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USING COMPARATIVE RATINGS
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ABSTRACT

Understanding how we relate and compare pieces of music
has been a topic of great interest in musicology as well as for
business applications, such as music recommender systems.
The way music is compared seems to vary among both indi-
viduals and cultures. Adapting a generic model to user rat-
ings is useful for personalisation and can help to better un-
derstand such differences. This paper presents an approach
to use machine learning techniques for analysing user data
that specifies song similarity. We explore the potential for
learning generalisable similarity measures with two state-
of-the-art algorithms for learning metrics. We use the audio
clips and user ratings in the MagnaTagATune dataset, en-
riched with genre annotations from the Magnatune label.

1. MOTIVATION

In the recent years, increased efforts have been made to
adapt MIR techniques, especially for music recommenda-
tion, to specific contexts or user groups. This is encouraged
by developments in machine learning that make more algo-
rithms applicable to accumulated user data, like user pref-
erences or click-trough data for ranked search results, and
enable the involvement of crowd wisdom into general clas-
sification and distance learning tasks. Moreover, the combi-
nation of different information sources has been proven suc-
cessful for improving music recommendation and for clas-
sification into cultural categories such as musical genres.

This paper shows the results of some experiments on learn-
ing a musical distance metric from user similarity compar-
isons. Similarity models of mixed acoustic and tag features
are trained using comparative user judgent data on song sim-
ilarities. We derive information of the form ”Song A is more
similar to Song B than to Song C”, represented by binary
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rankings, which allows for the application of more generic
algorithms designed for learning from such data.

Although the above type of rating data is not as readily
accessible as customer preference or social network data, it
provides a valuable change of focus from general classifica-
tion and recommendation success towards modelling musi-
cal similarity and the users’ perception of it when engaged
in a comparison task. Thus, instead of targeting a general
relevance criterion, the optimisation task tackled in the fol-
lowing experiments addresses reported perceived similarity,
which only constitutes one of the many variable aspects of
relevance. As distance measures we use Mahalanobis dis-
tance metrics, which allow for a direct analysis as well as
the easy comparison of learning results [5], and therefore
encourage evaluation from a musicological perspective.

2. RELATED WORK

The distance metrics learning in this paper can be seen as
an extension of feature selection techniques developed ear-
lier in the MIR field, regarding feature selection as a binary
weighting of features. E.g., Dash and Liu [4] assembled a
comprehensive survey of general techniques for feature se-
lection in classification tasks. They pointed out attributes
relevant for diverse application scenarios, e.g. compabil-
ity considering dataset size, number of classes or robustness
against noise. These attributes enable a systematic compar-
ison of the various approaches when given the parameters
of a specific application. Pickens [13] categorised selection
techniques for music retrieval using symbolic data, calling
for special attention to features’ musicological properties.

A set-based method for learning a feature weightings was
applied by Allan et al. [1]. Users could specify their per-
ceived similarity using two example song sets: one contain-
ing similar and one dissimilar songs. A detailed discussion
on how to generate a successful stimulus partitioning for
a survey involving comparison within triplets of clips sup-
ported the design of their Balanced Complete Block Parti-
tioning.



2.1 Optimising Recommendation via Metadata and
User Information

Out of the many data sources available for music descrip-
tion, genre annotations provide particularly valuable data for
indexing and presenting music in recommendation settings.
Musical genre has been used for the general evaluation of
similarity measures, using the correlation of songs’ genres
and data clusters derived from the learned similarity [11,12].

Barrington et al. showed a training of linear combina-
tions of SVM kernels relating to similarity measurements on
acoustic, tagging and web-mined annotation data, for build-
ing classifiers for automatic annotation [3]. They also pro-
vide relevance levels of the different feature types for differ-
ent tag classifiers.

A user-data based similarity measure for multimedia ob-
jects was introduced by Slaney [15]. Here, similarity of ob-
jects was based on users votings for them. Songs which fea-
ture the same grade of likeability by the same group of users
were considered similar. The resulting similarity measure
was evaluated via analysing artist consistency in rankings.
Inferring similarity from similar metadata sources as well as
music blog titles, Slaney et al. evaluated the performance of
several methods for learning a Mahalanobis distance met-
ric for music in [16]. McFee et al. [10] used the MLR al-
gorithm (see below) for parametrising a content-based mu-
sic similarity metric. A Mahalanobis metric was trained on
collected crowd data in form of rankings. This approach is
very similar to ours, but their emphasis has been on the need
for reliable content-based classifiers for music discovery in
sparsely annotated data.

Bade et al. [2] train a set of song-adaptive music similar-
ity msasures for folksongs, inferring training data from ex-
pert classifications: Several known similarity measures for
the symboloc music data and metadata are combined lin-
early via a weighted sum specific to the measured songs,
its corresponding clusters or database. For optimisation,
the expert classification information is transferred into rela-
tive distance statements enforcing the class members to be
nearer than songs from foreign classes.

2.2 Metric Learning from Comparative Ratings

Many common algorithms for metric learning use class an-
notations and nearest neighbour classifications for optimis-
ing and evaluating metrics [18]. As we intend to learn music
similarity from relative comparisons, such approaches are
difficult to apply considering the missing ground truth data
for clusters of perceptually similar music pieces or equiva-
lents.

Based on a framework for Support Vector Machines,
Schultz and Joachims [14] presented an optimisation using
relative constraints we apply on the task of music similarity
learning. Davis et al. formulated a metric learning prob-

lem as an LogDet optimisation task [5]. In this case, a
fully parametrised Mahalanobis metric was learned, allow-
ing for a regularisation towards another predefined Maha-
lanobis metric.

McFee et al. have designed an algorithm for learning a
Mahalanobis metric to rankings (MLR) [9]. In our experi-
ments, MLR is applied to learning a distance metric on mu-
sic, using the implementation provided by the authors. In
their publication mentioned above [10], this algorithm has
been adapted to enable learning from collaborative filtering
data.

3. THE MAGNATAGATUNE DATABASE

The MagnaTagATune database combines the results of a
web-based game called ”TagATune” together with the mu-
sic clips used therein and extracted audio features [7]. These
roughly 30-second long clips are provided by the Magnatune
online music label on a creative commons license. Mag-
natune has labelled the clips in this database with 44 genre-
tags, which are not mutually exclusive. The majority of the
data can be divided into four disjoint main groups using the
genre tags ”classical”, ”electronica”, ”world” and ”rock”,
each containing more than 17% of the total number of clips.
The MagnaTagATune game is a collaborative online game
with two modes: a regular mode for collecting tags and a
bonus mode for collecting similarity ratings.

3.1 Captured Similarity Ratings

We extract relative similarity information from data collected
during the ”bonus” mode of the ”TagATune” game. In that
mode, two players earn points if they vote the same clip as
the outlier out of three clips provided [8]. All votes made
(matching or not) are saved into a histogram hi = {ha, hb, hc}
∈ H for that triplet of songs. 533 such histograms are in-
cluded in the MagnaTagATune database, describing the vote
distribution (between 1 and 153 votes per triplet, 14 on av-
erage). Not counting permutations of triplets, there are 346
unique triplets comprising 1019 unique clips. Many his-
tograms do not show a clear agreement on one outlier. This
may be caused by the diverse nature of the clips, causing
triplets normally to range over various genres, as discussed
in [11]. However, many other variables like users’ cultural
backgrounds can equally affect their decisions. Content is
homogeneously distributed throughout the complete 25863-
clip database, but the small number of triplets available and
the varying number of permutations do not allow for choos-
ing a suitable subset featuring a Balanced Block Partition-
ing. This has been pointet out as important in [1] to obtain a
relatively unbiased survey data set.

The above data was transferred into a ranking represen-
tation like in [9]. Treating the histograms as votings on the
similarity between the outlier and the other clips, for each



clip Ca, a set rsa of similar and, respectively, dissimilar clips
rda was calculated.

rsa = {b | ∃hi ∈ H : ha < hc ∧ hb < hc} (1)

rda = {c | ∃hi ∈ H : ha < hc ∧ hb < hc} (2)

The complete set of derived rankings is then given by

O =
{

(rsa, r
d
a) | ∃Ca ∧ rsa, rda 6= ∅ ∧ rda ∩ rsa = ∅

}
. (3)

Inconsistent rankings with rda ∩ rsa 6= ∅ were excluded to
enable the following training process. In order to use the
data with other algorithms, we removed further triplets 1 .
All but 12 of the resuting rankings contain a single clip on
each side: |rda| = |rsa| = 1. This resulted in 533 rankings.

3.2 Feature Generation

The MagnaTagATune dataset comes with precalculated fea-
tures for all clips extracted by the ”The Echo Nest” API
1.0, via the ”analyse” interface. These features are also in-
cluded in other online databases such as the Million Song
Dataset 2 . This also allows for a wider application of the
feature extraction procedure detailed below and facilitates
comparability with other studies. Of the wide feature range
provided 3 , we only use the chroma and timbre informa-
tion. The chroma and timbre features are sampled on a non-
uniform time scale. In order to aggregate to the clip level,
we use a k-means based algorithm to extract n = 4 cluster
centres for both of these features. In order to keep the fea-
tures invariant to key, whilst preserving the harmonic and
structural information, the chroma features are then trans-
posed to fit the main key as estimated in the provided fea-
tures, in the first chroma bin. This is achieved using a cir-
cular shift on the n chroma mean vectors. The resulting
shifted chroma mean vectors are now separately normalised
to a maximum value of 1.

The timbre features provided within the dataset very much
resemble the output of a 2-dimensional convolution with
12 different filters, corresponding to characteristic spectral
shapes. After clustering the timbre data to n = 4 mean vec-
tors, these are scaled and clipped to retain 85% of the data
within the interval of [0, 1] for the set of the 1019 clips.
Additionally, the cluster weights for each of the included
chroma and timbre cluster centroids are included in the fea-
tures.

3.2.1 Genre Features

These acoustic features are enriched using the genre tags as-
signed by the Magnatune label. This way, up to four genre

1 Two histograms {ha, hb, hc} and {ha, hb, hd} were removed if they
did not agree on the outlier, except if the outliers were c and d.

2 http://labrosa.ee.columbia.edu/millionsong/
3 http://developer.echonest.com/docs/v4/ static/AnalyzeDocumentation 2.2.pdf

tags are assigned to each of the clips. For each clip, a binary
44-dimensional vector indicates the annotation according to
the tags found for all of the clips in the dataset. The combi-
nation results in one feature vector xi ∈ (R ∩ [0, 1])

148 per
clip Ci, i ∈ {1, · · · , 1019}.

4. LEARNING SIMILARITY FROM
COMPARISONS

The distance measure d(xi, xj) we intend to optimise using
the following algorithms is defined on the clip level. Gen-
erally, our approach and the corresponding features are in-
tended to model a perceived distance, assumed to resemble
the inverse similarity of two songs.

The ranking data in the following experiments has been
approximated as a consensus from decisive triplet histograms,
and is therefore simpler, e.g. contains fewer contradictory
elements than the original data. Concerning the gathering of
the histograms themselves, the authors of [1] emphasise that
both the representation and especially the selection of com-
binations of the rated stimuli, in this case the clips, presented
to the users, affect the balance of the resulting ratings. They
only accept a set containing all possible triplet combinations
of a set of stimuli for an unbiased test. Unfortunately, the
triplets contained in the MagnaTagATune comparison data
and the resulting ratings ri are unbalanced. This may well
include a bias caused by the specific constellation of graph-
ical and acoustical presentations.

Using a metric for modelling song similarity implies sev-
eral assumptions. These assumptions have already been ques-
tioned by Tversky [17], arguing that perceived similarity
is not necessarily a linear, positive definite and symmet-
ric function, which satisfies the triangle inequality. Instead,
perceived similarity, in many circumstances, is assumed be
directional, considering specific functions of the objects in
comparison, e.g. prototype and referent.

However, the properties of a metric support efficient and
robust learning algorithms for dealing with the highly sparse
and often contradictory data involved in learning the song
similarity. Also, metrics have a straightforward geomet-
ric interpretation. Thus, besides the comparison of songs,
frameworks are available for comparing the metrics them-
selves. We now give a quick overview of the family of met-
rics used in our experiments before we focus on the way
they are used in Section 5.

4.1 Mahalanobis distances

The two algorithms summarised below are designed to learn
parametrised distance functions. These functions are special
cases of Mahalanobis distances, which are defined as

dW (xi, xj) =
√

(xi − xj)TW (xi − xj), (4)



where xi, xj ∈ RN and W ∈ RN×N .
To qualify as a metric, W has to be positive definite

[19]. The algorithms we use only guarantee W to be posi-
tive semidefinite. The corresponding distance functions still
satisfy the conditions of symmetry, non-negativity and the
triangle inequality, but allow for dW (xi, xj) = 0 whilst
xi 6= xj and therefore are called pseudometrics. This func-
tion is the Euclidean metric if W is the unit matrix. As
detailed below, a Mahalanobis distance can be described as
a weighted Euclidean distance applied to previously linearly
transformed features.

4.2 SC03

In [14], Matthew Schultz and Thorsten Joachims present an
SVM approach to learning a distance metric. The function
learned here is parametrised by two matrices, a linear trans-
formationA and the positive semidefiniteW . For our exper-
iments, A = I contains the identity transformation and W
is constrained to be a diagonal matrix. Thus dW describes a
weighted Euclidean distance metric.

In order to use the users’ similarity data rdi and rsi , the
rankings are converted into singular similarity statements of
the form (a,b,c), where the clipCa is more similar toCb than
to Cc. This leads to the following set of triplet constraints:

Q =
{

(a, b, c) | ∃ (rsa, r
d
a) ∈ O : b ∈ rsa ∧ c ∈ rda

}
(5)

For each training triplet (a, b, c), Schultz et al. consider
the squared pointwise difference ∆xi,xj of the transformed
clips’ features, which in this application case reduces to
∆xi,xj = (xi−xj) ·(xi−xj) (note the point-wise product).
The weighted differences of

∆∆
(a,b,c) = (∆xa,xc −∆xa,xb) (6)

are then used as constraints for the following optimisation
problem (with w = diag(W )):

min
w,ξ

1

2
wTw + cSC03 ·

∑
abc

ξabc (7)

s.t. ∀(a, b, c) ∈ Qtrain : wT∆∆
(a,b,c) ≥ 1− ξabc

wi,j ≥ 0, ξabc ≥ 0.

This minimises the loss defined by the sum of the slack
variables ξabc, whilst regularising W using the Frobenius
norm with 1

2‖W‖
2
F . We used the SVM light C++ implemen-

tation 4 to minimise the above term. The software returns
w in form of its support vector expansion, containing the
support (difference) vectors ∆∆

i of the corresponding hy-
perplane and their weights αiyi. w can be easily retrieved
using w =

∑n
i=1 αiyi∆

∆
i .

4 http://svmlight.joachims.org/

4.3 Metric Learning to Rank

In [9], McFee et al. describe an algorithm for learning a
fullly parametrised Mahalanobis distance (see Equation (4))
using ranking information. Presenting an algorithm based
on Structural SVM, they compute W whilst assuring the
margin between the given training rankings and possible dif-
ferent rankings of the training data [10]. This method uses
binary rankings and evaluates results by the relative posi-
tioning of clips marked as relevant or irrelevant. A fully cor-
rect ranking positions the relevant clips rsa before the ones
in rda. The calculation of the associated loss involves stan-
dard IR measures for estimating the ranking loss, e.g. the
area under ROC curve. For selecting the most effective con-
straints, a cutting-planes method [6] is used. Note that clips
not named in the rankings stay neutral and have no effect on
the loss.

The MATLAB R© implementation of the MLR framework,
available online 5 , provides several options for choosing the
cutting-planes method and loss function. In the experiments
below, we selected the AUC-related methods for simplicity.
In the literature, W is regularised by its trace tr(W ), but
the implementation provided by McFee also allows to use a
squared Frobenius norm, similar to the quadratic regularisa-
tion in (7).

5. EXPERIMENTS

All experiments were performed using five-fold cross-vali-
dation on the rankings. The ranking set O was divided into
five disjoint batches of 106 or 107 rankings, respectively.
Each batch was used once as a test set against the remaining
four batches combined as training set. For smaller sized
training sets, subsets were picked randomly from each of the
training batches. The size of the test sets was kept constant
for all training set sizes.

We tested three different variations of learning metrics:
SC03 for learning a weighted Euclidean distance, MLR for
calculating a full Mahalanobis matrix, and MLR with W
constrained to be diagonal. The slack-loss / regularisation
trade-off factors c were set to cmlr = 10000 for both the
diagonal and the full-W MLR, and cSC03 = 100 for the
SC03 algorithm (Section 4.2). The squared Frobenius norm
was used for regularising W in all experiments. These pa-
rameters were determined in earlier experiments using the
present dataset with non-reduced training sets.

For evaluation, we compare the rankings in the ground
truth with rankings induced by the learned distance func-
tions. We also tested an unweighted Euclidean distance met-
ric as a baseline. As we deal with binary rankings as de-
scribed in Section 3.1, any ranking featuring the clips in rsa
before the ones in rda for a query clip a qualifies as correct,

5 http://cseweb.ucsd.edu/˜bmcfee/code/mlr/



the absolute ranking positions were not taken into account.

5.1 Results

Figure 1 shows the results for running the above configu-
ration on the features described in Section 3.2. The upper
plot (a) shows the percentage of correctly induced rankings
for the three metric learning approaches as well as the re-
sults for an unmodified Euclidean metric, serving as base-
line. With 81.81% correctly reproduced test rankings and a
standard deviation of 4.78% over the five test sets, the fully
parametrised MLR-trained distance produces the best re-
sults, followed by the diagonal-MLR (71.85%, 2.69%) and
SC03 (69.61%, 4.27%), barely superceeding the baseline of
67.74%. Both of the diagonal-W methods score rather low
compared to the MLR-trained metric. Although the number
of variables to determine is rather high, given the feature
dimensionality, MLR proves successful in finding the best
solution, except for the training with less than 50 rankings.
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Figure 1. Results for increasing training set size. Plotted are
the mean percentages of fulfilled rankings. MLR algorithm
(◦), MLR with diagonal W (/), and SC03 (+). The perfor-
mance of the Euclidean metric is represented by a straight
line.

SC03 performs worst in this comparison, even dropping
below the baseline during the medium-sized test-sets. As
can be seen in Figure 1(b), SC03 performs much better than
the diagonal MLR on the training set. This suggests an over-
fitting of SC03 and possibly insufficient influence of the reg-
ularisation loss. Overfitting depends strongly on the choice
of cSC03. The fact that the more flexible fully parametrised
MLR-trained distance metric shows more flexibility towards
the satisfaction of training constraints appears intuitive
(Figure 1(b)). Lesser so, the better generalisation, which
might be explained by the ability to spread the necessary ad-
justments in the metric across many parameters compared to

the diagonally parametrised metrics.
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Figure 2. Results for increasing training set size using PCA
features. Labels are as above.

5.1.1 PCA features

Figure 2 shows the results of applying the metric learning to
a feature set that was reduced to 20 dimensions using Prin-
cipal Component Analysis (PCA). As in the earlier experi-
ment, MLR scores best, with (76.94%, 3.1%). The degrada-
tion may be attributed to the smaller number of parameters
(W ∈ R20×20) available for adapting the metric. However,
when analysing the weights for the single feature dimen-
sions, the ordering (by absolute value of the eigenvalues)
used for determining the relevant pca dimensions does not
correspond to their influence on the rated similarity. Thus,
information relevant for similarity is lost in these PCA re-
duced features, which has been validated by the training of
metrics using more PCA coefficients. In this experiment
with 20 coefficients we compare the ranking of PCA coeffi-
cients, as determined by PCA data variance, with the rank-
ing of PCA coefficients derived from the SC03 weighting.
They differ on average by more than 52% of the index range.

With the PCA features, the SC03 algorithm greatly im-
proves in performance, 75.42% indicating a higher suitabil-
ity of the low-dimensional vector space. This time, a less
effective enforcement of training constraints apparently en-
ables a better generalisation. In contrast, the diagonal MLR
is less able to cope with the data. Especially for the train-
ing sets involving around 300 rankings, the decrease in per-
formance on the test set can be explained by less consis-
tent training sets leading to badly generalising metrics. The
baseline Euclidean metric achieves 66.97% of correct rat-
ings.



6. DISCUSSION

In the present paper, we apply general algorithms for met-
ric learning to a music similarity modelling task Using sim-
ple and widely available features and comparative similar-
ity ratings, we demonstrated that a considerable proportion
of the ratings can be effectively learned and reproduced us-
ing Mahalanobis distances. This corroborates the initial hy-
pothesis that the ratings sharing some concordant informa-
tion. Whilst with both the original features and the low-
dimensional PCA features the MLR algorithm shows supe-
rior results, the diagonal matrix algorithms show compara-
ble generalisation abilities for the PCA features. However,
PCA seems not suitable for reducing feature dimensionality
in a musical similarity context. Instead, the metric leaning
techniques may hint on the necessary transformations and
on which features may be ommitted.

6.1 Future Work

Despite the sparse and sometimes contradictory nature of
the rankings derived from MagnaTagATune, we find the our
results encouraging to develop more elaborate data sets for
further experiments. Special attention will be given to the
variation of learned metrics when observing different cul-
turally defined user groups. More research has to be done in
the development of specialised regularisation terms for met-
ric learning algorithms, e.g. allowing for a customised W
as a regularisation target [5].
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