],
the algorithm generalizes well on the similarity data with
sampling A. Even with further permutations of the data,
this capability to generalize reduces significantly when us-
ing MLR with our sampling method B, possibly caused by
the lack of feature reoccurence in the training data.

5. CONCLUSIONS

The results of the experiment show that all approaches can
adapt a similarity model to training data and generalize the
learned information to unknown test data. Training perfor-
mance curves can be used as an indicator for the maximal
generalization outcome to expect, which depends on the
number of facets and the features used. Sensitivity with re-
spect to the sampling method of the test data was observed
for MLR, which requires further investigation. Another
promising direction for future work is to dynamically adapt
the model complexity, e.g., by regularization. The feature
data and sampling information are available online 8 for
benchmarking of approaches developed in the future.
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Figure 2. Performance comparison of facet-based approaches (with 26 facets) and metric learning. Values are averaged
over all 20 folds of sampling A. The baseline at 63% refers to the mean performance of random facet weights (n = 1000).
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Figure 3. Detailed performance of the individual approaches under different conditions. Top curves show training
performance, bottom curves and legend show test set performance. Left column (a, b, c): Performance of the facet-
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Performance of the metric-based approaches. Effects of sampling A(· – ·) and B(—) are compared.
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